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ABSTRACT 
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Public transport applications, which aim to propose the ideal route to end users, have 

commonly been used by passengers. However, the ideal route for public transport varies 

depending on the preferences of users. For instance, primary criterion of route selection 

for a user can be the shortest path; while it may be the least number of transfers for another 

user on the other hand. In this study, three different route selection criteria are determined. 

These criteria are named as; “the shortest path”, “the least transfer”, and “the least stop”. 

Therefore, three different route selection methods, such that “The Modified Shortest Path 

Route Selection”, “The Least Transfer Route Selection”, and “The Modified Least Stop 

Route Selection” are evaluated with respect to our criteria, and the public transport 

network is modeled accordingly. Furthermore, in this model three cost functions are 

defined in order to calculate the distance of route, the number of transfers, and the number 

of stops on the route. The evaluated methods are experimented on a real world public 

transport network (İzmir, Turkey). The experiment results with regard to each method are 

examined and compared with each other by using our cost functions. Thus, it is aimed to 

emphasize each proposed public transport route selection methods’ shortcomings and 

strengths with visualized results. 

Keywords: Public transport, route selection methods, route selection criteria, the shortest 

path, the least transfer, the least stop, graph theory, Dijkstra’s Algorithm, Breadth-first 

Search Algorithm 
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ÖZ 

TOPLU TAŞIMADA SPESİFİK KRİTERLERE GÖRE ROTA 

SEÇİM METOTLARI 

Bozyiğit, Alican 

Bilgisayar Mühendisliği, Yüksek Lisans 

Fen Bilimleri Enstitüsü  

Tez Yöneticisi: Yrd. Doç. Dr. Gazihan Alankuş 

İkinci Tez Yöneticisi: Prof. Dr. Efendi Nasiboğlu 

Mayıs 2017 

 

Kullanıcıları için ideal rota önermeyi amaçlayan toplu taşıma uygulamaları, yolcular 

tarafından sıklıkla kullanılmaktadır. Fakat toplu taşıma için ideal rota tanımı kullanıcıların 

tercihlerine göre değişebilir. Örneğin, bir kullanıcı için rota seçiminde birincil kriter en 

kısa yol olabilirken, başka bir kullanıcı için öncelik en az aktarma sayısı olabilmektedir. 

Bu doğrultuda, tez kapsamında üç farklı rota seçim kriteri belirlenmiştir; “en kısa mesafe”, 

“en az aktarma sayısı” ve “en az durak sayısı”. Çalışmamızda belirlenmiş olan kriterlere 

göre üç farklı rota seçim metodu değerlendirilmiştir. Bu metotlar; “En Kısa Yola göre 

Modifiye Edilmiş Rota Seçim”, “En Az Aktarmaya göre Rota Seçim” ve “En Az Durağa 

göre Modifiye Edilmiş Rota Seçim” olarak isimlendirilmiştir. Bu metotların 

değerlendirilebilmesi için toplu taşıma ağı çizge olarak modelleniştir. Ayrıca bu modelde 

rota mesafesi, aktarma sayısı ve rota üzerinde durak sayısı hesaplanabilmesi için üç ayrı 

maliyet fonksiyonu tanımlanmıştır. Değerlendirilen yöntemler gerçek bir toplu taşıma ağı 

üzerinde (İzmir, Türkiye) test edilmiştir. Çalışmadaki her bir yönteme ait değerlendirme 

sonuçları, maliyet fonksiyonlarını kullanarak hesaplanmış ve birbirleriyle 

karşılaştırılmıştır. Böylelikle bu çalışmada sunulan toplu taşıma rota seçim metotlarının 

eksiklikleri ve güçlü yönleri açıklanmıştır. 

Anahtar Kelimeler: Toplu taşıma, rota seçim metotları, rota seçim kriterleri, en kısa 

mesafe, en az aktarma sayısı, en az durak sayısı, çizge teorisi, Dijkstra Algoritması, sığ 

öncelikli arama 
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Chapter 1  

Introduction 

In this chapter, firstly, there is a general introduction to the thesis in Section 1.1. 

Then, the motivation of the study is presented in Section 1.2. Lastly, the organization of 

the thesis is explained in Section 1.3. 

1.1 General Introduction 

Public transport is preferred by most of the people since it provides various 

advantages to users. As a result of this observation, numerous internet and mobile 

applications are developed for related users. These developed applications generally try to 

propose an ideal route for the user, who wants to go from one location to another in the 

urban areas. However, the ideal route for the public transportation varies depending on the 

preferences of the user. This is because the ideal route can be selected based on different 

criteria by each user. For example, a group of users may state that the primary criterion of 

the ideal route for them is the shortest path, while another group of users may express that 

primary criterion of the ideal route is the least number of transfers. 

In the thesis, “the shortest path”, “the least transfer” and “the least stop” are 

evaluated as the criteria for an ideal route; because it has been observed that “the shortest 

path” and “the least transfer” criteria are preferred by most users in a study (it is detailed 

in Chapter 2) [1]. Additionally, “the least stop” criterion is evaluated in the study with a 

novel approach. Therefore, in order to propose an ideal route regarding our criteria, three 

different methods are evaluated in the study. These methods are named as; 

I. The Modified Shortest Path Route Selection 

II. The Modified Least Stop Route Selection 

III. The Least Transfer Route Selection 
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In the first method, The Modified Shortest Path Route Selection is evaluated by 

modifying commonly-known Dijkstra’s Algorithm [2], in order to minimize number of 

transfers and repeated walking. In the second method, The Modified Least Stop Route 

Selection is evaluated with a novel approach. The last method, The Least Transfer Route 

Selection is evaluated by expanding Li’s study [3] to the multi-mode public transport 

network.  

Furthermore, the evaluated methods are tested on a real world transport network 

(İzmir, Turkey) with an experimental study. The experimental results of these methods are 

demonstrated in terms of the running times, the route distances, the number of transfers 

and the number of stops on the routes. By that, it is aimed to compare the evaluated 

methods, and additionally, to explain the evaluated methods’ strengths and shortcomings.  

1.2 Motivation 

The primary motivation of the study is the fact that the public transport is highly 

preferred in urban transportation. Furthermore, it is actively used by different types of 

users in today's world. There are several reasons behind the more intensive use of public 

transport than other types of transportation (taxicab, hired buses etc.). First of all, most of 

the people do not have their own vehicles for transportation. These people prefer public 

transport because of its being more economical compared to other transport types.  

Additionally, certain people who have their own vehicles may also prefer public 

transport. It is because; the public transport is more economical and creates less stress than 

driving in certain cases. Furthermore, the public transport can be faster than driving in the 

rush hours. At the same time, the public transport is very important for the protection of 

the natural life and the environment; since the carbon emission will decrease when larger 

numbers of people prefer the public transport (mass transit). 

Besides these, the public transport is crucial to urban traffic planning. Undoubtedly 

the biggest and most important transportation problem of today is urban traffic 

congestions. Bridges, tunnels or alternative roads can be constructed in order to solve this 

problem; however, these solutions are costly and will take long time. Another less 

expensive and more practical solution is creating effective and useful public transport 

networks and encouraging the people to use these networks. By making use of this 

solution, the number of vehicles used in traffic will decrease and consequently the traffic 

congestion will diminish. 

http://tureng.com/tr/turkce-ingilizce/evaluate
http://tureng.com/tr/turkce-ingilizce/evaluate
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1.3 Organization of the Thesis 

The organization of this thesis is as follows.  

 In Chapter 1, the thesis is introduced.  

 In Chapter 2, criteria for the route selection in the public transport are discussed. 

Furthermore, our route selection criteria and evaluated methods with respect to these 

criteria are explained. 

 In Chapter 3, related works in the literature are discussed.  

 In Chapter 4, basic definitions of the graph theory, graph types and data structures are 

introduced with examples in order to facilitate understanding of the public transport 

network model and methods in the following chapters. 

 In Chapter 5, the public transport network is modeled for evaluating and comparing 

the route selection methods and describing the cost functions of the routes. 

 In Chapter 6, the ideal route selection method with respect to the shortest path criterion 

is evaluated. 

 In Chapter 7, the ideal route selection method with respect to the least stop criterion 

is evaluated.  

 In Chapter 8, the ideal route selection method with respect to the least transfer criterion 

is evaluated.  

 In Chapter 9, the experimental results of the route selection methods are detailed.  

 In Chapter 10, the thesis is concluded. 
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Chapter 2  

Background  

In this chapter, it is aimed to explain the background of the study. Firstly, criteria for 

the ideal route selection in the public transport are discussed in Section 2.1. Additionally, 

a study that includes the users' preferences for the route selection criteria is evaluated. 

Then, “which criteria to propose for the route selection methods” is stated in Section 2.2. 

Lastly, evaluated methods for our route selection criteria are explained briefly in Section 

2.3.   

2.1 Criteria for the Route Selection  

There are various criteria for the ideal route selection in the public transport network, 

because the primary criterion for each user may be different. As stated in the Chapter 1, 

some users may state that the primary criterion for their ideal route is the shortest path; on 

the other hand, another user may express that primary criterion for their ideal route is the 

least number of transfers.  

The primary criteria that are recalled for the route selection are the shortest path, the 

least transfer, the minimum price and the minimum traveling time. There are also some 

uncommon criteria such as; the most comfortable journey, most touristic cruise, and etc. 

These are important at the primary level for some of the users; however, there are only a 

few applications that propose selections of routes regarding these criteria. Thus, the 

applications try to suggest the better route for the users according to generally accepted 

main criteria. 

Nasibov et al. [1] have presented a study that consisted in 81 local residents from 

various locations in Izmir. In the study, it was aimed to learn participants’ experiences and 

ideas about route planning applications. Participants were asked to express their own 
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priorities for the route selection in public transport. It was observed that, participants had 

many preferences for the public transport routes such as; less times of vehicle changes (the 

least transfer), less time consuming (the minimum travel time) -shortest path or the 

cheapest (the minimum price). The results of the mentioned study are stated in a table as 

follows; 

Table 2.1: User Preferences with respect to the Route Selection Criteria [1] 

User The Route Selection Criteria 

Ages 
Least 

Transfer 

Minimum Travel Time-  

Shortest Path 

Minimum 

Price 

15-25 6 6 10 

26-40 7 8 7 

41-60 10 4 8 

61-70 9 2 4 

Total 32 20 29 

As seen in Table 2.1, users were focused on four criteria in the survey; the least 

transfer, the minimum travel time - the shortest path and the minimum price. It has been 

observed that the shortest path and the minimum travel time were perceived as equivalent 

by the participants. It is obvious that the shortest path is regarded as an important reference 

for the minimum travel time in the public transport network. However, there are other 

factors that affect the duration of the travel such as; types of transit lines used on the route, 

the number of transfers, the traffic on the route, waiting times during the transfers, and etc. 

Therefore, it cannot be considered as a fact that the shortest path is exactly equivalent to 

the minimum travel time. 

2.2 The Determined Criteria for Public Transport 

Routes 

The primary criteria for the route selection are discussed in the previous section. 

Among these criteria, the shortest path and the least transfer are evaluated in the study. 

Furthermore, the least stop criterion for the route selection is proposed in this work, 

because this criterion offers certain advantages to the passengers. However, the minimum 
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travel time is not evaluated in the thesis because of certain limitations. Additionally, the 

minimum price is not evaluated since it is highly related to “the least transfer” in most of 

the public transport networks. 

Fifty-two people out of eighty-one preferred the shortest path and the least transfer 

as primary criteria for the route selection in the survey, as can be seen in Table 2.1. That 

is to say, about sixty-four percent of users’ primary criteria are the shortest path and the 

least transfer. Thus, these criteria are evaluated in the study. 

Additionally, the least stop criterion is evaluated in our study. The least stop is not 

the first one to come to the mind as a criterion for the route selection in the public transport. 

However, this criterion may be useful for most of the users, because route with least 

number of stops much possibly use the rapid-transit lines such as; subway, metro, bus 

rapid-transit, ferry (it is explained in Section 7.1). Rapid-transit lines provide passengers 

many benefits, such as; 

 The rapid-transit lines of the public transport network are separated from the 

traffic [8]. Therefore, the rapid transit lines travel faster than other modes of 

the public transport (bus transit lines etc.). 

 By means of the pre-paid boarding system, the rapid-transit network systems 

speed up the passenger boarding time [9].  

 High-frequency of the rapid-transit line service minimizes waiting times on 

the station and also minimizes the number of passengers per vehicle [10]. So, 

it allows passengers to travel in a more comfortable way. 

The minimum travel time criterion is not evaluated in the thesis. Determining the 

optimal route with respect to the minimum travel time is exactly a challenging task because 

of the limitations. The main limitations are: getting the up to date data of the traffic 

conditions and locations of the public transport vehicles in uncertain environments. In 

order to get these data up to date, a comprehensive data network and technology are 

needed. 

 In addition to the minimum travel time, the minimum price criterion is not evaluated; 

since it is directly related to the least transfer (number of transfer) in most public transport 

networks. Additionally, there is no transfer fee within specified time intervals in some 

transport networks. For instance, there is no need to pay an extra fee for transfer in ninety 

minutes in the public transport network of Izmir.   
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To sum up, the least transfer, the shortest path, and the least stop are chosen as the 

criteria according to which we will create route selection methods. 

2.3 The Evaluated Route Selection Methods  

In order to propose ideal routes with respect to the shortest path, the least stop, and 

the least transfer (our route selection criteria in the study), following methods are 

evaluated respectively; 

I. The Modified Shortest Path Route Selection 

II. The Modified Least Stop Route Selection 

III. The Least Transfer Route Selection 

The Modified Shortest Path Route Selection Method is evaluated in Chapter 6, in 

order to propose the ideal route regarding “the shortest path”. The Modified Least Stop 

Route Selection Method is evaluated in Chapter 7, in order to propose the ideal route with 

respect to “the least stop”. The Least Transfer Route Selection Method is evaluated in 

Chapter 8, in order to propose the ideal route regarding “the least transfer”. Since the 

question of “Why is an ideal route selection method that can provide all route selection 

criteria not evaluated?” might be addressed, it is because of the fact that, there is no route 

selection method that provides all of the criteria. This thesis is proved by following three 

cases. Therefore, three different methods are evaluated with respect to our criteria.  

First Case: The shortest path may neither be the least transfer nor the least stop.  

 

Figure 2.1: Public Transport Network Instance PTN1 

In Figure 2.1, there is an instance of the public transport network PTN1 that includes 

three transit lines and three stations v1, v2, v3. The edges are labeled with their distances. 

Assume that, Line 3 is a rapid-transit line, i.e. a subway, and Line1, Line 2 are bus lines. 

There are two possible paths from the source station v1 to the target station v3. One of 

these paths is P1(v1, v3) = (v1, v2, v3) that uses bus lines. The second one is P2(v1, v3) =

(v1, v3) that uses the rapid-transit line.  
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P1(v1, v3) is the shortest path since its distance is less than the distance of P2(v1, v3). 

However, P1(v1, v3) uses more time for transfers than P2(v1, v3). Additionally, P1(v1, v3) 

is not the route that has least number of stop. 

Second Case: The optimal route with respect to the least transfer may neither be the 

shortest path nor the least stop route. 

In Figure 2.2, there is another instance of the public transport network PTN2 that 

includes three transit lines and five stations: v1, v2, v3, v4, v5. Assume that, Line 1 and Line 

2 are rapid-transit lines. There are two possible paths from the source station v1 to the 

target station v3. The first one is P1(v1, v3) = (v1, v2, v3) that uses rapid-transit lines. The 

second one is P2(v1, v3) = (v1, v4, v5, v3) that uses a bus transit line. 

 

Figure 2.2: Public Transport Network Instance PTN2 

Optimal route with respect to the least transfer criterion is P2(v1, v3). However, 

P2(v1, v3) is not the shortest path since its distance is more than the distance of P1(v1, v3). 

Additionally, P2(v1, v3) is not the route that has least number of stop. 

Third Case: The optimal route with respect to the least stop may neither be the 

shortest path nor the least transfer route. 

 

Figure 2.3: Public Transport Network Instance PTN3 

In Figure 2.3, there is the last instance of the public transport network PTN3 that 

includes three transit lines and five stations v1, v2, v3, v4, v5. Assume that, Line 1 and Line 
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2 are rapid-transit lines. There are two possible paths from the source station v1 to the 

target station v3, such that; P1(v1, v3) = (v1, v2, v3) and P2(v1, v3) = (v1, v4, v5, v3). 

Optimal route with respect to the least stop criterion is P1(v1, v3) that uses rapid-

transit lines (Line 1 and Line 2). However, P1(v1, v3) is not the shortest path since its 

distance is more than the distance of the path P2(v1, v3). Additionally, P1(v1, v3) uses 

more times of transfers than P2(v1, v3).  

To sum up, three different route selection methods (The Modified Shortest Path 

Route Selection, The Modified Least Stop Route Selection, The Least Transfer Route 

Selection) are evaluated in order to propose ideal routes regarding to our criteria; because 

there is no ideal route selection method that can provide all route selection criteria.  
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Chapter 3  

Related Work 

In our research; the shortest path and the least transfer are determined as the foremost 

criteria that come to mind for route selection. Nasibov et al. [1] presented a study, in which 

the route selection applications were compared. In their study, participants expressed their 

own priorities for route selection in the public transport. These criteria are named as; the 

least transfer, the shortest path-the minimum travel time, and the minimum price. 

Additionally, travelers’ needs for public transport were presented by Huang et al. [4]. The 

least transfer, least travel time-distance, and shortest walking path are stated as primary 

criteria for public transport route selection in their study. Furthermore, Meng et. al. [5] 

stated that the minimum number of transfers and the shortest path-the shortest travel time 

are very important for route guidance systems and so these systems should provide these 

options for related users. Moreover, Pun-Cheng and Chan [6] indicated that the least 

transfer is mostly preferred optimal route criterion by passengers. Nasiboğlu and Berberler 

[7] presented a study that the least transfer criterion is very important for public 

transportation planning and for passengers using public transportation systems. Thus, the 

least transfer and the shortest path are determined as primary route selection criteria to be 

evaluated in our study. 

 On the other hand, there are many studies that present the importance of rapid-transit 

lines for route selection in public transport. The benefits of the urban underground rapid-

transit line were presented by Girnau and Blennemann [8]. Main advantages of light rapid-

transit were presented by Luke and MacDonald [9], and the efficiency of metro systems 

were presented by Laporte and Mesa [10]. Thus, the least number of stops is determined 

as a route selection criterion, because a route with least number of stops much possibly 

use the rapid-transit lines (it is explained in Section 7.1) and this criterion has other 

advantages for users e.g. less boarding time. 

Dijkstra’s Algorithm [2] has mostly been used as the method to find the shortest path. 

However, a penalty system is implemented to Dijkstra’s Algorithm in order to minimize 
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number of transfers and walking distances in route selection, in our study. There are also 

relevant studies that modify the Dijkstra’s Algorithm for public transport route selection. 

Wang et al. [11] stated that each transfer in a public route selection requires extra cost in 

their study. Therefore, they have designed public transport system as a new data model, 

and proposed a new shortest path algorithm in their study. Weaknesses of the shortest path 

algorithms (ignoring number of transfers) were analyzed and an improved Dijkstra’s 

Algorithm was proposed by Xu et al. [12]. Xiaoyong and Xueqin [13] presented a heuristic 

algorithm that considers both transfer criterion and distance criterion for route selection. 

Jian-lin [14] explained that Dijkstra’s Algorithm is not appropriate for route selection and 

proposed a new algorithm based on the least transfer. Wu and Hartley [15] presented a 

study that uses K-Shortest Paths Algorithm and they proposed the optimal path among the 

k-Shortest Paths by taking the user preferences into consideration. Ferreira et al. [16] 

proposed a new advisor system based on the integration of various data sources and they 

used a Dijkstra’s Algorithm implementation in this system. Goel et al. [17] presented a 

variant of Dijkstra’s Algorithm by precomputing transfer patterns between hub nodes in 

order to be used for a multi-mode (i.e., bus, train and walk) transport network of Mumbai 

city, India. Nguyen and MacDonald [18] presented a new data model “Exploded Graph” 

and they used Dijkstra’s Algorithm in their new model to propose the path with the least 

number of transfers. Biswas [19] introduced a new fuzzy condition factor in their network 

graph and modifies Dijkstra’s Algorithm in this way. Zhou et. al. [20] presented an 

iterative optimization method regarding individual thinking of bus travelers.  In contrast, 

our approach is based on minimizing number of transfers and walking distance by slightly 

increasing distance of the path proposed by Dijkstra Algorithm. Thus, our modified 

algorithm strives to find an ideal path while keeping the path length short. 

In our study, The Least Transfer Route Selection Method has been evaluated by 

extending a study that was presented by Li and Zhu [3]. Li and Zhu presented a study that 

bus transport network was modeled in space P, and then, the least transfer route was 

determined by using Breadth First Search algorithm [21]. In the topology of real-life 

infrastructure, two stations are adjacent if there is no station between them.  In the space 

P, two stations are considered to be adjacent if there is at least one transit line that stops at 

these stations [22], [23]. Space P is mainly used in studies that analyses topologies of 

transport networks [24], [25]. In addition to Li and Zhu, Wang and Yang [26] also 

presented a study that uses space P for the public transport network route selection. 

However, Wang and Yang used matrix multiplication for each transfer that increases time 

complexity of the algorithm dramatically, in their study.  
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As distinct from studies using space P, Gao [27] presented a study that introduces 

novel network representation including layers for each route in order to propose the least 

transfer route selection by a matrix multiplication. Furthermore, Li et al. [28] classified 

public transport network into topologies based on path-stop network; and then proposed a 

new least transfer travel route model. However, using Breadth First Search Algorithm in 

space P, is the more efficient way for the least transfer route selection in terms of the 

running time.  

Lastly, Breadth First Search algorithm is used for finding routes with least number of 

stops, in our study. Breadth First Search was developed by Lee [21], in order to find the 

connections on the paths. This algorithm was used in order to find the shortest path from 

the source to the target in public transport by Böhmová et al. [29].  
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Chapter 4  

Graph Preliminaries 

In this chapter, there is an introduction to the graph theory, which is used in the public 

transport network models, in this study. Firstly, the graph theory is explained briefly in 

Section 4.1. In the following sections, basic definitions of the graph theory, graph types 

and data structures are described with examples in order to facilitate understanding of the 

public transport network model and route selection methods in the following chapters. 

4.1 The Origin of the Graph Theory 

Graph Theory is simply modeling a problem with edges and vertices in order to 

represent this problem as a graph. Some features defined in the Graph Theory are used for 

solving this model in order to solve the real world problem. To define it simply; the real 

world problem is first modeled as a graph, and afterwards this model is solved, and the 

solution is applied to the real world problem [30]. 

“The Seven Bridges of Konigsberg” is a famous mathematical problem which 

constitutes the framework of Graph Theory [30]. It was inspired from the bridges in 

Konigsberg in the 18th Century. In the city of Konigsberg in Prussia, there are the Old 

Pregel and the New Pregel rivers. These rivers divide the city into four zones. Two of 

these zones are large islands. There are seven bridges connecting these zones. The problem 

was; “Can anyone who wants walking around the town, turn to the point where he starts 

by crossing all the bridges once?”. Figure 4.1 shows the visualized version of the problem.  

Over time, the problem was brought to Leonard Euler, who was one of the famous 

mathematicians of the time. In order to simplify the problem a little bit more and to 

eliminate unnecessary components, Euler formed a new graph as shown in Figure 4.2. In 
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the figure, land pieces are shown as vertices and bridges are shown as edges (connecting 

these vertices). 

 

Figure 4.1: The Seven Bridges of Konigsberg [31] 

 

Figure 4.2: The Graph Representation of the Seven Bridges of Konigsberg 

While Euler was struggling with the problem, he discovered the Euler Path Theorem. 

His claim was based on a simple discovery; “If you come to a vertex with an edge, you 

need a different edge to leave this vertex”. Therefore, if the degree of a vertex (number of 

edges incident to the vertex) is an odd number, it must be either a start vertex or an end 

vertex. Euler solved the problem and he proved that such a path cannot be found by using 

the theorem. Note that all degrees of vertices are odd numbers in Figure 4.2. The rule of 

traversing each vertex once leads to a contradiction. It is because of the fact that maximum 

two vertices may be the end points (start or end vertex). 

Euler created a new field of mathematics while he was dealing with solving this 

problem. This new field, later known as Graph Theory, is now the study area of various 

disciplines. It is used in different fields ranging from sociology to computer science. 
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4.2 Basic Definitions 

The graph is a kind of network structure that consists of vertices and edges which 

connect these vertices. It is stated by G = (V, E). This definition states that a graph is a 

cluster of vertices and edges. The graph is considered as an ordered pair in most sources. 

Therefore, the vertex set is shown first and it is followed by the edge set. 

The vertex set V is a set that contains all vertices of the graph. The edge set E is a 

set that contains all edges (connections between vertices) of the graph. Edges are 

represented as unordered pairs {u, v} or ordered pairs (u, v) depending on the graph type 

where u and v are vertices in V.  

The order of the graph is the number of elements in the vertex set. It is denoted by 

usually |G| or |V|, sometimes m. The size of the graph is the number of elements in the 

edge set. It is usually denoted by |E|, sometimes n.  

Vertices u and v are called adjacent vertices if these vertices are connected by some 

edge e ∈ E where u, v ∈ V. 

In a graph G = (V, E), the neighborhood of the vertex v is a set of vertices that 

adjacent to v where v ∈ V. It is stated as follows; 

N(v) = {u|(u, v) ∈ E} 

In a graph G = (V, E) the degree of the vertex v is the size of its neighborhood where 

v ∈ V. It is stated as follows; 

d(v) = |N(v)| 

Undirected Graph: It is a type of graph in which edges have no direction. There is 

an instance of undirected graph G = (V, E) in Figure 4.3. The vertex set of the graph is 

V = {v1, v2, v3, v4, v5}. The edge set of the graph is E = {e1, e2, e3, e4, e5} where edges 

are undirected and unordered pairs where e1 = {v1, v2}, e2 = {v1, v4}, e3 = {v4, v5}, 

e4 = {v1, v3}, e5 = {v3, v5}. 
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Figure 4.3: An Instance of Undirected Graph 

In Figure 4.3, the order of the given graph is |V| = 5 and the size of the graph is |E| =

5. For instance, the neighborhood of the vertex v3 is N(v3) = {v1, v2} and the order of 

this vertex is d(v3) = |N(v3)| = 2.  

Directed Graph: It is another type of graph, in which the edges have directions. The 

directed graph’s edges are ordered pairs. These directed edges are called as arcs 

sometimes. The directed graph is usually denoted by G = (V, E) where V is the vertex set 

of the graph and E is the directed edge set of the graph. 

If the vertex u and the vertex v are joined by a directed edge e = (u, v), then it states 

that v is reachable from u in a graph G = (V, E) where u, v ∈ V and e ∈ E. Remark that 

the edge (u, v) has not same meaning as the edge (v, u). Because the directed edge (u, v) 

states that v is reachable from u but vice versa is not meant. 

 

Figure 4.4: An Instance of Directed Graph 

For example, there is a directed graph G = (V, E) in Figure 4.4. All given definitions 

and notations are same for the directed graph except the notation of edges. The edge set 

of the graph is E = {e1, e2, e3, e4} where edges are directed and ordered pairs as follows;  

e1 = (v2, v1),  e2 = ( v1, v2),  e3 = (v1, v3),  e4 = (v2, v3) 
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Weighted Graph: A graph in which each edge has a numerical weight is called the 

weighted graph. Usually, the edge weights are non-negative numeric values. The weight 

of an edge (vi, vj) is denoted by wi,j where vi, vj  ∈ V and (vi, vj) ∈ E in a weighted graph 

G = (V, E). 

4.3 Graph Representations  

Graphs are represented in many forms in computer science. Most commonly used 

representations of the graphs are the adjacency matrix and the adjacency list. Both of these 

data structures are used in our methods and algorithms.  

Adjacency Matrix: It is a two-dimensional array of size |V| × |V| where |V| is the 

order of the graph G where G = (V, E). The adjacency matrix is a representation of the 

graph as follows;  

Anxn = [

a1,1 ⋯ a1,n
⋮ ⋱ ⋮
an,1 ⋯ an,n

]  where ai,j = {
1,    if (vi, vj) ∈ E

0,                     else
  , where vi, vj ∈ V  

It is determined whether two vertices are adjacent in constant time O(1) by using the 

adjacency matrix. Checking the value of the corresponding cell in the adjacency matrix is 

sufficient for this transaction. For example, it is determined whether vertices vi and vj are 

adjacent by checking the value ai,j.  

The first disadvantage of the adjacency matrix is taking O(|V|2) space even though a 

graph is sparse which contains a few number of edges. Secondly, we need to check all |V| 

entries in ith row of the adjacency matrix to determine which vertices are adjacent to the 

vertex vi. Even if d(vi) is much less than |V|, the time complexity of this transaction still 

is O(|V|). 

The weighted adjacency matrix W is used for getting the weights of edges in the 

graph. The weights of the edges are usually positive numeric values. If two vertices are 

adjacent then wi,j is the weight of the related edge (vi, vj). If vertices vi and vj are not 

adjacent then their weight is represented by 0. 

In Figure 4.5, there is an example of weighted directed graph G = (V, E) as follows; 
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Figure 4.5: An Instance of Weighted Directed Graph 

The adjacency matrix and the weighted adjacency matrix of the graph in Figure 4.5 

as follows; 

Anxn =

[
 
 
 
 
0 0 1 1 0
1 0 0 0 0
0 0 0 0 1
0 1 1 0 1
0 0 0 0 0]

 
 
 
 

 , Wnxn =

[
 
 
 
 
0 0 5 3 0
4 0 0 0 0
0 0 0 0 1
0 1 1 0 5
0 0 0 0 0]

 
 
 
 

 

Adjacency List: It is |V| sized array of lists that represents G = (V, E). The array’s 

ith index is the list of vertices that adjacent to vertex vi ∈ V.  

The adjacency list uses less space than the adjacency matrix. The space complexity 

of the adjacency list is O(|V| + |E|). Additionally, determining which vertices are adjacent 

to a vertex vi takes constant time O(1). Getting the list of the array’s ith index is sufficient 

for this transaction. 

However, the adjacency list is not efficient in terms of performance to determine 

whether vertex vi and vj are adjacent because we need to check all entries in the array’s ith 

index. The time complexity of this transaction is O(|V|) where d(vi) = |V| in the worst 

case. 

Weights can be stored in the adjacency list for weighted graphs. Two sized arrays are 

used in the list. The first value of the array gives the adjacent of the vertex and the second 

value gives the weight of the related edge.  

For instance, the adjacency list of the graph G in Figure 4.5 as follows; 
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L =

{
 
 

 
 
{v4, v3}       

{v1}            
{v5}            
{v2, v3, v5} 
∅               

                                              

The adjacency list with weights of the graph in Figure 4.5 as follows; 

L =

{
 
 

 
 
{{v4, 3}, {v3, 5}}              

{{v1, 4}}                            
{{v5, 1}}                           
{{v2, 1}, {v3, 1}, {v5, 3}}
∅                                     

 

To sum up, the adjacency list and the adjacency matrix are data structures that are 

used to represent graphs. They are used by various graph algorithms in computer science. 

Both of them have advantages and disadvantages in some cases. Let graph be G = (V, E), 

the comparison of these data structures with respect to criteria in the worst case as given 

in Table 4.1;  

Table 4.1: Comparison between Adjacency Matrix and Adjacency List 

 Adjacency Matrix Adjacency List 

Space complexity of the data structure O(|V|2) O(|V| + |E|) 

Query whether there is an edge from u 

to v and cost of the edge, where u, v ∈ V 
O(1) O(|V|) 

Query the neighborhood of the vertex v, 

where v ∈ V 
O(|V|) O(1) 

4.4 Path and Its Distance  

Path: It is a sequence of vertices which are connected by the edges. The path is 

usually denoted by P. 

In unweighted graphs, the weight (length) of a path is the number of edges that 

connects vertices in this path. In a weighted graph, the weight of a path is the sum of the 

weights of the edges in this path. It is denoted by w(P), where P is a path. 

w(P(v1, v2, … , vn)) = {
w1,2 +w2,3 +⋯+wn−1,n             if G is a weighted graph

n                                                    if G is an unweighted graph
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Figure 4.6: An Instance of Directed Graph 

For example, there are two paths from vertex v1 to v3 in the graph shown in Figure 

4.6 such that; P1(v1, v3) = (v1, v2, v3) and P2(v1, v3) = (v1, v3). Since the graph is 

unweighted, the weights of paths are as follow; 

w(P1(v1, v3)) = |P1(v1, v3)| = 2  

w(P2(v1, v3)) = |P2(v1, v3)| = 1 

Distance: From the source vertex u to the target vertex v, a path that its weight is less 

than other possible paths’ weights is called the shortest path in the graph G where G =

(V, E) and u, v ∈ V. The distance between two vertices u and v is the number of edges in 

the shortest path for an unweighted graph G = (V, E) where u, v ∈ V. Between two vertices 

u and v, the distance is the sum of the weight of edges in the shortest path from u to v for 

a weighted graph G = (V, E) where u, v ∈ V. The distance is denoted by distG(u, v).  

For example, the graph in Figure 4.6 has two paths P1 = (v1, v2, v3) and P2 = (v1, v3) 

from the vertex v1 to the vertex v3. The distance between these two vertices is 

distG(v1, v2) = w(P2) = 1. Since P2 is the shortest path from v1 to v3. 

 



 

21 

 

Chapter 5  

Modeling the Public Transport 

Network  

In this chapter, before the explanation of the proposed route selection methods, a 

basic graph representation of the public transport network is modeled. This model is then 

used for evaluating the proposed route selection methods. Furthermore, the cost functions 

are defined in this model which calculate the cost of the routes (the distance of the route, 

the number of transfers, and the number of stops on the route) proposed by the evaluated 

methods. These functions are used for comparing route selections of the evaluated 

methods in the experimental study. 

5.1 The Public Transport Network Model 

The public transport network is modeled as a directed graph in this thesis. Public 

transport network stations are represented as vertices and the connections between these 

stations are represented as edges in the model. Two data structures are used in order to 

represent this model. The first one is the transit line matrix that is used for finding transit 

lines, which traverse between the adjacent vertices. The second one is the adjacency matrix 

that is used for finding the distance between adjacent vertices. Lastly, public transport 

network routes are represented as paths in this model. 

For instance, there is a small public transport network presented in Figure 5.1. Transit 

lines (bus and metro lines) are illustrated by straight solid lines. Walking paths are 

illustrated by straight dashed lines. Additionally, the distances between the stations are 

labeled on the lines. There are seven stations of A, B, C, D, E, F, G, in which A, B, C, D, F are 
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bus stations and G, H are metro stations. There are five transit lines of 1,2,3,4,5, in which 

1,2,3,4 are bus lines and 5 is a metro line. 

The public transport network in Figure 5.1 is modeled as a directed graph G = (V, E). 

The vertex set V represents all of the transport network’s stations such as; bus stops, 

subway stations, ferry terminals, and etc. Simply, each vertex v ∈ V refers to one of the 

public transport network’s stations (see Figure 5.2.).  

 

Figure 5.1: An Instance of Public Transport Network 

The vertex vt is adjacent to the vertex vs, where vs, vt ∈ V, if vt is reachable from vs 

by at least one transit line or vt is in walking distance of vs. Therefore, each edge e ∈ E 

refers to one of these connections (transit line or walking path) between adjacent vertices. 

The edge from the vertex vs to the vertex vt is denoted by (vs, vt ). Given notation states 

that vs is reachable from vt by transit line or by walking path. To sum up, the vertices 

represent public transport stations and the edges represent connections between adjacent 

stations in our model. 

For example, there is a graph G = (V, E) in Figure 5.2 that represents the public 

transport network in Figure 5.1. Each element of V = {v1, v2, v3, v4, v5, v6, v7} refers to 

stations A, B, C, D, E, F, G respectively. The vertices v1, v2 ∈ V refer to adjacent stations 

A, B in the public transport network respectively. The edge (v1, v2) ∈ E refer to transit line 

connection between these two adjacent stations. 

To represent the model, two data structures are mainly used by our route selection 

methods and cost functions. These data structures are namely the weighted adjacency 

matrix W and the transit line matrix L.  
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Figure 5.2: The Graph Representation of the Public Transport Network 

Firstly, the transit line matrix is used for finding transit lines, which traverse 

between the adjacent vertices. The transit line matrix L is a matrix which is |V| × |V|. Each 

cell of the matrix represents a set of transit lines between the related adjacent vertices. The 

transit line set of the edge (vi, vj) is stated by li,j, where vi, vj  ∈ V, (vi, vj) ∈ E and li,j ∈ L. 

The transit line matrix L is stated as follows; 

Lnxn = [

∅ ⋯ l1,n
⋮ ⋱ ⋮
ln,1 ⋯ ∅

]  where li,j is a set of transit lines of the edge (vi,, vj) ∈ E 

Secondly, the weighted adjacency matrix is used for finding the distances between 

adjacent vertices in the study. The weight of the edge is a positive numeric value that 

represents the distance from the source vertex to the target vertex. Calculating the real 

traveling distance between adjacent vertices is a challenging task, since the travels on 

transit lines are on complex paths (joined by too many edges) [3]. The approximate 

traveling distance is calculated by determining the straight-line distances between the 

adjacent vertices. Therefore, the function D in Equation 5.1 is used in order to calculate 

the straight line distances between adjacent vertices.  

All vertices’ coordinates are determined by using their related stations in the real 

world public transport network. The longitude and latitude of the vertex vi is represented 

as loni and lati respectively. The straight-line distances between the adjacent vertices v1 

and v2 are determined by using Haversine Formula [32] as follows; 

D = 2r sin−1(√sin2 (
lat2 − lat1

2
) + cos(lat1) ∗ cos(lat2) ∗ sin

2 (
lon1 − lon2

2
)) (5.1) 
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For each edge (vi, vj) ∈ E, the weight of the edge is wi,j ∈ W, where vi, vj  ∈ V. The 

weighted adjacency matrix W is stated as follows; 

Wnxn = [

0 ⋯ w1,n
⋮ ⋱ ⋮

wn,1 ⋯ 0
]  where wi,j = {

d(vi, vj),   if (vi, vj) ∈ E   

0                                    else
, vi, vj ∈ V 

To explain the proposed data structures better, the transit line matrix and the weighted 

adjacency matrix are determined with respect to the graph G = (V, E) in Figure 5.2. The 

distances between adjacent vertices are obtained from Figure 5.1, since the distances 

between referred adjacent stations are labeled in the figure. For instance, the distance 

between stations A and B (they are referred by v1, v2 respectively in the model) is stated 

as w1,2 = d(v1, v2) = 5 km. The weighted adjacency matrix W of the G in Figure 5.2 is 

as follows; 

W7x7 =

[
 
 
 
 
 
 
0 5 0 0 0 6 0
0 0 6 0 0 0 0
0 0 0 5 0 0 0
0 0 0 0 0.2 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0.3
0 0 0 0 13 0 0 ]

 
 
 
 
 
 

 

Additionally, transit lines of this public transport network are given in Figure 5.1. For 

instance, the transit lines that traverse from station A to station B are stated as l1,2 = {1,2} 

in this model. The transit line matrix L of the graph G = (V, E) in Figure 5.2 is as follows;  

L7x7 =

[
 
 
 
 
 
 
 
{∅} {1,2} {∅} {∅} {∅} {4} {∅}
{∅} {∅} {1} {∅} {∅} {∅} {∅}
{∅} {∅} {∅} {3} {∅} {∅} {∅}
{∅} {∅} {∅} {∅} {∅} {∅} {∅}
{∅} {∅} {∅} {∅} {∅} {∅} {∅}
{∅} {∅} {∅} {∅} {∅} {∅} {∅}
{∅} {∅} {∅} {∅} {5} {∅} {∅}]

 
 
 
 
 
 
 

 

To sum up, the distances and transit lines between adjacent vertices are determined 

by the weighted adjacency matrix and the transit line matrix, respectively. For instance, in 

Figure 5.2, if it is aimed to go from the vertex v1 to its adjacent vertex v6, weight of the 

edge (v1, v6) is w1,6 = 6 km. Additionally, transit line set of the adjacent vertices v1 and 

v6 is l1,6 = {4}. If it is aimed to go from the vertex v6 to its adjacent vertex v7, weight of 

the edge (v6, v7) is w6,7 = 0.3 km. It is determined that; from the vertex v6 to its adjacent 
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vertex v7 can only be reached by walking. Because l6,7 = {∅} states that there is no transit 

line between these two vertices. 

 

Figure 5.3: Possible Paths from Given Source to Target 

Possible routes from the source station to the target station are represented as paths 

in the model. For instance, there are two possible routes from the source station A to the 

target station E in Figure 5.1. Remark that; vertices v1, v5 refer to the stations A, E 

respectively. Therefore, possible routes from the source station A to the target station E 

are represented as paths such that; P1(v1, v5) = (v1, v2, v3, v4, v5) and P2(v1, v5) =

(v1, v6, v7, v5). P1 is illustrated by solid straight lines and P2 is illustrated by dashed 

straight lines in Figure 5.3. 

5.2 The Cost Functions of the Path 

The experimental results of the evaluated methods are demonstrated in terms of the 

distances of the routes, the numbers of the transfers, and the numbers of stops on the 

routes. Firstly, the “The Distance of Route Function” is defined in order to calculate the 

distances of the routes. Secondly, the “The Number of Transfers Function” is defined in 

the model in order to calculate the numbers of transfers on the routes. Lastly, the “The 

Number of Stops Function” is defined in order to calculate the numbers of stops on the 

routes.  

The primary cost of a path (route) depends on the route selection criteria in our model. 

For the route selection with respect to the shortest path, the primary cost of a path is the 

distance of the path. For the route selection with respect to the least transfer, the primary 

cost is the number of transfers. For the route selection with respect to the least stop, the 

primary cost is the number of stops. 
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To sum up, the costs of the routes in the public transport network are calculated by 

our model’s cost functions are named as; 

 The Distance of Route Function 

 The Number of Transfers Function  

 The Number of Stops Function 

These functions are denoted by 𝐝𝐫, 𝐧𝐭, 𝐧𝐬, respectively.  

The Distance of Route Function: This function calculates the weight (distance) of 

the path (explained in Section 4.5). It is denoted by dr(P(v1, vn)); 

dr(P(v1, vn)) = ∑wi,i+1

n−1

i=1

, where wi,j = d(vi, vj) and P(v1, vn) = (v1, v2, … , vn) (5.2) 

The Number of Transfers Function: This function calculates minimum number of 

transit lines used on the path. It is denoted by nt(P) where is determined by using a 

function f as follows; 

 nt(P) = f(l1,2, l2,3, … , ln−1,n, ∅) = {

f(l2,3, , … , ln−1,n)                             if l1,2 = {∅}

f(l2,3, l3,4, , … , ln−1,n) + 1   if l1,2 ∩ l2,3 = {∅}

f(l1,2 ∩ l2,3, l3,4, , … , ln−1,n) if l1,2 ∩ l2,3 ≠ {∅}

(5.3) 

where li,j is set of transit lines on the edge (vi,, vj) ∈ E and P = P(v1, vn) =

(v1, v2, … , vn).  

The Number of Stops Function: This function calculates the order of the path (number 

of stops on the route). It is denoted by ns(P) as follows; 

ns(P(v1, vn)) = |P| = n where P(v1, vn) = (v1, v2, … , vn)(5.4)                   

For instance, there are two possible paths from vertex v1 to v5 in Figure 5.3 such that 

P1(v1, v5) = (v1, v2, v3, v4, v5) and P2(v1, v5) = (v1, v6, v7, v5). Assume that a route 

selection method proposed P1 as the ideal route and the another route selection method 

proposed P2 as the ideal route. The route selections of these two methods are compared in 

terms of distance, the number of transfers and the number of stops in the experimental 

study. The cost functions are used for this comparison. 

The distances of proposed routes in Figure 5.3 are calculated by using “The Distance 

of Route Function” as follows;  
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dr(P1(v1, v5)) = w1,2 +w2,3 + w3,4 +w4,5 = 5 + 6 + 5 + 0.2 = 17.2 km 

dr(P2(v1, v5)) = w1,6 +w6,7 +w7,5 = 6 + 0.3 + 13 = 19.3 km 

The proposed routes’ numbers of transfers in Figure 5.3 are calculated by using “The 

Number of Transfers Function” as follows;  

nt(P1(v1, v5)) = f(l1,2, l2,3, l3,4, l4,5, ∅) 

= f({1,2}, {1}, {3}, {∅}, ∅) 

= f({1}, {3}, {∅}, ∅) 

= 1 + f({3}, {∅}, ∅) 

= 2 + f({∅}, ∅) 

= 2 + f(∅) = 2 

nt(P2(v1, v5)) = f(l1,6, l6,7, l7,5, ∅)       

= f({4}, {∅}, {5}, ∅)             

= 1 + f({∅}, {5}, ∅) 

= 1 + f({5}, ∅) 

= 2 + f(∅) 

= 2 

The proposed routes’ numbers of stops in Figure 5.3 are calculated by using “The 

Number of Stops Function” as follows;  

ns(P1(v1, v5)) = |(v1, v2, v3, v4, v5)| = 5 

ns(P2(v1, v5)) = |(v1, v6, v7, v5)| = 4 
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Chapter 6  

Method I: The Modified Shortest 

Path Route Selection  

In this chapter, the route selection method with respect to the shortest path criterion 

is evaluated. In Section 6.1, Dijkstra’s Algorithm [2] is evaluated in our public transport 

network model to propose the shortest path route selection. The main shortcomings of the 

Dijkstra’s Algorithm for the route selection are demonstrated with examples in  

Section 6.2. In the last section, the modified Dijkstra’s Algorithm is proposed as The 

Modified Shortest Path Route Selection Method in order to minimize the stated 

shortcomings. Remind that, there are also relevant studies that modified the Dijkstra’s 

Algorithm for the route selection to minimize its shortcomings (explained in Chapter 3). 

6.1 Dijkstra’s Algorithm 

Dijkstra’s Algorithm is the most commonly used algorithm in the literature in order 

to find the shortest path between two vertices. Dijkstra’s Algorithm finds the shortest paths 

from the source vertex to all other vertices (single-source shortest path problem) in a short 

time, assuming that the weights of all edges are non-negative. Therefore, the shortest path 

from the source vertex to the target vertex is determined by using Dijkstra’s Algorithm in 

our public transport network model. 

Let vs be the source vertex, where vs ∈ V. The cost of the vertex vi ∈ V is the distance 

between the source vertex vs and vi. Dijkstra’s Algorithm assigns an initial value to the 

cost of each vertex. Afterwards, the algorithm develops the assigned costs of the vertices 

iteratively. The iterations are as follows; 
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I. Except for the source vertex, the cost of all vertices in the graph v ∈ V are set 

to infinite. The cost of the source vertex is set to zero. Each vertex is marked 

as unvisited.  

II. The unvisited vertex which has minimum cost is marked as the current vertex 

and this vertex is marked as visited. 

III. The alternative cost is calculated for each adjacent vertex to the current 

vertex. The alternative cost of the adjacent vertex is the sum of the distance 

from the current vertex to the adjacent vertex and the cost of the current 

vertex. If the calculated alternative cost of the adjacent vertex is less than its 

exact cost, then the alternative cost is assigned to the cost of the adjacent. 

IV. If there isn’t any unvisited vertex left, the algorithm is terminated. Otherwise, 

the algorithm iterates from the second step. 

These iterations are illustrated in Figure 6.1. Additionally, the pseudo code of 

Dijkstra’s Algorithm is given in Algorithm 6.1. 

Input: The weighted adjacency matrix of the graph W[n][n], source vertex s 
Output: An array that stores cost of the vertices cost[n], N sized array that stores 

the list of vertices which is path from the source to the related vertex path[n]   
Function DijkstraAlgorithm(W, s) 
1. Initialize N sized arrays cost[n], path[n] 
2. Initialize vertex list unvisited 

3. for each vertex v in the vertex set 

4.  cost[v]  ←  ∞ 

5.  add v to unvisited 

6. end for 

7. cost[s]  ←  0 

8. while unvisited is not empty 

9.  current ←  v where v has min cost in unvisited list 

10.  remove current from unvisited  

11.  for each vertex adjacent to current 

12.   alternativeCost ←  cost[current] +  W[current, adjacent] 
13.   if alternativecost <  cost[adjacent] 
14.    cost[adjacent]  ←  alternativeCost 
15.    path[adjacent] ←  path[current] + current 
16.   end if 

17.  end for 

18. end while 

19. return path, cost  

Algorithm 6.1: Dijkstra’s Algorithm 

 Note that vertices are represented as their indices in the pseudo-code of the 

algorithm. For instance, in the pseudo code, s represents the vertex vs ∈ V in the graph. 
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Additionally, remind that, in a graph G = (V, E) each edge (vi, vj) ∈ E has weight wi,j ∈

W where vi, vj  ∈ V. The weighted adjacency matrix in our model is as follows; 

Wnxn = [

0 ⋯ w1,n
⋮ ⋱ ⋮

wn,1 ⋯ 0
]  where wi,j = {

d(vi, vj),   if (vi, vj) ∈ A

0                                 else
, where vi, vj ∈ V 

Dijkstra’s Algorithm returns the path, which is an array list of shortest paths from 

the source to each vertex in the graph. Therefore, path[t] gives the shortest path from the 

source vertex to the target vertex vt. Transit lines on the edges of the shortest path are 

determined by using the transit line matrix L;  

Lnxn = [

∅ ⋯ l1,n
⋮ ⋱ ⋮
ln,1 ⋯ ∅

]  

where li,j is a set of transit lines on the edge ∀(vi, vj) ∈ P(vs, vt). 

 

Figure 6.1: Dijkstra’s Algorithm Iterations 

6.2 The Shortcomings of Dijkstra’s Algorithm for the 

Route Selection 

Although Dijkstra’s Algorithm is efficient in terms of running time to determine the 

shortest path optimally, this path is far from being the ideal algorithm for route selection; 

because Dijkstra’s Algorithm does not take the number of transfers or the walking 

distances into account. These shortcomings are crucial disadvantages for the end-users in 

two ways. First; route selection with respect to the shortest path may include much more 
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transfers than other possible paths whose costs are nearly equal to the distance of the 

shortest path. 

For example, there is a directed weighted graph G = (V, E) in Figure 6.2. The 

distances between adjacent vertices are labeled on edges. Assume that from v1 to v3 there 

is the transit line 1; from v3 to v4 there is the transit line 2; from v4 to v5 there is the transit 

line 3; and lastly the transit line 4 traverses v1, v2 and v5.  

 

Figure 6.2: A Public Transport Network Instance 

By the assumption, the transit line matrix of the graph in our model is as follows; 

L5x5 =

[
 
 
 
 
{∅} {4} {1} {∅} {∅}
{∅} {∅} {∅} {∅} {4]
{∅} {∅} {∅} {2} {∅}

{∅} {∅} {∅} {∅} {3}
{∅} {∅} {∅} {∅} {∅}]

 
 
 
 

 

As clearly seen in Figure 6.2, the shortest path from the source vertex v1 to the target 

vertex v5 is P1(v1, v5) = (v1, v3, v4, v5). The cost of the path P1 with respect to the shortest 

path is dr(P(v1, v5)) (The Distance of Route Function is explained in Section 5.2) as 

follows;  

dr(P1(v1, v5)) = 2 + 3 + 1 = 6 

Cost of the path P1 with respect to the least transfer is t(P(v1, vn)) (The Number of 

Transfer Function is explained in Section 5.2) as follows; 

 nt(P1(v1, v5)) = f(l1,3, l3,4, l4,5, ∅) 

= f({1}, {2}, {3}, ∅) 

= 3 

By using Dijkstra’s Algorithm, P1 is proposed to the users as the ideal route from the 

v1 to v5; since P1 is the shortest path. However, there is another path P2(v1, v5) =

(v1, v2, v5) from the source vertex v1 to the target vertex v5 where dr(P2(v1, v5)) = 7 and 
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nt(P2(v1, v5)) = 1. Although the distance cost of P2 is only one unit higher than the 

distance cost of the proposed path P1, there is no need for any transfers on the path P2. In 

order to go one less unit of distance, Dijkstra’s Algorithm proposes the shortest path P1 

that includes two transfers. However, most users prefer P2 rather than P1. 

In addition, optimal route selection with respect to the shortest path may include long 

walking distances. 

 

Figure 6.3: A Public Transport Network Instance 

For instance, there is a directed weighted graph G = (V, E) in Figure 6.3. Dashed 

straight lines illustrate walking paths between vertices. Solid straight lines illustrate transit 

lines between vertices in the figure. The shortest path from v1 to v5 is P1(v1, v5) =

(v1, v3, v4, v5); which is a walking path. The distance of this path is dr(P1(v1, v5)) = 6. 

However, there is another path that uses transit lines P2=(v1, v2, v5) and its distance is 

dr(P2(v1, v5)) = 7. In order to go one less unit of distance, Dijkstra’s Algorithm proposes 

the shortest path P1 which is a long walking path. However, most users prefer P2 rather 

than P1. 

6.3 The Modified Shortest Path Route Selection 

Method 

The shortcomings of Dijkstra’s Algorithm for the route selection are presented in the 

previous section. In order to minimize these shortcomings, Dijkstra’s Algorithm is 

modified by implementing a penalty system. The “small penalty cost” is added to the 

alternative cost in cases of stated shortcomings. Thus, the number of repeated walking and 

the number of transfers are minimized by slightly increasing the distance of the proposed 

path in the new route selection method.  

In order to avoid repeated walking and multiple transfers on the proposed path, a rule 

set is defined on Dijkstra’s Algorithm. The rule set of the penalty system is as follows; 



 

33 

 

 Assume that the current vertex is reached by walking. If the adjacent vertex 

of the current vertex is only reachable by walking again, the repeated walking 

will occur. In this case, the walking penalty is added to the alternative cost 

of the adjacent vertex to prevent the repeated walking. 

 Assume that the current vertex is reached by walking. If the adjacent vertex 

of the current vertex is reachable by a transit line, the number of transfers 

will be increased on the path. In this case, the transfer penalty is added to 

the alternative cost of the adjacent vertex to prevent numerous transfers on 

the proposed path. 

 Assume that the current vertex is reached by a transit line. If its adjacent 

vertex is only reachable by a different transit line, the number of transfers 

will increase on the path. In this case, the transfer penalty is added to the 

alternative cost of the adjacent vertex. 

By following the given rule set, the penalty cost from the current vertex to its adjacent 

vertex is determined by using the Penalty Function. Pseudo code of the function is given 

in Algorithm 6.2.  

Input: List of lines reached to the current vertex currentLines, list of lines reaches 

to the adjacent vertex from the current vertex adjacentLines 
Output: Numeric value penalty, list of intersected lines intersectedLines 
Function PenaltyFunction (currentLines, adjacentLines) 
1. Initialize a new list intersectedLines 
2. penalty ←  0 

3. if currentLines is null 

4.  if adjacentLines is null 

5.   penalty ←  walkingPenalty 

6.  else if adjacentLines is not null 

7.   penalty ←  transferPenalty 

8.   intersectedLines ←  adjacentLines 
9.  end if 

10. else if currentLines is not null and adjacentLines is not null 

11.  for each line l in currentLines 
12.   if adjacentLines contains l 
13.   add l to intersectedLines 
14.   end if  

15.  end for 

16.  if intersectedLines is null  

17.   penalty ←  transferPenalty 

18.   intersectedLines ← adjacentLines 
19.  end if 

20. end if 

21. return penalty, intersectedLines 

Algorithm 6.2: Penalty Function 
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Thus, the new penalty function is implemented to Dijkstra’s Algorithm. This function 

is used for adding a penalty to alternative cost if it is needed. Additionally, the transit line 

matrix L is taken as an input parameter in this new method in order to obtain the lines 

between the adjacent vertices. Furthermore, an array list is used to store the data of the 

lines that reach to the vertices. The pseudo code of the new method is given in  

Algorithm 6.3. 

Input: The weighted adjacency matrix of the graph W[n, n], the transit line matrix 

of the graph L[n, n] and the source vertex s  
Output: An array that stores cost of the vertices cost[n], N sized array list that 

stores the list of vertices which is path from the source to the related vertex path[n]    
Function ModifiedShortestPathRouteSelection(W,L, s) 
22. Initialize N sized arrays cost [n], path [n],lines[n] 
23. Initialize vertex list unvisited 

24. for each vertex v in the vertex set 

25.  cost[v]  ←  ∞ 

26.  add v to unvisited 

27. end for 

28. cost[s]  ←  0 

29. while unvisited is not empty 

30.  current ←  v where v has min cost in unvisited list 

31.  remove current from unvisited  

32.  for each vertex adjacent to current 

33.   initialize new line list insersectedLines 
34.   penalty, insersectedLines ← 

35.     PenaltyFunction(lines[current], L[current, adjacent]) 
36.   alternativeCost ← cost[current] +W[current, adjacent] + 

37.             penalty 

38.   if alternativecost <  cost[adjacent] 
39.    cost[adjacent] ← alternativeCost 
40.    path[adjacent] ← path[curent] + current  
41.    lines[adjacent] ← intersectedLines 
42.   end if 

43.  end for 

44. end while 

45. return path, cost  

Algorithm 6.3: Modified Shortest Path Route Selection 

In this new method, repeated walking and the numbers of transits used on the path 

are minimized. However, in proportion to this, the distance of the path is slightly increased. 

Thus, it can be stated that, an ideal route selection with respect to the shortest path is 

calculated by this proposed method. 
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Chapter 7  

Method II: The Modified Least Stop 

Route Selection 

In this chapter, the route selection method with respect to the least stop criterion is 

evaluated. In this method, a route with the least stops from the source to the target is 

proposed as the ideal route with a new approach. The new approach is explained in Section 

7.1. In this approach, Breadth First Search (BFS) [21] algorithm is used in order to 

determine the route with the least stops in Section 7.2. Lastly, a few implementations are 

added to this method in order to avoid some of the shortcomings, in Section 7.3.  

7.1 A New Approach for the Least Stop Route 

Selection 

Our novel approach for the least stop route selection method is based on a claim, 

which is: “if a route from the source station to target station includes less number of stops 

than other possible routes, then rapid-transit lines are most probably used on this route”. 

This claim is brought by the observation that the distance between the adjacent stations of 

the rapid-transit networks is much longer than the distance between the adjacent stops of 

the bus transport networks. The public transport network of İzmir is taken as an example 

in order to verify this observation, in the study. 

The public transport network of İzmir includes rapid-transit lines such that; ferries, 

metro lines, and light railways. In addition to these, this network also includes numerous 

bus transit lines. The number of adjacent stations in the rapid-transit network is 74. The 

average distance between these adjacent stations is 2,986 meters. On the other hand, the 
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number of adjacent stops in the bus transport network is 8,763 and the average distance 

between these adjacent stops is 509 meters. The comparison is illustrated in Table 7.1. 

Table 7.1: Comparison between Rapid-transit and Bus Transit Network 

 Number of Adjacent 

Stations 

Average Distance between 

Adjacent Stations (meter) 

Rapid-transit Network 74 2,986 

Bus Transport Network 8,763 509 

For instance, in Figure 7.1 metro line and bus line between Konak and Üçyol are 

illustrated. The bus route includes five stops, where the metro route includes two stations.  

 

Figure 7.1: Bus Path and Metro Line from Üçyol to Konak 

7.2 The Least Stop Route Selection Method 

The ideal route from a source vertex to the target vertex with respect to the least stop 

criterion is the path with least order. Remark that, in Section 5.2, it is stated that primary 

cost of a path is the number of stops for the least stop route selection. It is stated as follows; 

ns(P(v1, vn)) = |P| = n where P(v1, vn) = (v1, v2, … , vn) 

This ideal route definition is also known as the shortest path from the source vertex 

to the target vertex in the unweighted graph. To find the shortest path from the source 

vertex to the target vertex in unweighted graphs, Breadth First Search Algorithm (BFS) is 

used in this method. BFS algorithm determines a tree data structure by traversing the given 

graph. The root of the determined tree is the source vertex. From the root vertex to its child 
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(other vertices in the graph) node, there is only one path. Furthermore, this path is the 

shortest path from the root (the source vertex) vertex to the related vertex. Pseudo code of 

the BFS algorithm is given in Algorithm 7.1. 

Input: N sized array of list that contains adjacent vertices adjacencyList[n] and 

source vertex s 
Output: N sized array that stores of parent of the related child parent[n]   
Function BFSAlgorithm (adjacencyList, s)  
46. Initialize N sized array parent[n] and a new queue Q  

47. parent[source]  ←  null 
48. Enqueue source to Q 

49. while Q is not empty 

50.  current ←  Q. Dequeue() 
51.  for each vertex adjacent in adjacencyList[current] 
52.   if parent[adjacent] is null  

53.    Enqueue adjacent to Q 

54.    parent[adjacent]  ←  current 
55.   end if 

56.  end for 

57. end while 

58. return parent  

Algorithm 7.1: BFS Algorithm 

Note that the adjacency list is used in the algorithm; because BFS algorithm queries 

the neighborhood of a vertex for each iteration. The cost of this query is determined as 

O(1) by using the adjacency lists (it is explained in detail in Section 4.3). 

The path from the source vertex vs to the target vertex vt is determined by using 

ProposedPath function. The target vertex and the output of BFSAlgorithm (parent) is 

taken as an input parameter in this function. The function follows parents of the target 

vertex iteratively until the iteration arrives at the source vertex. Thus, this function returns 

the proposed path from the source to the target. Pseudo code of the algorithm is given in 

Algorithm 7.2. 

Input: N sized array that stores the parent vertex of the related vertex parent[n], 
source vertex s, target vertex t 
Output: Stack P that gives the proposed path from the source vertex s to the target 

vertex t 
Function ProposedPath (parent, s, t) 
59. Initialize new stack P 

60. current ← t 
61. do  

62.  push current to P 

63.  current ←  parent [current] 
64. while current ≠  s 
65. return P  

Algorithm 7.2: Proposed Path Algorithm 
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Lastly, the line information between the adjacent vertices of the proposed path is 

determined by using the transit lines matrix L. 

For example, let an unweighted graph G represent the public transport network in 

Figure 7.1. In this graph, Üçyol is the source vertex vs and Konak is the target vertex vt. 

Bus stations are represented by vertices v2, v3, v4, v5, v6 ∈ V. Konak and Üçyol metro 

stations are represented by v1, v7 ∈ V. The walking paths are illustrated as dashed lines. 

The modeled graph G is illustrated in Figure 7.2. 

 

Figure 7.2: Graph Representation of the Problem 

For graph G in Figure 7.2, BFS algorithm determines the tree structure as given in 

Figure 7.3. 

 

Figure 7.3: Proposed Tree Structure by BFS Algorithm 

We can find the proposed path with respect to the least stop route selection from the 

source vertex to the target vertex by following the parents of the target vertex iteratively; 

until the iteration arrives at the source vertex. For instance, the ideal route is determined 

as P1 = (vs, v1, v7, vt) by following the parents of the target vertex vt in Figure 7.3.  

7.3 The Modified Least Stop Route Selection Method 

Although BFS algorithm returns the shortest path in unweighted graphs in a short 

time, the proposed path may include a shortcoming. There is an example of this 

shortcoming in the following. 
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Figure 7.4: A Public Transport Network with a Special Case 

In Figure 7.4, there is a graph G where transit lines are labeled on the edges of the 

graph. There are two possible paths from the source vertex vs to the target vertex vt as; 

P1(vs, vt) = (vs, v1, v3, v4, v5, vt) and P2(vs, vt) = (vs, v1, v2, v5, vt). P1 and P2 are 

illustrated in Figure 7.5 and Figure 7.6, respectively.  

 

Figure 7.5: Path P1 

 

Figure 7.6: Path P2 

By the BFS algorithm, path P2 is proposed as the ideal path; since its order is less 

than the order of the P1. In order to traverse one less vertex, two more transfers are needed 

on the proposed path P2. However, most users choose P1; since they don’t prefer two 

transfers in order to travel one less station. 

To prevent the above-mentioned shortcoming, a method is developed for fixing the 

solution path of the BFS algorithm. The following method, named as fixPath, is based on 

a trade-off between the number of transfers and the order of the shortest path. For a given 

proposed path P = (v1, v2…vn), structure of the method is as follows; 

1. Find next transfer vertex vtr of the given path, where there is no intersected 

line between (vtr−1, vtr) and (vtr, vtr+1). 
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2. Get the edges after the transfer vertex on the path; (vtr+1, vtr+2), 

(vtr+2, vtr+3).  

3. Check whether ltr+1,tr+2, ltr+2,tr+3 (line lists of the edges (vtr+1, vtr+2), 

(vtr+2, vtr+3) respectively) contain any line of ltr−1,tr. If so, state this vertex 

as vtr+i, vtr+i+1 where 0 < i < 3.  

4. An alternative sub-path between vtr and vtr+i+1 is determined by the 

intersected line.  

5. If the order of the alternative sub-path is not greater than i + 3, then fix given 

proposed path with the alternative sub-path.  

For example, P2 = (vs, v1, v2, v5, vt) is proposed by BFS algorithm from vs to vt for 

the graph in Figure 7.4. By fixPath method, 

1. The next transfer vertex is determined as v1. 

2. For v1, next edges to be examined are (v2, v5) and (v5, vt). 

3. l5,t contains a transit line, which is an element of ls,1 (the edge before the 

transfer vertex v1 on the path). Note that i = 2.  

4. P1(v1, v5) = (v1, v3, v4, v5) is determined as alternative path from v1 to v5.  

5. The order of the alternative sub-path is |P1(v1, v5)| = 4 ≯ i + 3. Therefore, 

the proposed path is fixed as P2
′ = (vs, v1, v3, v4, v5, vt). 

The order of the path is increased by 1. However, the number of the transfers on the 

path are decreased by 2. 
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Chapter 8  

Method III: The Least Transfer 

Route Selection 

In this chapter, the route selection method with respect to the least transfer criterion 

is evaluated. In Section 8.1, our public transport network model is extended to an 

unweighted complex graph in space P [22], [23]. The route selection method on this model 

is explained in Section 8.2. 

8.1 The Public Transport Network in Space P 

To determine optimal route with respect to the least transfer route criterion, the public 

transport network model extended to an unweighted complex graph in space P. In this 

model, a vertex vi is assumed adjacent to the vertex vj if vi is reachable from vj by a transit 

line (these vertices do not need to be exactly adjacent). 

 

Figure 8.1: The Graph Representation of a Public Transport Network 
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For example, there is a graph G = (V, E) that is the representation of some public 

transport network in Figure 8.1. The dotted straight lines refer to transit line 1, the solid 

straight lines refer to transit line 2 and dashed straight lines refer to transit line 3 in the 

modeled graph. The public transport network model in space P is a complex graph G′ =

(V, E′) in Figure 8.2.  

 

Figure 8.2: Space P Model of the Graph 

Note that both of vertices v2 and v3 are reachable from v1 by a transit line in 

Figure 8.1. The neighborhood of the vertex v1 is N(v1) = {v2, v3} in the extended model. 

Hence the adjacency matrix of the model G′ as follows; 

A7x7
′ =

[
 
 
 
 
 
 
0 1 1 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 1 1 0
0 0 0 0 1 1 1
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0]

 
 
 
 
 
 

 

The transit line matrix of the new model G′ as follows; 

L7x7
′ =

[
 
 
 
 
 
 
 
{∅} {1} {1} {∅} {∅} {∅} {∅}
{∅} {∅} {1} {∅} {∅} {∅} {∅}
{∅} {∅} {∅} {2} {2} {2} {∅}

{∅} {∅} {∅} {∅} {2} {2,3} {3}
{∅} {∅} {∅} {∅} {∅} {2} {∅}
{∅} {∅} {∅} {∅} {∅} {∅} {3}
{∅} {∅} {∅} {∅} {∅} {∅} {∅}]

 
 
 
 
 
 
 

 

8.2 The Least Transfer Route Selection Method 

Breadth first search based algorithm is used in this method in order to find the least 

transfer path from the source vertex to the target vertex. Instead of the adjacent matrix, the 

adjacency list is used, because the adjacency list is compatible with the BFS algorithm (it 

is described in detail in previous chapters).  
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The pseudo code of the method is given in Algorithm 8.1. 

Input: Adjacency lists adjacencyByTransit[n], adjacencyByWalking[n] and 

source vertex s 
Output: N sized array that stores the list of vertices which is path from the source to 

the related vertex path[n]  
Function LeastTransferMethod (adjacencyByTransit, adjacencyByWalking, s) 
1. Initialize N sized array list path[n] 
2. Initialize a new queue Q and nextLayer 
3. Initialize a new list walkingCheckList 
4. path[s]  ←  null 
5. Enqueue s and each vertex in adjacencyByWalking[s] to Q 

6. for each vertex v in adjacencyByWalking[s] 
7.  path[v ] ← current 
8. end for 

9. while Q is not empty  

10.  current ←  Q. Dequeue() 
11.  for each vertex adjacent in adjacencyByTransit [current] 
12.   if parent[adjacent] is null  

13.    Enqueue adjacent to nextLayer 
14.    path[adjacent] ← path[current] +  current 
15.    Add adjacent to walkingCheckList 
16.   end if 

17.  end for 

18.  if (Q is empty) 

19.   for each vertex v in walkingCheckList 
20.    for each vertex wadjacent in adjacencyWalking[v]  
21.     if parent[wadjacent] is null  

22.      Enqueue wadjacent to nextLayer           
23.      path[wadjacent] ← path[v] + v  

24.     end if 

25.    end for 

26.   end if 

27.   Q ←  nextLayer. Copy 

28.   Clear nextLayer  
29.   end if 

30. end while 

31. return path  

Algorithm 8.1: Least Transfer Route Selection Algorithm 

The structure of the method is as follows; 

 Firstly, the algorithm enqueues the source vertex vs and its walking 

neighborhood. These vertices are marked as visited.  

 After the first step, the algorithm traverses adjacent vertices to each vertex in 

the queue. The traversed vertices are added to next layer if they are not visited 

before. Additionally, the traversed vertices are marked as visited.  

 Whenever there are no vertices left in the queue, the walking neighborhood 

of each element in the next layer is traversed. If traversed vertices are 
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unvisited, then they are added to next layer and they are marked as visited. 

Lastly, each element of next layer is added to the queue and next layer is 

cleared. And this iteration goes on until there is no unvisited vertex left in the 

graph. 

For example, from v1 to v7 in Figure 8.2 the route selection method iterations are 

illustrated in Figure 8.3. The method returns the proposed path from v1 to v7 as 

P(v1, v7) = (v1, v3, v4, v7). The line information between adjacent vertices on the path is 

determined by using the transit line matrix of this graph, such that from v1 to v3 the transit 

line set is l1,3 = {1}, from v3 to v4 the transit line set is l3,4 = {2}, lastly from v4 to v7 the 

transit line set is l4,7 = {3}. 

 

Figure 8.3: BFS Algorithm Iterations 
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Chapter 9  

Experimental Study 

In this chapter, experimental results of the route selection methods are demonstrated. 

Let’s remember that, in order to propose ideal routes with respect to the shortest path, the 

least stop, and the least transfer (our route selection criteria in the study) routes, following 

methods are evaluated respectively; 

I. The Modified Shortest Path Route Selection 

II. The Modified Least Stop Route Selection 

III. The Least Transfer Route Selection 

These methods are tested on 2000 source-target pairs that are stations of the public 

transport network of İzmir. For each source-target pair, three routes (one for each method) 

are calculated. Costs (the distance of route, the number of transfers, and the number of 

stops) of these routes are calculated by using the cost functions in our model (as explained 

in Section 5.2). Therefore, the proposed methods are compared with each other in terms 

of these cost functions. 

Firstly, the developed application for experimental study is explained in Section 9.1. 

Furthermore, details of the used dataset in the application are represented in this section. 

In section 9.2, results of the study are explained with figures. In section 9.3, the results of 

the study are discussed. The small samples of route selections for each method in this 

study are represented in the last section.  

9.1 The Application and Dataset 

Each algorithm of the proposed methods and the cost functions are developed by 

using C# on a personal computer with Intel i5-4440 3.1 GHz processor, 8 GB 1600 MHz 

DDR 3 RAM and Windows 10 operating system.  
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To observe the results of the proposed methods, a visual form application is 

developed. Additionally, the application includes the GMap.NET (map component) [33]. 

The application is illustrated in Figure 9.1. 

In the application, the source and the target stations of the routes are entered by using 

text boxes. The text boxes of the application have the auto-complete property that displays 

possible stations as a list. After entering the source and target stations, route is determined 

with respect to the route selection methods by clicking the related buttons. The costs of 

the proposed routes; the distances of routes, the numbers of transfers, the numbers of stops 

on the routes are calculated by using “The Distance of Route Function” 𝐝𝐫, “The Number 

of Transfers Function” 𝐧𝐭 and “The Number of Stops Function” 𝐧𝐬 (as detailed in Section 

5.2) respectively. These costs are returned as results in the application. Additionally, the 

proposed route is drawn on the map by using the GMap.NET component of the 

application.  

 

Figure 9.1: The Route Selection Application 

The application uses the real-world transport network of İzmir (Turkey) as the 

dataset. The dataset is obtained from the web page of ESHOT [34]. Experiments are 

conducted with this dataset. This dataset is presented in the table below. 

Table 9.1: Comparison between Standard Model and Space P Model 

Network Model 
Number of 

Stations 

Number of Walking 

Connections 

Number of Transit 

Connections 

The Public Transport 

Network Model  
7,704 34,630 8,837 

The Public Transport 

Network Model in 

Space P  

7,704 34,630 289,875 
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Public transport network of İzmir has four transit modes as; bus, metro, ferry and 

light railway. There are 7,704 stations (vertices) in the public transport network of İzmir 

that includes ferry stations, metro stations, light railway stops, and mostly the bus stops. 

There are 8,837 transit line connections (edges) between all of these stations. The number 

of these connections is 289,875 in the space P model (remark that, it is used in the least 

transfer method). Additionally, there are 34,630 walking connections between these 

stations. Note that walking distance is taken as 300 meters as a constant in this study.  

9.2 Results of the Study 

In this study, The Modified Shortest Path Route Selection (SPRS), The Least Transfer 

Route Selection (LTRS), and The Modified Least Stop Route Selection (LSRS) methods 

are tested on 2000 source-target pairs that are stations of the public transport network of 

İzmir. For each source-target pair, three routes (one for each method) are calculated. Costs 

(the distance of route, the number of transfers, and the number of stops) of these routes 

are calculated by using the cost functions in our model (as explained in Section 5.2). 

Firstly, the average results of each methods’ route selections are stated in this section. 

Additionally, relationships between these average results for each method are illustrated. 

Secondly, relationships between costs of the routes are demonstrated with scatter plots for 

each method. Lastly, relationships between the distances of routes and the straight line 

distances of routes for each method are explained with scatter plots.  

Table 9.2: The Average Results of the Route Selection Methods 

Evaluated Route 

Selection Method 

Average 

Distance 

(km) 

Average 

Number of 

Stops 

Average 

Number of 

Transfers 

Average 

Running 

Time(ms) 

The Modified Shortest 

Path Route Selection 
33,598.75 56.00 2.48 309.37 

The Least Transfer 

Route Selection 
37,535.04 65.70 1.77 43.23 

The Modified Least 

Stop Route Selection 
34,976.82 45.02 3.32 1.02 

Average results of each method’s route selections are shown in Table 9.2. Note that, 

the best method for each cost is illustrated in the green cells in the table. Additionally, the 

worst method for each cost is illustrated in the red cells. 
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It is observed that the average running times of all evaluated route selection methods 

are remarkably fast enough to be used in the public transport applications. Although SPRS 

method has the worst running time, its average running time is only 0.3 second. 

Additionally, the average distances of routes proposed by evaluated methods are not 

considerably different from each other. However, the average results of the evaluated 

methods are not close to each other in terms of the number of transfers and the number of 

stops on the route. 

For each method, relationships between average distance of routes and average 

number of stops on the route are illustrated in Figure 9.2. 

 

Figure 9.2: Relationships between Average Distance and Average Number of Stops on the Route 

In Figure 9.2, it is observed that LTRS method has the worst average results in terms 

of distance of route and number of stops on the route. Additionally, it is observed that 

LSRS method is significantly better than others in terms of average number of stops on the 

route since LSRS method mainly uses rapid-transit lines if they are on the route. Remind 

that, in public transport network of İzmir the average distance between rapid-transit 

stations is approximately 2.5 km and the average distance between bus stops is 

approximately 0.5 km. Hence, the route with rapid-transit lines includes less number of 

stops than other routes for the same distance. Furthermore, SPRS is the best method in 

terms of average distance of route since this method is based on the shortest path 

algorithm. However, its average distance is slightly close to others methods’ average 

distance, because distances of its proposed routes are slightly increased in order to 

minimize the number of transfers and walking distance.     

For each method, relationships between average number of transfers and average 

distance of routes are illustrated in Figure 9.3. LTRS method is significantly better than 

others in terms of average number of transfers since LTRS method is optimized for least 

transfer route selection. On the other hand, it is observed that LSRS method is considerably 
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worse than other methods in terms of the number of transfers, because LSRS method 

mainly tries to propose a route with the least number of stop.  

 

Figure 9.3: Relationships between Average Number of Transfers and Average Distance of Route 

For each method, relationships between average number of transfers and average 

number of stops on the route are illustrated in Figure 9.4. It is observed that LSRS is the 

best in terms of average number of stops on the route however it is worst in terms of 

average number of transfers. On the other hand, it is observed that LTRS is the best in 

terms of average number of transfer; however, it is the worst in terms of average number 

of stops on the route. STRS method give more balanced results than others since STRS is 

the second method in both of the average results.  

 

Figure 9.4: Relationships between Average Number of Transfers and Average Number of Stops 

Remind that, the relationships between average distance of routes and average 

number of stops on the route are illustrated in Figure 9.2. For each method’s route 

selections in the study, relationships between the distance of the route and the number of 

stops on the route are represented on scatter plots in Figure 9.5. Although there are some 

outliers on the plot, we can say that for each evaluated method’s route selections there are 

moderate positive correlations between the number of stops and the number of transfers. 

Furthermore, it is observed that for the same number of stops, distances of routes that are 
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proposed by LSRS method is slightly longer than others. Because LSRS method mainly 

uses rapid-transit lines if they are on the route. 

 

Figure 9.5: Relationships between Distance of Route and Number of Stops on the Route 

Remind that, the relationships between average number of transfers and average 

distance of routes are illustrated in Figure 9.3. For each method’s route selections, 

relationships between the number of transfers and the distance of route are represented 

on scatter plots in Figure 9.6. There seems to be no correlation between the number of 

transfers and the distance of route. However, it is clearly observed in the figures that LTRS 

method route selections are pretty good in terms of the number of transfers. Additionally, 
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it is clearly observed that LSRS method’s results are considerably bad in terms of the 

number of transfers. Remark that the number of transfers can be up to 6 for LSRS method, 

in order to propose a route with less number of stops. 

 

Figure 9.6: Relationship between Number of Transfers and Distance of Route 

Remind that, the relationships between average number of transfers and average 

number of stops on the route are illustrated in Figure 9.4. For each method’s route 

selections, relationships between the number of transfers and the number of stops on the 

route are represented on scatter plots in Figure 9.7. There seems to be no correlation 
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between the number of transfers and the number of stops. However, it is observed once 

again that LTRS is the best in terms of the number of transfers where LSRS is the worst. 

 

Figure 9.7: Relationship between Number of Transfers and Number of Stops on the Route 

For each method’s route selections, relationships between the distance of route and 

straight line distance from source to target on the route are represented on scatter plots in 

Figure 9.8. Although there are some outliers on the plot, we can say that there are strong 

positive linear correlations between the distance of route and straight line distance from 

source to target on the route, for each evaluated method. Additionally, it is observed that 

results of SPRS method is slightly better than others. Because SPRS method is based on 
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the shortest path, although this method is a modified in order to minimize number of 

transfers and long distance walks.  

 

Figure 9.8: Relationship between Distance of Route and Straight Line Distance 

9.3 Discussion 

Results of the experimental study are discussed for each method in this section. 
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The Least Transfer Route Selection Method is far better than other methods in terms 

of the number of transfers since it proposes optimal route with respect to the least transfer 

from the source to the target. Therefore, passengers that dislike transfers in the public 

transport certainly prefer route selections of this method. On the other hand, this method 

has the worst average in terms of the number of stops. Because, it is not preferred to 

transfer for using rapid-transit lines in this route selection method. Most users prefer to 

make one more transfer in order to use rapid-transit lines in some situations. Therefore, 

this method is not favorable for these types of users in these situations. Furthermore, this 

method is slightly worse than other methods in terms of the distance of route.  

The Modified Least Stop Selection Method is significantly better than other methods 

in terms of the number of stops on the route. Because this method mainly uses rapid-transit 

lines if they are on the route. Although this method is favorable for using transit lines, it 

is considerably worse than the other methods in terms of the number of transfers. In some 

cases, using rapid-transit lines would be useful. However, there are some undesirable cases 

such as making two or more transfers in order to use a rapid-transit line. Therefore, using 

rapid-transit lines have both advantage and disadvantage for this method. Lastly, this 

method is quite close to the best average in terms of the distance of route.  

The Modified Shortest Path Route Selection Method has the best average distance 

since this method is based on the shortest path algorithm. Furthermore, it is the second 

method in terms of the number of transfers owing to implemented penalty system (as 

explained in Section 6.3). Additionally, it is the second method in terms of the average 

number of stops on the route. Results of this method are in the middle or first place for all 

criteria of routes. It is not the worst method for any criteria of routes. Therefore, it would 

be better route selection method for users that have not certain primary criterion for route 

selection.   

9.4 Some Route Selection Results in the Study 

There are 2000 source-target pairs in the study. Since it is not possible to present all 

of source-target pairs, only some of these are presented in following tables for each 

method. 
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Table 9.3: The Modified Shortest Path Route Selection Method Results 

Source Station Target Station 

The 

Distance 

(meter) 

The 

Number 

of Stops 

The 

Number of 

Transfers 

Running 

Time 

(ms) 

Konak Anadolu Alsancak Gar 4,995 13 0 315 

Yüksek 

Teknoloji 
Vicdan 56,940 120 3 308 

Karşıyaka 

İskele 
Olimpiyat Köyü 14,412 35 3 303 

Kehribar Cengiz Parkı 42,176 97 4 296 

Göztepe 
Fahrettin Altay 

Aktarma Merkezi 
1,849 6 0 306 

Şelale Parkı Hocazade Cami 4,593 12 0 325 

Bornova Metro Ballıkuyu Çeşme 7,621 12 1 306 

Tınaz Tepe Eşrefpaşa 7,504 21 1 302 

Betontaş Lisesi 
Karakuyu 

İlköğretim Okulu 
48,342 106 4 311 

Söğüt Bahribaba 5,098 14 1 345 

Belediye Sarayı 
Evka 5 Sondurak 

3 
15,194 34 3 302 

Bornova Metro 
Buca Endüstri 

Meslek Lisesi 
13,491 26 2 303 

Çevik Bir 
Osmangazi 

İlköğretim Okulu 
12,901 24 2 304 

Dikili Terminal İzban-Salhane 103,077 74 1 302 

Gaziemir 

Belediyesi 
Metro-Sanayii 18,039 21 2 301 

Halkapınar 

Metro 
Adem Yavuz 2,257 10 2 302 

Aliağa Organize 

Sanayi Yol 

Ayrım 

Gediz 

Üniversitesi 
45,277 35 2 306 

Bornova Metro Opel 47,161 62 2 320 

Dikili Lise Şehitler Parkı 113,304 85 2 303 

Eser Buca Doğum Evi 16,131 43 4 303 

Gaziemir 

Aktarma 

Merkezi 

Pazaryeri 34,670 73 3 307 

İnciraltı Özkent 67,365 111 3 304 

İzban-Semt 

Garajı 
Turgut Mezarlık 45,284 77 3 296 

Narlıdere Piknik 

Yeri 
Çam 28,050 44 2 306 

Metro-Sanayii Urla 42,886 77 3 330 

Tekel 

Lojmanlar 

Ulucak 

Cumhuriyet 
33,971 53 4 302 

Çiğli Aktarma 

Merkezi 
Aydın 19,523 23 2 300 
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Table 9.4: The Least Transfer Route Selection Method Results 

Source Station Target Station 

The 

Distance 

(meter) 

The 

Number 

of Stops 

The 

Number of 

Transfers 

Running 

Time 

(ms) 

Konak Anadolu Alsancak Gar 4,995 13 0 49 

Yüksek 

Teknoloji 
Vicdan 57,693 126 2 48 

Karşıyaka İskele Olimpiyat Köyü  14,814 18 2 48 

Kehribar Cengiz Parkı 54,679 129 4 50 

Göztepe 
Fahrettin Altay 

Aktarma Merkezi 
1,849 6 0 51 

Şelale Parkı Hocazade Cami 4,593 12 0 51 

Bornova Metro Ballıkuyu Çeşme 7,910 15 0 50 

Tınaz Tepe Eşrefpaşa 8,395 25 0 47 

Betontaş Lisesi 
Karakuyu 

İlköğretim Okulu 
50,031 98 3 42 

Söğüt Bahribaba 5,357 13 0 52 

Belediye Sarayı 
Evka 5 Sondurak 

3 
23,565 54 1 48 

Bornova Metro 
Buca Endüstri 

Meslek Lisesi 
13,773 29 1 51 

Çevik Bir 
Osmangazi 

İlköğretim Okulu 
14,896 38 1 42 

Dikili Terminal İzban-Salhane 103,077 75 1 32 

Gaziemir 

Belediyesi 
Metro-Sanayii 18,340 40 1 45 

Halkapınar 

Metro 
Adem Yavuz 2,267 11 1 38 

Aliağa Organize 

Sanayi Yol 

Ayrım 

Gediz 

Üniversitesi 

 

45,277 37 2 31 

Bornova Metro Opel 48,175 67 2 48 

Dikili Lise Şehitler Parkı 113,246 86 2 32 

Eser Buca Doğum Evi 21,472 51 2 50 

Gaziemir 

Aktarma 

Merkezi 

Pazaryeri 38,707 83 2 39 

İnciraltı Özkent 87,841 170 2 44 

İzban-Semt 

Garajı 
Turgut Mezarlık 48,326 116 2 36 

Narlıdere Piknik 

Yeri 
Çam 27,030 59 2 47 

Metro-Sanayii Urla 46,251 94 2 41 

Tekel Lojmanlar 
Ulucak 

Cumhuriyet 
38,529 70 4 42 

Çiğli Aktarma 

Merkezi 
Aydın 23,767 39 1 34 
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Table 9.5: The Modified Least Stop Route Selection Method Results 

Source Station Target Station 

The 

Distance 

(meter) 

The 

Number 

of Stops 

The 

Number of 

Transfers 

Running 

Time 

(ms) 

Konak Anadolu Alsancak Gar 7,182 9 1 1 

Yüksek 

Teknoloji 
Vicdan 61,975 111 4 1 

Karşıyaka İskele Olimpiyat Köyü 13,852 8 2 1 

Kehribar Cengiz Parkı 42,960 92 4 1 

Göztepe 
Fahrettin Altay 

Aktarma Merkezi 
1,979 6 0 1 

Şelale Parkı Hocazade Cami 4,593 12 0 1 

Bornova Metro Ballıkuyu Çeşme 13,544 11 2 1 

Tınaz Tepe Eşrefpaşa 7,548 17 3 1 

Betontaş Lisesi 

 

Karakuyu 

İlköğretim Okulu 
49,669 90 4 1 

Söğüt Bahribaba 4,990 11 1 1 

Belediye Sarayı 
Evka 5 Sondurak 

3 
16,740 25 3 1 

Bornova Metro 
Buca Endüstri 

Meslek Lisesi 
12,970 17 3 1 

Çevik Bir 

 

Osmangazi 

İlköğretim Okulu 
14,419 18 3 1 

Dikili Terminal İzban-Salhane 103,077 73 1 1 

Gaziemir 

Belediyesi 
Metro-Sanayii 20,215 10 2 1 

Halkapınar 

Metro 
Adem Yavuz 2,256 8 2 1 

Aliağa Organize 

Sanayi Yol 

Ayrım 

Gediz 

Üniversitesi 
45,277 35 2 1 

Bornova Metro Opel 47,837 56 4 1 

Dikili Lise Şehitler Parkı 113,196 81 3 1 

Eser Buca Doğum Evi 15,903 25 4 1 

Gaziemir 

Aktarma 

Merkezi 

Pazaryeri 38,392 38 4 1 

İnciraltı Özkent 62,810 84 5 1 

İzban-Semt 

Garajı 
Turgut Mezarlık 58,169 98 3 1 

Narlıdere Piknik 

Yeri 
Çam 29,572 35 3 1 

Metro-Sanayii Urla 50,273 84 6 1 

Tekel Lojmanlar 
Ulucak 

Cumhuriyet 
37,513 44 6 1 

Çiğli Aktarma 

Merkezi 
Aydın 20,667 19 1 1 
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Chapter 10  

Conclusion 

In this chapter, the thesis is summarized in Section 10.1. Additionally, the direction 

for the future researches is explained in the last section.  

10.1 Summary 

To briefly summarize the thesis; firstly, the public transportation network and the 

route selections in this network are introduced. Afterwards, route selection criteria for the 

public transport are discussed, and the route selection criteria to be evaluated in this study 

are determined. These evaluated criteria are named as; “the shortest path”, “the least 

transfer” and “the least stop” routes. Basic definitions of the graph theory, graph types and 

graph data structures are explained for our public transport network model and our route 

selection methods. After that, the public transport network is modeled in order to evaluate 

the route selection methods with respect to our criteria, and to describe the cost functions 

of the routes. Therefore, route selection methods named as; The Modified Shortest Path 

Route Selection Method, The Modified Least Stop Route Selection Method and The Least 

Transfer Route Selection Method are evaluated with respect to our criteria. These route 

selection methods are experimented on a real world public transport network. Their route 

selections’ average results are compared in terms of the running time, the distance of the 

routes, the number of the transfers and the number of the stops on the routes. Thus, 

strengths and shortcomings of evaluated methods are observed.  

10.2 Future Work 

For our future researches, it is aimed to develop a public transport route selection 

application that creates a specific characterization for each user. Thus, it is aimed to 

propose an ideal route selection specific to the user with respect to his/her characterization. 
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