
A HEURISTIC FOR LARGE SCALE
MULTI-PERIOD DISASSEMBLY LEVELING

AND SCHEDULING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
IZMIR UNIVERSITY OF ECONOMICS

by
ŞERBETCİOĞLU, CEMRE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE
DEGREE OF

MASTER OF SCIENCE
IN

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

AUGUST 2017

Approval of tlıe Graduate School of Natrıral and Applied Sciences

This is to certify that we
adequate, iri scope and in

I certify that this thesis satisfies all the
Master of Science.

(Assoc. Prof. Dr. Devrim UNAY)

Directoı,

requirements as a thesis for the degree of

R+--
(Assoc. Prof. Dr. Sehn ÖZPEYNİRCİ)

Head of Department

this thesis and that in our opinion it is fully
a thesis for t}ıe clegree rıf Master of Scierıce.

--G---\
(Assoc. Prof. Dr. Selin ÖZPEYNİRCİ)

Supervisor

Date: 24,q.Lot7

a

-5t

l---..+.

have read
quality, as

Asst. Prof. Dr. M Ali GÖKÇtr)

Examining Committee Members

Asst. Prof. Dr. \4ahmut Ali GÖKÇE

Asst. Prof. Dr. Kamil Erkan KABAK

Asst. Prof. Dr. Erdinç ÖIVPR

Assoc. Prof. Dr. Özgür ÖZPPYXİRCİ

Assoc. Prof. Dr. Sehn ÖZPEYNİRCİ

Co-Supervisor

ABSTRACT

A HEURISTIC FOR LARGE SCALE MULTI-PERIOD DISASSEMBLY
LEVELING AND SCHEDULING

Şerbetcioğlu, Cemre

M.Sc. in Industrial Engineering
Graduate School of Natural and Applied Sciences

Supervisor: Assoc. Prof. Dr. Selin ÖZPEYNİRCİ
Co-Supervisor: Asst. Prof. Dr. Mahmut Ali GÖKÇE

August 2017, 76 pages

In recent years, with increasing regulations and laws on environment, both con-
sumers and manufacturers start getting more conscious in order to prevent the
depletion of natural resources. Due to this awareness, manufacturing industry
starts to change its direction towards product recovery instead of disposing them.
Since products need to be separated systematically in order to be recycled or re-
manufactured, disassembly has a major role in product recovery process. There
are various problems on the disassembly domain but in this study, the main focus
is on the disassembly leveling and scheduling field. The problem of disassembly
scheduling considered in this thesis can be defined as determining the quantity
and timing of disassembling used/end-of-life products and/or subassemblies while
satisfying the demand for parts/subassemblies over a planning horizon and at the
same time the problem of disassembly leveling, that is, determining disassembly
level for the end-of-life product for different periods. This study addresses the ba-
sic problem without parts commonality i.e., none of the items in used/end-of-life
product share its parts and/or subassemblies, with the extension of considering
capacity restriction and unsatisfied demand, unlike the existing studies. A mixed
integer programming (MIP) model is developed first, then in order to have a
more practical application which is fast enough to solve large scale disassembly
scheduling operations, a heuristic algorithm is suggested with its computational
results.

Keywords : Disassembly, disassembly scheduling, disassembly leveling, mathemat-
ical programming

iii

ÖZ

ÇOK PERİYOTLU ÇOK PARÇALI DEMONTAJ ÇİZELGELEME İÇİN
SEZGİSEL YÖNTEMLER

Şerbetcioğlu, Cemre

Endüstri Mühendisliği, Yüksek Lisans
Fen Bilimleri Enstitüsü

Tez Yöneticisi: Doç. Dr. Selin ÖZPEYNİRCİ
Ortak Tez Yöneticisi: Yrd. Doç. Dr. Mahmut Ali GÖKÇE

Ağustos 2017, 76 sayfa

Geçtiğimiz birkaç yıl, doğal kaynakların gittikçe artan azalma ve doğanın kir-
lenme hızını azaltmaya yönelik, tüketici ve üreticiler için çıkan artan sayıda kanuni
düzenlemelere tanık olmuştur. Bu artan düzenlemeler, tüketicideki bilinç artışı
ve maliyet unsurları ile birlikte, şirketlerin yarı mamül/ parça/ hammadde geri
kazanımı konularında daha çok uğraş vermelerine sebep olmuştur. Geri kazanım
işlemlerinin verimli yapılabilmesi, artık endüstriyel boyutta demontaj işlemlerinin
iyi yönetilmesi ile yakından ilgilidir. Şimdiye kadar demontaj çizelgeleme prob-
lemi (ne zaman, hangi üründen, kaç tane ve ne kadar demonte edileceği) için
çeşitli matematiksel modeller geliştirilmiş, fakat gerçekçi boyutlardaki problem-
lerden makul sürelerde makul çözümler elde edebilecek sezgisel yöntemler geliştir-
ilmemiştir. Bu çalışmada, gerçekçi boyutlardaki demontaj çizelgeleme problem-
inin çözümü için geliştirilmiş sezgisel yöntemler ve bu yöntemlerin gerçekçi bir
problem veri seti üzerinden performansları, bilinen optimumlarla karşılaştırmalı
olarak sunulmaktadır.

Anahtar Kelimeler : Demontaj çizelgeleme, demontaj seviyeleri, sezgisel yöntem-
ler, matematiksel programlama

iv

Acknowledgments

I would like to thank my co-advisor Asst. Prof. Dr.Mahmut Ali Gökçe for con-
tinuous support during my research, for his patience, motivation and enthusiasm.
His guidance helped me all the time during research and writing of this thesis.
I am grateful to him for enlightening me from the first very beginning of this
study. He was a great teacher, educator, and advisor, who provided a lot of the
ideas and inspiration for the thesis, and without his assistance and dedicated
involvement in every step throughout the process, this thesis would have never
been accomplished.

My sincere thanks also goes to my advisor Assoc. Prof. Dr. Selin Özpeynirci
for her support and guidance over years. Besides my advisor and co-advisor, I
would like to thank the examining committee for their insightful comments and
contributions to my thesis.

Also, my deepest gratitude and love belong to Tolgay Hıçkıran, whose encour-
agement, inspiration and support were with me all these years.

Last but not least, I would like to express my sincere gratitude to my family for
their love and support during all my education years as well as my thesis process.

v

Contents

Abstract iii

Öz iv

Acknowledgments v

List of Figures viii

List of Tables ix

1 Introduction 1

2 Literature Review 8
2.1 Disassembly Scheduling Models without Capacity Constraint . . . 10
2.2 Disassembly Scheduling Models with Capacity Constraint 13

3 Problem Definition 18
3.1 Mathematical Model . 25

4 Proposed Heuristic Solution 29

5 Computational Experiments 35
5.1 Experimental Design Parameters 35

5.1.1 Number of items . 37
5.1.2 Number of levels . 37
5.1.3 Number of periods . 38

5.2 d-BOM Generator . 39
5.3 Experimentation and Results . 40
5.4 Analysis of effects of design parameters 44

6 Conclusion and Future Study 52

Appendices 54

A CPLEX Code 55

B C++ Code 59

C VBA Code 67

vi

7 Bibliography 70

vii

List of Figures

1.1 Product Recovery Schema . 2
1.2 Difference of Disassembly and Assembly Structure 4

3.1 Disassembly Product Structure Examples 19
3.2 Disassembly Product Structure 21

4.1 Flow of the Proposed Heuristic Algorithm 30

5.1 Histogram of Percentage Deviation (gap) 46
5.2 Normality Plot of Percentage Deviation (gap) 46
5.3 Normality Plot of Logarithmic Base Percentage Deviation (gap) . 47
5.4 Main Effect Analysis Output on Percentage Deviation 48
5.5 Main Effect Analysis Output on CPU Seconds of CPLEX 49
5.6 Scatter Plot on CPU Seconds of CPLEX 50

viii

List of Tables

5.1 Design Parameter Values . 39
5.2 Experimentation Results . 43

ix

Chapter 1

Introduction

In recent years, with increasing regulations and laws on environment, both con-

sumers and manufacturers became more conscious to prevent the depletion of nat-

ural resources (Lambert and Gupta, 2002). A major contributing factor for this

increased public awareness is the accumulating product waste, which is yielded by

rapid development in technology and decreasing product life-cycles. This speed in

the improvement of products led people to desire the latest technology and caused

additional demand, which yielded an increase in amount of waste while decreasing

the lifetime of products. With increased quantity of scrapped products, landfill

capacity also reached an alarming rate and as a result, green products gained a

great deal of attention. Hence, people start to behave in more environmentally

responsible manner. Due to this environmental awareness and government leg-

islations, manufacturing industry is forced to use recycled materials more and

more, and they start to change their direction towards product recovery instead

of simply disposing them, since total breakdown of disposed end-of-life(EOL)

products takes quite long time in nature.

1

Besides the societal pressure, companies started to realize the existence of

economic benefit to be gained from recovery of resources. Many firms, such as

Audi, BMW, Daimler-Chrysler, Ford and Volkswagen recognized the importance

of efficient use of resources and they have their own disassembly/recovery plants.

In addition to automobile manufacturers, product recovery has also given rise

in the military field, since governments no longer allow scrapping the weapons

and ammunitions (Gungor and Gupta, 1999). In this framework, the objective

is mainly to recover products considering ecologic and economic benefits while

keeping the waste within desirable level. A schematic demonstration of product

recovery is shown in Figure 1.1.

Figure 1.1: Product Recovery Schema

Product recovery is defined as reutilizing used/EOL products in terms of recy-

cling or refurbishing and remanufacturing where recycling is the material regain

from used/EOL products via some disassembly operations while remanufactur-

ing preserves the functional content of used/EOL products and improves their

quality up to desired level (Sasikumar and Kannan, 2001). Since products need

2

to be separated systematically in order to be recycled or remanufactured or even

disposed of, disassembly has a major role in product recovery process. According

to Jovane et al.(1993), disassembly can be stated as separating a product into its

parts and/or subassemblies with necessary sorting, while extracting hazardous

substances to satisfy environmental standards and requirements.

Vongbunyong and Chen (2015) divides disassembly in two types based on

its completeness: complete disassembly and incomplete disassembly. Complete

disassembly is disassembling product fully, while incomplete disassembly is dis-

assembling partially. In addition, there are three classifications of disassembly

operations which are non-destructive, semi-destructive and destructive. Non-

destructive disassembly is the case which is preferred for reuse and remanufac-

ture since it does not damage the disassembly while semi-destructive disassembly

leaves only the main items and it may damage them during the operation. On the

contrary, destructive disassembly aims to reach most valuable parts inside while

destroying the rest and is the most common operation technique. Although dis-

assembly setting has many similarities with the assembly concept, the divergent

structure of disassembly is highly challenging due to its variations and uncertain-

ties such as product’s condition, market demand and technology changes.

A number of previous studies are performed on disassembly systems and their

challenges. Those various problems can be covered in several disassembly do-

mains such as design of disassembly, disassembly line balancing, disassembly pro-

3

cess planning, disassembly leveling and disassembly scheduling. In this study, our

interest is mainly in disassembly leveling and scheduling. Herein, disassembly lev-

eling is deciding whether to disassemble or not and determine depth of the level

while; disassembly scheduling is the problem of determining the quantity and tim-

ing of disassembling used/EOL products and/or subassemblies while satisfying

the demand of parts/subassemblies over a planning horizon (Gungor and Gupta,

1999). The focus of this thesis is on disassembly scheduling, that is, to determine

the quantity and time of disassembling used/EOL products and/or subassemblies.

From theoretical point of view, disassembly scheduling can be considered sim-

ilar as reversed material requirement planning (MRP); however, in our case re-

versed manufacturing resource planning (MRP II) is more likely to the problem’s

characteristic in terms of capacity consideration. Even though they seem similar,

because of the divergent structure of the bill of material (BOM) and different

demand sources it differs from those concepts in more complicate way (Taleb,

Gupta and Brennan , 1997). Figure 1.2 illustrates disassembly and assembly

structures in detail.

Figure 1.2: Difference of Disassembly and Assembly Structure

4

Figure 1.2 also shows the difference among single and multiple demand sources

for both structures. In more detail, items G, H, I and J are the demand sources

in disassembly structure while in the assembly structure A is the the only inde-

pendently demanded item. On the contrary, in disassembly structure there exists

only one procurement source which is A, while assembly structure has multiple

procurement sources that are items G, H, I and J. This figure exemplifies the

complexity of disassembly structure compared to the assembly structure. Main

reason of this is the dependency between items which limits disassembly opera-

tion.

Additionally, level or depth of the product tree is another major decision cri-

terion in disassembly structure that differs from assembly structure. Therefore,

an integrated problem of disassembly leveling and scheduling that can be defined

as a capacitated disassembly scheduling problem on the case of single product

type without parts commonality is addressed in this study. Among the various

disassembly scheduling problems with heuristic approach in literature, this study

contributes existing articles with following extensions:

• capacity restriction

• allowing unsatisfied demand but penalizing it as a cost

• disassembling, selling and holding items all at the same time

• various costs consideration such as purchasing, setup operation, inventory

5

holding and penalty cost

• giving opportunity to sell not only parts but also subassemblies

To represent a model with above extensions mathematically, an integer pro-

gramming model is demonstrated with the objective of maximizing revenue which

also differs from most of the existing studies. Although the integer programming

model with above extensions gives optimal solution for small-sized problems, for

large scale problems including a wide range of problem specification in terms of

product structure; mathematical programming approach can become infeasible

for operational planning purposes and therefore, a faster solution approach is

needed in order to be able to run a disassembly operation in practice. As illus-

trated in more detail in Chapter 2, there is also a lack of such approaches for

this problem in previous studies. Hence, in this study, a heuristic algorithm is

proposed for the above mentioned disassembly leveling and scheduling problem

space. Moreover, a testbed problem generator is developed with specific design

configurations, which is the main contribution to the existing studies in terms of

heuristic algorithm solution approach. To show the performance of the suggested

algorithm, computational experiments are performed on a number of randomly

generated problems and the test results are reported.

The remainder of this thesis is organized as follows. In Chapter 2, relevant

previous articles on disassembly leveling and scheduling are reviewed. The prob-

lem is defined and the model considered in this study is demonstrated in Chapter

6

3. The suggested heuristic algorithm is represented in Chapter 4 and in Chapter

5, experimentation set design is explained first. Following, computational results

for randomly generated test problems are reported for both solution approaches

and experimentation results are discussed. Lastly, in Chapter 6 the study is

concluded with a summary and future study issues.

7

Chapter 2

Literature Review

Following the introduction, in this chapter relevant articles in literature are re-

viewed. In disassembly domain, various research articles published through years.

Jovane et al. (1993) reviewed current recycling activities according to process,

product and system design frames. Bok et al. (1998) covered government legisla-

tions and EOL product strategies for three regions; Japan, the United States and

Western Europe. Gungor and Gupta (1999) focused on Environmentally Con-

scious Manufacturing and Product Recovery (ECMPRO) related issues in their

study. Recently, Vongbunyong and Chen (2015) emphasized the importance of

economical feasibility in disassembly systems. The difficulties that are mainly the

variations of the basic problem and demand uncertainities covered in the corre-

sponding book chapter. For other related research articles, the interested reader

is referred to Neuendorf et al. (2001), Tang et al. (2002) and Ilgın and Gupta

(2010).

8

The focus of this thesis is mainly on disassembly leveling and scheduling scope.

Disassembly scheduling can be stated as the problem of determining quantity and

timing of EOL products to be disassembled in order to fulfill certain or uncer-

tain demand for parts and/or subassemblies of the corresponding EOL item in

a planning horizon, with or without capacity restriction. Since disassembly is a

costly operation, obtaining optimal or near optimal schedules are highly impor-

tant. Also, improving efficiency for companies who are interested in this field,

should be flexible in terms of disassembly operations and satisfactory solutions

should be provided for necessary conditions.

Most frequently used objectives in disassembly scheduling can be listed as:

• Minimizing number of disassembled items

• Minimizing total cost

• Maximizing overall profit

The previous articles on disassembly scheduling can be classified by assem-

bly product structure (with or without parts commonality), number of products

(single or multiple), capacity constraints and demand uncertainty (deterministic

or stochastic) (Neundorf et al., 2001). Mainly, in this thesis literature review is

classified in two major categories that are, capacitated and uncapacitated disas-

sembly scheduling problem.

9

2.1 Disassembly Scheduling Models without Ca-
pacity Constraint

Capacity restriction considered in this study can be stated as resource or workload

limitation. Compared to the capacitated problem, to the best of author’s knowl-

edge, not much work done on uncapacitated problem. From the original work

of the uncapacitated problem that is characterized by Gupta and Taleb (1994),

many research has been published on disassembly scheduling. Here, Gupta and

Taleb (1994) suggested a reverse form of MRP algorithm for the basic problem.

Basic problem can be considered as the deterministic problem with single prod-

uct without parts commonality where there are not any capacity restrictions and

no explicit objective function such as cost variety. The parts commonality here

implies that products may have the same parts. In other words, multiple oc-

currences of parts may happen among products. In their study, their MRP-like

algorithm determines the ordering and disassembly schedule for EOL items and

subassemblies.

Several extensions suggested after Gupta and Taleb (1994) introduced the ba-

sic model. Taleb, Gupta and Brennan (1997) extended the previous studies with

materials and parts commonality allowance for single product and suggested an-

other MRP-like algorithm where the objective was to determine the procurement

strategy that minimizes number of ordered products. This extended model makes

the problem more complex than the basic one since parts commonality provided

a dependency between the parts. Later, Taleb and Gupta (1997) extended the

10

problem with parts commonality proposed by Taleb, Gupta and Brennan (1997),

considering multiple product structures. In this model, they proposed two-phase

algorithm that determines the disassembly schedule while attempting to minimize

disassembly cost. Later, Neuendorf et al. (2001) extended the problem presented

by Taleb, Gupta and Brennan (1997) assuming regular MRP with an improved

Petri-net-based algorithm. Imtanavanich and Gupta (2002) studied on single pe-

riod multi-objective disassembly scheduling problem for multiple products with

parts commonality using integer goal programming. Later, Kongar and Gupta

(2006) considered the demand uncertainty using fuzzy goal programming.

Lambert and Gupta (2002) considered disassembly graph approach and inte-

ger programming on the extended problem with parts commonality for both sin-

gle product and multiple product types. Kim et al. (2003) suggested a heuristic

based on linear programming (LP) relaxation approach for the multiple product

type with parts commonality. Lee and Xirouchakis (2004) proposed a two-stage

heuristic algorithm for the basic model with a cost-based objective function con-

sideration as an extension of Gupta and Taleb (1997). Then, Lee et al. (2004)

presented integer programming models for basic model and variants of it. They

represented three integer programming models with all having the objective of

minimizing various costs. Later, Lee (2005) developed an integer programming

model with a cost-based objective for the basic problem and compared it with

the existing MRP-like algorithms in order to emphasize the importance of various

costs in the objective function.

11

In another research study by Kim et al.(2006), an algorithm is developed

based on Lagrengian relaxation for the basic problem with a cost-based objec-

tive. Then, Kim, Lee and Xirouchakis (2006a) extended this proposed model

from single product to multiple product. They first used LP relaxation and then,

improved it using a dynamic programming algorithm with the objective to min-

imize the setup, disassembly operation and inventory holding costs. Langella

(2007) modified the Taleb and Gupta (1997) model with cost variety. Purchasing

and disposal costs are considered for multiple product with parts commonality.

Barba-Gutierrez, Adenso-Diaz and Gupta (2009) addressed the connection be-

tween disassembly scheduling with lot sizing. They demonstrated a heuristic for

the original Gupta and Taleb (1994) model and solved it using three lot sizing

rules which are Economic Order Quantity(EOQ), Period Order Quantity(POQ)

and Lot for Lot(L4L). Additionally, also a genetic algorithm is developed by Gao

and Chen (2008) for the basic problem as an extension.

Kim et al. (2009) showed the complexity of basic problem with cost-based

objective and proved that it is NP-hard. Then, they suggest another branch and

bound algorithm. Kang et al. (2012) integrated disassembly leveling and schedul-

ing problems and developed an integer programming model for single period. Two

types of problems are considered in the study which are basic problem without

parts commonality and extended version with parts commonality for both single

and multiple products. Then, a heuristic is suggested and solved for both cases.

As an extension of integration of disassembly leveling and scheduling study, Kim

and Lee (2011), considered the problem for multi-period and suggested their own

12

heuristic. In fact, the backward heuristic suggested by Kang et al. (2012) and

Kim and Lee (2011) are the inspiration of our proposed algorithm in this study.

Particularly, the backward fashion in their algorithm is the inspiration behind

the proposed heuristic algorithm for the multi-period capacitated dissassembly

scheduling problem. Additionally, in this thesis some other varieties of the prob-

lem is considered such as capacity restriction, multi-period planning horizon and

demand consideration for not only leaf items but also subassemblies. A detailed

problem description is mentioned in Chapter 3.

2.2 Disassembly Scheduling Models with Capac-
ity Constraint

Although previous research addressed several cases of the disassembly scheduling

problem as it is shown in Table 2.1, most of the heuristic algorithm studies is con-

cerned with the uncapacitated problem. Unlike regular MRP, most of the earlier

research studies considered uncapacitated problem which implies that there aren’t

any restrictions on available resources or workload capacity. The first study on

capacitated disassembly scheduling was by Lee et al. (2002) who proposed an

integer programming model with capacity restriction as an extension of the basic

disassembly scheduling problem without parts commonality for single product

that is developed by Gupta and Taleb (1994). They considered cost-based objec-

tive function unlike basic model and solved a case study on inkjet printers. Kim,

Lee and Xirouchakis (2006b) extended this study with respect to two points that

are setup cost consideration and Lagrangean heuristic algorithm development to

13

solve large size problems. They emphasized the importance of setup costs in this

study. For the same problem, Hyong-Bae et al. (2006) demonstrated and integer

programming model and suggested a two-stage heuristic with a cost-based objec-

tive. Kim et al. (2006) suggested an algorithm with the objective of minimizing

number of disassembled items and capacity consideration as an extension of the

uncapacitated version of the problem developed by Kim, Lee and Xirouchakis

(2005) .

Prakash, Ceglarek and Tiwari (2011) studied a metaheuristic approach with

capacity constraint while allowing parts coming from external sources. Among

existing studies on capacitated disassembly scheduling, this one is the first that

considers a variety of original model that is parts commonality. They proposed

a Constraint-Based Simulated Annealing (CBSA) algorithm and compared re-

sults with Simulated Annealing (SA) and Genetic Algorithm (GA) approaches.

Recently, Gokgur et al. (2015) suggested a mathematical model for large scale

problems which considers all varieties of the problem with capacity restriction.

As an extension to existing studies, they considered additional costs for the first

time such as penalty cost for unsatisfied demand, selling price, disposal cost. In

this study, they allowed demand for not only leaf items but also subassemblies

which makes the problem a bit more complex. For the capacitated disassembly

scheduling problem, most recently Ji et al.(2016) extended previous studies con-

sidering start-up cost to conduct managerial sights and industrial applications.

They developed Lagrangean heuristic and compared the results with previous

researches.

14

There also exists some research studies in capacitated disassembly scheduling

with stochastic demand consideration. For more detailed review on stochastic

disassembly scheduling problems, see Kongar and Gupta (2006), Barba-Gutierrez

and Adens-Diaz (2009) and Kim and Xirouchakis (2010).

Table 2.1 presents a summary of disassembly scheduling literature review in-

cluding the proposed algorithm in this thesis. In the table PC denotes Parts

Commonality (with parts commonality) where NPC implies No Parts Common-

ality (without parts commonality). SI and MI are the item numbers which are

single item and multiple items, respectively. Capacity condition is stated with C

and D letters where C implies capacitated and U states uncapacitated. Demand

uncertainty is symbolized with D for deterministic and S for stochastic. Lastly,

solution approaches are divided into three that are, MP, H and MH which implies

Mathematical Programming, Heuristic and Metaheuristic, respectively.

15

Ta
bl

e
2.

1:
 S

um
m

ar
y

of
 L

ite
ra

tu
re

 R
ev

ie
w

A
ut

ho
rs

Y
ea

r
PC

N
PC

SI
M

I
U

C
D

S
M

P
H

M
H

G
up

ta
 a

nd
 T

al
eb

19

94
x

x
x

x
x

Ta
le

b,
 G

up
ta

 a
nd

 B
re

nn
an

19

97
x

x
x

x
x

Ta
le

b
an

d
G

up
ta

19
97

x
x

x
x

x
N

eu
en

do
rf

 e
t a

l.
20

01
x

x
x

x
x

La
m

be
rt

an
d

G
up

ta

20
02

x
x

x
x

x
x

Le
e,

 X
iro

uc
ha

ki
s a

nd
 Z

us
t

20
02

x
x

x
x

x
K

im
 e

t a
l.

20
03

x
x

x
x

x
x

Im
ta

na
va

ni
ch

 a
nd

 G
up

ta
20

04
x

x
x

x
x

Le
e

an
d

X
iro

uc
ha

ki
s

20
04

x
x

x
x

x
x

Le
e

et
 a

l.
20

04
x

x
x

x
x

x
x

K
im

, L
ee

 a
nd

 X
iro

uc
ha

ki
s

20
05

x
x

x
x

x
Le

e
20

05
x

x
x

x
x

K
im

, L
ee

 a
nd

 X
iro

uc
ha

ki
s

20
06

x
x

x
x

x
x

H
yo

ng
-B

ae
 e

t a
l.

20
06

x
x

x
x

x
x

K
im

 e
t a

l.
20

06
x

x
x

x
x

K
on

ga
r a

nd
 G

up
ta

20

06
x

x
x

x
x

K
im

, L
ee

 a
nd

 X
iro

uc
ha

ki
s

20
06

x
x

x
x

x
x

La
ng

el
la

20

07
x

x
x

x
x

B
ar

ba
-G

ut
ie

rr
ez

 ,
A

de
ns

o-
D

ia
z

an
d

G
up

ta
20

08
x

x
x

x
x

G
ao

 a
nd

 C
he

n
20

08
x

x
x

x
x

x
K

im
 e

t a
l.

20
09

x
x

x
x

x
B

ar
ba

-G
ut

ie
rr

ez
 a

nd
 A

de
ns

-D
ia

z
20

09
x

x
x

x
x

K
im

 a
nd

 X
iro

uc
ha

ki
s

20
10

x
x

x
x

x
x

K
im

 a
nd

 L
ee

20
11

x
x

x
x

x
x

Pr
ak

as
h,

 C
eg

la
re

k
an

d
Ti

w
ar

i
20

11
x

x
x

x
x

x
K

an
g

et
 a

l.
20

12
x

x
x

x
x

x
x

Su
ng

 a
nd

 Je
on

g
20

14
x

x
x

x
x

x
G

ök
gü

r,
G

ök
çe

 a
nd

 Ö
zp

ey
ni

rc
i

20
15

x
x

x
x

x
x

x
Ji

 e
t a

l.
20

16
x

x
x

x
x

K
im

 e
t a

l.
20

16
x

x
x

x
x

x
T

he
 p

ro
po

se
d

m
od

el
20

17
x

x
x

x
x

x

Li
te

ra
tu

re
So

lu
tio

n
A

pp
ro

ac
he

s
St

ru
ct

ur
e

Ite
m

C
ap

ac
ity

U
nc

er
ta

in
ty

16

In Table 2.1, it is shown that capacitated version of the problem with heuris-

tic solution approach has limited number of research articles. In fact, all of the

studies with these specifications consider minimizing total cost where maximizing

revenue is the objective of this study. Because, this thesis also allows shortage

while penalizing it which causes additional decision variables such as number of

sold items. Moreover, there exists demand both subassembly and part/compo-

nent which differs from existing studies especially in terms of capacitated heuris-

tic approaches. The focus of this thesis is on capacitated disassembly scheduling

problem with both mathematical model and heuristic approaches. While most

of the studies on capacitated problem with heuristic approach considers limited

number of design parameters, in this study the performance study is extended

with an extensive experimentation study that provides more insight about the

problem dynamics.

To sum up, this study contributes to the existing problem that demonstrated

by Gokgur et al. (2015) with a faster solution algorithm suggestion in terms of

computation time. It is also worth to mention that, the proposed algorithm is

also a contribution to the existing backwards heuristic suggested by Kang et al.

(2012) and Kim and Lee (2011).

17

Chapter 3

Problem Definition

The problem under consideration is, disassembly scheduling with product struc-

ture of single product type without parts commonality. According to Taleb and

Gupta (1997), disassembly product structure is divided into three types, that

are, single product without parts commonality, single product with parts com-

monality and multiple products with parts commonality. These three types are

adopted in Figure 3.1 below. In this thesis, a multi-period capacitated disassem-

bly leveling and scheduling problem is studied with the consideration of the first

type of structure shown in figure, which is the single product type without parts

commonality. In this type of product structure, there exists only one EOL prod-

uct and none of the items in this structure share its parts/components. In the

second structure, that is single product type with parts commonality, items can

share same parts/components. For clarity, common parts in the product struc-

ture are designated with dark colored boxes while yields of items are notated

with numbers in parenthesis. Third structure which is multiple product type

with parts commonality, allows both part sharing between different products and

part sharing in the same product. In other words, part E in the third figure

18

below, is an example of part sharing in same product that is obtained from dis-

assembling parts B and C since they are part of product A. Apart from this type

of parts commonality, again in the same structure below, part F is obtained from

disassembling parts C and part H where part C belongs to product A and part

H belongs to product G which is an example of part sharing in different products.

Figure 3.1: Disassembly Product Structure Examples

19

Disassembly product structure consists of EOL product and its parts/sub-

assemblies. These parts/components and subassemblies are also described as

root, intermediate and leaf items where root items represent the product to be

disassembled or in other words, product itself. Leaf items on the other hand, are

the parts or components that cannot be disassembled further. Unlike most of the

existing studies, independent demand occurrence of not only parts/components

but also subassemblies which are named as intermediate items, is considered in

this thesis. In other words, demand occurs in both child and parent levels except

root item which differs this study from existing heuristic approaches on capaci-

tated disassembly scheduling problem.

A child parent relationship is where one or a number of children is obtained

directly by immediately disassembling the parent. As it is stated before, sin-

gle product without parts commonality type of problem is taken into account

of which is also known as the basic problem. Therefore, in our case each child

item has at most one parent item. Figure3.2 shows the disassembly structure

and parent-child relationship which is also one of the products considered in our

computational experiments (See Chapter 5 for related experiments and results).

20

Figure 3.2: Disassembly Product Structure

In above disassembly bill-of-material (d-BOM) structure, the single product

is the EOL item which is named as A, the root item. Next, B, C, D, E are the

subassemblies which are also called as intermediate items. Finally, F, G, H, I, J

are the parts/components that are described as leaf items. Yield ratio between

root and leaf items are represented with the number in each parenthesis in figure

below, which denotes the quantity of parts or components obtained while disas-

sembling one unit of root item.

Disassembling one unit of the parent item A, results in 2 units of its child

item B and 1 unit of its other child item C. Additionally, item B is disassembled

into 2 units of D and 1 unit of E while item C is disassembled into 2 units of F.

Hence, subassemblies or intermediate items such as B and C, are both children

and parents. Root item A, on the other hand, is only a parent item while leaf

items F, G, H, I and J are child items.

21

Demand for both parts and subassemblies assumption leads us to another

important decision variable; disassembly level. Capacitated disassembly leveling

and scheduling problem studied in this thesis is an integrated model which con-

sists of both disassembly leveling and scheduling.

The problem considered in this study can be defined as follows: for a given dis-

assembly product structure with single product without parts commonality, prob-

lem of determining the quantity and timing of disassembling used/EOL products

and/or subassemblies while satisfying the demand of parts/subassemblies over a

planning horizon and considering capacity restriction. In other words, deciding

the timing and quantity of disassembly operations with capacity restriction while

determining the disassembly level/depth. Here, a single time period may be a

minute, hour etc. depending on the problem characteristics.

The objective function considered is to maximize revenue while considering

capacity constraints over a planning horizon. Revenue is composed of sales and

disassembly process related costs which considered in this study are; purchase,

setup, operational, inventory holding and penalty costs. As it is mentioned in

the previous chapter, most of the related articles in literature considered mini-

mization problem while maximizing revenue is the objective in this study. Note

that some of the costs considered in this model are time-variant, i.e. purchase

cost. Purchase cost is the cost of buying one unit of the EOL product, or root

item and it may vary in different time periods. Since disassembly operations

22

are mostly performed manually, setup cost is also considered in the model which

implies the cost required for the preparation of disassembly operation including

the costs related to equipment/tooling during setup. If at least one disassembly

operation is conducted in corresponding time period, then setup cost occurs.

Different from setup cost mentioned above, there also exists another disas-

sembly operation related cost which is the operational cost. Operational cost is

the cost required for the disassembly process and assumed to be deterministic

and given in advance, while inventory holding cost occurs if there are any items

stored. Since a multi-period problem is considered, inventory holding cost is also

included which occurs if there are any items stored. In other words, it is the cost

to carry one unit of part or subassembly from one period to other and it is com-

puted at the end of each period. Besides, the nature of disassembly structure may

cause a nondemanded part or subassembly to be disassembled as well. In more

detail, in order to obtain demanded item in a disassembly structure it is needed

to disassemble its parent item first which may cause a nondemanded or less de-

manded item from corresponding family disassembly. This foregone conclusion

causes nondemanded child or children gain with the amount of corresponding

yield. Hence, these nondemanded items will eventually be held in inventory as

well.

Unlike most of the studies in the literature, in this study, penalty cost is also

taken into account since shortage is allowed. Note that, backlogging is not al-

23

lowed but shortage may occur in corresponding time period which ends with lost

sales. Shortage cost is considered as the penalty cost of not satisfying one unit of

demanded item. Therefore, in each period decision maker needs to consider the

consequences of not satisfying demanded item and/or satisfying demand while

having on-hand inventory.

In disassembly structures, based on yield information of product tree, most

of the time disassembly operations conclude with nondemanded items on-hand.

This leads us to the take into account of the trade-off between holding items in

inventory or not satisfying demanded items while penalizing them. Before an

explicit demonstration of main model that considers these variables as decision

variables, first a MIP model with an objective of maximizing revenue is intro-

duced.

Yet, another extension among most of the research studies in literature, the

disassembly leveling and scheduling problem mentioned above considers capacity

restriction. Capacity limit implies the availability of disassembly operation as-

signed in a period of the planning horizon. Hence, the number of disassembled

items has an upper limit specified by each period’s capacity restriction. Also,

disassembly product structure is assumed to be given in advance for the corre-

sponding planning horizon.

24

Other assumptions made in this study are summarized as follows:

• No defective parts are considered.

• Demand of leaf items and intermediate items are considered as deterministic

and known in advance

• There is no shortage of root items.

• Disassembly lead time and ordering lead times are assumed negligible.

• Backordering is not permitted.

• Unsatisfied demand is allowed and penalized.

3.1 Mathematical Model

According to disassembly product structure described in previous section, an in-

teger programming model is developed in order to describe the problem clearly.

Definition of sets, indices used in the mathematical model are summarized as

follows:

In the d-BOM structure, items are represented by integers 1, 2. . . , ir, ir+1,. . . ,

il−1, il,. . . , I where root items are represented with integers from 1 to ir, interme-

diate items are defined with integers from ir+1 to il−1 and leaf items are notated

with integers from il to I. Rest of the notations used are given as follows:

25

Sets and Indices

i, j Item number, i, j ∈ I ={1,...,|I |}

t Period number, t ∈ T ={1,...,|T |}

Parameters

hi inventory holding cost of item i

oi disassembly operation cost of item i

pt purchasing cost of EOL product in period t

ci setup cost of item i

pci selling price of item i

pni penalty cost of not satisfying one unit of item i

dit demand of item i in period t

capi aggregated capacity for item i

PSi parent set of item i

aji number of units of item i obtained from disassembling one unit of j

βit fill rate of item i in period t

M arbitrary large number

Decision Variables

Xit number of item i disassembled in period t

Z1t number of EOL product purchased in period t

Sit number of item i sold in period t

Iit inventory level of item i at the end of period t

Uit number of unsatisfied demand i in period t

26

Yit 1, if setup occurs for item i in period t

0, otherwise

Mathematical model is given below:

Maximize
T∑
t=1

I∑
i=1

pciSit −
[T∑

t=1

il−1∑
i=1

ciYit +
T∑
t=1

il−1∑
i=1

oiXit+

T∑
t=1

I∑
i=1

hiIit +
T∑
t=1

I∑
i=1

pniUit +
T∑
t=1

ptZ1t

]

subject to

Xit ≤ capi ∀i ∈ I, t ∈ T (1)

Xit ≤MYit ∀i ∈ I, t ∈ T (2)

βitdit ≤ Sit ≤ dit ∀i ∈ I, t ∈ T (3)

Iit = Ii,t−1 + Z1t −Xit i=1, 2,...,ir (4)

Iit = Ii,t−1 +
∑
j∈PSi

ajiXjt −Xit − Sit i=ir+1,...,il−1 (5)

Iit = Ii,t−1 +
∑
j∈PSi

ajiXjt − Sit i=il,...,I (6)

Z1t ≥ 0 ∀t ∈ T (7)

Xit ≥ 0 ∀i ∈ I, t ∈ T (8)

Sit ≥ 0 ∀i ∈ I, t ∈ T (9)

Uit ≥ 0 ∀i ∈ I, t ∈ T (10)

Iit ≥ 0 ∀i ∈ I, t ∈ T (11)

Ii0 = 0 ∀i ∈ I (12)

Yit ∈ 0, 1 ∀i ∈ I, t ∈ T (13)

27

The objective function maximizes revenue as it is stated in previous page.

Revenue here, is the difference between sales and disassembly process related costs

that are setup, disassembly operation, purchasing, inventory holding and penalty

cost. Constraint (1) guarantees that setup occurs if there are any disassembly

operations done in corresponding period. Constraint (2) represents the capacity

limitation in each period. That is, total number of disassembled items in a period

cannot exceed given capacity for corresponding item same period. Constraint

(3) ensures that the amount of items sold cannot exceed demand for same item

while it also cannot be less than pre-defined unsatisfied demand allowance. This

is defined by fill rate parameter, which ensures that at least demand’s fill rate

should be satisfied. In other words, lower limit of not satisfying a demanded item

is set by fill rate in each period. Constraints (4), (5) and (6) define inventory

balance level for root item (EOL product), intermediate (subassemblies) and leaf

items (parts/components). Particularly, constraint (4) specifies inventory balance

level for root items which differs from remaining inventory level constraints with

not including amount of disassembly coming from its parent. As it is stated

above, this is because root items do not have any parent items. Additionally,

constraints (7), (8), (9,), (10), (11), (12) and (13) represent decision variable

conditions. In particular, constraint (10) ensures that backlogging is not allowed

while constraint (12) implies that initial inventory for all items equal to 0.

28

Chapter 4

Proposed Heuristic Solution

The capacitated disassembly leveling and scheduling problem that is described

in this study can be solved using the mathematical model described in detail

in Chapter 3. However, solving the mathematical model using a commercially

available integer programming software takes significantly large amount of com-

putation time especially for large size practical problems. Therefore, a faster

heuristic that can give near-optimal solutions within short amount of computa-

tion times is suggested. Next, the mathematical model demonstrated above and

suggested algorithm’s performance are compared.

This chapter explains the heuristic algorithm suggested in this study. Before

explaining the algorithm in detail, Figure4.1 is demonstrated to clarify the overall

procedure of the heuristic algorithm.

29

*LP that is developed for the subproblems.

Figure 4.1: Flow of the Proposed Heuristic Algorithm

30

Since a problem that allows shortage is studied, the trade-off between cost of

not satisfying demanded item on fill rate limitation with satisfying the demanded

amount and the cost of holding nondemanded items in inventory is focused in

this heuristic algorithm. In other words, if demand is not satisfied, there exists

penalty cost. In contrast, although demand is satisfied, because of dependency

of the disassembly structure explained earlier, there may also exists on-hand in-

ventory. Hence, the objective is to decide whether to lose sales or hold items in

inventory if there are any.

In this scope, a myopic mathematical model that solves the subproblems in a

backward attitude is developed. In other words, the suggested heuristic solution

runs in a bottom up trend. Particularly, the algorithm divides the main problem

into small problems based on parent-child relationship. Since each parent and its

children composes a family, a small-sized problem or subproblem is basically a

family itself.

Figure 4.1 shows the flow of the algorithm which begins from last parent item,

and solves this small-sized LP. Note that, unlike the mathematical model demon-

strated in Chapter 3.1 before, in this small-LP only inventory and penalty costs

are considered. Therefore, the small-LP here does not include other costs such

as setup, operation, purchasing. More specifically, subproblems tend to minimize

the total cost that is, summation of inventory holding and penalty costs.

31

From last parent to first parent item subproblems are solved for each parent

and its children. This is why the proposed heuristic algorithm has a myopic sight

because it runs in a backward fashion in terms of parent numbers. This solution

gives information of the amount of children items to be sold and inventory held

which provides the necessary parent item disassembly amount. The amount of

parent item to be disassembled is set in order to use in next family which includes

this specific parent item’s parents. Here, calculating amount of parent item to be

disassembled is the the main decision behind inventory and penalty concepts for

d-BOM structures, since it is to decide whether to disassemble or not and if yes,

decide the amount to be disassembled.

Following the small-LP solution, the proposed heuristic algorithm continues

solving the small-LP for rest of the subproblems or families in the product struc-

ture until all items are calculated. When small-LP is solved for all items in

corresponding product tree, algorithm continues with the next period in the plan-

ning horizon and again starts to solve subproblems in a backward fashion. This

shortsighted approach is followed until all of the periods in planning horizon is

comprised. Then, using solutions obtained, the objective value that is demon-

strated in previous chapter, also stated in detailed procedure of the algorithm

below, is calculated.

The detailed procedure of proposed algorithm is as follows:

32

Algorithm Proposed Heuristic Algorithm
1: Set t = 1 (period number)
2: Set p = P (parent item)
3: Solve below mathematical model for corresponding parent and its children

Minimize
[I∑

i=1

hiIit +
I∑

i=1

pniUit

]

subject to

Xit ≤ capi ∀i ∈ I, t ∈ T (1)
Xit ≤MYit ∀i ∈ I, t ∈ T (2)

βitdit ≤ Sit ≤ dit ∀i ∈ I, t ∈ T (3)
Iit = Ii,t−1 + Z1t −Xit i=1, 2,...,ir (4)

Iit = Ii,t−1 +
∑

j∈PSi

ajiXjt −Xit − Sit i=ir+1,...,il−1 (5)

Iit = Ii,t−1 +
∑

j∈PSi

ajiXjt − Sit i=il,...,I (6)

Z1t ≥ 0 ∀t ∈ T (7)
Xit ≥ 0 ∀i ∈ I, t ∈ T (8)
Sit ≥ 0 ∀i ∈ I, t ∈ T (9)
Uit ≥ 0 ∀i ∈ I, t ∈ T (10)
Iit ≥ 0 ∀i ∈ I, t ∈ T (11)
Ii0 = 0 ∀i ∈ I (12)

Yit ∈ 0, 1 ∀i ∈ I, t ∈ T (13)

4: Set p = P − 1
if P = 0 go to step 5
else go to step 3

5: Set t = t+ 1
if t = T go to step 6
else go to step 2

6: Calculate total cost as

T∑
t=1

I∑
i=1

pciSit −
[T∑

t=1

il−1∑
i=1

ciYit +
T∑
t=1

il−1∑
i=1

OiXit+

T∑
t=1

I∑
i=1

hiIit +

T∑
t=1

I∑
i=1

pniUit +

T∑
t=1

ptZ1t

]
7: STOP

33

In more detail, the algorithm suggested in this study works as follows: Here,

T denotes the number of periods in the planning horizon where P denotes parent

items in the EOL product, e.g. in Figure 3.2 there exists 5 parent items which

are A, B, C, D and E as it is mentioned in Chapter 3. Since the heuristic

runs in a backward fashion, it starts from the last parent item and calculates

related variables for each family. For instance, if d-BOM structure in Figure 3.2

is considered, the heuristic starts from last parent item; item E and it solves the

model for its children I and J, so E, I and J composes a family or a subproblem in

other words. This small-LP with minimization objective solves the subproblem

and then number of parent item, E in our example, is set for further use in the

following steps. Next, the algorithm continues with (P-1)th parent item which is

D in corresponding example and its children G, H. With this backward attitude,

until all of the subproblems are solved, the algorithm continues with following

period in the planning horizon. Until the end of the planning horizon is reached,

these steps are repeated in given behavior. When planning horizon is completed,

total cost, which is same as the mathematical model demonstrated before, is

calculated and the algorithm ends.

34

Chapter 5

Computational Experiments

This chapter presents the experimentation and results on comparison of both

solution approaches. To evaluate the performance of both solution approaches,

computational experiments are performed on a testbed composed of randomly

generated problems. Random test instances are generated based on carefully se-

lected various design parameters which are explained in following subsections.

According to specific design parameters, first, a d-BOM generator is developed

in order to generate random instances practically. Then, rest of the parame-

ters and settings for the capacitated disassembly scheduling problem considered

in this thesis are described. With the results of the experiments, design param-

eter effects on percentage deviations from both solution approaches are discussed.

5.1 Experimental Design Parameters

The lack and need of consideration of various design parameters in disassembly

scheduling field in literature led us to investigate which parameters affect and how

35

they affect the solution. Gokgur et al. (2015) is first to mention the importance of

other design parameters in a product tree, which also provided us to see our prob-

lem’s settings and limits clearly. Since this study integrates mathematical model

and heuristic approaches at the same time, interpreting the design parameter

effects on both approaches in terms of execution time and percentage deviation

of objective function from optimal can help learning more about the problem’s

structure, difficulty and performance of the proposed heuristic in general. As it

is explained more detailed in Chapter 4, due to proposed heuristic algorithm’s

execution scheme, number of levels configuration is needed to be questioned since

proposed heuristic algorithm runs in backward fashion from bottom level to top

in the product tree. Additionally, since a multi-period disassembly scheduling

problem is studied in this thesis, effect of a change in number of periods is also

investigated as a design parameter.

The product tree structure considered here can be fully described by the

following design parameters:

1. Number of items

2. Number of levels

3. Number of periods

36

5.1.1 Number of items

In a product structure, number of items denotes total number of items in an

EOL product including intermediate and leaf items. Since single product with-

out parts commonality product structure is considered in this study, there exists

only one root item in all of the problems that are generated with different number

of items. Particularly, a d-BOM structure with 10, 20 and 30 items both have

one root item that is the EOL product. This product tree design parameter is

essential and also the most commonly found in literature. For instance, Ji et al.

(2016) considered 10, 20 and 30 item design levels which is the same number of

item assumption as in this thesis.

5.1.2 Number of levels

This product tree-based parameter represents the depth of d-BOM structure.

Number of levels in a product tree specifies the depth that a product structure

can expand. For instance, the first d-BOM shown in Figure 3.2 root item A’s

level is the 0th level where B and C are in the 1st, D and E are in the 2nd level.

Hence, a total of 3 levels exist in the product tree as it is shown in corresponding

figure.

This specific design parameter is investigated because the deeper a product

tree expands; more complex the problem gets in terms of execution time and per-

centage gap both. As number of levels increase, dependencies between items due

37

to disassembly structure are bound to make the problem’s solution more complex.

Besides, the proposed solution algorithm runs in a backward fashion while solving

subproblems not taking account of the whole problem. So, this subproblems are

not able to see far away as it is stated in previous section. In other words, it has

lack of foresight which leads us to question how this level depth design affects the

solution quality. Three d-BOM levels (2, 3 and 4) are considered in this study. To

the best of author’s knowledge, this study is first to consider number of levels in

in a product tree structure design considering heuristic approach in disassembly

domain.

5.1.3 Number of periods

Number of periods parameter determines the number of time in the planning

horizon. It does not affect and change product structure, however, it affects

problem structure with time dependencies. Therefore, it is directly related with

other parameters which varies in time such as demand, fill rate and capacity.

The planning horizon designs are specified with 3,5 and lastly 7 in order to be

able to construct weekly plans. Design parameter values that are considered as

number of periods here also used in the studies of Kim et al. (2016). Table 5.1

summarizes design parameter values in detail.

38

Table 5.1: Design Parameter Values

Design Parameters Values
number of items 10 20 30
number of levels 2 3 4
number of periods 3 5 7

Based on these design parameters, a d-BOM generator is developed in or-

der to create various product structures in a practical way which is explained in

following subsection and with this generator random test instances are illustrated.

5.2 d-BOM Generator

The focus of this study is, single product without parts commonality type of

disassembly scheduling problem is considered. In other words, product structure

studied in this thesis has only one root item (EOL product) while having more

than one parent item is not allowed. Accordingly, design parameters are decided

first and based on these parameters an application is coded via Microsoft Of-

fice Visual Basic for Applications (VBA). This application gives random product

trees with user-determined (preferred) configuration, that is, input specification

mentioned in previous subsections. The d-BOM generator works as follows:

Step 1: Set number of items that an EOL item have

Step 2: Set yield ratio

Step 3: Generate d-BOM

39

5.3 Experimentation and Results

For the test on test instances with different sizes, 135 test instances are gener-

ated, i.e. 5 instances for each combination of three levels of the number of items

(10, 20, and 30), three d-BOM levels (2, 3 and 4) and three levels of the num-

ber of periods are generated (3, 5 and 7). In addition to the design parameters

investigated in previous section, there are also other parameters that need to be

determined in order to generate test instances for the experimentation set. A

capacitated disassembly scheduling problem with cost-based objective function

requires parameters such as demand, capacity and other various costs. Distribu-

tion of such parameters are determined as follows:

In the d-BOM structures, the yields from parent items were generated from

DU(1, 3), as Kim et al. (2006), where DU(a, b) denotes the discrete uniform

distribution with range [a, b]. There is demand for each item except root item

and with 0.1 probability there is no demand for an item in a period. With

0.9 probability demand is generated from DU(0, 100). Time-invariant costs,

that are, setup cost, disassembly operation cost and inventory holding cost are

generated from DU(10, 30), DU(1, 5) and DU(10, 20), respectively. These specific

distributions are also used before in the studies of Kim et al. (2016), Gokgur et

al. (2015) and Kim and Lee (2011). Selling price of an item is generated from

DU(200, 400) except root item which leads to another parameter, fill rate. The

parameter of fill rate is generated between DU(80, 99)/100. Taking into account

of unsatisfied items, which is limited by fill rate parameter, there exists penalty

40

cost for each unsatisfied demanded item below the fill rate. There is a trade off

between penalty cost and selling price and it is set as follows:

pni = pci × 0.10 ∀i ∈ I (5.3.1)

where

pci selling price of item i

pni penalty cost of not satisfying one unit of item i

Capacity parameter considered in this thesis is the maximum amount of item

to be disassembled in a period. It is a time-invariant parameter however, it differs

from item to item. This is practically true as the disassembly of an item depends

on the way it is assembled more than the value of the item itself. This workload

is restricted with fill rate and demand variables and calculated as follows:

capi =
I∑

i=1

T∑
t=1

βit × dit ∀i ∈ I, t ∈ T (5.3.2)

where

capi aggregated capacity for item i

βit fill rate of item i in period t

dit demand of item i in period t

41

To demonstrate the performance of both mathematical model and proposed

heuristic algorithm, using above parameters two performance measures are used.

They are: (a) percentage gap of heuristic solutions from optimal solution values;

and (b) CPU seconds. Here, the percentage gap from an optimal solution value

for a problem is defined as

(Z − Z∗)
Z

× 100

where Z* is the solution value obtained from the proposed heuristic algorithm

in this study and Z is an optimal solution value from mathematical model. Here,

the optimal solution values are obtained by solving mathematical model using

CPLEX 12.7.1.0, a commercial integer programming software package whereas

Visual Studio 2015 C++ language version is used for heuristic algorithm. The

tests were done on the same personal computer with an AMD A6 3400M 1.40GHz

clock speed and results are summarized in following table. Note that, each row

represents results from five instances with same design parameter configuration.

42

Table 5.2: Experimentation Results

GAP* CPU Seconds** CPU Seconds***
i l t Min Mean Max Min Mean Max Min Mean Max
10 2 3 0.012 0.211 0.455 <0.1 <0.1 <0.1 14 19.2 23
10 2 5 0.139 0.370 0.573 <0.1 <0.1 <0.1 19 24.6 30
10 2 7 0.370 0.492 0.646 <0.1 <0.1 <0.1 28 29.4 32
10 3 3 0.022 0.253 0.605 <0.1 <0.1 <0.1 17 21.4 26
10 3 5 0.125 0.440 0.783 <0.1 <0.1 <0.1 21 26 29
10 3 7 0.168 0.642 0.935 <0.1 <0.1 <0.1 29 31.4 33
10 4 3 0.003 0.278 0.868 <0.1 <0.1 <0.1 20 22 24
10 4 5 0.313 0.470 0.603 <0.1 <0.1 <0.1 24 26.4 29
10 4 7 0.416 0.485 0.589 <0.1 <0.1 <0.1 30 33.6 39
20 2 3 0.274 0.545 0.835 <0.1 <0.1 <0.1 24 26.2 28
20 2 5 0.291 0.693 1.004 <0.1 <0.1 <0.1 27 30.2 32
20 2 7 0.647 0.817 1.148 <0.1 <0.1 <0.1 34 35.8 38
20 3 3 0.369 0.557 1.005 <0.1 <0.1 <0.1 25 26.8 29
20 3 5 0.128 0.778 1.313 <0.1 <0.1 <0.1 30 30.6 32
20 3 7 0.301 0.819 1.644 <0.1 <0.1 <0.1 34 37.2 39
20 4 3 0.298 0.657 0.991 <0.1 <0.1 <0.1 27 28.8 30
20 4 5 0.429 0.806 1.323 <0.1 <0.1 <0.1 30 33.2 35
20 4 7 0.611 0.873 1.112 <0.1 <0.1 <0.1 36 38.2 40
30 2 3 0.773 1.000 1.334 <0.1 <0.1 <0.1 29 30.8 33
30 2 5 1.021 1.151 1.330 <0.1 <0.1 <0.1 37 38.4 40
30 2 7 0.703 1.187 1.669 <0.1 <0.1 <0.1 44 45.4 47
30 3 3 0.289 1.296 2.517 <0.1 <0.1 <0.1 32 33.8 36
30 3 5 0.633 1.352 2.362 <0.1 <0.1 <0.1 38 40 41
30 3 7 1.083 1.416 2.268 <0.1 <0.1 <0.1 48 49.6 51
30 4 3 0.825 1.327 1.937 <0.1 <0.1 <0.1 38 39.6 41
30 4 5 1.037 1.492 2.251 <0.1 <0.1 <0.1 44 44.8 46
30 4 7 1.227 1.811 2.459 <0.1 <0.1 <0.1 50 50.8 52

i number of items
l number of levels
t number of periods

* Percentage gap from optimal solutions
** CPU seconds of Visual Studio 2015
** CPU seconds of CPLEX 12.7.1.0

43

In Table 5.2 it is shown that overall average of mean percentage gaps is less

than 1% for 135 instances. Percentage gap values differ between a minimum of

0.003% and a maximum of 2.517% which denotes that even for the most com-

plex design levels in terms of number of items, levels and periods, the percentage

gap between both solution approaches does not exceed 2.517%. Based on these

experimentation results, it can be concluded that solution algorithm proposed in

this thesis can give near-optimal solutions for all cases.

On the other hand, as anticipated as the problem difficulty (in terms of the

number of periods) increases the CPU seconds increase significantly for CPLEX.

However, the heuristic gave solutions for all the test instances within less than 0.1

sec while optimal solution requires slightly longer computation times than heuris-

tic solution. This implies that heuristic can be applied to situations in which the

computation time is critical. In addition, the heuristic can also be used for solv-

ing subproblems since algorithm solves subproblems first in a backward fashion.

Following subsection examines effects of design parameters in detail.

5.4 Analysis of effects of design parameters

While designing product trees for computational experiments three different pa-

rameters are considered that are number of items, number of levels and number

of periods. Based on each of these parameters, three different level designs are

selected. In other words, we have different levels of different parameters that we

44

wish to compare. For instance, the effect of a single parameter such as three

levels of number of items (2, 3 and 4) on percentage deviation. It is done with

the hope that we can get better insights into what most affects the performance

of the proposed heuristic by means of analysis of variance (ANOVA).

However, in order to be able to use ANOVA, according to Hines et al. (2003),

three basic assumptions have to be simultaneously satisfied that are independency

of cases, normality and homoscedasticity. Note that, effect of design parame-

ters on CPU seconds of Visual Studio 2015 is not analyzed in this subsection

since heuristic algorithm solves the problem in less than CPU seconds 0.1 for all

instances. Additionally, mathematical model’s execution time increases as the

problem gets more difficult (in terms of item number, level number and period

number), which is analyzed. Additionally, percentage gaps of heuristic solution’s

objective function from the optimal are investigated in this subsection.

In this scope, first, independency of cases validity is questioned for this data

set. Since test instances constructed in our study are generated randomly (using

different random seeds each time) for each instance independently, this condition

is satisfied. Normality requirement on the other hand, is tested with Kolmogorov-

Smirnov test using Minitab 17. This test is based on the empirical cumulative

distribution function (ECDF) and compares ECDF of the sample data with the

distribution expected if the data were normal. According to the test results, the

p-value of this test is 0.017, that is, less than our chosen significance level (0.05),

45

hence, the null hypothesis of population normality is rejected. Related results

from Kolmogorov-Smirnov test with a normality plot and a histogram is shown

in figures 5.1 and 5.2.

Figure 5.1: Histogram of Percentage Deviation (gap)

Figure 5.2: Normality Plot of Percentage Deviation (gap)

46

To reduce the variability in this data, logarithmic base transformation was ap-

plied and Kolmogorov-Smirnov test was repeated with this new logarithmic based

data. Figure 5.3 demonstrates the normality plot gathered from logarithmic based

percentage deviation data. The points do not form an approximate straight line

and p-value is less than 0.05 with a 95% confidence interval. Therefore, it is

concluded for the second time that, population does not satisfy normality.

Figure 5.3: Normality Plot of Logarithmic Base Percentage Deviation (gap)

Since three conditions that ANOVA requires are not fulfilled with the data

observed in this study, ANOVA cannot be conducted in order to find out effect

of design parameters in terms of percentage deviation. Therefore, a main effect

analysis is conducted since the aim is to investigate a single independent variable’s

effect on a dependent variable i.e. number of items effect on percentage deviation.

47

Figure 5.4: Main Effect Analysis Output on Percentage Deviation

In Figure 5.4, main effect analysis is shown graphically that is, each design

parameters’ effect on solution quality of both approaches in terms of objective

value. As it is expected, number of items in a product structure directly affects

solution quality in terms of percentage gap. Especially while solving mathemat-

ical model via CPLEX. In particular, increasing number of items from 10 to 20

has less impact than increasing it to 20 to 30.

When the number of levels design parameter is examined, d-BOM depth in

other words, as the product tree gets deeper, gap between both solution values

gets bigger. However, this increase in percentage deviation is not as big as num-

ber of items effect.

Number of periods effect that is shown in the third graph gives us the informa-

tion that as number of periods increases, percentage gap between two solutions

also increases. This was also an expected result since problem expands with in-

48

creasing number of periods. Figure 5.4 illustrates that, according to this data,

change in number of items makes the most difference comparing to number of

levels and number of periods parameters.

Additionally, the design parameter effect on CPU seconds of CPLEX is graph-

ically presented in Figure 5.5. As it is mentioned this was an expected result

especially for number of items and number of periods designs. Number of levels,

on the other hand, was an unpredictable result in terms of its effect on optimal

solution. Because since our heuristic algorithm runs in a backward fashion which

causes a myopic sight, it was expected for us to see the execution time increase

proportionally with the level depth. However, since we have reasonable number

of test instances in this study, even the deepest level problem is solved under 0.01

seconds. Although this is a satisfactory output in terms of time scale, we still

need to widen our experimentation set in order to observe the solution quality in

terms of near optimality.

Figure 5.5: Main Effect Analysis Output on CPU Seconds of CPLEX

49

It can be concluded that Figure 5.5 shows distinctly that problem complex-

ity in terms of number of items, number of levels and number of periods design

parameters directly affects the CPU seconds of CPLEX. Since highest increase

in CPU Seconds is because of the number of items design parameter, this shows

us that for large scale problems, mathematical model performance gets worse in

terms of execution time. Proposed heuristic approach on the other hand, solves

the problem less than 0.1 seconds even for most complex design levels. For a

more detailed representation of number of items design parameter effect, Figure

5.6 is constructed additionally.

Figure 5.6: Scatter Plot on CPU Seconds of CPLEX

Above figure shows an uphill pattern which indicates a positive nonlinear

relationship between number of items and CPU seconds of CPLEX. As the test

instances changes on a number of item design basis (increasing number of items),

the CPU seconds of CPLEX tend to increase. Note that, mathematical model

execution time reaches up to almost 60 sec as the problem gets more complex in

50

terms of design parameters described at the beginning of this chapter. On the

other hand, the proposed solution approach solves the problem under 0.1 sec for

all cases which gives us the information that in terms of execution time, proposed

solution approach is a faster alternative.

51

Chapter 6

Conclusion and Future Study

In this study, we considered the problem of determining the disassembly schedule

of used/EOL products subject to capacity restrictions, while satisfying the de-

mand of their parts/components over a given multi-period planning horizon. The

case of single product without parts commonality product structure is focused for

the objective of maximizing revenue. To represent the problem mathematically,

a MIP model with profit-based objective function and capacity constraints was

developed. The proposed MIP model considers setup, operation, purchasing,

inventory holding and penalty costs while allowing demand for both subassem-

blies and parts/components. Then, besides the mathematical model, in order to

solve large-scale problems in reasonable computation times, a heuristic solution

is suggested which provides a scheduling mechanism for disassembly. It should be

emphasized that, the main contribution of this study is to integrate this extended

MIP model whose objective is to maximize revenue, with a heuristic approach

on multi-period capacitated disassembly scheduling. In order to see the proposed

heuristic algorithm’s effectiveness, we constructed a numerical study on both so-

lution approaches. To generate random instances, also a product tree generator

52

is developed which specifies number of items, number of children and number of

level parameters which helped us practically generate test-bed problems. To the

best of author’s knowledge, this thesis is first to specify d-BOM level depth and

maximum number of children as a design parameter with a heuristic algorithm ap-

proach considering capacity restriction and multi-period planning horizon. Com-

putational experiments carried out on randomly generated test instances and the

experimentation results showed that the proposed heuristic algorithm gave near

optimal solutions within a very short amount of computation time.

As future research directions, this thesis can be extended in several ways.

First, more test instances can be included in terms of both number of experi-

mentations and number of design parameters. Doing more experimentations is

also needed for learning more about the problem dynamics and evaluating cur-

rent solution approaches. Second, since we considered the most basic form of the

disassembly scheduling problem that is, single product without parts common-

ality, an extension with more general capacitated problems those with multiple

product and parts commonality versions of the problem is an important further

research topic that will result in more useful insights. Finally, it would be inter-

esting to consider uncertain demand or yield in order to investigate the stochastic

environment in disassembly domain.

53

Appendices

54

Appendix A

CPLEX Code

/* **
* OPL 12.7.1.0 Model
** */

//sets and indices
int NbItems = ...;//item number
range item = 1.. NbItems;
int NbPeriods = ...;// period number
range period = 1.. NbPeriods;

// parameters

int yieldratio[item][item]=...; //yield ratio
int ParentOf[item]=...; // parent of the item
execute {
for(var i=1; i<= NbItems;i++)

for(var j=1;j<= NbItems;j++){ if (yieldratio[j][i]>0)
ParentOf[j]=i;

}
}

int Gozinto[item]=...;
// Gozinto =1 means it is a parent item , except root item

(1st item) rest are intermediate items.
Gozinto =0 states leaf items.
execute {

for(var i=1; i<= NbItems;i++)
for(var j=1;j<= NbItems;j++){

Gozinto[i]= Gozinto[
i]+ yieldratio[j
][i];
}

55

for (var i=1; i<= NbItems;i++)
if (Gozinto[i]>0)
Gozinto[i]=1;

}

float Demand[item][period] = ...;// demand of item i in
period t

float SellingPrice[item]=...; // selling price of item i
float PenaltyCost[item]=...; // penalty cost of not

satisfying one unit of item i
float OperationCost[item]=...; // disassembly operation

cost of item i
float InventoryCost[item]=...; // inventory holding cost

of item i
float PurchasingCost[period]=...; // purchasing cost of

EOL item
float SetupCost[item]=...; //setup cost of item i
float FillRate[item][period]=...; //fill rate of item i

in period t
float Capacity[item]=...; // capacity restriction of item

i
float Inventory0 =...;// initial inventory = 0

int M=9999999999; //a very big number

// decision variables

dvar int+ Dis[item][period]; // number of item i
disassembled in period t

dvar int+ Inv[item][0.. NbPeriods]; // number of item i
in inventory at the end of period t

dvar int+ Sold[item][period]; // number of sold item in
period t

//dvar int+ Uns[item][period];// amount of unsatisfied
demand of item i in period t

dvar boolean Stp[item][period];//if setup occurs for
item i in period t 1, otherwise 0

dvar int+ NbPurchased[period]; // number of EOL item
purchased OR scheduled receipts

// objective function: Maximize Revenue

maximize sum (i in 2.. NbItems , t in period) (
SellingPrice[i]*Sold[i][t]) -

sum (t in period) (PurchasingCost[t]*
NbPurchased[t]) -

sum (i in item: Gozinto[i]>0, t in
period) (SetupCost[i]*Stp[i][t]) -

56

sum (i in item: Gozinto[i]>0, t in
period) (OperationCost[i]*Dis[i][t
]) -

sum (i in item , t in period) (
InventoryCost[i]*Inv[i][t]) -

sum (i in 2.. NbItems , t in period) (
PenaltyCost[i]*(Demand[i][t]-Sold[i
][t]))

;

subject to {

forall(i in item) // initial inventory constraint:
initialinventory_const:
Inv[i][0] == Inventory0;

forall(t in period)
// inventory balance constraints

inventoryroot_const:
Inv [1][t] == Inv [1][t-1] + NbPurchased[t] - Dis

[1][t]; // inventory balance constraint for
root items

forall(t in period , i in 2.. NbItems: Gozinto[i]==1)
inventoryinter_const:

Inv[i][t] == Inv[i][t-1] + yieldratio[i][ParentOf
[i]]*Dis[ParentOf[i]][t] - Dis[i][t] - Sold[i
][t]; // inventory balance constraint for
intermediate item

//IN(i,t) =IN(i,t-1) + sum(parents for (yieldratio
(i,parent)>0 and ord(i)<>ord(parent)),
yieldratio(i,parent)*X(parent ,t)) - sum(j,X(i,t
)) - S(i,t) ;

forall(t in period , i in item: Gozinto[i]==0)
inventoryleaf_const:

Inv[i][t] == Inv[i][t-1] + yieldratio[i][ParentOf
[i]]*Dis[ParentOf[i]][t] - Sold[i][t]; //
inventory balance constraint for leaf items

forall (t in period , i in item: Gozinto[i]>0) //setup
constraint (no disassembly no setup)

setup_const:
Dis[i][t]<=M*Stp[i][t];

forall (t in period , i in item: Gozinto[i]>0) //
workload capacity constraint
capacity_const:

57

Dis[i][t]<=Capacity[i];

forall (t in period , i in 2.. NbItems) //sold item
constraint
solditem_const:
FillRate[i][t]* Demand[i][t]<=Sold[i][t]<=Demand[i

][t];

forall (i in item) // unsatisfied demand constraint
unsatisfieddemand_const:
Uns[i][t]== Demand[i][t]-Sold[i][t];

}

/* **
* OPL 12.7.1.0 Data
** */

NbPeriods = 3;
NbItems = 10;

Gozinto = [0 0 0 0 0 0 0 0 0 0];
ParentOf= [0 0 0 0 0 0 0 0 0 0];

SheetConnection my_sheet("mydata.xlsx");

Inventory0 from SheetRead(my_sheet , "inventory0");
yieldratio from SheetRead(my_sheet ,"yieldratio");
Demand from SheetRead(my_sheet ,"demand");
SellingPrice from SheetRead(my_sheet , "sellingprice");
PenaltyCost from SheetRead(my_sheet , "penaltycost");
OperationCost from SheetRead(my_sheet , "operationcost")

;
InventoryCost from SheetRead(my_sheet , "inventorycost")

;
SetupCost from SheetRead(my_sheet ,"setupcost");
FillRate from SheetRead(my_sheet ,"fillrate");
Capacity from SheetRead(my_sheet ,"capacity");
PurchasingCost from SheetRead(my_sheet , "purchasingcost

");

58

Appendix B

C++ Code

#include <ilcplex/ilocplex.h>
#include <stdlib.h>
#include <conio.h>
#include <fstream >
#include <algorithm >
#include <functional >
#include <queue >
#include <vector >
#include <time.h>
#include <math.h>
#include <stdio.h>
#include <tchar.h>

using namespace std;
typedef IloArray <IloNumArray > NumMatrix;
typedef IloArray <IloNumVarArray > NumVarMatrix;

int main() {
printf("hello");
char item[] = {

’a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’i’,’j’
};

int i, j, n;
n = 9; // item - 1
int a, k, m, b;
a = 0;
int asd = 0;
float hold1 [3][6];
float info [10][6];
int invenint [3];
for (k = 0; k < 3; k++) //k period.
{

59

for (j = n; j >= 0; j--)
{

for (i = 0; i <= n; i++)
{

if (yieldratio[j][i] != 0) {
printf("This␣is␣item␣%c␣,␣%d␣penaltycost␣%d␣inventory␣

cost␣%d␣with␣demand␣of␣%d␣at␣period␣%d\n", item[i],
penalty[i], inventory[i], yieldratio[j][i], demand[i
][k], k + 1);

a = a + 1;
printf("Fillrate␣of␣%c␣is␣%f\n", item[i], fillrate[i][k

]);
float* var1 = info[a - 1];
var1 [0] = i;
var1 [1] = penalty[i];
var1 [2] = inventory[i];
var1 [3] = yieldratio[j][i];
var1 [4] = demand[i][k];
var1 [5] = fillrate[i][k];

printf("%f,␣%f,␣%f,␣%f,␣%f\n", var1[0], var1[1], var1
[2], var1[3], var1 [4]);

}
if (a != 0)
{
printf("%c␣has␣%d␣children\n", item[j], a);

for (b = 0; b < a; b++)
{

float* var2 = info[b];
printf("%f␣,␣%f,␣%f,␣%f,␣%f␣%f\n", var2[0], var2[1],

var2[2], var2[3], var2[4], var2 [5]);
hold1[b][0] = var2 [0];
hold1[b][1] = var2 [1]; // penalty
hold1[b][2] = var2 [2]; // inventorycost
hold1[b][3] = var2 [3]; // yieldratio
hold1[b][4] = var2 [4]; // demand
hold1[b][5] = var2 [5]; // fillrate
invenint[b] = var2 [0];

};

IloEnv env1;
//try {
IloExpr obj(env1);
IloNumVarArray saless = IloNumVarArray(env1 , a, 0,

IloInfinity , IloNumVar ::Int);
// IloNumVarArray furthdiss = IloNumVarArray(env1 , a, 0,

60

IloInfinity , IloNumVar :: Float);
IloNumVarArray assignedinv = IloNumVarArray(env1 , a, 0,

IloInfinity , IloNumVar ::Int);
IloNumVar xd = IloNumVar(env1 , 0, IloInfinity ,

IloNumVar ::Int);
IloModel model1(env1);

for (IloInt i = 0; i < a; i++)
{

//obj += (hold1[i][1] * ((xd*hold1[i][3]) - (saless[i]
+ furthdiss[i]))) + (hold1[i][2] * ((xd*hold1[i][3])
- (saless[i] + furthdiss[i])));

//obj += (hold1[i][1] * (hold1[i][4] - saless[i])) + (
hold1[i][2] * ((xd*hold1[i][3]) - (saless[i] +
furthdiss[i])));

obj += (hold1[i][1] * (hold1[i][4] - saless[i])) + (
hold1[i][2] * assignedinv[i]);

}
for (IloInt i = 0; i < a; i++)

{
model1.add((hold1[i][1] * (hold1[i][4] - saless[i])) >=

0);
}

for (IloInt i = 0; i < a; i++)
{

invenint[i] = asd;
model1.add((hold1[i][2] * ((xd*hold1[i][3]) - (saless[i

] + furtherdiss[asd][k]))) >= 0);
}

for (IloInt i = 0; i < a; i++)
{

model1.add(hold1[i][5] * hold1[i][4] <= saless[i] <=
hold1[i][4]);

}
model1.add(xd <= capacity[j]);

for (IloInt i = 0; i < a; i++)
{

invenint[i] = asd;
model1.add(xd*hold1[i][3] >= saless[i] + furtherdiss[

asd][k]);
}

for (IloInt i = 0; i < a; i++)
{

int totalinvcostt = static_cast <int >(hold1[i][0]);
invenint[i] = asd;
model1.add(assignedinv[i] == (xd * hold1[i][3]) +

totalinventory[totalinvcostt][k] - (saless[i] +
furtherdiss[asd][k]));

}

61

model1.add(IloMinimize(env1 , obj));
IloCplex solver(model1);
solver.solve ();
cout << "\n\n";
cout << "the␣objective␣is␣" << solver.getObjValue () <<

"␣and␣" << solver.getValue(xd) << endl;
for (i = 0; i < a; i++)

{
cout << "sales␣" << solver.getValue(saless[i]) << "␣

inventory␣" << solver.getValue(assignedinv[i]) <<
endl;

}

assignedinventory[j][k + 1] = solver.getValue(xd);
operationcost[j][k] = operation[j] * assignedinventory[

j][k + 1];
for (i = 0; i<a; i++)

{
int totalinvcostt = static_cast <int >(hold1[i][0]);
totalinventory[totalinvcostt][k + 1] = solver.getValue(

assignedinv[i]);
cout << solver.getValue(assignedinv[i]) << "inventory␣"

<< endl;
var3[totalinvcostt][k] = furtherdiss[totalinvcostt][k]

+ solver.getValue(saless[i]);
soldd[totalinvcostt][k] = solver.getValue(saless[i]);

if (solver.getValue(saless[i] - hold1[i
][4] < 0))

{
unsatisfieddemand[totalinvcostt][k] = hold1[i][4] -

solver.getValue(saless[i]);
}
}

furtherdiss[j][k] = solver.getValue(xd);
cout << assignedinventory[j][k + 1] << "␣of␣" << item[j

];
//}
//catch (IloException& e) {
// cerr << e << endl;
//}
env1.end(); // free all memory

/* IloNumVar xd = IloNumVar(env1 , 0, IloInfinity);
IloNumVar sg = IloNumVar(env1 , 0, IloInfinity);
IloObjective obj(env1 , for (n = 0, n < a, n++) {
float* object = info[n];
object [1]*(totalinventory[n][k]+(xd*object [3]) -(sg+,

IloObjective :: Minimize);

62

IloNumVar */
}
a = 0;

}
}

/* IloEnv env;
IloModel model(env);

IloNumVar x1 = IloNumVar(env , 0, IloInfinity);
IloNumVar x2 = IloNumVar(env , 0, IloInfinity);

IloRange r1(env , 10, x1 + x2, 10);

IloObjective obj(env , (1 * x1) + (4 * x2), IloObjective
:: Maximize);

// sum_to_one.setLinearCoef(x1 , 15);
// sum_to_one.setLinearCoef(x2 , 15);
//obj.setLinearCoef(x1 , 2);
//obj.setLinearCoef(x2 , 1);
model.add(r1);
model.add(obj);
//model.add(sum_to_one);

IloCplex solver(model);

solver.solve ();
cout << "\n\n";
cout << solver.getObjValue () << "\n";*/
ofstream outfile;
outfile.open("C:/Users/Cemre/Desktop/result.csv");
// outfile << "Total Endperiod Inventory , " << endl;
for (i = 0; i<10; i++)

{
// print first column ’s element
outfile << totalinventory[i][0];

// print remaining columns
for (j = 1; j<k + 1; j++)

{
outfile << ",␣" <<

totalinventory[i][j];
}

// print newline between rows
outfile << endl;

}
// outfile << "Assigned inventory , ";

63

outfile << endl;
for (i = 0; i<10; i++)
{

// print first column ’s element
outfile << assignedinventory[i][1];

// print remaining columns
for (j = 1; j<k; j++)
{

outfile << ",␣" <<
assignedinventory[i][j + 1];

}
// print newline between rows

outfile << endl;
}
outfile << endl;
for (i = 0; i<10; i++)
{

// print first column ’s element
outfile << var3[i][0];

// print remaining columns
for (j = 1; j<k; j++)
{

outfile << ",␣" << var3[i][j];
}

// print newline between rows
outfile << endl;

}
outfile << endl;
for (i = 0; i<10; i++)
{

// print first column ’s element
outfile << soldd[i][0];

// print remaining columns
for (j = 1; j<k; j++)
{

outfile << ",␣" << soldd[i][j];
}

// print newline between rows
outfile << endl;

}
cout << "ceil␣of␣0.3␣is␣" << ceil (0.00000003 /

99999) << endl;
int solddtotalcost1 = 0;
int purchaseddtotalcost1 = 0;
int setuptotalcost1 = 0;
int inventorytotalcost1 = 0;
int penaltytotalcost = 0;
int operationtotalcost1 = 0;

64

for (int j = 0; j < 3; j++) // sales
{

for (int i = 0; i < 10; i++)
{

solddtotalcost1 =
solddtotalcost1 + (selling[i
] * soldd[i][j]);

}
}

/*for (int j = 0; j < 3; j++)
{

purchaseddtotalcost1 = purchaseddtotalcost1 + (
purchasing[j] * assignedinventory [0][j + 1]);

}*/

for (int j = 0; j < 3; j++)
{

for (int i = 0; i < 10; i++)
{

float yardimci =
assignedinventory[i][j + 1];

setuptotalcost1 =
setuptotalcost1 + (ceil(
yardimci / 999999) * setup[i
]);

//cout << ceil(
assignedinventory[i][j +
1]/999) << endl;

}
}

for (int j = 0; j < 3; j++)
{

for (int i = 0; i < 10; i++)
{

inventorytotalcost1 =
inventorytotalcost1 + (
inventory[i] *
totalinventory[i][j + 1]);

}
}

for (int j = 0; j < 3; j++)
{

for (int i = 0; i < 10; i++)
{

65

penaltytotalcost =
penaltytotalcost + (penalty[
i] * unsatisfieddemand[i][j
]);

}
}

for (int j = 0; j < 3; j++)
{

for (int i = 0; i < 10; i++)
{

operationtotalcost1 =
operationtotalcost1 +
operationcost[i][j];

}
}

cout << "Total␣Cost␣is␣" << solddtotalcost1 -
purchaseddtotalcost1 - setuptotalcost1 -
inventorytotalcost1 - penaltytotalcost -
operationtotalcost1;

cin.get();

}

66

Appendix C

VBA Code

Sub RNDBOM ()
delete
Dim maxchildren As String
maxchildren = InputBox(Enter , "Enter␣maximum␣number␣of␣

children␣per␣item", 3)
Dim randommmax As Integer
randommmax = maxchildren
maxchildren = Int((randommmax - 0 + 1) * Rnd + 1) ’

random␣generated␣maximum
Dim␣totalcount␣As␣Integer
totalcount␣=␣0
Dim␣a␣As␣Integer
Dim␣randomm␣As␣Integer
a␣=␣0
Dim␣maxrand␣As␣Integer␣’max random number
Dim LRandomNumber , LRandomNumber2 As Integer
LRandomNumber = InputBox("Number␣of␣items", "Item#",

10) ’LRandomNumber␣␣’Int ((10 - 5 + 1) * Rnd + 5)
LRandomNumber2 = LRandomNumber
ReDim arr(LRandomNumber , LRandomNumber2)
Dim yield As Integer
yield = InputBox(yield , "Enter␣Max␣Yield␣Ratio")

Dim counter As Integer
counter = 0
Dim countt As Integer
For i = 1 To LRandomNumber
countt = 0

For j = 1 To LRandomNumber2

If maxchildren < totalcount + 1 Or j = 1 Then
Cells(i + 1, j + 1).Value = 0
GoTo NextIteration

67

Else
LRandomNumber3 = Int((yield - 0) * Rnd + 1)
If i + 1 = j Then

arr(i, j) = LRandomNumber3
Cells(i + 1, j + 1).Value = LRandomNumber3

End If

If a < counter And i <> 1 Then
arr(i, j) = 0
Cells(i + 1, j + 1).Value = 0
a = a + 1

Else
arr(i, j) = LRandomNumber3
Cells(i + 1, j + 1).Value = LRandomNumber3
totalcount = totalcount + 1
countt = countt + 1

End If
End If

NextIteration:
Next j
randomm = Int((randommmax - 0 + 1) * Rnd + 1)
counter = counter + totalcount
maxchildren = randomm + maxchildren

Next i
Call levels
End Sub

Sub delete ()
Range("b2:ae31").ClearContents
End Sub

Sub levels ()
’Find␣the␣last␣used␣row␣in␣a␣Column:␣column␣A␣in␣this␣

example
Dim␣countt␣As␣Integer
countt␣=␣0
Dim␣var123␣As␣Integer
var123␣=␣0
Dim␣kant␣As␣Boolean
kant␣=␣False
Dim␣holdd␣As␣Integer
holdd␣=␣0
Dim␣level␣As␣Integer
level␣=␣1
Dim␣kitle␣As␣Integer
kitle␣=␣0

68

␣␣␣␣Dim␣LastRow␣As␣Long
␣␣␣␣With␣ActiveSheet
␣␣␣␣␣␣␣␣LastRow␣=␣.Cells (.Rows.Count ,␣"B").End(xlUp).

Row
␣␣␣␣End␣With
’Find the last used column in a Row: row 1 in this

example
Dim LastCol As Integer
With ActiveSheet

LastCol = .Cells(2, .Columns.Count).End(
xlToLeft).Column

End With
For i = 1 To LastRow
holdd = 0

For j = 1 To LastCol
If Cells(i + 1, j + 1) <> 0 And kant =

False Then
countt = countt + 1
Else
holdd = holdd + Cells(i + 1, j + 1)
End If
If j = LastRow And Cells(i + 1, j).Value <>

0 Then
kitle = level

End If
If j = LastRow And kant = False Then
level = level + 1
End If

’MsgBox(LastRow &"␣"&␣j)
Next␣j
If␣holdd␣<>␣0␣Then
var123␣=␣var123␣+␣1
End␣If
If␣var123␣=␣countt␣Then
kant␣=␣False
countt␣=␣0
var123␣=␣0
End␣If
If␣countt␣<>␣0␣Then
kant␣=␣True
End␣If
Next␣i
Range("AK1").Value␣=␣kitle
’Range("AL1").Value = level

End Sub

69

Chapter 7

Bibliography

[1] Barba-Gutiérrez, Y., Adenso-Díaz, B. and Gupta, S. M. (2008). Lot sizing in

reverse MRP for scheduling disassembly. International Journal of Production

Economics, Vol.111(2): 741-751.

[2] Barba-Gutiérrez, Y. and Adenso-Díaz, B. (2009). Reverse MRP under uncer-

tain and imprecise demand. International Journal of Advanced Manufacturing

Technology, Vol.40(3-4): 413-424.

[3] Bok, C., Nilson, J., Masui, K., Suzuki , K., Rose, C., and Lee, B. H. (1998).

An international comparison of product end-of-life scenarios and legislation

for consumer electronics. Electronics and the Environment, 1998. ISEE- 1998.

Proceedings of the 1998 IEEE International Symposium 19-24.

[4] Gao, N. and Chen, W. (2008). A genetic algorithm for disassembly schedul-

ing with assembly product structure. Proceedings of 2008 IEEE International

Conference on Service Operations and Logistics, and Informatics, Vol.2: 2238-

2243.

70

[5] Gokgur, B., Gokce, M.A and Ozpeynirci, S. (2015). Large-scale disassembly

operations planning with parallel resources. International Journal of Advanced

Manufacturing Technology, Vol.81(5-8): 1195-1214.

[6] Gungor, A., and Gupta, S. M. (1999). Issues in environmentally conscious

manufacturing and product recovery: A survey. Proceedings of the 1998 IEEE

International Symposium on Electronics and the Environment, Vol.36(4):

811-853.

[7] Gupta, S. M. and Taleb, K. N. (1994). Scheduling Disassembly. International

Journal of Production Research, Vol.8: 1857-1866.

[8] Hines, W.W., Montgomery, D. C., Goldsman, D. M. and Borror, C. M. (2003).

Probability and Statistics in Engineering, 4th edn, United States of America,

John Wiley and Sons, Inc.

[9] Hyong-Bae, J., Jun-Gyu, K., Hwa-Joong, K. and Dong-Ho, L. (2006). A Two-

Stage Heuristic for Disassembly Scheduling with Capacity Constraints. Inter-

national Journal of Management Science, Vol.12(1): 715-722.

[10] Ilgin, M. A and Gupta, S. M. (2010). Environmentally conscious manufac-

turing and product recovery (ECMPRO): A review of the state of the art.

Journal of Environmental Management, Vol.91(3): 563–591.

[11] Imtanavanich, P. and Gupta, S. M. (2004). A Multi-criteria Decision Mak-

ing Approach for Disassembly-to-order Systems. Proceedings of the SPIE

International Conference on Environmentally Conscious Manufacturing IV,

71

Vol.11(2): 147-162.

[12] Ji, X., Zhang, Z., Huang, S. and Li, L. (2016). Capacitated disassembly

scheduling with parts commonality and start-up cost and its industrial appli-

cation. International Journal of Production Research, Vol.54(4): 1225-1243.

[13] Jovane, F., Alting, L., Armillotta, A., Eversheim, W., Feldmann, K., Seliger,

G. and Roth, N. (1993). A Key Issue in Product Life Cycle: Disassembly.

CIRP Annals - Manufacturing Technology, Vol.42(2): 651-658.

[14] Kang, K-W., Doh, H-H., Park, J-H. and Lee, D-H. (2012). Disassembly lev-

eling and lot sizing for multiple product types: a basic model and its extension.

International Journal of Advanced Manufacturing Technology, Vol.82(9-12):

1463-1473.

[15] Kim, D-H. and Lee, D-H. (2011). A heuristic for multi-period disassembly

leveling and scheduling. International Symposium on System Integration, 762-

767.

[16] Kim, D-H., Doh, H-H. and Lee, D-H. (2016). Multi-period disassembly level-

ing and lot-sizing for multiple product types with parts commonality. Proceed-

ings of the Institution of Mechanical Engineers, Part B: Journal of Engineering

Manufacture

[17] Kim, H-J., Lee, D-H., Xirouchakis, P. and Züst, R. (2003). Disassembly

Scheduling with Multiple Product Types. CIRP Annals - Manufacturing Tech-

nology, Vol.52(1): 403-406.

72

[18] Kim, H-J., Lee, D-H. and Xirouchakis, P. (2005). An Optimal Algorithm for

Disassembly Scheduling with Assembly Product Structure. Annual Conference

on Artificial Intelligence: Advances in Artificial Intelligence, 235-248.

[19] Kim, H-J., Lee, D-H. and Xirouchakis, P. (2006a). Two-phase heuristic for

disassembly scheduling with multiple product types and parts commonality.

The Journal of the Operational Research Society, Vol.44(1): 195-212.

[20] Kim, H-J., Lee, D-H. and Xirouchakis, P. (2006b). A Lagrangean Heuristic

Algorithm for Disassembly Scheduling with Capacity Constraints. The Journal

of the Operational Research Society, Vol.57(10): 1231-1240.

[21] Kim, H-J., Lee, D.-H., Xirouchakis, P. and Kwon, O. K. (2009). A Branch

and Bound Algorithm for Disassembly Scheduling with Assembly Product

Structure. The Journal of the Operational Research Society, Vol.60(3): 419-

430.

[22] Kim, H-J., Lee, D-H. and Xirouchakis, P. 2010. Disassembly scheduling:

literature review and future research directions. International Journal of Pro-

duction Research, Vol.45(18-19): 4465-4484.

[23] Kim, H-J. and Xirouchakis, P. (2010). Capacitated disassembly schedul-

ing with random demand. International Journal of Production Research,

Vol.48(23): 7177-7194.

[24] Kim, J-G., Jeon, H-B., Kim, H-J, Lee, D-H. and Xirouchakis, P. 2006. Disas-

sembly scheduling with capacity constraints: minimizing the number of prod-

73

ucts disassembled. Proceedings of the Institution of Mechanical Engineers,

Part B: Journal of Engineering Manufacture, Vol.220(9): 1473-1481.

[25] Kongar, E. and Gupta S.M. (2006). Disassembly to order system under un-

certainty. Omega, Vol.34(6): 550-561.

[26] Lambert, A. and Gupta S.M. (2002). Demand-driven disassembly optimiza-

tion for electronic products. Journal of Electronics Manufacturing, Vol.11(2):

121-135.

[27] Langella, I. M. (2007). Heuristics for demand-driven disassembly planning.

Computers and Operations Research, Vol.34(2): 552-577.

[28] Lee, D-H., Kang, J-G. and Xirouchakis, P. (2001). Disassembly planning and

scheduling: review and further research, Proceedings of the Institution of Me-

chanical Engineers. Part B: Journal of Engineering Manufacture, Vol.215(5):

695-709.

[29] Lee, D-H., Xirouchakis, P. and Zust, R. (2002). Disassembly scheduling with

capacity constraints. CIRP Annals-Manufacturing Technology, Vol.51(1): 387-

390.

[30] Lee, D-H., Kim, H-J., Choi, G. and Xirouchakis, P.(2004). Disassembly

scheduling : integer programming models. Proceedings of the Institution of

Mechanical Engineers, Part B: Engineering Manufacture, Vol.218: 1357-1372.

[31] Lee, D-H. and Xirouchakis, P. (2004). A two-stage heuristic for disassem-

bly scheduling with assembly product structure. Journal of the Operational

74

Research Society, Part B: Engineering Manufacture, Vol.55(3): 287-297.

[32] Lee, D-H. (2005). Disassembly Scheduling for Products with Assembly Struc-

ture. Management Science and Financial Engineering, Vol.11(1): 63-78.

[33] Neundorf, K-P., Lee, D-H., Dimitris, K. and Xirouchakis, P. (2001). Dis-

assembly Scheduling with Parts Commonality Using Petri Nets with Times-

tamps. Fundamenta Informaticae, Vol.47(3-4): 295-306.

[34] Prakash, P. K. S., Ceglarek, D. and Tiwari, M. K. (2011). Constraint-

based simulated annealing (CBSA) approach to solve the disassembly schedul-

ing problem. International Journal of Advanced Manufacturing Technology,

Vol.60(9-12): 1125-1137.

[35] Sasikumar, P. and Kannan, G. (2008). Issues in reverse supply chains, part

I: end-of-life product recovery and inventory management – an overview. In-

ternational Journal of Sustainable Engineering, Vol.1(3): 154-172.

[36] Sung, J. and Jeong, B. (2014). A heuristic for disassembly planning in re-

manufacturing system. The Scientific World Journal, Vol.2014: 1-10.

[37] Taleb, K. N., Gupta, S. M. and Brennan, L. (1997). Disassembly of complex

product structures with parts and materials commonality. Production Planning

and Control: The Management of Operations, Vol.8(3): 255-269.

[38] Taleb, K.N. and Gupta, S.N. (1997). Disassembly of multiple product struc-

tures. Computers and Industrial Engineering, Vol.32(4): 949-961.

75

[39] Tang, Y., Zhou, M., Zussman, E. and Caudill, R. (2002). Disassembly model-

ing, planning, and application. Journal of Manufacturing Systems, Vol.21(3):

200-217.

[40] Vongbunyong, S. and Chen, W. H. (2015). Disassembly Automation, ed.,

General Disassembly Process. Switzerland, 9 -25.

76

	Abstract
	Öz
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Literature Review
	Disassembly Scheduling Models without Capacity Constraint
	Disassembly Scheduling Models with Capacity Constraint

	Problem Definition
	Mathematical Model

	Proposed Heuristic Solution
	Computational Experiments
	Experimental Design Parameters
	Number of items
	Number of levels
	Number of periods

	d-BOM Generator
	Experimentation and Results
	Analysis of effects of design parameters

	Conclusion and Future Study
	Appendices
	CPLEX Code
	C++ Code
	VBA Code
	Bibliography

