
Neuroevolutionary Inventory Control
in Multi-Echelon Systems�

Steve D. Prestwich1, S. Armagan Tarim2, Roberto Rossi3, and Brahim Hnich4

1 Cork Constraint Computation Centre, Ireland
2 Operations Management Division, Nottingham University Business School, Nottingham, UK

3 Logistics, Decision and Information Sciences Group, Wageningen UR, The Netherlands
4 Faculty of Computer Science, Izmir University of Economics, Turkey

s.prestwich@cs.ucc.ie, armtar@yahoo.com.tr,
roberto.rossi@wur.nl, brahim.hnich@ieu.edu.tr

Abstract. Stochastic inventory control in multi-echelon systems poses hard
problems in optimisation under uncertainty. Stochastic programming can solve
small instances optimally, and approximately solve large instances via scenario
reduction techniques, but it cannot handle arbitrary nonlinear constraints or other
non-standard features. Simulation optimisation is an alternative approach that has
recently been applied to such problems, using policies that require only a few
decision variables to be determined. However, to find optimal or near-optimal so-
lutions we must consider exponentially large scenario trees with a corresponding
number of decision variables. We propose a neuroevolutionary approach: using
an artificial neural network to approximate the scenario tree, and training the net-
work by a simulation-based evolutionary algorithm. We show experimentally that
this method can quickly find good plans.

1 Introduction

In the area of optimisation under uncertainty, one of the most mature fields is inventory
control. This field has achieved excellent theoretical and practical results using tech-
niques such as dynamic programming, but some problems are too large or complex to
be solved by classical methods. Particularly hard are those involving multi-echelon sys-
tems, in which multiple stocking points form a supply chain. In such cases we may resort
to simulation-based methods. Simulation alone can only evaluate a plan, but when com-
bined with an optimisation algorithm it can be used to find near-optimal solutions (or
plans). This approach is called simulation optimisation (SO) and has a growing litera-
ture in many fields including production scheduling, network design, financial planning,
hospital administration, manufacturing design, waste management and distribution. It is
a practical approach to optimisation under uncertainty that can handle problems contain-
ing features that make them difficult to model and solve by other methods: for example
non-linear constraints and objective function, and demands that are correlated or have
unusual probability distributions.

� B. Hnich is supported by the Scientific and Technological Research Council of Turkey
(TUBITAK) under Grant No. SOBAG-108K027. This material is based in part upon works
supported by the Science Foundation Ireland under Grant No. 05/IN/I886.

F. Rossi and A. Tsoukis (Eds.): ADT 2009, LNAI 5783, pp. 402–413, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



Neuroevolutionary Inventory Control in Multi-Echelon Systems 403

SO approaches to inventory control are typically based on policies known to be opti-
mal in certain situations, involving a small number of reorder points and reorder quanti-
ties. For example in (s, S) policies whenever a stock level falls below s it is replenished
up to S, while in (R, S) policies the stock level is checked at times specified by R, and
if it falls below S then it is replenished up to S. SO can apply standard optimisation
techniques such as genetic algorithms to these policies by assigning genes to reorder
points and replenishment levels. In more complex situations involving constraints, mul-
tiple stocking points, etc, these policies may be suboptimal in terms of expected cost,
though they can have other desirable properties such as improved planning stability.
But a cost-optimal plan for a multi-stage problem with recourse must specify an order
quantity in every possible scenario, so the plan must be represented via a scenario tree.
The number of scenarios might be very large, or infinite in the case of continuous prob-
ability distributions, making the use of SO problematic. Scenario reduction techniques
may be applied to approximate the scenario tree, but it might not always be possible to
find a small representative set of scenarios.

An alternative form of approximation is to use an artificial neural network (ANN)
to represent the policy. For example, the inputs to the ANN could be the current stock
levels and time, and the outputs could be the recommended actions (whether or not to
replenish and by how much). We must then train the ANN so that its recommendations
correspond to a good plan. No training data is available for such a problem so the usual
ANN backpropagation training algorithm cannot be applied. Instead we may use an evo-
lutionary algorithm to train the network to minimise costs. This neuroevolutionary ap-
proach has been applied to control problems [8,9,21] and to playing strategies for games
such as Backgammon [16] and Go [14], but it has not been extensively applied to in-
ventory control. In this paper we apply neuroevolution to stochastic inventory control in
multi-echelon systems. Section 2 presents our method, Section 3 evaluates the method
experimentally, Section 4 surveys related work, and Section 5 concludes the paper.

2 A Neuroevolutionary Approach

To approximate the scenario tree, we construct a function whose input is a vector con-
taining the time period and current inventory levels, and whose output is a vector of
order quantities (which might be zero). We design the function automatically by simu-
lation optimisation.

2.1 Scenario Tree Compression by Neural Network

An obvious choice for this function is an artificial neural network (ANN), which can
approximate any function with arbitrary accuracy given a sufficient number of units.
ANNs also come with a ready-made algorithm for optimisation: the well-known back-
propagation algorithm. However, there is a problem with this approach: we do not have
training data available (this also precludes the use of Support Vector Machines). To
obtain training data we would have to solve a set of instances, and there is no known
method for solving the harder instances to optimality. Instead we must use an ANN to
solve a problem in reinforcement learning, in which we must choose its weights in order


