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Abstract: Noise, found in all types of instrumentation and signal processing systems, has been a great challenge to 

tackle, especially, in biomedical signal processing tasks. Often, low-frequency and low power measurement 

signals are used in biomedical signal applications. This work is aimed at modeling and developing a simple, 

efficient, and inexpensive front end signal conditioner applying the cowpox approach to low-power analog 

signal measurements. We focus here on the simulation and implementation of a signal conditioner for the 

evaluation of its feasibility and efficiency based on the cost and accuracy constraints. As briefly outlined 

below, this article can serve as a model for facilitating the construction of semi-digital filters that can be 

applied to denoising of signals with low-frequency and very weak amplitude levels. 

1 INTRODUCTION 

This article presents a framework comprised of a con­
cise theoretical background, simulations, optimiza­
tion, and implementation of a novel semi-digital 
waveform denoising system that effectively enhances 
signal-to-noise ratio (SNR) of highly noisy measure­
ments in real-time. The presented approach is based 
on the idea of cowpox vaccination combined with 
a recursive filtering technique. In order to validate 
the underlying method, we have built and evaluated 
an experimental filter, which mainly decomposes the 
noise-corrupted waveforms into a large number of 
analog samples, generates random noise samples, and 
injects the noise samples into the noise--corrupted 
waveforms, and performs an an averaging process 
in a recursive manner. The results obtained from 
the implemented system comply with the results of 
computer simulations and the underlying theoretical 
method. Efficiency of the implemented system is op­
timized in terms of a desired noise reduction level, 
number of recursions (waveforms), number of sam­
ples per waveform, and input noise level. There, ex­
ist several methods for filtering the random noise in 
biomedical instrumentations, e.g., (Guo, 2011; Os­
try, 2006a; Zerguine et aI., 2011; Momot, 2009; Pal 
and Mitra, 2012; Kamavuako et aI., 2009; Durand 
and Froment, 2001; Kadambe and Srinivasan, 2006), 
and (Sharma et aI., 2010) are the sources amongst a 
number of them that suggest different techniques to 

tackle the problem. The uniqueness of our approach 
lies in the modeling of the entire process, which uses 
cowpox vaccination combined with an analog register 
to thwart random noise components in a signal in the 
real-time. The analog register is modeled as a charge­
transfer device (CTD), which stores individual sig­
nal samples as charge units in the register, (Janesick, 
2001; Pain and Fossum, 1991) and (Cain and Mor­
ling, 1977). CTD of the implemented system stores 
1024 signal samples as charge units while they are 
being transferred (shifted) from cell to cell in order to 
avoid excessive leakage of the charges. Signal denois­
ing is done by a synchronized cowpoxing and averag­
ing technique during the charge transfer in a recursive 
manner. That is, samples of the noisy signal are mixed 
with random noise samples by a summation process, 
the output of the summation circulates through charge 
cells while being delivered to the output of the filter. 
The filter output also circulates recursively through 
additional cowpoxing and summation operations un­
til the desired reduction level is achieved. The number 
of recursions can be preset at the beginning of filter­
ing or it can be automatically determined by observ­
ing the mean value of the output signal whether the 
mean value has reached the stationary state. 

1.1 Outline of the Paper 

The remainder of this paper is organized as follows. 
Section 2 gives a brief review on some related work 
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and Section 3 presents the fundamental theory de­
scribing the model, which is used as the main ap­
proach for the realization of the proposed system. 
Section 4 introduces the methods used for the design 
of experiments and simulations used throughout the 
paper. Section 5 deals with the system simulation and 
discusses the dynamics of the presented algorithm. 
Section 6 discusses the overall system efficiency and 
derives the parameters for an optimum noise reduc­
tion. Section 7 introduces the realized hardware and 
Section 8 concludes the paper. 

2 RELATED WORK 

There have recently been many attempts to remove 
random noise from various types of signals using sta­
tistical inference methods mostly based on wavelet 
statistical models and Bayesian estimation, (Sameni 
et aI., 2007). A survey of theoretical and practi­
cal aspects of hardware implementation of wavelet­
based denoising filters is presented in (Gavrincea 
et aI., 2007). Traditional filter implementations deal 
with cutting of unwanted frequency components, typ­
ically using low-pass, high-pass, or band-pass filter­
ing configurations. Since the frequency range of ran­
dom noise covers the entire frequency bandwidth of 
the processed signal, using the conventional pass/cut­
based filtering method will also cut and distort the de­
sired signal while processing. The signal averaging 
technique is an ideal solution to this essential prob­
lem, which recovers signal while quickly averaging 
out random noise components. 

The recursive semi-digital signal averaging 
(RSDA) technique presented here bears also some 
limitations compared to non-recursive or finite im­
pulse response (FIR) filters. Mainly, it can introduce 
phase shifts cause also bandwidth limitations due to 
the existence of feedback structures. This charac­
teristic can limit its applicability to measurements 
involving very high frequency signal reconstruction 
tasks. On the other hand, a non-recursive filter will 
generally use more memory and CPU resources 
for its applications, which makes its use difficult 
in real-time applications, and more costly as well. 
Though most medical signal measurements operate 
with narrow-band signals, narrow-band filtering is 
not considered by RSDA, however, (Choi and Cho, 
2002) proposes a useful algorithm for the suppression 
of narrow-band interference in direct sequence spread 
spectrum systems, based on the open-loop adaptive 
IIR notch filtering. 

The application of signal averaging techniques 
are relatively old but steadily shows up in different 

applications, algorithms, and modifications. For 
example, as early as, (Bogdanov, 1997) has presented 
a comparison of discrete and continuous average 
techniques applied to multi-component force trans­
ducers. Most statistical algorithms are CPU-intensive 
and require more memory usage. An algorithm for 
robust weighted averaging with automatic adjustment 
of insensitivity parameter is introduced in (Leski and 
Gacek, 2004), where also the ensemble averaging 
and weighted averaging techniques are discussed in 
some context. The weighted signal averaging method 
(Laciar and Jane, 2001), different from the sample­
based averaging presented here, is also sensitive to 
the presence of outliers in the measurement data, 
however, it has to perform intensive computations 
in order to estimate the noise variance in all signal 
cycles. 

Adaptive filtering, which has been a popu­
lar research field for decades, is suitable for the 
reconstruction of periodic signals with very low 
frequencies. Though its efficiency is mainly based on 
the recursive estimation of error-free denoising and 
signal tracking parameters (Tichavsky and Handel, 
1995), an adaptive filter can be effective for batch 
processing, but relatively inefficient in real-time 
applications compared to the semi-digital averager 
presented here. 

Often, adaptive filtering gives good performance 
in low-amplitude signal measurements, e.g., an 
adaptive scheme for ECG enhancement is presented 
in (Almenar and Albiol, 1999). Influence of low 
frequency noise in adaptive estimation using the 
LMS algorithm is discussed in (Brito et aI., 2009). 
A relatively computation-intensive approach is pre­
sented in (Laguna et aI., 1992). A noise--constrained 
least mean fourth adaptive algorithm focusing on the 
learning speed of the adaptive algorithm is discussed 
in a newer work (Zerguine et aI., 2011). Approaches 
given in (Momot, 2009) deals with a comprehensive 
study of weighted averaging of electrocardiogram 
(ECG), which applies Bayesian inference to the 
analysis of filter performance. Regarding the 
electrocardiography, an alternative noise reduction 
algorithm used for rhythmic and multi trial biosignals 
is presented in (Celka et aI., 2008). 

Wavelet-based denoising using (soft) thresh­
olding involves several steps (Donoho, 1995); (I) 
performing a linear forward wavelet transform of the 
noisy data, (2) obtaining and performing a soft thresh­
olding of the wavelet coefficients where the threshold 
depends on the noise variance, and (3) the coefficients 
obtained from step (2) are then used to obtain the 
signal estimate for the reconstruction of the signal 
(linear inverse wavelet transform). Obviously, this 
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involves an excessive number of operations compared 
to the sample-based averager presented here. Though 
the wavelet-based methods have been relatively 
successful in denoising of biological signals (Prasad 
et al., 2008), RSDA offers cost-effective real-time 
solutions to signal reconstruction tasks compared to 
computationally intensive wavelet-based, digital IIR 
and FIR approaches. 

3 CONCISE DESCRIPTION OF 
THE METHOD 

In contrast to widely encountered approaches used for 
signal denoising, we use a straightforward averaging 
technique applying the cowpox approach. Therefore, 
the theory behind this technique is trivial and the im­
plementation of an appropriate filter is quite uncom­
plicated. We find several research done for denois­
ing and signal correction also applying statistical ap­
proaches, e.g., (Blanco-Velasco et aI., 2008; Pal and 
Mitra, 2012; Kabir and Shahnaz, 2012). For exam­
ple, (Blanco-Velasco et al., 2008) considers ECG sig­
nal denoising and baseline wander correction based 
on the empirical mode decomposition, which decom­
pose a signal into a collection of AM-FM compo­
nents. Other known approaches, such as Fourier and 
wavelet-based methods, use traditional data analysis 
methods that require some predefined preprocessing 
functions to represent the signal. However, the tech­
nique presented here is uncomplicated, requires no 
preprocessing, and especially efficient in real-time de­
noising of evoked potentials an signals with some pe­
riodicity. 

In the next section we use array notation for rep­
resenting the signal and noise samples, e.g., S[ land 
RNG[ 1 arrays. For convenience, we will use here the 
vector notation to denote these quantities. The RSDA 
algorithm decomposes the real-time input signal into 
discrete samples represented in the form of time se­
ries consisting of the measurement signal components 
(s) and independent random noise (n) components. 
Thus, M x N noisy signal components are mixed to 
construct a column vector space of M waveforms con­
sisting of N column vectors defined as 

C1 = 

( w(1J) ) ( w(1N) ) 
W(2J) 

"",CN= 
W(2N) 

. 

W(M1) W(MN) 

(J) 

Mean value of each column vector can be obtained as 

where, r denotes the number of recursions, i.e., num­
ber of waveforms each with N samples. It is obvi­
ous that the average values C1, . . .  ,CN accomplish the 
mean value of M waveforms into a single waveform 
C, i.e., the wave sample space is now a column-wise 
average of the input waveforms 

C = {C1,C2, . . .  ,CN}' 

As also supported by the simulation results, the higher 
the number of waveforms the better denoising will be 
achieved. This idea complies with the low of large 
numbers, i.e., summing infinitely many large random 
numbers will tend to be zero, see also Borel's low 
of large numbers, (Wen, 1991). Similarly, with the 
cowpox approach here, we recursively add as many 
noise samples as possible to the noisy signal so that 
the noise samples from the original signal will be sub­
stantially reduced. The larger the number of repeti­
tions, the better the approximation tends to be. It can 
be easily verified that the above averaging process can 
be expressed in terms of a recursive function 

-

(
J 

�- ) W = 
M L.; W(r,n) . 

r=l n=1.2 .... N 

(3) 

Where, W(r,n) denotes the average value of r th itera­
tion of the input signals each having n samples, where 
n can be set to at least 256 or more (e.g., 8192), de­
pending on the sampling frequency and the quality of 
denoising required. 

4 TEST SETUP 

In order to determine the major parameters needed for 
an adequate system implementation a detailed simu­
lation and associated real-time experiments with the 
implemented prototype system have been performed. 
With the test diagram shown in Figure 1, two types 
of signals, ECG signals and stimuli responses of elec­
trodermal measurements (i.e., skin conductance) were 
experimented together with a white noise source. 
Though we apply a special form of the averaging tech­
nique to mostly periodic signals, we find several dis­
tinctive approaches applied to different types of sig­
nals. The algorithm and source chosen for the gener­
ation of the random noise play an important role with 
the cowpox method. Although we can find several im­
plementations of random noise generators, e.g., (Lee 
et al., 2006) and (Ostry, 2006b), we preferred using a 
very special method due to its strengths underlined 
below. Our random noise generator (RNG) gener­
ates a sequence of 24-bit real numbers with uniform 
distribution and highly independent outcomes in the 
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Figure 1: Diagram of the simulation and experiment setup, 
where RNG denotes the random noise generator and In(wt) 
denotes the noisy measurement signal. 

generated bit sequence. That is, the frequency of oc­
currence of each number in the sequence is approx­
imately the same (uniformity), and no one value in 
the sequence can be inferred from the others (inde­
pendence). Due to its strength and easy of imple­
mentation, we have used the Blum-Blum-Shub (BBS) 
algorithm, (Blum et al., 1986), which is claimed to 
be a cryptographically secure pseudo-random bit gen­
erator. Considering BBS as RNG for all practical 
purposes, the generated bit sequence is unpredictable 
(extremely random). The strength of such a pseudo­
random number generator is such that given the first 
k bits of the sequence, there is no practical algorithm 
that can allow us to guess whether the next bit will 
be 0 or I with probability greater than 1/2. Thus, the 
RNG unit (Figure 1) generates 24-bit random noise 
samples, which are further added to the noisy input 
signal sample-by-sample. For the simulation real­
valued scalar quantities of clean input with a constant 
gain K and a noise signal were generated by 

. ( 21tn ) S[] =K Slll N ' n = O,I, ... ,N, (4) 

and 

RNG[]=random(SNR,N); -60�SNR�O, (5) 

respectively. Arranging the generated bits in the ar­
ray byte [ ] as a stream of 24-bit blocks (bytes each 
having 24 bits) and passing the bit blocks byte-by­
byte through a 24-bit digital-to-analog (DAC) con­
verter produces a relatively high-resolution analog 
data sample, which is stored in the random number 
generator array RNG[ ]. That is, RNG[] is now an 
array of N real numbers representing the noise sam­
ples. SNR denotes the signal-to-noise ratio in dB and 
N denotes the number of samples for both input and 
noise signals. As will be justified later, the higher the 
number of samples, the better the noise reduction can 
be achieved. Noisy input signal (w) to the averager 
is constructed as sample-by-sample addition of the 
elements of arrays S[ land RNG[]. The analog mem­
ory (CTD) used for the implementation of the filter 
has a charge leakage factor that can diminish the sig­
nal level. The leakage factor can have a great impact 

on the output if the number of recursions is extremely 
high. Hence, the instantaneous level (ith sample) of 
the signal measured at the output of the filter will cor­
respond to 

JI. = e -ErCi (I -cos f; ) , (6) 

where r denotes the current recursion count, JI. de­
notes the overall transfer function of CTD having C 
memory cells, and £ stands for leakage factor for each 
cell. In order to achieve higher accuracy, the transfer 
function will be later (Section 5) modified with regard 
to both signal and sampling frequencies and the num­
ber of recursions as well. 

5 SIMULATION 

In order to determine parameters for an optimum re­
source usage (CPU time and memory) and for the se­
lection of additional system components needed for 
the realization of the system, we have simulated the 
overall system with various configurations. In this 
concise version of the paper, we present only a brief 
formulation, related simulations, the implementation 
of the simulated system, and results of experiments 
with the implemented system. The simulation was 
first carried on with the straightforward addition of 
waveforms sample-by-sample 

W(r.n) = W(r-I.n) +W(r.n), (7) 

which has gradually increased the amplitude of the 
sum with the increased number of iterations. Indeed, 
this approach constitutes the "traditional averaging" 
technique invented several decades ago. 

Obviously, increasing the number of recursions of 
ensemble averaging leads to instable outputs. Refer­
ring to the results from both simulations and real-time 
experiments, we have observed a significant level of 
saturation in the output signal. If, after each recur­
sion, the output were scaled down by a certain factor, 
the output could be kept at a stable level. Hence, Eq. 
(7) has been experimentally modified to be 

W -JI. [w W(r,n)-W(r-I ,n) ] 
(r,n) - (r-l,n) + 

r 
. (8) 

Actual system parameters such as gain and charge 
transfer leakage factor of the CTD used in the system 
implementation were also modified in order to match 
the simulation results. Most appropriately, the trans­
fer function 

(7/ -ErC (I-cos 2rcf) ./1.=e Is 

describing both the gain and the leakage factor of the 
device chosen has been inserted into the averaging 
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function. Where, £ denotes the charge leakage factor, 
r number of recursions, C gives the number of charge 
cells, 1 and f., depict the signal and sampling frequen­
cies, respectively. Some results of the simulated ex­
periments are shown both in Figure 2 and Figure 3. 

6 EFFICIENCY AND 
OPTIMIZATION 

We strictly aim at finding an optimum recursion count 
that minimizes the noise level to an acceptable level. 
Thus, it is important to determine the optimum num­
ber of recursions (i.e., processing power) needed to 
effectively reconstruct a noisy signal in terms of a 
desired reduction factor. Figure 2 (a) and (b) show 
the results from a simulated filtering process, whereas 
Figure 2 (c) depicts the noise reduction with respect to 
the number of recursions and Figure 2 (d) illustrates 
the mean value of the averaged signals at each itera­
tion. The normalized noise reduction factor 2( can be 
parameterized as 

2( == 1('1', r,N,K), 

which can be further expressed in terms of RMS 
input-output ratio 'V combined with the number of 
samples per waveform (waveform size N) and the 

(a) Noisy Input; SNR =-4OdB, 256 samples (b) Reconstructed signals 

300 ,-���--�-----c 

-300 '------'------'-----'-----'--------" 
o 50 100 150 200 256 0 50 100 150 200 256 

(e) Noise Reduction of -10 and -40 dB inputs (d) Means at different recursions 
50 10,----__ --__ --____ -----, 

20 40 60 80 100 
(Recursions)x10 (Recursions)x100 

Figure 2: The tendency in the mean values and noise re­
duction of reconstructed waveform using 10.000 recursions: 
(a) Noisy input with -40dB SNR, (b) Filtered signals with 
-lOdB and -40dB inputs, (c) Noise reduction versus recur­
sions, (d) Mean values of filtered waveforms versus recur­
sions. 

number of recursions r as 

As depicted in Figure 2 (c), increase in the noise re­
duction is aligned with the theoretical description of 
the input-output ratio 'V = RMS(!n)/RMS(Out) and 
the current number of recursions r until the estima­
tion parameters match the sample deviation and sam­
ple mean values, i.e., (}"2 � 1 and fl � o. The ef­
fect of the recursion count is illustrated in Figure 3, 
where a 512 sample extremely noisy input signal, Fig­
ure 3 (a), was denoised using 4096 recursions, Figure 
3 (b). The evolution of the cumulative reduction in 
noise is shown in Figure 3 (c), and the corresponding 
RMS values of the filtered output at different recur­
sion counts are shown in Figure 3 (d). These results 
comply with the theoretical analysis, which empha­
size the fact that the amount of random noise will 
always tend to converge to zero with the increased 
amount of injected noise quantity along with the in­
creased number of recursions. Figure 6 and 6 show 
other results from the implemented system, which has 
been tested with an extremely noisy sinusoidal stimu­
lus applied to a skin admittance measurement. 

(Samples)x8 
Noise Reduction 

30 

:::::; 28 
'5 
� 26 

en � 24 

g; � 22 

20 

18 
0 4 6 

(Samples)x400 

� � 0.15 

" 
0.1 

0.05 

10 
0 

0 4 6 10 
(Samples)x400 

Figure 3: Effect of the injected white noise amount and the 
recursion count varying from 64 to 4096 iterations. 

7 PROTOTYPE 
IMPLEMENTATION 

We have designed and tested a relatively simple and 
effective semi-digital system. A simplified block dia­
gram of the implemented system is shown in Figure 
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(a) Photo of the implementation result: 

Oscilloscope screen of the real-time reconstruction 

of extremely noisy input and denoised output using 

68.000 recursions on the input with -40dB SNR. 

(b) Simulation result ofthe same setup. 

(c) Tendency in mean value of simulated output 

1.5 ,--------�--�--�--____, 

·0 . 5 

, 
(b) Si�ulation , , , 

· 1 . 5 "---------'-------'--------'---------.J 
o 50 100 150 200 256 
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: (e) Tende�ey in mean :value : 
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-0.025 --:-- ---:- --- � , " 

____ I _____ -.! ____ _ , , , , 
-0 05�--'------�-�--�---'-------.l o 4 5 6 7 

Recursions x 104 

Figure 6: Oscilloscope snapshot of noisy and clean inputs and outputs of an experiment and its simulation results. 

Figure 4: Block diagram of the prototype system. 

Figure 5: Construction of corrupted ECG signals, (a) with 

electrode motion artifact, (b) with addition of power-line 

signal. 

4. Its hardware implementation contains two charge 
transfer devices (CTDs) each consisting of 1024 ana­
log memory cells. The CTDs are bucket brigade de-

vice, (Scott and Chamberlain, 1980), type analog de­
lay line circuits manufactured by EG & G Reticon ™ . 
Results of an experiment with recording of a real­
time electrocardiogram (ECG) is shown in Figure 5, 
where the first ECG signal was corrupted due to elec­
trode motion artifacts and the second reading was su­
perimposed by 50 Hz power-line signal. 

8 CONCLUSIONS 

In this article, we described a simple and efficient 
method for signal reconstruction covering simulations 
and design of a unique system that effectively en­
hances SNR in real-time. Basic theory of the pro­
posed system is already known from before, how­
ever, the approach and the design described here are 
unique and efficient. Random noise injection into 
noisy measurements is the novelty of our approach 
not shown elsewhere. It is shown here that apply­
ing this approach (cowpox) to noisy signals followed 
by averaging process can perform a superior denois­
ing, given that the noise of the input signal is also 
random. The results obtained from the simulations 
and real-time experiments comply with the associ­
ated theoretical analysis of signal averaging. Due 
to extensive resource usage, digital signal averaging 
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Figure 7: Oscilloscope snapshots of noisy inputs and denoised outputs. 

technique is far more costly to implement compared 
to its semi-digital counterparts. The unique design 
presented here provides us a significantly inexpensive 
solution that can deal with noisy analog signals hav­
ing very low frequency and amplitude ranges. 
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