
Synthesizing Filtering Algorithms for Global

Chance-Constraints�

Brahim Hnich1, Roberto Rossi2, S. Armagan Tarim3, and Steven Prestwich4

1 Faculty of Computer Science, Izmir University of Economics, Turkey
brahim.hnich@ieu.edu.tr

2 Logistics, Decision and Information Sciences, Wageningen UR, The Netherlands
roberto.rossi@wur.nl

3 Operations Management Division, Nottingham University Business School, UK
armtar@yahoo.com

4 Cork Constraint Computation Centre, University College Cork, Ireland
s.prestwich@4c.ucc.ie

Abstract. Stochastic Constraint Satisfaction Problems (SCSPs) are a
powerful modeling framework for problems under uncertainty. To solve
them is a P-Space task. The only solution approach to date compiles down
SCSPs into classical CSPs. This allows the reuse of classical constraint
solvers to solve SCSPs, but at the cost of increased space requirements and
weak constraint propagation. This paper tries to overcome some of these
drawbacks by automatically synthesizing filtering algorithms for global
chance-constraints. These filtering algorithms are parameterized by prop-
agators for the deterministic version of the chance-constraints. This ap-
proach allows the reuse of existingpropagators in current constraint solvers
and it enhances constraint propagation. Experiments show the benefits of
this novel approach.

1 Introduction

Stochastic Constraint Satisfaction Problems (SCSPs) are a powerful modeling
framework for problems under uncertainty. SCSPs were first introduced in [10]
and further extended in [9] to permit multiple chance-constraints and a range
of different objectives in order to model combinatorial problems under uncer-
tainty. SCSP is a PSPACE-complete problem [10]. The approach in [9] compiles
down SCSPs into deterministic equivalent CSPs. This makes it possible to reuse
existing solvers, but at the cost of increased space requirements and of hinder-
ing constraint propagation. In this paper we overcome some of these drawbacks
by automatically synthesizing filtering algorithms for global chance-constraints.
These filtering algorithms are built around propagators for the deterministic ver-
sion of the chance-constraints. Like the approach in [9], our approach reuses the
propagators already available for classical CSPs. But, unlike [9], our approach
uses fewer decision variables and strengthens constraint propagation. Our results

� Brahim Hnich is supported by the Scientific and Technological Research Council of
Turkey (TUBITAK) under Grant No. SOBAG-108K027.

I.P. Gent (Ed.): CP 2009, LNCS 5732, pp. 439–453, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

440 B. Hnich et al.

show that our approach is superior to the one in [9], since it achieves stronger
pruning and therefore it proves to be more efficient in terms of run time and
explored nodes.

The paper is structured as follows: in Section 2 we provide the relevant formal
background; in Section 3 we discuss the structure of a SCSP solution; in Section
4 we describe the state-of-the-art approach to SCSPs; in Section 5 we discuss our
novel approach; in Section 6 we present our computational experience; in Section 7
we provide a brief literature review; finally, in Section 8 we draw conclusions.

2 Formal Background

A Constraint Satisfaction Problem (CSP) consists of a set of variables, each
with a finite domain of values, and a set of constraints specifying allowed com-
binations of values for some variables. A solution to a CSP is an assignment of
variables to values in their respective domains such that all of the constraints
are satisfied. Constraint solvers typically explore partial assignments enforcing
a local consistency property. A constraint c is generalized arc consistent (GAC)
iff when a variable is assigned any of the values in its domain, there exist com-
patible values in the domains of all the other variables of c. In order to enforce
a local consistency property on a constraint c during search, we employ filtering
algorithms that remove inconsistent values from the domains of the variables
of c. These filtering algorithms are repeatedly called until no more values are
pruned. This process is called constraint propagation.

An m-stage SCSP is defined as a 7-tuple 〈V, S, D, P, C, θ, L〉, where V is a
set of decision variables and S is a set of stochastic variables, D is a function
mapping each element of V and each element of S to a domain of potential
values. In what follows, we assume that both decision and stochastic variable
domains are finite. P is a function mapping each element of S to a probability
distribution for its associated domain. C is a set of chance-constraints over a
non-empty subset of decision variables and a subset of stochastic variables. θ
is a function mapping each chance-constraint h ∈ C to θh which is a threshold
value in the interval (0, 1]. L = [〈V1, S1〉, . . . , 〈Vi, Si〉, . . . , 〈Vm, Sm〉] is a list of
decision stages such that each Vi ⊆ V , each Si ⊆ S, the Vi form a partition of
V , and the Si form a partition of S.

The solution of an m-stage SCSP is, in general, represented by means of
a policy tree [9]. The arcs in such a policy tree represent values observed for
stochastic variables whereas nodes at each level represent the decisions associated
with the different stages. We call the policy tree of an m-stage SCSP that is a
solution a satisfying policy tree.

3 Satisfying Policy Trees

In order to simplify the presentation, we assume without loss of generality, that
each Vi = {xi} and each Si = {si} are singleton sets. All the results can be easily
extended in order to consider |Vi| > 1 and |Si| > 1. In fact, if Si comprises more

