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ABSTRACT

TRIVARIATE BINOMIAL DISTRIBUTION AND TRIVARIATE ORDER
STATISTICS

Keskin, Cagin

M.Sc. in Applied Statistics
Advisor: Prof. Dr. Ismihan Bayramoglu

July, 2020

In this thesis, trivariate binomial equation derived by using bivariate binomial with
fourfold scheme. Applying this equation to order statistics, trivariate order statistics
distribution was obtained. In the fourth part of the thesis, Gumble copula was used as
a special example for trivariate order statistics distribution and the subject was
expanded with numerical examples and applications. These new distributions can be
used in probability models and the theoretical studies of the field of statistics.
Furthermore, different solutions can be developed by integrating into game theory

studies in economics.

Keywords: Trivariate binomial distribution, trivariate order statistics, fourfold
scheme, gumbel copula, bivariate binomial distribution
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OZET

UC DEGISKENLI BINOM DAGILIMI VE UC DEGISKENLI SIRA
ISTATISTIKLERI

Keskin, Cagin

Uygulamali Istatistik Yiiksek Lisans Programi
Tez Danismani: Prof. Dr. Ismihan Bayramoglu

Temmuz, 2020

Bu tezde, dort kath sema gdsterimine sahip iki degiskenli binom dagilimi kullanilarak,
tic degiskenli binom denklemi tiiretilmistir. Bu denklemi sira istatistiklerine
uygulayarak {i¢ degiskenli sira istatistigi dagilimi elde edilmistir. Tezin dordiincii
boliimiinde, Gumbel kopula, li¢ degiskenli sira istatistikleri dagiliminda 6zel 6rnek
olarak kullanildi, ayrica konu sayisal 6rnekler ve uygulamalar ile genisletildi. Bu yeni
dagilimlar olasilik modellerinde ve istatistik alaninin teorik ¢alismalarinda
kullanilabilir. Ek olarak, iktisatta oyun teorisi ¢aligmalarina entegre edilerek farkli

¢cOziimler gelistirilebilir.

Anahtar Kelimeler: Ug degiskenli binom dagilimu, ii¢ degiskenli sira istatistikleri,
dort katli sema, gumbel kopula, iki degiskenli binom dagilimi
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CHAPTER 1: INTRODUCTION

In statistics, the Bernoulli distribution named after the Swedish scientist Jakob
Bernoulli (1713) and improved version of this distribution (binomial distribution) can
be used in many areas of statistics. The Bernoulli distribution is basically two options
of an event with shown probability p and /-p. While Bernoulli distribution occurs a
single event, binomial distribution has » independent repetitions of Bernoulli events.
Yule (1919) processed the graphical and theoretical methods of the binomial
distribution, after that Aitken, and Gonin (1936) demonstrated the bivariate binomial
distribution by creating a fourfold table without replacement. Hamdan (1972) showed
the bivariate binomial distribution for X; and X> with unequal samples of n; and x>,
Oluyede (1994) has worked on the bivariate binomial by deriving the equal and
unequal margin indexes from the bivariate bernoulli distribution. Hamdan, and Jensen
(1976), Kocherlakota (1989) has made its various applications, which are conditional
distribution and regression. In addition to that, maximum likelihood estimation has
applied to the bivariate binomial (Hamdan, and Martinson, 1971) and the parameters

of the distribution (Hamdan, and Nasro, 1986).

Bivariate of binomial, poisson, negative binomial, hypergeometric, geometric,
exponential and gamma distributions were derived Marshall, and Olkin (1985) based
on the bivariate Bernoulli. Crowder, and Sweeting (1989) implemented the margins of
the bivariate binomial distribution by bayesian inference X | n ~ Binomial (n,p) and
Y | X,n ~ Binomial(n, q) . Polson, and Wasserman (1990) discussed the bivariate
binomial distribution using different priorities. Lee (1984) used symmetric bivariate
binomial in the health field by dividing patients two cluster sample groups, retinitis
pigmentosa and otitis media. On the other hand, Mishra (1996), made the generalized
formula of the bivariate binomial distribution with three parameters. Biswas, and
Hwang (2002) made a new derivation of bivariate binomial when X and Y random

variables have a correlation.



Papageorgiou, and David (1994) obtained the factorial moments, factorial
cumulative and conditional distributions of the bivariate binomial distribution and
derived the mixture bivariate binomial from the poisson distribution. They
(Papageorgiou, and David, 1995) also showed trivariate binomial distribution on
probability generating functions and conditional distributions. Chandrasekar, and
Balakrishnan (2002) showed the trivariate binomial distribution on the regression

equation.

Ordered statistics are also widely used in non-parametric and inference
statistics. Although it was used many papers, Wilks was the first systematically
addressed order statistics both non-parametric (1942) and parametric (1948) methods.
Boland et al. (1996) examined the dependency of bivariate order statistics under
different conditions. The moments of bivariate order statistics have developed
(Barakat, 1999) and Bairamov, and Eryilmaz (2003) studied bivariate order statistics
(X,,,Y,) with the new order of sample pairs (X, 11 , Yn+m)- Bairamov, and Giiltekin
(2010) worked on the different parameter margins of the bivariate binomial and its
extensions of 3x3 table. On the other hand, Bairamov, and Kemalbay (2013) examined
conditional bivariate order statistics on the improved version of the fourfold scheme.
In addition, they (2015) took Bairamov, and Eryilmaz derivation of the new order of

sample pairs and applied it in order to bivariate binomial distributions.

In this thesis, trivariate binomial distribution is shown and trivariate order
statistics are studied. The thesis proceeds as follows, bivariate binomial distributions
and their modifications are given in the second chapter. In the third chapter, bivariate
order statistics and how to obtain from bivariate binomial distribution is discussed.
The fourth chapter is examined under five subtitles and mainly focused on the
trivariate binomial distribution and trivariate order statistics. Afterwards, the
illustration of Gumbel copula was given and some numerical results and applications
were followed. In the last chapter, scope of the subject and its integration into different

areas will be discussed.



CHAPTER 2: BIVARIATE BINOMIAL DISTRIBUTION

Bivariate Bernoulli distribution and a detailed explanation of the bivariate
binomial will be discussed in this section (Aitken, and Gonin, 1936). Subsequently,
various modifications of bivariate binomial will be illustrated and the size of the

subject will be expanded.

2.1 Bivariate Bernoulli Distribution

Let {Q,F , P} be a probability space and X (w) and Y (w) be discrete random

variables defined in this space where w € ()

1, if w€eA

(@) :{ 0, if w€eAS

1, if w€B

V() :{0, if weBC

where A, B € F and distribution of probability mass function (pmf) presented as,

P{X =1}=p,P{X =0}=1-p, (2.1.1)
P{Y = 1}=q ,P{Y = 0} =1 —q, (2.1.2)
and0<p<1 0<qg<1.

Probability mass functions, as expressed above are called the Bernoulli
distribution with the parameter p and ¢. Furthermore, is shown as X ~ Bernoulli(p)
and Y ~ Bernoulli(q), respectively. Teugels (1990) made the bivariate Bernoulli
representation with parameters p; and g, in fourfold table. Let X ~ Bernoulli(p,) and
Y ~ Bernoulli(q;) be bivariate Bernoulli distribution, four occurrences can be
happen AB, ABC, A°B, A°B® with the probabilities m,;, m;5, T5q,T5,. In this case,

bivariate Bernoulli distribution is defined,



P{X = 1,Y = 1} = P(4B) = 1y, (2.1.3)

P{X = 1,Y:0}:P(ABC) = T,
P{X = 0,Y =1} =P(A°B) = my,,
P{X = 0,Y = 0} = P(A°BC) = m,,.

From (2.1.1) and (2.1.2) marginals of the bivariate Bernoulli distribution are

PX =1} =p; = myy+7m, ,PIX =0} =p; =1 + 715, (2.1.3)

P{Y: 1}:q1 :7T11+T[21 ,P{Y:0}2q2:ﬂ12+ﬂ22 (2.1.4)

where

anm =1, wherel,m = 1, 2.

Table 2.1: Bivariate Bernoulli Distribution in 2x2 Matrix

After defining margins and probabilities; expectations, variances, covariance

and correlation can be derived as below.



E(X) = p1 EY) = ¢ (2.1.4)
Var(X) = p1 X p, Var(Y) = q1 X q; (2.1.5)

Cov(X,Y) = E(XY) — E(X) E(Y) (2.1.6)

Cov(X,Y) =myq —p1 X qq = My Ty — MypMpq

_ Cov(X,Y) (2.1.7)
P JVar(X) \/Var(Y)

. 11Tl — 2721
p —
\/(7T11 + 115) (7 + my3) \/(7T11 + 1) \/(”12 + 155)

For more detailed information about the Bernoulli distribution, the probability
generating function (Teugels, 1990) and different distributions (Marshall, and Olkin,
1985) are derived from bivariate Bernoulli can be found. In this thesis, only the
bivariate Bernoulli, probability table and probability mass function are emphasized for

the representation of bivariate binomial distribution.

2.2 Bivariate Binomial Distribution

The binomial distribution is obtained from » independent repetitions of the
Bernoulli distribution and Jakob Bernoulli introduced this distribution. Probability

mass function of &k successes in n independent Bernoulli trial is expressed as,

P{X = k} = (Z) Pk (1= pyn-k 2.2.1)

where k = 1,2, ...,n and € (0,1).

The distribution illustrated above is called binomial distribution with the
parameter n, p and it is shown X ~ Binomial(n,p). Let Xand Y be a binomial random
variables and shown these random variables as an independent bivariate sample

(Xlr Yl)r (X2r YZ)J (X31 Y3)1 ey (an Yn) Wltha



_ , if w€A
(@) _{ 0, if weAS
_ , if w€B
V() _{ , if w€ B¢,

{Q,F , P} be probability space and X (w) ,Y (w) discrete variable of this space
where w € Qand A,B € F. Aitken, and Gonin (1936) are defined X and Y binomial
random variables with two possible outcomes 4, A€ and B, BC. They presented
bivariate binomial distribution on fourfold scheme without replacement with 4B, AB€,
A°B, A°B€ events and P(AB) = m,;,P(AB®) = m;,, P(A°B) = m,,, P(A°B®) =

5, probabilities.
me = i where[,m = 1,2.

&1,&,5,¢611,&12, €13 defined number of occurrences of n experiment as below.

&, = {number of occurences A inn trials}
&, = {number of occurences B inn trials}
¢11 = {number of occurences AB inn trials}
&, = {number of occurences AB® inn trials}
&3 = {number of occurences A°B inn trials}
In addition,
$1= $11 + 812 82 = $u1 + &z (22.2)

n

n
& = in and &, = ZYJ' i,j =123...n.
i=1

j=1



Table 2.2: Bivariate Binomial Distribution on Fourfold Scheme

: -

AB A B¢
A 11 T2
h times i-h times

ACB€
T2

n-i-j+h times

Consider the situation &, = iand &, = j, while n is the total number of

repetitions. Probability mass function of bivariate binomial can be written as follows,
PLj)=P =1i,6 =J}

5 2.2.3)
- Z C(ll]r h; n) T[llh Tl_'lzi_h 77_'21j_h nzzn—i—j+h

h=max(i+j—-n, 0)

where

ik = () (20 (o))

Thus, open form of the equation will be,

min(i,j)

n! ' . o
E h —h —h —i—j+h
RG-—mIG—h)!(n—i—j+h)! gt Ty Ty Ty,

h=m (i+j—-n, 0)

and i,j = 0,1,2,3...n. (2.2.4)



Bivariate binomial distribution with four probability situations have shown by
many studies (Aitken, and Gonin, 1936; Kocherlakota, 1989). From n experiments, if

A and B occurred together 4 times, they can be figure out (Z) ways. Since 4 has a total

of i observation, 4 and B¢ occurred together i-4 times and they can be realized (Tl’__;ll

ways. B has a j observations, therefore it can be observed together A€ with j-A times,

—i

and they can be figure out (;‘_h) ways. It is clear that, when 4 and B occurrences

known, the outcomes of 4B must be appeared upper bound min(i, j) and the lower
bound max(i + j —n, 0) observations. Hence, the probability of bivariate binomial
is the sum of all possible states. If the exact value of 4 is known, all possibilities of 4

do not need to be realized and P {¢;, =1i,& =j,&,1 = h}equalsto

n!

_ . h - i_n i ith
_h!(i_h)!(]'_h)!(n_l_j_l_h)!T[ll T[lzl n—i—j .

h
o/ 7" 1y,

After bivariate binomial marginals have been identified, expectations,

variances and covariance are

E(¢) = n(myq +m42), E(&;) = n(myq +mp) (2.2.5)

Var (§1) = n (myy + myp) (p1 + m53) (2.2.6)
Var (§;) = n(myq + myq) (42 + m33)

Cov(§1,&2) = n [my My — M) (2.2.7)

The general lines of the bivariate binomial distribution and the fourfold scheme
are emphasized to create the trivariate binomial distribution. More detailed research
on bivariate binomial distribution, can be found at Hamdan's works (Hamdan, 1972;
Hamdan, and Nasro, 1986; Hamdan, and Jensen, 1976; Hamdan, and Martinson,
1971).



2.3 Modification of Bivariate Binomial Distribution

In the previous subsection, bivariate binomial distribution is defined in the
fourfold model and processed the margins and probability mass function. After these
are described, modifications of the bivariate binomial distribution can be simply
derived and expand it for different conditions. Bairamov, and Giiltekin (2010)
modified the bivariate binomial random variable three possibilities, A; , A, , Az for X
and B;,B,,B; for Y. Thus, there were nine possible results which are
AyBy ,A1B; ,A1B3,A;B1,A2B, , Ay B3, A3B1 , A3 B, , A3 B3 Wit 014, 015, Ty 3, 021, T2z,
Ty3, 31, 32,33 probabilities. Furthermore, &; symbolize the number of times n
experiment observed in Ay, and &, ,&,,,¢&,1 are number of occurrences in n trial

B, ,A:B, and A,B,, respectively.

Assume that & =1i,& =j,&, =1,§, =m. Under these condition,

P(i,j,r,m) =P{& =i,& =j,&, =1,&3 =m} will be

min(i—r,j—m)

— T h r i—-r—h m ji—h—m cyn—i—j+h
= Z C(,j,h,r,mn) my;"m," my3 Ty ™ 134’ (1) J

h=max(i+j—-n, 0)

(2.3.1)
where i=7r,...n—m;j=m,....n—r;r=0,....n—m; m=0,...,n
and

1=Tq =Ty — T3 — Tpy — M3q = 7°

and

ciinrmm = (VG (7—_2:9

n!
TR mG—h-1(—h—m)(n—i—j+h)




In n trials, A1 and B> occurred together » times and they can be realized
(rr‘) ways. A1 and B; observed together 4 times, therefore they can be figure out (";T)

ways. Since, 41 has a total of i observation, 41 and B3 occurred together i-r-A times and

n—-r—h

i h) ways. Moreover, A> and B occurred together m times,

they can be realized (

therefore it can be realized ("n_li) ways. B1 has a j observations, therefore it can be

n—-i-m

]._m_h) ways. It is

appeared together 43 with j-m-h times, and they can be figure out (

obvious that, when A1 B>, A> Bi, A1 and B occurrences known, the outcomes of 41 B
must be appeared upper bound min(i — r,j — m) and the lower bound max(i + j —

n, 0) observations.

Table 2.3: Modification of Bivarite Binomial Distribution on 3x3 Matrix

A1B4 A1B; A1B3

11 USV) T3

h times r times i-h-r times

A3B,y

Ti31

Jj-h-m times

Bairamov, and Kemalbay (2013) made the more challenging bivariate binomial
modification by adding subgroup events to three sets of possible outcomes. Let, E, D
and F are the subset events of A°B, ABC, A°BC, respectively. &;, & and 1 be total
number of events take place in 4, B, and (D U F U E) with i ,j ,k. Hence, there are

four main events AB, AB, A°B, A°B¢ and three subset events E, D and F with

10



probabilities 14,7, ,T1 ,T,, of main events and p;,p,,p; of subset events,

respectively.

Under these conditions, P(i,j, k) =P {& =1i,é =j,n =k} of bivariate

binomial is presented,

i~h J= (2.3.2)

b
ZZZ C@i,j,hr,q,k,n) 7T11 P’ 12 — P1]l hor
= p =

21 [m,

]J —h-— qp k-r—q [ Typ — D3 ]n—L—]+h—k+r+q
where C(i,j, h,7,q, k,n)

n!
TRPIG—h-DqG-h-—Qk—T—q(n—i—+j+h—Fk+7+q)!

and

a =max0,i+j—n), b = min(i,j); i,j,k =0,1,...,n

In n trials, 4 and B occurred together /4 times and they can be realized (Z) ways.
D, which is the subset events of 4B, observed r times, they can be figure out ("_h)

nhr

ways. ABC observed i-h times and they can be realized ) ways. E is the subset

event of 4°B and appeared ¢ times, therefore it can be figure out (nq_i) ways. A°B

appeared together j-4 times and they can be realized (n ;l Z) ways. Since, total number

of subset events £, thus F occurred k-p-q times and it can be figure out (nk__l;]_ J;h) ways.

It is clear that, when 4 and B occurrences known, the outcomes of 4B must be appeared

upper bound min(i, j) and the lower bound max(i + j —n, 0) observations.

11



Table 2.4: Bivarite Binomial Distribution with subset events E, D and F

A BC
USV)

I-h times

D

P1

rtimes

ACBC

UsY)

n-i-j+h times

p3

k-r-q times

Conditional distribution (Bairamov, and Kemalbay, 2013) bayesian statistics
(Crowder, and Sweeting, 1989) and priorities (Polson, and Wasserman, 1990) of
bivariate binomial are beyond the scope of this thesis, however they are important

modifications.

12



CHAPTER 3: BIVARIATE ORDER STATISTICS

In chapter 3, single-order statistics will be defined and their distribution are
obtained from incomplete beta distribution. Moreover, using bivariate binomial

equation, bivariate order statistics distribution will be derived and explained.

3.1 Distribution of Single Order Statistics

Let X;,X5, ..., X,, be an independent identically distributed random variable
samples from infinite population with cumulative distribution function of F. Ordering

the X4, X5, ..., X,, correspond to increasing order as follows,

X(l) = min(Xl,Xz, ...,Xn)

Xy = i'th smallest of X1,X5, ..., Xy

Xy = max(Xy, Xz, o0, Xp).

Thus, X1y < X(2) <, ..., < X(n) are dependent random variables and called order

statistics of X. Fyx(x) is cumulative distribution function of each random variable
samples X and the cumulative distribution function of 7 th order statistic be represented

Fy(x). In addition, n sample size of r th ordered statistics can be displayed X or

X,.n. According to definition, F,(x) and F; (x) can be written,
P{Xmy < x} =P{Xa)<x, X2y S %, .0, Xny < 1}
Frax(X) = Fy(x) = P{X, < x},P{X, < x},...,P{X, < x} = (Fx(x))"
(3.1.1)

and

13



Fpin(X)=F(x)=1—-P{X; > x}=1—-P{X; > x, X, > x,.... X, > x}
=1-(A-PX; < x}),A—-P{X,<x}),.., 1 - P{X, <x})
=1— (1-Fx(x)" (3.1.2)

X X2 X(r-1) X(r) X Xe+)  Xm

Figure 3.1: Single Order Statistics Illustration

The Fy (x) and F, (x) is expressed above and to find Fy(x),

n

Foy(x) = P{X(r) < x} = P{U{exaclyiole,Xz,...,Xn are < x}

i=r

n n
= Z P{exaclyiof Xi,Xp, .., Xpare < x} = Z CL(Fy(x) (1 — Fy (x))™
i=r i=r

(3.1.3)

3.1.1 Beta Distribution

Beta distribution is bounded to [0, 1] and it is a distribution derived from

the beta function (B). Beta function can be expressed,

I . _T@r@ _(a—DIB-1D!
B(a,pB) = fox 11 —-x)f1ldx = Tatf) - @iB-D

(3.1.1.1)

Let X' be a continuous random variable with parameter /< x < 1 and

a, B > 0. Then, cdf of Beta distribution will be,

14



1 Fx(x) 1 g1 (3.1.1.2)
Betacqr(x;a,pB) = B(a,ﬁ)j;) ¥ (A=) dx

0, otherwise,

and probability density function (pdf) of Beta distribution will be,

_ _ (3.1.1.3)
a — )8
Betapdf(x; a,f) =19 B(a,p) N G

0, otherwise.

It is known that cdf of rth order statistics can be written,

- . . 1 Fx(®) .
> G (L= PG = s [ i =2
i=r ’ 0

(3.1.1.4)

which is known incomplete beta distribution and denoted by Ip (r,n—r+1).

Furthermore, probability density function of rth order statistics can be

derived,

P{r —1of X1,X,, .., X, < x,oneisin (x,x + Ax),and n —r of > x + Ax}

:(r;1>(n—(71”—1))<n—(2:§)—1)

x (F(O)) ™ (F(x + 4x) — F())(1 - F(x + 4x))" "

n!
- r—DIn—r

3 (F)) (F(x + 4x) — F(x))(1 — F(x + 4x)""

To get the equation derivative, it will be divided Ax and when Ax limit goes

to infinity, -will be ignored for simplicity of the next transaction,

n!
(r=1)!(n-r)
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. (F()) (F(x + 4x) — F(x))(1 — F(x + 40))""

- Alx—>oo Ax
Thus,
! r—1 n-r 3.1.1.5
for® = == () F @ =F(n)™7, O
(3.1.1.6)

fery () = 5 (F @) F-F0)"

B(rin—r+1

3.2 Distribution of Bivariate Order Statistics

Let X;,X5, ..., X, and Y3, Y5, ..., Y, be two independent identically distributed
discrete random variables. (X, ,Y;),(X;,Y), ..., (X, ,¥,) be a bivariate sample and
joint distribution is F(x, y) with Fx(x) and Fy(y) margins. X1y < X(2) <, ..., < Xy
be order statistics of X1, X5, ..., X, and Y(;y < Yy <, ..., < Y be order statistics of
Y;,Ys, ..., Y,. In addition, representation of (X ") » Y(S)) r th and s th of bivariate order

statistics of X and Y and alternatively can be shown (X,.,,Ys.,) where

1<r<nand 1<s<n.

Cumulative distribution function of r th and s th order statistics are written as

binomial distribution of X and Y respectively,

< , . (3.2.1)
Fon(0) = P(Xgy <3} = ) Ch(F()' (1 = ()™ = ) Pl =1}

= : e (3.2.2)
Fy) = P{Y <y} = z GEM) Q-Fo)" ™ = z P{Y = j}
j=s j=s
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In this case, » th and s th order of bivariate order statistics will be

n & (3.2.3)
Fono @) = PXey <%,V <3} = ) Y PlE = 1,6 =)
j=s i=r
Yoy 1
Xy, Y2))
|
Yoo —==-- !
|
! (X2, Y) (Xmy » Yo)
1 1 |
Yo =""77- T o A 4 U :
1 I 1
1 1 1
! ! !
X(l) X(Z) . . . . . X(Tl)

Figure 3.2: Bivariate Order Statistics on Cartesian Coordinate System

We discussed the binomial distribution and the bivariate binomial in detail

and P(i,j) = P{¢; =i,&, =} was derived chapter 2 as,

min(i,j)
n! .
h i—-h
- h!(i—h)!(j—h)!(n_i_j+h)!”11 Mm T

h=max(i+j-n, 0)

j—h n—i—j+h
J Ty J

Thus, P{X,., < x,Ys., < y} will be,

n n b |
e ~h j—h —i—j+h
ZZZh'(l h)l(] h)' Tl—l—]-}-h)lnll 7T12 7T211 7-[22n =]

(3.2.4)
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where
a =max(0,i+j—n), b = min(i,j)

and

The two reference books, A First Course in Order Statistics (Arnold,
Balakrishnan, and Nagaraja, 2008) and Order Statistics (David, and Nagaraja, 2004)

can examine these issues further for those who are interested.
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CHAPTER 4: TRIVARIATE BINOMIAL DISTRIBUTION AND
TRIVARIATE ORDER STATISTICS

Chapter 4 is the main topic of the thesis and consists of five sub-sections. Based
on the bivariate binomial distribution, trivariate binomial distribution will be created
in the first subsection. In the following, modification of the trivariate binomial
distribution will be discussed. Subsequently, trivariate order statistics will be derived
by trivariate binomial distribution. In the fourth subsection, Gumbel copula which is a
member of the Archimedean copula family, will be applied to the trivariate order
statistics distribution. Finally, the subject will be examined and expanded in detail by

giving numerical and graphical examples in the fifth subsection.

4.1 Trivariate Binomial Distribution

Let X, Y, Z be binomial random variables and each random variable has two

possible outcomes as beloved,

1, if w€eA

X@) =10, if wea
1, if w€B

Y@ =10 ifwesne
(1, if wecC

Z@) =10, ifwece

{Q,F ,P} be probability space and X(w),Y(w),Z(w) defined discrete random
variables in this space where w € land A,B,C € F. In this case, eight situations
can be occurred, ABC, ABCC, A°BC, A°B“C, ABC®, AB“C€, A°BCC, A°B“C® with

probabilities,

P{X =1,Y=1,Z=1} = P(ABC) = my4,, (4.1.1)
P{X = 1,Y=0,Z=1} = P(ABC) = mys1,

19



P{X = 0,Y=1,Z=1} = P(A°BC) = 7514,

P{X = 0,Y=0,Z=1} = P(A°BCC) = 1,5,

P{X =1,Y=1,Z=0} = P(ABC) = 1,15,

P{X = 1,Y=0,Z=0} =P(AB°CS) = 1,,,,
P{X = 0,Y=1,Z =0} = P(A°BCC) = m,y,,
P{X = 0,Y=0,Z=0} =P(ASB°CC) =m,,,.

ijk =1, where i,j,k = 1,2.

Thus, marginals of A, B and C will be,

P{X = 1} =P(A) = my11 + Typ1 + Mgz + Typp (4.1.2)
P{Y = 1} = P(B) = my11 + Ta11 + M1z + Ty (4.1.3)
P{Z = 1} =P(C) = my11 + Myp1 + My11 + Typ (4.1.4)

¢1,¢; &3 and &;,3 defined number of occurrences of # experiment as follows,

&, = {number of occurences A in n experiment},

¢, = {number of occurences B in n experiment},

&3 = {number of occurences C in n experiment},
&123 = {number of occurences ABC inn experiment}.

and

n n n
£ = in &, = ZYJ- and &, = sz ik =123..n.
i=1 j k=1

j=1

Let & =i,&, =j, & = kbe number of occurrences in n trials and the

marginals of X, Y and Z binomial distributions will be

. n ]
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n—i
X (1= (g1 + Mg + M1z + T1322))

) n i 4.1.6
P{é =j}= <]> (11 + o211 + Ty + Tpp2)’ ( )

n—j
X (1 = (m111 + Mo + Mygp + 7T212))

n
P{& =k} = () (mun + Mot + Tons + M0 (4.1.7)

n—k
X (1= (g1 + Mya1 + T11 + T221))

When trivariate binomial distribution are shown in the fourfold scheme, B and
C are taken together as one variable to illustrate in one dimension. In this case, there
will be four possible events ABC,A‘BC,A(BC)¢,A°(BC)¢ with P(ABC) =
p1,P(A°BC) = p,,P(A(BC)®) = p3 ,P(A°(BC)®) = p, probabilities.

If De Morgan’s law is applied to the A(BC)¢ and A€ (BC)¢,
ABC) =ABNC) =A(BCuC’ =AB U AC” (4.1.8)
AC(BO) = A(BNn ) = AS(BCuUCY) = A°BC U A°C¢ (4.1.9)
where
P(ABS) = P(ABSC) + P(ABSCC),
P(AC®) = P(ABC®) + P(AB‘C©),
P(ASBE) = P(ACBEC) + P(ACBECO),

P(ASCC) = P(A“BCC) + P(A°BCC©).
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P1,P2,p3 and p, defined as follows,

p, = P(ABC) = my44 (4.1.10)
p, = P(ABC) = 1,14 4.1.11)
ps = P(A(BC)) = P(ABC U ACS) (4.1.12)

= P(AB) + P(AC®) — P(ABSCC)
= P(ABC) + P(ABCS) + P(ABCCS)

= M1+ M1z + T2z

ps = P(AS(BC)) = P(A“BC U A°CC) (4.1.13)
= P(A°BC) + P(ACC) — P(ABEC®)
= P(ASBCC) + P(A°BCC) + P(ABCC®)

= 21 T M1 + Moo

To show that the summation of the four probabilities equal to one,
P(ABC) + P(A°BC) + P(A(BC)®) + P(A“(BC)")

= P(ABC) + P(A°BC) + P(ABC U ACS) + P(ASBC U A°C°)

= P(ABC) + P(A°BC) + P(AB®) + P(AC®) — P(AB‘C")

+P(ACBC) + P(ASCC) — P(ACBCCE)

= P(ABC) + P(A°BC) + P(ABCC) + P(A°B°C)
+ P(ABC®) + P(AB‘C®) + P(A°BC®) + P(A°B‘Cc®) =1

(4.1.14)
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Table 4.1: Trivariate Binomial Distribution on Fourfould Scheme

- - )

A
ABC
BC P1 b2
h times min(j,k)-h times

A(BC)¢ AC(BC)C
P3 [

i-h times n-i-min(j,k)+h times

From n experiments, if 4, B and C occurred together /4 times, then they can be

figure out (Z) ways. On the other hand, B and C happen together min(j,k). Thus, A°BC

can happened together min(j,k)-h times, therefore they can be realized (minr(‘j_,i)_h)

ways. Since, 4 has a i observation, 4(BC)¢ can be observed /-7 times and it can be
realized (7:__,}11 ) ways. In addition, ASBC)€ can be observed n-i- min(j,k)+h times and

n—i—min(j,k)+h

n_i_ml.n(jk)m) ways. It is obvious that, number of

it can be figure out (

occurrences A4 ,B ,C are known and the outcomes ABC upper bound must be
min(i,j, k) and the lower bound be max(0,i + min(j, k) — n) observations. After

identifying probabilities, margins, and observations, trivariate binomial distribution

willbe P= {§ =i,& =j, & =k}

min(i,j,k) |
n!
h!' (i — h)! (min(j, k) — h)! (n — i — min(j, k) + h)!

h=max(0 ,i+min(j,k)—n)
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h ., min(j,k)-h

X p"p, pgi_h p4n—i—‘min(j,k)+h (4115)

where,

Thus, min(j, k) can take place in three ways, j < k,k >jandj=k. If
trivariate binomial distribution is rearranged according to three conditions, it would
be,

min (i,j) o
h(i—-nG—-—h)!n—-i—j+h)!

h=max (0,i+j—n)

p "t Thpsthp I < ke

(4.1.16)

min (i,k)
n!
R(Gi—h)!(k—h)!(n—i—k+h)!

h=max (0,i+k—n)

plhpzk_hpgi_hp4n_i_k+h,j >k

(4.1.17)

min (i,j) |
n: .
h,, j—h
M- (—h)(n—i—j+ R P2 Ps

h=max (0,i+j—n)

i—-h.,, n—i—j+h .
p T =k

(4.1.18)

where i = 0,...,n;j =0,...,n; k =0,...,n

4.2 Modification of Trivariate Binomial Distribution

Let X, Y, Z be binomial random variables and each random variable has three
possible outcomes A;,A,,A; for X, B;,B,,B; for Y and C;,C,,C; for C.

Subsequently, there were twenty-seven possible results which are,
AlBlcl ) AZBlcl 'ABBlcl 'Alecl ;AzBZC1 ) ABBZC1 'A1B361 ,A2B361 ) ABB361'

A1B1Cy, A3B1Cy , A3B1Cy , A1 By Gy, Ao By (o, A3BoCy , A1 B3 Gy, Ao B3y, A3 B3 (y,
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A1B163 ;AZBch 'ABBch 'AlBZC3 JAZBZC3 'A3BZC3 JAlB3CB 'AZBBC3 ,A3B3C3.
Moreover, probabilities of each possible results are 111, 211, T311, T121, T221, T321,

131, 7231, 7331, 112,212,312, 122, 222, M322, T132, 232,332,113, 213,313, 123,

223, T323, 133, 233, 333 and,
Zniik =1, where i,j, k = 1,2,3.

For Fourfold scheme, if B and C are taken together as in the subsection 4.1, there are
Six pOSSible results, AlBl Cll AZBI Cl’ A3B1 Cl’ A1 (Bl Cl)c, Az (Bl Cl)c, Az (Bl Cl)c. The

probabilities of each occurrence are identified by applying De Morgan’s law,

p1 = P(A1B1Cy) = w1y (4.2.1)
p2 = P(A3B,C1) = myq4 (4.2.2)
p3s = P(A3B1C1) = T3y, (4.2.3)
ps = A1(B1C1)¢ = A;(B; N ()¢ = A1(B1C U Clc) (4.2.4)

= P(A1B,) U P(4,6,°)
= P(41B,°) + P(4:C,") — P(A1B,C;) — P(41B;C3) — P(A1B5C,) — P(A1B5C5)
= P(A,B;Cy) + P(A;1B3Cy) + P(A1B,C;) + P(A1B,C3)
+P(A{B,C;) + P(A,B,C3) + P(A,B5C,) + P(A;B3C3)
P4 = 121,131, 112, T113, 122, 123, 132, 133

where
P(A1B,°) = P(A1B,Cy) + P(A,B3Cy) + P(A,B,C,)
+P(A;B,C3) + P(A1B3C,) + P(A1B5C3)
and
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P(Alclc) = P(AlB1CZ) + P(AlB1C3) + P(Alecz)

+P(A1B,C3) + P(A1B3C;) + P(A;B3C3)

ps = A2(B1C1)¢ = Ay(B; N € = Az(Blc U C1C) (4.2.5)
= P(4;B,°) U P(4,C;°)
= P(A,B,°) + P(4,C,°) — P(A;B,C;) — P(A;B,C3) — P(A;B5C,) — P(A;B5C5)
= P(A;B,C;) + P(A;B3C,) + P(A;B,C;) + P(A;B,C3)
+P(A,B,C,) + P(A,B,C3) + P(A,B5C,) + P(A,B3C3)

Ps = T221,M231, T212, 213, W222, 223, 232, T233

where
P(A,B,%) = P(A;B,Cy) + P(A;B5C,) + P(A,B,C,)
+P(A,B,C3) + P(A,B5C,) + P(A,B3C5)
and
P(Azclc) = P(A;B,C;) + P(A;B1C3) + P(A;B,(3)

+P(A;B,C3) + P(A;B3C;) + P(A;B3C3)

P = A3(B1C) = A3(B; N C;)¢ = A3(B,° U C,°) (4.2.6)
= P(A3B;°) U P(45C;°)
= P(A3B,°) + P(A3C,“) — P(A3B,C;) — P(A3B,C3) — P(A3B5C,) — P(A3B5C5)
= P(A3B,C;) + P(A3B3C,) + P(A3B,(;) + P(A3B,C3)
+P(A3B,C,) + P(A3B,C3) + P(A3B3C,) + P(A3B3C3)

Pe = 321,331, M312, 313, 322, 323, T332, 333
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where
P(A3B,%) = P(A3B,C;) + P(A3B5C,) + P(A3B,C;)
+P(A3B,C3) + P(A3B5C,) + P(A3B3C3)
and
P(A3C,%) = P(A3B,C;) + P(A3B,C3) + P(A3B,C,)
+P(A3B,C3) + P(A3B5C,) + P(A3B3C3)
and

P1+P2+D03+Ps+ps+pe=1

Table 4.2: Modification of Trivariate Binomial Distribution

P1 P2 P3

h times r times min(j,k)-h-r times

Al(Blcl)C

P4

i-h times

Let &, defined the number of times n experiment observed A, and &, ,&5, &4,
are number of occurrences in  trial of B; , C; and A,B,Cy, respectively. Assume that
& =1i,&=j,& =k,&, =r. From n experiments, 4> and B1C; occurred together
r times and they can be figure out (’:) ways. 41 and B1C1 observed together / times,
therefore they can be realized (",") ways. Since, BiCi has a total of min(jk)

observation, 43 and B1C1 occurred together min(j,k)-h-r times and they can be realized
( noreh ) ways. Moreover, A2 and B occurred together m times, therefore it can
min (j,k)-r—h
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be realized ("n_li) ways. 41 has a i observations, therefore it can be appeared together

min (jk)

ion ) ways. It is obvious

(B1C1)€ with i-h times, and they can be figure out ("_
that, when 41B1C1, A2B1C1, A1 and B1C; occurrences known, the outcomes of 4181C
must be appeared upper bound min(i,j —r,k —r) and the lower bound max(i +

min (j, k) —n, 0) observations.

Under these conditions, P(i,j,r,m) =P {& =1i,& =j,&, =71} willbe

a
- Z C(ij k,1,m) Py po” pa™MUR TR p PR (g pgYnmimm GO

h=b

(4.2.7)
where
i=0,....n;j=r,....,n;k=r,...,n;r=0,...,n
and
a = max(0,i + min(j,k) —n),b = min(i,j —r,k — 1)
and
C(@,j,k,r,n) = (Z) (n ; T) (minTéi’—k; : }rl — h) (n B Iini_nh(j, k)>

n!
~ 7R (min G, k) — 7 — h)! (i — B)! (n — i — min(j, k) + h)!

4.3 Trivariate Order Statistics

Let the margins 4, B, C be defined less than 7, j and £, respectively with
notation A = {X; < x},B = {Y] < y} ,C ={Z, < z}. Distribution of each

probability will be,
P(ABO)=P{X; < x,Y; <y, Zy < z}, 4.3.1)
P(ABC)=P{X;< x,Y; 2y, Z, < z},
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P(A°BC) =P{X;= x,Y; <y, Z, < z},
PABCC)=P{X; =2 x, V> y,Z, < z},
P(ABC®) =P{X; < x,Y, < y, Z,

v
N
b

PABC) =P{X; = x, Y, <y, Z
P(ABCO)=P{X; < x, Y, > y,Z

P(ABCC) =P{X;= x, Y, 2 y, Z

Under these conditions, if trivariate binomial distribution is applied to

trivariate order statistics, each probabilities of this distribution as follows,

P(ABO)=P{X; < x,Y,<y,Zy< z}= p,

= Fxyz(x,y,2) (4.3.2)
P(A°BC) =P{X; = x,Y; < y,Zy < z}=p,
=Fyz(y,2) — Fxyz(x,y,2) (4.3.3)
P(A(BC)®) = P(ABCC) + P(ABC®) + P(AB‘C®)
=P{X;< x,Y;,2y,Z Sz} +P{X;< x,Y, <y, Z, > z}
+P{Xi <x,Yy=2y,Zy =2 Z}:>p3
= Fx(x) = Fxy z(x,y,2) (4.3.4)

PASBO)=P{X; = x,Y;>2y,Zy <z} +P{X; = x,Y; <y, Z, = z}
+PX;=2x,Y,2y,Zy=>z}=0p,

= 1 - Fx(x) - FY,Z(yi Z) + FX,Y,Z(x’ y, Z) (435)
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Once the distribution of each probability is defined as above, n samples of »

th, s th and ¢ th of trivariate order statistics equal to

P = {Xr:n SX, Ys:n Sy, Zt:n SZ}

:iii[’:{& =0 =), 8 =k}
i=r j=s k=t

1<r<n,l1<s<nand 1<t<n.

When the trivariate binomial distribution is put into the equation,

n n b
= ZZZZ R (i — h)! (minG, k) —hr)li(n— i —min(j, k) + h)!

X pylt p,MnUKI=R  i=h g n—i=min(k)+h (4.3.6)

where
a = max(0,i +min(j,k) —n),b = min(i,j, k),

and

4.4 Particular Case: Gumbel Copula

Copula is basically a joint distribution of random variables and two-
dimensional copula is a function C:[0,1]? = [0,1] with following three properties

(Nelsen, 1999):

1. Foreveryu,v € [0,1], C(x,0) =C(0,v) =0
2. Foreveryu,v € [0,1], C(u,1) =uand C(1,v) =v
3. Forevery (uq,u,), (v,v,) € [0,1] x [0,1] with

u; < uyand v; < vy,

C(v,v2) — C(vy,uz) — Clug, v2) + Clug,uy) 20
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Gumbel copula is a member of the Archimedean copula family and denoted

c5Y (uq, ....., up). Furthermore, its distribution as follow,

C§Y(uq, vnsuy) = exp(—[(=Inu)?+...+(=1Inuy,) 9] 5),

0 =1, Pgw) = (=lnuw)?.

6 shows the degree of dependency, when 8 = 0 means that independence
copula and 6 = oo means comonotonicity copula. If the Gumbel copula is applied to
the trivariate order statistics distribution with margins Fy(x) = u, Fy(y) = v and

F;(z) = w, trivariate binomial order statistics will be,

n b
. ZZZZ (i — h)! (min(, k) —hr)li(n— i —min(, k) + h)!

min(j,k)—h p3i—h p4n—i—min(j,k)+h 4.4.1)

X pip,

where,
p1 = C(Fx(x), Fy (), Fz(2)) (4.4.2)

— o~ [-In(Fx@)?-L (Fy()?-in(Fz(2)°]°
P2 = C(FY(Y): Fz(Z)) - C(Fx(x):Fy()’):Fz(Z)) (4.4.3)

1 1
= o~ [~InFy (P -in(Fz(2)°] _ o~[-In(Fx(x)?~In(Fy ) -1 (Fz(2)?]°

p3 = Fx(x) — C(Fx(x): Fy(y), Fz(Z)) (4.4.4)
1
= Fy(x) — e~ [nFx ) -in(Fy ())° = in(Fz(2))°]°

pa =1 —Fy(x) = C(Fy(V), Fz(2)) + C(Fx(x0), (), Fz(2))  (44.5)

1
= 1
—1— Fy(x) — o Fy D= In(Fz2)° |’ 1 e [-nFx ()0 -n(Fy ()0 ~In(Fz(2))°]°
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and
a = max(0,i +min(j, k) —n), b = min(i,j, k),
and

iL,j,k=0,..n.

4.5 Some Numerical Results and Application

In the first three examples, given probabilities with different theta values were
examined. In the fourth example, probabilities are unknown, however the result
obtained by re-sampling method. The distribution of the 8 =2, 6 =5and 0 =

8 values to the three-dimensional Gumbel copula is as follows,

1.0

0.8

0.6

0.4

0.8 ‘
0.6 |

0.4

0.2

0.0

0.8 1.0

Figure 4.1: Three-dimensional Gumbel copula with 6 = 2
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Figure 4.2: Three-dimensional Gumbel copula with 6 = 5
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Figure 4.3: Three-dimensional Gumbel copula with 6 = 8
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4.5.1 Numerical Results 1

If probabilities defined as follows,
p1 = 0.08907, p3 = 0.51985,
p, = 0.09765, ps = 0.29343.
where
111 = 0.08907, 15, = 0.14196,m,,; = 0.09765,m,,; = 0.03811,

112 = 0.22976 y 122 = 014‘813, Ty = 020880, Ty = 004‘652

Table 4.3: Numerical Results [

f(ni,j,k, 0)

0.024773

5.7069 x 107°

3.3536 x 1077

0.008034

1.5723 x 107°

9.1954 x 108

0.000764

1.4624 x 1077

6.8413 x 10711

0.143307

0.008435

0.000656
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4.5.2 Numerical Results 11

If probabilities defined as follows,
p1 = 0.04381, pz = 0.54232,
p, = 0.05423, ps = 0.35964.
where
my11 = 0.04381, 1,1, = 0.13967, 1,11 = 0.05423,m,,, = 0.15376,
M1 = 0.21777 ,m45, = 0.18488, 1,1, = 0.11906, m,,, = 0.08682

Table 4.4 Numerical Results II

fni,j,k, 0)

0.018188

7.3979 x 107°

9.9162 x 1077

0.007512

2.2637 x 107°

2.9802 x 1077

0.000514

2.9372 x 1077

5.861 x 10710

0.155350

0.011693

0.001420
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4.5.3 Numerical Results 111

If probabilities defined as follows,
p1 = 0.12457, pz = 0.55732,
p, = 0.19479, ps = 0.12332.
where
m11 = 0.12457, 11,1 = 0.16770, 1511 = 0.19479 ,m,,, = 0.02589,
M1 = 0.20548,m5, = 0.18414,,,, = 0.05946, m5,, = 0.03797

Table 4.5 Numerical Results II1

fni,j,k, 0)

0.032536

8.8258 x 107°

1.2108 x 107°

0.006530

1.7097 x 107>

2.3986 x 1077

0.000877

41377 x 1077

8.8079 x 10710

0.084767

0.006521

0.000821

36



4.5.4 Numerical Results IV

Let n,i,j,k be realized 8,6,4,4, respectively and unlike the other three
examples probability values are not known in this case. For the outcome of the
distribution, randomly eight probability pairs were selected with the sum of these
probabilities were one. By assigning random probability five hundred times, the results
were obtained as in Figure 4.4. According to results, f(n=8,i=6,j =4,k =

4,0 = 2) is occurred between 0.01276 and 0.01858 with a 95% confidence interval.

Table 4.6: Summary Statistics
2.5% 50% 97.5% Mean

0.01276 0.01555 0.01858 0.01562

200

100

0.01278
001858

0.012 0.014 0.016 0.018 0.020

37



Figure 4.4: Trivariate Order Statistics Density with 500 Random Probability Samples
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Figure 4.5: Trivariate Order Statistics Cdf with 500 Random Probability Samples

38



CHAPTER 5: CONCLUSION

Probability generating function, conditional distribution (Papageorgiou, and
David, 1994) and linear regression (Chandrasekar, and Balakrishnan, 2002) of
trivariate binomial were studied. In this thesis, trivariate binomial distribution is
derived by using the fourfold scheme and De Morgan’s law. Modifications of trivariate
binomial was illustrated and the size of the subject was expanded at the same time.
Subsequently, trivariate order statistics were obtained. These new equations can be
used in discrete probability models, probability generating functions and many
application areas of statistics. Since (X;Y;Z;), ..., (X,,Y,Z,) are taken simultaneously
as samples of X,Y,Z random variables, it can be integrated to game theory.
Furthermore, Gumbel copula has been selected as a special example, because its use
extensively in the field of finance to define economic capital adequacy market risk and
portfolio analysis. R programming language is used for numerical results and graphical
drawings. In cases where the probabilities are not given, it has been shown that this
issue can be studied in statistical application areas by re-sampling, confidence intervals

and other tools.
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APPENDICES

Code of R for three-dimensional Gumbel copula with @ = 2,0 =5,0 =8

library(copula)

library(RColorBrewer)

library(scatterplot3d)

set.seed(1994)

gc <- gumbelCopula(2, dim = 3) # theta = 2

U <-rCopula(200, copula = gc)

plotvar <- U[,3]

nclr <-9

plotclr <- brewer.pal(nclr,"PuBu")

colornum <- cut(rank(plotvar), nclr, labels=FALSE)

colcode <- plotclr[colornum]

plot.angle <- 135

scatterplot3d(U[,1], U[,2], U[,3], type="h", angle=plot.angle, color=colcode,
pch=20, cex.symbols=2, col.axis="gray", col.grid="gray",
xlab ="u", ylab ="v", zlab ="z")

gc <- gumbelCopula(5, dim = 3) # theta =5

U <-rCopula(200, copula = gc)

scatterplot3d(U[,1], U[,2], U[,3], type="h", angle=plot.angle, color=colcode,
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pch=20, cex.symbols=2, col.axis="gray", col.grid="gray",
xlab ="u", ylab ="v", zlab = "z")

gc <- gumbelCopula(8, dim = 3) # theta =8

U <- rCopula(200, copula = gc)

scatterplot3d(U[,1], U[,2], U[,3], type="h", angle=plot.angle, color=colcode,
pch=20, cex.symbols=2, col.axis="gray", col.grid="gray", xlab = "u", ylab ="v",
zlab ="z7")

Code of R for Numerical Example 1

gumbel.cop <- function(ul,u2,u3,theta){
¢ uvz <- exp(-((-log(ul))*theta + (-log(u2))”theta + (-log(u3))“theta)(1/theta))
¢ uv <- exp(-((-log(ul))*theta + (-log(u2))"theta)"(1/theta))
c_uz <- exp(-((-log(ul))"theta + (-log(u3))*theta)"(1/theta))
¢ vz <- exp(-((-log(u2))"theta + (-log(u3)) theta)"(1/theta))
c u<-ul
c v<-u2
c z<-u3
out <- data.frame(c_uvz,c uv,c uzc vz, u,c v,c z)
return(data.frame(out))

}

dens_cop <- function(t cop){
p_1<-t cop$c uvz
p 2 <-t cop$Sc vz-t cop$c uvz
p_3<-t cop$c u-t cop$c uvz
p 4 <-1-t cop$c u-t cop$c vz+t cop$c uvz

prob copula<-c(p 1,p 2,p 3.p 4)
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r name <- ¢("p1","p2","p3","p4")
return(data.frame(prob_copula, row.names =r_name))
}
triv_bin <- function(n,i,j,k,prob1){
h <- max(0, i + min(j,k) - n)
density bin <- (prob1[1,]"h)*(prob1[2,](min(j,k)-h))*
((prob1[3,)"(1-h))*((prob1[4,])(n-i-min(j,k)+h))

fact bin <- factorial(n)/(factorial(h)*factorial(i-h)*factorial(min(j,k)-h)
*factorial(n-1-min(j,k)+h))

b <- min(i,j,k)
suml <- (b-h)*(fact _bin*density bin)
sum2 <- (n-i)*suml
sum3 <- (n-j)*sum?2
sum4 <- (n-k)*sum3
return(sum4)
}
p <-¢(0.08907, 0.14196,0.09765,0.03811, 0.22976,0.14813,0.20880,0.04652)
prob <- data.frame(p)
ul <- prob[1,]+prob[2,]+prob[5,]+prob[6,]
u2 <- prob[1,]+prob[3,]+prob[5,]+prob[7,]
u3 <- prob[1,]+prob[2,]+prob[3,]+prob[4,]
for (theta in ¢(2,5,8)){
t_cop <- gumbel.cop(ul=ul,u2=u2,u3=u3,theta=theta)
probl <- dens cop(t cop)
print(triv_bin(8,6,4,4,prob1 = probl))
}
for (theta in ¢(2,5,8)){
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t_cop <- gumbel.cop(ul=ul,u2=u2,u3=u3, theta=theta)
probl <- dens cop(t cop)
print(triv_bin(5,3,2,3,probl = probl)) }

for (theta in ¢(2,5,8)){
t_cop <- gumbel.cop(ul=ul,u2=u2,u3=u3, theta=theta)
probl <- dens_cop(t_cop)
print(triv_bin(6,3,5,4,prob1l = probl))

b

for (theta in ¢(2,5,8)){
t_cop <- gumbel.cop(ul=ul,u2=u2,u3=u3, theta=theta)
probl <- dens_cop(t_cop)
print(triv_bin(4,1,1,3,probl = probl))

}

Code of R for Numerical Example 11

p <-¢(0.04381, 0.13967, 0.05423, 0.15376, 0.21777, 0.18488, 0.11906, 0.08682)
prob <- data.frame(p)
ul <-prob[1,]+prob[2,]+prob[5,]+prob[6,]
u2 <- prob[1,]+prob[3,]+prob[5,]+prob|[7,]
u3 <- prob[1,]+prob[2,]+prob[3,]+prob[4,]
for (theta in ¢(2,5,8)){
t_cop <- gumbel.cop(ul=ul,u2=u2,u3=u3, theta=theta)
probl <- dens cop(t cop)
print(triv_bin(8,6,4,4,probl = probl))
}
for (theta in ¢(2,5,8)){
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t_cop <- gumbel.cop(ul=ul,u2=u2,u3=u3, theta=theta)
probl <- dens cop(t cop)
print(triv_bin(5,3,2,3,probl = probl)) }

for (theta in ¢(2,5,8)){
t_cop <- gumbel.cop(ul=ul,u2=u2,u3=u3, theta=theta)
probl <- dens_cop(t_cop)
print(triv_bin(6,3,5,4,prob1l = probl))

b

for (theta in ¢(2,5,8)){
t_cop <- gumbel.cop(ul=ul,u2=u2,u3=u3, theta=theta)
probl <- dens_cop(t_cop)
print(triv_bin(4,1,1,3,probl = probl))

}

Code of R for Numerical Example 111

p <-¢(0.12457,0.16770, 0.19479, 0.02589, 0.20548, 0.18414, 0.05946, 0.03797)
prob <- data.frame(p)
ul <-prob[1,]+prob[2,]+prob[5,]+prob[6,]
u2 <- prob[1,]+prob[3,]+prob[5,]+prob|[7,]
u3 <- prob[1,]+prob[2,]+prob[3,]+prob[4,]
for (theta in ¢(2,5,8)){
t_cop <- gumbel.cop(ul=ul,u2=u2,u3=u3, theta=theta)
probl <- dens cop(t cop)
print(triv_bin(8,6,4,4,probl = probl))
}
for (theta in ¢(2,5,8)){
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t_cop <- gumbel.cop(ul=ul,u2=u2,u3=u3, theta=theta)
probl <- dens cop(t cop)
print(triv_bin(5,3,2,3,probl = probl)) }

for (theta in ¢(2,5,8)){
t_cop <- gumbel.cop(ul=ul,u2=u2,u3=u3, theta=theta)
probl <- dens_cop(t_cop)
print(triv_bin(6,3,5,4,prob1l = probl))

b

for (theta in ¢(2,5,8)){
t_cop <- gumbel.cop(ul=ul,u2=u2,u3=u3, theta=theta)
probl <- dens_cop(t_cop)
print(triv_bin(4,1,1,3,probl = probl))

}

Code of R for Numerical Example IV

set.seed(11123)
options(digits = 4)
df total = data.frame()
for (iin 1:500){
p <- as.numeric(prop.table(table(sample(1:8, size=1000, replace=TRUE))))
prob <- data.frame(p)
ul <- prob[1,]+prob[2,]+prob[5,]+prob[6,]
u2 <- prob[1,]+prob[3,]+prob[5,]+prob[7,]

u3 <- prob[1,]+prob[2,]+prob[3,]+prob[4,]
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t_cop <- gumbel.cop(ul=ul,u2=u2,u3=u3,theta=2)
probl <- dens_cop(t_cop)
a <-triv_bin(8,6,4,4,probl = probl)
df total <- rbind(df total, a)
}
names(df total)[1] <- "density"
quantile(df total$density, probs = ¢(0.025, 0.50,0.975))
mean(df total$density)
ggplot(df total, aes("density’)) + geom_density()+
geom_vline(xintercept = quantile(df total$density, probs = ¢(0.025, 0.975)),
lwd = 0.9, linetype = "dashed", col = "#4d79ff")+

geom_text(aes(x=0.01858, label="97.5 %", y = 250) , colour="#4d79ft", angle=90,

vjust =-1.2, text=element_text(size=14), family = "Helvatica")+

geom_text(aes(x=0.01858 , label="0.01858 ", y = 0) , colour="#4d79ft",angle=90,

vjust = -1,hjust = -0.2, size = 3.7, family = "Helvatica")+

geom_text(aes(x=0.01276, label="2.5 %", y = 250), colour="#4d79ff", angle=90,

vjust = -1.2, text=element text(size=14), family = "Helvatica")+

geom_text(aes(x=0.01276, label="0.01276 ", y = 0) , colour="#4d791ff",
angle=90,vjust = -1, hjust = -0.2,size = 3.7, family = "Helvatica")+ylab("") + xlab("")

+ theme minimal()

b <- (df total$density)

a <- empirical_cdf(b, ubounds=seq(0,1, length.out = 500))
a <- a$UpperBound

plotvar <- seq(0,1,length.out = 500)
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nclr <-9

plotclr <- brewer.pal(nclr,"PuBu")

colornum <- cut(rank(plotvar), nclr, labels=FALSE)
colcode <- plotclr[colornum]

plot.angle <- 135

s3d <- scatterplot3d(df total$density, a, plotvar, type="h", angle=plot.angle,

color=colcode, pch=20, cex.symbols=2, col.axis="gray", col.grid="gray")
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