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ABSTRACT 
  

AN INTEGRATION OF CONTAINER LOADING AND VEHICLE ROUTING 

PROBLEMS  

 

BARIŞ, Ecem 

  

M.Sc. in Industrial Engineering  

Graduate School of Natural and Applied Sciences  

  

Supervisor: Asst. Prof. Dr. Zeynep SARGUT   

August 2016, 70 pages  

Vehicle routing and container loading are the  core functions of transportation. The 

integration of vehicle routing and container loading is becoming a research area for 

the logiscits companies. To get competitive advantage over other firms, firms should 

satisfy customer demand on time, with the right amount and high-quality service. By 

integrating the vehicle routing and container loading, firms can carry their products by 

less number of vehicles, which means reduced fuel cost but also time-reduction on 

deliveries. We focused on white-good industry in this thesis. Vehicle routing and 

container loading problems are NP-hard and very difficult to solve. In this thesis, a 

mathematical model was developed for the integrated capacitated vehicle routing 

problem with time windows and three-dimensional loading problem. Combination of 

these models are examined and then a decompostion method is proposed.  

Keywords: time window, vehicle routing, loading, three-dimensional, mathematical 

modeling, decomposition, heuristic 
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ÖZ 
  

KONTEYNER YÜKLEME VE ARAÇ ROTALAMA PROBLEMLERİNİN BİR 

ENTEGRASYONU 

  

BARIŞ, Ecem 

Endüstri Mühendisliği Yüksek Lisans Programı  

Fen Bilimleri Enstitüsü  

  

Tez Danışmanı: Yrd. Doç. Dr. Zeynep SARGUT  

  

Ağustos 2016, 70 sayfa  

Araç rotalama ve konteyner yükleme taşımacılığın çekirdek işlevlerindendir. Bununla 

birlikte, bu iki problemin entegrasyonu, şirketlerin sıklıkla araştırma alanı haline 

gelmiştir. Rakip firmalar üzerinde rekabet avantajı ve müşteri memnuniyeti sağlamak 

için firmalar, müşteri taleplerini zamanında, doğru miktarda ve kaliteli bir şekilde 

karşılamak zorundadırlar. Araç rotalama ve yükleme entegrasyonu sayesinde, firmalar 

ürünlerini daha az araçla taşır. Böylece daha düşük yakıt maliyeti ve daha kısa teslimat 

süresi elde ederler. Taşımacılıkta kullanılan ürünlerin özellikleri değişkenlik 

gösterdiğinden, bu tez konusu için beyaz eşya sektörü seçilmiştir. Araç rotalama ve 

yükleme sorunları NP zor olmakla birlikte, verimli bir şekilde çözülememektedir. 

Gerçek hayattaki kullanımlara uygunluğu test etmek amacıyla, belirlenen araç 

rotalama, zaman aralığı ve üç boyutlu yükleme problemi için bir matematiksel model 

geliştirilmiştir. Öncelikle iki ayrı problem birleşimi incelenip, sonrasında daha iyi bir 

çözüm sağlamak amacıyla ikiye bölünmüştür. Bu yaklaşımın avantajları tartışılmıştur. 

Anahtar Kelimeler: zaman aralığı, araç rotalama, yükleme, 3 boyut, matematiksel 

modelleme, ayrıştırma, sezgisel 
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CHAPTER 1: INTRODUCTION  
 

 

In today’s business environment, Transportation Management (TM) is the core of the 

logistics processes. It includes scheduling, routing, loading and unloading operations. 

Most of companies are subcontracting transportation operations to logistic firms since 

the distribution of products is a vital operation for many companies.  

The biggest advantage of this is; that they have some storage areas and the companies 

do not have to spend warehouse cost for it. Although, the logistic firms load the 

products to their vehicles and transport them to the customers, the production company 

is responsible for the due dates and customer satisfaction. Good transportation aims to 

deliver items on time, not to damage them and deliver the right amount. To satisfy the 

customer expectations, it is essential to integrate routing and vehicle packing. (Moura 

and Oliveira, 2009) 

A 3-PL (3rd Party Logictics) company provides outsourced logistics services for the 

customers. Shipper can include warehousing, transportation, freight negotiation, 

reporting, forecasting in their contracts. This study is aimed to solve the problem of a 

3-PL logistics company, which stores and distrubutes white goods directly to the 

retailers. This logistics company rents trucks which are used whole day to satisfy white 

good retailers’ demands. Moreover,  white goods have high volume and weight, it also 

effects the capacity utilized by the trucks. Only the routing is determined before the 

white goods are loaded. If the capacity of the truck is not enough to carry all goods of 

the retailer, then a new truck is arranged. They do not have an integrated system which 

combines both vehicle routing and truck loading problem. In this study, we aim to 

provide a combined solution which minimize the number of trucks and maximize the 

number of white goods loaded while all demand is satisfied.  
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This problem is related to two well-defined combinatorial optimization problems in 

the literature: vehicle routing problem and container loading problem. First, the 

number of vehicles and route of the each vehicle are determined; according to the 

solution, items of the each customer are combined into one group of items in the 

vehicle. If the vehicle capacity is not enough new vehicle is used and the routes are 

again created. In the first part of the problem VRP and CLP are examined separately, 

with their mathematical models; in the second stage, two problems considered as a one 

mathematical model which models the 3-PL company needs’. After that a heuristic 

will be developed for this combined model.  

Now, two combinatorial optimazation problem are introduced separetly with their 

objectives, constraints, variations and importance.  

1.1 Vehicle Routing Problem 

 

Vehicle Routing Problem (VRP) is a NP- hard combinatorial optimization problem.  

The roots of VRP come from Traveling Salesman Problem (TSP). TSP consists of one 

vehicle and a set of cities; which starts from depot and turns back to the depot. In VRP, 

there is more than vehicle; a number of vehicles located at a central depot have to serve 

a set of geographically dispersed customers. (Fig.1.) 

 

Figure 1 Vehicle Routing Problem  
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For example, vehicle 1 starts its route at the depot and then visits the forth customer, 

then fifth customer and again turns back to the depot, where it started to its tour. A 

number of vehicles satisfy all of the customer demands and sub-tour is not allowed. 

Sub-tour is a tour that one node visited more than one time in the route. The aim of the 

VRP is to serve a set of customers, with a known demand, minimizing the 

transportation cost, starting its route from the depot and each vehicle turns back to the 

depot.  Each vehicle has a given capacity and each customer has a given demand. 

  

VRP is a combinatorial optimization problem that means the number of feasible 

solutions increases exponentially when the number of customers increases (Bell & 

McMullen, 2004). There are many objectives of VRP such as minimization of global 

transportation cost (variable + fixed costs), minimization of the number of vehicles 

and balancing of the routes for travel time and vehicle load.  

 

There are different variants of VRP according to their features. These are Capacitated 

VRP (CVRP), VRP with Time Windows (VRPTW), VRP with Backhauls (VRPB) 

and VRP with Pickup and Delivery (VRPDP). One of the most studied version is 

CVRP. The vehicles are identical has the same capacity and homogenous. Split 

deliveries are not allowed. However, CVRP is not enough for the loading part of the 

problem. It only takes in to account of the total weight of the load that does not exceed 

the given capacity of the vehicles.  

VRPTW is another important problem for the logistics. Objective is as same as VRP, 

minimizing the number of vehicles and total distance traveled. The routes must be 

developed in such a way that each customer is visited only once by exactly one vehicle 

within a given time interval. Each route has to start and finish within the time window 

associated with the depot. Each vehicle has a capacity. Real life examples are bus 

routing, home delivery and technical services, food distributions. 
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Before starting CVRPTW, we given the notation below. The mathematical model is 

based on  Desrochers et al. (1988) 

 

Parameters:  

 , , 0,..., 1i j l N n    N is set of nodes. Nodes “0” and “n + 

1” represent depot, where every route 

must start and end, respectively. 

Nodes “1” to “n” represent n clients 

that must be visited. G is the graph 

G= (N,A). 

 k ϵ K ={1,2,...v} set of vehicles that can be used  

 , 1 0a A i j N N i j i n j          

 

set of arcs of G 

cijk traversing time of arc ,i j A  by 

vehicle k:  cijk >0 

[ai, bi] earliest and latest starting time of 

serving node i  (i.e., time window) 

C capacity of a vehicle in terms of 

weight 

ti service time client i 

Mijk = max{0, bi +cijk +ti −aj} Big M 

 

Decision variables: 

 

xijk equals to 1 if vehicle k serves client j immediately after client i and  0  

otherwise, i = 0, . . . , n ,  j = 1, . . . , n + 1, i ≠j, k K  

 

sik time at which vehicle k begins serving client i, i = 0, . . . , n + 1, k K , 

sik ϵ R+ 
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Min ∑ ∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘 
𝑛+1
𝑗=1

𝑛
𝑖=0

𝑣
𝑘=1          (1) 

 

Subject to                        

                                                                                                                      

∑ ∑ 𝑥𝑖𝑗𝑘
𝑛+1
𝑗=1

𝑣
𝑘=1 = 1 ,    i = 1,…, n    (2)                                

∑ 𝑥0𝑗𝑘 = 1𝑛
𝑗=1  ,    k =1,…,v    (3)       

∑ 𝑥𝑖𝑙𝑘
𝑛
𝑖=0  - ∑ 𝑥𝑙𝑗𝑘 = 0 𝑛+1

𝑗=1 ,   l=1,…, n  k=1,…,v   (4) 

∑ 𝑥𝑖(𝑛+1)𝑘 = 1𝑛
𝑖=1 ,   k =1,…,v    (5) 

sik + ti + cijk - sjk  ≤ Mijk (1-xijk) ,  ,i j A    k=1,…v    (6) 

𝑎𝑖  ≤ 𝑠𝑖𝑘 ≤ 𝑏𝑖     i = 0, . . . , n + 1 k = 1, . . . , v  (7) 

sik  ≥  𝑎𝑖 + ∑ max {0, 𝑎𝑗 − 𝑎𝑖 + 𝑡𝑗 + 𝑐𝑗𝑖𝑘}𝑛+1
𝑗=1 𝑥𝑗𝑖𝑘 , 

i = 0, . . . , n + 1 k = 1, . . . , v  (8) 

sik  ≤  𝑏𝑖 − ∑ max {0, 𝑏𝑖 − 𝑏𝑗 + 𝑡𝑖 + 𝑐𝑖𝑗𝑘}𝑛+1
𝑗=1 𝑥𝑖𝑗𝑘 , 

i = 0, . . . , n + 1 k = 1, . . . , v  (9) 

∑ 𝑑𝑖
𝑛
𝑖=1 ∑ 𝑥𝑖𝑗𝑘

𝑛+1
𝑗=1 ≤ 𝐶   k= 1,…,v    (10)                             

xi jk ∈ {0, 1}          (11) 

sik   ≥ 0          (12) 

 

Expression (1) gives the objective of minimizing the total cost. Constraints (2) ensure 

that each customer is assigned to one route and served by only one vehicle. Constraints 

(3) provide that each vehicle must start its route from the depot. There should be flow 

between the customers in the same route. Constraints (4) and (5) state that flow starts 

with the depot and end with the depot. The inequalities (6) ensure that a vehicle k 

cannot arrive at j before ti + cijk if it is travelling from city i to city j. Constraints (7) 

state that time windows for each city. The consistency of the time variables sik ensured 

through linearized constraints (8) and (9).  Constraints (10) provide the vehicle 

capacity restriction. Constraint (11) and (12) enforce that xijk is binary variable, and 
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sik is a non-zero variable. This model was coded in OPL. (Appendix-1)  

                

Vehicle Routing Problem with Backhauls (VRPPB) is also known as the line-haul and 

back-haul problem, which is an extension of CVRP. The customer set is partitioned 

into two subsets as line-haul customers which require a given quantity of product to 

be delivered and back-haul customers, which give quantity of inbound products, must 

be picked up. (Toth & Vigo, 2002) As a real-life application; supermarkets are line-

haul customers and grocery suppliers are the backhaul customers. Transportation cost 

is saved by visiting the backhaul customer in the distribution route. Most of the 

problems, line haul customers have higher priority than the backhaul customer, since 

the empty jars or boxes do not need to be collected immediately.  

 

In the VRPDP, a number of vehicles have to serve a number of transportation requests. 

For each request, origin and destination locations are specified. Origin location where 

it is to be picked up plus a pickup time window, and the destination location where it 

is to be delivered plus a delivery time window. The difference between the VRBP is, 

all deliveries have to be served before pick-ups can begin.  However, VRPPD provides 

that goods are transported between the pickup and delivery points. (Fig.2) For example, 

milk bottles are transported while empty ones must be returned to the origin depot.  

 

Figure 2 Vehicle Routing Problem with Pick-up and delivery 

Since there are lots of different extensions of VRPs, there are also lots of solution 

procedures for VRP. These are linear programming, branch and bound, branch and cut, 

set covering based algorithms and finally heuristics such as Clarke and Wright, Cluster 

First Route Second and meta-heuristics. Clarke & Wright (1964) suggested two 

versions of the saving algorithm. First one is parallel savings algorithm and the other 



M A S T E R T H E S I S  | 7 

 

 

one is sequential savings algorithm. In the parallel version, more than one route may 

be built at a time; despite in the sequential version exactly one route is built at a time. 

A numerical example was used to explain differences between two heuristics clearly.   

Let us consider 5 customers; with given transportation costs between all pairs, which 

are shown in the table, 0 refers the depot and the costs are symmetric. 

Table 1 Transportation cost between customers, cij 

From\To 0 1 2 3 4 5 

0 - 28 31 20 25 34 

1   - 21 29 26 20 

2     - 38 20 32 

3       - 30 27 

4         - 25 

5           - 

Assume that the vehicle capacity is 100 units and the customer demands are shown in 

the below table. 

Table 2 Customer demands 

Customer Quantity 

1 37 

2 35 

3 30 

4 25 

5 32 

By combining the two routes, we can obtain the savings as Sij = ci0+c0j-cij.                         

For example, S12=28+31-21=38.                                                                                                                       

The saving matrix is given in as Table 3.  

Table 3 Saving (Sij) matrix 

i\j 1 2 3 4 5 

1 - 38 19 27 42 

2   - 13 36 33 

3     - 15 27 

4       - 34 

5         - 
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The savings are sorted in descending order as following:        

1-5, 1-2, 2-4, 4-5, 1-4, 3-5, 1-3, 3-4, 2-3.                  

Now, we can examine both savings algorithms after these calculations.     

a) Sequential savings algorithm: 

Since the highest saving is given by the 1-5, it is chosen firstly. Also capacity is 

checked, 69 units does not exceed the vehicle capacity, 100 units. Secondly, 1-2 is 

considered. This neighborhood can be provided by connecting 1-2-5 or 5-1-2. 

However, the total demand exceeds the vehicle capacity, and the 1-2 is not connected. 

2-4 should be considered thirdly. 1-5 and 2-4 will be connected by more than one route 

but sequential savings only construct one route at a time. Next saving is the link 4-5, 

it can be connected 1-5-4 and total demand is not exceed vehicle capacity which means 

that it is feasible. According to the vehicle capacity no more nodes will be added to 

the route. 0-1-5-4-0 is the result for sequential saving. Total transportation cost is 

calculated as 98. 

b) Parallel savings algorithm 

Like in the sequential saving, it starts with 1-5. Since the parallel savings can build 

more than one route, 2-4 can be considered, and routes become 0-1-5-0 and 0-2-4-0. 

After that 3-5 is added to the first route; 0-1-5-3-0 and the total transportation cost is 

calculated as 171. For the parallel algorithm, after routes are built than they can be 

combined to reduce transportation cost if it is possible and it does not exceed.  

In this thesis, the time-window has an important role since the products are delivered 

from warehouse to the retailers and each retailer has an agreement with the customer. 

Toth and Vigo (2002) formulated the mathematical model for CVRP with time-

window constraints.  

Heuristics are often greedy methods; they usually get trapped in a local optimum and 

thus fail. This heuristics are problem dependent. The other solutions method for VRP 

is metaheuristics which are problem-independent techniques, they are not greedy, and 

allow to explore more thoroughly the solution space and thus get a better solution with 

global optimum. Meta-heuristics are powerful techniques and applied generally for a 

large number of problems. A meta-heuristic is a set of algorithmic concepts that can 

be used to define heuristic methods applicable to a wide set of different problems.  
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Most meta-heuristics are inspired by a biological or physical phenomena such as 

simulated annealing (SA), tabu search (TS), genetic algorithm (GA), ant colony 

optimization algorithm (ACO) and particle swarm optimization (PSO). Most of them 

belong to the class of local search, which iteratively applying small local moves to a 

solution for finding a better one. Ant colony optimization (ACO) is a new technique 

among the other meta-heuristic methods. Firstly, Italian researchers (Dorigo, et al., 

1996) developed the heuristic for simulating the food-seeking behaviors of ant 

colonies in the nature.  

 

The vehicle routing problems are important for logistics firms; logistics companies 

usually neglect the dimensions of the loads; they only consider the capacity in weight 

and volume. Therefore; the vehicle routing problem could find the best route according 

the distance or cost but the loading could not be feasible at all times. For this reason, 

transportation companies should take loading constraints into account for realistic 

planning. The integration of routing and loading model has to be developed since many 

of the planning tools do not include these constraints.  

 

1.2 Container Loading Problem 

 

The shipping companies deal with the utilization of the container capacities. 

Maximizing the utilization of container space can affect the container usage and also 

it reduces the cost of shipment. 

Container Loading Problem (CLP) is the problem, which loads a subset of rectangular 

boxes into a container with fixed dimension and maximizes the volume of the packed 

boxes. Furthermore, the container loading problem has different definitions on 

literature. Moreover, CLP problem with 3-dimensions are called 3-dimensional 

packing problem. It tries to fit different types of boxes in an optimal-level. (Gürbüz, et 

al. 2009) These types of problems aim to minimize the number of vehicles used. 

Containers can be defined as vehicles, trucks and also items can be defined as boxes. 

It is a very complex combinatorial problem and it usually aims to maximize loading 

efficiency (Pisinger, 2002).  The problem tries to hold two basic conditions except 
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including the special requirements of the problem: all small items lie totally with in 

the container and the items should not be overlapped. (Borthfeldt & Wascher, 2012)  

Dyckhoff, who was one of the earliest researchers of CLP, classified the problem into 

two types according to their container types; single container loading problem (SCLP) 

which is considered as one container and aim is to maximize the utilization of the 

container space and the second one is multiple container loading problem (MCLP) 

which considers more than one container (Dyckhoff, 1990). MCLP has two versions. 

The first one is bin packing problem (BPP) which tries to minimize the total number 

of containers used or minimize the total cost of vehicles used since the dimensions of 

the containers can be diffrent. A set of 3 dimensional items are packed into 3 

dimensional rectangular boxes, which are refered as bins. The second one is Knapsack 

Loading Problem (KPP), when the available space in the container is not enough than 

the problem tries to maximize the total volume or the number of packed items. (Fig.3) 

 

Figure 3 Knapsack Loading Problem (KPP) 

Additionaly, Pisinger (2002) defines Strip Packing Problem (SPP) which tries to 

minimize the depth of the container while the width and the height of the container are 

fixed. Pisinger (2002) did not specify the BPP and KPP as a subcategory of MCLP, it 

can be also valid for SCLP.  Also, if the containers are different in dimension and the 

items are strongly heterogeneous; it is called Multiple Heterogeneous Knapsack 

Problem (MHKP).   
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   Figure 4 Classification of CLP 

 

Wäscher et al. (2007) state that the container loading problems can be examined in 

terms of their input and output. Input problem types aim to minimize the number of 

used containers, which is in the category of BPP, and the objective of output problem 

types is maximizing number of loaded items. Moreover, SCLP and MCLP can be 

subcategorized by their item similarity. Container loading problems also classified 

based on the item type except the container amounts or dimensions. When the two 

items are identical then they have the same dimensions and if item set includes only 

one type, it means that items are homogenous. When the item type is not so large and 

the amount of item is high, it is called weakly heterogeneous. In contrast, if the item 

type is large and number of item is small then it is defined as strongly heterogeneous. 

 

1.3 Integrated Vehicle Routing and Container Loading Problem 

 

In transportation and distribution, vehicle routing problem (VRP) and container 

loading problem (CLP) are the two combinatorial problems which are related to each 

other.  

In this study, we aim to solve VRPTW and CLP together. VRP decides which 

customers’ package will be assigned to which vehicle so that the vehicle capacity is 

not exceeded. However, the arrangement of the boxes into the vehicle is not certain 
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after solving VRP. Therefore, the problem became vehicle routing with time windows 

and loading problem. (VRTWLP) 

In the literature, the four objectives are considered for VRTWLP: (1) minimization of 

the number of vehicles; (2) minimization of the total traveling distance; (3) 

minimization of the total time; and (4) the minimization of the total waiting time at 

clients.  

There are some different cases, which play important role to define the problem. 

Borthfeldt and Wascher (2012) defined some of the requirements which can be 

considered as constraints for this real life problem for the CLP and VRP in the below. 

1. Orientation constraints: White goods have rectangular shapes and according 

to their sensitivity, the orientation of loading is stable by the “This side up” 

sign, although some of the products can be flexible with more than one 

orientation. Selecting the one dimension as height, the vertical orientation of 

the box is defined.  In two dimensional problems, mostly the longest 

measurement can be selected as length and the second longest measurement as 

a width.  Vertical orientation constraints prevent the products and the packages 

being damaged. Moreover, Bischoff & Ratcliff (1995) discussed the horizontal 

orientation constraints, which is related with front and back side of the boxes. 

This constraint can either be defined in the mathematical model as a constraint 

or decided by the parameters of the model which is length, height or width.  

 

2. Load stability constraints: During the transportation boxes can be damaged 

if the boxes cannot be supported by another item or side of vehicle. Unstable 

boxes may result in injuries while loading and unloading operations. These 

stability constraints can be vertical as well as horizontal. In vertical stability, 

items should be supported by another item or by the floor. It is related to the 

gravity. Junqueira et al. (2012) state that horizontal stability can be provided 

by lateral side of the boxes or with the container wall at least three of four sides. 

It is also known as dynamic stability. Liu et al. (2011) use a stability as a soft 

constraints; it only needs to contact with one side of the other box or the one 

side of the container.   
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3. Load bearing constraints: This is the maximum pressure which can be 

applied to the item since some of the items are placed above of it. (Junqueira 

et al., 2012) According to the type of items and their strength; some items can 

put on to another item. It is also related to its vertical orientation. Gendreau et 

al. (2006) mentioned the load bearing strength in a soft case. The boxes should 

be divided into two categories as fragile and non-fragile. Non fragile boxes can 

be put only over non-fragile boxes. However fragile boxes can be put only the 

non-fragile boxes. Furthermore, container loading problems should prohibit 

the large boxes being put on smaller ones. Since the items have different 

densities, some products are restricted to be the under of another product, or in 

contrast, some products should be at the bottom of the container. (Scheithauer 

and Terno, 1996) 

 

4. Axle-weight constraints: These constraints should be used in large vehicles 

such as trucks and trailers. There are some axle-weight limits according to 

country. When an item placed in to a vehicle then the weight of item divided 

on to the axles of truck or axles of trailer. FA
j shows the weight of items of 

customer j on axles of the trailer and the FK
j is for the axles of the truck (Pollaris 

et al., 2014). 

 

Figure 5 Axle weight truck and trailer 

These constraints are also known as the weight distribution or load balance 

constrains.  Weight of the items should be spread as possible as across the 

container floor (Gehring & Bortfeldt, 1997). If the container is balanced then 

it reduces the risk of shifting items while the truck moves.   

5. Complete shipment of certain retailer order: Since the retailer orders many 

items, these products have to be shipped in the same vehicle. If the one items 

of the retailer are in the vehicle, then the other items have to be there. However, 

if one item of a customer cannot be loaded than the other items of the customer 

should not be loaded in the vehicle. This term is also defined as “Mutual 
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Positioning”. These types of constraints are usually used in disassembled 

products like furniture. If the shipment is incomplete then there is no need to 

deliver the other parts of the complete item to the customer. 

  

6. Multi-dimensional packing constraints: Each item in the vehicle cannot be 

overlapped and should be enclosed by the vehicle. This constraint is satisfied 

by checking each dimension separately.  

 

 

7. Vehicle capacity: The capacity of the vehicles is not only considered in weight 

limits; there are also different vehicle types in terms of dimension and weight, 

which is called heterogeneous fleet. Moreover, when the number of city which 

will have visited per vehicle is low, and the container is weakly homogenous 

the final solution quality must be better than the other types of problems. If the 

dimensions of the products are with the less number of items, trucks are full 

and the number of city visited is also less.  

 

8. Grouping same type of items:  According to the space efficiency, it is better 

to group the item with the same type together, if they are also to be shipped to 

closer cities.  Soft constraints can be used and some penalty costs can be given. 

Moreover, placing the items closely which belongs to the same customer, 

reduces the number of wrong unloading or loading operations of the items. 

(Haessler and Talbot, 1990). 

 

 

9. Multi-drop items: Each retailer’s products have to be closed to each other, 

unless there are lots of unloading and loading operations for the shipments. 

Moreover, each order of the client must be satisfied by a single vehicle. Each 

retailer’s box positions in to the container must be packed together so that the 

unloading can be done easily. Furthermore, it is called unloading sequence 

constraints. It provides that when the deliveries have just arrived to a customer, 

no items belonging to that customer served later because of the blocking items 

of the other cities (Pollaris et al., 2014).  Loading and unloading operations 
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must be done by LIFO (last-in-first-out) strategy. Moreover, in a one-

dimensional packing problem it is called LIFO constraints.  

 

10. Shipment Priorities: The boxes have high or low priorities according to the 

shelf-life of the products or deadlines and so on. Also Bortfeldt and Gehring 

(1999) divide priorities into two categories as soft and hard priorities. In hard 

loading priority, the boxes with high priorities exist in the container and the 

low ones may not exist if the high priorities are not almost inside of the 

container. In contrast, in soft loading priority, there are also low priority boxes 

in the container by using the coefficients in the objective function.   

 

 

11. Allocation Constraints:  When the items are shipped, the customer wants to 

receive all of his items in a single consignment. These allocation constraints 

are used in multiple container problems. On the other hand, some of the items 

like food or perfumery should not be transported in the same vehicle and these 

constraints are known as separation constraints. Liu et al. (2011) also mention 

allocation constraints as connectivity constraint, which tries to load the items 

in a particular subset in the same container. 
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CHAPTER 2: LITERATURE REVIEW 
 

 

In the context of this thesis, we review the problems individually and then we review 

different integrations and applications of them. Literature will be analyzed in the 

following subcategories: VRP, CLP and the integration of CLP and VRP.  

2.1 Vehicle Routing Problem  

 

Toth and Vigo (2002) develop exact methods for VRP. Since the logistics problems 

include the reliability of the delivery; time-windows have to be considered. The 

starting time of the service and service time should be associated by the time-windows.  

Moghaddam et al. (2006) aim to minimize the total fleet cost, routing cost and cost of 

violating the time-windows constraint. They consider a heterogeneous fleet. They 

restricted the customer satisfaction in the interval from a to b. (a and b is represented 

the bounds of soft time-window interval) If they do not deliver in this interval, they 

will be penalized with a penalty cost. Moreover; they define LB and UB for hard time 

windows. Service will not be allowed out of the hard time windows. 

Since the Vehicle Routing problem is an NP-Hard combinatorial optimization problem 

and many  heuristic methods are developed to solve it.  

Ant Colony Optimization (ACO), introduced by Dorigo et al. (1996), has been applied 

to many optimization problems such as traveling salesman (Dorigo, et al., 1996), job-

shop scheduling (Colorni et al., 1994) and quadratic assignment problems (Taillard, et 

al., 1997). 
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Bin et al. (2008) developed the Improved Ant Colony Optimization (IACO). This 

improved heuristic additionally updates the ant weight strategy, which means updating 

the increased pheromone. In another words, updating rule can integrate the global 

feature and the local feature, a mutation operation, and the 2-opt exchange for the VRP. 

2.2 Container Loading Problem 

 

The features of the containers and the items have a great impact on modeling since 

they are considered in real life. First of all, all related constraints are examined 

individually.  

Hemminki et al. (1998) produced efficient and stable loads by an on-line packing 

algorithm. In this algorithm, only a single vertical orientation is allowed for the boxes 

which are marked as “this way up!” sign. Moreover, Doerner et al. (2010) mention this 

orientation constraint as the loading should be orthogonal, which means boxes must 

be loaded parallel to the side of vehicle and the box heights should be fixed. Since, this 

thesis considers white-good industry, the products have vertical orientation and the 

horizontal moves are allowed in the container.   

Bischoff and Ratcliff (1995) apply many scenarios which can be used in container 

loading. Two different approaches are combined: load stability and multiple drop.  

There are a lot of meta-heuristics used for CLP. In the literature, Bortfeldt et al. (2004) 

use local search algorithms and compare with other studies’ outcomes.  

In the early 90’s, Haesseler & Talbot (1990) describe a heuristic for truck and rail 

loading problem and they also develop three-dimensional loading diagrams for the 

shipments of low-density products. Since there are lots of non-physical constraints, the 

development of an explicit mathematical model was impossible.    

Osman et al.  (2014) presented a loading model for a manufacturing company. 

Cylindrical parts have to put into the baskets. There are more than one layer and more 

than one basket. It aims to minimize the unutilized capacity of the baskets. They define 

the baskets in Cartesian coordinate system. The first model presented is nonlinear and 

aimed to reduce the complexity of three-dimensional loading problems. Moreover, two 

mixed integer models are developed: layer-loading problem and basket loading 

problem.  
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2.3 Integrated Vehicle Routing and Container Loading Problem  

 

First of all, the extensions of VRP and CLP are widely explained in the Chapter 1. 

According to needs of white-good industry, this constraints are examined in more 

detail. 

Allocation constraints are mostly used in the combination of vehicle routing and 

container loading problems by Moura & Oliveira (2009), Gendreau et al. (2006), Iori 

& Martello (2010). Moreover these constraints are used in a heuristic method for 

solving container loading problem in Eley (2003).  The logistics companies do not 

want to travel the same retailer more than one time. Since there are multiple containers, 

loads may not fit into a single container. The objective of this kind of problems can be 

the minimization of the number of containers required. 

Multi-drop condition is another important condition for our problem since each 

customer has subset of product groups; it may not affect the loading time of the item 

but it is important for the unloading conditions.  Doerner  et al. (2010) mention 

sequential loading in three-dimenisonal loading constraints. If the box b is visited after 

box a; then box a should not be at the top of item b.  

Doerner et al. (2010) handled two well-known  problems in combinatorial optimization 

CVRP and Bin packing problem (3BPP) by using ant colony optimization algorithm 

since it provides fast packing  for  the loading  side of the problem.  According to the 

problem, the related constraints are considered as below in 3L-CVRP (Three- 

Dimensional Loading Capacitated Vehicle Routing Problem).  

In the literature, the combination of these two different problems are not studied much 

since each problem is hard by itself. Moreover, the real-world instances are also huge 

and the solutions are generally infeasible or do not converge to optimal solution in 

reasonable times. For this reason, some of the researchers examine the problems with 

2-D loading constraints or 3-D loading constrains. VRP and two-dimensional loading 

problem combination are not studied in the literature too much. In VRP with 2-D 

Loading, the boxes and vehicle measurements are expressed in two dimensions, which 

is mostly width and length.  
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Pollaris et al.  (2014) illustrate that the importance of the axle weight consraints in a 

VRP model. The model is used in a small network and for each route the weight on 

the axles are compared with the legal limits.  

Leung et al. (2013) combined heterogeneous fleet vehicle routing problem with 2-

dimensional loading constraint. In this article, they solve the vehichle routing problem 

with simulated annealing heuristic local search method and embeded packing heuristic 

for two dimensional loading part of the problem. The aim is to  minimize the 

transportation cost and meet the customer demand.  Transportation cost is calculated 

by the fixed and variable cost of the vehicle such as fuel consumption, also according 

to the vehicle dimensions, the consumption increases. Capacity of the vehicle is 

evaluated by the length and width dimensions; and split delivery is not allowed in this 

problem. For the loading side of the problem; heuristics of Zachariadis were used and 

all of them search for the most suitable position for each item.  

In the 3L-CVRP, the dimensions of the boxes and vehicles are considered in three 

dimensions. Since the problem includes the height measurement then lots of feature 

can be added to the problem such as load bearing strength and stability of the boxes. 

The combination of VRP and CLP is another complex combinatorial problem since 

the objective of routing and loading are different. Although, the two problem types are 

widely studied in the literature, they are weakly combined in three-dimensional 

loading case.  

Gendreau et al. (2006) introduce this integration with additional constraints and 

present a tabu-search heuristic. The model includes the weight capacity, load bearing, 

and orientation constraints.  

Moura (2008) develop a multi-objective genetic algorithm to solve 3 dimensional VRP 

with time windows (3L-CVRP). The objective is to minimize the weighted sum of the 

number of vehicles and the total distance traveled.  

Moura & Oliveira (2009) studied the model in Sixt (1996) and Martello et Al. (2000). 

They presented two different resolution methods: sequential and hierarchical approach. 

The sequential approach includes the simultaneous planning of routes and loading. In 

hierarchical approach, according to the feature of the loading: unloading sequence-
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based, orientation and stability constraints are taken into account.  The objective is the 

sum of the number of vehicles and the total route time.  

Some researchers assume 3D-packing problems with unlimited height for a container. 

Gürbüz et al. (2009) proposed a heuristic method to solve this kind of problems. The 

algorithm called Largest Area First-Fit (LAFF) and it aims to minimize the height of 

the container used. When the number of items increase, the complexity of the problem 

increases with non-deterministic polynomial time (Robinson, 1980). The algorithm 

works using two types of placement methods. First method  tries to find the box with 

largest surface area by height minimization. After placing the boxes according to first 

method, the remaining boxes are allocated with the second method which fills the 

empty places.  

All of the constraints are mentioned in Chapter 1 with their numbers. The 

combination of VRP and CLP are compared in the below table. 

 

  Table 4 Comparison table for constraints in the literature 

 Constraints  

Literature 1 2 3 4 5 6 7 8 9 10 11 

Doerner, Fuellerer, Gronalt, Hartl, 

& Iori (2010) x x x  x  x  x   

Pisinger,(2002)      x x     

Bischoff, & Ratcliff (1995)  x    x x  x   

EB model (This study)  x        x  x  x        
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CHAPTER 3: PROBLEM DEFINITION 
 

 

Let us consider the problem where a set of customers demanding from a retailer, and 

the retailer should retain the products by the logistics firm. These logistic firms or the 

Third Party Logistics (3-PL) provider is the connection between buyer and seller 

(Fig.6). 

 

Figure 6 Flow for a 3-PL company 

Normally, the loading operations done by the 3-PL companies are not managed 

professionally. It means that the employee which loads the container decided to put 

items according to their destinations (first city is loaded first, LIFO) or does not 

consider the distance only thinks about fitting as many as items as possible. In the 

problem, there is only one depot in Kemalpaşa and supplier produces goods, and the 

3-PL is responsible for transporting them to the retailers. The problem starts from the 

loading operations at the warehouse and ends when all items are delivered to retailers.  

Here are the flows of loading operations for one of the biggest 3-PL company in Izmir. 
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In the problem, goods are transported by the 3-PL firm and the vehicles are 

heterogeneous, it means they have different dimensions. There are lots of narrow 

streets in İzmir and not all of the types of the vehicle are used for the deliveries. Also, 

it is also efficient for the fuel consumption.  Moreover, each cities’ demand is constant 

and they are few different types, which are weakly heterogeneous. 

Time Window: 3-PL companies are always charge of meet a deadline of the retailers’ 

time window. This is the most common type of vehicle routing problem. Each retailer 

should be served between opening time to closing time and their time windows are 

different in terms of the social density. 

Deci (cubic decimeter) Capacity: Except for the vehicle capacity, there is also 

capacity check for the white goods in terms of dm3, cubic decimeter. For the cargo and 

Figure 7 The flow chart of the loading operations  
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transportation companies, deci is used for volumetric, dimensional, weight calculation.  

In the following chapter, the calculation is shown. 

Moreover, in Section 1.3, general attributes for the CLP were defined, which will be 

the main constraints of the problem. According to the needs of the 3-PL Company, the 

constraints of the problem are listed below. 

Vehicle Capacity: Each vehicle has different capacity limit in terms of weight. 

According to Karayolları Trafik Yönetmeliği, weight capacity is limited by the 

government and it is calculated based on the number of tires and distance between the 

wheel bases.  

Orientation constraint: As all know, the packages of the white goods include the 

“this side up” sign. It prevents the damage of the products for themselves. If the 

refrigerator is upside down then it can be harmed. Instead of using this orientation as 

a constraint, it can be written as parameter, if the dimensions are fixed.  

Complete Shipment of certain retailer order: Each retailer demand is satisfied by a 

single vehicle, which means that split delivery is not allowed for the problem. All of 

the demands for one retailer must be completed in one shipment. Therefore, each 

retailer’s demand must be packed together to increase the efficiency of the unloading 

operations. (Moura & Oliveira, 2009) For example, if two vehicles satisfy the demand 

of one retailer, it should cause high fixed cost. 

Multi-dimensional packaging constraint: Each dimension of the box should be 

checked to avoid overlapping in the vehicle.  

Moreover, the problem has some assumptions; 

 The number of vehicle and dimensions of each vehicle are known. 

 Each vehicle’s weight capacity is known according to the rules and regulations of 

Turkey. (Karayolları Trafik Yönetmeliği) 

 The dimensions and number of each box are known. 

 Each dimension can be considered as width, height or depth according to how you 

view the box. The length of each box is placed at X-axis and the width of each box 

is placed at Y-axis and height of each box is placed at Z-axis. 

 The back-right-bottom (BRB) corner of vehicle is fixed at origin. 
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Figure 8 Directions of the boxes according to the dimensions 

 Fuel cost is considered as variable cost. 

 Average speed is defined in Karayolları Genel Müdürlüğü Hız Sınırları and fuel 

consumption (liters/100 km) data were provided from logistics company. Cost of 

diesel oil was calculated as 3,65 TRY/l iter. 

 Vehicle rents are considered as fixed cost. 

 The starting time is considered as 0 and the time unit is minutes. 

 Service time of each retailer is directly proportional to the size of the demand. Each 

box is loaded in 3 minutes approximately.   

 Covered vehicles are used, unloading operations can be done at the same time from 

the different side of the vehicle. Grouping in the truck of the items to each customer 

does not necessary.  

 

Figure 9 Covered Vehicle 

 

First of all, in order to develop a mathematical model, the input data sets are examined 

carefully. The inputs collected from the logistics company are the demand of each 

customer, number of vehicles, capacities of the vehicles and weight of the boxes, 

dimension of the vehicle and the boxes, time limitations of each customer (hard-time 

window and service time of each customer). 
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Since the time-window measurement is in minutes, the distance between cities 

(Republic of Turkey General Directorate of Highways, tarih yok) are converted from 

kilometers (km.) to minutes (min.). It should be calculated as below: 

Table 5 Calculation of distance in minutes 

 

 

Since the data belongs to the real-life, usually the rent of vehicles was calculated with 

the direct proportion of the type of the vehicles. There are two types of vehicle; light 

truck and medium truck.  

 

                                

Figure 10 Types of vehicles (Light Truck, Medium truck) 

 

Fuel consumption is one of the important variables, which affects the objective 

function directly and related with the total distance for the vehicle.   

 

Table 6 Calculation of fuel consumption in liter per minute 

 

        

 

Time–window is determined by the opening and closing hours. The workers are 

available to load or unload the items during the working hours. These hours are based 

on the location of the retailer. Operating hours of a store is between 6 am and 10 pm.  

𝑀𝑖𝑛𝑢𝑡𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑐𝑖𝑡𝑖𝑒𝑠 =
KM between cities

Average KM per hour
 

 

Fuel consumption (L/min) =Avg. speed (km/min)* fuel consumption (L/ km)
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CHAPTER 4: MATHEMATICAL MODEL 

 

 

Since the real problem contains two different NP-Hard problems, we analyz them 

separately.  

Moura and Oliveira (2009) presented a novel mixed integer programming model for 

simultaneous consideration of the VRPTW and CLP. While vehicle routing part of the 

model ensured that items are delivered to customers within the time windows, 

container loading aspect of the model formulation guaranteed a balanced load in which 

possible damages are prevented. Due to intractability of the developed model, authors 

did not attempt to solve the developed model.  

An improved VRTW and CLP model can be formulated by introducing new variables 

that strengthen the model formulation. 

 

G(N,A) a directed graph, A is the set of arcs and N is the set of nodes i, 

j, l ϵ N ={0,...,n, n+1}:G’s set of nodes. Nodes “0” and “n + 1” 

represents the depot, where every route must start and end, 

respectively. Nodes “1” to “n” represent n clients that must be 

visited 

k vehicle  index 

α, α´, α´´ box indices 

a arc index,  , 1 0a A i j N N i j i n j           , be a 

set of arcs of G 

fi weight of criterion i in the objective function based on their 

relative importance 

cijk traversing time of arc ,i j A  by vehicle k:  cijk >0 
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Decision variables: 

 

xijk=       {
   1, if vehicle 𝑘 serves client 𝑗 immediately after client 𝑖 

0, otherwise
 

yk =        {
   1, if vehicle 𝑘 is used

0, otherwise
 

γαk =       {
   1, if box 𝛼 is transported by vehicle 𝑘 

0, otherwise
  

δmα'α"k = {
1, if box 𝛼′is on the 𝑚𝑡ℎ side of box 𝛼" 𝑖𝑛 vehicle 𝑘 

0, otherwise
  

sik:  time at which vehicle k begins serving customer i 

z'αk,,z"αk,,z'"αk : box α’s starting positions inside vehicle k for x, y and z  

coordinates, respectively O  , k K , z'αk,, z"αk, z'"αk ϵ R+ 

Objective function: 

                                  Min f1  ∑ 𝑟𝑘𝑦𝑘
𝑣
𝑘=1  +      (1) 

f2 ∑ ∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘 
𝑛+1
𝑗=1

𝑛
𝑖=0

𝑣
𝑘=1      (2) 

 

subject to: 

[earliesti , 

latesti] 

earliest and latest starting time of serving node i  (i.e., time 

window) [earliesti ≤ latesti] 

lα,wα, hα length, width and height (respectively) of box α 

qα weight of box α 

Lk,Wk, Hk length, width and height (respectively) of vehicle k 

Qk weight capacity of vehicle k 

ti service time of vehicle k at client i 

rk fixed cost associated with the use of vehicle k 

m m ϵ Side = {1,2,…,|6|} relative sides of boxes, where  m=1 refers  

to being in the front, m=2 in the back,  m=3 on the left,  m=4 on  

the right,  m=5 above or m=6 below  of a box respectively. 

e(i) set of boxes belonging to node i 

M1, M2 big numbers used in linearization of the logical constraints. 
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∑ ∑ 𝑥𝑖𝑗𝑘
𝑛+1
𝑗=1

𝑣
𝑘=1 = 1 ,    i = 1,…, n    (3) 

∑ 𝑥0𝑗𝑘 = 𝑦𝑘
𝑛
𝑗=1  ,    k =1,…,v    (4) 

∑ 𝑥𝑖(𝑛+1)𝑘 = 𝑦𝑘
𝑛
𝑖=1 ,   k =1,…,v    (5) 

∑ 𝑥𝑖𝑙𝑘
𝑛
𝑖=0  - ∑ 𝑥𝑙𝑗𝑘 = 0 𝑛+1

𝑗=1 ,   l=1,…, n  k=1,…,v   (6) 

si,k + ti + cijk - sj,k  ≤ M1 (1-xi,j,k) ,  ,i j A    k=1,…v    (7) 

sik  ≥  earliesti ,    i = 0, . . . , n + 1 k = 1, . . . , v  (8) 

sik  ≤  latesti ,     i = 0, . . . , n + 1 k = 1, . . . , v  (9) 

∑ 𝑞𝛼 𝛾𝛼𝑘 ≤  𝑄𝑘
𝑜
𝛼=1     k=1,…,v    (10) 

∑ 𝛾𝛼𝑘 =  1𝑣
𝑘=1  ,   α=1,…,o    (11) 

∑ 𝑥𝑖𝑗𝑘 =  𝛾𝛼𝑘 
𝑛+1
𝑗=1 ,    i=0,…, n   k=1,…, v   ∀α ϵ e (i)  (12) 

z'
αk   – Lk   +  lα ≤ (1 − γαk ) M2,  α= 1, . . . ,o k = 1, . . . , v  (13) 

z"αk − Wk + wα ≤ (1 − γαk ) M2,  α= 1, . . . ,o k = 1, . . . , v  (14) 

z"'αk – Hk + hα ≤ (1 − γαk ) M2, α= 1, . . . ,o k = 1, . . . , v  (15) 

z'
α" k  + lα" ≤ z'α’k +(1- δ1α'α"k) M2,   α',α" ϵ O |  α' < α"      k=1,…,v (16) 

z'
α' k  + lα'  ≤ z'α"k + (1-δ2α'α"k )M2 , α',α" ϵ O |  α' < α"      k=1,…,v (17) 

z"
α"k  + wα" ≤ z"α' k +(1-δ3α'α"k )M2   α',α" ϵ O |  α' < α"      k=1,…,v (18) 

z"
α' k  + wα' ≤ z"α"k +(1- δ4α'α"k  )M2, α',α" ϵ O |  α' < α"      k=1,…,v  (19) 

z"'
α"k  + hα" ≤ z"'α' k +(1- δ5α'α"k )M2, α',α" ϵ O |  α' < α"      k=1,…,v  (20) 

z"'
α' k  + hα' ≤ z"'α"k + (1-δ6α'α"k) M2 ,   α',α" ϵ O |  α' < α"      k=1,…,v  (21) 

∑ 𝛿𝑚𝛼′𝛼"𝑘  
6
𝑚=1 ≥ 1 −(1- γα’k) - (1- γα’’k) α',α" ϵ O |  α' < α"      k=1,…,v (22) 

𝛿1𝛼′𝛼"𝑘 + 𝛿2𝛼′𝛼"𝑘 ≤ 1  α',α" ϵ O |  α' < α"      k=1,…,v  (31) 

𝛿3𝛼′𝛼"𝑘 + 𝛿4𝛼′𝛼"𝑘 ≤ 1  α',α" ϵ O |  α' < α"      k=1,…,v  (32) 

𝛿5𝛼′𝛼"𝑘 + 𝛿6𝛼′𝛼"𝑘 ≤ 1  α',α" ϵ O |  α' < α"    k=1,…,v  (33) 

γα’k  +  γα’’k   ≥ 2𝛿𝑚𝛼′𝛼"𝑘  α',α" ∈ O |  α' < α"   k=1,…,v m=1,…,6   (34) 

𝑥𝑖𝑖𝑘 = 0             i = 0,…, n+1  k=1,…,v    (35) 
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xi jk ∈ {0, 1}     ∀ i, j, k      (36) 

yk     ∈ {0, 1}     ∀ k      (37) 

sik   ≥ 0      ∀ i, k      (38) 

γαk   ∈ {0, 1}     ∀ α, k      (39) 

z'
αk   ≥ 0     ∀ α, k      (40) 

z"αk ≥ 0     ∀ α, k      (41) 

z"'αk ≥ 0     ∀ α, k      (42) 

δmα'α"k ∈ {0, 1}    ∀ m,  α', α'', k     (43) 

 

Objective function (1), (2) and constraints (3) to (15) are formulated as in Moura and 

Oliveira (2009). The number of vehicles (1) and total routing time (2) are minimized 

in the objective function with their weights f1 and f2, respectively. Note that, as in 

Moura and Oliveira (2009), loading of boxes is considered as a feasibility problem and 

therefore the objective function does not include any loading related criterion. 

Constraints (3) guarantee that only one vehicle is used from client i to client j. 

Constraints (4) ensure that if a vehicle is used then it departs from the depot. 

Constraints (5) make sure that if a vehicle is used, it returns back to the depot. 

Constraints (6) are flow conservation constraints; if a vehicle arrives to a node, then it 

has to leave from that node to another one. Constraints (7) guarantee if a vehicle visits 

client j after client i; then starting time of the service in client j is later than arriving of 

the vehicle to that city. Constraints (8) and (9) ensure time window of each client. 

Starting time of the service in client i should be greater than the earliest start time and 

less than the latest start time. Constraints (10) guarantee that the total weight of the 

boxes in each vehicle can not exceed the capacity of the vehicle. Constraints (11) make 

sure that each box is transported by only one vehicle. Constraints (12) ensure that all 

boxes of the same city must be transported by the same vehicle. Constraints (13)-(15), 

together with constraints (40)-(42), check for each dimension whether the box is 

appropriate or not for the vehicle.  

 

Constraints (16)-(21) guarantee that each box pair, which is placed inside the same 

vehicle does not intersect at each axis. (front or back; left or right; above or below). 

Note that, constraints (16)-(21) are reformulation of the same numbered constraints in 

Moura and Oliveira (2009). If two boxes are not in the same vehicle then these 

constraints are redundant. Therefore, instead of δmα'α"k in Moura and Oliveira (2009), 
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we use negation of the binary variables as (1- δmα'α"k). Constraints (22) ensure that if 

any two boxes are assigned to the same vehicle, at least one of the positioning variables 

must be equal to 1. Different from Constraints (22) in Moura and Oliveira (2009), we 

enforce to take value for these relative positioning variables. Since any two boxes can 

be above or below; right or left; front or back of each other, we formulate constraints 

(31)-(33) to avoid assignment of two opposite directional binary variables to 1 

simultaneously for each axis. Moreover, if any two boxes are not in the same vehicle, 

there is no need to compare relative positions of them. Hence, we formulate (34) as a 

valid inequality. Visiting the same client more than once is forbidden with constraints 

(35). Finally, domains of the variables are given in (36)-(43). The number of variables 

and constraints in this model are bounded by 6 × |O| × (|O|-1) × |K| / 2 and ((|O|2-1)/2) 

×|K|. 

4.1 A Numerical Example  

In this section, we provide a numerical example to demonstrate the integration of 

vehicle routing problem with time windows (VRTWLP) and container loading 

problem (CLP) and application of the mixed integer programming (MIP) model given 

in the previous section. An instance is generated for demonstration includes 8 clients 

(|N|=8), 25 boxes (|O|=25), 2 vehicles (|K|=2) where corresponding parameters are 

provided in the following tables. Note that since there are 8 real clients to be visited, 

due to model formulation, we label depot as both the first (i=0) and the last client (i=9) 

to be visited in the following tables. Dimensions of the each boxes were generated 

arbitrarily for the 25 boxes. (Appendix-2) 

Table 7 List of boxes of each client  

Client (i) Boxes 

1 1, 2, 3 

2 4, 5, 6, 7 

3 8, 9, 10, 11 

4 12, 13, 14 

5 15, 16, 17, 18 

6 19, 20 

7 21, 22, 23 

8 24, 25 
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Table 8 Attributes of each vehicle. 

Vehicle 

(k) 

Length 

(Lk) 

Width 

(Wk) 

Height 

(Hk) 

Weight 

(Qα) 

1 8 3 4 50 

2 5 2 3 50 

Table 9 Service Time (tik) of each vehicle at each client 

 Vehicle (k) 

Client (i) 1 2 

0 (depot) 0 0 

1 15 13 

2 18 15 

3 24 20 

4 20 18 

5 21 21 

6 25 25 

7 24 23 

8 18 16 

9 (depot) 0 0 

 

Table 10 Time Window (Sik) for serving each client 

 
earliesti latesti 

Client (i) 

0 (depot) 0 - 

1 0 300 

2 0 400 

3 0 320 

4 0 220 

5 0 500 

6 0 320 

7 0 280 

8 0 350 

9 (depot) 0 - 

 

In addition to above input data, we assume that fixed cost of vehicles (hk) are 45 and 

30 units for vehicle k=1 and k=2, respectively. Furthermore, we assume that the 

weights of sum of the traveling time and the vehicle usage costs (f1 and f2) are equally 

important.  
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Table 11 Traversing time for the first vehicle 

cij1 0(depot) 1 2 3 4 5 6 7 8 9(depot) 

0 

(depot) 

- 18 25 20 30 17 45 28 72 - 

1 - - 21 35 36 19 28 30 35 48 

2 - 38 - 39 42 51 59 30 29 30 

3 - 40 20 - 71 16 32 52 19 23 

4 - 48 37 19 - 27 36 27 26 19 

5 - 34 37 38 29 - 27 34 17 22 

6 - 34 33 21 24 55 - 12 34 65 

7 - 45 32 78 21 30 35 - 45 25 

8 - 33 22 41 35 33 38 39 - 45 

9 

(depot) 

- - - - - - - - - - 

 

Table 12 Traversing times for the second vehicle 

cij2 0(depot) 1 2 3 4 5 6 7 8 9(depot) 

0 

(depot) 

- 15 23 15 30 14 39 37 70 - 

1 - - 20 32 29 17 24 27 33 45 

2 - 30 - 37 40 50 55 29 29 42 

3 - 51 59 - 30 29 23 48 37 19 

4 - 27 36 27 - 26 19 34 37 38 

5 - 29 27 34 17 - 22 34 17 22 

6 - 34 41 35 33 38 - 39 23 24 

7 - 55 12 34 65 45 32 - 78 21 

8 - 30 35 32 22 41 28 37 - 45 

9 

(depot) 

- - - - - - - - - - 

The mathematical model is run for 2 hours on an AMD A6-3400M APU with 1.40 

Ghz and 4 GB of RAM, running a Windows XP operative system and solved using 

IBM ILOG CPLEX 12.5 solver (IBM ILOG, 2015). Service start time of each vehicle 

at assigned cities in the feasible solution after 2 hours are given in the following tables 

which shows which verify feasibility of the solution in terms of vehicle routing with 

time windows constraints formulated in  (3)-(10) and (35).  

Table 13 Service start time at clients for vehicle 1 

Cities (i) 1 2 7 4 3 

Si1 18 54 175 220 320 
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Table 14 Service start time at clients for vehicle 2 

Cities (i) 5 8 6 

Si2 14 276 320 

 

We use Rhinoceros 3D version 5 (Rhino3D, 2015) to visualize the solution of 

container loading problem. First, we show sides, directions and x, y, z coordinate labels 

assumed as below. (Fig. 10)  

 

 

Figure 11 Sides m Side of each vehicle 

 

 

Assignment of boxes to each vehicle is shown in Figure 11. 

 

 

Figure 12 Assignment of boxes to each vehicle, front view 

Since some boxes assigned to vehicle 1 are not visible in front view, in the following 

figure, we give the back view.  
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Figure 13 Assignment of boxes to vehicle 1, back view 

 

Since there are less number of boxes assigned to the second vehicle, we provide values 

of 𝛿 variables for each side, m ϵ Side. Note that as mentioned in Moura and Oliveira 

(2009), relative placement has  to be checked only once for each pair of boxes. In other 

words, any two boxes assigned to the same vehicle are compared while  𝛼′ < 𝛼′′. 

Therefore, there is no comparison again  𝛼′′  and 𝛼′ which means that 𝛿𝑚,𝛼′𝛼′′𝑘 values 

are 0 in Tables 15, 16 and 17 when 𝛼′ < 𝛼′′. 

 

Table 15 Relative position of boxes in vehicle 2 on y-axis. a) If 𝛼′ is in front of  𝛼′′ 

then 1 otherwise 0. b) If 𝛼′is at the back of 𝛼′′ then 1, otherwise 0.   

     

 𝛼′′ 

15 16 17 18 19 20 24 25 

𝛼′ 

15 - 0 1 1 1 0 0 0 

16 - - 1 1 1 0 0 1 

17 - - - 1 1 0 0 1 

18 - - - - 1 0 0 0 

19 - - - - - 0 0 0 

20 - - - - - - 0 1 

24 - - - - - - - 0 

25 - - - - - - - - 
 

  𝛼′′ 
15 16 17 18 19 20 24 25 

𝛼′ 

15 - 0 0 0 0 0 0 0 

16 - - 0 0 0 0 0 0 

17 - - - 0 0 0 0 0 

18 - - - - 0 0 1 0 

19 - - - - - 1 1 0 

20 - - - - - - 0 0 

24 - - - - - - - 0 

25 - - - - - - - - 
 

a.                                                                 b. 
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Table 16 Relative position of boxes in vehicle 2 on the x-axis.  a) If 𝛼′ is on left of  

𝛼′′ then 1 otherwise 0. b) If 𝛼′is on the right of 𝛼′′ then 1 otherwise 0.  

 𝛼′′ 

15 16 17 18 19 20 24 25 

𝛼′ 

15 - 0 0 0 0 1 1 0 

16 - - 0 0 0 1 1 0 

17 - - - 0 0 1 1 0 

18 - - - - 0 0 0 0 

19 - - - - - 0 0 0 

20 - - - - - - 0 0 

24 - - - - - - - 0 

25 - - - - - - - - 
 

  𝛼′′ 
15 16 17 18 19 20 24 25 

𝛼′ 

15 - 0 0 0 0 0 0 0 

16 - - 0 0 0 0 0 0 

17 - - - 0 0 0 0 0 

18 - - - - 0 0 0 0 

19 - - - - - 0 0 0 

20 - - - - - - 0 0 

24 - - - - - - - 0 

25 - - - - - - - - 
 

a.                                                                    b. 

Table 17 Relative position of boxes in vehicle 2 on the z-axis. a) If 𝛼′ is above 𝛼′′ 

then 1 otherwise 0. b) If 𝛼′is below the  𝛼′′ then 1 otherwise 0. 

 𝛼′′ 

15 16 17 18 19 20 24 25 

𝛼′ 

15 - 0 0 0 0 0 0 0 

16 - - 0 0 0 0 0 0 

17 - - - 0 0 0 0 0 

18 - - - - 0 0 0 0 

19 - - - - - 0 0 0 

20 - - - - - - 1 0 

24 - - - - - - - 0 

25 - - - - - - - - 
 

  𝛼′′ 
15 16 17 18 19 20 24 25 

𝛼′ 

15 - 1 0 0 0 0 0 1 

16 - - 0 0 0 0 0 0 

17 - - - 0 0 0 0 0 

18 - - - - 0 1 0 1 

19 - - - - - 0 0 1 

20 - - - - - - 0 0 

24 - - - - - - - 1 

25 - - - - - - - - 
 

a.                                                                     b. 

Positions inside vehicle 2 for x, y and z coordinates, respectively are given in the  

following table.                       

Table 18 Location of each box in vehicle 2 

Α z'α2 z"α2 z'"α2 

15 3 1 0 

16 3 1 1 

17 2 1 0 

18 1 0 0 

19 0 0 1 

20 2 0 2 

24 2 0 0 

25 0 0 2 
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Verification of the length, width and height limits of vehicle 2 is provided in the 

following table using positions and dimensions of each box. 

Table 19 Verification of the length, width and height limits of vehicle 2 

 

z'
15,2   +  l15 ≤  L2     which results in   3 +2 ≤ 5  

z'
16,2   +  l16 ≤  L2     which results in   3 + 2 ≤ 5  

z'
20,2   +  l18 ≤  L2    which results in   2 +3 ≤ 5  

z'
24,2   +  l19 ≤  L2    which results in   2 +3 ≤ 5  

z"16,2 + w16 ≤ W2 which results in   1+1≤ 2   

z"25,2 + w25  ≤ W2 which results in   0+2≤ 2   

z"'16,2 + h16  ≤ H2 which results in   1+2 ≤ 3  

z"'17,2 + h17  ≤ H2 which results in   0+3 ≤ 3  

z"'20,2 + h20  ≤ H2 which results in   2+1 ≤ 3  

z"'25,2 + h25  ≤ H2 which results in   2+1 ≤ 3  

Finally, we demonstrate verification of disjunctive constraints (16) and (17) using 

boxes 15 (α’=15) and 17 (α’’=17). Other constraints can be verified in a similar way. 

Constraints (16) and (17) can be reformulated for boxes 15 and 17 as in the following.  

z'
17,2  + l17 ≤ z'15,2 +(1- δ1,15,17,2) M2       (16) 

z'
15,2  + l15 ≤ z'17,2 + (1-δ2,15,172 )M2      (17) 

 

If numerical values of binary variables given in Table 18 and positioning variables are 

put in these inequalities, along with their respective lengths defined in Appendix 2 

( 𝛿1,15,17,2 = 1 ,  𝛿2,15,17,2 = 0,  z'
17,2 =2,  z

'
15,2=3, l17 =1, l15 =2  ): 

z'
17,2  + l17 ≤ z'15,2 +(1- 1) M2        (16) 

z'
15,2  + l15 ≤ z'17,2 + (1-0 )M2       (17) 

it obvious that constraint (17) will be redundant and constraint (16) makes z'
17,2  + l17 

≤ z'15, or with numerical values of z'
17,2  and l17 , 2  + 1≤ 3, which is a feasible solution.     
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4.2 Extended Mathematical Model with Extra Features 

 

According to the 3-PL company, we need to include more constraints to improved 

mathematical model of Moura and Oliveira (2009) to satisfy their real need.  

The current model does not include the following.  

Capacity check of deci (dm3): Like the weight capacity, for the white goods, 

summation of the deci is checked with the capacity limit of the each vehicle. 

𝑑𝛼 = 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑏𝑜𝑥 𝛼 𝑖𝑛 𝑑𝑒𝑐𝑖 

𝐷𝑘 = 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 𝑜𝑓 𝑣𝑒ℎ𝑖𝑐𝑙𝑒 𝑘 𝑖𝑛 𝑡𝑒𝑟𝑚𝑠 𝑜𝑓 𝑑𝑒𝑐𝑖 

∑ 𝑑𝛼 𝛾𝛼𝑘 ≤  𝐷𝑘
𝑂
𝛼=1     k=1,…,v     

 

These constraints are used in the VRPTW part of the model. Before checking each 

dimension is appropriate for the vehicle dimension in the CLP part, it can cut the 

feasible region and reduces the feasible set.   

The objective function includes both minimization of number of vehicles and total 

time travelled. With this new objective function with two different decision variables, 

we achieve the same goal with cost instead of time. Parameter ℎ𝑘 is the wage of a 

driver for vehicle k or the daily rent of vehicle k. As a new parameter, variable cost is 

included as a new parameter to calculate the fuel consumption. The unit measure of 

the objective function is cost per day. 

Min   ∑ ℎ𝑘𝑦𝑘
𝑣
𝑘=1  +      (1) 

         ∑ ∑ ∑ 𝑣𝑎𝑟𝑐𝑜𝑠𝑡𝑘𝑐𝑖𝑗𝑘𝑥𝑖𝑗𝑘 
𝑛+1
𝑗=1

𝑛
𝑖=0

𝑣
𝑘=1   (2) 
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CHAPTER 5: SOLUTION FOR EXTENDED 

MATHEMATICAL MODEL 

 

 

In this chapter, the extended mathematical model will be formulated. As mentioned 

in the previous chapter, this model consists of the amended literature model and extra 

features of the 3-PL logistic company.  

5.1 Data Generation 

 

We use real data of the 3-PL logistics company. The distance between customers in 

each province are calculated by using Google Maps. Since this data is in km, it was 

converted into minutes by the average speed of each the vehicle (Appendix-3).  After 

that, service time is same for all vehicles since the unloading operations are same. 

Time window used as the hours of operation in each store. Rental cost is valid for one 

month and fuel consumption is calculated by the formula in the Chapter 3 (Appendix-

4). The dimensions of the each vehicle is provided by the 3-PL company (Appendix-

5).  The first data set includes 40 boxes. (Appendix-6)  For the comparison with 

different data sets, 80 boxes (Appendix-7) and 120 boxes (Appendix-8) are obtained 

from the other daily data sets of 3-PL company.  
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5.2 Solution 

 

Extended mathematical model was solved by using IBM ILOG CPLEX 12.5 solver. 

(Appendix-9) The model has 14860 decision variables and 33697 constraints. It 

continuous 22 hours until a memory error. Therefore, a gap limit or time limit need to 

specify to obtain a feasible solution.  

After 17 hours of run, a feasible solution is obtained.  

 

Figure 14 Extended OPL model, number of constraints and variables 

Extended model includes three available vehicles for the problem. The feasible 

solution found utilizes  only two vehicles with the objective value of 25.093,00 TRY. 

It includes both rental and fuel costs. The utilization of the vehicles are not so high. 

Each vehicle was used approximately half of its capacity. Utilization is calculated as 

below for each vehicle. 

Lbox:  Length of the box                   

Wbox: Width of the box                                         

Hbox:  Height of the box                           

Lx:     Length of vehicle x                      

Wx:    Width of vehicle x                                            

Hx:    Height of vehicle x                

𝐵𝑜𝑥𝑒𝑠 ∈  𝑉𝑘: box which loaded into vehicle k  

Table 20 Calculation of Utilization 

 

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑉𝑘   
=

∑ (𝐿𝑏𝑜𝑥 𝑥 𝑊𝑏𝑜𝑥 
𝑥 𝐻𝑏𝑜𝑥)𝑏𝑜𝑥𝑒𝑠 ∈ 𝑉𝑘

𝐿𝑥 𝑥 𝑊𝑥 
𝑥 𝐻𝑥
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The below figure give the placement assignments of each vehicle.   

 

Figure 15 Extended Model- Container Loading Drawing of Vehicle 2 and 3 

 

Two different vehicles shares the provinces rationally. Vehicle 2 transports to the 

north region of the Izmir and vehicle 3 transports the south region.  

Vehicle 2: Kemalpasa- Özkanlar- Karşıyaka- Mavişehir- Aliağa- Ciğli- Kemalpaşa 

Vehicle 3: Kemalpaşa- Bahçelievler- Balçova- Çeşme- Güzelyalı- Kemalpaşa 

 

 Figure 16 Extended Model-Vehicle Routing Drawing   

 

Since the mathematical model was complex and hard to solve in a reasonable time, a 

heuristic approach applied on this mathematical model.  
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CHAPTER 6: A HEURISTIC FOR THE INTEGRATED 

PROBLEM 
 

Both CVRPTW and CLP problems are NP-Hard problems. If the size of the problem 

increases, it becomes harder to obtain the optimal solution. According to the needs of 

the 3-PL company, the mathematical model is divided into two problems. 

Decomposition approach splits a large model into smaller models. It provides more 

natural modeling; coefficients tend to improve numerical stability, performance and 

correctness while avoiding a mix of large values (Arkalgud & Scott Rux, 2013). 

6.1 Experimental Design 

 

Now, we will discuss flow of Ecem Baris (EB) Heuristic are discussed.   

 

Figure 17 Flow chart for the EB Heuristic 
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First, inputs of the VRPTW are collected. These are the distance between customers, 

weight capacity of the vehicles, time limits of each customer and service time of each 

city. Afterwards, the number of required trucks, total distance traveled and sequence 

of cities are provided by this mathematical model. These outputs become inputs for 

the CLP. Moreover, dimension of each box, dimension of each vehicle, weight of each 

box and customer-box relations are added as new inputs for the CLP.   Problem is 

solved in OPL, if the solution is not feasible with the additional constraints for capacity, 

then the model is run again with one additional truck. If the solution is feasible, then 

the problem results in the utilization of each vehicle, box coordination in the vehicle.  

6.2 Computational Results 

 

First part of the mathematical model (Vehicle Routing Problem) was solved in 9 

seconds with an optimal value of 10.084,66 TRY with rental and fuel consumption 

cost. 

 

Figure 18 EB Heuristic- Vehicle Routing Number of constraints and variables 

 

According to the flow chart, this model provide us how many trucks we need and the 

routing of the vehicles. These outputs will be our new inputs to our Container Loading 

Problem. The CLP part of the model was solved by OPL. (Appendix-10) This optimal 

solution uses only one vehicle and the route is  

Vehicle 3: Kemalpaşa- Özkanlar-Bahçelievler- Güzelyalı- Balçova- Çeşme- 

Karşıyaka- Mavişehir- Aliağa- Ciğli- Kemalpaşa 
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Figure 19 EB Heuristic-Vehicle Routing Drawing  

 

Optimal solution includes only one vehicle, but we do not know whether it is enough 

or not for the container loading problem. Second part of the heuristic (Container 

Loading Problem) was updated to one vehicle instead of three. It decreases the size of 

the problem. Since we run the extended model for 17 hours, we ran this model for 16 

hours, 59 minutes and 51 seconds. Since first composed model runs only 9 seconds.  

Capacity of Vehicle 3 is enough and there is a feasible solution. Utilization is higher 

than the extended model.  

 

Figure 20 EB Heuristic-Container Loading Drawing of Vehicle 3 
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Performance of the EB Heuristic is tested over three different data sets; number of the 

boxes and vehicles are changed. To have a better comparison between extended model 

and heuristic model the below table was prepared. First data set only needs one vehicle 

to load, instead of two vehicles in the extended model. For the next two data sets, 

extended model does not provide a feasible solution in two hours. EB Heuristic is run 

with two vehicles and it does not give us a feasible solution, vehicle number has 

increased one by one. The first part of the EB heuristic was run until the second part 

was reached to a feasible solution. The total run time was calculated according to 

cumulative run hours until finding a feasible solution. Each run takes 2 hours. The 

feasible solution obtained by more vehicles, it results in a decrease in average 

utilization. If each run takes more than 10 hours, number of vehicles would be less, 

and the utilization would be more.  To analyze the effect of the size of the problem set, 

two data set is obtained based on a 3-PL company, one with 80 boxes and the other 

one with 120 boxes.  

 

Table 21 Comparison table for Extended Mathematical Model and EB Heuristic 

 

 

 Data set 1 Data set 2 Data set 3 

 
Extended 
Model 

EB (17 
hours) 

EB (2 
hours) 

Exten
ded 
Model EB 

Extended 
Model EB  

# Customers 9 9 9 9 9 9 9 

# Vehicles 3 3 3 4 4 6 6 

# Boxes 40 40 40 80 80 120 120 

Gap  99% 85% 86% - 78% -  %80 

Time Limit (given) 17 hours  17 hours  2 hours  
4 
hours  4 hours  4 hours  4 hours  

Total Cost  25.093 TL 10.084 TL 10.084 TL - 56.118 TL - 77.150 TL 

# of Vehicle Used 2 1 1 - 4 - 6 

Total Distance Traveled (km) 357,4 334,9 334,9 - 421,5 - 568,2 

Total Distance Traveled (min) 351 324 324 - 367 - 564 

Weighted Average Utilization 0,40 0,74 0,74 - 0,42 - 0,46 

Utilization V1 (23.716.000 cm3) - - - - 0,19 - 0,19 

Utilization V2-(17.969.958 cm3) 0,31 - - - 0,63 - 0,94 

Utilization V3-(21.244.150 cm3) 0,48 0,74 0,74 - 0,69 - 0,67 

Utilization V4-(17.556.000 cm3) -  -  - - 0,19 - 0,29 

Utilization V5-(18.963.000cm3) - - - - - - 0,34 

Utilization V6-(17.776.000cm3) - - - - - - 0,39 
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CHAPTER 7: CONCLUSION AND FUTURE WORK 
 

 

Green Logistics is the important topic in the real life problems and the transportation 

management is the core of logistic processes. In the literature, CLP and VRP is usually 

examined separately. In this study, we examine Vehicle Routing and Container 

Loading problems together. We firstly examine them separately. Their well-known 

features and types were defined. After that, combination of these two hard problems is 

analyzed, according to the needs of a 3-PL Company. We use real data and analyze 

the results. Afterwards, we extended the model.  Although, an optimal solution of the 

mathematical model cannot be attained in a useful time, a decomposition heuristic is 

suggested for the integrated problem, in which the output of the VRTW problem 

becomes the input for the CLP. These two different approaches were compared. In the 

Chapter 6, the results were compared and it is obvious that the EB heuristic works 

better than the extended model.  

This master thesis is about two combinatorial optimization problems. The 

mathematical model approach can be useful for the feasibility check, because feasible 

solutions can be obtained in a short time period. Moreover, both problems were solved 

in the literature separately using meta-heuristics. In addition to EB heuristic; meta-

heuristics can be applied to this problem. Constructive heuristic methods can be 

another solution technique for this kind of NP-Hard problems to find an initial solution 

and then improved solutions can be obtained by searching the neighborhood.  

Integration of these two problems is hard to solve with mathematical models. Since 

we decomposed the model into two; first part of the problem, VRPTW obtains optimal 

solution in a short time. The hardest part of the problem is the second part, because it 
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includes a set of decision variables with four indices (δmα'α"k). Instead of the extended 

model, EB heuristic gives us better solutions. 

As a future study, the increase in the number of customers can be analyzed. In addition, 

for the CLP part of the EB Heuristic, the distances between boxes in the same vehicle 

can be added as a performance measure. According to the needs of logistics firms the 

additional constrains can be added. For the easy usage of the logistic firms, EB 

heuristic should be embedded in a system via a user interface. 

Moreover, the deci capacity constraints can be checked if it is provide a cut or not in 

the EB heuristic. There are also another constraint set which are used to check each 

dimension of vehicle and box. Since the EB heuristic allows us to solve the problem 

in two parts; the first part can ensure a cut for the problem and they are actually 

redundant.  

Another future work can be the landing of each box on the surface. Some of the boxes 

are positioned in the air in the solution of our model. To provide the usage in real life, 

the stability of the boxes has a great importance. The starting height of each box should 

be checked. The sum of the difference from ground to the floor of each box should 

also be minimized in the objective function.  
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APPENDIX – 1. Mathematical Model for CVRPTW 

 

int nbcities=...; 

range city=1..nbcities+2; //depot=1&nb+2 

 

int nbvehicles=...; 

range vehicle=1..nbvehicles; 

 

 

tuple arcs{ 

int i; 

int j; 

} 

{arcs}arc={<i,j>|i in city,j in city:i!=j&&(i!=nbcities+2)&&(j!=1)&&(<i,j>!=<1,11>)}; //set of city pairs 

 

 

execute{ 

for(a in arc){writeln(a)}; 

} 

 

int c[arc,vehicle]=...; //travel time 

int aa[city]=...; //lower time window 

int b[city]=...; //upper time window 

int q[city]=...; //total weight for city  

int Q[vehicle]=...; //weight capacity 

int t[city]=...; //service time of city 

 

float varcost[vehicle]=...; //variable cost of vehicle k (fuel consumption per min) 

dvar int+ M[arc,vehicle]; 

dvar int+ x[arc,vehicle] in 0..1; 

dvar int+ s[city,vehicle];   //starting time 

dvar int+ y[vehicle] in 0..1; 



M A S T E R T H E S I S  | 52 

 

 

 

 

minimize sum(k in vehicle,a in arc:a.j>=2&&a.i<=nbcities+1)varcost[k]*c[a,k]*x[a,k]+sum(k in vehicle)y[k]*10000; 

   

subject to{ 

   

forall(i in city:i<=nbcities+1&&i>=2){ 

 sum(k in vehicle,a in arc:(a.i==i))x[a,k]==1;   //3.constraint} 

 

forall(a in arc,k in vehicle){M[a,k]==maxl(0,b[a.i]+t[a.i]+c[a,k]-aa[a.j]);} 

 

forall(k in vehicle){ 

 sum(a in arc:a.i==1)x[a,k]==y[k];  //4.constraint} 

forall(k in vehicle){ 

 sum(a in arc:a.j==nbcities+2)x[a,k]==y[k];  //5.constraint  } 

forall(l in city,k in vehicle:l>=2&&l<=nbcities+1){ 

 sum(a in arc:a.j==l)x[a,k]-sum(a in arc:a.i==l)x[a,k]==0;  //6.constraint}  

 

forall(a in arc,k in vehicle){ 

 s[a.i,k]+t[a.i]+c[a,k]-s[a.j,k]<=M[a,k]*(1-x[a,k]);  //7.constraint}  

   

forall(i in city,k in vehicle){ 

 s[i,k]>=aa[i];  //8.constraint 

 s[i,k]<=b[i];  //9.constraint} 

 

forall(k in vehicle){ 

 sum(a in arc)q[a.i]*x[a,k]<=Q[k]*y[k];  //10.constraint  } 

 

forall(k in vehicle,p in city){ 

 s[p,k]>=aa[p]+sum(a in arc:a.j==p)maxl(0,aa[a.j]-aa[a.i]+t[a.j]+c[a,k])*x[a,k];   

 s[p,k]<=b[p]-sum(a in arc:a.i==p)maxl(0,b[a.i]-b[a.j]+t[a.i]+c[a,k])*x[a,k];} 

 

forall(a in arc, i in city,j in city:((i==4)|| (i==5) || (j==4) || (j==5))){x[a,1]==0;} //1.araç büyük ve 4.,5. city 

sokağına giremez.};  

 

execute valuee { 
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for (var a in arc) 

 

     for (var k=1;k<=nbvehicles;k++) 

 

  writeln("x[",a,"][",k,"]=",x[a][k]); 

   

  }; 

 

execute tme { 

 

for (var i=1;i<=nbcities+2;i++) 

   

     for (var k=1;k<=nbvehicles;k++) 

 

  writeln("s[",i,"][",k,"]=",s[i][k]); 

    

  }; 

   

execute arac { 

   

     for (var k=1;k<=nbvehicles;k++) 

 

  writeln("y[",k,"]=",y[k]); 

    

  }; 

 

execute bigM { 

   

for (var a in arc) 

 

     for (var k=1;k<=nbvehicles;k++) 

 

  writeln("M[",a,"][",k,"]=",M[a][k]); 

  }; 
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APPENDIX – 2. Attributes of each box for verification of the first model 

Boxes(α) 
Length 

(lα) 

Width 

(wα) 

Height 

(hα) 

Weight 

(qα) 

1 1 2 2 1 

2 1 1 4 3 

3 2 1 1 2 

4 3 2 1 4 

5 4 1 2 1 

6 2 1 1 5 

7 2 2 1 1 

8 4 1 2 2 

9 2 2 2 4 

10 1 3 1 5 

11 2 1 1 2 

12 3 2 1 1 

13 2 1 1 1 

14 2 2 2 2 

15 2 1 1 3 

16 2 1 2 3 

17 1 1 3 2 

18 1 2 2 1 

19 1 1 1 4 

20 3 1 1 2 

21 2 2 2 1 

22 1 2 1 2 

23 3 1 2 1 

24 3 1 2 2 

25 2 2 1 1 
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APPENDIX – 3. Data Generation – Google Maps distance (km) 

 

1 2 3 4 5 6 7 8 9 10 11 

Depo Kemalpaşa MAVİŞEHİR ÇEŞME GÜZELYALI BALÇOVA BAHÇELİEVLER ALİAĞA KARŞIYAKA ÇİĞLİ ÖZKANLAR Depo Kemalpaşa 

1 Depo Kemalpaşa 1000 28,8 115 28,7 31,5 22,8 69,9 23,2 30,5 16,7 1000 

2 MAVİŞEHİR 31,2 0 99,9 23,6 26,1 21,4 45,6 5,1 3,3 18,7 31,2 

3 ÇEŞME 116 124 0 77,7 75,4 91,9 163 93,9 124 108 116 

4 GÜZELYALI 28,9 22,1 79,1 0 3,4 7,5 64,3 17,6 25,2 14,9 28,9 

5 BALÇOVA 33,4 26,6 74,1 4,5 0 13,4 91,8 22,1 29,7 19,5 33,4 

6 BAHÇELİEVLER 28,9 21,9 81,5 4,6 7,7 0 64,1 17,3 23,4 14,7 28,9 

7 ALİAĞA 72,8 45,4 162 65,2 89,2 63,1 0 50 45,4 58,1 72,8 

8 KARŞIYAKA 26,9 5,2 95,6 19,3 22,2 17,2 51,4 0 8,8 12,7 26,9 

9 ÇİĞLİ 22,4 3,4 121 24,6 48,6 22,2 47 8,4 0 17 22,4 

10 ÖZKANLAR 21,6 15,6 108 17,6 20,6 15,5 56,8 10,9 15,8 0 21,6 

11 Depo Kemalpaşa 1000 28,8 115 28,7 31,5 22,8 69,9 23,2 30,5 16,7 1000 

APPENDIX – 4. Data Generation – Service Time, Time Windows, Rental Cost, Fuel Consumption 
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APPENDIX – 5. Dimension of the vehicles capacities 

DIMENSION OF THE VEHICLES & CAPACITIES 

Vehicle Lenght(cm) Width Height  Volume Weight Capacity Deci Capacity 

1 490 220 220 23.716.000 7.200 7.905 

2 387 213 218 17.969.958 2.500 5.990 

3 482 205 215 21.244.150 2.500 7.081 
4 380 210 220 17.556.000 2.500 5.852 
5 420 210 215 18.963.000 2.500 6.321 

6 400 202 220 17.776.000 2.500 5.925 

APPENDIX – 6. Data Generation- Dimension of the white goods, α=40. 

Retailer Item Product  Lenght (cm) Width Height Weight (kg) Desi 

1 1 Refrigirator 70 72 173 99 291 

1 2 Refrigirator 78 91 185 120 438 

1 3 Deep-Freezer 150 72 85 109 306 

1 4 Washing Machine 60 59 85 52 100 

1 5 Air Conditioins-Int 72 25 53 13 32 

1 6 Air Conditioins-Ext 92 38 68 46 79 

2 7 TV 113 4 73 15 11 

2 8 TV 53 5 38 14 3 

2 9 Owen 60 60 85 65 102 

2 10 Dishing Machine 60 60 85 51 102 

3 11 Deep-Freezer 60 72 184 95 265 

3 12 Microwave Owen 33 26 46 4 13 

3 13 Washing Machine 60 53 85 47 90 

3 14 Dishing Machine 60 60 85 51 102 
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4 15 Refrigirator 78 91 185 120 438 

4 16 Dishing Machine 60 60 85 51 102 

4 17 Wine Cooler 59 50 84 27 83 

4 18 TV 53 5 38 14 3 

5 19 Refrigirator 70 80 187 110 349 

5 20 Cooktop 58 51 6 3 6 

5 21 Owen 60 60 85 65 102 

5 22 Washing Machine 60 56 85 48 95 

5 23 TV 92 8 58 23 14 

6 24 Refrigirator 70 72 183 108 307 

6 25 Aspirator 60 60 10 5 12 

6 26 Owen 60 60 85 65 102 

6 27 Dishing Machine 60 60 85 51 102 

7 28 Refrigirator 70 72 183 108 307 

7 29 Deep-Freezer 150 72 85 109 306 

7 30 Washing Machine 60 56 85 48 95 

7 31 Dishing Machine 62 62 87 53 111 

8 32 Water Dispenser 30 30 86 10 26 

8 33 Refrigirator 70 80 187 110 349 

8 34 TV 53 5 38 14 3 

8 35 Washing Machine 60 50 85 45 85 

8 36 Air Conditioins-Int 94 34 125 43 133 

8 37 Air Conditioins-Ext 92 38 65 43 76 

9 38 Cooktop 58 51 6 3 6 

9 39 Dishing Machine 62 62 87 53 111 

9 40 Microwave Owen 33 26 46 4 13 
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APPENDIX – 7. Data Generation- Dimension of the white goods, α=80. 

 

Retailer Item Product  Lenght (cm) Width Height Weight (kg) Desi 

1 1 Refrigirator 70 72 173 99 291 

1 2 Refrigirator 78 91 185 120 438 

1 3 Deep-Freezer 150 72 85 109 306 

1 4 Washing Machine 60 59 85 52 100 

1 5 Air Conditioins-Int 72 25 53 13 32 

1 6 Air Conditioins-Ext 92 38 68 46 79 

1 7 TV 113 4 73 15 11 

1 8 TV 53 5 38 14 3 

1 9 Owen 60 60 85 65 102 

1 10 Dishing Machine 60 60 85 51 102 

2 11 Deep-Freezer 60 72 184 95 265 

2 12 Microwave Owen 33 26 46 4 13 

2 13 Washing Machine 60 53 85 47 90 

2 14 Dishing Machine 60 60 85 51 102 

2 15 Refrigirator 78 91 185 120 438 

3 16 Dishing Machine 60 60 85 51 102 

3 17 Wine Cooler 59 50 84 27 83 

3 18 TV 53 5 38 14 3 

3 19 Refrigirator 70 80 187 110 349 

3 20 Cooktop 58 51 6 3 6 
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3 21 Owen 60 60 85 65 102 

3 22 Washing Machine 60 56 85 48 95 

3 23 TV 92 8 58 23 14 

3 24 Refrigirator 70 72 183 108 307 

3 25 Aspirator 60 60 10 5 12 

4 26 Owen 60 60 85 65 102 

4 27 Dishing Machine 60 60 85 51 102 

4 28 Refrigirator 70 72 183 108 307 

4 29 Deep-Freezer 150 72 85 109 306 

4 30 Washing Machine 60 56 85 48 95 

4 31 Dishing Machine 62 62 87 53 111 

4 32 Water Dispenser 30 30 86 10 26 

4 33 Refrigirator 70 80 187 110 349 

4 34 TV 53 5 38 14 3 

4 35 Washing Machine 60 50 85 45 85 

4 36 Air Conditioins-Int 94 34 125 43 133 

4 37 Air Conditioins-Ext 92 38 65 43 76 

5 38 Cooktop 58 51 6 3 6 

5 39 Dishing Machine 62 62 87 53 111 

5 40 Washing Machine 60 50 85 45 85 

5 41 Air Conditioins-Int 94 34 125 43 133 

5 42 Air Conditioins-Ext 92 38 65 43 76 

5 43 Refrigirator 70 80 187 110 349 

5 44 TV 53 5 38 14 3 

5 45 Washing Machine 60 50 85 45 85 

5 46 Refrigirator 70 80 187 110 349 

6 47 Cooktop 58 51 6 3 6 
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6 48 Owen 60 60 85 65 102 

6 49 Washing Machine 60 56 85 48 95 

6 50 Washing Machine 60 50 85 45 85 

6 51 Air Conditioins-Int 94 34 125 43 133 

6 52 Air Conditioins-Ext 92 38 65 43 76 

6 53 TV 53 5 38 14 3 

7 54 Washing Machine 60 50 85 45 85 

7 55 Refrigirator 70 80 187 110 349 

7 56 Cooktop 58 51 6 3 6 

7 57 Owen 60 60 85 65 102 

7 58 Washing Machine 60 56 85 48 95 

7 59 TV 92 8 58 23 14 

7 60 TV 53 5 38 14 3 

7 61 Washing Machine 60 50 85 45 85 

7 62 Refrigirator 70 80 187 110 349 

8 63 Cooktop 58 51 6 3 6 

8 64 Owen 60 60 85 65 102 

8 65 Refrigirator 78 91 185 120 438 

8 66 Deep-Freezer 150 72 85 109 306 

8 67 Washing Machine 60 59 85 52 100 

8 68 Refrigirator 70 80 187 110 349 

8 69 TV 53 5 38 14 3 

8 70 Washing Machine 60 50 85 45 85 

8 71 Refrigirator 78 91 185 120 438 

9 72 Deep-Freezer 150 72 85 109 306 

9 73 Refrigirator 78 91 185 120 438 
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9 74 Deep-Freezer 150 72 85 109 306 

9 75 Washing Machine 60 59 85 52 100 

9 76 TV 53 5 38 14 3 

9 77 Washing Machine 60 50 85 45 85 

9 78 Washing Machine 60 50 85 45 85 

9 79 Air Conditioins-Int 94 34 125 43 133 

9 80 Air Conditioins-Ext 92 38 65 43 76 

 

APPENDIX – 8. Data Generation- Dimension of the white goods, α=120. 

 

Retailer Item Product  Lenght (cm) Width Height Weight (kg) Deci 

1 1 Refrigirator 70 72 173 99 291 

1 2 Refrigirator 78 91 185 120 438 

1 3 Deep-Freezer 150 72 85 109 306 

1 4 Washing Machine 60 59 85 52 100 

1 5 Air Conditioins-Int 72 25 53 13 32 

1 6 Air Conditioins-Ext 92 38 68 46 79 

1 7 TV 113 4 73 15 11 

1 8 TV 53 5 38 14 3 

1 9 Owen 60 60 85 65 102 

1 10 Dishing Machine 60 60 85 51 102 

1 11 Deep-Freezer 60 72 184 95 265 

1 12 Microwave Owen 33 26 46 4 13 

1 13 Washing Machine 60 53 85 47 90 

1 14 Dishing Machine 60 60 85 51 102 

1 15 Refrigirator 78 91 185 120 438 

1 16 Dishing Machine 60 60 85 51 102 

2 17 Wine Cooler 59 50 84 27 83 

2 18 TV 53 5 38 14 3 

2 19 Refrigirator 70 80 187 110 349 

2 20 Cooktop 58 51 6 3 6 
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2 21 Owen 60 60 85 65 102 

2 22 Washing Machine 60 56 85 48 95 

2 23 TV 92 8 58 23 14 

2 24 Refrigirator 70 72 183 108 307 

2 25 Aspirator 60 60 10 5 12 

2 26 Owen 60 60 85 65 102 

2 27 Dishing Machine 60 60 85 51 102 

2 28 Refrigirator 70 72 183 108 307 

2 29 Deep-Freezer 150 72 85 109 306 

2 30 Washing Machine 60 56 85 48 95 

2 31 Dishing Machine 62 62 87 53 111 

2 32 Water Dispenser 30 30 86 10 26 

2 33 Refrigirator 70 80 187 110 349 

2 34 TV 53 5 38 14 3 

2 35 Washing Machine 60 50 85 45 85 

2 36 Air Conditioins-Int 94 34 125 43 133 

3 37 Air Conditioins-Ext 92 38 65 43 76 

3 38 Cooktop 58 51 6 3 6 

3 39 Dishing Machine 62 62 87 53 111 

3 40 Washing Machine 60 50 85 45 85 

3 41 Air Conditioins-Int 94 34 125 43 133 

3 42 Air Conditioins-Ext 92 38 65 43 76 

3 43 Refrigirator 70 80 187 110 349 

3 44 TV 53 5 38 14 3 

3 45 Washing Machine 60 50 85 45 85 

3 46 Refrigirator 70 80 187 110 349 

3 47 Cooktop 58 51 6 3 6 

3 48 Owen 60 60 85 65 102 

3 49 Washing Machine 60 56 85 48 95 

3 50 Washing Machine 60 50 85 45 85 

3 51 Air Conditioins-Int 94 34 125 43 133 

4 52 Air Conditioins-Ext 92 38 65 43 76 

4 53 TV 53 5 38 14 3 

4 54 Washing Machine 60 50 85 45 85 

4 55 Refrigirator 70 80 187 110 349 

4 56 Cooktop 58 51 6 3 6 

4 57 Owen 60 60 85 65 102 

4 58 Washing Machine 60 56 85 48 95 

4 59 TV 92 8 58 23 14 
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4 60 TV 53 5 38 14 3 

4 61 Washing Machine 60 50 85 45 85 

4 62 Refrigirator 70 80 187 110 349 

4 63 Cooktop 58 51 6 3 6 

4 64 Owen 60 60 85 65 102 

4 65 Refrigirator 78 91 185 120 438 

4 66 Deep-Freezer 150 72 85 109 306 

4 67 Washing Machine 60 59 85 52 100 

5 68 Refrigirator 70 80 187 110 349 

5 69 TV 53 5 38 14 3 

5 70 Washing Machine 60 50 85 45 85 

5 71 Refrigirator 78 91 185 120 438 

5 72 Deep-Freezer 150 72 85 109 306 

5 73 Refrigirator 78 91 185 120 438 

5 74 Deep-Freezer 150 72 85 109 306 

5 75 Washing Machine 60 59 85 52 100 

5 76 TV 53 5 38 14 3 

5 77 Washing Machine 60 50 85 45 85 

5 78 Washing Machine 60 50 85 45 85 

5 79 Air Conditioins-Int 94 34 125 43 133 

6 80 Air Conditioins-Ext 92 38 65 43 76 

6 81 Wine Cooler 59 50 84 27 83 

6 82 TV 53 5 38 14 3 

6 83 Refrigirator 70 80 187 110 349 

6 84 Washing Machine 60 50 85 45 85 

6 85 Washing Machine 60 50 85 45 85 

6 86 Refrigirator 70 80 187 110 349 

6 87 Cooktop 58 51 6 3 6 

6 88 Washing Machine 60 50 85 45 85 

6 89 Washing Machine 60 50 85 45 85 

6 90 Air Conditioins-Int 94 34 125 43 133 

6 91 Air Conditioins-Ext 92 38 65 43 76 

6 92 Refrigirator 70 72 173 99 291 

6 93 Refrigirator 78 91 185 120 438 

7 94 Deep-Freezer 150 72 85 109 306 

7 95 TV 92 8 58 23 14 

7 96 TV 53 5 38 14 3 

7 97 Washing Machine 60 50 85 45 85 

7 98 Refrigirator 70 80 187 110 349 
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7 99 Cooktop 58 51 6 3 6 

7 100 Washing Machine 60 50 85 45 85 

7 101 Washing Machine 60 50 85 45 85 

7 102 Air Conditioins-Int 94 34 125 43 133 

7 103 Air Conditioins-Ext 92 38 65 43 76 

7 104 Wine Cooler 59 50 84 27 83 

8 105 TV 53 5 38 14 3 

8 106 Refrigirator 70 80 187 110 349 

8 107 Refrigirator 70 72 173 99 291 

8 108 Refrigirator 78 91 185 120 438 

8 109 Deep-Freezer 150 72 85 109 306 

8 110 Refrigirator 70 80 187 110 349 

8 111 Cooktop 58 51 6 3 6 

8 112 Washing Machine 60 50 85 45 85 

8 113 Washing Machine 60 50 85 45 85 

9 114 Air Conditioins-Int 94 34 125 43 133 

9 115 Air Conditioins-Ext 92 38 65 43 76 

9 116 Wine Cooler 59 50 84 27 83 

9 117 TV 53 5 38 14 3 

9 118 Refrigirator 70 72 173 99 291 

9 119 Refrigirator 78 91 185 120 438 

9 120 Deep-Freezer 150 72 85 109 306 

 

APPENDIX – 9. Extended Model- Mathematical Model 

int nbcities=...; 

range city=1..nbcities+2; //depot=1&nb+2 

 

int nbvehicles=...; 

range vehicle=1..nbvehicles; 

 

int nbboxes=...; //total number of boxes 

range box=1..nbboxes; 

 

int nbdirections=...; 
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range direction=1..nbdirections; 

  

{int} custbox[city]=...; 

 

 

tuple arcs{ 

int i; 

int j; 

} 

{arcs}arc={<i,j>|i in city,j in city:i!=j&&(i!=nbcities+2)&&(j!=1)&&(<i,j>!=<1,11>)}; //set of city pairs 

 

 

execute{ 

for(a in arc){writeln(a)}; 

} 

 

 

int c[arc,vehicle]=...; //travel time 

int a[city]=...; //lower time window 

int b[city]=...; //upper time window 

int l[box]=...; //length of box 

int w[box]=...; //width of box 

int h[box]=...; //height of box 

int q[box]=...; //weight of box 

int L[vehicle]=...; //length of vehicle 

int W[vehicle]=...; //width of vehicle 

int H[vehicle]=...; //height of vehicle 

int Q[vehicle]=...; //weight of vehicle 

int t[city,vehicle]=...; //service time of city i by vehicle k 

int fcost[vehicle]=...;  //fixed cost of vehicle k (rent) 

float varcost[vehicle]=...; //variable cost of vehicle k (fuel consumption per min) 

int type[box]=...; 

int M1=...; 

int M2=...; 

 

dvar int+ x[city,city,vehicle] in 0..1; 
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dvar int+ y[vehicle] in 0..1; 

dvar int+ s[city,vehicle];   //starting time 

dvar int+ gama[box,vehicle] in 0..1; 

dvar int+ zl[box,vehicle]; //box coordination length 

dvar int+ zw[box,vehicle]; //box coordination width 

dvar int+ zh[box,vehicle]; //box coordination height 

dvar int+ delta[direction,box,box,vehicle] in 0..1; 

 

minimize sum(k in vehicle)fcost[k]*y[k]+sum(k in vehicle,a in   

arc:a.j>=2&&a.i<=nbcities+1)varcost[k]*c[a,k]*x[a.i,a.j,k]; 

   

subject to{ 

forall(i in city:i<=nbcities+1&&i>=2){ 

 sum(k in vehicle,j in city:j>=2)x[i,j,k]==1;   //3.constraint 

} 

forall(k in vehicle){ 

 sum(j in city:j<=nbcities+1&&j>=2)x[1,j,k]==y[k];  //4.constraint 

} 

forall(k in vehicle){ 

 sum(i in city:i<=nbcities+1&&i>=2)x[i,nbcities+2,k]==y[k];  //5.constraint   

} 

forall(l in city,k in vehicle:l>=2&&l<=nbcities+1){ 

 sum(i in city:i<=nbcities+1)x[i,l,k]-sum(j in city:j>=2)x[l,j,k]==0;  //6.constraint 

}  

 

forall(a in arc,k in vehicle){ 

 s[a.i,k]+t[a.i,k]+c[a,k]-s[a.j,k]<=M1*(1-x[a.i,a.j,k]);  //7.constraint 

}  

 

forall(i in city,k in vehicle){ 

 s[i,k]>=a[i];  //8.constraint 

 s[i,k]<=b[i];  //9.constraint 

} 

forall(k in vehicle){ 

 sum(alfa in box)q[alfa]*gama[alfa,k]<=Q[k];  //10.constraint   

} 



M A S T E R T H E S I S  | 67 

 

 

 

forall(alfa in box){ 

 sum(k in vehicle)gama[alfa,k]==1;  //11.constraint   

} 

 

forall(i in city,k in vehicle,alfa in box:i<=nbcities+1&&alfa in custbox[i]){ 

ll: sum(j in city:j>=2)x[i,j,k]<=gama[alfa,k];  //12.constraint   

} 

 

forall(alfa in box,k in vehicle){ 

 zl[alfa,k]-L[k]+l[alfa]<=(1-gama[alfa,k])*M2;  //13.constraint 

 zw[alfa,k]-W[k]+w[alfa]<=(1-gama[alfa,k])*M2;  //14.constraint 

 zh[alfa,k]-H[k]+h[alfa]<=(1-gama[alfa,k])*M2;  //15.constraint 

} 

forall(alfa1 in box,alfa2 in box,k in vehicle:alfa1<=nbboxes-1&&alfa2>=alfa1+1){ 

 zl[alfa2,k]+l[alfa2]<=zl[alfa1,k]+(1-delta[1,alfa1,alfa2,k])*M2; //16.constraint 

 zl[alfa1,k]+l[alfa1]<=zl[alfa2,k]+(1-delta[2,alfa1,alfa2,k])*M2; //17.constraint 

 zw[alfa2,k]+w[alfa2]<=zw[alfa1,k]+(1-delta[3,alfa1,alfa2,k])*M2; //18.constraint 

 zw[alfa1,k]+w[alfa1]<=zw[alfa2,k]+(1-delta[4,alfa1,alfa2,k])*M2;} //19.constraint  

  

forall(alfa1 in box,alfa2 in box:alfa1<=nbboxes-1&&alfa2>=alfa1+1)sum(m in direction,k in  

vehicle:m<=2)delta[m,alfa1,alfa2,k]<=1; //22.constraint 

forall(alfa1 in box,alfa2 in box:alfa1<=nbboxes-1&&alfa2>=alfa1+1)sum(m in direction,k in 

vehicle:m>2&&m<=4)delta[m,alfa1,alfa2,k]<=1; //23.constraint 

forall(alfa1 in box,alfa2 in box:alfa1<=nbboxes-1&&alfa2>=alfa1+1)sum(m in direction,k in 

vehicle:m>4&&m<=6)delta[m,alfa1,alfa2,k]<=1; //24.constraint  

 

forall(alfa1 in box,alfa2 in box,k in vehicle:alfa1<=nbboxes-

1&&alfa2>=alfa1+1)delta[1,alfa1,alfa2,k]+delta[2,alfa1,alfa2,k]+delta[3,alfa1,alfa2,k]+delta[4,alfa1,alfa2,k]+delta[

5,alfa1,alfa2,k]+delta[6,alfa1,alfa2,k]>=1-(1-gama[alfa1,k])-(1-gama[alfa2,k]);//25.constraint 

forall(alfa1 in box,alfa2 in box,k in vehicle,m in direction:alfa1<=nbboxes-

1&&alfa2>=alfa1+1)gama[alfa1,k]+gama[alfa2,k]>=2*delta[m,alfa1,alfa2,k];//26.constraint 

forall(k in vehicle,i in city){x[i,i,k]==0; }//27.constraint 

 

 

}; 
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APPENDIX – 10 Integrated Mathematical Model- CLP Part 

int nbcities=...; 

range city=1..nbcities+2; //depot=1&nb+2 

 

int nbvehicles=...; 

range vehicle=1..nbvehicles; 

 

int nbboxes=...; //total number of boxes 

range box=1..nbboxes; 

 

int nbdirections=...; 

range direction=1..nbdirections; 

  

{int} custbox[city]=...; 

 

 

tuple arcs{ 

int i; 

int j; 

} 

{arcs}arc={<i,j>|i in city,j in city:i!=j&&(i!=nbcities+2)&&(j!=1)&&(<i,j>!=<1,11>)}; //set of city pairs 

 

 

execute{ 

for(a in arc){writeln(a)}; 

} 

 

 

int l[box]=...; //length of box 
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int w[box]=...; //width of box 

int h[box]=...; //height of box 

int q[box]=...; //weight of box 

int L[vehicle]=...; //length of vehicle 

int W[vehicle]=...; //width of vehicle 

int H[vehicle]=...; //height of vehicle 

int Q[vehicle]=...; //weight of vehicle 

 

int M1=...; 

int M2=...; 

//int x[arc,vehicle]=...; 

int y[vehicle]=...; 

int gama[box,vehicle]=...; 

dvar int+ zl[box,vehicle]; //box coordination length 

dvar int+ zw[box,vehicle]; //box coordination width 

dvar int+ zh[box,vehicle]; //box coordination height 

dvar int+ delta[direction,box,box,vehicle] in 0..1; 

 

minimize sum(alfa in box,k in vehicle) (zl[alfa,k]+zw[alfa,k]+zh[alfa,k]); 

 

 

subject to{ 

 

forall(k in vehicle){ 

 sum(alfa in box)q[alfa]*gama[alfa,k]<=Q[k];  //10.constraint   

} 

 

forall(alfa in box){ 

 sum(k in vehicle)gama[alfa,k]==1;  //11.constraint   

} 

 

forall(alfa in box,k in vehicle){ 

 zl[alfa,k]-L[k]+l[alfa]<=(1-gama[alfa,k])*M2;  //13.constraint 

 zw[alfa,k]-W[k]+w[alfa]<=(1-gama[alfa,k])*M2;  //14.constraint 

 zh[alfa,k]-H[k]+h[alfa]<=(1-gama[alfa,k])*M2;  //15.constraint 

} 
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forall(alfa1 in box,alfa2 in box,k in vehicle:alfa1<=nbboxes-1&&alfa2>=alfa1+1){ 

 zl[alfa2,k]+l[alfa2]<=zl[alfa1,k]+(1-delta[1,alfa1,alfa2,k])*M2; //16.constraint 

 zl[alfa1,k]+l[alfa1]<=zl[alfa2,k]+(1-delta[2,alfa1,alfa2,k])*M2; //17.constraint 

 zw[alfa2,k]+w[alfa2]<=zw[alfa1,k]+(1-delta[3,alfa1,alfa2,k])*M2; //18.constraint 

 zw[alfa1,k]+w[alfa1]<=zw[alfa2,k]+(1-delta[4,alfa1,alfa2,k])*M2; //19.constraint  

 zh[alfa2,k]+h[alfa2]<=zh[alfa1,k]+(1-delta[5,alfa1,alfa2,k])*M2; //20.constraint 

 zh[alfa1,k]+h[alfa1]<=zh[alfa2,k]+(1-delta[6,alfa1,alfa2,k])*M2; //21.constraint 

} 

 

forall(alfa1 in box,alfa2 in box:alfa1<=nbboxes-1&&alfa2>=alfa1+1)sum(m in direction,k in 

vehicle:m<=2)delta[m,alfa1,alfa2,k]<=1; //22.constraint 

forall(alfa1 in box,alfa2 in box:alfa1<=nbboxes-1&&alfa2>=alfa1+1)sum(m in direction,k in 

vehicle:m>2&&m<=4)delta[m,alfa1,alfa2,k]<=1; //23.constraint 

forall(alfa1 in box,alfa2 in box:alfa1<=nbboxes-1&&alfa2>=alfa1+1)sum(m in direction,k in 

vehicle:m>4&&m<=6)delta[m,alfa1,alfa2,k]<=1; //24.constraint  

 

forall(alfa1 in box,alfa2 in box,k in vehicle:alfa1<=nbboxes-

1&&alfa2>=alfa1+1)delta[1,alfa1,alfa2,k]+delta[2,alfa1,alfa2,k]+delta[3,alfa1,alfa2,k]+delta[4,alfa1,alfa2,k]+delta[

5,alfa1,alfa2,k]+delta[6,alfa1,alfa2,k]>=1-(1-gama[alfa1,k])-(1-gama[alfa2,k]);//25.constraint 

forall(alfa1 in box,alfa2 in box,k in vehicle,m in direction:alfa1<=nbboxes-

1&&alfa2>=alfa1+1)gama[alfa1,k]+gama[alfa2,k]>=2*delta[m,alfa1,alfa2,k];//26.constraint 

 

}; 


