

Cyclic Scheduling of Flexible Mixed Model Assembly Lines

C. Öztürk*. S. Tunalı**

B. Hnich***. M.A. Örnek****


*Department of Industrial Systems Engineering, İzmir University of Economics,

İzmir, Turkey, (e-mail: cemalettin.ozturk@ieu.edu.tr)

**Department of Business Administration, İzmir University of Economics,

İzmir, Turkey, (e-mail: semra.tunali@ieu.edu.tr)

***Department of Computer Engineering, İzmir University of Economics,

İzmir, Turkey, (e-mail: brahim.hnich@ieu.edu.tr)

****Department of Industrial Systems Engineering, İzmir University of Economics,

İzmir, Turkey, (e-mail: arslan.ornek@ieu.edu.tr)

Abstract: Mixed model assembly lines are used to produce multiple copies of given minimum part set

(MPS). Considering only one copy (cycle) of the MPS while solving the mixed-model balancing and

scheduling problem yields suboptimal solutions since blocking and idle times of stations between

repeated copies are ignored. Modeling and solving this problem in a cyclic manner can significantly

overcome these inefficiencies and improve the throughput of the line. In this paper, after investigating the

nature of the problem, we propose exact and heuristic methods for practical applications and evaluate

their performances on various size test instances.

Keywords: Mixed Model Assembly Lines, Balancing, Cyclic Scheduling, Flexible Manufacturing,

Constraint Programming



1. INTRODUCTION

Assignment of tasks to the stations (i.e., balancing) and

determining the best schedule of models and tasks at each

station are the main decisions in management of mixed-

model assembly lines. Simultaneous consideration of these

problems along with employing flexible technologies

improves responsiveness of the companies to the changes in

the market conditions and in turn, they become more

competitive in today’s global manufacturing environment

(Karabati and Sayın, 2003). The current assembly line

balancing and sequencing literature (Boysen et al. 2009)

neglects the issue of repeated copies (i.e., replications or

cycles) of given Minimum Part Set (MPS, the collection of

different models that are to be assembled together) and

mainly focuses on minimizing the number of stations, cycle

time or smoothing the workload for one cycle. However, idle

and blocking times in each station between consecutive

cycles have to be taken into account to maximize throughput

rate and therefore, balancing and scheduling problems must

be considered in a cyclic manner. Due to its potential to

increase efficiency cyclic scheduling has started receiving

attention of both practitioners and researchers in recent years

(Sawik, 2011).

Current studies on cyclic scheduling of flow lines reveal that

(1) steady state schedules (i.e., the same cycle time in each

cycle) are achieved at the very first replication of the MPS

and hence it is not needed to solve the cyclic scheduling

problem for all repeating cycles (Karabatı and

Kouvelis,1996), (2) all of the literature consider only the

sequencing of models in the line and assume that task

assignment problem is solved previously however, it is noted

that the best line efficiency can be obtained by simultaneous

consideration of balancing and scheduling problems

(Karabatı and Sayın, 2003), (3) cyclic scheduling problems

are hard combinatorial optimization problems and require

intelligent methods to model and solve (Sawik, 2011).

In this paper, we consider both task assignment and model

sequencing problems together for flexible mixed model

assembly lines in a cyclic manner along with scheduling of

assembly tasks within the same station. Flexibility is ensured

by assuming that tasks can be performed by alternative

stations (Öztürk et al., 2012). To the best of our knowledge,

this is the first study that integrates all aspects of the problem.

Because of the combinatorial nature of the problem we

propose a Constraint Programming (CP) formulation, which

is a widely used modeling and solution method for similar

combinatorial optimization problems in the literature (e.g.,

Özturk et al. 2013). In addition, using instances given in the

literature (Öztürk at al. 2013) we investigate how many

cycles are required to repeat in order to achieve steady state

cycle times. Furthermore, we propose a stabilization

algorithm to determine the completion times of the remaining

cycles to be executed after makespan is stabilized. The rest of

the paper is structured as follows. In Section 2, we define the

problem with an illustrative example. The proposed CP

model to solve this problem is presented in Section 3. The

proposed algorithm to extend the steady state cyclic

schedules to the repeating cycles is given in Section 4. The

results of experimental studies to test the performance of the

proposed model on various test instances and investigation of

minimum number of MPS replications to achieve steady state

7th IFAC Conference on Manufacturing Modelling, Management,
and Control
International Federation of Automatic Control
June 19-21, 2013. Saint Petersburg, Russia

978-3-902823-35-9/2013 © IFAC 857 10.3182/20130619-3-RU-3018.00413

cycle times are given in Section 5. Finally, the concluding

remarks and future research directions are given in Section 6.

2. PROBLEM DEFINITION

Assembly lines are flow-line production systems and consist

of serially connected stations where single or mixed model

products are manufactured in large amounts. A material

handling system like conveyor belt is used to transfer the

products from upstream to the downstream stations. Each

station on the assembly line is capable of performing certain

assembly tasks. Each assembly task must be assigned to at

least one station where alternative assignments are possible.

Hence, there may be more than one station which can

perform the same task. This property allows the assembly

line to be flexible, which results in the reduction of or cycle

time by increasing the number of eligible stations to perform

any assembly task as in surface mount technology lines

(Öztürk et al., 2012, 2013). Furthermore, each station on the

assembly line has a limited working space area and each

assembly task uses a portion of this available working space.

Each product requires a subset of the assembly tasks. These

products are also referred to as mixed models which

generally have similar physical properties, e.g., TV sets of the

same brand with different options. Throughout this study,

each task t of any product p is referred as a job <t,p> or

simply job j. Different products may require a different

number of jobs. These jobs are classical operations in

assembly line literature. The jobs of a product are performed

according to the precedence relations defined by the

assembly plan for that product. The precedence graphs can be

any directed acyclic (or network) graph and not restricted to

chains. Note that in chain type precedence graphs, the order

of processing the tasks of a product is technologically

restricted. However, in network graphs, some tasks can be

processed in any order which ensures flexibility of the line.

But, this increases complexity of the problem (Öztürk et al.,

2013). Each job must be performed on exactly one station.

Each job has a processing time and an earliest completion

time. Assembly time of a task may change depending on

which station it is assigned to. Since the assembly line is a

unidirectional workflow, the jobs of any product are not

allowed to revisit earlier stations or stages. In addition, the

processing of any product in any given station cannot finish

unless all jobs of the product currently being processed at that

station are completed. Since we assume limited buffers

between stations, a product cannot leave its current station

unless the next station becomes available and it is ready to

accept a new product. In other words, blocking of upstream

stations is possible. Because of limited buffers, products visit

each station in the same order, i.e., product permutation

scheduling. We assume that the unloading/loading times of

products from/to conveyor belt and transfer times between

stations are assumed to be negligible. The illustrative

problem involves serially connected 3 stations with 5

products, and 10 common assembly tasks. For example,

while the product 1 entails the tasks 1, 2, 3, 4, 6, and 8,

product 4 entails tasks 1, 3, 5, 6, 7, 8, 9, and 10. These two

products may be two TV sets with different options. For

product 1, while the first task must be processed before task

2, by allowing network type precedence relations, tasks 2 and

3 can be processed in any order. The total number of jobs to

be assigned and scheduled is 38. As shown in Figures 1, 2

and 3, optimal schedule results in 47 minutes of stable cycle

time (i.e., time between completion time of products in

consecutive cycles). Note that in these three figures the third

dimension in the tuples (<t,p> tuples) shows the cycle

number that the job is repeated. Due to the limited space, the

full details of the problem parameters are not presented (see

Öztürk et al. 2013 for details). As seen in Figure 1, this

assembly line is flexible as it allows the processing of the

same task at different stations. For instance, while the task 5

is processed at station 1 for products 3, 4 and 5 (see the jobs

―<5,3>,1‖,‖ <5,4>,1‖ and ―<5,5>,1‖ in Figure 1), the same

task is processed at station 2 for product 2 (see the job

―<5,2>,1‖ in Figure 2). The permutation schedule is found as

processing the products in the sequence of 2, 3, 4, 5, and 1 at

each station. Also note that, although the jobs of product 1

are completed at the first station in 42 minutes in the first

cycle, the product 1 awaits at the first station for availability

of the second station until the 44th minute. In this case station

1 is used as a temporary storage space (buffer) for product 1

between 42.nd and 44.th minutes. Similarly, second

replication of product 2 in the second station starts at time 53

(Figure 2) and hence, product 2 waits in the first station in

between [50, 53] time interval (Figure 1). In other words,

station 1remains blocked for three minutes (shown as in

Figures 1, 2 and 3). However, idle times (shown as) are

observed in the third station (i.e., in time interval [23,24])

until the third product arrives at the station). Figures 1, 2 and

3 also indicate that the second station is the bottleneck of the

assembly line.

Fig. 1. Schedule of the first cycle.

Fig. 2. Schedule of the second cycle.

Fig. 3. Schedule of the third cycle.

Since the permutation schedule is 2, 3, 4, 5, and 1, the

product 1 is always the last product in each cycle and defines

the completion time of that replication (or cycle). According

to Figures 1, 2 and 3, the first cycle is completed at 53th

minute which is the completion time of the last operation for

product 1 in station 2. Similarly, the product 1 is completed

at 100th minute and at 147th minute in the second and the

third cycles, respectively. Karabatı and Kouvelis (1996)

define the cycle time as the time length between starting time

of models in consecutive replication of MPS. Therefore,

while cycle time of the first replication is 53 minutes, it

stabilizes to 47 minutes in the second and the third

replications, so the system reaches the steady state (Karabatı

2013 IFAC MIM
June 19-21, 2013. Saint Petersburg, Russia

858

and Kouvelis, 1996) in the second replication. As can be seen

in Figures 1, 2 and 3, all task assignments and permutation

schedules are the same for the consecutive cycles, so

consistency between the cycles is also satisfied.

3. CONSTRAINT PROGRAMMING MODEL

In this section we propose a CP formulation for cyclic

scheduling of flexible mixed model assembly lines. This

problem consists of three sub problems: (1) the assignment

and scheduling of each job of every product to exactly one

station (job assignment and scheduling); (2) the assignment

of each task to at least one station (task assignment); and (3)

permutation scheduling of products. Before we embark on

modelling each sub problem we introduce the following:

Sets and indices:

c : cycles,  1,...,c Cycles Cycles  ,

 , 1,...,i m Stations Stations  ;

t : Assembly tasks,  1,...,t Tasks Tasks  ,

p,q,v : Products (models),

 , , 1,...,p q v Products Products  ,

j,r : Designed (task, product) pairs or jobs indicate which

product requires which task, j,r Jobs  Tasks x Products

where j.task, r.task and j.product, r.product refer to the

corresponding task and product of job j and r respectively,

Precedence : The set of immediate predecessor-successor

pairs of jobs (j, j’) indicates that job j must be performed

before job j’, (j, j’) in Precedence  Jobs X Jobs,

jPred : The set of all predecessors of job j,

jStations : The set of stations capable of performing job j,

tStations : The set of stations capable of performing task t.

Note that we defined the eligible sets of stations for jobs and

tasks separately just to emphasize that the capability of a

station to perform a given task can change from product to

product.

mTasks : The set of assignable tasks to station m.

Parameters:

mta : Working space requirement of task t on station m, in m2

mb : Total working space of station m, in m2

mjd : Assembly processing duration for job j on station m, in

minutes

je : Earliest completion time for job j which is calculated

iteratively as follows,    max min
jj

j r mj
m Stationsr Pred

e e d


 

 max
j

mj
m Stations

j Jobs

M d




 

Global Constraints

We introduce the global constraints that we use in our CP

formulation:

disjunctive(α) : All the activities of the collection α should

not overlap,

element(I,Table,V) : V is equal to the Ith item of Table.

alldifferent(x1, . . . , xn) : values assigned to the variables x1, .

. . , xn must be pairwise distinct.

3.1 Job Assignment and Scheduling Problem

Note that the Job which is earlier defined in section 2 is

called activity (Öztürk et al., 2013) and each activity,

δj,c, j Jobs , c Cycles is associated with three variables

start(δj,c), end(δj,c) and duration(δj,c) ranging in {0,…,

|Cycles|M}. These three variables represent the start time, the

end time and the duration of each activity δj,c in each cycle,

respectively. Each activity δj,c has to be processed on a

station jm Stations . Stations are disjunctive resources

which can process at most one job at any given time. It

should be noted that since jobs are non-preemptive,

 ,j cduration  is also equal to mjd for assigned

station jm Stations . In addition to the activity variables,

two types of decision variables are introduced. The first set of

variables is used to model the job station assignment. That is,

for each job j, a variable jX whose domain is the set of

stations capable of performing job j (jStations), i.e., jX m

if and only if job j is assigned to the station m. Note that,

since each job j is performed in the same station for all

cycles, there is no need to add a cycle dimension to this

variable. The second decision variable is the makespanc of

each cycle and is defined as a non-preemptive activity in

which duration(makespanc) is set to 0. The model of the job

assignment and scheduling problem is as follows:

Minimize end(makespan|Cycles|) (1)

 :subject to

duration(δj,c) =
,jX jp j Jobs  , c Cycles  (2)

end(δj,c)  je j Jobs  , c Cycles  (3)

 , ,j c jdisjunctive j Jobs X m   

 m Stations  c Cycles  (4)

end(δj,c)  start(makespanc) j Jobs  , c Cycles  (5)

end(δj,c)  start(δj’,c)

  , 'j j Precedence  c Cycles  (6)

'j jX X  , 'j j Precedence  (7)

         , , , 1 , 1j c r c j c r cend start end start      

,j r Jobs  , c Cycles 

       . . 1 1j product r product j r Cycles c       (8)

         , 1 , 1 , ,j c r c j c r cend start end start      

,j r Jobs  , c Cycles 

       . . 1 1j product r product j r Cycles c       (9)

The objective function (1) minimizes the makespan of the last

cycle which also ensures the minimum cycle time.

Constraints (2) ensure that duration of each job is equal to the

processing time of that job on its assigned station and is

logically equivalent to  , ,j j c m jX m duration p   .

However, through the use of the global element constraint,

the above constraints are expressed in CP by using variable

indexing in a more compact way and achieving more

effective propagation. Constraints (3) guarantee that each

2013 IFAC MIM
June 19-21, 2013. Saint Petersburg, Russia

859

activity’s end time is larger than its earliest completion time

for each cycle. Since stations of the assembly line are

disjunctive resources, jobs assigned to the same station

cannot be processed simultaneously in each cycle (4). We can

effectively and efficiently enforce these constraints by

employing the disjunctive global constraint which employs

the edge finding algorithm. Constraints (5) enforce that in

each cycle, each job is completed before the makespan

activity of that cycle. Constraints (6) enforce the precedence

relations among the jobs of each product for each cycle.

Finally, since we assume unidirectional flow, constraints (7)

avoid revisiting of an assembly station for each product by

forcing to assign a successor job (j’) to the same or a later

station than its predecessor (j). Constraints (8) and (9) ensure

that jobs of products are processed in the same order in each

cycle.

3.2 Task Assignment Problem

To model the task assignment problem, we introduce binary

variables mtY where

1

0
mt

if task t is assigned to station m
Y

otherwise


 


To ensure consistency in each cycle, each task must be

assigned and performed in the same station in consecutive

cycles. Hence, there is no cycle dimension in the task

assignment variables. Based on this principle, the problem is

then modelled as follows:

1
t

mt

m Stations

Y


 t Tasks  (10)

m

mt mt m

t Tasks

a Y b


 m Stations  (11)

0mtY  t Tasks  , tm Stations  (12)

Constraints (10) ensure that each task is assigned to at least

one station. Note that these constraints make assembly line

flexible as they allow alternative assignments of tasks to

stations. Constraints (11) ensure that the working space

capacity of each station is not exceeded. Constraints (12)

forbid assignment of tasks to noneligible stations.

3.3 Product Permutation Scheduling Problem

Since products are also associated with stations through their

corresponding jobs on these stations, we introduce an activity

for every product on each station. We declare a three

dimensional array of activities for each product-station pairs

in each cycle as βpmc , , ,p Products m Stations c Cycles      .

start(βpmc), end(βpmc) and duration(βpmc) ranging in {0,…,

|Cyckes|M} to represent the start time, the end time and the

duration of each product on each station in each cycle,

respectively. Defined as disjunctive resources, stations can

process at most one product at any given time. In other

words, products occupy the stations for two reasons, to await

for the completion of the corresponding jobs on the same

station and/or to await for the availability of the next station.

During this time, any other product cannot use the occupied

station. Therefore, the occupation of stations by products is

modeled with disjunctive global constraints.

The last set of variables formulates the product sequence. For

each product p and for each position v, vU p if and only if

product p is the vth product processed. Note that since the

permutation schedule is the same for each cycle, there is no

need to define these variables with a cycle dimension.

The product permutation scheduling model formulation is

given below:

 1 2, ,...,
Products

alldifferent U U U (13)

   
1, , , ,v vU m c U m cend start 




, , | 1v Products m Stations c Cycles v       (14)

   
1 , , , ,v vU m c U m cend start 




 , , | 1v Products m Stations c Cycles v       (15)

end(βp,m,c) = start(βp,m+1,c)

, , |p Products m Stations c Cycles m Stations      

 (16)

end(βp,m-1,c) = start(βp,m,c)

, , |p Products m Stations c Cycles m Stations      

 (17)

 ,pmcdisjunctive p Products  

 ,m Stations c Cycles    (18)

   1 , , , , 1ProductsU m c U m cstart start  

   , | 1 1m Stations c Cycles Cycles c       (19)

   1 , , 1 , ,ProductsU m c U m cstart start  

   , | 1 1m Stations c Cycles Cycles c       (20)

The permutation schedule requires a unique position in the

product sequence for each product on the assembly line.

Hence, in constraints (13), we use the alldifferent global

constraint to effectively (with less number of constraints) and

efficiently (faster than other consistency techniques) model

the permutation of products on stations. Constraints (13)

enforce that products are assigned to different positions for

given product sequence. For any two adjacent products in the

product sequence (1,v vU U ) on any station, constraints (14)

and (15) guarantee that the arrival time of the next product

(1vU ) is greater than or equal to the departure time of the

previous product (vU) in each cycle. Note that we also

employ the element global constraint for variable indexing in

constraints (14) and (15). Due to the assumption of limited

buffer space between the stations, constraints (16) and (17)

ensure that each product awaits at the current station until the

2013 IFAC MIM
June 19-21, 2013. Saint Petersburg, Russia

860

next station becomes available in each cycle. Due to

disjunctive nature of the stations, constraints (18) ensure that

any two products cannot exist on the same station at the same

time and a product is launched to a station after the previous

one departs in each cycle. Since our model has constraints

(14)—(15), constraints (18) can be considered as redundant.

However, they help to reduce the search effort by exploiting

the disjunctive nature of the problem. Finally, the start and

end time of products in consecutive cycles are made

consistent with constraints (19) and (20). Due to these

constraints; the first product in the permutation schedule in

each station has to wait the completion of the last product in

the permutation schedule in the previous cycle on the same

station.

3.4 The Complete CP Model

The channelling constraints between the job assignment and

scheduling problem and the task assignment problem are as

follows:

, . 1
jX j taskY  j Jobs  (21)

 
 | .

mt j

j in Jobs j task t

Y X m


  m Stations  , t Tasks  (22)

Constraints (21) which use the variable indexing feature of

CP express that jobs are assigned to the stations where the

required tasks are performed. Constraints (21) are logically

equivalent to: , . 1j m j taskX m Y   , jj Jobs m Stations    .

Constraints (22) give a valid upper bound for the task

assignment variables and are formulated to reduce

unnecessary alternative solutions. If (22) is not formulated, a

task t would be assigned to a station although none of the

jobs which include task t is assigned to that station. In other

words, a task can be assigned to a station if and only if at

least one of the jobs that require that task is assigned to that

station. Constraints (22) are also symmetry breaking

constraints which help to improve solution process by

pruning the search tree.

The channeling constraints between the job assignment and

scheduling problem and the product permutation scheduling

problem are as follows:

      . , , ,j j product m c j cX m start start   

, ,j Jobs m Stations c Cycles      (23)

      . , , ,j j product m c j cX m end end   

, ,j Jobs m Stations c Cycles      (24)

     
| .

pmc j jc

j Jobs j product p

duration X m duration 
 

  

, ,j Jobs m Stations c Cycles      (25)

end(βpm)  start(makespanc)

 , ,j Jobs m Stations c Cycles      (26)

The start and end times of product activities are made

consistent with the start and end times of their corresponding

job activities’ start and end times in constraints (23) and (24)

Constraints (23) restrict the start times of the product

activities and ensure that the product must arrive to the

station before its job activities are started. Constraints (24)

ensure that on each station, ending time of a product activity

is greater than or equal to the ending time of each

corresponding job assigned to that station, if any. Otherwise,

an upper bound for the completion time of the product

activity is expressed in (26). Finally, the time spent by any

product activity at any station includes the processing time

and the waiting time until the next station becomes available.

Hence, the duration of each product activity is greater than or

equal to the sum of the durations of the corresponding job

activities on that station as expressed in constraints (25). The

complete CP model is formulated as follows:

Minimize (1)

Subject to (2)—(26)

Once the CP formulation (1)—(26) is solved for given

|Cycles|, the optimal cycle time is equal to the difference

between makespan of the last two cycles as, cycle time =

makespan|Cycles|-makespan|Cycles|-1.

4. STABILIZATION ALGORITHM

Although the given CP model is able to find the optimal

cycle times, it could be computationally intractable or time

consuming to run the model by including all cycles for large-

size applications. To deal with computational difficulties for

large-size problems, we propose the following scheme which

can be used to approximate the steady state cycle times. Note

that the algorithm is based on the proposed CP model which

is the novel future of this study. The algorithm propagates the

resulting schedules in CP model to the repeating cycles.

Algorithm: STABILIZATION

1. Solve the CP model given in (1)—(26) problem for a

number of cycles n, n<|Cycles|

2. Calculate actual processing time of each product on each

station

3. Update station ready times for the next cycle, n+1

4. Generate starting and completion time of for all products

on each station for cycles n+1,...,|Cycles|

 4.1 Calculate starting and completion times of the first

product in the permutation schedule for all stations.

 4.2 Schedule rest of the products in the permutation

schedule.

 4.3 Update station ready times for the next cycle by

using the completion time of the last product on each station

5. Calculate steady state cycle time as the difference between

the completion time of the cycles |Cycles|-1 and |Cycles|.

5. EXPERIMENTS

In this section, using the instances given in Öztürk (2013) we

first show the required number of replications of a given

2013 IFAC MIM
June 19-21, 2013. Saint Petersburg, Russia

861

MPS to reach steady state cycle times. All test instances are

available at http://homes.ieu.edu.tr/~cozturk/SBSFMMAL.rar

. Note that for these instances, optimal makespan for cycle 1

is known. Table 1 shows cycle times for each replication. In

this table, while the column ―CP with |Cycles|=3‖ presents

the results of the proposed CP model minimizing cycle time

of the last replication, column ―CP with |Cycles|=1‖ shows

the results of the model minimizing cycle time of the first

replication. Note that the completion times of the second and

the third cycles in ―CP model with |Cycles|=1‖ are calculated

using the STABILIZATION algorithm given in the previous

section. These instances were run on a personal computer

with AMD Phenom II X4 955 3.21 GHz Processor, 4 GB

RAM and Microsoft Windows 7 operating system. OPL

Studio 3.7 (2003) which includes ILOG Solver 6.0 and ILOG

Scheduler 6.0 libraries is used to code and solve the proposed

CP models. All solutions for the |Cycles|=3 case are optimal

except for the last instance which the optimality is not proven

in 1 hour. Results in Table 1 reveal that the stable cycle times

are achieved in the second replication of the MPS.

Furthermore, as shown in the second, the sixth and the eighth

instances, minimum cycle time in the first cycle may not be

optimal when all the repeated cycles are considered.

Table 1. Comparison of cycle times

To generalize our findings, we run all instances given by

Öztürk et al. (2013) with |Cycles|=2. Results of the

experiments in Table 2 show scalability of the proposed CP

model formulation where instances with (*) are optimal.

6. CONCLUSIONS

Balancing assembly lines, regarded as a tactical level

problem, becomes an operational problem and must be

considered along with sequencing decisions in Today’s

competitive market. However, in the relevant literature, there

are a scarce number of papers dealing with this topical

problem and none of them considers cyclic nature of the

problem. Furthermore, studies about the cyclic scheduling of

assembly lines neglect the balancing aspect of the problem.

Hence, in this paper, we propose a CP model for

simultaneous balancing and scheduling of flexible mixed

model assembly lines with task scheduling in a cyclic

manner. We show that the best schedule may not be obtained

in the first cycle and the system reaches the steady state cycle

time in the second replication. We also present a

STABILIZATION scheme to extend results of the CP model

to all cycles of the MPS. The model can be extended to find

the minimum number of stations to achieve a given cycle

time. Furthermore, sequence dependent setup times could be

considered. Since the required number of cycles to reach the

steady state cycle time may be different for individual

stations, extending the proposed model and

STABILIZATION scheme to assembly lines with parallel

stations (Öztürk et al., 2012) could be another research

direction with stochastic task times.

Table 2. Result of experiments

Lastly, to improve performance of the proposed CP model,

new search strategies, symmetry breaking constraints and

hybridizing with local search methods could be considered.

REFERENCES

Boysen, N., Fliedner, M., and Scholl, A. (2009). Sequencing

mixed-model assembly lines: Survey, classification and

model critique. European Journal of Operational

Research, 192, 349-773.

ILOG. (2003). OPL Studio 3.7. Language Manual.

Karabati, S., and Kouvelis, P. (1996). Cyclic scheduling in

flow lines: modelling, observations, effective heuristics

and a cycle time minimization procedure. Naval

Research Logistics, 43, 211–231.

Karabatı S. and Sayın S. (2003). Assembly line balancing in

a mixed-model sequencing environment with

synchronous transfers. European Journal of Operational

Research, (149), 417–429.

Öztürk C., Tunalı S., Hnich B. and Örnek A. (2013).

Balancing and Scheduling of Flexible Mixed Model

Assembly Lines. Constraints.

 http://dx.doi.org/10.1007/s10601-013-9142-6

Öztürk C., Tunalı S., Hnich B. and Örnek A. (2012).

Balancing and scheduling of flexible mixed model

assembly lines with parallel stations, The International

Journal of Advanced Manufacturing Technology.

 http://dx.doi.org/10.1007/s00170-012-4675-1

Sawik,T., (2011). Batch versus cyclic scheduling of flexible

flow shops by mixed-integer programming. International

Journal of Production Research, 50 (18), 5017-5034.

2013 IFAC MIM
June 19-21, 2013. Saint Petersburg, Russia

862

