
Stochastic Constraint Programming
by Neuroevolution with Filtering�

Steve D. Prestwich1, S. Armagan Tarim2, Roberto Rossi3, and Brahim Hnich4

1 Cork Constraint Computation Centre, University College Cork, Ireland
2 Department of Management, Hacettepe University, Ankara, Turkey

3 Logistics, Decision and Information Sciences Group, Wageningen UR, The Netherlands
4 Faculty of Computer Science, Izmir University of Economics, Turkey

s.prestwich@cs.ucc.ie, armtar@yahoo.com,
roberto.rossi@wur.nl, brahim.hnich@ieu.edu.tr

Abstract. Stochastic Constraint Programming is an extension of Constraint
Programming for modelling and solving combinatorial problems involving un-
certainty. A solution to such a problem is a policy tree that specifies decision vari-
able assignments in each scenario. Several complete solution methods have been
proposed, but the authors recently showed that an incomplete approach based on
neuroevolution is more scalable. In this paper we hybridise neuroevolution with
constraint filtering on hard constraints, and show both theoretically and empiri-
cally that the hybrid can learn more complex policies more quickly.

1 Introduction

Stochastic Constraint Programming (SCP) is an extension of Constraint Programming
(CP) designed to model and solve complex problems involving uncertainty and prob-
ability [7]. An m-stage SCSP is defined as a tuple (V, S, D, P, C, θ, L) where V is a
set of decision variables, S a set of stochastic variables, D a function mapping each
element of V ∪ S to a domain of values, P a function mapping each variable in S to
a probability distribution, C a set of constraints on V ∪ S, θ a function mapping each
constraint in C to a threshold value θ ∈ (0, 1], and L = [〈V1, S1〉, . . . , 〈Vm, Sm〉] a list
of decision stages such that the Vi partition V and the Si partition S. Each constraint
must contain at least one V variable, a constraint h ∈ C containing only V variables is
a hard constraint with threshold θ(h) = 1, and one containing at least one S variable is
a chance constraint.

To solve an SCSP we must find a policy tree of decisions, in which each node rep-
resents a value chosen for a decision variable, and each arc from a node represents the
value assigned to a stochastic variable. Each path in the tree represents a different possi-
ble scenario and the values assigned to decision variables in that scenario. A satisfying

� S. A. Tarim and B. Hnich are supported by the Scientific and Technological Research Council
of Turkey (TUBITAK) under Grant No. SOBAG-108K027. S. A. Tarim is also supported by
Hacettepe University (BAB). A version of this algorithm will used to further research in risk
management as part of a collaboration with IBM Research, with partial support from the Irish
Development Association and IRCSET.

A. Lodi, M. Milano, and P. Toth (Eds.): CPAIOR 2010, LNCS 6140, pp. 282–286, 2010.
c© Springer-Verlag Berlin Heidelberg 2010



Stochastic Constraint Programming by Neuroevolution with Filtering 283

policy tree is a policy tree in which each chance constraint is satisfied with respect to the
tree. A chance constraint h ∈ C is satisfied with respect to a policy tree if it is satisfied
under some fraction φ ≥ θ(h) of all possible paths in the tree.

Most current SCP approaches are complete and do not seem practicable for large
multi-stage problems, but the authors recently proposed a more scalable method called
Evolved Parameterised Policies (EPP) [3]. In this paper we hybridise EPP with con-
straint filtering, and show theoretically and empirically that this improves learning. An
upcoming technical report will contain details omitted from this short paper.

2 Filtered Evolved Parameterised Policies

EPP [3] uses an evolutionary algorithm to find an artificial neural network (ANN) whose
input is a representation of a policy tree node, and whose output is a domain value for
the decision variable to be assigned at that node. The ANN describes a policy func-
tion: it is applied whenever a decision variable is to be assigned, and can be used to
represent or recreate a policy tree. The evolutionary fitness function penalises chance
constraint violations, and is designed to be optimal for ANNs representing satisfying
policy trees. In experiments on random SCSPs, EPP was orders of magnitude faster
than state-of-the-art complete algorithms [3]. Because it evolves an ANN it is classed
as a neuroevolutionary method (see for example [6]).

A drawback with EPP is that it treats hard constraints in the same way as chance
constraints. This is not incorrect, but a problem containing many hard constraints may
require a complex ANN with more parameters to tune, leading to longer run times. We
now describe a constraint-based technique for the special case of finite domain SCSPs
that allows more complex policies to be learned by simpler ANNs.

We modify EPP so that the ANN output is not used to compute a decision variable
value directly, but instead to compute a recommended value. As we assign values to the
decision and stochastic variables under some scenario ω, we apply constraint filtering
algorithms using only the hard constraints, which may remove values from both de-
cision and stochastic variable domains. If domain wipe-out occurs on any decision or
stochastic variable then we stop assigning variables under ω and every constraint is arti-
ficially considered to be violated in ω; otherwise we continue. On assigning a stochastic
variable s we choose ω(s), but if ω(s) has been removed from dom(s) then we stop as-
signing variables under ω and every constraint h is artificially considered to be violated
in ω; otherwise we continue. On assigning a decision variable x we compute the rec-
ommended value then choose the first remaining domain value after it in cyclic order.
For example suppose that initially dom(x) = {1, 2, 3, 4, 5} but this has been reduced
to {2, 4}, and the recommended value is 5. This value is no longer in dom(x) so we
choose the cyclically next remaining value 2. If all variables are successfully assigned
in ω then we check by inspection whether each constraint is violated or satisfied.

Some points should be clarified here. Firstly, it might be suspected that filtering
a stochastic variable domain violates the principle that these variables are randomly
assigned. But stochastic variables are assigned values from their unfiltered domains.
Secondly, the value assigned to a decision variable must depend only upon the values
assigned to stochastic variables occurring earlier in the stage structure. Does filtering


