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ABSTRACT
The Android platform commands a dramatic majority of the mo-
bile market, and this popularity makes it an appealing target for
malicious actors. Android malware is especially dangerous because
of the versatility in distribution and acquisition of software on the
platform. In this paper, we continue to investigate evolutionary An-
droid malware detection systems, implementing new features in an
artificial arms race, and comparing different systems’ performances
on three new datasets. Our evaluations show that the artificial arms
race based system achieves the overall best performance on these
very challenging datasets.

CCS CONCEPTS
• Computing methodologies → Genetic algorithms; • Secu-
rity and privacy →Malware and its mitigation;
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1 INTRODUCTION
Cell phones have become an indispensable part of our modern
world. From their humble origins as large and cumbersome tele-
phone bricks, they now sport sleek profiles and are capable portable
computers. They facilitate our communications through calling,
messaging, and email services, as well as many digital conveniences
such as online shopping and banking. In 2016, mobile web browsing
surpassed desktop web browsing for the first time [6], cementing
their place as our go-to Internet devices. The degree with which
we interface with our smartphones has resulted in these devices
containing large amounts of personal information. As a result, our
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phones have attracted the attention of various cyber criminals who
would profit from such data.

While many manufacturers fabricate smartphones, two operat-
ing systems control the vast majority of the market. Apple’s iOS
is built especially for their devices, but Google’s Android powers
many different brands to command a staggering 85% of the global
market [2]. The diversity of devices running Android, and the in-
consistent adoption rates1with respect to upgrades, means that a
one-size-fits-all security solution is difficult to create. Furthermore,
Android users have significant flexibility in how their applications
are installed, and can elect to install applications from channels
outside of the primary Google Play Store. Malicious actors have
leveraged this reality to create an ecosystem of malware targeting
Android devices.

Security professionals have responded in-kind with many anti-
malware solutions. As malware has becomemore adaptable to these
detectors, machine learning is a popular technique for building de-
tection models [4] [13] [10] [20]. Genetic algorithms have been
especially successful, as they can evolve detectors that are specif-
ically hardened against resilient malicious behaviours [11] [12].
Observing their success in standalone situations, some researchers
have created adversarial, co-evolutionary systems [3] [18], simu-
lating the real-world arms race that exists between attackers and
defenders. We refer to this as the artificial arms race.

This paper extends our previous work in [23], where we eval-
uated an evolutionary, co-evolutionary, and state-of-the-art, rule-
based system by training them on older, established datasets before
testing them on newer, unseen datasets. This time, we evaluate
the performance of an aggregate detection web service, before ex-
tending the aforementioned artificial arms race system to include
certificate-based features. Finally, we benchmark all four systems
on three novel datasets. The results indicate that the new datasets
are challenging for all systems, but the ordering from [23] is pre-
served, with the evolutionary system competing with or exceeding
the rule-based system, and the artificial arms race (co-evolutionary)
system besting both. The new features provide a mixed result, with
an increased benign accuracy, but lower malicious rates.

The rest of this paper is organized as follows.We begin by review-
ing related research in Section 2. We discuss the detection systems
and the datasets employed in Section 3. Results are presented and
discussed in Section 4. Section 5 concludes our observations and
suggests directions for future work.

1https://developer.android.com/about/dashboards/
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2 RELATED WORK
A variety of approaches are being employed to increase malware
detection rates. In this section, we explore benchmark surveys on
machine learning techniques, before detailing evolutionary works.

From a general machine learning (ML) perspective, Ucci et al.
conduct a survey of popular ML approaches for malware detec-
tion [20]. They identify specific trends that exist, and the current
shortcomings. One area of interest that they identify is being able
to predict future variants of malware, and this is an ideal task for
evolutionary algorithms.

With that in mind, Wilkins et al. benchmark evolutionary, co-
evolutionary, and state-of-the-art, rule-based systems [23]. The
evolutionary systems are trained on older, well-established aca-
demic datasets, as well as benign samples from popular app stores.
The authors then employ newer, unseen datasets so as to ascer-
tain the relative effectiveness of each system. The co-evolutionary
system significantly outperforms the other systems, especially on
newer datasets.

Highlighting individual solutions that inform the benchmarking
survey, Meng et al. audit anti-malware tools by developing an evolu-
tionary malware generation system, Mystique [12]. After codifying
a number of attack and evasion features, they evolve malicious
models where the presence of a set bit indicates a particular chosen
feature. They achieve a dramatic reduction in the mean detection
rate, dropping over 60 percent points. Their follow up, Mystique-S,
adds dynamically loaded malware as an evasion technique [24].

Rather than extracting specifically chosen features, Martín et al.
develop an evolutionary malware detector for Android applications
that operates on extracted 3rd party imports [11]. These imports
are indicative of the behaviours of the applications, and are difficult
to obfuscate without breaking compatibility with the library. After
clustering imports, models are produced for malicious and benign
software, with which new samples can be compared. The resulting
classifiers achieve a maximum accuracy of 95%.

Inspired by the success of Mystique, Bronfman-Nadas et al. go
a step further by simulating the “arms race” that exists between
the authors of malware and security software [3]. They develop
companion generators to create Android malware and Android
malware detectors, and combine them in a feedback loop. As the
goals of these generators are in conflict, they cannot both be optimal
simultaneously. Their results indicate that the evolved detectors
are highly effective, and less complex than comparable solutions.

In a similar vein, Sen et al. create and combine an Android mal-
ware generator and detector into a co-evolutionary framework
[18]. Instead of the basic reusable features employed in [12] and
[3], their system operates on smali, the assembler language for the
modern Android platform, and generates control flow graphs that
are evolved. The detectors that emerge from this process are much
more accurate than comparable tools, even though the evolved
malware is highly evasive.

Since security practitioners always need to be working ahead of
malicious threat actors, solutions that can predict future malware
are especially promising. Co-evolutionary systems have demon-
strated that they are capable of fulfilling this need, but a compre-
hensive survey has not been conducted. To further understand
the advantages of co-evolutionary systems against other popular

methodologies, in this work, we continue to benchmark and con-
trast evolutionary, co-evolutionary, state-of-the-art rule-based, and
aggregate detection systems.

3 METHODOLOGY
In this section, we describe the detection systems and datasets, as
well as discuss the exploratory process by which we produced new
features for the co-evolutionary system.

3.1 Detectors
3.1.1 MOCDroid. MOCDroid is an evolutionary malware de-

tector generation system [11]. It operates on the import calls made
from 3rd party libraries, as this is difficult to obfuscate without
breaking compatibility. In this way, malicious behaviours can be
identified by common behavioural groupings. As MOCDroid op-
erates on decompiled class files contained in APKs, it is a form of
static analysis.

After the imports are extracted, they are clustered in R.MOCDroid
takes a text mining approach, as it envisions each application as
a document and each import as a term in that document. After
applying k-Means, two matrices are produced.

These matrices represent benign and malicious app imports, and
are used in a multi-objective genetic algorithm, where a classifier is
trained by flipping bits indicating the presence of import clusters.
The algorithm seeks to maximize accuracy while minimizing false
positives.

3.1.2 ArmsRace. ArmsRace is a co-evolutionary malware and
malware detector generation system that aims to replicate the adver-
sarial relationship between attackers and defenders [3]. By evolving
predictions of future malware based on current samples, the gener-
ated models can be more resilient to new threats.

The detector generator creates small, linear programs that con-
sist of instructions for a simple virtual machine. This machine is
capable of performing arithmetic operations, as well as reading
from or writing to registers. The programs operate on 23 features
that include relevant Android permissions, as well as behaviourly-
indicative code features.

The malware generator is inspired by Mystique [12], outputting
a list of aggressive and evasive features to be used as a template for
the generated malware. An indicator-based evolutionary algorithm
is employed to satisfy three objectives: maximize aggressiveness,
minimize evasion, minimize detectability.

By combining these systems into a feedback loop, they compete
against each other, aiming for optimality. Their adversarial nature
ensures that both cannot be optimal simultaneously.

3.1.3 Assemblyline. Assemblyline (AL) is a modular, scalable,
open-source malware analysis system from the Canadian Centre
for Cyber Security [15]. The system can run in a virtual machine
on a single computer, or across many computers and operate in
a distributed fashion. Users can interface with Assemblyline pro-
grammatically via the API, through a Python library, or their web
browser. Assemblyline is employed by cyber security professionals
in Canada and developed by the “Government of Canada’s centre
of excellence in cyber security” [15]. Accordingly, we considered it
to be a state-of-the-art system.
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Figure 1: VirusTotal results for a malicious APK. This file is
part of the Drebin dataset.

The system operates a number of services which cater to specific
analysis techniques and file types. Users are encouraged to develop
their own services, and consider contributing them back to the
Assemblyline ecosystem. Each service has its own defined heuris-
tics, which are summed to calculate the final score. By default, files
less than -1,000 are considered benign, while files over 1,000 are
malicious. The range between indicates how certain the service is
about the label it is assigning. The system raises an alert for any
file scoring above 500.

To assess Android malware, Assemblyline ships with APKaye.
APKaye is a static analysis service, disassembling the suspicious
file and assessing various permissions, code features, strings, and
packaged scripts or executables.

3.1.4 VirusTotal. VirusTotal (VT) is a community-driven, cor-
porately supported knowledge base that aggregates results from
over 70 malware detection systems [21]. The detectors include well-
known commercial products such as Avast, AVG, ESET NOD 32,
McAfee, Kaspersky, Symantec, TrendMicro, and ZoneAlarm.

Users can submit files for analysis, which are compared to ex-
isting samples, and receive detailed information. This includes the
detectors that flagged the sample, the labels assigned, and various
properties of the file. If possible, dynamic analysis is performed,
which can highlight specific behaviours of the malware sample.
Searches can also be performed using file hashes, and other identi-
fying information, such as URLs and IP addresses.

A number of entrypoints are available to access VirusTotal ser-
vices, including a web interface, shown in Figure 1, and API. Access
to the Basic API is for non-commercial use only, and is rate-limited,
while only returning a subset of the full report for each file, though
this is sufficient for our comparisons. Expanded plans are available
upon contact.

As VirusTotal does not require any setup, even an account, to
use, it is the fastest of all of these detection systems. As well, hav-
ing already seen many samples allows for results to be returned
instantly, subject to the mentioned limitations.

To acquire information from VirusTotal, we computed the MD5
hashes of each sample in each dataset, and queried the VirusTotal
API with a Python script. This is diagrammed in Figure 2, alongside
the other detection systems. The values returned include the as-
signed labels for each sample, the detectors that assigned the labels,

Feature extraction

APKs

MOCDroid

ArmsRace

Predictions

Compute MD5 VirusTotal API

Direct ingestion

Assemblyline

Figure 2: Detector submission process.

and the total number of detectors. From this, a detection rate was
calculated.

An important point to note is that this detection rate is not
directly comparable to the detection rate from other detectors,
given the aggregate nature of the VirusTotal service. Detectors
that are not capable of evaluating Android applications are still
included, which serves to falsely lower the detection rate. It is
more appropriate to consider the average, minimum, and maximum
VirusTotal detection rate for each dataset, so as to surmise their
relative detectability. As well, the Basic API does not allow for files
greater than 10MB to be uploaded, so unseen hashes return no
results at all. This typically only affects a small number of benign
samples.

3.2 Datasets
In [23], we employed a number of datasets from a variety of sources
to train and evaluate the detection systems, and we continue to eval-
uate them in this paper. These datasets include academic datasets
such as the Android Malware Dataset (24,553 malware) [22], the
Android Malware Genome Project (1,260 malware) [25], the Drebin
Dataset (5,560 malware) [1] [19], and CICAndMal2017 (426 mal-
ware and 5,065 benign) [9]. In order to ease references to these
datasets, we employ the following abbreviations, respectively: AMD,
Genome, Drebin, and UNB Malware / Benign. Additionally, we use
applications sourced from two popular Android app stores for [3],
Google Play (1,085 benign) [8] and F-Droid (1,339 benign) [5]. We
also acquired a large, crowd-sourced collection of malware from
VirusShare (VS), a community-oriented malware sharing project
[16].

In June 2019, VirusShare restructured how they distribute An-
droid APK files [17]. Their previous Android malware dataset was
a collection of samples from 2013 and 2014, hereafter referred to as
VS1314. They have now made all APK files available by year, from
2012 to 2018. The training datasets for our models were all sourced
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Detector Accuracy
Arms Race 0/44 (0.0%)

Assemblyline 21/44 (47.73%)
MOCDroid 16/44 (36.36%)

Table 1: Detector accuracy on undetectable malware.

in the earliest years of the decade. In this paper, differing from
previous work, we elected to download the three most recent years:
2016, 2017, and 2018. These three new malware dumps together
contain upwards of 50,000 samples, and we hoped that their novelty
could enable performance comparisons in respect to evolutionary
predictions of future malware.

3.3 Deep Dive
Based on the results in [23], we concluded that ArmsRace was
an overall more effective solution than MOCDroid, especially on
newer datasets. For that reason, we decided to focus on improving
its detection rate. UNB Malware was the most difficult dataset to
predict for two of the three detectors in that work. Hence, it was
the natural choice for further scrutiny.

Looking at the best performing model for ArmsRace (Drebin /
Google Play), there were still 44 UNB Malware samples that failed
to be detected. This is possibly because of the focus ArmsRace
places on privacy leakage malware, which is not present in the
UNB samples. To determine a path forward, it was necessary to
dive into the composition of the undetectable malware, and find
some common properties that may make their detection easier.

3.3.1 APK Properties. To determine which subset of these apps
are particularly difficult, we evaluated the 44 samples inAssemblyline
and MOCDroid, using MOCDroid’s best model (Drebin / Google
Play) [23].

These malware seem to employ more advanced evasion tech-
niques, because the results in Table 1 are all unsatisfactory.

Of the samples missed by ArmsRace, 30 are also undetectable
by Assemblyline, MOCDroid, or both. The number of samples that
fail to be detected, in addition to their VirusTotal detection rate
and common labels, is presented in Figure 4. Filtering it down, we
end up with 21 APKs that are undetectable by all three systems.
As VirusTotal employs a variety of commercial detectors, these 21
samples can be considered extremely evasive, and were subject to
further scrutiny.

According to the labels provided by the researchers in [9], 15
of these samples are Scareware2named Android Defender. In fact,
there are only 17 Android Defender samples in the UNB dataset.
This indicates a highly evasive family. The remaining samples
consist of three SMS Malware3, each in the Nandrobox family, and
three Adware4(two from the Mobidash family, one from the Youmi
family). These types of malware were not originally considered in

2This type of malware seeks to scare the user into paying the attacker by raising false
alarms.
3This type of malware creates unwanted financial charges through premium SMS
messages.

Predictions

Elasticsearch

Ingestion Query

Kibana

Visuals and Statistics

Figure 3: Elastic Stack ingestion and analysis process.

APKaye
  Samples:     2
  VT DR:         0.227
  Tags:  
       Android.Mobidash
       Android.Airpush

MOCDroid 
  Samples:     7
  VT DR:         0.337
  Tags:  
       Android.Riskware
       Downloader
       Banker
       Trojan
        

All Three 
  Samples:     21
  VT DR:         0.162
  Tags:  
       AdLibrary
       Autoinst
       Adware
       Trojan

Figure 4: VirusTotal Venn diagram for UNB Malware unde-
tectable by ArmsRace. VT DR is the detection rate.

ArmsRace, which focuses on privacy leakage, and might explain
their evasiveness.

To get a more comprehensive overview of each undetectable
APK, we retrieved a number of distinguishing characteristics for
each from VirusTotal and Assemblyline. The VirusTotal field of
interest was the assigned labels. Extracted Assemblyline fields in-
clude the Android activity, signing certificate information, as well
as minimum and target SDK. In addition, Assemblyline provides
the heuristics it uses to identify suspicious characteristics of appli-
cations.

In order to simplify the analysis process, we compiled all of
the aforementioned information and uploaded it to a local Elastic
stack5cluster. The data was housed in Elasticsearch, a database
and search engine, and visualized with Kibana, the accompanying
front-end server. This ingestion process is depicted in Figure 3.

3.3.2 VirusTotal Labels. Calculating the average, minimum, and
maximum detection rates for VirusTotal on the 21 completely unde-
tectable samples, we end up with 16.2%, 3.4%, and 40%, respectively.
This is a significant drop from the average and maximum reported

4This type of malware displays unwanted ads on the user’s device.
5https://www.elastic.co/products/
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Frequently Occurring VT Labels Count
SPR/ANDR.Autoinst.A.Gen 11
a variant of Android/Autoins.C potentially unsafe 11
Trojan.Gen.2 10
Trojan/Android.TSGeneric 10
AdLibrary:MoPub 6
AdWare.AndroidOS.Autoins 6
Adware.Allinone.1.origin 6
Spr.Andr.Autoinst.A!c 5

Table 2: Labels assigned by VirusTotal for undetectable sam-
ples.

AL Heuristic Count Meaning
AL_APKaye_003 21 Network indicator found
AL_APKaye_004 21 Dangerous permission used
AL_APKaye_010 21 Self signed certificate
AL_APKaye_005 20 Unknown permission used
AL_APKaye_013 20 Certificate valid more then 30 years
AL_APKaye_011 15 No country in certificate owner
AL_APKaye_015 6 Non-conventional certificate name
AL_APKaye_014 3 Invalid country code in certificate owner

Table 3: Frequent heuristics employed by APKaye in
Assemblyline.

for the entire dataset in Table 5. Evidently, commercial detectors
also have trouble with these samples.

The assigned labels give a more detailed idea of the type of
malware we are dealingwith, according to the commercial detectors.
The most frequently occurring labels are listed in Table 2. While
these detectors do not specifically list many of the families, they
seem to concur that many of these are repackaged or otherwise
obscured by seemingly legitimate code.6

3.3.3 Assemblyline Heuristics. While metadata about the apps
is plentiful here, some of the fields, such as domains or package
names, are not well suited for adaptation to ArmsRace. A Boolean
check or integer value, on the other hand, would work well.

With this in mind, the frequently occurring AL Heuristics in
Table 3 provide much inspiration. We discarded AL Heuristics 003,
004, and 005: the app accessing some address is likely to be present
in the majority of modern applications, permissions are already
accounted for in ArmsRace, and defining a custom permission is
not malicious, in and of itself.

The rest of these heuristics, however, relate to inconsistencies in
the signing certificate. In fact, 010 is present in every undetectable
APK. A self-signed certificate speaks for itself: without a chain
of trust, it is impossible to determine if the certificate is actually
legitimate. On further inspection, we found that 1,078 of the 1,084
applications (99.45%) in the Google Play dataset are actually self-
signed. As a result, this feature was dropped from consideration.

From 013, we were encouraged to review the validity period of
each certificate. These results are shown in Table 4. Every single
6See Adware, Autoins (auto-installer), Trojan, in Table 2.

Cert. Start Year Cert. End Year Difference in Years Count
2015 2065 50 14
2012 2062 50 3
2016 2041 25 1
2017 2052 35 1
2011 2066 55 1
2016 2067 51 1
Table 4: Signing certificate dates from Assemblyline.

app in the undetectable group has a large validity period for their
certificate (at least 25 years), with 19 of the 21 meeting or exceeding
50 years.

Google recommends a validity period of 25 years, and requires
certificates to expire after 22 October 2033 [7]. Malware authors,
desiring to remain malicious for as long as possible, seem to be
inclined to sign for longer periods.

3.4 Proposed Certificate Validity Features for
ArmsRace

The original implementation of ArmsRace does not consider cer-
tificates in any of its features. Addressing this blind spot could be
the key to correctly identifying some of these undetectable APKs.
Taking inspiration from Assemblyline, we explore the effective-
ness of certificate features concerning the period, in years, that the
certificate is valid.

The signing certificate file is stored inside of the META-INF di-
rectory of each APK, so was easily accessible as part of ArmsRace’s
disassembly process. Using keytool, a utility included as part of
Java,7 certificate start and end dates can be extracted as a String
and converted into datetime Python objects for the purposes of
date math. An example output from keytool is shown in Figure 5.

Furthermore, incorporating certificates of varying length was
an issue that we explored. There are multiple pathways that a
generated malware can take in ArmsRace’s generation logic. After
the call to gradle8, the build system used for Android applications,
the newly built APK is unsigned. If DroidChameleon [14] evasion
features are selected, the APK is re-built and signed. This can occur
multiple times, depending on the selected features. Otherwise, the
sample proceeds and is unsigned.

To ensure that every generated app would be signed, we added a
static keystore to ArmsRace. In the case that DroidChameleon is not
called, the app is signed with this keystore, with a validity period
of 50 years. This value was chosen based on the results reported in
Table 4.

We wanted to give the generation process the opportunity to
choose differing validity periods, and so created three new flags
that can be passed to DroidChameleon: -certShort, -certMed, and
-certLong. Choosing one of these features will programmatically
generate a keystore with a certificate that is valid for a randomly
chosen period, as defined by each feature. The periods for short,
medium, and long are 20–30 years, 45–55 years, and 100–200 years,
respectively. The new certificate is then used by DroidChameleon
7https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
8https://gradle.org/
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Figure 5: Keytool output for Facebook certificate.

Dataset Seen Unseen Avg Min Max
AMD 24553 0 49.50 19.30 81.97
Drebin 5560 0 66.62 5.00 86.67
F-Droid 1328 11 99.99 99.47 100.00
Genome 1260 0 71.68 57.41 81.97
Google Play 1056 29 99.99 99.77 100.00
UNB Ben 1700 0 99.99 99.84 100.00
UNB Mal 426 0 47.95 0.00 80.00
VS1314 35397 0 53.34 0.00 82.09
Table 5: VirusTotal results on previous datasets.

to sign the modified application, using jarsigner another Java-
provided utility.9

4 EVALUATIONS
In this section, we benchmark the performance of VirusTotal on
the datasets from [23]. We also evaluate the proposed ArmsRace
features, before tasking MOCDroid, ArmsRace, Assemblyline, and
VirusTotal on three new and current VirusShare datasets.

When evaluating classifiers, it is common to report the results in
terms of accuracy, precision, and recall (detection rate), as defined
below:

A =
Tp +Tn

Tp +Tn + Fp + Fn

P =
Tp

Tp + Fp
R =

Tp

Tp + Fn

As we only test these systems on malicious samples, there are no
true negatives (Tn ) or false positives (Fp ), only true positives (Tp )
and false negatives (Fn ). This causes accuracy to be equal to recall,
and precision to be constant at 1. Accordingly, we only report the
detection rate in the result tables.

It is important to note thatMOCDroid, ArmsRace, andAssemblyline
decompile the malicious files as part of their feature extraction pro-
cess. While this is typically not an issue, a small number of malware
can cause the decompilers to fail. In these evaluations, failed de-
compilation is the cause of any discrepancy between the reported
results, and the actual dataset size.

4.1 Evaluations Using VirusTotal On Older
Datasets

To put our research in this paper into context, the results in Table
5 are fairly consistent with the results for the detectors reported
in [23]. The benign training / testing datasets, Google Play and
F-Droid, are marked as harmless by 99.99% of the detectors on
average, with even the most ‘malicious’ sample marked as benign
by 99.77% of the detectors.

Genome and Drebin are also well defined, with 71.68% and 66.62%
of detectors labelling the samplemalicious on average. A notable dis-
tinction between these datasets, however, is their minimum detec-
tion rate. There is at least one sample in Drebin that is only marked
by 5% of the detectors, whereas the least identifiable Genome sam-
ple still achieves a score of 57.41%.

Considering AMD, UNB Malware, and VirusShare 2013 / 2014
(VS1314), we can see that the unknown malicious datasets are
surprisingly consistent. All three hover around 50%. VS1314 is the
most detectable on average at 53.34%, and UNB Malware is the
least at 47.95%. AMD is in the middle at 49.50%. This ordering is
identical with the results for MOCDroid in [23], and very similar
to ArmsRace and Assemblyline in the same work.

Their minimum detection rates show that every sample in AMD
is detected by about 20% of the detectors, but UNB Malware and
VS_1314 contain at least one sample that is entirely undetectable
by every VirusTotal detector. This is reasonable, considering that
AMD is an older, established academic dataset, whereas the other
two are not as well known.

UNB Benign follows a similar narrative to the training / testing
benign datasets, in that every sample is very well detected as being
harmless, even in the worst case, averaging 99.99%.

4.2 Evaluations Using Certificate Validity
Features

In [23], ArmsRace detection programs that were trained on Drebin
and Google Play were consistently rated as the best detectors for
unseen malicious samples. Accordingly, this configuration was a
natural choice to gauge the performance of the certificate validity
features. After re-extracting features from those datasets for train-
ing / testing, it was time to evaluate the proposed features. The best
generated program achieved a respectable 95.56% overall accuracy
on the testing set, a 4.17 percentage point increase over the same
configuration in [23]. This was due to an improved benign detec-
tion rate (168/180, 93.33%), and correspondingly lower false positive
rate (6.66%). Malware detection was nearly unchanged (176/180,
97.78%). This did not translate into an improved detection rate for
9https://docs.oracle.com/javase/8/docs/technotes/tools/unix/jarsigner.html
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Dataset Detection Rate
VS16 8689/12694 (68.45)
VS17 6151/9855 (62.42)
VS18 22082/28474 (77.55)

Table 6: ArmsRace (using certificate validity features) re-
sults on new VirusShare datasets.

Testing Dataset Training Datasets Detection Rate
VS16 Genome / F-Droid 4537/12730 (35.64)
VS16 Drebin / F-Droid 9680/12730 (76.04)
VS16 Drebin / Google Play 8337/12730 (65.49)
VS16 Genome / Google Play 7345/12730 (57.69)

VS17 Genome / F-Droid 3290/9944 (33.09)
VS17 Drebin / F-Droid 7724/9944 (77.67)
VS17 Drebin / Google Play 6379/9944 (64.15)
VS17 Genome / Google Play 5314/9944 (53.44)

VS18 Genome / F-Droid 3913/28509 (13.73)
VS18 Drebin / F-Droid 8290/28509 (29.08)
VS18 Drebin / Google Play 7319/28509 (25.67)
VS18 Genome / Google Play 6214/28509 (21.80)

Table 7: MOCDroid results on new VirusShare datasets.

the undetectable malware, however. All 21 are predicted as benign
apps by the aforementioned program.

This lacklustre performance also extended to the new VirusShare
datasets. The aforementioned program scored lower than its corre-
sponding configuration for each of VS16, VS17, and VS18, as shown
in Table 6. The differences are significant compared to the baseline
results in Table 8. VS16 and VS17 drop 13.64 and 14.99 percent
points, respectively. VS18 is closer, but still loses 6.25 points. As a
result, we did not evaluate any further configurations.

4.3 Evaluations Using New Datasets
4.3.1 MOCDroid. As in [23], we chose the best detectors based

on the possible combinations of training datasets as follows: Genome
/ F-Droid (0.95, 180), Drebin / F-Droid (0.96, 120), Drebin / Google
Play (0.96, 120), and Genome / Google Play (0.97, 140), where the
first number in parentheses represents the sparse parameter and
the second number represents the cluster size.

The results of running the best MOCDroid detectors on the
new VirusShare datasets can be seen in Table 7. The best detectors
for VS16 and VS17 are low compared to VS1314 in [23], but still
reasonably competitive. The staggering difference is the variability
of the detection rate depending on the training datasets. VS16 and
VS17 each have a standard deviation of approximately 15, owing to
the minimum and maximum detectors for each ranging from the
low 30s to the high 70s.

VS18 is another story altogether. It is much more ‘stable’, in
that it avoids the variability of the previous years, with a standard

Testing Dataset Training Datasets Detection Rate
VS16 Drebin / F-Droid 7779/12694 (61.28)
VS16 Genome / F-Droid 8214/12694 (64.71)
VS16 Drebin / Google Play 10420/12694 (82.09)
VS16 Genome / Google Play 6556/12694 (51.65)

VS17 Drebin / F-Droid 4840/9855 (49.11)
VS17 Genome / F-Droid 5566/9855 (56.48)
VS17 Drebin / Google Play 7629/9855 (77.41)
VS17 Genome / Google Play 4583/9855 (46.50)

VS18 Drebin / F-Droid 19145/28474 (67.24)
VS18 Genome / F-Droid 20100/28474 (70.59)
VS18 Drebin / Google Play 23862/28474 (83.80)
VS18 Genome / Google Play 18597/28474 (65.31)

Table 8: ArmsRace results on new VirusShare datasets.

Dataset Detection Rate
VS16 6712/12306 (54.54)
VS17 4878/9875 (49.40)
VS18 22802/28523 (79.94)

Table 9: Assemblyline results on new VirusShare datasets.

deviation of 5.72. However, the best MOCDroid models completely
collapse on this dataset, peaking at a dismal 29%.

4.3.2 ArmsRace. The benchmarks for ArmsRace on VS16, VS17,
and VS18 are enumerated in Table 8. The best detectors are much
more successful than MOCDroid, averaging a detection rate of 81%,
but still suffer from variability based on the training datasets, with
an average standard deviation of 10.

The ordering of the datasets in terms of difficulty deviates from
MOCDroid, where VS18 and VS16 are the easiest, with VS17 lagging
slightly behind.

An interesting contrast can be seen between the results of
MOCDroid and ArmsRace on VS18. While MOCDroid collapses,
ArmsRace actually achieves its highest detection rate across the
three new datasets. This is true regardless of the training datasets.
Genome, whose samples are nearing a decade of life, still produces
detectors that correctly classify two thirds of the VS18 dataset. This
demonstrates the resiliency of co-evolutionary frameworks.

4.3.3 Assemblyline. Assemblyline’s detection rates for the new
datasets are summarized in Table 9. The system does poorly on
VS16 and VS17, around 50%, but shockingly well on VS18 (80%).

As with ArmsRace, Assemblyline has the most trouble with VS17,
and the best results on VS18.

Compared to the unknown datasets in [23], the new VirusShare
sets drop over 10 points in their detection rate mean, from 73% to
61%. This dive would be evenmore substantial without the inclusion
of VS18. This suggests that Androidmalware authors have increased
the evasiveness of their malware between 2014 and 2016, the time
period between the datasets.
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Dataset Seen Unseen Avg Min Max
VS16 12848 0 36.27 0.0 82.81
VS17 10152 0 27.23 0.0 84.13
VS18 28630 2 37.17 0.0 80.00

Table 10: VirusTotal results on new VirusShare datasets.

4.3.4 VirusTotal. Finally, we can observe the average, minimum,
and maximum detection rates for VirusTotal systems in Table 10.
We can see that all three datasets are significantly more evasive than
the datasets in Table 5. UNB Malware, the most difficult Android
dataset in previous evaluations, has an average detection rate of
48%, over 20 points higher than the least detectable VirusShare
dataset: VS17.

All of the new datasets also contain samples that are undetectable
by VirusTotal systems. In fact, VS18 actually contains two samples
that were completely unseen by VirusTotal at time of evaluation,
probably due to the recent release time of these datasets.

As with ArmsRace and Assemblyline, VS17 is the most difficult
dataset, with an average detection rate of 27%. VS16 and VS18 are
in near lockstep 10 points higher. As mentioned in sub-subsection
4.3.3, the difficulty in identifying these samples as malicious could
be a result of increased focus on evasive techniques on the part
of malicious actors. It is also a testament to the effectiveness of
the co-evolutionary nature of ArmsRace that so many commercial
detectors fail to detect many of the VirusShare samples.

5 CONCLUSION AND FUTUREWORK
In this paper, we investigated evolutionary Android malware so-
lutions, with a focus on an artificial arms race system. Our major
contribution in this work is the testing of four Android malware
solutions on three new datasets. In addition, we explore the de-
velopment and effectiveness of the certificate-related features to
extend the best performing system.

ArmsRace is consistently successful across all three new datasets,
averaging 81%. MOCDroid, Assemblyline, and VirusTotal all have
signficant difficulty, each dropping below 40% average accuracy on
at least one of the new datasets. As in [23], these results agree with
the hypothesis in [20] that co-evolutionary (arms race) solutions
are effective frameworks with which to evolve and analyze malware
detection models.

Looking at the performance of MOCDroid and ArmsRace on
the new datasets, it becomes apparent that Genome is very much
out-of-date as a training dataset. The performance jumps on the
new VirusShare datasets when using Drebin instead of Genome are
significant. The MOCDroid classifiers are better across the board,
with gains ranging from 4 percent points to 40. ArmsRace is overall
more successful, so these gains are tempered, but still significant.

As expected, older datasets are detected with much higher accu-
racy by the VirusTotal engines. While UNBMalware was previously
considered to be the most difficult Android dataset, VS16, VS18,
and especially VS17 are now the high bar in our investigations.

The certificate features, relating to validity period of the APK
signing certificate, do not seem to positively affect detectability

of the newest Android datasets. They do, however, lead to an in-
crease in the detection of benign applications. More analysis and
evaluations along this line is an area for future work.

Future work could include consideration of dynamically loaded
malware in the arms race framework. Further study is necessary,
given that these malware may well obscure the static analysis pro-
cesses that ArmsRace, MOCDroid, and Assemblyline employ.
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