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Glossary
Censored sample – A sample appearing in the life-

testing experiments when n items are kept under

observation and only part of this sample can be

observed.

Counting process – A stochastic process

representing the total number of curtain event

occurring up to time.

Distribution free statistics for a class of

distribution function – A statistic whose distribution

is the same for all distribution function in the class.

Empirical distribution function – A natural

estimation of the cumulative distribution function

constructed on the base of the sample.

Extreme order statistics – The maximal and

minimal order statistics.

Markov property – This property states that to make

predictions of the behavior of a system in the future, it

suffices to consider only the present state of the

system and not past history.

Order Statistics – Original random sample arranged

in order of magnitude.

Probability integral transformation –

A transformation that transforms an arbitrary

distribution to the uniform distribution.

Robust estimators – Estimators that are efficient in

presence of outliers in the sample.

Two sample problem – A hypothesis testing

problem verifying whether two sample are identically

distributed or not.
The Subject of Order Statistics

The independent and identically distributed random vari-
ables, which can be interpreted as results of an experiment
measuring values of a certain random variable arranged
in order of magnitude, are called order statistics. In the
statistical model of many experiments, for instance, in
reliability analysis, life time studies, the analysis of time
to graduation of students, and testing of strength of mate-
rials, the realizations arise in nondecreasing order; there-
fore, the use of order statistics is necessary. Order statistics
are extensively used in statistical inferences: in estimation
theory and hypothesis testing.
0

Let X1, X2, . . . , Xn denote a random sample from
a population with cumulative distribution function (cdf )
F(x). Suppose that the elements of this sample are
arranged in order of magnitude and X(1) denotes the
smallest; X(2) denotes the second smallest; etc., and X(n)

denotes the largest of the set X1, X2, . . . , Xn. Then X(1) �
X(2) � . . . � X(n) denotes the original random sample
arranged in increasing order of magnitude, and these are
called the order statistics of the sample X1, X2, . . . , Xn. We
call X(i ), for 1� i� n the ith order statistic. The subject of
order statistics deals with the distributional properties of
X(i ) itself. and some functions of the subset of the n order
statistics and their applications. If, for example, the scores
of n students in the exam are X1, X2, . . . , Xn, then X(n)

represents the score of the best student; X(1) is the score
of the weakest; the sample range W ¼ X(n) � X(1) is a
measure of dispersion; the sample median, defined as
(X(n/2) þ X(n/2 + 1))/2 for an n even and as X[(n + 1)/2],
for n odd, is a measure of location and estimate the central
tendency of scores. Here, [a] is the integer part of the
number a. The sample midrange, defined as (X(1)þ X(n))/2,
is also a measure of central tendency.

Order statistics have wide applications in many areas
where the use of an ordered sample is important. Order
statistics are among the most fundamental tools in non-
parametric statistics, because the transformation U(i ) ¼ F
(X(i )) produces a random variable which is the ith order
statistics from the uniform population on the interval
(0, 1), and therefore U(i ) is distribution free, that is, its
distribution function is independent of the distribution
function F of the original sample. This transformation is
called the probability integral transformation.

It is well known from classical statistical theory that the
natural estimate of an unknown distribution function is
the empirical distribution function, which is a function of
order statistics. Therefore, many important statistics in
estimation theory and hypothesis testing appear to be
an integral functional of the empirical distribution func-
tion, and can be expressed in terms of order statistics.
Order statistics do not change their order under probabil-
ity integral transformation, namely if U(i ) ¼ F(X(i )),
i ¼ 1, 2, . . ., n, then U(1) � U(2) � . . . � U(n). Due to
unique distribution free properties, they are widely used in
nonparametric interval estimation and hypothesis testing.

Order statistics and their properties have been exten-
sively studied since the early part of the last century, and
recent years have seen a particularly rapid growth of
studies. The multiauthored book Contributions to Order
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Statistics, edited by A. H. Sarhan and B. G. Greenberg,
appeared in the Wiley series in probability and statistics
in 1962. The first monograph. Order Statistics by H. David
appeared in 1970 in the same Wiley series and has served
as a text, a survey of growth, and a general introduc-
tion. The second edition appeared in 1981 and the third,
coauthored with H. Nagaraja, in 2003. For further read-
ing the reader is refered to Arnold et al. (1992) and
Balakrishnan (2007).
Basic Distribution Theory

The elements of the sample X1, X2, . . . , Xn are indepen-
dent and identically distributed (iid), but the order statis-
tics X(1), X(2), . . . , X(n) are dependent random variables.
The distribution of the r th order statistics can be derived
using the independence of the random variables X1,
X2, . . . , Xn and observing that the event {X(r) � t} occurs
if and only if at least r of the observations X1, X2, . . . , Xn

falls below t. Therefore, taking into account the fact
that the probability of occurrence of exactly i of events
{Xk � x} in n independent Bernoully trials is

n
i

� �
F iðxÞð1� FðxÞÞn�i , the cdf of X(r) can be written as

Fr ðxÞ ¼ P XðrÞ � x
� � ¼

Xn
i¼r

n

i

� �
F iðxÞð1� FðxÞÞn�i ½1�

If F is absolutely continuous with probability density
function (pdf ) f, then [1] can also be rewritten as follows:

Fr ðxÞ ¼ n!

ðr � 1Þ!ðn� rÞ!
Z FðxÞ

0

ur�1ð1� uÞn�rdu ½2�

Formula [1] holds true for both discrete and continuous
distribution functions. Formula [2] is true only for abso-
lutely continuous distributions. Given the realizations of
the n order statistics to be x(1) < x(2) < . . . < x(n), the
original random variables Xi are restrained to take on the
values x(i ) (i ¼ 1, 2, . . . , n) which by symmetry assigns
equal probability to each of the n! permutations of
(1, 2, . . . , n). Therefore, the joint pdf of all n order
statistics is

f1;2;...;n ðx1; x2; . . . ; xnÞ ¼ n!
Yn
i¼1

f ðxiÞ for x2 <x2< . . .< xn

Since X(1), X(2), . . . , X(n) are dependent random variables,
then their joint distributions are important. The expres-
sions for the joint pdf ’s of two or more order statistics can
be found in David (1981).

Order statistics from uniform distribution on [0, 1] are
important when one needs to generate the order statistics
from any distribution using Monte Carlo simulation. If
X(1), X(2), . . . , X(n) are order statistics from the population
with cdf F and F �1(u) ¼ inf{x : F(x) � u} is the inverse of
F, then F �1 (U(i )) ¼ X(i ), the equality here is in distribution.
There are various methods of generating uniform random
variables. Using computer simulation we generate sample
U1, U2, . . . , Un from the uniform distribution in [0, 1] and
then order the sample. The X(i) value then can be calculated
as X(i ) ¼ F �1(U(i)). For various methods of generating
order statistics, see Tadikamalla and Balakrishnan (1998).

The pdf of Wrs ¼ X(s) � X(r) when the parent popula-
tion is uniform in [0, 1] depends only on s – r, and not on
r and s individually. In addition, the pdf of the sample range
W¼X(n)�X(1) is fW1n (x)¼ n(n� 1)xn�2 (1� x), 0� x� 1.

Let X(1), . . . , X(n) be the order statistics based on the
sampleX1,X2, . . . ,Xnwith cdf F(x)¼ 1� exp(� lx), x� 0.
Then the spacings Y1 ¼ X(1), Y2 ¼ X(2) � X(1), . . .,Yn ¼
X(n) � X(n�1) are independent; furthermore, the random
variables Zr ¼ (n� rþ 1) l(X(r) � X(r � 1), r¼ 1, 2, . . . , n
are iid with cdf F(x) ¼ 1 � exp(� x), x � 0, where X0 ¼ 0.
If n units are placed under strength test and X1, X2, . . . , Xn

are independent random variables with exponential
distribution and represent the life lengths of these units,
then the lengths of time intervals X(r) � X(r � 1), r ¼ 1,
2, . . ., n between two failures are independent and
indentically distributed random variables. Then
X ðrÞ ¼ Pr

i¼1 Zi=lðn� i þ 1Þ that is;XðrÞ can be repre-
sented as a sum of iii random variables. Then the condi-
tional distribution of X(r+1) given X(1) ¼ x1, X(2) ¼ x2, . . . ,
X(r) ¼ x(r) is the same with the conditional distribution of
X(r+1) given X(r) ¼ x(r). This means that X(1), X(2), . . . , X(n)

satisfy Markov property and form an additive Markov
chain. The Markov property states that to make predic-
tions of the behavior of a system in the future, it suffices to
consider only the present state of the system and not the
past history. The sequence of dependent random variables
satisfying the Markov property is called the Markov chain.
This property helps in establishing the Markovian depen-
dence structure of order statistics from the sample with
any continuous distribution. It follows that the order sta-
tistics X(1), X(2), . . . , X(n) from a population with continu-
ous cdf form a Markov chain.

There are some interesting properties of order statis-
tics connected with truncation of these ordered observa-
tions. For instance, let X(1), X(2), . . . , X(n) be order
statistics of the sample X1, X2, . . . , Xn with absolutely
continuous cdf F and pdf f. Then given X(r) ¼ x, X(s) ¼ y
the joint pdf of (X(rþ1), X(rþ2), . . . , X(s�1)) is the same
with the joint pdf of the order statistics (Y(1), Y(2), . . . , Y(s

� r)) from the sample Y1, Y2, . . . , Ys � r size s� r, where Yi

has pdf of the random variableXi given x < Xi < y.
A counting process {N(t), t � 0} representing the total

number of event A occurring up to time t is called a
Poisson process if it has stationary and independent incre-
ments. Note that, a stochastic process {N(t), t � 0} is said
to have independent increments if, for all t0 < t1 < t2
< . . . < tn, the random variables N(t1) � N(t0), N(t2) � N
(t1), . . . , N(tn) � N(tn�1) are independent. It possesses
stationary increments if N(t þ h) � N(t) has the same
distribution for all t. There is an interesting connection
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between the interarrival times of the occurrence of event
A and the order statistics. Let N(t) be a Poisson process
with rate l, l > 0, then P{N(t) ¼ k} ¼ e�lt(lt)k/k! (k ¼ 0,
1, 2, . . .). Denote by X1 the time of the first event, X2 the
time between the first and the second event, Xn the time
between (n � 1) th and n th event. Then the sequence
{Xn}n� 1 is called the sequence of interarrival times. It is
well known that X1, X2, . . . , Xn are iid exponential ran-
dom variables having a mean of 1/l. Another quantity is
Sn ¼

Pn
i¼1 Xi ; n � 1, the arrival time of, or waiting time

until, the nth event. Then given that N(s)¼ n, the n arrival
times S1, . . . , Sn have the same distribution as the order
statistics corresponding to the independent random vari-
ables uniformly distributed on the interval [0, s], i.e.

PfS1 � t1; S2 � t2; . . . ; Sn � tnjNðsÞ ¼ ng
¼ PfUð1Þ � t1; . . . ;UðnÞ � tng

¼ n!

sn
; 0< t1 < t2 < . . .< tn;

where U(i) is the ith order statistic from uniform in [0, s]
distribution.

Order Statistics in Statistical Inference

Order statistics are essential in several optimal inference
procedures and hypothesis testing problems. In many
cases when the underlying distribution has finite support,
the order statistics themselves become sufficient statistics
and, thus, provide minimum variance unbiased estimators
and the most powerful test procedures for the unknown
parameters. Note that, if the random variable X takes
values from the interval [a, b], then we say that this
random variable has support [a, b], �1 � a < b � 1.
If the random variable has finite support and if the
support involves the parameters of distribution of this
random variable, then many of estimates of parameters
involve order statistics. For example, let X be uniform in
[0, y] random variable, that is, the pdf of X is f (x ; y)¼ 1/y
if 0 � x � y. It is well known that X(n) is a sufficient,
and complete statistic for y and nþ1

n XðnÞ is an unbiased
estimator of y.

The order statistics appear in a natural way in the
inference procedures when the sample is censored and
only part of the sample values are available. The censored
samples appear in the life-testing experiments when n
items are kept under observation until failure. These
items could be technical systems or their components,
patients under certain drug or clinical conditions, or
candidates undergoing exams in complex conditions or
under time pressure.

In measuring performance on examinations many tea-
chers use average �X ¼ 1

n

Pn
i¼1 Xi and sample variance

S2 ¼ 1
n�1

Pn
i¼1ðXi � �X Þ2, where X1, X2, . . . , Xn are test

scores of students. It is well known that poor lecture
attendance is associated with lower test scores (see, e.g.,
Myles and Henderson, 2002, Williams et al., 2002; Balch,
1992). The presence of a student with poor attendance
will probably lead to a lower test score for the class, and
this outlier will affect the sample mean �X and variance S2.
Therefore, the existence of outliers will result in misesti-
mation of class performance. To avoid this kind of prob-
lem in applications, we need to find estimators only
minimally affected by the presence of outliers. In statisti-
cal literature such estimators are called robust estimators.
One popular robust estimator of the center of a symmetric
distribution is the symmetric trimmed mean

�̂r ¼ 1

n� 2r

Xn�r

i¼rþ1

XðiÞ; 0 � r � n� 1

2

� �

where we have trimmed the top r and the bottom r order
statistics. The trimmed means give less weight to the
sample extremes and are suggested as robust estimators.
They are robust against the presence of a small number of
outliers and highly efficient in their complete absence.
Barnett and Lewis (1994) describe an estimator:

�̂ ¼ �̂0; if max ð�X � XðnÞÞ; ðXðnÞ � �XÞ� �
< c

�̂1 otherwise

(

for the mean m of a sample from an N(m, 1), where
distribution suspect one of the values is from N (m þ d, 1), and
y0 and y1 are trimmed means and c can be the specified
percentile of the distribution of max |Xi � �X|. This
statistic is used for testing for a single extreme outlier.
Balakrishnan (2007) computed the bias and mean square
error of robust estimators constructed in the base of order
statistics and presented tables of numerical vales for n ¼
10. For a further reading on robust statistics, see Huber
(1981), Andrews et al. (1972), and David and Ghosh (1985).
Order Statistics and Education

Order statistics play an important role in educational
statistics. In many statistical analyses, the information
from a random sample is utilized through the ordered
values of the sample. At the beginning of the course
‘nonparametric statistics’ the students face the nontrivial
operation of ordering of a random sample. On the one
hand, theoretically the elements of the random sample are
random variables, that is, measurable functions X1(o),
X2(o), . . . , Xn(o) (o E O) given in the probability space
{O, F, P}, where O is a sample space, F is a s–algebra of
subsets of the sample space, and P is a probability mea-
sure. On the other hand, the sample values X1, X2, . . . , Xn

are considered as realizations of the experiment measuring
values of the random variable X, namely, they are numbers.
In deriving the cdf of r th order statistics for better
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understanding of the idea of proof, we consider the ran-
dom sample as numbers, when they are actually random
variables. Understanding the structure of order statistics
presents difficulties when considering the original sample as
functions. For example, the distribution function of the
maximal order statistic X(n) is Fn(x) ¼ P{X(n) � x} and if
we consider X1, X2, . . . , Xn as numbers, then the maxi-
mum is less than or equal to x if all numbers are less than
or equal to x. Therefore, the event {X(n)� x} occurs if and
only if all the members of original sample are less than or
equal to x, namely {X1 � x, X2 � x, . . . , Xn � x}. Now,
since the original X’s are independent and all have the
same cdf F, we can state

FnðxÞ ¼ PfXðnÞ � xg
PfX1 � x;X2 � x; . . .Xn � xg ¼ FnðxÞ

In general, the cdf of r th order statistic, PfXðrÞ � xg¼

Pfat least j X ’s are� xg¼Pi¼j

n

n

j

� �
Pfexactly i X s are� xg,

here again we use the independence of the original
sample. This approach is useful for understanding the
structure of order statistics that are actually measurable
functions of the elements of sample space.

As pointed out above the probability integral transfor-
mation U ¼ F (X ) transforms the order statistics X(1),
X(2), . . . , X(n) to uniform order statistics U(1), U(2), . . . ,
U(n) and preserves the order. In hypothesis testing and
confidence intervals, the field of nonparametric statistics
relies on the concept known as distribution-free property.
For the distribution-free hypothesis test, the significance
level remains constant over a class of underlying distribu-
tional assumptions. The distribution-free or invariant
confidence interval has a constant confidence level hold-
ing over a class of distribution functions. The test statistic
S ¼ S(X1, X2, . . . , Xn) is designated distribution free over
some class of distributions, say F, if the distribution of S is
the same for every distribution in F. The view that many
students have difficulties understanding these concepts
seems to be a common one among my colleagues teaching
nonparametric statistics. However, this problem can be
overcome using order statistics to construct effective
examples. For example, let ℱ ¼ ℱy be a scale parameter
class; this means that if Fy(x) 2ℱy then Fy(x)¼ F(x/y), for
some distribution function F and parameter y. Then the
distribution of statistic defined as midrange divided by the
range, that is,

T ¼ 1

2

XðnÞ þ Xð1Þ
XðnÞ � Xð1Þ

does not depend on parameter y; in other words, this
statistic is distribution free for the class Fy. As another
example, let F ¼ Fc be the class of all continuous distribu-
tion functions and X1, X2, . . . Xn be a sample from the
population with distribution function F 2 Fc, and let Xn+1

be the (n þ 1)th observation from the same population
independent of X1, X2, . . . , Xn, then the probability that
Xnþ1 falls into interval (X(r), X(s)) is (s � r)/(n þ 1). This
probability is the same for all distribution functions
F from the class Fc, which means that the interval (X(r),
X(s)) constructed by the order statistics is the distribution-
free confidence interval for the future observation Xnþ1. It
is interesting to note that if the distribution is continuous
under some regularity conditions, the interval (X(r), X(s)) is
the only distribution-free interval for the future observa-
tion Xn+1 (see Bairamov and Petunin, 1990).

The importance of order statistics can also be seen
in teaching the theory of the ranking statistics used in
two-sample problem with unknown shift parameters.
The sample observation Xi is said to have rank Ri
among X1, X2, . . . , Xn if Xi ¼ X(Ri)

, where X(Ri)
is the

Rith order statistic. Let X1, X2, . . . , Xn and Y1, Y2, . . . ,
Ym be independent random samples from continuous
distributions with distribution functions F(x) and G(x)
¼ F(x � y), respectively, where �1 < y < 1 is
an unknown shift parameter. The Mann–Whitney–
Wilcoxon nonparametric test for verifying the null hy-
pothesis H0 : y¼ 0 against alternative H1 : y > 0, y < 0 or
y 6¼ 0 is constructed based on the distribution-free prop-
erty of the rank statistic W ¼ Pn

i¼1 R
�
i under hypothesis

H0, where Rj is the rank of Rj among the m X ’s and n Y ’s
combined and treated as a single set of observations. In a
general two-sample problem, when H0 : F ¼ G is to be
tested against a general class of alternatives H1 : F 6¼ G,
the Kolmogorov–Smirnov test based on the distance
Dn;m ¼ sup

�1< x <1 jFnðxÞ � GmðxÞj of two empirical distri-
bution functions Fn(x) and Gm(x) of the samples X1,
X2, . . . , Xn and Y1,Y2, . . . , Ym, respectively, is one of
the most important consistent hypothesis tests. The
empirical distribution function Fn(x), defined as the
number of observations X1, X2, . . . , Xn less than or
equal to x divided by n, has the following expression in
terms of order statistics:

FðnÞðxÞ ¼
0; if x <Xð1Þ
k
n if XðkÞ � x <Xðkþ1Þ for k ¼ 1; 2; . . . ; n� 1
1 if x � XðnÞ

8<
:

Example

The selection of students from different schools for a
scholarship shortlist has been an issue of public interest.
In many countries there is a general consensus on the
existence of bias in selection of candidates. Fairness has
been defined in a variety of ways; Torndike (1971) pro-
posed a definition of fairness; Cole (1973) made a funda-
mental assumption in the reviewed models that the
applicants are independently and identically distributed
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random variables. The model proposed by Olkin and
Stephens (1993) used ordered scores of students, namely,
order statistics. More specifically, let X1, X2, . . . , Xn and
Y1, Y2, . . . , Ym be test scores for two groups of students
representing two different high schools A and B, respec-
tively. We assume that X1, X2, . . . , Xn and Y1, Y2, . . . , Ym

are random samples from continuous distributions F1 and
F2, respectively. The m þ n scores are pooled and jointly
ranked, and the top k students are shortlisted for scholar-
ships. Let R be the number of students from the first group
that enter the shortlist. We are interested in the probabil-
ity P{R ¼ r} that exactly r students from high school A
appear in the shortlist. Olkin and Stephens (1993) provide
an elegant solution to this problem. If F1 ¼ F2, in other
words, we consider two different groups of students from
identical high schools, then this probability depends only
on n, m, r, and k and can therefore be easily calculated.
For the special case of choosing a single candidate, that is,
r ¼ k ¼ 1, the probability that exactly one student
from high school A will appear in the shortlist is equal to
n/(n + m), which is the probability that the maximal score
X(n) of the first group is greater than the maximal score of
the second group Y(n), where X(1) � X(2) � . . . � X(n) and
Y(1) � Y(2) � . . . � Y(m) are the ordered scores of two
groups. A numerical analysis shows that when n is low
relative to m, this probability is low, which may mean that
a student from a small but prestigious school has consid-
erably less chance of being shortlisted when in com-
petition with a larger school. Some numerical values of
probability that exactly r students from the high school
A enter the shortlist for r ¼ 1 and r ¼ 2, and k ¼ 1, 2, . . . ,
10 are given below:

1. n ¼ 9, m ¼ 30
k 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
P{1, k;

9, 30}

0
.11
 0.12
 0.23
 0.34
 0.37
 0.42
 0.45
 0.46
 0.47
 0.47
2. n ¼ 3, m ¼ 25
k
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
P{1, k;

3, 25}
0.
 0.01
 0.02
 0.04
 0.07
 0.10
 0.14
 0.17
 0.21
 0.25
Let P denote the probability of the event that the best
candidate from school Awith score X(n) is included in the
top group of k candidates; thus, at least one student from
A is in the list. We provide a numerical example of n ¼ 9
and m ¼ 30:
k
 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
P
 0.23
 0.41
 0.56
 0.67
 0.75
 0.82
 0.878
 0.91
 0.93
 0.95
From the table it can be seen that a shortlist of size at

least k ¼ 4 is needed in order to guarantee that the
probability of at least one student from the group of size
n ¼ 9 being included in the shortlist is at least 0.905.

In the general case, when F1(�) 6¼ F2(�), the probability
that exactly r students from high school A appear in
the shortlist is equal to P{X(n+1�r) > Y(m+r�k)} – P
{X(n�r) > Y(m+r�k+1)}. In particular, when F1(x) is N(m, 1)
distribution and F2( y) is the N(0, 1) distribution, selected
values of the probability that r out of n students from the
second high school are chosen on a shortlist of length k are
presented in Olkin and Stephens (1993).
Summary

The theory of order statistics is essential in statistical
analysis and its applications. Order statistics play an
important role in inferential problems including estima-
tion of unknown parameters of distributions in considered
statistical models and in hypothesis testing. Before 1970s,
most studies were on cases where order statistics origi-
nated from independent and identically distributed ran-
dom variables. In the early 1970s however the robustness
issues motivated the study of order statistics from outliers
models. Recent years have seen the appearance of a num-
ber of studies on both single- and multiple-outlier models
and more generally on order statistics from independent
and nonidentically distributed random variables. The the-
ory of order statistics from independent but nonidenti-
cally distributed random variables involves permanents
which is similar to that of the determinants but without
the alternating sign. Barnet and Lewis (1994) mainly
discuss the single-outlier models. In an excellent review
article, Balakrishnan (2007) describes more general model
of order statistics from independent and nonidentically
distributed random variables, including many important
issues such as distributional properties, characteriza-
tions, estimation, outliers, robustness. Continuing from
the International Conference on Order Statistics and
Extreme Values, Theory and Applications 18–20
December 2000 in Mysore, India) organized by
N. R. Mohan and H. N. Nagaraja, a series of international
conferences devoted to order statistics in Warsaw,
Poland (2002–04); Izmir, Turkey (2005); Mashad, Iran
(2006); Amman, Jordan (2007) and Aachen, Germany
(2008) provided international forums for presentation
and discussion of topics related to ordered statistical data.
In these conferences, both reviews of previously existing
results and new results involving order statistics were pre-
sented in the context of topics such as approximations,
characterizations, distribution theory and probability mod-
els, stochastic ordering, inequalities, censoring, statistical
inference, applications of ordered data, information and
entropies, nonparametric methods, ranked set sampling,
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and asymptotic theory. The special issue on ordered statis-
tical data, approximations bounds and characterizations
of Taylor and Francis’ journal Communications in Statistics-
Theory and Methods, vol. 36, no. 7 edited by I. Bairamov
consists of selected articles presented at the international
conference OSD-2005, Izmir, Turkey.

The elegant theory of order statistics and general
models of ordered statistical data is likely to arouse the
interest of many scientists working in the area of statistical
theory and applications.

See also: Analysis of Extreme Values in Education;
Hypothesis Testing and Confidence Intervals; Markov
Chain Monte Carlo; Nonparametric Statistical Methods;
Stochastic Processes; Survival Data Analysis.
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