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ABSTRACT 

 

 

 

TRIVARIATE BINOMIAL DISTRIBUTION AND TRIVARIATE ORDER 

STATISTICS 

 

 

 

Keskin, Çağın 

 

 

 

M.Sc. in Applied Statistics 

Advisor: Prof. Dr. İsmihan Bayramoğlu 

July, 2020 

 

In this thesis, trivariate binomial equation derived by using bivariate binomial with 

fourfold scheme. Applying this equation to order statistics, trivariate order statistics 

distribution was obtained. In the fourth part of the thesis, Gumble copula was used as 

a special example for trivariate order statistics distribution and the subject was 

expanded with numerical examples and applications. These new distributions can be 

used in probability models and the theoretical studies of the field of statistics. 

Furthermore, different solutions can be developed by integrating into game theory 

studies in economics. 

 

Keywords: Trivariate binomial distribution, trivariate order statistics, fourfold 
scheme, gumbel copula, bivariate binomial distribution  
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ÖZET 

 

 

 

ÜÇ DEĞİŞKENLİ BİNOM DAĞILIMI VE ÜÇ DEĞİŞKENLİ SIRA 

İSTATİSTİKLERİ 

 

 

 

Keskin, Çağın 

 

 

 

Uygulamalı İstatistik Yüksek Lisans Programı 

Tez Danışmanı: Prof. Dr. İsmihan Bayramoğlu 

Temmuz, 2020 

 

Bu tezde, dört katlı şema gösterimine sahip iki değişkenli binom dağılımı kullanılarak, 

üç değişkenli binom denklemi türetilmiştir. Bu denklemi sıra istatistiklerine 

uygulayarak üç değişkenli sıra istatistiği dağılımı elde edilmiştir. Tezin dördüncü 

bölümünde, Gumbel kopula, üç değişkenli sıra istatistikleri dağılımında özel örnek 

olarak kullanıldı, ayrıca konu sayısal örnekler ve uygulamalar ile genişletildi. Bu yeni 

dağılımlar olasılık modellerinde ve istatistik alanının teorik çalışmalarında 

kullanılabilir. Ek olarak, iktisatta oyun teorisi çalışmalarına entegre edilerek farklı 

çözümler geliştirilebilir. 

 

Anahtar Kelimeler: Üç değişkenli binom dağılımı, üç değişkenli sıra istatistikleri, 
dört katlı şema, gumbel kopula, iki değişkenli binom dağılımı 
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CHAPTER 1: INTRODUCTION 

 

In statistics, the Bernoulli distribution named after the Swedish scientist Jakob 

Bernoulli (1713) and improved version of this distribution (binomial distribution) can 

be used in many areas of statistics. The Bernoulli distribution is basically two options 

of an event with shown probability p and 1-p. While Bernoulli distribution occurs a 

single event, binomial distribution has n independent repetitions of Bernoulli events. 

Yule (1919) processed the graphical and theoretical methods of the binomial 

distribution, after that Aitken, and Gonin (1936) demonstrated the bivariate binomial 

distribution by creating a fourfold table without replacement. Hamdan (1972) showed 

the bivariate binomial distribution for X1 and X2 with unequal samples of n1 and n2,, 

Oluyede (1994) has worked on the bivariate binomial by deriving the equal and 

unequal margin indexes from the bivariate bernoulli distribution. Hamdan, and Jensen 

(1976), Kocherlakota (1989) has made its various applications, which are conditional 

distribution and regression. In addition to that, maximum likelihood estimation has 

applied to the bivariate binomial (Hamdan, and Martinson, 1971) and the parameters 

of the distribution (Hamdan, and Nasro, 1986).  

 

Bivariate of binomial, poisson, negative binomial, hypergeometric, geometric, 

exponential and gamma distributions were derived Marshall, and Olkin (1985) based 

on the bivariate Bernoulli. Crowder, and Sweeting (1989) implemented the margins of 

the bivariate binomial distribution by bayesian inference  𝑋 | 𝑛 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑛, 𝑝) and 

𝑌 | 𝑋, 𝑛 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑞) . Polson, and Wasserman (1990) discussed the bivariate 

binomial distribution using different priorities. Lee (1984) used symmetric bivariate 

binomial in the health field by dividing patients two cluster sample groups, retinitis 

pigmentosa and otitis media. On the other hand, Mishra (1996), made the generalized 

formula of the bivariate binomial distribution with three parameters. Biswas, and 

Hwang (2002) made a new derivation of bivariate binomial when X and Y random 

variables have a correlation. 
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Papageorgiou, and David (1994) obtained the factorial moments, factorial 

cumulative and conditional distributions of the bivariate binomial distribution and 

derived the mixture bivariate binomial from the poisson distribution. They 

(Papageorgiou, and David, 1995) also showed trivariate binomial distribution on 

probability generating functions and conditional distributions. Chandrasekar, and 

Balakrishnan (2002) showed the trivariate binomial distribution on the regression 

equation. 

 

Ordered statistics are also widely used in non-parametric and inference 

statistics. Although it was used many papers, Wilks was the first systematically 

addressed order statistics both non-parametric (1942) and parametric (1948) methods. 

Boland et al. (1996) examined the dependency of bivariate order statistics under 

different conditions. The moments of bivariate order statistics have developed 

(Barakat, 1999) and Bairamov, and Eryilmaz (2003) studied bivariate order statistics 

(𝑋 , 𝑌)   with the new order of sample pairs (𝑋ା , 𝑌ା). Bairamov, and Gültekin 

(2010) worked on the different parameter margins of the bivariate binomial and its 

extensions of 3x3 table. On the other hand, Bairamov, and Kemalbay (2013) examined 

conditional bivariate order statistics on the improved version of the fourfold scheme. 

In addition, they (2015) took Bairamov, and Eryilmaz derivation of the new order of 

sample pairs and applied it in order to bivariate binomial distributions. 

 

In this thesis, trivariate binomial distribution is shown and trivariate order 

statistics are studied. The thesis proceeds as follows, bivariate binomial distributions 

and their modifications are given in the second chapter. In the third chapter, bivariate 

order statistics and how to obtain from bivariate binomial distribution is discussed. 

The fourth chapter is examined under five subtitles and mainly focused on the 

trivariate binomial distribution and trivariate order statistics. Afterwards, the 

illustration of Gumbel copula was given and some numerical results and applications 

were followed. In the last chapter, scope of the subject and its integration into different 

areas will be discussed. 
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CHAPTER 2: BIVARIATE BINOMIAL DISTRIBUTION 

 

Bivariate Bernoulli distribution and a detailed explanation of the bivariate 

binomial will be discussed in this section (Aitken, and Gonin, 1936). Subsequently, 

various modifications of bivariate binomial will be illustrated and the size of the 

subject will be expanded. 

 

2.1  Bivariate Bernoulli Distribution 

 

Let {Ω , ℱ , 𝑃} be a probability space and 𝑋(𝜔) and 𝑌(𝜔) be discrete random 

variables defined in this space where 𝜔 ∈ Ω 

𝑋(𝜔)  = ൜
1,         𝑖𝑓  𝜔 ∈ 𝐴

  0,         𝑖𝑓  𝜔 ∈ 𝐴  

𝑌(𝜔)  = ൜
1,         𝑖𝑓  𝜔 ∈ 𝐵

  0,         𝑖𝑓  𝜔 ∈ 𝐵 

where 𝐴 , 𝐵 ∈  ℱ and distribution of probability mass function (pmf) presented as, 

 𝑃{𝑋 =  1} = 𝑝 , 𝑃{𝑋 =  0} = 1 − 𝑝, (2.1.1) 

 𝑃{𝑌 =  1} = 𝑞  , 𝑃{𝑌 =  0} = 1 − 𝑞, (2.1.2) 

and 0 < 𝑝 < 1, 0 < 𝑞 < 1. 

 

Probability mass functions, as expressed above are called the Bernoulli 

distribution with the parameter p and q. Furthermore, is shown as 𝑋 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝) 

and 𝑌 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑞), respectively. Teugels (1990) made the bivariate Bernoulli 

representation with parameters 𝑝ଵ and 𝑞ଵ in fourfold table. Let 𝑋 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝ଵ) and 

𝑌 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑞ଵ) be bivariate Bernoulli distribution, four occurrences can be 

happen AB, ABC, ACB, ACBC with the probabilities 𝜋ଵଵ,  𝜋ଵଶ,  𝜋ଶଵ, 𝜋ଶଶ. In this case, 

bivariate Bernoulli distribution is defined, 
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𝑃{𝑋 =  1 , 𝑌 =  1}  = 𝑃(𝐴𝐵) = 𝜋ଵଵ, 

𝑃{𝑋 =  1 , 𝑌 = 0} = 𝑃(𝐴𝐵)  = 𝜋ଵଶ, 

𝑃{𝑋 =  0 , 𝑌 = 1}  = 𝑃(𝐴𝐵) = 𝜋ଶଵ, 

 𝑃{𝑋 =  0 , 𝑌 = 0}  = 𝑃(𝐴𝐵) = 𝜋ଶଶ. 

(2.1.3) 

 

From (2.1.1) and (2.1.2) marginals of the bivariate Bernoulli distribution are 

 𝑃{𝑋 =  1}  = 𝑝ଵ  =  𝜋ଵଵ + 𝜋ଵଶ  , 𝑃{𝑋 =  0 }  = 𝑝ଶ =  𝜋ଶଵ + 𝜋ଶଶ (2.1.3) 
 

 𝑃{𝑌 =  1 }  = 𝑞ଵ  =  𝜋ଵଵ + 𝜋ଶଵ  , 𝑃{𝑌 =  0}  = 𝑞ଶ =  𝜋ଵଶ + 𝜋ଶଶ (2.1.4) 

where  

 𝜋 =  1 , where 𝑙, 𝑚 =  1, 2. 

 

           Table 2.1: Bivariate Bernoulli Distribution in 2x2 Matrix 

 

After defining margins and probabilities; expectations, variances, covariance 

and correlation can be derived as below. 

 

            

A | B 

 

B 

 

BC 

 

  

 

A 

 

A B 

πଵଵ 

 

A BC 

πଵଶ 

 

𝑝ଵ 

 

AC 

 

AC B 

 πଶଵ 

 

AC BC 

πଶଶ 

 

𝑝ଶ 

 

  

 

𝑞ଵ 

 

𝑞ଶ 

 

1 
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 𝐸(𝑋)  =  𝑝ଵ   𝐸(𝑌)  =  𝑞ଵ (2.1.4) 

 

 𝑉𝑎𝑟(𝑋)  =  𝑝ଵ  ×   𝑝ଶ   𝑉𝑎𝑟(𝑌)  =  𝑞ଵ  ×   𝑞ଶ (2.1.5) 

 

 𝐶𝑜𝑣(𝑋, 𝑌)  = 𝐸(𝑋𝑌) − 𝐸(𝑋) 𝐸(𝑌) 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝜋ଵଵ − 𝑝ଵ × 𝑞ଵ = 𝜋ଵଵπଶଶ − 𝜋ଵଶ𝜋ଶଵ 

(2.1.6) 

 

 
𝜌 =  

𝐶𝑜𝑣(𝑋, 𝑌)

ඥ𝑉𝑎𝑟(𝑋) ඥ𝑉𝑎𝑟(𝑌)
 

𝜌 =
𝜋ଵଵπଶଶ − 𝜋ଵଶ𝜋ଶଵ

ඥ(𝜋ଵଵ + 𝜋ଵଶ) (𝜋ଶଵ + 𝜋ଶଶ)   ඥ(𝜋ଵଵ + 𝜋ଶଵ) ඥ(𝜋ଵଶ + 𝜋ଶଶ) 
  

(2.1.7) 

 

For more detailed information about the Bernoulli distribution, the probability 

generating function (Teugels, 1990) and different distributions (Marshall, and Olkin, 

1985) are derived from bivariate Bernoulli can be found. In this thesis, only the 

bivariate Bernoulli, probability table and probability mass function are emphasized for 

the representation of bivariate binomial distribution. 

 

2.2  Bivariate Binomial Distribution 

 

The binomial distribution is obtained from n independent repetitions of the 

Bernoulli distribution and Jakob Bernoulli introduced this distribution. Probability 

mass function of k successes in n independent Bernoulli trial is expressed as, 

 𝑃{𝑋 =  𝑘} = ቀ
𝑛

𝑘
ቁ 𝑝 (1 − 𝑝)ି  (2.2.1) 

where 𝑘 = 1,2, … , 𝑛 and ∈ (0,1).  

The distribution illustrated above is called binomial distribution with the 

parameter n, p and it is shown 𝑋 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙(𝑛, 𝑝). Let X and Y  be a binomial random 

variables and shown these random variables as an independent bivariate sample 

(𝑋ଵ, 𝑌ଵ), (𝑋ଶ, 𝑌ଶ), (𝑋ଷ, 𝑌ଷ), … , (𝑋, 𝑌) with,  
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𝑋(𝜔)  = ൜
1,         𝑖𝑓  𝜔 ∈ 𝐴

  0,         𝑖𝑓  𝜔 ∈ 𝐴 ,
 

𝑌(𝜔)  = ൜
1,         𝑖𝑓  𝜔 ∈ 𝐵

  0,         𝑖𝑓  𝜔 ∈ 𝐵 .
 

 

{Ω , ℱ , 𝑃} be probability space and 𝑋(𝜔) ,𝑌(𝜔) discrete variable of this space 

where 𝜔 ∈ Ω and 𝐴 , 𝐵 ∈  ℱ.  Aitken, and Gonin (1936) are defined X and Y binomial 

random variables with two possible outcomes A, AC and B, BC. They presented 

bivariate binomial distribution on fourfold scheme without replacement with AB, ABC, 

ACB, ACBC events and 𝑃(𝐴𝐵) =  𝜋ଵଵ, 𝑃(𝐴𝐵) =  𝜋ଵଶ, 𝑃(𝐴𝐵)  =  𝜋ଶଵ, 𝑃(𝐴𝐵)  =

 𝜋ଶଶ probabilities.  

 𝜋 =  1 , where 𝑙, 𝑚 =  1, 2. 

𝜉ଵ , 𝜉ଶ , 𝜉ଵଵ, 𝜉ଵଶ, 𝜉ଵଷ  defined number of occurrences of n experiment as below. 

𝜉ଵ =   { 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝐴 𝑖𝑛 𝑛 𝑡𝑟𝑖𝑎𝑙𝑠} 

𝜉ଶ =   {𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝐵 𝑖𝑛 𝑛 𝑡𝑟𝑖𝑎𝑙𝑠} 

𝜉ଵଵ =   { 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝐴𝐵 𝑖𝑛 𝑛 𝑡𝑟𝑖𝑎𝑙𝑠} 

𝜉ଵଶ =   { 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝐴𝐵  𝑖𝑛 𝑛 𝑡𝑟𝑖𝑎𝑙𝑠} 

𝜉ଵଷ =   { 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝐴𝐵 𝑖𝑛 𝑛 𝑡𝑟𝑖𝑎𝑙𝑠} 

In addition, 

 𝜉ଵ =   𝜉ଵଵ  + 𝜉ଵଶ   , 𝜉ଶ =   𝜉ଵଵ  +  𝜉ଵଷ (2.2.2) 

 

𝜉ଵ =   𝑋



ୀଵ

 and 𝜉ଶ =   𝑌



ୀଵ

,   𝑖, 𝑗 = 1,2,3. . . 𝑛 . 
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  Table 2.2: Bivariate Binomial Distribution on Fourfold Scheme 

            

A | B 

 

 

      B 

 

           BC 

 

 

A 

 

     A B 

𝜋ଵଵ 

h times 

 

                    

         A BC 

𝜋ଵଶ 

    i-h times 

 

 

 

AC 

 

AC B 

𝜋ଶଵ 

j-h times 

 

        AC BC 

𝜋ଶଶ 

n-i-j+h times 

 

 

Consider the situation  𝜉ଵ =  𝑖 𝑎𝑛𝑑 𝜉ଶ =  𝑗, while n is the total number of 

repetitions. Probability mass function of bivariate binomial can be written as follows, 

𝑃(𝑖, 𝑗) = 𝑃{𝜉ଵ = 𝑖 , 𝜉ଶ = 𝑗 } 

 
=   𝐶(𝑖, 𝑗, ℎ, 𝑛)

(,)

ୀ௫(ାି,   )

 𝜋ଵଵ
 𝜋ଵଶ

ି 𝜋ଶଵ
ି 𝜋ଶଶ

ିିା 
(2.2.3) 

where 

∁(𝑖, 𝑗, 𝑘, 𝑛)  =  ቀ
𝑛

ℎ
ቁ ൬

𝑛 − ℎ

𝑖 − ℎ
൰ ൬

𝑛 − 𝑖

𝑗 − ℎ
൰ ൬

𝑛 − 𝑖 − 𝑗 + ℎ

𝑖 − ℎ
൰ 

Thus, open form of the equation will be, 


𝑛!

ℎ! (𝑖 − ℎ)! (𝑗 − ℎ)! (𝑛 − 𝑖 − 𝑗 + ℎ)!

୫୧୬(,)

ୀ୫ (ାି,   )

 𝜋ଵଵ
 𝜋ଵଶ

ି 𝜋ଶଵ
ି 𝜋ଶଶ

ିିା 

and  𝑖, 𝑗 =  0,1,2,3. . . 𝑛.                                                                                      (2.2.4) 
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Bivariate binomial distribution with four probability situations have shown by 

many studies (Aitken, and Gonin, 1936; Kocherlakota, 1989). From n experiments, if 

A and B occurred together h times, they can be figure out ൫


൯ ways. Since A has a total 

of i observation, A and BC occurred together i-h times and they can be realized ൫ି
ି

൯  

ways. B has a j observations, therefore it can be observed together AC with j-h times, 

and they can be figure out ቀି
ି

ቁ  ways. It is clear that, when A and B occurrences 

known, the outcomes of AB must be appeared upper bound 𝑚𝑖𝑛(𝑖, 𝑗) and the lower 

bound 𝑚𝑎𝑥(𝑖 + 𝑗 − 𝑛,   0) observations. Hence, the probability of bivariate binomial 

is the sum of all possible states. If the exact value of h is known, all possibilities of h 

do not need to be realized and  𝑃 {𝜉ଵ = 𝑖 , 𝜉ଶ = 𝑗 , 𝜉ଵଵ = ℎ } equals to 

=
𝑛!

ℎ! (𝑖 − ℎ)! (𝑗 − ℎ)! (𝑛 − 𝑖 − 𝑗 + ℎ)!
 𝜋ଵଵ

 𝜋ଵଶ
ି 𝜋ଶଵ

ି 𝜋ଶଶ
ିିା . 

 

After bivariate binomial marginals have been identified, expectations, 

variances and covariance are 

 𝛦(𝜉ଵ )  =  𝑛 (𝜋ଵଵ + 𝜋ଵଶ) , 𝛦(𝜉ଶ )  =  𝑛 (𝜋ଵଵ + 𝜋ଶଵ) (2.2.5) 

 

 𝑉𝑎𝑟 (𝜉ଵ )  =  𝑛 (𝜋ଵଵ + 𝜋ଵଶ) (𝜋ଶଵ + 𝜋ଶଶ) 

  𝑉𝑎𝑟 (𝜉ଶ )  =  𝑛 (𝜋ଵଵ + 𝜋ଶଵ) (𝜋ଵଶ + 𝜋ଶଶ) 

(2.2.6) 

 

 𝐶𝑜𝑣(𝜉ଵ , 𝜉ଶ )  =   𝑛  [𝜋ଵଵ𝜋ଶଶ  −  𝜋ଵଶ𝜋ଶଵ] (2.2.7) 

 

The general lines of the bivariate binomial distribution and the fourfold scheme 

are emphasized to create the trivariate binomial distribution. More detailed research 

on bivariate binomial distribution, can be found at Hamdan's works (Hamdan, 1972; 

Hamdan, and Nasro, 1986; Hamdan, and Jensen, 1976; Hamdan, and Martinson, 

1971). 
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2.3  Modification of Bivariate Binomial Distribution 

 

In the previous subsection, bivariate binomial distribution is defined in the 

fourfold model and processed the margins and probability mass function. After these 

are described, modifications of the bivariate binomial distribution can be simply 

derived and expand it for different conditions. Bairamov, and Gültekin (2010) 

modified the bivariate binomial random variable three possibilities, 𝐴ଵ , 𝐴ଶ , 𝐴ଷ for X 

and 𝐵ଵ , 𝐵ଶ , 𝐵ଷ for Y. Thus, there were nine possible results which are 

𝐴ଵ𝐵ଵ , 𝐴ଵ𝐵ଶ , 𝐴ଵ𝐵ଷ , 𝐴ଶ𝐵ଵ,𝐴ଶ𝐵ଶ , 𝐴ଶ𝐵ଷ, 𝐴ଷ𝐵ଵ , 𝐴ଷ𝐵ଶ , 𝐴ଷ𝐵ଷ wit 𝜋ଵଵ, 𝜋ଵଶ, 𝜋ଵଷ, 𝜋ଶଵ, 𝜋ଶଶ,  

𝜋ଶଷ, 𝜋ଷଵ, 𝜋ଷଶ, 𝜋ଷଷ  probabilities. Furthermore, 𝜉ଵ symbolize the number of times n 

experiment observed in 𝐴ଵ, and 𝜉ଶ , 𝜉ଵଶ , 𝜉ଶଵ are number of occurrences in n trial 

𝐵ଵ , 𝐴ଵ𝐵ଶ 𝑎𝑛𝑑 𝐴ଶ𝐵ଵ, respectively. 

 

Assume that 𝜉ଵ = 𝑖 , 𝜉ଶ = 𝑗 , 𝜉ଵଶ = 𝑟 , 𝜉ଶଵ = 𝑚. Under these condition, 

𝑃(𝑖, 𝑗, 𝑟, 𝑚)  = 𝑃 {𝜉ଵ = 𝑖 , 𝜉ଶ = 𝑗 , 𝜉ଵଶ = 𝑟 , 𝜉ଵଷ = 𝑚}  will be 

=   𝐶(𝑖, 𝑗, ℎ, 𝑟, 𝑚, 𝑛)

(ି,ି)

ୀ௫(ାି,   )

 𝜋ଵଵ
𝜋ଵଶ

 𝜋ଵଷ
ିି 𝜋ଶଵ

 𝜋ଷଵ
ିି (𝜋) ିିା 

(2.3.1) 

where   𝑖 = 𝑟, . . . , 𝑛 − 𝑚 ;  𝑗 =  𝑚, . . . , 𝑛 − 𝑟 ;  𝑟 = 0, . . . , 𝑛 − 𝑚 ;  𝑚 =  0, . . . , 𝑛 

and 

1 − 𝜋ଵଵ − 𝜋ଵଶ − 𝜋ଵଷ −  𝜋ଶଵ −  𝜋ଷଵ  =  𝜋  

and  

𝐶(𝑖, 𝑗, ℎ, 𝑟, 𝑚, 𝑛)  =  ቀ
𝑛

𝑟
ቁ ቀ

𝑛 − 𝑟

ℎ
ቁ ൬

𝑛 − 𝑟 − ℎ

𝑖 − ℎ − 𝑟
൰ ൬

𝑛 − 𝑖

𝑚
൰ ൬

𝑛 − 𝑖 − 𝑚

𝑗 − ℎ − 𝑚
൰  

=
𝑛!

ℎ! 𝑟! 𝑚! (𝑖 − ℎ − 𝑟)! (𝑗 − ℎ − 𝑚)! (𝑛 − 𝑖 − 𝑗 + ℎ)!
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In n trials, A1 and B2 occurred together r times and they can be realized 

൫

൯ ways. A1 and B1 observed together h times, therefore they can be figure out ൫ି


൯ 

ways. Since, A1 has a total of i observation, A1 and B3 occurred together i-r-h times and 

they can be realized ൫ିି
ିି

൯  ways. Moreover, A2 and B1 occurred together m times, 

therefore it can be realized ൫ି


൯ ways. B1 has a j observations, therefore it can be 

appeared together A3 with j-m-h times, and they can be figure out ቀିି
ିି

ቁ  ways. It is 

obvious that, when A1 B2, A2 B1, A1 and B1 occurrences known, the outcomes of A1 B1 

must be appeared upper bound 𝑚𝑖𝑛(𝑖 − 𝑟, 𝑗 − 𝑚) and the lower bound 𝑚𝑎𝑥(𝑖 + 𝑗 −

𝑛,   0) observations. 

 

         Table 2.3: Modification of Bivarite Binomial Distribution on 3x3 Matrix 

           

A | B 

 

𝐵ଵ 

 

 

𝐵ଶ
 

 

𝐵ଷ 

 

𝐴ଵ 

𝐴ଵ𝐵ଵ 

𝜋ଵଵ 

h times 

𝐴ଵ𝐵ଶ 

𝜋ଵଶ 

r times 

𝐴ଵ𝐵ଷ 

𝜋ଵଷ 

      i-h-r times 

 

𝐴ଶ
 

𝐴ଶ𝐵ଵ 

𝜋ଶଵ 

m times 

𝐴ଶ𝐵ଶ 

𝜋ଶଶ 

 

𝐴ଶ𝐵ଷ 

𝜋ଶଷ 

 

 

𝐴ଷ 

𝐴ଷ𝐵ଵ 

𝜋ଷଵ 

        j-h-m times 

𝐴ଷ𝐵ଶ 

𝜋ଷଶ 

 

𝐴ଷ𝐵ଷ 

𝜋ଷଷ 

 

 

Bairamov, and Kemalbay (2013) made the more challenging bivariate binomial 

modification by adding subgroup events to three sets of possible outcomes. Let, E, D 

and F are the subset events of ACB, ABC, ACBC, respectively. 𝜉ଵ , 𝜉ଶ  and 𝜂 be total 

number of events take place in A, B, and (𝐷 ∪ 𝐹 ∪ 𝐸)  with i ,j ,k. Hence, there are 

four main events AB, ABC, ACB, ACBC and three subset events E, D and F with 
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probabilities 𝜋ଵଵ , 𝜋ଵଶ , 𝜋ଶଵ , 𝜋ଶଶ of main events and 𝑝ଵ , 𝑝ଶ , 𝑝ଷ of subset events, 

respectively.  

 

Under these conditions,  𝑃(𝑖, 𝑗, 𝑘)  = 𝑃 {𝜉ଵ = 𝑖 , 𝜉ଶ = 𝑗 , 𝜂 = 𝑘} of bivariate 

binomial is presented, 

 
=    𝐶(𝑖, 𝑗, ℎ, 𝑟, 𝑞, 𝑘, 𝑛)

ି

ୀ

ି

ୀ



ୀ

  𝜋ଵଵ
 𝑝ଵ

 [ 𝜋ଵଶ − 𝑝ଵ ]ିି 
(2.3.2) 

× 𝑝ଶ
 [ 𝜋ଶଵ − 𝑝ଶ ]ିି 𝑝ଷ

ିି [  𝜋ଶଶ −  𝑝ଷ ]ିିାିାା 

where 𝐶(𝑖, 𝑗, ℎ, 𝑟, 𝑞, 𝑘, 𝑛) 

=
𝑛!

ℎ! 𝑝! (𝑖 − ℎ − 𝑟)! 𝑞! (𝑗 − ℎ − 𝑞)! (𝑘 − 𝑟 − 𝑞)! (𝑛 − 𝑖 − +𝑗 + ℎ − 𝑘 + 𝑟 + 𝑞)!
  

and  

𝑎 =  𝑚𝑎𝑥(0 , 𝑖 + 𝑗 − 𝑛) , 𝑏 =  𝑚𝑖𝑛(𝑖, 𝑗) ;  𝑖, 𝑗, 𝑘 = 0, 1, . . . , 𝑛. 

 

In n trials, A and B occurred together h times and they can be realized ൫


൯ ways. 

D, which is the subset events of ABC, observed r times, they can be figure out ൫ି


൯ 

ways. ABC observed i-h times and they can be realized ൫ିି
ିି

൯ ways. E is the subset 

event of ACB and appeared q times, therefore it can be figure out ቀି


ቁ ways. ACB 

appeared together j-h times and they can be realized ቀିି
ିି

ቁ ways. Since, total number 

of subset events k, thus F occurred k-p-q times and it can be figure out ቀିିା
ିି

ቁ ways. 

It is clear that, when A and B occurrences known, the outcomes of AB must be appeared 

upper bound 𝑚𝑖𝑛(𝑖, 𝑗) and the lower bound 𝑚𝑎𝑥(𝑖 + 𝑗 − 𝑛,   0) observations. 
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Table 2.4: Bivarite Binomial Distribution with subset events E, D and F 

            

        A | B 

 

              B 

 

            BC 

 

 

 

           

A 

 

                        A B 

 

𝜋ଵଵ 

 

        h times 

           

          A BC 

𝜋ଵଶ 

i-h times 

  D 

𝑝ଵ 

r times 

 

 

 

          

AC 

 

AC B 

𝜋ଶଵ 

       j-h times 

    E 

𝑝ଶ 

q times 

 

AC BC 

𝜋ଶଶ  

      n-i-j+h times 

    F 

𝑝ଷ 

k-r-q times 

 

Conditional distribution (Bairamov, and Kemalbay, 2013) bayesian statistics 

(Crowder, and Sweeting, 1989) and priorities (Polson, and Wasserman, 1990) of 

bivariate binomial are beyond the scope of this thesis, however they are important 

modifications. 
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CHAPTER 3: BIVARIATE ORDER STATISTICS 

 

In chapter 3, single-order statistics will be defined and their distribution are 

obtained from incomplete beta distribution. Moreover, using bivariate binomial 

equation, bivariate order statistics distribution will be derived and explained.  

 

3.1  Distribution of Single Order Statistics 

 

Let 𝑋ଵ, 𝑋ଶ, … , 𝑋 be an independent identically distributed random variable 

samples from infinite population with cumulative distribution function of F. Ordering 

the 𝑋ଵ, 𝑋ଶ, … , 𝑋 correspond to increasing order as follows, 

𝑋(ଵ) = 𝑚𝑖𝑛(𝑋ଵ, 𝑋ଶ, … , 𝑋) 

. 

𝑋() = 𝑖ᇱ𝑡ℎ 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡 𝑜𝑓 𝑋ଵ, 𝑋ଶ, … , 𝑋  

. 

𝑋() = 𝑚𝑎𝑥(𝑋ଵ, 𝑋ଶ, … , 𝑋).  

Thus, 𝑋(ଵ) ≤ 𝑋(ଶ) ≤, … , ≤ 𝑋() are dependent random variables and called order 

statistics of X. 𝐹(𝑥) is cumulative distribution function of each random variable 

samples X and the cumulative distribution function of r th order statistic be represented 

𝐹()(𝑥). In addition, n sample size of r th ordered statistics can be displayed 𝑋() or 

𝑋:. According to definition, 𝐹(𝑥) and 𝐹ଵ(𝑥) can be written, 

𝑃൛𝑋()  ≤  𝑥ൟ  = 𝑃൛𝑋(ଵ) ≤ 𝑥 ,  𝑋(ଶ) ≤ 𝑥 , … , 𝑋() ≤ 𝑥ൟ 

𝐹௫(𝑥) ≡ 𝐹(𝑥)  =  𝑃{𝑋ଵ ≤  𝑥} , 𝑃{𝑋ଶ ≤ 𝑥} , . . . , 𝑃{𝑋 ≤ 𝑥}  =  (𝐹(𝑥)) 

(3.1.1) 

and 
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𝐹(𝑥) ≡ 𝐹ଵ(𝑥) = 1 − 𝑃{𝑋ଵ >  𝑥} = 1 − 𝑃{𝑋ଵ >  𝑥 , 𝑋ଶ >  𝑥 , . . . , 𝑋 >  𝑥} 

= 1 − (1 − 𝑃{𝑋ଵ ≤  𝑥}) , (1 − 𝑃{𝑋ଶ ≤ 𝑥}) , … , (1 − 𝑃{𝑋 ≤ 𝑥}) 

=  1 −  (1 − 𝐹(𝑥)) (3.1.2) 

 

 

      𝑋(ଵ)             X(ଶ)                      X(୰ିଵ)               X(୰)          x         X(୰ାଵ)        X(୬)                                      

               Figure 3.1: Single Order Statistics Illustration 

 

The 𝐹ଵ(𝑥) and 𝐹(𝑥) is expressed above and to find  𝐹()(𝑥),  

𝐹()(𝑥)  =  𝑃൛𝑋() ≤  𝑥ൟ  = 𝑃 ൝ራ{𝑒𝑥𝑎𝑐𝑙𝑦 𝑖 𝑜𝑓 𝑋ଵ, 𝑋ଶ, … , 𝑋 𝑎𝑟𝑒 ≤  𝑥 }



ୀ

ൡ 

 =  𝑃{𝑒𝑥𝑎𝑐𝑙𝑦 𝑖 𝑜𝑓 𝑋ଵ, 𝑋ଶ, … , 𝑋 𝑎𝑟𝑒 ≤  𝑥 }  =  𝐶
 (𝐹(𝑥))(1 − 𝐹(𝑥))ି



ୀ



ୀ

 

(3.1.3) 

3.1.1 Beta Distribution  

 

Beta distribution is bounded to [0, 1] and it is a distribution derived from 

the beta function (B). Beta function can be expressed, 

𝐵(𝑎, 𝛽)  =  න 𝑥ିଵ(1 − 𝑥)ఉିଵ𝑑𝑥  = 
ଵ



 
𝛤(𝑎) 𝛤(𝛽)

𝛤(𝑎 + 𝛽)
 =  

(𝑎 − 1)! (𝛽 − 1)!

(𝑎 + 𝛽 − 1)!
. 

(3.1.1.1) 

Let X be a continuous random variable with parameter 0 ≤  𝑥 ≤  1 and 

𝑎, 𝛽 >  0. Then, cdf of Beta distribution will be,  
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𝐵𝑒𝑡𝑎ௗ(𝑥; 𝑎, 𝛽) = ቐ

1

𝐵(𝑎, 𝛽)
න 𝑥ିଵ(1 − 𝑥)ఉିଵ𝑑𝑥 

ி(௫)



0 ,                          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

 

(3.1.1.2) 

 

and probability density function (pdf) of Beta distribution will be, 

 
𝐵𝑒𝑡𝑎ௗ(𝑥; 𝑎, 𝛽) = ቐ

1

𝐵(𝑎, 𝛽)
𝑥ିଵ(1 − 𝑥)ఉିଵ

0 ,                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

(3.1.1.3) 

 

It is known that cdf of r th order statistics can be written, 

 𝐶
 (𝐹(𝑥))(1 − 𝐹(𝑥))ି



ୀ

=
1

𝛽(𝑟, 𝑛 − 𝑟 + 1)
න 𝑥(1 − 𝑥)ି𝑑𝑡,  

ி(௫)



 

(3.1.1.4) 

which is known incomplete beta distribution and denoted by 𝐼ி(ೣ)
(𝑟, 𝑛 − 𝑟 + 1).  

 

Furthermore, probability density function of r th order statistics can be 

derived, 

𝑃{𝑟 − 1 𝑜𝑓 𝑋ଵ, 𝑋ଶ, … , 𝑋 ≤ 𝑥, 𝑜𝑛𝑒 𝑖𝑠 𝑖𝑛 (𝑥, 𝑥 + 𝛥𝑥), 𝑎𝑛𝑑 𝑛 − 𝑟 𝑜𝑓 > 𝑥 + 𝛥𝑥} 

= ൬
𝑟 − 1

𝑛
൰ ൬

1

𝑛 − (𝑟 − 1)
൰ ൬

𝑛 − 𝑟

𝑛 − (𝑟 − 1) − 1
൰ 

× ൫𝐹(𝑥)൯
ିଵ

൫𝐹( 𝑥 + 𝛥𝑥) − 𝐹(𝑥)൯൫1 − 𝐹( 𝑥 + 𝛥𝑥)൯
ି

 

=
𝑛!

 (𝑟 − 1)! (𝑛 − 𝑟)!
൫𝐹(𝑥)൯

ିଵ
൫𝐹( 𝑥 + 𝛥𝑥) − 𝐹(𝑥)൯൫1 − 𝐹( 𝑥 + 𝛥𝑥)൯

ି
 

 

To get the equation derivative, it will be divided 𝛥𝑥 and when 𝛥𝑥 limit goes 

to infinity, 
!

 (ିଵ)!(ି)!
 will be ignored for simplicity of the next transaction, 
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=   𝑙𝑖𝑚
௱௫→ஶ

 ൫𝐹(𝑥)൯
ିଵ

൫𝐹( 𝑥 + 𝛥𝑥) − 𝐹(𝑥)൯൫1 − 𝐹( 𝑥 + 𝛥𝑥)൯
ି

𝛥𝑥
  

Thus,  

 
𝑓()(𝑥) =

𝑛!

(𝑟 − 1)! (𝑛 − 𝑟)!
൫𝐹(𝑥)൯

ିଵ
𝑓(𝑥)൫1 − 𝐹( 𝑥)൯

ି
, 

(3.1.1.5) 

 
𝑓()(𝑥) =

1

𝛽(𝑟, 𝑛 − 𝑟 + 1)
൫𝐹(𝑥)൯

ିଵ
𝑓(𝑥)൫1 − 𝐹( 𝑥)൯

ି
. 

(3.1.1.6) 

 

3.2  Distribution of Bivariate Order Statistics 

 

Let 𝑋ଵ, 𝑋ଶ, … , 𝑋 and 𝑌ଵ, 𝑌ଶ, … , 𝑌 be two independent identically distributed 

discrete random variables. (𝑋ଵ , 𝑌ଵ) , (𝑋ଶ , 𝑌ଶ) , … , (𝑋 , 𝑌) be a bivariate sample and 

joint distribution is 𝐹(𝑥, 𝑦) with 𝐹(𝑥) and 𝐹(𝑦) margins.  𝑋(ଵ) ≤ 𝑋(ଶ) ≤, … , ≤ 𝑋() 

be order statistics of  𝑋ଵ, 𝑋ଶ, … , 𝑋   and 𝑌(ଵ) ≤ 𝑌(ଶ) ≤, … , ≤ 𝑌() be order statistics of 

𝑌ଵ, 𝑌ଶ, … , 𝑌. In addition, representation of ൫𝑋() , 𝑌(௦)൯ r th and s th of bivariate order 

statistics of X and Y and alternatively can be shown (𝑋: , 𝑌௦:) where                                  

1 ≤ 𝑟 ≤ 𝑛 𝑎𝑛𝑑  1 ≤ 𝑠 ≤ 𝑛 . 

 

Cumulative distribution function of r th and s th order statistics are written as 

binomial distribution of X and Y respectively, 

𝐹()(𝑥) = 𝑃൛𝑋() ≤ 𝑥ൟ =  𝐶
 (𝐹(𝑥))(1 − 𝐹(𝑥))ି  = 



ୀ

 𝑃{𝑋 = 𝑖}



ୀ

 
(3.2.1) 

 

𝐹(௦)(𝑦) = 𝑃൛𝑌(௦) ≤ 𝑦ൟ =  𝐶

൫𝐹(𝑦)൯


൫1 − 𝐹(𝑦)൯

ି


ୀ௦

=   𝑃{𝑌 = 𝑗}



ୀ௦

 
(3.2.2) 
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In this case, r th and s th order of bivariate order statistics will be 

 
𝐹(),(௦)(𝑥, 𝑦) = 𝑃൛𝑋() ≤ 𝑥 , 𝑌(௦) ≤ 𝑦ൟ =   𝑃{𝜉ଵ = 𝑖 , 𝜉ଶ = 𝑗 }



ୀ



ୀ௦

 
(3.2.3) 

 

         𝑌()  

           . 

           . 

           .                                                                                                                                                                                                                                                    

          .                       ൫𝑋(ଵ) , 𝑌(ଶ)൯                          

         𝑌(ଶ)                         

                                         ൫𝑋(ଶ) , 𝑌(ଵ)൯                                          ൫𝑋() , 𝑌(ଵ)൯ 

         𝑌(ଵ)                                                                                                                                       

    

                                          𝑋(ଵ)            𝑋(ଶ)         .         .         .        .        .         𝑋()                             

Figure 3.2: Bivariate Order Statistics on Cartesian Coordinate System 

 

We discussed the binomial distribution and the bivariate binomial in detail 

and  𝑃(𝑖, 𝑗) = 𝑃{𝜉ଵ = 𝑖 , 𝜉ଶ = 𝑗 } was derived chapter 2 as,  

= 
𝑛!

ℎ! (𝑖 − ℎ)! (𝑗 − ℎ)! (𝑛 − 𝑖 − 𝑗 + ℎ)!

(,)

ୀ௫(ାି,   )

 𝜋ଵଵ
 𝜋ଵଶ

ି 𝜋ଶଵ
ି 𝜋ଶଶ

ିିା 

 

Thus, 𝑃{𝑋: ≤ 𝑥 , 𝑌௦: ≤ 𝑦} will be, 

  
𝑛!

ℎ! (𝑖 − ℎ)! (𝑗 − ℎ)! (𝑛 − 𝑖 − 𝑗 + ℎ)!
𝜋ଵଵ





ୀ



ୀ



ୀ௦

 𝜋ଵଶ
ି  𝜋ଶଵ

ି 𝜋ଶଶ
ିିା 

(3.2.4) 
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where 

𝑎 =  𝑚𝑎𝑥(0 , 𝑖 + 𝑗 − 𝑛) , 𝑏 =  𝑚𝑖𝑛(𝑖, 𝑗)  

and 

𝑖 =  0, . . . , 𝑛 ;  𝑗 =  0, . . . , 𝑛 

 

The two reference books, A First Course in Order Statistics (Arnold, 

Balakrishnan, and Nagaraja, 2008) and Order Statistics (David, and Nagaraja, 2004) 

can examine these issues further for those who are interested. 
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CHAPTER 4: TRIVARIATE BINOMIAL DISTRIBUTION AND 

TRIVARIATE ORDER STATISTICS 

 

Chapter 4 is the main topic of the thesis and consists of five sub-sections. Based 

on the bivariate binomial distribution, trivariate binomial distribution will be created 

in the first subsection. In the following, modification of the trivariate binomial 

distribution will be discussed. Subsequently, trivariate order statistics will be derived 

by trivariate binomial distribution. In the fourth subsection, Gumbel copula which is a 

member of the Archimedean copula family, will be applied to the trivariate order 

statistics distribution. Finally, the subject will be examined and expanded in detail by 

giving numerical and graphical examples in the fifth subsection. 

 

4.1  Trivariate Binomial Distribution 

 

Let X, Y, Z be binomial random variables and each random variable has two 

possible outcomes as beloved,  

𝑋(𝜔)  = ൜
1,         𝑖𝑓  𝜔 ∈ 𝐴

  0,         𝑖𝑓  𝜔 ∈ 𝐴  

𝑌(𝜔)  = ൜
1,         𝑖𝑓  𝜔 ∈ 𝐵

  0,         𝑖𝑓  𝜔 ∈ 𝐵 

𝑍(𝜔)  = ൜
1,         𝑖𝑓  𝜔 ∈ 𝐶

  0,         𝑖𝑓  𝜔 ∈ 𝐶  

{Ω , ℱ , 𝑃} be probability space and 𝑋(𝜔) , 𝑌(𝜔) , 𝑍(𝜔) defined discrete random 

variables in this space where 𝜔 ∈ Ω and 𝐴 , 𝐵, 𝐶 ∈  ℱ. In this case, eight situations 

can be occurred, ABC, ABCC, ACBC, ACBCC, ABCC, ABCCC, ACBCC, ACBCCC with 

probabilities, 

𝑃{𝑋 =  1 , 𝑌 =  1 , 𝑍 = 1}  = 𝑃(𝐴𝐵𝐶) = 𝜋ଵଵଵ, 

𝑃{𝑋 =  1 , 𝑌 =  0 , 𝑍 = 1}  = 𝑃(𝐴𝐵𝐶) = 𝜋ଵଶଵ, 

(4.1.1) 
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𝑃{𝑋 =  0 , 𝑌 =  1 , 𝑍 = 1}  = 𝑃(𝐴𝐵𝐶) = 𝜋ଶଵଵ, 

𝑃{𝑋 =  0 , 𝑌 =  0 , 𝑍 = 1}  = 𝑃(𝐴𝐵𝐶) = 𝜋ଶଶଵ, 

𝑃{𝑋 =  1 , 𝑌 =  1 , 𝑍 = 0}  = 𝑃(𝐴𝐵𝐶) = 𝜋ଵଵଶ, 

𝑃{𝑋 =  1 , 𝑌 =  0 , 𝑍 = 0}  = 𝑃(𝐴𝐵𝐶) = 𝜋ଵଶଶ, 

𝑃{𝑋 =  0 , 𝑌 =  1 , 𝑍 = 0}  = 𝑃(𝐴𝐵𝐶) = 𝜋ଶଵଶ, 

𝑃{𝑋 =  0 , 𝑌 =  0 , 𝑍 = 0}  = 𝑃(𝐴𝐵𝐶)  = 𝜋ଶଶଶ . 

 

 𝜋 =  1, 𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗, 𝑘 =  1,2. 

Thus, marginals of 𝐴, 𝐵 and 𝐶 will be, 

 𝑃{𝑋 =  1} = 𝑃(𝐴) =  𝜋ଵଵଵ  + 𝜋ଵଶଵ  +  𝜋ଵଵଶ  +  𝜋ଵଶଶ (4.1.2) 

 𝑃{𝑌 =  1} = 𝑃(𝐵) =  𝜋ଵଵଵ  +  𝜋ଶଵଵ  +  𝜋ଵଵଶ  +  𝜋ଶଵଶ (4.1.3) 

 𝑃{𝑍 =  1} = 𝑃(𝐶) =  𝜋ଵଵଵ  + 𝜋ଵଶଵ  +  𝜋ଶଵଵ  + 𝜋ଶଶଵ (4.1.4) 

 

𝜉ଵ , 𝜉ଶ ,𝜉ଷ  and 𝜉ଵଶଷ  defined number of occurrences of n experiment as follows, 

𝜉ଵ =   {𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝐴 𝑖𝑛 𝑛 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡}, 

𝜉ଶ =   {𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝐵 𝑖𝑛 𝑛 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡}, 

𝜉ଷ =   {𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝐶 𝑖𝑛 𝑛 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡}, 

𝜉ଵଶଷ =   {𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑒𝑛𝑐𝑒𝑠 𝐴𝐵𝐶 𝑖𝑛 𝑛 𝑒𝑥𝑝𝑒𝑟𝑖𝑚𝑒𝑛𝑡}. 

and 

𝜉ଵ =   𝑋



ୀଵ

 , 𝜉ଶ =   𝑌



ୀଵ

 and 𝜉ଷ =   𝑍



ୀଵ

  𝑖, 𝑗, 𝑘 = 1,2,3. . . 𝑛 . 

 

Let 𝜉ଵ  = 𝑖, 𝜉ଶ  = 𝑗,  𝜉ଷ  = 𝑘 be number of occurrences in n trials and the 

marginals of X, Y and Z binomial distributions will be  

 𝑃{𝜉ଵ  = 𝑖  } =  ቀ
𝑛

𝑖
ቁ (𝜋ଵଵଵ + 𝜋ଵଶଵ + 𝜋ଵଵଶ + 𝜋ଵଶଶ) (4.1.5) 
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×  ൫1 − (𝜋ଵଵଵ + 𝜋ଵଶଵ + 𝜋ଵଵଶ + 𝜋ଵଶଶ)൯
ି

 

 

 𝑃{ 𝜉ଶ  = 𝑗  } =  ൬
𝑛

𝑗
൰ (𝜋ଵଵଵ  + 𝜋ଶଵଵ  +  𝜋ଵଵଶ  +  𝜋ଶଵଶ)  

×  ൫1 − (𝜋ଵଵଵ  +  𝜋ଶଵଵ  +  𝜋ଵଵଶ  +  𝜋ଶଵଶ)൯
ି

 

(4.1.6) 

 

 𝑃{ 𝜉ଷ  = 𝑘 } =  ቀ
𝑛

𝑘
ቁ (𝜋ଵଵଵ  +  𝜋ଵଶଵ  +  𝜋ଶଵଵ  +  𝜋ଶଶଵ) 

×  ൫1 − (𝜋ଵଵଵ  +  𝜋ଵଶଵ  + 𝜋ଶଵଵ  +  𝜋ଶଶଵ)൯
ି

 

(4.1.7) 

 

When trivariate binomial distribution are shown in the fourfold scheme, B and 

C are taken together as one variable to illustrate in one dimension. In this case, there 

will be four possible events 𝐴𝐵𝐶 , 𝐴𝐵𝐶 , 𝐴(𝐵𝐶)  , 𝐴(𝐵𝐶) with 𝑃(𝐴𝐵𝐶) =

𝑝ଵ , 𝑃(𝐴𝐵𝐶) =  𝑝ଶ , 𝑃(𝐴(𝐵𝐶)) = 𝑝ଷ ,𝑃(𝐴(𝐵𝐶)) = 𝑝ସ probabilities.  

 

If De Morgan’s law is applied to the 𝐴(𝐵𝐶) and 𝐴(𝐵𝐶), 

 𝐴(𝐵𝐶) = 𝐴(𝐵 ∩ 𝐶) = 𝐴(𝐵 ∪ 𝐶) = 𝐴𝐵 ∪ 𝐴𝐶  (4.1.8) 

   

 𝐴(𝐵𝐶) = 𝐴(𝐵 ∩ 𝐶) = 𝐴(𝐵 ∪ 𝐶) = 𝐴𝐵 ∪ 𝐴𝐶 (4.1.9) 

where 

𝑃(𝐴𝐵) =  𝑃(𝐴𝐵𝐶) + 𝑃(𝐴𝐵𝐶), 

𝑃(𝐴𝐶) =  𝑃(𝐴𝐵𝐶) + 𝑃(𝐴𝐵𝐶), 

𝑃(𝐴𝐵) =  𝑃(𝐴𝐵𝐶) + 𝑃(𝐴𝐵𝐶), 

𝑃(𝐴𝐶) =  𝑃(𝐴𝐵𝐶) + 𝑃(𝐴𝐵𝐶). 
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𝑝ଵ , 𝑝ଶ , 𝑝ଷ  and 𝑝ସ defined as follows, 

 𝑝ଵ = 𝑃(𝐴𝐵𝐶)  ⇒ 𝜋ଵଵଵ (4.1.10) 

 

 𝑝ଶ =  𝑃(𝐴𝐵𝐶) ⇒ 𝜋ଶଵଵ (4.1.11) 

 

 𝑝ଷ =  𝑃(𝐴(𝐵𝐶)) =  𝑃(𝐴𝐵 ∪ 𝐴𝐶)  

=  𝑃(𝐴𝐵) + 𝑃(𝐴𝐶) − 𝑃(𝐴𝐵𝐶) 

=  𝑃(𝐴𝐵𝐶) + 𝑃(𝐴𝐵𝐶) + 𝑃(𝐴𝐵𝐶) 

⇒ 𝜋ଵଶଵ +  𝜋ଵଵଶ + 𝜋ଵଶଶ  

(4.1.12) 

 

 𝑝ସ =  𝑃(𝐴(𝐵𝐶)) =  𝑃(𝐴𝐵 ∪ 𝐴𝐶)  

=  𝑃(𝐴𝐵) + 𝑃(𝐴𝐶) − 𝑃(𝐴𝐵𝐶) 

=  𝑃(𝐴𝐵𝐶) + 𝑃(𝐴𝐵𝐶) + 𝑃(𝐴𝐵𝐶) 

⇒ 𝜋ଶଶଵ + 𝜋ଶଵଶ + 𝜋ଶଶଶ 

(4.1.13) 

 

To show that the summation of the four probabilities equal to one, 

𝑃(𝐴𝐵𝐶) + 𝑃(𝐴𝐵𝐶) + 𝑃(𝐴(𝐵𝐶)) + 𝑃(𝐴(𝐵𝐶)) 

= 𝑃(𝐴𝐵𝐶) + 𝑃(𝐴𝐵𝐶) + 𝑃(𝐴𝐵 ∪ 𝐴𝐶) + 𝑃(𝐴𝐵 ∪ 𝐴𝐶) 

 

 

= 𝑃(𝐴𝐵𝐶) + 𝑃(𝐴𝐵𝐶) + 𝑃(𝐴𝐵) + 𝑃(𝐴𝐶) − 𝑃(𝐴𝐵𝐶) 

+𝑃(𝐴𝐵) + 𝑃(𝐴𝐶) − 𝑃(𝐴𝐵𝐶) 

 

 

= 𝑃(𝐴𝐵𝐶) + 𝑃(𝐴𝐵𝐶) +  𝑃(𝐴𝐵𝐶) + 𝑃(𝐴𝐵𝐶) 

+ 𝑃(𝐴𝐵𝐶) +  𝑃(𝐴𝐵𝐶) + 𝑃(𝐴𝐵𝐶) + 𝑃(𝐴𝐵𝐶) = 1 

(4.1.14) 
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    Table 4.1: Trivariate Binomial Distribution on Fourfould Scheme 

            

BC | A 

 

 

      A 

 

         AC   

 

 

BC 

 

     ABC 

𝑝ଵ 

h times 

 

                    

         AC BC 

𝑝ଶ 

min(j,k)-h times 

 

 

 

(BC)C 

 

A(BC)C 

𝑝ଷ 

i-h times 

 

        AC(BC)C 

𝑝ସ 

       n-i-min(j,k)+h times 

 

 

 

From n experiments, if A, B and C occurred together h times, then they can be 

figure out ൫


൯ ways. On the other hand, B and C happen together min(j,k). Thus, ACBC 

can happened together min(j,k)-h times, therefore they can be realized ቀ ି
୫୧୬(,)ି

ቁ 

ways. Since, A has a i observation, A(BC)C can be observed h-r times and it can be 

realized ൫ି
ି

൯ ways. In addition, AC(BC)C can be observed n-i- min(j,k)+h times and 

it can be figure out ቀିି (,)ା 
ିି (,)ା 

ቁ ways. It is obvious that, number of 

occurrences A ,B ,C are known and the outcomes ABC upper bound must be 

𝑚𝑖𝑛(𝑖, 𝑗, 𝑘)  and the lower bound be 𝑚𝑎𝑥(0 , 𝑖 + 𝑚𝑖𝑛(𝑗, 𝑘) − 𝑛) observations. After 

identifying probabilities, margins, and observations, trivariate binomial distribution 

will be 𝑃 =   {𝜉ଵ  = 𝑖, 𝜉ଶ  = 𝑗,  𝜉ଷ  = 𝑘 } 

= 
𝑛!

ℎ! (𝑖 − ℎ)! (𝑚𝑖𝑛(𝑗, 𝑘) − ℎ)! (𝑛 − 𝑖 − 𝑚𝑖𝑛(𝑗, 𝑘) + ℎ)!

(,,)

ୀ௫( ,ା(,)ି)
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 ×   𝑝ଵ
 𝑝ଶ

(,)ି 𝑝ଷ
ି 𝑝ସ

ିି(,)ା (4.1.15) 

where, 

𝑖 =  0, . . . , 𝑛 ;  𝑗 =  0, . . . , 𝑛 ;  𝑘 =  0, . . . , 𝑛 

 

Thus, 𝑚𝑖𝑛(𝑗, 𝑘) can take place in three ways, 𝑗 < 𝑘, 𝑘 > 𝑗 𝑎𝑛𝑑 𝑗 = 𝑘. If 

trivariate binomial distribution is rearranged according to three conditions, it would 

be, 


𝑛!

ℎ! (𝑖 − ℎ)! (𝑗 − ℎ)! (𝑛 − 𝑖 − 𝑗 + ℎ)!
𝑝ଵ

𝑝ଶ
ି𝑝ଷ

ି𝑝ସ
ିିା

 (,)

ୀ௫ (,ାି)

  , 𝑗 < 𝑘 

(4.1.16) 


𝑛!

ℎ! (𝑖 − ℎ)! (𝑘 − ℎ)! (𝑛 − 𝑖 − 𝑘 + ℎ)!
𝑝ଵ

𝑝ଶ
ି𝑝ଷ

ି𝑝ସ
ିିା ,

 (,)

ୀ௫ (,ାି)

𝑗 > 𝑘 

(4.1.17) 


𝑛!

ℎ! (𝑖 − ℎ)! (𝑗 − ℎ)! (𝑛 − 𝑖 − 𝑗 + ℎ)!
𝑝ଵ

𝑝ଶ
ି𝑝ଷ

ି𝑝ସ
ିିା

 (,)

ୀ௫ (,ାି)

  , 𝑗 = 𝑘 

(4.1.18) 

where   𝑖 =  0, . . . , 𝑛 ;  𝑗 =  0, . . . , 𝑛 ;  𝑘 =  0, . . . , 𝑛 

 

4.2  Modification of Trivariate Binomial Distribution 

 

Let X, Y, Z be binomial random variables and each random variable has three 

possible outcomes 𝐴ଵ , 𝐴ଶ , 𝐴ଷ for X, 𝐵ଵ , 𝐵ଶ , 𝐵ଷ for Y and 𝐶ଵ , 𝐶ଶ , 𝐶ଷ for C. 

Subsequently, there were twenty-seven possible results which are,  

𝐴ଵ𝐵ଵ𝐶ଵ , 𝐴ଶ𝐵ଵ𝐶ଵ , 𝐴ଷ𝐵ଵ𝐶ଵ , 𝐴ଵ𝐵ଶ𝐶ଵ , 𝐴ଶ𝐵ଶ𝐶ଵ , 𝐴ଷ𝐵ଶ𝐶ଵ , 𝐴ଵ𝐵ଷ𝐶ଵ , 𝐴ଶ𝐵ଷ𝐶ଵ , 𝐴ଷ𝐵ଷ𝐶ଵ, 

  𝐴ଵ𝐵ଵ𝐶ଶ , 𝐴ଶ𝐵ଵ𝐶ଶ , 𝐴ଷ𝐵ଵ𝐶ଶ , 𝐴ଵ𝐵ଶ𝐶ଶ , 𝐴ଶ𝐵ଶ𝐶ଶ , 𝐴ଷ𝐵ଶ𝐶ଶ , 𝐴ଵ𝐵ଷ𝐶ଶ , 𝐴ଶ𝐵ଷ𝐶ଶ , 𝐴ଷ𝐵ଷ𝐶ଶ,  
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  𝐴ଵ𝐵ଵ𝐶ଷ , 𝐴ଶ𝐵ଵ𝐶ଷ , 𝐴ଷ𝐵ଵ𝐶ଷ , 𝐴ଵ𝐵ଶ𝐶ଷ , 𝐴ଶ𝐵ଶ𝐶ଷ , 𝐴ଷ𝐵ଶ𝐶ଷ , 𝐴ଵ𝐵ଷ𝐶ଷ , 𝐴ଶ𝐵ଷ𝐶ଷ , 𝐴ଷ𝐵ଷ𝐶ଷ.  

Moreover, probabilities of each possible results are 𝜋ଵଵଵ, 𝜋ଶଵଵ, 𝜋ଷଵଵ, 𝜋ଵଶଵ, 𝜋ଶଶଵ, 𝜋ଷଶଵ, 

𝜋ଵଷଵ, 𝜋ଶଷଵ, 𝜋ଷଷଵ, 𝜋ଵଵଶ, 𝜋ଶଵଶ, 𝜋ଷଵଶ, 𝜋ଵଶଶ, 𝜋ଶଶଶ, 𝜋ଷଶଶ, 𝜋ଵଷଶ, 𝜋ଶଷଶ, 𝜋ଷଷଶ, 𝜋ଵଵଷ, 𝜋ଶଵଷ, 𝜋ଷଵଷ, 𝜋ଵଶଷ, 

𝜋ଶଶଷ, 𝜋ଷଶଷ, 𝜋ଵଷଷ, 𝜋ଶଷଷ, 𝜋ଷଷଷ and, 

 𝜋 =  1, 𝑤ℎ𝑒𝑟𝑒 𝑖, 𝑗, 𝑘 =  1,2,3. 

For Fourfold scheme, if B and C are taken together as in the subsection 4.1, there are 

six possible results, 𝐴ଵ𝐵ଵ𝐶ଵ, 𝐴ଶ𝐵ଵ𝐶ଵ, 𝐴ଷ𝐵ଵ𝐶ଵ, 𝐴ଵ(𝐵ଵ𝐶ଵ) , 𝐴ଶ(𝐵ଵ𝐶ଵ) , 𝐴ଶ(𝐵ଵ𝐶ଵ). The 

probabilities of each occurrence are identified by applying De Morgan’s law, 

 𝑝ଵ = 𝑃(𝐴ଵ𝐵ଵ𝐶ଵ)  ⇒ 𝜋ଵଵଵ (4.2.1) 

 

 𝑝ଶ = 𝑃(𝐴ଶ𝐵ଵ𝐶ଵ)  ⇒ 𝜋ଶଵଵ (4.2.2) 

 

 𝑝ଷ = 𝑃(𝐴ଷ𝐵ଵ𝐶ଵ)  ⇒ 𝜋ଷଵଵ (4.2.3) 

 

                           𝑝ସ = 𝐴ଵ(𝐵ଵ𝐶ଵ) =  𝐴ଵ(𝐵ଵ ∩ 𝐶ଵ) = 𝐴ଵ൫𝐵ଵ
 ∪ 𝐶ଵ

൯             (4.2.4) 

= 𝑃(𝐴ଵ𝐵ଵ
) ∪ 𝑃(𝐴ଵ𝐶ଵ

) 

= 𝑃൫𝐴ଵ𝐵ଵ
൯ + 𝑃൫𝐴ଵ𝐶ଵ

൯ − 𝑃(𝐴ଵ𝐵ଶ𝐶ଶ) − 𝑃(𝐴ଵ𝐵ଶ𝐶ଷ) − 𝑃(𝐴ଵ𝐵ଷ𝐶ଶ) − 𝑃(𝐴ଵ𝐵ଷ𝐶ଷ) 

= 𝑃(𝐴ଵ𝐵ଶ𝐶ଵ) + 𝑃(𝐴ଵ𝐵ଷ𝐶ଵ) + 𝑃(𝐴ଵ𝐵ଵ𝐶ଶ) + 𝑃(𝐴ଵ𝐵ଵ𝐶ଷ) 

+𝑃(𝐴ଵ𝐵ଶ𝐶ଶ) + 𝑃(𝐴ଵ𝐵ଶ𝐶ଷ) + 𝑃(𝐴ଵ𝐵ଷ𝐶ଶ) + 𝑃(𝐴ଵ𝐵ଷ𝐶ଷ) 

𝑝ସ ⇒ 𝜋ଵଶଵ, 𝜋ଵଷଵ, 𝜋ଵଵଶ, 𝜋ଵଵଷ, 𝜋ଵଶଶ, 𝜋ଵଶଷ, 𝜋ଵଷଶ, 𝜋ଵଷଷ 

where  

𝑃൫𝐴ଵ𝐵ଵ
൯ = 𝑃(𝐴ଵ𝐵ଶ𝐶ଵ) + 𝑃(𝐴ଵ𝐵ଷ𝐶ଵ) + 𝑃(𝐴ଵ𝐵ଶ𝐶ଶ) 

+𝑃(𝐴ଵ𝐵ଶ𝐶ଷ) + 𝑃(𝐴ଵ𝐵ଷ𝐶ଶ) + 𝑃(𝐴ଵ𝐵ଷ𝐶ଷ) 

and 
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𝑃(𝐴ଵ𝐶ଵ
) = 𝑃(𝐴ଵ𝐵ଵ𝐶ଶ) + 𝑃(𝐴ଵ𝐵ଵ𝐶ଷ) + 𝑃(𝐴ଵ𝐵ଶ𝐶ଶ) 

+𝑃(𝐴ଵ𝐵ଶ𝐶ଷ) + 𝑃(𝐴ଵ𝐵ଷ𝐶ଶ) + 𝑃(𝐴ଵ𝐵ଷ𝐶ଷ) 

 

                           𝑝ହ = 𝐴ଶ(𝐵ଵ𝐶ଵ) =  𝐴ଶ(𝐵ଵ ∩ 𝐶ଵ) = 𝐴ଶ൫𝐵ଵ
 ∪ 𝐶ଵ

൯             (4.2.5) 

= 𝑃(𝐴ଶ𝐵ଵ
) ∪ 𝑃(𝐴ଶ𝐶ଵ

) 

= 𝑃൫𝐴ଶ𝐵ଵ
൯ + 𝑃൫𝐴ଶ𝐶ଵ

൯ − 𝑃(𝐴ଶ𝐵ଶ𝐶ଶ) − 𝑃(𝐴ଶ𝐵ଶ𝐶ଷ) − 𝑃(𝐴ଶ𝐵ଷ𝐶ଶ) − 𝑃(𝐴ଶ𝐵ଷ𝐶ଷ) 

= 𝑃(𝐴ଶ𝐵ଶ𝐶ଵ) + 𝑃(𝐴ଶ𝐵ଷ𝐶ଵ) + 𝑃(𝐴ଶ𝐵ଵ𝐶ଶ) + 𝑃(𝐴ଶ𝐵ଵ𝐶ଷ) 

+𝑃(𝐴ଶ𝐵ଶ𝐶ଶ) + 𝑃(𝐴ଶ𝐵ଶ𝐶ଷ) + 𝑃(𝐴ଶ𝐵ଷ𝐶ଶ) + 𝑃(𝐴ଶ𝐵ଷ𝐶ଷ) 

𝑝ହ ⇒ 𝜋ଶଶଵ, 𝜋ଶଷଵ, 𝜋ଶଵଶ, 𝜋ଶଵଷ, 𝜋ଶଶଶ, 𝜋ଶଶଷ, 𝜋ଶଷଶ, 𝜋ଶଷଷ 

where  

𝑃൫𝐴ଶ𝐵ଵ
൯ = 𝑃(𝐴ଶ𝐵ଶ𝐶ଵ) + 𝑃(𝐴ଶ𝐵ଷ𝐶ଵ) + 𝑃(𝐴ଶ𝐵ଶ𝐶ଶ) 

+𝑃(𝐴ଶ𝐵ଶ𝐶ଷ) + 𝑃(𝐴ଶ𝐵ଷ𝐶ଶ) + 𝑃(𝐴ଶ𝐵ଷ𝐶ଷ) 

and 

𝑃(𝐴ଶ𝐶ଵ
) = 𝑃(𝐴ଶ𝐵ଵ𝐶ଶ) + 𝑃(𝐴ଶ𝐵ଵ𝐶ଷ) + 𝑃(𝐴ଶ𝐵ଶ𝐶ଶ) 

+𝑃(𝐴ଶ𝐵ଶ𝐶ଷ) + 𝑃(𝐴ଶ𝐵ଷ𝐶ଶ) + 𝑃(𝐴ଶ𝐵ଷ𝐶ଷ) 

 

                         𝑝 = 𝐴ଷ(𝐵ଵ𝐶ଵ) =  𝐴ଷ(𝐵ଵ ∩ 𝐶ଵ) = 𝐴ଷ൫𝐵ଵ
 ∪ 𝐶ଵ

൯              (4.2.6) 

= 𝑃(𝐴ଷ𝐵ଵ
) ∪ 𝑃(𝐴ଷ𝐶ଵ

) 

= 𝑃൫𝐴ଷ𝐵ଵ
൯ + 𝑃൫𝐴ଷ𝐶ଵ

൯ − 𝑃(𝐴ଷ𝐵ଶ𝐶ଶ) − 𝑃(𝐴ଷ𝐵ଶ𝐶ଷ) − 𝑃(𝐴ଷ𝐵ଷ𝐶ଶ) − 𝑃(𝐴ଷ𝐵ଷ𝐶ଷ) 

= 𝑃(𝐴ଷ𝐵ଶ𝐶ଵ) + 𝑃(𝐴ଷ𝐵ଷ𝐶ଵ) + 𝑃(𝐴ଷ𝐵ଵ𝐶ଶ) + 𝑃(𝐴ଷ𝐵ଵ𝐶ଷ) 

+𝑃(𝐴ଷ𝐵ଶ𝐶ଶ) + 𝑃(𝐴ଷ𝐵ଶ𝐶ଷ) + 𝑃(𝐴ଷ𝐵ଷ𝐶ଶ) + 𝑃(𝐴ଷ𝐵ଷ𝐶ଷ) 

𝑝 ⇒ 𝜋ଷଶଵ, 𝜋ଷଷଵ, 𝜋ଷଵଶ, 𝜋ଷଵଷ, 𝜋ଷଶଶ, 𝜋ଷଶଷ, 𝜋ଷଷଶ, 𝜋ଷଷଷ 
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where  

𝑃൫𝐴ଷ𝐵ଵ
൯ = 𝑃(𝐴ଷ𝐵ଶ𝐶ଵ) + 𝑃(𝐴ଷ𝐵ଷ𝐶ଵ) + 𝑃(𝐴ଷ𝐵ଶ𝐶ଶ) 

+𝑃(𝐴ଷ𝐵ଶ𝐶ଷ) + 𝑃(𝐴ଷ𝐵ଷ𝐶ଶ) + 𝑃(𝐴ଷ𝐵ଷ𝐶ଷ) 

and 

𝑃(𝐴ଷ𝐶ଵ
) = 𝑃(𝐴ଷ𝐵ଵ𝐶ଶ) + 𝑃(𝐴ଷ𝐵ଵ𝐶ଷ) + 𝑃(𝐴ଷ𝐵ଶ𝐶ଶ) 

+𝑃(𝐴ଷ𝐵ଶ𝐶ଷ) + 𝑃(𝐴ଷ𝐵ଷ𝐶ଶ) + 𝑃(𝐴ଷ𝐵ଷ𝐶ଷ) 

and  

𝑝ଵ + 𝑝ଶ + 𝑝ଷ + 𝑝ସ + 𝑝ହ + 𝑝 = 1 

 

          Table 4.2: Modification of Trivariate Binomial Distribution 

           

BଵCଵ|A  

 

𝐴ଵ 

 

 

𝐴ଶ
 

 

𝐴ଷ 

 

𝐵ଵ𝐶ଵ 

𝐴ଵ𝐵ଵ𝐶ଵ 

𝑝ଵ 

          h times 

𝐴ଶ𝐵ଵ𝐶ଵ 

𝑝ଶ 

          r times 

𝐴ଷ𝐵ଵ𝐶ଵ 

𝑝ଷ 

    min(j,k)-h-r times 

 

(𝐵ଵ𝐶ଵ)  

𝐴ଵ(𝐵ଵ𝐶ଵ) 

𝑝ସ 

        i-h times 

𝐴ଶ(𝐵ଵ𝐶ଵ) 

𝑝ହ 

 

𝐴ଷ(𝐵ଵ𝐶ଵ) 

𝑝 

 

 

Let 𝜉ଵ defined the number of times n experiment observed 𝐴ଵ, and 𝜉ଶ , 𝜉ଷ , 𝜉ଵଶ 

are number of occurrences in n trial of 𝐵ଵ , 𝐶ଵ 𝑎𝑛𝑑 𝐴ଶ𝐵ଵ𝐶ଵ, respectively. Assume that  

𝜉ଵ = 𝑖 , 𝜉ଶ = 𝑗 , 𝜉ଷ = 𝑘 , 𝜉ଵଶ = 𝑟. From n experiments, A2 and B1C1 occurred together 

r times and they can be figure out ൫

൯ ways. A1 and B1C1 observed together h times, 

therefore they can be realized ൫ି


൯ ways. Since, B1C1 has a total of min(j,k) 

observation, A3 and B1C1 occurred together min(j,k)-h-r times and they can be realized 

ቀ ିି
 (,)ିି

ቁ  ways. Moreover, A2 and B1 occurred together m times, therefore it can 
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be realized ൫ି


൯ ways. A1 has a i observations, therefore it can be appeared together 

(B1C1)C with i-h times, and they can be figure out ൫ି (,)
ି

൯  ways. It is obvious 

that, when A1B1C1, A2B1C1, A1 and B1C1 occurrences known, the outcomes of A1B1C1 

must be appeared upper bound 𝑚𝑖𝑛(𝑖, 𝑗 − 𝑟, 𝑘 − 𝑟) and the lower bound 𝑚𝑎𝑥(𝑖 +

min (𝑗, 𝑘) − 𝑛,   0) observations. 

Under these conditions, 𝑃(𝑖, 𝑗, 𝑟, 𝑚)  = 𝑃 {𝜉ଵ = 𝑖 , 𝜉ଶ = 𝑗 , 𝜉ଵଶ = 𝑟 }  will be 

=   𝐶(𝑖, 𝑗, 𝑘, 𝑟, 𝑛)



ୀ

 𝑝ଵ
 𝑝ଶ

 𝑝ଷ
୫୧୬(,)ିି 𝑝ସ

ି(𝑝ହ + 𝑝)ିି୫  (,)ା 

(4.2.7)

where 

𝑖 = 0, . . . , 𝑛 ;  𝑗 =  𝑟, . . . , 𝑛 ; 𝑘 =  𝑟, . . . , 𝑛 ;  𝑟 = 0, . . . , 𝑛 

and 

𝑎 =  𝑚𝑎𝑥(0 , 𝑖 + 𝑚𝑖𝑛(𝑗, 𝑘) − 𝑛) , 𝑏 =  min(𝑖, 𝑗 − 𝑟, 𝑘 − 𝑟) 

and  

𝐶(𝑖, 𝑗, 𝑘, 𝑟, 𝑛)  =  ቀ
𝑛

𝑟
ቁ ቀ

𝑛 − 𝑟

ℎ
ቁ ൬

𝑛 − 𝑟 − ℎ

min (𝑗, 𝑘) − 𝑟 − ℎ
൰ ൬

𝑛 − min (𝑗, 𝑘)

𝑖 − ℎ
൰   

=
𝑛!

𝑟! ℎ! (min (𝑗, 𝑘) − 𝑟 − ℎ)! (𝑖 − ℎ)! (𝑛 − 𝑖 − min(𝑗, 𝑘) + ℎ)!
 

 

4.3 Trivariate Order Statistics 

 

Let the margins A, B, C be defined less than i, j and k, respectively with 

notation 𝐴 = {𝑋 ≤  𝑥} , 𝐵 = ൛𝑌 ≤  𝑦ൟ , 𝐶 = {𝑍 ≤  𝑧}. Distribution of each 

probability will be, 

𝑃(𝐴𝐵𝐶) = 𝑃൛𝑋 ≤  𝑥 , 𝑌 ≤  𝑦  ,  𝑍 ≤  𝑧 ൟ, 

𝑃(𝐴𝐵𝐶) = 𝑃൛𝑋 ≤  𝑥 , 𝑌 ≥  𝑦  ,  𝑍 ≤  𝑧 ൟ, 

(4.3.1) 
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𝑃(𝐴𝐵𝐶) = 𝑃൛𝑋 ≥  𝑥 , 𝑌 ≤  𝑦  ,  𝑍 ≤  𝑧 ൟ, 

𝑃(𝐴𝐵𝐶) = 𝑃{𝑋 ≥  𝑥,  𝑌 ≥  𝑦  ,  𝑍 ≤  𝑧 }, 

𝑃(𝐴𝐵𝐶) = 𝑃൛𝑋 ≤  𝑥 , 𝑌 ≤  𝑦  ,  𝑍 ≥  𝑧 ൟ, 

𝑃(𝐴𝐵𝐶) = 𝑃൛𝑋 ≥  𝑥,  𝑌 ≤  𝑦  ,  𝑍 ≥   𝑧 ൟ, 

𝑃(𝐴𝐵𝐶) = 𝑃൛𝑋 ≤  𝑥,  𝑌 ≥   𝑦  ,  𝑍 ≥   𝑧 ൟ, 

𝑃(𝐴𝐵𝐶) = 𝑃൛𝑋 ≥  𝑥,  𝑌 ≥  𝑦  ,  𝑍 ≥  𝑧 ൟ. 

 

Under these conditions, if trivariate binomial distribution is applied to 

trivariate order statistics, each probabilities of this distribution as follows, 

𝑃(𝐴𝐵𝐶) = 𝑃൛𝑋 ≤  𝑥 , 𝑌 ≤  𝑦  ,  𝑍 ≤  𝑧 ൟ ⟹  𝑝ଵ   

 =  𝐹,,(𝑥, 𝑦, 𝑧) (4.3.2) 

 

𝑃(𝐴𝐵𝐶) = 𝑃൛𝑋 ≥  𝑥 , 𝑌 ≤  𝑦  ,  𝑍 ≤  𝑧 ൟ ⟹ 𝑝ଶ 

 = 𝐹,(𝑦, 𝑧) − 𝐹,,(𝑥, 𝑦, 𝑧) (4.3.3) 

 

𝑃(𝐴(𝐵𝐶)) =  𝑃(𝐴𝐵𝐶) + 𝑃(𝐴𝐵𝐶) + 𝑃(𝐴𝐵𝐶) 

= 𝑃൛𝑋 ≤  𝑥 , 𝑌 ≥  𝑦  ,  𝑍 ≤  𝑧 ൟ  + 𝑃൛𝑋 ≤  𝑥 , 𝑌 ≤  𝑦  ,  𝑍 ≥  𝑧 ൟ 

+ 𝑃൛𝑋 ≤  𝑥 , 𝑌 ≥  𝑦  ,  𝑍 ≥  𝑧 ൟ ⟹ 𝑝ଷ   

 = 𝐹(𝑥) − 𝐹,,(𝑥, 𝑦, 𝑧) (4.3.4) 

 

𝑃(𝐴(𝐵𝐶)) = 𝑃൛𝑋 ≥  𝑥 , 𝑌 ≥  𝑦  ,  𝑍 ≤  𝑧 ൟ  + 𝑃൛𝑋 ≥  𝑥 , 𝑌 ≤  𝑦  ,  𝑍 ≥  𝑧 ൟ 

+ 𝑃൛𝑋 ≥  𝑥 , 𝑌 ≥  𝑦  ,  𝑍 ≥  𝑧 ൟ ⟹ 𝑝ସ   

 = 1 − 𝐹(𝑥) − 𝐹,(𝑦, 𝑧) + 𝐹,,(𝑥, 𝑦, 𝑧) (4.3.5) 
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Once the distribution of each probability is defined as above, n samples of r 

th, s th and t th of trivariate order statistics equal to 

𝑃 =   {𝑋: ≤ 𝑥,  𝑌௦: ≤ 𝑦,  𝑍௧: ≤ 𝑧 } 

=    𝑃 = {𝜉ଵ  = 𝑖, 𝜉ଶ  = 𝑗,  𝜉ଷ  = 𝑘 }

𝑛

𝑘=𝑡

𝑛

𝑗=𝑠

𝑛

𝑖=𝑟

 

1 ≤ 𝑟 ≤ 𝑛  , 1 ≤ 𝑠 ≤ 𝑛  and   1 ≤ 𝑡 ≤ 𝑛. 

When the trivariate binomial distribution is put into the equation, 

=    
𝑛!

ℎ! (𝑖 − ℎ)! (𝑚𝑖𝑛(𝑗, 𝑘) − ℎ)! (𝑛 − 𝑖 − 𝑚𝑖𝑛(𝑗, 𝑘) + ℎ)!



ୀ



ୀ௧



ୀ௦



ୀ

 

 ×  𝑝ଵ
 𝑝ଶ

(,)ି 𝑝ଷ
ି 𝑝ସ

ିି(,)ା (4.3.6) 

where 

𝑎 =  𝑚𝑎𝑥(0 , 𝑖 + 𝑚𝑖𝑛(𝑗, 𝑘) − 𝑛) , 𝑏 =  𝑚𝑖𝑛(𝑖, 𝑗, 𝑘), 

and  

𝑖, 𝑗, 𝑘 =  0, . . . , 𝑛. 

 

4.4  Particular Case: Gumbel Copula 

 

Copula is basically a joint distribution of random variables and two-

dimensional copula is a function ∁: [0,1]ଶ ⇒ [0,1]  with following three properties 

(Nelsen, 1999): 

1. For every 𝑢, 𝑣 ∈ [0,1],   ∁(𝑢, 0) = ∁(0, 𝑣)  = 0  
2. For every 𝑢, 𝑣 ∈ [0,1],   ∁(𝑢, 1) = 𝑢 and  ∁(1, 𝑣)  = 𝑣 
3. For every (𝑢ଵ, 𝑢ଶ), (𝑣ଵ𝑣ଶ)  ∈  [0,1]  × [0,1] with 

 𝑢ଵ ≤ 𝑢ଶ and 𝑣ଵ ≤ 𝑣ଶ, 

∁(𝑣ଵ, 𝑣ଶ) − ∁(𝑣ଵ, 𝑢ଶ)  − ∁(𝑢ଵ, 𝑣ଶ) + ∁(𝑢ଵ, 𝑢ଶ) ≥ 0 
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Gumbel copula is a member of the Archimedean copula family and denoted 

𝐶ఏ
ீ(𝑢ଵ, … . . , 𝑢). Furthermore, its distribution as follow,  

𝐶ఏ
ீ(𝑢ଵ, … . . , 𝑢)  =     exp (−[ (− 𝑙𝑛 𝑢ଵ ) ఏ+ . . . +(− ln 𝑢) ఏ]

  
ଵ
ఏ),  

𝜃  ≥  1 ,   𝜓ఏ(𝑢)  =  (−𝑙𝑛 𝑢) ఏ. 

 

𝜃 shows the degree of dependency, when 𝜃 = 0 means that independence 

copula and  𝜃 =  ∞ means comonotonicity copula. If the Gumbel copula is applied to 

the trivariate order statistics distribution with margins 𝐹(𝑥)  =  𝑢, 𝐹(𝑦)  =  𝑣 and 

𝐹(𝑧)  =  𝑤, trivariate binomial order statistics will be, 

=    
𝑛!

ℎ! (𝑖 − ℎ)! (𝑚𝑖𝑛(𝑗, 𝑘) − ℎ)! (𝑛 − 𝑖 − 𝑚𝑖𝑛(𝑗, 𝑘) + ℎ)!



ୀ



ୀ௧



ୀ௦



ୀ

 

 ×  𝑝ଵ
 𝑝ଶ

(,)ି 𝑝ଷ
ି 𝑝ସ

ିି(,)ା (4.4.1) 

where, 

 𝑝ଵ = ∁൫𝐹(𝑥), 𝐹(𝑦), 𝐹(𝑧)൯ (4.4.2) 

= 𝑒ିൣି(ி(௫))ഇି (ிೊ(௬))ഇି(ிೋ(௭))ഇ൧
భ
ഇ

 

 𝑝ଶ = ∁൫𝐹(𝑦), 𝐹(𝑧)൯ − ∁൫𝐹(𝑥), 𝐹(𝑦), 𝐹(𝑧)൯ (4.4.3) 

= 𝑒ିൣି(ிೊ(௬))ഇି(ிೋ(௭))ഇ൧
భ
ഇ

− 𝑒ିൣି(ி(௫))ഇି(ிೊ(௬))ഇି (ிೋ(௭))ഇ൧
భ
ഇ

 

 

 𝑝ଷ = 𝐹(𝑥) − ∁൫𝐹(𝑥), 𝐹(𝑦), 𝐹(𝑧)൯ (4.4.4) 

= 𝐹(𝑥) − 𝑒ିൣି(ி(௫))ഇି(ிೊ(௬))ഇି(ிೋ(௭))ഇ൧
భ
ഇ

 

 

 𝑝ସ = 1 − 𝐹(𝑥) − ∁൫𝐹(𝑌), 𝐹(𝑧)൯ +   ∁(𝐹(𝑥), 𝐹(𝑦), 𝐹(𝑧)) (4.4.5) 

= 1 − 𝐹(𝑥) − 𝑒
ିቂି ୪ (ிೊ(௬))ഇି ୪୬൫ிೋ(௭)൯

ഇ
ቃ

భ
ഇ

+ 𝑒ିൣି(ி(௫))ഇି(ிೊ(௬))ഇି(ிೋ(௭))ഇ൧
భ
ഇ
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and 

𝑎 =  𝑚𝑎𝑥(0 , 𝑖 + 𝑚𝑖𝑛(𝑗, 𝑘) − 𝑛) , 𝑏 =  𝑚𝑖𝑛(𝑖, 𝑗, 𝑘), 

and 

𝑖, 𝑗, 𝑘 =  0, . . . , 𝑛 . 

 

4.5  Some Numerical Results and Application 

 

In the first three examples, given probabilities with different theta values were 

examined. In the fourth example, probabilities are unknown, however the result 

obtained by re-sampling method. The distribution of the 𝜃 = 2, 𝜃 = 5 𝑎𝑛𝑑 𝜃 =

8 values to the three-dimensional Gumbel copula is as follows, 

 

 

         Figure 4.1: Three-dimensional Gumbel copula with θ = 2 
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Figure 4.2: Three-dimensional Gumbel copula with θ = 5 

 

 

 

Figure 4.3: Three-dimensional Gumbel copula with θ = 8 
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4.5.1 Numerical Results I 

 

If probabilities defined as follows, 

𝑝ଵ = 0.08907, 𝑝ଷ =  0.51985,  

𝑝ଶ =  0.09765, 𝑝ସ =  0.29343. 

where 

𝜋ଵଵଵ = 0.08907, 𝜋ଵଶଵ = 0.14196, 𝜋ଶଵଵ = 0.09765 , 𝜋ଶଶଵ = 0.03811, 

𝜋ଵଵଶ =  0.22976 , 𝜋ଵଶଶ = 0.14813, 𝜋ଶଵଶ = 0.20880, 𝜋ଶଶଶ = 0.04652 

 

                                Table 4.3: Numerical Results I 

n i j k 𝜃 𝑓(𝑛, 𝑖, 𝑗, 𝑘, 𝜃) 

 

 

8 

 

 

6 

 

 

4 

 

 

4 

  2 0.024773 

  5 5.7069 × 10ିହ   

  8 3.3536 × 10ି   

 

 

5 

 

 

3 

 

 

2 

 

 

3 

  2 0.008034 

  5 1.5723 × 10ିହ 

  8 9.1954 × 10ି଼ 

 

6 

 

3 

 

5 

 

4 

  2 0.000764 

  5 1.4624 × 10ି 

  8 6.8413 × 10ିଵଵ 

 

 

4 

 

 

1 

 

 

1 

 

 

3 

  2 0.143307 

  5 0.008435 

  8 0.000656 
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4.5.2 Numerical Results II 

 

If probabilities defined as follows, 

𝑝ଵ = 0.04381, 𝑝ଷ =  0.54232,  

𝑝ଶ =  0.05423, 𝑝ସ =  0.35964. 

where 

𝜋ଵଵଵ = 0.04381, 𝜋ଵଶଵ = 0.13967, 𝜋ଶଵଵ = 0.05423 , 𝜋ଶଶଵ = 0.15376, 

𝜋ଵଵଶ =  0.21777 , 𝜋ଵଶଶ = 0.18488, 𝜋ଶଵଶ = 0.11906, 𝜋ଶଶଶ = 0.08682 

                                Table 4.4 Numerical Results II 

n i j k 𝜃 𝑓(𝑛, 𝑖, 𝑗, 𝑘, 𝜃) 

 

 

8 

 

 

6 

 

 

4 

 

 

4 

  2 0.018188 

  5 7.3979 × 10ିହ 

  8 9.9162 × 10ି 

 

 

5 

 

 

3 

 

 

2 

 

 

3 

  2 0.007512 

  5 2.2637 × 10ିହ 

  8 2.9802 × 10ି 

 

6 

 

3 

 

5 

 

4 

  2 0.000514 

  5 2.9372 × 10ି 

  8 5.861 × 10ିଵ 

 

 

4 

 

 

1 

 

 

1 

 

 

3 

  2 0.155350 

  5 0.011693 

  8 0.001420 
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4.5.3 Numerical Results III 

 

If probabilities defined as follows, 

𝑝ଵ = 0.12457, 𝑝ଷ =  0.55732,  

𝑝ଶ =  0.19479, 𝑝ସ =  0.12332. 

where 

𝜋ଵଵଵ = 0.12457, 𝜋ଵଶଵ = 0.16770, 𝜋ଶଵଵ = 0.19479 , 𝜋ଶଶଵ = 0.02589, 

𝜋ଵଵଶ =  0.20548 , 𝜋ଵଶଶ = 0.18414, 𝜋ଶଵଶ = 0.05946, 𝜋ଶଶଶ = 0.03797 

                                Table 4.5 Numerical Results III 

n i j k 𝜃 𝑓(𝑛, 𝑖, 𝑗, 𝑘, 𝜃) 

 

 

8 

 

 

6 

 

 

4 

 

 

4 

  2 0.032536 

  5 8.8258 × 10ିହ 

  8 1.2108 × 10ି 

 

 

5 

 

 

3 

 

 

2 

 

 

3 

  2 0.006530 

  5 1.7097 × 10ିହ 

  8 2.3986 × 10ି 

 

6 

 

3 

 

5 

 

4 

  2 0.000877 

  5 4.1377 × 10ି 

  8 8.8079 × 10ିଵ 

 

 

4 

 

 

1 

 

 

1 

 

 

3 

  2 0.084767 

  5 0.006521 

  8 0.000821 
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4.5.4 Numerical Results IV 

 

Let 𝑛, 𝑖, 𝑗, 𝑘 be realized 8,6,4,4, respectively and unlike the other three 

examples probability values are not known in this case. For the outcome of the 

distribution, randomly eight probability pairs were selected with the sum of these 

probabilities were one. By assigning random probability five hundred times, the results 

were obtained as in Figure 4.4. According to results,  𝑓(𝑛 = 8 , 𝑖 = 6 , 𝑗 = 4 , 𝑘 =

4 , 𝜃 = 2) is occurred between 0.01276 and 0.01858 with a 95% confidence interval.  

 

Table 4.6: Summary Statistics 

2.5%   50%   97.5%   Mean 

0.01276 0.01555 0.01858 0.01562 
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Figure 4.4: Trivariate Order Statistics Density with 500 Random Probability Samples 

 

Figure 4.5: Trivariate Order Statistics Cdf with 500 Random Probability Samples 
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CHAPTER 5: CONCLUSION 

 

Probability generating function, conditional distribution (Papageorgiou, and 

David, 1994) and linear regression (Chandrasekar, and Balakrishnan, 2002) of 

trivariate binomial were studied. In this thesis, trivariate binomial distribution is 

derived by using the fourfold scheme and De Morgan’s law. Modifications of trivariate 

binomial was illustrated and the size of the subject was expanded at the same time. 

Subsequently, trivariate order statistics were obtained. These new equations can be 

used in discrete probability models, probability generating functions and many 

application areas of statistics. Since (𝑋ଵ𝑌ଵ𝑍ଵ), … , (𝑋𝑌𝑍) are taken simultaneously 

as samples of 𝑋, 𝑌, 𝑍 random variables, it can be integrated to game theory. 

Furthermore, Gumbel copula has been selected as a special example, because its use 

extensively in the field of finance to define economic capital adequacy market risk and 

portfolio analysis. R programming language is used for numerical results and graphical 

drawings. In cases where the probabilities are not given, it has been shown that this 

issue can be studied in statistical application areas by re-sampling, confidence intervals 

and other tools. 
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APPENDICES 

 

Code of R for three-dimensional Gumbel copula with 𝜽 = 𝟐 , 𝜽 = 𝟓 , 𝜽 = 𝟖 

 

library(copula) 

library(RColorBrewer) 

library(scatterplot3d) 

set.seed(1994) 

gc <- gumbelCopula(2, dim = 3) # theta = 2  

U <- rCopula(200, copula = gc) 

plotvar <- U[,3]  

nclr <- 9  

plotclr <- brewer.pal(nclr,"PuBu")  

colornum <- cut(rank(plotvar), nclr, labels=FALSE) 

colcode <- plotclr[colornum]  

plot.angle <- 135 

scatterplot3d(U[,1], U[,2], U[,3], type="h", angle=plot.angle, color=colcode, 

              pch=20, cex.symbols=2, col.axis="gray", col.grid="gray", 

              xlab = "u", ylab = "v", zlab = "z") 

gc <- gumbelCopula(5, dim = 3) # theta = 5  

U <- rCopula(200, copula = gc) 

scatterplot3d(U[,1], U[,2], U[,3], type="h", angle=plot.angle, color=colcode, 
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              pch=20, cex.symbols=2, col.axis="gray", col.grid="gray", 

              xlab = "u", ylab = "v", zlab = "z") 

gc <- gumbelCopula(8, dim = 3) # theta = 8  

U <- rCopula(200, copula = gc) 

scatterplot3d(U[,1], U[,2], U[,3], type="h", angle=plot.angle, color=colcode, 

pch=20, cex.symbols=2, col.axis="gray", col.grid="gray", xlab = "u", ylab = "v", 

zlab = "z") 

 

Code of R for Numerical Example I 

 

gumbel.cop <- function(u1,u2,u3,theta){ 

    c_uvz <- exp(-((-log(u1))^theta + (-log(u2))^theta + (-log(u3))^theta)^(1/theta)) 

    c_uv <- exp(-((-log(u1))^theta + (-log(u2))^theta)^(1/theta)) 

    c_uz <- exp(-((-log(u1))^theta + (-log(u3))^theta)^(1/theta)) 

    c_vz <- exp(-((-log(u2))^theta + (-log(u3))^theta)^(1/theta)) 

    c_u <- u1 

    c_v <- u2 

    c_z <- u3 

    out <- data.frame(c_uvz,c_uv,c_uz,c_vz,c_u,c_v,c_z) 

    return(data.frame(out)) 

  } 

dens_cop <- function(t_cop){ 

    p_1 <- t_cop$c_uvz 

    p_2 <- t_cop$c_vz-t_cop$c_uvz 

    p_3 <- t_cop$c_u-t_cop$c_uvz 

    p_4 <- 1-t_cop$c_u-t_cop$c_vz+t_cop$c_uvz 

    prob_copula <- c(p_1, p_2,p_3,p_4) 
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    r_name <- c("p1","p2","p3","p4") 

    return(data.frame(prob_copula, row.names = r_name))  

} 

triv_bin <- function(n,i,j,k,prob1){ 

    h <- max(0, i + min(j,k) - n) 

    density_bin <- (prob1[1,]^h)*(prob1[2,]^(min(j,k)-h))* 

      ((prob1[3,])^(i-h))*((prob1[4,])^(n-i-min(j,k)+h)) 

    fact_bin <- factorial(n)/(factorial(h)*factorial(i-h)*factorial(min(j,k)-h)             
*factorial(n-i-min(j,k)+h)) 

    b <- min(i,j,k) 

    sum1 <- (b-h)*(fact_bin*density_bin) 

    sum2 <- (n-i)*sum1 

    sum3 <- (n-j)*sum2 

    sum4 <- (n-k)*sum3 

    return(sum4) 

  } 

p <- c(0.08907, 0.14196,0.09765,0.03811, 0.22976,0.14813,0.20880,0.04652) 

prob <- data.frame(p) 

u1 <- prob[1,]+prob[2,]+prob[5,]+prob[6,] 

u2 <- prob[1,]+prob[3,]+prob[5,]+prob[7,] 

u3 <- prob[1,]+prob[2,]+prob[3,]+prob[4,]   

for (theta in c(2,5,8)){ 

  t_cop <- gumbel.cop(u1=u1,u2=u2,u3=u3,theta=theta) 

  prob1 <- dens_cop(t_cop)  

  print(triv_bin(8,6,4,4,prob1 = prob1)) 

} 

for (theta in c(2,5,8)){ 
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  t_cop <- gumbel.cop(u1=u1,u2=u2,u3=u3,theta=theta) 

  prob1 <- dens_cop(t_cop)  

  print(triv_bin(5,3,2,3,prob1 = prob1)) } 

for (theta in c(2,5,8)){ 

  t_cop <- gumbel.cop(u1=u1,u2=u2,u3=u3,theta=theta) 

  prob1 <- dens_cop(t_cop)  

  print(triv_bin(6,3,5,4,prob1 = prob1)) 

} 

for (theta in c(2,5,8)){ 

  t_cop <- gumbel.cop(u1=u1,u2=u2,u3=u3,theta=theta) 

  prob1 <- dens_cop(t_cop)  

  print(triv_bin(4,1,1,3,prob1 = prob1)) 

} 

 

Code of R for Numerical Example II 

 

p <- c(0.04381, 0.13967, 0.05423, 0.15376, 0.21777, 0.18488, 0.11906, 0.08682) 

prob <- data.frame(p) 

u1 <- prob[1,]+prob[2,]+prob[5,]+prob[6,] 

u2 <- prob[1,]+prob[3,]+prob[5,]+prob[7,] 

u3 <- prob[1,]+prob[2,]+prob[3,]+prob[4,]   

for (theta in c(2,5,8)){ 

  t_cop <- gumbel.cop(u1=u1,u2=u2,u3=u3,theta=theta) 

  prob1 <- dens_cop(t_cop)  

  print(triv_bin(8,6,4,4,prob1 = prob1)) 

} 

for (theta in c(2,5,8)){ 
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  t_cop <- gumbel.cop(u1=u1,u2=u2,u3=u3,theta=theta) 

  prob1 <- dens_cop(t_cop)  

  print(triv_bin(5,3,2,3,prob1 = prob1)) } 

for (theta in c(2,5,8)){ 

  t_cop <- gumbel.cop(u1=u1,u2=u2,u3=u3,theta=theta) 

  prob1 <- dens_cop(t_cop)  

  print(triv_bin(6,3,5,4,prob1 = prob1)) 

} 

for (theta in c(2,5,8)){ 

  t_cop <- gumbel.cop(u1=u1,u2=u2,u3=u3,theta=theta) 

  prob1 <- dens_cop(t_cop)  

  print(triv_bin(4,1,1,3,prob1 = prob1)) 

} 

 

Code of R for Numerical Example III 

 

p <- c(0.12457, 0.16770, 0.19479, 0.02589, 0.20548, 0.18414, 0.05946, 0.03797) 

prob <- data.frame(p) 

u1 <- prob[1,]+prob[2,]+prob[5,]+prob[6,] 

u2 <- prob[1,]+prob[3,]+prob[5,]+prob[7,] 

u3 <- prob[1,]+prob[2,]+prob[3,]+prob[4,]   

for (theta in c(2,5,8)){ 

  t_cop <- gumbel.cop(u1=u1,u2=u2,u3=u3,theta=theta) 

  prob1 <- dens_cop(t_cop)  

  print(triv_bin(8,6,4,4,prob1 = prob1)) 

} 

for (theta in c(2,5,8)){ 
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  t_cop <- gumbel.cop(u1=u1,u2=u2,u3=u3,theta=theta) 

  prob1 <- dens_cop(t_cop)  

  print(triv_bin(5,3,2,3,prob1 = prob1)) } 

for (theta in c(2,5,8)){ 

  t_cop <- gumbel.cop(u1=u1,u2=u2,u3=u3,theta=theta) 

  prob1 <- dens_cop(t_cop)  

  print(triv_bin(6,3,5,4,prob1 = prob1)) 

} 

for (theta in c(2,5,8)){ 

  t_cop <- gumbel.cop(u1=u1,u2=u2,u3=u3,theta=theta) 

  prob1 <- dens_cop(t_cop)  

  print(triv_bin(4,1,1,3,prob1 = prob1)) 

} 

 

Code of R for Numerical Example IV 

 

set.seed(11123) 

options(digits = 4) 

df_total = data.frame() 

for (i in 1:500){ 

  p <- as.numeric(prop.table(table(sample(1:8, size=1000, replace=TRUE)))) 

  prob <- data.frame(p)  

  u1 <- prob[1,]+prob[2,]+prob[5,]+prob[6,] 

  u2 <- prob[1,]+prob[3,]+prob[5,]+prob[7,] 

  u3 <- prob[1,]+prob[2,]+prob[3,]+prob[4,]   
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  t_cop <- gumbel.cop(u1=u1,u2=u2,u3=u3,theta=2) 

  prob1 <- dens_cop(t_cop)  

  a <- triv_bin(8,6,4,4,prob1 = prob1) 

df_total <- rbind(df_total, a) 

 } 

names(df_total)[1] <- "density" 

quantile(df_total$density, probs = c(0.025, 0.50,0.975)) 

mean(df_total$density) 

ggplot(df_total, aes(`density`)) + geom_density()+  

geom_vline(xintercept = quantile(df_total$density, probs = c(0.025, 0.975)),  

lwd = 0.9, linetype = "dashed", col = "#4d79ff")+ 

geom_text(aes(x=0.01858, label="97.5 %", y = 250) , colour="#4d79ff", angle=90, 

vjust = -1.2, text=element_text(size=14), family = "Helvatica")+ 

geom_text(aes(x=0.01858 , label="0.01858 ", y = 0) , colour="#4d79ff",angle=90, 

vjust = -1,hjust = -0.2, size = 3.7, family = "Helvatica")+ 

geom_text(aes(x=0.01276, label="2.5 %", y = 250), colour="#4d79ff", angle=90, 

vjust = -1.2, text=element_text(size=14), family = "Helvatica")+ 

geom_text(aes(x=0.01276, label="0.01276 ", y = 0) , colour="#4d79ff", 

angle=90,vjust = -1, hjust = -0.2,size = 3.7, family = "Helvatica")+ylab("") + xlab("") 

+ theme_minimal() 

b <- (df_total$density) 

a <- empirical_cdf(b, ubounds=seq(0,1, length.out = 500)) 

a <- a$UpperBound 

plotvar <- seq(0,1,length.out = 500)  
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nclr <- 9  

plotclr <- brewer.pal(nclr,"PuBu")  

colornum <- cut(rank(plotvar), nclr, labels=FALSE) 

colcode <- plotclr[colornum]  

plot.angle <- 135 

s3d <- scatterplot3d(df_total$density, a, plotvar, type="h", angle=plot.angle, 

color=colcode, pch=20, cex.symbols=2, col.axis="gray", col.grid="gray") 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


