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Abstract
Flight-gate assignment problems are complex real world problems involving differ-
ent constraints. Some of these constraints include plane-gate eligibility, assigning 
planes of the same airline and planes getting service from the same ground handling 
companies to adjacent gates, buffers for changes in flight schedules, night stand 
flights, priority of some gates over others, and so on. In literature there are numer-
ous models to solve this highly complicated problem and tackle its complexity. In 
this study, first, we propose two different integer programming models, namely, 
timetabling and assignment based models, and then a scheduling based constraint 
programming model to solve the problem to optimality. These models prove to be 
highly efficient in that the computational times are quite short. We also present the 
results for one day operation of an airport using real data. Finally, we present our 
conclusions based on our study along with the possible further research.
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1  Introduction and literature survey

A gate is an important resource at the disposal of an airline in a hub-spoke airport. 
With an intense air-traffic increase in recent years (doubled since early 1980s), 
improper assignment of gates may result in flight delays, inefficient use of the 
resource, customer’s dissatisfaction and hence the need to efficiently use these to 
reduce operating costs, increase passenger satisfaction, and alleviate congestion has 
become more prevalent in modern times (de Man 2011; Ballis 2002). The flight gate 
assignment problem is encountered by gate managers at an airport on a periodic 
basis, usually daily. This assignment should be made so as to balance carrier effi-
ciency and passenger comfort, while providing buffers for unexpected events that 
cause assignment disruptions. A typical metropolitan airport has more than fifty 
gates and handles hundreds of flights a day for thousands of passengers. Gate assign-
ment is a complicated and over-constrained problem as it deals with a wide range of 
interdependent resources including aircrafts, gates, gate facilities, and crews (Ding 
et al. 2005).

Airport gate assignment is a critical issue for the operation management of an 
airport. It means assigning flights to gates according to their real-time arrival time 
and departure time, such that each flight is assigned to exactly one gate, and there is 
no conflict between two consecutive flights assigned to the same gate. Determining 
which aircraft is assigned to which gate is the Gate Assignment Problem (GAP). 
Since aircraft hardly ever arrives/departs on time, an assignment plan for the upcom-
ing day is to be prepared, based on currently available flight-schedule information 
in such a way that a reasonable deviation from the scheduled arrival/departure of 
any of the flights does not result in an infeasible assignment plan. The assignment 
plan should be robust against such small deviations during the actual day of opera-
tions. Typically, gates are first pre-assigned to the scheduled arriving and depart-
ing aircrafts ahead of time to ensure a smooth operation. Although gate assignment 
problem produces only a static schedule, it provides a basis for making last-min-
ute changes to handle operational uncertainty caused by unexpected events such as 
flight delays, machine failures, and severe weather conditions.

Different methods have been developed to solve this problem with different 
objectives. For passengers, the objectives include, to name a few, minimizing pas-
senger walking distance and waiting time; for flights and gates, minimizing connec-
tion times, cargo handling costs of the gate assignments, slack times, i.e., idle time 
between two successive assignments of the gate, number of gate conflicts of any two 
adjacent flights that are assigned to the same gate, aircraft waiting time on the apron, 
number of ungated flights, off-gate events. Other objectives considered are analyz-
ing the effects of stochastic flight delays on static gate assignments, maximizing the 
preferences of total gate assignment, the robustness of the resulting schedule and 
finding gate assignment efficiency which represents rational compromises between 
waiting time for gate and apron operations (Bouras et al. 2014; Cheng et al. 2012).

From a mathematical view, GAP has been formulated as integer, binary, or mixed 
integer, general linear or nonlinear models. Some publications proposed specific 
formulations as binary or mixed binary quadratic models. Quadratic assignment 
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problem (QAP), clique partitioning problem (CPP), and scheduling problem, which 
are well-known related problems in combinatorial optimization have been used to 
formulate GAP. From a different point, stochastic or robust optimization was used in 
few publications. The use of exact solution methods is certainly preferable, however, 
the use of meta-heuristics is also common (Cheng et al. 2012).

Lim et  al. (2005) formulated GAP as an integer programming model and pro-
posed two models with time windows. The first model minimised the passenger 
walking distance and the second model cargo handling costs of the gate assign-
ments. They used an IP solver to find the optimal solution in the first model; however 
several heuristic algorithms were used to generate solutions in the second model. 
According to the results, heuristics gave better results than the IP solver in both CPU 
time and solutions quality. To minimize the passenger walking distance, the other 
reference, Bihr (1990), developed a binary integer model. This model was used to 
solve a sample problem using primal–dual simplex algorithm. Bolat (1999), devel-
oped a mixed integer program for GAP with the objective of minimizing the slack 
times. Li (2009) developed a nonlinear binary mixed integer model with a constraint 
programming (Dechter 2003) which minimizes the number of gate conflicts of any 
two adjacent flights that are assigned to the same gate. A study for a stochastic GAP 
was designed by Yan and Tang (2007). In this analysis, the flight delays are sto-
chastic. It had three parts: the gate assignment model, a rule for the reassignments, 
and two adjustment methods for penalties. The performance was analyzed and 
evaluated by a simulation-based method. Drexl and Nikulin (2008), formulated the 
multi-criteria airport gate assignment as a quadratic assignment problem (QAP) and 
solved it using Pareto simulated annealing. The objectives are minimizing connec-
tion times or total passenger walking distances, maximizing the preferences of total 
gate assignment, and minimizing the number of ungated flights. Li (2010) modeled 
GAP as a parallel machine scheduling problem and applied dynamic scheduling and 
the direct graph model to solve it. For solving the small size problems, branch and 
bound was used while the large size problems were solved by using dynamic sched-
uling. Diepen et al. (2012) modeled a completely new IP formulation with a robust 
objective function expressed as the maximization of an allocation of a maximum 
possible idle time between each pair of consecutive flights such that the probability 
of flights overlapping is minimised and the gate schedule becomes more robust.

As an example to multi-objective gate assignment study, Deng et al. (2017) con-
sidered the minimum walking distances of passengers, the minimum idle time vari-
ance of each gate, the minimum number of flights at parking apron and the most 
reasonable utilization of large gates as the optimization objectives. They solved the 
developed model using an improved adaptive particle swarm optimization (DOAD-
APO) algorithm based on making full use of the advantages of Alpha-stable distri-
bution and dynamic fractional calculus.

For more references on the types of the problem and the relevant solution 
approaches to assigning flights to gates, see (Sügüt 2016). Finally, not only assign-
ing incoming flights to external gates but also to internal gates (aka common use 
check-in counters) is quite important in smooth running of airport operations (Lee 
et al. 2016; Ornek et al. 2019).
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This paper considers gate assignment problem for a real medium size airport, 
which is regarded to be a highly complex problem. There are various considera-
tions that are involved while assigning gates to incoming and outgoing flights at an 
airport. Gates have different restrictions, such as adjacency, LIFO and push time, 
which is known in advance based on the structure of the airport. As aforementioned, 
many different objective functions have been used in literature. In this paper, we 
propose a novel objective function, different from those found in literature, based 
on gate utility (importance) concept to reflect practical considerations of the airport 
authority. The basis of the utility function is that a utility associated with a gate 
and the utility of a flight being assigned to that specific gate determines together 
how flights are allocated to the gates. Besides, we propose two novel optimization 
models, namely, Timetabling and Assignment based integer programming models 
(IP) and a scheduling based constraint programming model (CP) subject to airport 
specific business rules formulated as constraints. We solve these models, present, 
and compare the results for daily operations of an airport using real data sets. The 
rest of the paper is organised as follows. Section 2 defines the problem and devel-
ops the model formulations. Section 3 discusses the performance evaluations of the 
proposed formulations and provides numerical examples of which data are obtained 
from a medium-sized airport. Finally, we present our conclusions and elaborate on 
future research directions.

2  Problem definition and the model formulations

The airport under consideration has a number of open park areas and bridge-
equipped gates. Airport management prefers flights to be assigned to bridge-
equipped gates as it facilitates embarking and disembarking of passengers. Also, 
after aircrafts arrive, they need to be refueled, replenished, all the waste has to be 
taken off-board. If all gates are engaged, then flights are to be assigned to open 
park areas. Also, night stand flights are assigned to open park areas. Some gates 
are for emergencies only. These are large enough for allocation of larger planes. For 
instance, if the bridges 26th and 42nd are full, large planes are assigned to 24th or 
25th bridge-equipped parking area. Some airlines have a priority to be assigned to 
the same gates. Normally, no other flight is assigned to those gates unless that gate 
is available.

Airline companies that use the same ground handling services firms are assigned 
adjacent to each other in order to prevent apron traffic. Departure and arrival of a 
plane is also considered. For instance, if a plane’s departure is international, it has 
a priority for bridge-equipped parking areas in the international terminal. Similarly, 
if its departure is domestic, it has a priority in the domestic terminal. Some gates 
have priority due to their proximity to facilities in the airport. Not every plane fits in 
every parking area. Hence, some flights cannot be assigned to some parking areas, 
which we call plane-gate eligibility. We consider improving gate utilization as our 
primary objective.

In this study, the effectiveness of the gate assignment to a flight is measured by 
the term “utility”. In other words, a utility value shows how appropriate a gate is 
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for the flight. Maximizing the total utility of the flight-gate assignment under some 
restrictions is the main objective for the IP formulations. Each gate has a utility 
value and also each gate takes a different utility value based on the flight assigned to 
it. These utility values are defined after many observations and the meeting with the 
operation managers. Therefore, the product of these utility values gives us the total 
utility of this assignment problem for the IP formulations.

Due to combinatorial nature of the problem, we propose two different integer pro-
gramming (IP) formulations, namely Timetabling and Assignment based. The basic 
difference between these two formulations is the number of variables created when a 
flight is assigned to a gate. Time-tabling model creates number of variables equal to 
the number of periods a flight remains connected to a gate, whereas the assignment 
model creates just one when a flight is assigned to (arrives at) the gate. First, we 
develop a general time-tabling based IP formulation, and then we introduce the tuple 
concept to dramatically reduce the number of variables unnecessarily created by the 
model. Next, we provide assignment formulation based on the tuple concept, and 
then compare their performances. Furthermore, due to its success in solving com-
binatorial problems, we also propose a constraint programming (CP) based model 
formulation with customized search heuristic.

Before giving the IP and CP model formulations, we introduce the notation used 
throughout the paper.

Sets and indices

i : Index of periods, i ∈ S = {1, 2,… , |S|}
j, b : Index of flights, j, b ∈ U = {1, 2,… , |U|}
k, r : Index of parking areas, k, r ∈ N = {1, 2,… , |M|, |M + 1|,… , |N|}
Where the first |M| parking areas represent the bridge-equipped parking areas in 
which night-stand planes cannot be assigned to,
d : Index of parking areas that are occupied from the previous day, d ∈ D ⊂ N.
c : Index of ground service firms, c ∈ C = {1, 2,… , |C|}
y : Index of night-stand flights, y ∈ Y = {1, 2,… , |Y|}

Parameters

aj : Scheduled arrival period of flight j, aj ∈ S

gj : Scheduled departure period of flight j, gj ∈ S.
It is assumed that flight j left the airport in period 

(
gj − 1

)
 . Hence, the same park-

ing area can be used by another flight starting from the beginning of gj . In other 
words, any flight occupies the assigned parking area in time interval 

[
aj, gj

)
 . Note 

that buffer periods for changes in flight schedules are also added to the gj.
fj : Ground Service Company of flight j, fj ∈ C

Lkr =

{
1 If parking areas k and r are adjacent

0 o∕w
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tk : Earliest available period of parking area k ∈ D, tk ∈ S

Wjk : Utility of assigning flight j to parking area k, Wjk ∈ ℝ
+

wk : Utility of parking area k,wk ∈ ℝ
+

The decision maker should determine the values of the coefficients Wjk and wk . In 
calculating the appropriate values, pairwise comparisons of objectives were used as 
a good starting point. This comparison scheme is employed in Analytic Hierarchy 
Process (AHP) (Saaty 1977). AHP is a method of multi-criteria decision making 
through pairwise comparisons derived from the judgments of experts. The compari-
sons are made on scales that represent decisions among the criteria. With the use 
of AHP, the inclusion of intangible factors in the objective function is also possible 
(Öztürk et al. 2017).

Decision variables

2.1  Timetabling based integer programming model

In this section, we provide a Timetabling based IP model for the flight-gate assign-
ment problem. Although, we assume parking areas as the limited resources and 
flights (i.e., aircrafts) as the resource consumers as in Li (2009), different from the 
literature, in this model we initialize a variable for each flight at each eligible park-
ing area during the service time. In other words, if a flight j can be assigned to park-
ing area k, we define (gj–aj) binary variables for flight j at parking area k for periods 
[aj, gj).

s.t.

Bjk =

{
1 If flight j can be assigned to the parking area k

0 o∕w

xijk =

{
1 If flight j is assigned to parking area k in period i

0 o∕w

(1)Maximize
∑
j∈U

∑
k∈N

Wjkwkxajjk

(2)
∑
k∈N

xajjk = 1, ∀j ∈ U

(3)xijk = 0, ∀i ∈ S, ∀j ∈ U, ∀k ∈ N|(i < aj) ∨ (i ≥ gj)

(4)
∑
j∈U

xijk ≤ 1, ∀i ∈ S, ∀k ∈ N
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Objective function (1) maximizes total utility of flight-gate assignment plan 
which is a product of the utility (importance) of a gate the utility of a flight being 
assigned to that gate. Constraints (2) ensure that each flight is assigned to exactly 
one gate at its arrival time. Constraints (3) forbid assigning a flight to a gate before 
its arrival and after its departure. Note that if a flight’s arrival and departure times 
are aj and gj respectively, the plane of that flight will occupy that gate from start of 
aj to the start of gj. For example, assume that a flight’s (e.g., flight 7) arrival and 
departure times are 64th and 72nd time periods, respectively. Then, the correspond-
ing Gantt chart for the assigned gate (e.g., gate 29) will be as in the following (see 
Fig. 1).

All binary variables corresponding to periods between 64 (included) and 72 
(excluded) equal 1 in the solution and others 0.

In other words, if a flight arrives in period i, it indicates that the assigned gate is 
used (i.e., occupied by that plane) in between i and i + 1. Constraints (4) ensure that 
a parking area is occupied by at most one flight at any period. Constraints (5) guar-
antee that the same parking area is used during the service period of the flight [see 
the above numerical example given for constraints (3)]. Since the variable is equal 

(5)
∑

i∈S|aj≤i<gj
xijk = (gj − aj)xajjk, ∀j ∈ U, ∀k ∈ N

(6)

xijr + xibk ≤ 1, ∀i ∈ S,∀j, b ∈ U,∀k, r ∈ N|(j < b)

∧ [(aj ≤ i < gj) ∨ (ab ≤ i < gb)]
∧(fj ≠ fb)

∧ (Lkr = 1) ∧ [(ab ≤ aj ∧ gb > aj) ∨ (aj ≤ ab ∧ gj > ab)]

(7)xajjk = 0, ∀j ∈ Y , ∀k ∈ M

(8)xajjk = 0, ∀j ∈ U, ∀k ∈ D|aj ≤ tk

(9)xajjk ≤ Bjk, ∀j ∈ U, ∀k ∈ N

(10)xijk ∈ {0, 1} ∀j ∈ U, ∀i ∈ S, ∀k ∈ N

gj−1 (72−1=71)∑
i=aj (i=64)

xi,7,29 = (g7 − a7)x64,7,29 x64,7,29 + x65,7,29 +⋯ + x71,7,29 = 8 = 72 − 64

64,7,29 65,7,29 66,7,29 67,7,29 68,7,29 69,7,29 70,7,29 71,7,29

64 65                       66                      67                       68                      69                      70 71                      72         

Fig. 1  Partial schedule of Parking Area 29 between the beginning of 64th and 72nd periods



142 M. A. Ornek et al.

1 3

to 1 for only one gate [due to constraints (2)], right hand side of constraints (5) will 
be equal to the service period of the flight for only the assigned parking area. And in 
that case, left hand side of the constraint will enforce that sum of the binary assign-
ment variables in the consecutive periods will be equal to the service time period. 
Similarly, if flight j is not assigned to parking area k at its arrival period aj, right 
hand side of the constraint (5) will be “0” and therefore enforce that the sum of the 
binary variables for the next consecutive periods during the service period will be 
equal to zero. In other words, that flight cannot be assigned to those periods. Note 
that this constraint is formulated for the periods between the arrival and departure 
times of the flight and is executed once for each flight and parking area when the 
period is equal to that flights’ arrival period. Constraints (6) ensure that any two 
flights that are served with different companies and their service periods overlap 
must be assigned to non-neighbour parking areas. Constraints (7) forbid assigning 
night-stand flights to bridge-equipped parking areas, while constraints (8) ensure 
that a parking area can’t be used before it becomes available. Constraints (9) guaran-
tee that each flight is assigned to only eligible parking areas. Finally, constraints (10) 
give variable domain. Right hand side of Constraints (6) requires further explanation 
as in the following:

(j < b) : Generate this constraint for flight numbers j < b . Do not generate for 
j > b.
[(aj ≤ i < gj) ∨ (ab ≤ i < gb)] : Generate this constraint for the largest time inter-
val from the earliest arrival to the latest departure of the flights j and b. In other 
words, i is within the following interval min(aj, ab) ≤ i < max(gj, gb).
(fj ≠ fb) : Generate this constraint if and only if flights j and b belong to different 
ground service companies.
(Lkr = 1) : Generate this constraint for only adjacent parking areas.
[(ab ≤ aj ∧ gb > aj) ∨ (aj ≤ ab ∧ gj > ab)] : Generate this constraint if and only if 
flight j arrives while flight b is already in the airport and departure of b is later 
than arrival of j (ab ≤ aj ∧ gb > aj) or vice versa (aj ≤ ab ∧ gj > ab) . This filter-
ing guarantees that only overlapping periods are considered.

The proposed model is bounded with |S|x|U|x|N| variables and |S|x|U|2x|N|2 
constraints.

Next, we provide a time-tabling formulation based on the tuple concept. To pre-
vent generating binary variables for non-eligible gates and the periods that the flight 
j does not stay in the airport, we define the following feasible parking period, flight 
and parking area triplets.

z, z′ Index of all feasible period, flight and park assignment triplets,

z, z� ∈ Assignments ⊂ S × U × N

=

⎧⎪⎨⎪⎩

< period, flight, park >, ∀period ∈ S, ∀flight ∈ U, ∀park ∈ N�
(aflight ≤ period < gflight) ∧ (Bflight,park = 1) ∧ ¬(flight ∈ Y ∧ park ∈ M)∧

¬(park ∈ D ∧ aflight ≤ tpark)

⎫⎪⎬⎪⎭
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where z ⋅ period, z ⋅ flight and z ⋅ park refer to the allowed period, flight and park 
indices for the corresponding assignment triplet z , respectively. The filters used to 
create only feasible triplets are explained as follows.

(aflight ≤ period < gflight) : A feasible assignment variable (triplet) is generated for 
each flight at each park for each period interval while the corresponding flight is 
being served on the ground. In other words, (gj-aj) assignment triplets are gener-
ated for each eligible parking area to represent duration of stay for each flight.
Bflight,park = 1 : Only eligible flight-parking area tuples are generated.
¬(flight ∈ Y ∧ park ∈ M) : Any flight-parking area assignment is excluded if the 
flight is a night-stand one and the corresponding parking area is bridge-equipped.
¬(park ∈ D ∧ aflight ≤ tpark) : Any flight-period-parking area assignment is 
excluded if the parking area has been occupied from the previous day until it 
becomes available.

Feasible triplets generated in Assignments set are demonstrated in the following 
table for two flights.

Based on these feasible triplets z ∈ Assignments , we introduce binary variables 
for each of them to be used in the Timetabling based model formulation.

Timetabling Based IP model

Subject to

xz =

{
1 Ifz ⋅ flight is assigned to z ⋅ park in period z ⋅ period

0 o∕w

(11)Maximize
∑

z∈Assignments|z.period=az⋅flight
Wz⋅flight,z.parkwz.parkxz

(12)
∑

z∈Assignments|(z⋅flight=j)∧(z.period=aj)
xz = 1 ∀j ∈ U

(13)
∑

z∈Assignments|(z⋅period=i)∧(z⋅park=k)
xz ≤ 1 ∀i ∈ S, ∀k ∈ N

(14)

∑
z�∈Assignments|(z�⋅flight=z⋅flight)∧(z�⋅park=z⋅park)∧(az⋅flight≤z�⋅period<gz⋅flight)

xz� = (gz⋅flight − az⋅flight)xz

∀z ∈ Assignments|z ⋅ period = az⋅flight

(15)

xz + xz� ≤ 1 ∀z, z� ∈ Assignments||(z ⋅ flight < z� ⋅ flight) ∧ (z ⋅ period = z� ⋅ period)∧

(fz⋅flight ≠ fz�⋅flight) ∧ (Lz⋅park,z�⋅park = 1)∧

[(az�⋅flight ≤ az⋅flight ∧ gz�⋅flight > az⋅flight) ∨ (az⋅flight ≤ az�⋅flight ∧ gz⋅flight > az�⋅flight)]
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Objective function (11) maximizes total utility of flight-gate assignment plan. Con-
straints (12) assign each flight to exactly one gate at its arrival time. Constraints 
(13) ensure that a parking area is occupied by at most one flight at any period. Con-
straints (14) guarantee that the same parking area is used during the service period 
of the flight. Since xz variable is equal to “1” for only one parking area, [due to 
constraints (12)], right hand side of constraint will be equal to the service period 
of the flight for only the assigned parking area. And in this case, left hand side of 
the constraint will enforce that sum of the binary assignment variables in the con-
secutive periods will be equal to the total number of service time for the assigned 
parking area z.park. Similarly, if corresponding flight z·flight is not assigned to the 
corresponding parking area z.park at its arrival period az⋅flight (which is also equal to 
the z ⋅ period due to the constraint filtering), right hand side of the constraint (14) 
will be “0” and therefore it enforces that the sum of the binary variables for the 
next consecutive periods during the service period will be equal to zero for the cor-
responding parking area z.park. In other words, flight z·flight cannot be assigned to 
periods between [az⋅flight, gz⋅flight] . The following example demonstrates the use of the 
constraint where flight 7 is assigned to parking area 29 when it arrived to the airport 
at the beginning of period 64 and scheduled to take off at period 71. Note that, due 
to the flight safety, we assume that the parking area is occupied by the same aircraft 
during the period of take-off and therefore, we assume take-off period of flight 7 as 
72nd period. Hence, parking area 29 is available to a new flight at the beginning of 
period 72. In other words, parking area 29 is occupied by flight 7 during time inter-
val (64, 72). Partial schedule of parking area 29 is demonstrated in Fig. 1.

Flight 7 starts using parking area 29 at the beginning of period 64, i.e. its sched-
uled arrival period. Hence, corresponding binary variable which shows the assign-
ment of flight 7 to parking area 29 at the beginning of period 64 is equal to 1 
( x<64,7,29> = 1 ). Note that, x<64,7,29> = 1 assignment also means that parking area 29 
is used by flight 7 from the beginning to the end of the 64th period. Since the park-
ing area is occupied by flight 7 during the next 8 periods (gj–aj = 72–64 = 8), corre-
sponding binary variables for those periods are also equal to 1 due to constraints (4).

x<64,7,29> + x<65,7,29> +⋯ + x<71,7,29> =
(
g7 − a7

)
x<64,7,29>

∑g7
i=a7

x
<i,7,29> =

�
g7 − a7

�
x
<64,7,29> which means 

∑72

i=64
x<i,7,29> = (72 − 64)x<64,7,29> or ∑72

i=64
x<i,7,29> = 8x<64,7,29> . 

This equation holds if and only if x<64,7,29> = x<65,7,29> = ⋯ x<71,7,29> = 1 or 0. If a 
feasible solution results that the flight 7 is assigned to parking area 29 at its arrival 
( x<64,7,29> = 1 ), all consecutive binary variables in the equation are also equal to 1 
( x<64,7,29> = x<65,7,29> = ⋯ = x<71,7,29> = 1 ). Constraints (14) also guarantee that if 
flight 7 is not assigned to parking area 29 at its arrival period ( x<64,7,29> = 1 ), all 
other consecutive binary variables on this parking area are also equal to 0, 
x<64,7,29> = x<65,7,29> = ⋯ = x<71,7,29> = 0.

Constraints (15) ensure that for any two possible assignments, if time periods 
are overlapping and corresponding ground service companies are different, they 
are assigned to non-adjacent parking areas. Right hand terms that are used to filter 

(16)xz ∈ {0, 1} ∀z ∈ Assignments
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possible assignment tuples to be constrained in inequality (15) are explained in the 
following:

z ⋅ flight < z′ ⋅ flight : Prevents comparing any two flights twice.
z ⋅ period = z� ⋅ period : Ensures that constraints are generated for periods such 
that both flights are in the airport.
fz⋅flight ≠ fz′⋅flight : Guarantees that constraints are generated if ground service com-
panies of the corresponding flights are different.
Lz⋅park,z�⋅park = 1 : States that constraints are generated if and only if parking areas 
of the corresponding assignments are adjacent.
[(az�⋅flight ≤ az⋅flight ∧ gz�⋅flight > az⋅flight) ∨ (az⋅flight ≤ az�⋅flight ∧ gz⋅flight > az�⋅flight)]  : 
These two possible assignments are considered in the constraint if and only if 
flight z·flight arrives while z′ ⋅ flight has been already in the airport or vice versa.

Finally, constraints (16) give variable domains. Note that, due to the filtering in 
the definition of the allowed assignments, we do not need to include original con-
straints (3), (7), (8) and (9) in the tuple formulation.

2.2  Assignment based integer programming model

In the second alternative IP model formulation, to reduce the number of binary vari-
ables, we define binary variables for only those periods where corresponding flights 
arrive at the airport. Before giving the new IP model, we introduce re-defined sets, 
indices and variables as in the following.

z, z
′ Index of all feasible flight, park, period assignment triplets,

As stated in (period = aflight) filtering operator, a single <period, flight, park> triplet 
is created for each flight and parking area. Changes in the revised Assignments set 
compared to Table 1 is demonstrated in the following table where feasible triplets 
are generated for each flight and eligible parking area for only the arrival period of 
the flight (Table 2).

Furthermore, we need the following set to formulate constraints for occupying 
the same parking area during the duration of stay for each flight.

h : Index of feasible flight-park pairs.

Finally, we redefine the binary variables as:

z, z
�

∈ Assignments ⊂ S × U × N =

⎧⎪⎪⎨⎪⎪⎩

< period, flight, park >, ∀period ∈ S, ∀flight ∈ U, ∀park ∈ N�
(period = aflight) ∧ (Bflight,park = 1) ∧ ¬(flight ∈ Y ∧ park ∈ M) ∧

¬(park ∈ D ∧ aflight ≤ tpark)

⎫⎪⎪⎬⎪⎪⎭

h ∈ FlightParkPairs = {< z ⋅ flight, z ⋅ park >}, ∀z ∈ Assignments}
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Based on the redefined sets and variables, the assignment based IP model is formu-
lated as in the following:

subject to

xz =

{
1 If flight z ⋅ flight is assigned to park z ⋅ park at its arrival, z ⋅ period

0 o/w

(17)Maximize
∑

z∈Assignments

Wz⋅flight,z⋅parkwz⋅parkxz

(18)
∑

z∈Assignments|(z⋅flight=j)
xz = 1 ∀j ∈ U

(19)

∑
z∈Assignments|(z⋅flight≠j)∧(z.period=i)∧(z.park=k)

xz ≤ |U|(1 − x<aj,j,k>)

∀i ∈ S,∀j ∈ U,∀k ∈ N
|||< j, k > in FlightParkPairs ∧ (aj ≤ i < gj)

(20)

∑
z�∈Assignments|(z�⋅flight≠z⋅flight)∧(i=z�⋅period)∧(fz� ⋅flight≠fz⋅flight)∧(Lz� ⋅park,z⋅park=1)

xz� ≤ |U|(1 − xz)

∀i ∈ S, ∀z ∈ Assignments
|||az⋅flight ≤ i < gz⋅flight

Table 1  Feasible assignment triplets for two flights

Flight, j Arrival 
period, aj

Departure 
period, gj

Eligible parking 
areas, k where 
Bjk= 1

Feasible assignment triplets, z ∈ Assignments

3 5 8 2,7 <5, 3, 2>, <6, 3, 2>, <7, 3, 2>
<5, 3, 7>, <6, 3, 7>, <7, 3, 7>

4 12 15 1, 3, 5 <12, 4, 1>, <13, 4, 1>, <14, 4, 1>
<12, 4, 3>, <13, 4, 3>, <14, 4, 3>
<12, 4, 5>, <13, 4, 5>, <14, 4, 5>

Table 2  Revised feasible assignment triplets for two flights

Flight, j Arrival 
period, aj

Departure 
period, gj

Eligible parking 
areas, k where 
Bjk= 1

Feasible assignment triplets, 
z ∈ Assignments

3 5 8 2, 7 <5, 3, 2>, <5, 3, 7>
4 12 15 1, 3, 5 <12, 4, 1>, <12, 4, 3>, <12, 4, 5>
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and constraints (13) and (16).
Constraints (17), (18) (19), (20), are reformulation of constraints (11), (12), (14), 

and (15) respectively. Constraints (13) and (16) given in the Timetabling model are 
used as given in the timetabling based model just with redefined Assignments set. 
Note that the cardinality of the set of flights,|U| is used as big-M in linearization of 
constraints (19) and (20).

2.3  Scheduling based constraint programming model

Although IP models developed in the previous sections capture the problem with 
all aspects, they suffer from scalability issues. However, constraint programming 
(CP) is a powerful alternative to model and solve complex problems such as over-
constrained flight-gate assignment problem. Reader may refer to Ornek and Öztürk 
(2016) for detailed comparison and application of CP and IP methods in planning 
and scheduling.

In this section, due to its time dependent nature, we develop a scheduling based 
CP model for the problem. Since the formulation of the CP models is basically 
related to the software system used, we represent our variables and constraints 
with CP Optimizer (IBM 2017) constructs that are used to implement and solve the 
problem.

Flights in this problem are defined as intervals �j, j ∈ U . Each interval �j is asso-
ciated with three variables as endOf (�j), startOf (�j) and sizeOf (�j) which represents 
the end, start and duration of stay in the airport for each flight respectively. All these 
variables are ranging in 

[
aj, gj

)
 . As described in (IBM, 2017), an important property 

of interval variables is that they can be designed as optional which means that they 
might not occur in the solution and may not be considered. Since each eligible park-
ing area is an alternative for each flight, �j interval variables may be performed in 
any of them. Therefore, we also define optional interval variables �h for each feasible 
flight park assignment pair h ∈ FlightParkPairs defined for the Assignment based IP 
model formulation in the previous section.

Since each flight interval has to be processed on one of its eligible parking areas, 
k ∈ N , parking areas are defined as disjunctive resources �k which can be used by 
at most one flight at a time. Each sequence �k is a collection of all corresponding 
optional flight intervals. More formally, �k =

{
Bh, h ∈ FlightParkPairs|h.park = k

}
 . 

Note that disjunctive resources such as parking areas in this paper are defined as 
“sequence” in CP Optimizer (IBM 2017).

In addition to the interval and sequence variables, we define a final integer vari-
able parkj ∈ N which indicates the parking area of flight j assigned to. Finally, 
we define additional sets and indices used in the formulation of CP model and the 
search strategy as follows:

parkOfFlightj = {k| < j, k >∈ FlightParkPairs} : the set of all eligible parking 
areas for flight j.
forbiddenParkOfFlightj = N − parkOfFlightj : the set of non-eligible parking 
areas for flight j.



148 M. A. Ornek et al.

1 3

averageUtilityOfFlightj = (
∑

k∈N Wjk)∕
���parkOfFlightj

��� : the average utility of each 
flight.
Before formulating our problem, we introduce global constraints that are pro-
vided by CP Optimizer and used in this paper. See (IBM 2017) for further details.
alternative(interval(�), setofoptionalintervals(�)) : This global constraint models 
that if interval � present, then exactly one of intervals in the interval �.
allowedAssignments(setofintegervalues, setofintegervariables) : It is used to define 
the allowed combinations of values for several integer decision variables.
forbiddenAssignments(setofintegervalues, setofintegervariables) : Similarly, this 
global constraint is used to define the forbidden combinations of values for sev-
eral integer decision variables.
noOverlap(sequence) : This global constraint is used to formulate disjunctive 
nature of sequences and prevents overlapping of the intervals in the sequence.
presenceOf (optional interval) : This global constraint is used to capture existence 
of an optional interval.
forbidStart(intervalvariable, forbiddeninterval) : This global constraint ensure 
that a given interval variable cannot be started during the forbidden interval.

The CP model of the problem is formulated as in the following:

subject to

(21)maximize
∑
j in U

Wj,parkj
wparkj

(22)allowedAssignments(parkFlightjparkj) ∀j ∈ U

(23)forbiddenAssignments(forbiddenParkOfFlightj, parkj) ∀j ∈ U

(24)noOverlap(�k) ∀k ∈ N

(25)alternative(�j, all(h in FlightParkPairs ∶ h ⋅ flight = j)�h) ∀j ∈ U

(26)

presenceOf (𝛽<j,k>) ∧ presenceOf (𝛽<b,r>) ⇒

(endOf (𝛼j) ≤ startOf (𝛼b))∨

(endOf (𝛼b) ≤ startOf (𝛼j))

∀ < j, k >,< b, r > in FlightParkPairs|(j < b) ∧ (fj ≠ fb)

∧ (Lkr = 1) ∧ [(aj ≤ ab ∧ gb > aj) ∨ (ab ≥ aj ∧ gj > ab)]

(27)
forbidStart

(
�h,

[
0, tk

))
∀h ∈ FlighParkPairs

|||h ⋅ park ∈ D ∧ ah⋅flight ≤ tk
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Objective function (21) is a reformulated version of the total utility given in 
(11) and (17). Note that we use variable indexing feature of CP formulation, which 
enhances the problem representation where parkj returns the index of the parking 
area used by flight j. Constraints (22) and (23) define and prune domains of park-
ing area variables for each flight respectively. Constraints (24) prevent overlapping 
of flight interval variables for each parking area k. Recall that �k is the collection 
of all optional flight interval variables that can be assigned to parking area k. Con-
straints (25) map each flight interval variable to all optional interval variables and 
guarantee that for each flight interval �j , exactly one of the alternative �h intervals 
is selected. Constraints (26) ensure that any two optional interval flight variables 
cannot be served in adjacent parking areas at the same time if they belong to the 
different ground services. If they are assigned to adjacent parking areas, one has to 
be finished before starting the other. Finally constraints (27) prevent starting of any 
optional interval variable before the assigned parking area becomes available.

A well-designed and customized search strategy greatly affects the performance 
of a CP model (Dechter 2003). Hence, we employ a two-phase search strategy for 
variable (i.e., ordering the variables to branch on in the search tree) and value order-
ing (the order of value to be instantiated to the selected variable). In the first phase, 
we start searching with selecting a flight with minimum number of parking areas in 
its domain (i.e., fail-first). Then we assign the selected flight to an eligible parking 
area with maximum utility wk in favor of the objective function. Once the parking 
variable is instantiated, in the second phase, we select a parking area (i.e., sequence) 
with maximum number of possible flight that can be assigned to and select a flight 
with maximum average utility averageUtilityOfFlightj . See (IBM ILOG CPLEX 
Optimization Studio 2017) for details on implementation of search phases.

3  Performance evaluation of the models and a numerical example

In this section, we provide results of implementing developed models by a real case 
and three more synthetically generated instances. Before presenting the numerical 
results, in the following table, we compare the size of the proposed models in terms 
of theoretical bounds in the number of variables and constraints.

As shown in Table 3, while the number of variables depends on the duration of a 
stay of a flight in Timetabling based IP model, it is independent from this parameter 
in Assignment based IP model and Scheduling based CP model. Note that the num-
ber of variables in the developed CP model is bounded with |U||N| + |U| + |N| of 
which |U||N| are optional interval variables ( �h ), |N| are sequence variables ( �k ) and 
|U| are parking area assignment variables (parkj). The developed models are tested 
using a realistic size instance provided by a main airline operator in Turkey with 
35 parking areas, 19 of which are bridge-equipped, 105 flights, and four different 
ground service companies. Models have been run on a Windows 7 64 bit machine 
with 8 GB RAM and Intel i7 processor. IBM CPLEX 12.6 has been used to imple-
ment and solve the proposed formulations, which includes IBM CPLEX and IBM 
CP optimizer to solve integer and constraint programming models respectively. Per-
formances of the developed models are summarized in Table 4.
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As seen in Table 4, both Timetabling and Assignment based IP models are able 
to find the optimal solution in very short time. Although theoretical bounds for the 
Timetabling and Assignment models are the same as reported in Table 3, instance 
based reported number of variables and constraints in Table 4 are different. Because; 
solver’s pre-solver tries to reduce the size of the problem by making inferences about 
the nature of the problem and as both Timetabling and Assignment based models 
are formulated differently, CPLEX presolve aggregator eliminates different number 
of columns and rows and results different number of variables and constraints (https 
://www.ibm.com/suppo rt/knowl edgec enter /SSSA5 P_12.8.0/ilog.odms.cplex .help/
CPLEX /UsrMa n/topic s/cont_optim /simpl ex/15_prepr ocess .html). 

Although it has the power of expressing complicated constraints efficiently, 
Scheduling based CP model has lack of ability to use LP relaxation in the search 
tree (Öztürk et al. 2013) and therefore, it couldn’t improve the best solution found 
in 30  min within 4  h. Another reason that CP model is not able to find the opti-
mal solution is the number of symmetric solutions which returns the same objective 
function value with different value assignment to variables. Table 4 obviously shows 
this fact with almost one magnitude more number of solutions found in Scheduling 
based CP model.

Furthermore, to evaluate performance of aforementioned models in different set-
tings we generated three more synthetic instances (n = 1, 2, 3) by changing duration 
of stay for each flight by an amount of between ± Kn% where Kn ∈ Z varies between 
3, 5 and 10 percent for each of three instances respectively. In short, random dura-
tion of stays has been generated for each flight in each instance as in the following 
formula.

The results of the additional experiments are provided in the following tables.
Although both theoretical and instance based results show that there are more 

variables and constraints in Timetabling based IP formulation, it was expected to 
have tighter bounds in Timetabling based IP model since it might lead a stronger 
LP-relaxation due to not relying on big-M based constraints. However, in practice, 
assignment based model creates a smaller branch and bound tree to be traversed as 
it requires at least one order of magnitude less number of variables and constraints. 
This is why Assignment based IP model reaches optimal solution much faster than 
the Timetabling based IP model. It is also interesting to note that even though we 

gn
j
= aj +

(
gj − aj

)[
1 + uniform(−Kn

,Kn)∕100
]

∀j ∈ U,∀n ∈ {1, 2, 3},K1 = 3,K2 = 5,K3 = 10

Table 3  Theoretical bounds for the size of the models

Formulation Model (approach) Number of variables Number of constraints

Integer programming Timetabling ∑
j∈U

�
gj − aj

��N� (|U||N|)(|U||N| − 1)∕2

Assignment |U||N| (|U||N|)(|U||N| − 1)∕2

Constraint programming Scheduling |U||N| + |U| + |N| (|U||N|)(|U||N| − 1)∕2

https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/cont_optim/simplex/15_preprocess.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/cont_optim/simplex/15_preprocess.html
https://www.ibm.com/support/knowledgecenter/SSSA5P_12.8.0/ilog.odms.cplex.help/CPLEX/UsrMan/topics/cont_optim/simplex/15_preprocess.html
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introduce 3% and 5% average deviation from the initial duration of stay in the real 
data in first two synthetic instances, the models are able to assign flights to the same 
utility valued gates and hence returns the same objective function value.

Although its lack of finding optimal solution, proposed constraint programming 
method gives a strong baseline for simply adding new business rules emerging from 
airports’ operational needs as constraints. Furthermore, for larger size instances, 
constraint programming model serves as a quick solution finder for a heuristic 
framework like large neighborhood search. Indeed, results presented in Tables 4, 5, 
6 and 7 shows that CP model is able to traverse wider solution space with large 
number of solutions found which indicates it can be used as a good constructive 
solution finder in such heuristic frameworks to escape from local optima. It is note-
worthy that as in the initial experiments with real data; we limit CP experiments 
with synthetic data with 30 min.

Instance data and detailed results are provided in “Appendix 1”.

4  Conclusions and further research

With the increase in the intensity of air-traffic in recent years, the management of 
airport gates has become more important and complicated. This is simply because 
improper assignment of gates to incoming and outgoing flights may result in flight 
delays, customer dissatisfaction, and increase in operational costs. As a result, many 
studies have been undertaken to efficiently use these resources.

In this paper, we propose two IP models and a CP model to solve a highly com-
plicated and over-constrained fight-gate assignment problem to optimality. IP mod-
els are able to find the optimal solution in about 100 s, whereas CP model terminates 
after 1800 s with a near optimal solution. However, this does not imply that IP mod-
els are superior to CP model, but points out that CP model is to be revised in terms 
of search methods. Nevertheless, CP model in this study is one of the pioneering 
attempts to tackle these types of problems in literature.

For further research directions, two studies are in progress. The first one is to 
hybridize IP and CP utilizing their powerful properties and the second one is to 
develop a heuristic algorithm for companies that do not own commercial optimiza-
tion solvers. Hybridizing a constraint programming based multi-dimensional place-
ment model formulation with large neighborhood search meta-heuristic seems to be 
a promising and challenging area of interest, too. Application of those hybrid meth-
ods to different combinatorial problems arising in airports, such as airline boarding 
problem (Soolaki et  al. 2012) is also a challenging research direction. Evaluating 
different search heuristics on different CP formulations of the problem could be an 
important research direction too, as well as symmetry breaking constraints for tra-
versing the search tree faster. Furthermore, incorporating multiple stake holders (air-
lines, airport authority, ground handlers etc.) into the optimization framework within 
a distributed manner using distributed constraint programming methods (Rolf and 
Kuchcinski 2011) is a quite promising research direction for holistic improvement 
of airport operations as well as multi-objective nature of the problem under full or 
limited information sharing conditions.
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Appendix 1: numerical results

See Tables 8 and 9.

Table 8  The arrival, original departure and departure with extra periods of the flights and the ground 
service data of flights

Flight no. Landing period Original departure 
period

Departure period with 
extra 15 min

Ground 
service 
no.

1 240 288 291 1
2 153 163 166 3
3 177 187 190 2
4 147 159 162 2
5 76 86 89 2
6 158 170 173 2
7 64 69 72 2
8 110 115 118 3
9 148 153 156 3
10 170 175 178 2
11 68 106 109 1
12 24 29 32 2
13 206 211 214 2
14 187 192 195 3
15 36 72 75 1
16 1 18 21 1
17 155 168 171 3
18 203 288 291 2
19 83 95 98 1
20 88 93 96 2
21 107 158 161 2
22 180 240 243 2
23 90 132 135 4
24 57 69 72 2
25 103 110 113 2
26 145 152 155 2
27 226 288 291 2
28 49 54 57 2
29 235 288 291 2
30 52 57 60 2
31 109 117 120 3
32 161 166 169 2
33 170 203 206 3
34 210 288 291 2
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Table 8  (continued)

Flight no. Landing period Original departure 
period

Departure period with 
extra 15 min

Ground 
service 
no.

35 56 68 71 2
36 99 288 291 2
37 44 49 52 2
38 103 111 114 2
39 146 153 156 2
40 186 203 206 3
41 238 288 291 2
42 31 42 45 3
43 48 57 60 3
44 193 288 291 1
45 162 172 175 3
46 55 66 69 3
47 70 79 82 3
48 103 114 117 3
49 205 288 291 3
50 211 288 291 3
51 139 150 153 3
52 171 180 183 3
53 31 40 43 3
54 127 136 139 1
55 115 126 129 1
56 43 54 57 3
57 175 186 189 3
58 244 288 291 3
59 67 78 81 3
60 103 162 165 3
61 253 288 291 3
62 199 207 210 3
63 79 90 93 3
64 187 198 201 3
65 27 36 39 1
66 194 204 207 3
67 130 140 143 3
68 118 134 137 3
69 72 82 85 1
70 141 147 150 2
71 35 41 44 3
72 52 58 61 3
73 97 103 106 3
74 232 288 291 3
75 119 125 128 3
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Table 8  (continued)

Flight no. Landing period Original departure 
period

Departure period with 
extra 15 min

Ground 
service 
no.

76 186 192 195 2
77 109 118 121 2
78 209 288 291 3
79 55 61 64 3
80 121 136 139 3
81 219 288 291 3
82 228 288 291 3
83 9 30 33 3
84 114 123 126 3
85 51 74 77 3
86 158 176 179 3
87 222 288 291 3
88 60 85 88 3
89 154 175 178 1
90 212 219 222 3
91 60 72 75 3
92 163 176 179 3
93 230 288 291 3
94 60 72 75 3
95 151 167 170 1
96 199 209 212 1
97 59 75 78 3
98 157 177 180 2
99 210 288 291 3
100 7 30 33 3
101 62 73 76 3
102 161 178 181 3
103 220 288 291 3
104 129 138 141 1
105 47 62 65 3
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Table 9  The optimal assignment 
of flights on each gate for the 
Timetabling based integer 
programming model

Gate number Flight number Arrival time Departure time

1 – – –
2 – – –
3 – – –
4 93 230 291
5 23 90 135

10 170 178
87 222 291

6 34 210 291
7 36 99 291
8 – – –
9 18 203 291
10 – – –
11 – – –
12 – – –
13 – – –
14 – – –
15 – – –
16 – – –
17 – – –
18 – – –
19 16 1 21

105 47 65
20 97 59 78

86 158 179
103 220 291

21 88 60 88
78 209 291

22 35 56 71
82 228 291

23 81 219 291
24 85 51 77

77 109 121
104 129 141
2 153 166
33 170 206
99 210 291
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Table 9  (continued) Gate number Flight number Arrival time Departure time

25 83 9 33
56 43 57
94 60 75
5 76 89
80 121 139
17 155 171
3 177 190
58 244 291

26 28 49 57
101 62 76
60 103 165
96 199 211
90 212 222
1 240 291

27 91 60 75
21 107 161
44 193 291

28 65 27 39
37 44 52
79 55 64
11 68 109
8 110 118
26 145 155
102 161 181
40 186 205
13 206 214
41 238 291

29 12 24 32
30 52 60
7 64 72
69 73 85
31 109 120
67 130 143
39 146 156
6 158 173
14 187 195
27 226 291
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Table 9  (continued) Gate number Flight number Arrival time Departure time

30 24 57 72
20 88 96
25 103 113
68 118 137
9 148 156
32 161 169
66 194 207
29 235 291

31 38 103 114
84 115 126
98 157 180

32 42 31 45
46 55 69
47 70 82
55 115 129
89 154 178
76 186 195
49 205 291

33 53 31 43
43 48 60
59 67 81
73 97 106
70 141 150
95 151 170
52 171 183
64 187 201
74 232 291

34 100 7 33
71 35 44
72 52 61
63 79 93
75 119 128
51 139 153
45 162 175
57 176 189
62 199 210
50 211 291
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