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Abstract: Mixed model assembly lines are used to produce multiple copies of given minimum part set 

(MPS). Considering only one copy (cycle) of the MPS while solving the mixed-model balancing and 

scheduling problem yields suboptimal solutions since blocking and idle times of stations between 

repeated copies are ignored. Modeling and solving this problem in a cyclic manner can significantly 

overcome these inefficiencies and improve the throughput of the line. In this paper, after investigating the 

nature of the problem, we propose exact and heuristic methods for practical applications and evaluate 

their performances on various size test instances.  

Keywords: Mixed Model Assembly Lines, Balancing, Cyclic Scheduling, Flexible Manufacturing, 

Constraint Programming 



1. INTRODUCTION 

Assignment of tasks to the stations (i.e., balancing) and 

determining the best schedule of models and tasks at each 

station are the main decisions in management of mixed-

model assembly lines. Simultaneous consideration of these 

problems along with employing flexible technologies 

improves responsiveness of the companies to the changes in 

the market conditions and in turn, they become more 

competitive in today’s global manufacturing environment 

(Karabati and Sayın, 2003). The current assembly line 

balancing and sequencing literature (Boysen et al. 2009) 

neglects the issue of repeated copies (i.e., replications or 

cycles) of given Minimum Part Set (MPS, the collection of 

different models that are to be assembled together) and 

mainly focuses on minimizing the number of stations, cycle 

time or smoothing the workload for one cycle. However, idle 

and blocking times in each station between consecutive 

cycles have to be taken into account to maximize throughput 

rate and therefore, balancing and scheduling problems must 

be considered in a cyclic manner. Due to its potential to 

increase efficiency cyclic scheduling has started receiving 

attention of both practitioners and researchers in recent years 

(Sawik, 2011).  

Current studies on cyclic scheduling of flow lines reveal that 

(1) steady state schedules (i.e., the same cycle time in each 

cycle) are achieved at the very first replication of the MPS 

and hence it is not needed to solve the cyclic scheduling 

problem for all repeating cycles (Karabatı and 

Kouvelis,1996), (2) all of the literature consider only the 

sequencing of models in the line and assume that task 

assignment problem is solved previously however, it is noted 

that the best line efficiency can be obtained by simultaneous 

consideration of balancing and scheduling problems 

(Karabatı and Sayın, 2003), (3) cyclic scheduling problems 

are hard combinatorial optimization problems and require 

intelligent methods to model and solve (Sawik, 2011).  

In this paper, we consider both task assignment and model 

sequencing problems together for flexible mixed model 

assembly lines in a cyclic manner along with scheduling of 

assembly tasks within the same station. Flexibility is ensured 

by assuming that tasks can be performed by alternative 

stations (Öztürk et al., 2012). To the best of our knowledge, 

this is the first study that integrates all aspects of the problem. 

Because of the combinatorial nature of the problem we 

propose a Constraint Programming (CP) formulation, which 

is a widely used modeling and solution method for similar 

combinatorial optimization problems in the literature (e.g., 

Özturk et al. 2013). In addition, using instances given in the 

literature (Öztürk at al. 2013) we investigate how many 

cycles are required to repeat in order to achieve steady state 

cycle times. Furthermore, we propose a stabilization 

algorithm to determine the completion times of the remaining 

cycles to be executed after makespan is stabilized. The rest of 

the paper is structured as follows. In Section 2, we define the 

problem with an illustrative example. The proposed CP 

model to solve this problem is presented in Section 3. The 

proposed algorithm to extend the steady state cyclic 

schedules to the repeating cycles is given in Section 4. The 

results of experimental studies to test the performance of the 

proposed model on various test instances and investigation of 

minimum number of MPS replications to achieve steady state 
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cycle times are given in Section 5. Finally, the concluding 

remarks and future research directions are given in Section 6.  

2. PROBLEM DEFINITION 

Assembly lines are flow-line production systems and consist 

of serially connected stations where single or mixed model 

products are manufactured in large amounts. A material 

handling system like conveyor belt is used to transfer the 

products from upstream to the downstream stations. Each 

station on the assembly line is capable of performing certain 

assembly tasks. Each assembly task must be assigned to at 

least one station where alternative assignments are possible. 

Hence, there may be more than one station which can 

perform the same task. This property allows the assembly 

line to be flexible, which results in the reduction of or cycle 

time by increasing the number of eligible stations to perform 

any assembly task as in surface mount technology lines 

(Öztürk et al., 2012, 2013). Furthermore, each station on the 

assembly line has a limited working space area and each 

assembly task uses a portion of this available working space. 

Each product requires a subset of the assembly tasks. These 

products are also referred to as mixed models which 

generally have similar physical properties, e.g., TV sets of the 

same brand with different options. Throughout this study, 

each task t of any product p is referred as a job <t,p> or 

simply job j. Different products may require a different 

number of jobs. These jobs are classical operations in 

assembly line literature. The jobs of a product are performed 

according to the precedence relations defined by the 

assembly plan for that product. The precedence graphs can be 

any directed acyclic (or network) graph and not restricted to 

chains. Note that in chain type precedence graphs, the order 

of processing the tasks of a product is technologically 

restricted. However, in network graphs, some tasks can be 

processed in any order which ensures flexibility of the line. 

But, this increases complexity of the problem (Öztürk et al., 

2013). Each job must be performed on exactly one station. 

Each job has a processing time and an earliest completion 

time. Assembly time of a task may change depending on 

which station it is assigned to. Since the assembly line is a 

unidirectional workflow, the jobs of any product are not 

allowed to revisit earlier stations or stages. In addition, the 

processing of any product in any given station cannot finish 

unless all jobs of the product currently being processed at that 

station are completed. Since we assume limited buffers 

between stations, a product cannot leave its current station 

unless the next station becomes available and it is ready to 

accept a new product. In other words, blocking of upstream 

stations is possible. Because of limited buffers, products visit 

each station in the same order, i.e., product permutation 

scheduling. We assume that the unloading/loading times of 

products from/to conveyor belt and transfer times between 

stations are assumed to be negligible. The illustrative 

problem involves serially connected 3 stations with 5 

products, and 10 common assembly tasks. For example, 

while the product 1 entails the tasks 1, 2, 3, 4, 6, and 8, 

product 4 entails tasks 1, 3, 5, 6, 7, 8, 9, and 10. These two 

products may be two TV sets with different options. For 

product 1, while the first task must be processed before task 

2, by allowing network type precedence relations, tasks 2 and 

3 can be processed in any order. The total number of jobs to 

be assigned and scheduled is 38. As shown in Figures 1, 2 

and 3, optimal schedule results in 47 minutes of stable cycle 

time (i.e., time between completion time of products in 

consecutive cycles). Note that in these three figures the third 

dimension in the tuples (<t,p> tuples) shows the cycle 

number that the job is repeated.  Due to the limited space, the 

full details of the problem parameters are not presented (see 

Öztürk et al. 2013 for details). As seen in Figure 1, this 

assembly line is flexible as it allows the processing of the 

same task at different stations. For instance, while the task 5 

is processed at station 1 for products 3, 4 and 5 (see the jobs 

―<5,3>,1‖,‖ <5,4>,1‖ and ―<5,5>,1‖ in Figure 1), the same 

task is processed  at station 2 for product 2 (see the job 

―<5,2>,1‖ in Figure 2). The permutation schedule is found as 

processing the products in the sequence of 2, 3, 4, 5, and 1 at 

each station. Also note that, although the jobs of product 1 

are completed at the first station in 42 minutes in the first 

cycle, the product 1 awaits at the first station for availability 

of the second station until the 44th minute. In this case station 

1 is used as a temporary storage space (buffer) for product 1 

between 42.nd and 44.th minutes. Similarly, second 

replication of product 2 in the second station starts at time 53 

(Figure 2) and hence, product 2 waits in the first station in 

between [50, 53] time interval (Figure 1). In other words, 

station 1remains blocked for three minutes (shown as  in 

Figures 1, 2 and 3). However, idle times (shown as ) are 

observed in the third station (i.e., in time interval [23,24]) 

until  the third product arrives at the station). Figures 1, 2 and 

3 also indicate that the second station is the bottleneck of the 

assembly line.  

 

Fig. 1. Schedule of the first cycle. 

 

Fig. 2. Schedule of the second cycle. 

 

Fig. 3. Schedule of the third cycle. 

Since the permutation schedule is 2, 3, 4, 5, and 1, the 

product 1 is always the last product in each cycle and defines 

the completion time of that replication (or cycle). According 

to Figures 1, 2 and 3, the first cycle is completed at 53th 

minute which is the completion time of the last operation for 

product 1 in station 2. Similarly, the product 1 is completed 

at 100th minute and at 147th minute in the second and the 

third cycles, respectively. Karabatı and Kouvelis (1996) 

define the cycle time as the time length between starting time 

of models in consecutive replication of MPS. Therefore, 

while cycle time of the first replication is 53 minutes, it 

stabilizes to 47 minutes in the second and the third 

replications, so the system reaches the steady state (Karabatı 
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and Kouvelis, 1996) in the second replication. As can be seen 

in Figures 1, 2 and 3, all task assignments and permutation 

schedules are the same for the consecutive cycles, so 

consistency between the cycles is also satisfied.   

3. CONSTRAINT PROGRAMMING MODEL 

In this section we propose a CP formulation for cyclic 

scheduling of flexible mixed model assembly lines. This 

problem consists of three sub problems: (1) the assignment 

and scheduling of each job of every product to exactly one 

station (job assignment and scheduling); (2) the assignment 

of each task to at least one station (task assignment); and (3) 

permutation scheduling of products. Before we embark on 

modelling each sub problem we introduce the following: 

Sets and indices:  

c  : cycles,  1,...,c Cycles Cycles  , 

 , 1,...,i m Stations Stations  ; 

t : Assembly tasks,  1,...,t Tasks Tasks  , 

p,q,v : Products (models),  

 , , 1,...,p q v Products Products  , 

j,r : Designed (task, product) pairs or jobs indicate which 

product  requires which task,  j,r Jobs   Tasks x Products 

where j.task, r.task and j.product, r.product refer to the 

corresponding task and product of job j and r respectively, 

Precedence : The set of immediate predecessor-successor 

pairs of jobs (j, j’) indicates that job j must be performed 

before job j’, (j, j’) in Precedence  Jobs X Jobs, 

jPred : The set of all predecessors of job j, 

jStations : The set of stations capable of performing job j, 

tStations : The set of stations capable of performing task t. 

Note that we defined the eligible sets of stations for jobs and 

tasks separately just to emphasize that the capability of a 

station to perform a given task can change from product to 

product.  

mTasks : The set of assignable tasks to station m.  

Parameters: 

mta : Working space requirement of task t on station m, in m2
 

mb  : Total working space of station m, in m2 

mjd : Assembly processing duration for job j on station m, in 

minutes 

je  : Earliest completion time for job j which is calculated 

iteratively as follows,    max min
jj

j r mj
m Stationsr Pred

e e d


   

 max
j

mj
m Stations

j Jobs

M d




   

Global Constraints 

We introduce the global constraints that we use in our CP 

formulation: 

disjunctive(α) : All the activities of the collection α should 

not overlap,  

element(I,Table,V) : V is equal to the Ith item of Table. 

alldifferent(x1, . . . , xn) : values assigned to the variables x1, . 

. . , xn must be pairwise distinct. 

3.1 Job Assignment and Scheduling Problem 

Note that the Job which is earlier defined in section 2 is 

called activity (Öztürk et al., 2013) and each activity, 

δj,c, j Jobs , c Cycles is associated with three variables 

start(δj,c), end(δj,c) and duration(δj,c) ranging in {0,…, 

|Cycles|M}. These three variables represent the start time, the 

end time and the duration of each activity δj,c in each cycle, 

respectively. Each activity δj,c has to be processed on a 

station jm Stations . Stations are disjunctive resources 

which can process at most one job at any given time. It 

should be noted that since jobs are non-preemptive, 

 ,j cduration   is also equal to mjd  for assigned 

station jm Stations . In addition to the activity variables, 

two types of decision variables are introduced. The first set of 

variables is used to model the job station assignment. That is, 

for each job j, a variable jX whose domain is the set of 

stations capable of performing job j ( jStations ), i.e., jX m  

if and only if job j is assigned to the station m. Note that, 

since each job j is performed in the same station for all 

cycles, there is no need to add a cycle dimension to this 

variable. The second decision variable is the makespanc of 

each cycle and is defined as a non-preemptive activity in 

which duration(makespanc) is set to 0. The model of the job 

assignment and scheduling problem is as follows: 

Minimize  end(makespan|Cycles|)         (1) 

 :subject to  

duration(δj,c ) = 
,jX jp  j Jobs  , c Cycles         (2) 

end(δj,c)   je   j Jobs  , c Cycles         (3) 

 , ,j c jdisjunctive j Jobs X m      

  m Stations  c Cycles         (4) 

end(δj,c)   start(makespanc) j Jobs  , c Cycles         (5) 

end(δj,c)   start(δj’,c) 

  , 'j j Precedence  c Cycles          (6) 

'j jX X   , 'j j Precedence               (7) 

         , , , 1 , 1j c r c j c r cend start end start        

,j r Jobs  , c Cycles 

       . . 1 1j product r product j r Cycles c       (8) 

         , 1 , 1 , ,j c r c j c r cend start end start        

,j r Jobs  , c Cycles 

       . . 1 1j product r product j r Cycles c       (9) 

The objective function (1) minimizes the makespan of the last 

cycle which also ensures the minimum cycle time. 

Constraints (2) ensure that duration of each job is equal to the 

processing time of that job on its assigned station and is 

logically equivalent to  , ,j j c m jX m duration p   . 

However, through the use of the global element constraint, 

the above constraints are expressed in CP by using variable 

indexing in a more compact way and achieving more 

effective propagation. Constraints (3) guarantee that each 
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activity’s end time is larger than its earliest completion time 

for each cycle. Since stations of the assembly line are 

disjunctive resources, jobs assigned to the same station 

cannot be processed simultaneously in each cycle (4). We can 

effectively and efficiently enforce these constraints by 

employing the disjunctive global constraint which employs 

the edge finding algorithm. Constraints (5) enforce that in 

each cycle, each job is completed before the makespan 

activity of that cycle. Constraints (6) enforce the precedence 

relations among the jobs of each product for each cycle. 

Finally, since we assume unidirectional flow, constraints (7) 

avoid revisiting of an assembly station for each product by 

forcing to assign a successor job (j’) to the same or a later 

station than its predecessor (j). Constraints (8) and (9) ensure 

that jobs of products are processed in the same order in each 

cycle.  

3.2 Task Assignment Problem 

To model the task assignment problem, we introduce binary 

variables mtY  where  

1        

0 
mt

if task t is assigned to station m
Y

otherwise


 


 

To ensure consistency in each cycle, each task must be 

assigned and performed in the same station in consecutive 

cycles. Hence, there is no cycle dimension in the task 

assignment variables. Based on this principle, the problem is 

then modelled as follows: 

 

1
t

mt

m Stations

Y


   t Tasks          (10) 

m

mt mt m

t Tasks

a Y b


   m Stations          (11) 

0mtY     t Tasks  , tm Stations       (12) 

 

Constraints (10) ensure that each task is assigned to at least 

one station. Note that these constraints make assembly line 

flexible as they allow alternative assignments of tasks to 

stations. Constraints (11) ensure that the working space 

capacity of each station is not exceeded. Constraints (12) 

forbid assignment of tasks to noneligible stations.  

3.3 Product Permutation Scheduling Problem 

Since products are also associated with stations through their 

corresponding jobs on these stations, we introduce an activity 

for every product on each station. We declare a three 

dimensional array of activities for each product-station pairs 

in each cycle as βpmc , , ,p Products m Stations c Cycles      . 

start(βpmc), end(βpmc) and duration(βpmc) ranging in {0,…, 

|Cyckes|M} to represent the start time, the end time and the 

duration of each product on each station in each cycle, 

respectively. Defined as disjunctive resources, stations can 

process at most one product at any given time. In other 

words, products occupy the stations for two reasons, to await 

for the completion of the corresponding jobs on the same 

station and/or to await for the availability of the next station. 

During this time, any other product cannot use the occupied 

station. Therefore, the occupation of stations by products is 

modeled with disjunctive global constraints. 

The last set of variables formulates the product sequence. For 

each product p and for each position v, vU p if and only if 

product p is the vth product processed. Note that since the 

permutation schedule is the same for each cycle, there is no 

need to define these variables with a cycle dimension. 

The product permutation scheduling model formulation is 

given below:  

 1 2, ,...,
Products

alldifferent U U U      (13) 

   
1, , , ,v vU m c U m cend start 




, , | 1v Products m Stations c Cycles v          (14) 

   
1 , , , ,v vU m c U m cend start 


   

 , , | 1v Products m Stations c Cycles v         (15) 

end(βp,m,c)  = start(βp,m+1,c)  

, , |p Products m Stations c Cycles m Stations      

        (16) 

end(βp,m-1,c) = start(βp,m,c) 

 

, , |p Products m Stations c Cycles m Stations      

        (17) 

 ,pmcdisjunctive p Products      

  ,m Stations c Cycles       (18) 

   1 , , , , 1ProductsU m c U m cstart start  

   , | 1 1m Stations c Cycles Cycles c               (19) 

   1 , , 1 , ,ProductsU m c U m cstart start  

   , | 1 1m Stations c Cycles Cycles c               (20) 

The permutation schedule requires a unique position in the 

product sequence for each product on the assembly line. 

Hence, in constraints (13), we use the alldifferent global 

constraint to effectively (with less number of constraints) and 

efficiently (faster than other consistency techniques) model 

the permutation of products on stations. Constraints (13) 

enforce that products are assigned to different positions for 

given product sequence. For any two adjacent products in the 

product sequence ( 1,v vU U  ) on any station, constraints (14) 

and (15) guarantee that the arrival time of the next product 

( 1vU  ) is greater than or equal to the departure time of the 

previous product ( vU ) in each cycle. Note that we also 

employ the element global constraint for variable indexing in 

constraints (14) and (15). Due to the assumption of limited 

buffer space between the stations, constraints (16) and (17) 

ensure that each product awaits at the current station until the 
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next station becomes available in each cycle. Due to 

disjunctive nature of the stations, constraints (18) ensure that 

any two products cannot exist on the same station at the same 

time and a product is launched to a station after the previous 

one departs in each cycle. Since our model has constraints 

(14)—(15), constraints (18) can be considered as redundant. 

However, they help to reduce the search effort by exploiting 

the disjunctive nature of the problem. Finally, the start and 

end time of products in consecutive cycles are made 

consistent with constraints (19) and (20). Due to these 

constraints; the first product in the permutation schedule in 

each station has to wait the completion of the last product in 

the permutation schedule in the previous cycle on the same 

station. 

3.4 The Complete CP Model 

The channelling constraints between the job assignment and 

scheduling problem and the task assignment problem are as 

follows: 

, . 1
jX j taskY    j Jobs          (21) 

 
  | .

mt j

j in Jobs j task t

Y X m


  m Stations  , t Tasks       (22) 

Constraints (21) which use the variable indexing feature of 

CP express that jobs are assigned to the stations where the 

required tasks are performed. Constraints (21) are logically 

equivalent to: , . 1j m j taskX m Y   , jj Jobs m Stations    . 

Constraints (22) give a valid upper bound for the task 

assignment variables and are formulated to reduce 

unnecessary alternative solutions. If (22) is not formulated, a 

task t would be assigned to a station although none of the 

jobs which include task t is assigned to that station. In other 

words, a task can be assigned to a station if and only if at 

least one of the jobs that require that task is assigned to that 

station. Constraints (22) are also symmetry breaking 

constraints which help to improve solution process by 

pruning the search tree. 

The channeling constraints between the job assignment and 

scheduling problem and the product permutation scheduling 

problem are as follows: 

      . , , ,j j product m c j cX m start start   

, ,j Jobs m Stations c Cycles          (23) 

      . , , ,j j product m c j cX m end end   

, ,j Jobs m Stations c Cycles          (24) 

     
| .

pmc j jc

j Jobs j product p

duration X m duration 
 

                         

, ,j Jobs m Stations c Cycles          (25) 

end(βpm)   start(makespanc)  

 , ,j Jobs m Stations c Cycles             (26) 

The start and end times of product activities are made 

consistent with the start and end times of their corresponding 

job activities’ start and end times in constraints (23) and (24) 

Constraints (23) restrict the start times of the product 

activities and ensure that the product must arrive to the 

station before its job activities are started. Constraints (24) 

ensure that on each station, ending time of a product activity 

is greater than or equal to the ending time of each 

corresponding job assigned to that station, if any. Otherwise, 

an upper bound for the completion time of the product 

activity is expressed in (26). Finally, the time spent by any 

product activity at any station includes the processing time 

and the waiting time until the next station becomes available. 

Hence, the duration of each product activity is greater than or 

equal to the sum of the durations of the corresponding job 

activities on that station as expressed in constraints (25). The 

complete CP model is formulated as follows:  

Minimize (1) 

Subject to (2)—(26) 

Once the CP formulation (1)—(26) is solved for given 

|Cycles|, the optimal cycle time is equal to the difference 

between makespan of the last two cycles as, cycle time = 

makespan|Cycles|-makespan|Cycles|-1.  

4. STABILIZATION ALGORITHM 

Although the given CP model is able to find the optimal 

cycle times, it could be computationally intractable or time 

consuming to run the model by including all cycles for large-

size applications. To deal with computational difficulties for 

large-size problems, we propose the following scheme which 

can be used to approximate the steady state cycle times. Note 

that the algorithm is based on the proposed CP model which 

is the novel future of this study. The algorithm propagates the 

resulting schedules in CP model to the repeating cycles.  

Algorithm: STABILIZATION 

1. Solve the CP model given in (1)—(26) problem for a 

number of cycles n, n<|Cycles| 

2. Calculate actual processing time of each product on each 

station 

3. Update station ready times for the next cycle, n+1 

4. Generate starting and completion time of for all products 

on each station for cycles n+1,...,|Cycles| 

 4.1 Calculate starting and completion times of the first 

product in the permutation schedule for all stations. 

 4.2 Schedule rest of the products in the permutation 

schedule. 

 4.3 Update station ready times for the next cycle by 

using the completion time of the last product on each station 

5. Calculate steady state cycle time as the difference between 

the completion time of the cycles |Cycles|-1 and |Cycles|. 

5. EXPERIMENTS 

In this section, using the instances given in Öztürk (2013) we 

first show the required number of replications of a given 
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MPS to reach steady state cycle times. All test instances are 

available at http://homes.ieu.edu.tr/~cozturk/SBSFMMAL.rar 

. Note that for these instances, optimal makespan for cycle 1 

is known. Table 1 shows cycle times for each replication. In 

this table, while the column ―CP with |Cycles|=3‖ presents 

the results of the proposed CP model minimizing cycle time 

of the last replication, column ―CP  with |Cycles|=1‖ shows 

the results of the model minimizing cycle time of the first 

replication.  Note that the completion times of the second and 

the third cycles in ―CP model with |Cycles|=1‖ are calculated 

using the STABILIZATION algorithm given in the previous 

section. These instances were run on a personal computer 

with AMD Phenom II X4 955 3.21 GHz Processor, 4 GB 

RAM and Microsoft Windows 7 operating system. OPL 

Studio 3.7 (2003) which includes ILOG Solver 6.0 and ILOG 

Scheduler 6.0 libraries is used to code and solve the proposed 

CP models. All solutions for the |Cycles|=3 case are optimal 

except for the last instance which the optimality is not proven 

in 1 hour. Results in Table 1 reveal that the stable cycle times 

are achieved in the second replication of the MPS. 

Furthermore, as shown in the second, the sixth and the eighth 

instances, minimum cycle time in the first cycle may not be 

optimal when all the repeated cycles are considered.  

Table 1.  Comparison of cycle times 

 

To generalize our findings, we run all instances given by 

Öztürk et al. (2013) with |Cycles|=2. Results of the 

experiments in Table 2 show scalability of the proposed CP 

model formulation where instances with (*) are optimal. 

6.  CONCLUSIONS 

Balancing assembly lines, regarded as a tactical level 

problem, becomes an operational problem and must be 

considered along with sequencing decisions in Today’s 

competitive market. However, in the relevant literature, there 

are a scarce number of papers dealing with this topical 

problem and none of them considers cyclic nature of the 

problem. Furthermore, studies about the cyclic scheduling of 

assembly lines neglect the balancing aspect of the problem. 

Hence, in this paper, we propose a CP model for 

simultaneous balancing and scheduling of flexible mixed 

model assembly lines with task scheduling in a cyclic 

manner. We show that the best schedule may not be obtained 

in the first cycle and the system reaches the steady state cycle 

time in the second replication. We also present a 

STABILIZATION scheme to extend results of the CP model 

to all cycles of the MPS. The model can be extended to find 

the minimum number of stations to achieve a given cycle 

time. Furthermore, sequence dependent setup times could be 

considered. Since the required number of cycles to reach the 

steady state cycle time may be different for individual 

stations, extending the proposed model and 

STABILIZATION scheme to assembly lines with parallel 

stations (Öztürk et al., 2012) could be another research 

direction with stochastic task times. 

Table 2. Result of experiments 

 

Lastly, to improve performance of the proposed CP model, 

new search strategies, symmetry breaking constraints and 

hybridizing with local search methods could be considered. 
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