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Önsöz 

 
Bu proje, tedarik zinciri envanter yönetimi alanında önemli teorik sorulara cevap aramanın 
yanında, ülkemizin en dinamik ve hızlı büyüyen sektörlerinin başında yer alan perakende 
sektöründe verimlilik artışına dönük yeni teknolojilerin ve stratejilerin geliştirilmesini 
amaçlamıştır.  
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(Çankaya Üniversitesi, İşletme Bölümü) ve projeye destek vermiş olan bursiyerler Dr. Şule 
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Özet 
 

Bu proje, tedarik zinciri envanter yönetimi alanında önemli teorik sorulara cevap aramanın 
yanında, ülkemizin en dinamik ve hızlı büyüyen sektörlerinin başında yer alan perakende 
sektöründe verimlilik artışına dönük yeni teknolojilerin ve stratejilerin geliştirilmesini 
amaçlamıştır. Tedarik zinciri yönetimi alanındaki araştırma faaliyetlerinin uygulamada sonuç 
alabilmesi için iş dünyasının çevresini tanımlayan temel unsurları dikkate alması gereklidir. 
Bu çerçevede, belirsizlik günümüz iş dünyasını tanımlayan en kritik faktörler arasındadır ve 
tedarik zinciri yönetimi araştırmalarının merkezinde olmalıdır. Belirsizliğin planlamacılar için 
karmaşıklık yaratan bir faktör olduğuna dair fikir birliği bulunmasına rağmen mevcut planlama 
sistemleri veri için nadiren belirlenimsiz (non-deterministic) yaklaşım kullanmaktadır. Bu proje 
perakende tedarik zincirleri için belirsizlik altında envanter planlaması sorununu ele almıştır. 
Tedarik zinciri envanter araştırmalarının uygulamada beklenen etkiyi gösterebilmesi için 
büyük ölçekli stokastik karar problemlerinin çözülmesi gerekmektedir. Ancak küçük boyutlu 
stokastik problemler bile hesaplama bakımından zorluklar taşımaktadır. Bu kapsamda talep 
belirsizliği altında beklenen maliyetleri azaltmaya dönük tedarik zinciri envanter politikaları 
geliştirilmiş, politika parametrelerinin hesaplanmasında kullanılacak yeni tedarik zinciri 
envanter modelleri kurulmuş ve kurulan modelleri etkin şekilde çözmek için algoritmalar 
geliştirilmiştir. 

  
Anahtar kelimeler: Perakendecilik; Tedarik Zinciri Yönetimi; Envanter Yönetimi; Stokastik 
Modelleme 
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Abstract 
 

Planning Models and Solution Methods for Retail Supply Chain Inventory Management 
Under Uncertainty in Turkey 

 

This project aims at addressing important theoretical questions in supply chain inventory 
management, besides developing new technologies and strategies for productivity increase 
in retail industry, which is one of the most dynamic and rapidly growing industries in Turkey. 
Supply chain research must address, or at a minimum be compatible with, important aspects 
of the business environment. Uncertainty is among the most critical elements of the business 
environment, and requires significant attention by the supply chain management research. 
While uncertainty is universally recognized as a complicating factor for planners and 
schedulers, planning and scheduling systems seldom support non-deterministic views of 
data. This project produces solutions for inventory planning under uncertainty for retail supply 
chains. It is clear that supply chain research, in order to be relevant, must tackle large-scale 
stochastic combinatorial decision problems. Stochastic combinatorial models often pose 
serious computational challenges for even small sized problems. To serve this purpose, we 
developed new supply chain inventory management policies to minimize expected costs, 
built new supply chain inventory management models to compute policy parameters and 
designed efficient algorithms to solve these models. 

 

Keywords: Retailing; Supply Chain Management; Inventory Management; Stochastic 
Modelling 
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1. Giriş  

 
Bu proje, tedarik zinciri envanter yönetimi alanında önemli teorik sorulara cevap 

aramanın yanında, ülkemizin en dinamik ve hızlı büyüyen sektörlerinin başında yer alan 
perakende sektöründe verimlilik artışına dönük yeni teknolojilerin ve stratejilerin 
geliştirilmesini amaçlamaktadır. ABD Ticaret Bakanlığı istatistiklerine göre, 2004 yılında 
ABD’de perakendecilerin taşıdıkları stok değeri 450 milyar dolardır. Stok seviyelerinin servis 
düzeyinde bir azalmaya yol açmadan indirilmesi sonucunda elde edilecek olan tasarruf 
rekabetin yoğun olduğu bu sektör için hayati önemdedir. Envanter seviyelerinin yüksekliği 
sebebiyle perakende sektöründe seyrek olarak stoksuz kalındığı düşünülebilir; oysa ki, 
yapılan araştırmalar bunun doğru olmadığını göstermiştir. Bir araştırmaya göre sıradan bir 
günde bir süpermarkette sunulan ürünlerin %8.2’si için stoksuz kalındığı belirlenmiştir. Sözü 
edilen stoksuz kalma durumu tüm satışların %6.5’na karşılık gelmektedir. ABD için bulunan 
stoksuz kalma yüzdelerinin Türkiye perakende sektörü için de geçerli olduğunun 
varsayılması halinde sadece stoksuz kalma sebebiyle uğranılan yıllık satış kaybının 6 milyar 
doları bulacağı anlaşılır ki bu da konunun önemini açıkca ortaya koymaktadır.  

Tedarik zinciri yönetimi alanındaki araştırma faaliyetlerinin uygulamada sonuç 
alabilmesi için iş dünyasının çevresini tanımlayan temel unsurları dikkate alması gereklidir. 
Belirsizlik günümüz iş dünyasını tanımlayan en kritik faktörler arasındadır ve tedarik zinciri 
yönetimi araştırmalarının merkezinde olmalıdır. Belirsizliğin planlamacılar için karmaşıklık 
yaratan bir faktör olduğuna dair fikir birliği bulunmasına rağmen mevcut planlama sistemleri 
veri için nadiren belirlenimsiz (non-deterministic) yaklaşım kullanmaktadır. Birçok araştırmacı 
tedarik zinciri yönetimi alanında belirsizliğin etkin şekilde dikkate alınamayışının olumsuz 
etkisini giderek daha çok hissettiklerini belirtmekte ve araştırma sonuçlarının uygulamada 
beklenen etkiyi yaratmamasının temel sebebi olarak bunu görmektedir. Bu proje perakende 
tedarik zincirleri için belirsizlik altında envanter planlaması sorununu ele almıştır. 

Yukarıda yapılan açıklamalar çerçevesinde, tedarik zinciri envanter araştırmalarının 
uygulamada beklenen etkiyi gösterebilmesi için büyük ölçekli stokastik karar problemlerinin 
çözülmesi gerekmektedir. Ancak küçük boyutlu stokastik problemler bile hesaplama 
bakımından zorluklar taşımaktadır. Bu alanda bazı başarılar elde edilmiş olsa da 
araştırılmayı ve çözülmeyi bekleyen birçok soru bulunmaktadır. Bu araştırma projesinin 
hedeflerinin başında uygulamacılar için tedarik zinciri envanter sistemlerinde belirsizlikle baş 
etmeye dönük bir planlama çerçevesinin geliştirilmesi ve belirsizlik altında tedarik zinciri 
envanter yönetimi araştırmalarına yeni bir yaklaşım kazandırmak bulunmaktadır. Bu hedefe 
dönük olarak (i) talep belirsizliği ve (ii) tedarik süresi riski altında beklenen maliyetleri 
azaltmaya dönük tedarik zinciri envanter politikaları geliştirilmiştir; (iii) politika 
parametrelerinin hesaplanmasında kullanılacak yeni tedarik zinciri envanter modelleri 
kurulmuştur; (iv) kurulan modelleri etkin şekilde çözmek için algoritmalar geliştirilmiştir. 
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Yukarıda verilen amaçlara Yönetim Bilimi/Yöneylem Araştırması (YB/YA) ve Yapay 
Zeka (YZ) alanlarında geliştirilen yeni tekniklerin Matematiksel Programlama ve Kısıt 
Programlama (Constraint Programming) çerçevesi altında bir araya getirildiği hibrit 
uygulamalarla ulaşılmıştır.  

 

 

2. Tanımlar ve Kapsam  
 

Perakendecilik, tüketicinin ihtiyaç duyduğu malların çoğunlukla sabit satış 
noktalarından, küçük parti büyüklüklerinde ve nihai tüketim için pazarlanması faaliyetlerinin 
bütünüdür. Bu tanım çerçevesinde perakendeciler gıda maddeleri, giyim eşyası, mobilya, ev 
eşyası, madeni eşya, cam, ilaç ve ıtriyat, kereste ve inşaat malzemesi, kitap ve kırtasiye gibi 
çok farklı alanlarda faaliyet gösterirler. Bu kapsamdan da açıkca görüleceği üzere sektör 
olarak ekonomide önemli ağırlıkları vardır. 

ABD Ticaret Bakanlığı istatistiklerine göre, 2004 yılında ABD’de perakende 
sektörünün satış hacmi 3500 milyar doları geçmiştir. Bu satış hacmini gerçekleştirmek için 
perakende tedarik zincirinde taşınan toplam envanterin değeri 1200 milyar doları aşmıştır. Bu 
envanterin tedarik zincirindeki dağılımı şöyledir: imalatçı seviyesinde 430 milyar dolar; 
toptancı/dağıtımcı seviyesinde 320 milyar dolar; ve perakende seviyesinde 450 milyar 
dolardır. Envanter maliyetlerinin işletmeler için önemli bir maliyet kalemi olduğu 
düşünüldüğünde aynı servis düzeyinin daha az envanter ile sağlanmasının taşıdığı önem 
ortaya çıkmaktadır. 

Yukarıda verilen envanter rakamlarının yüksekliği sebebiyle perakende sektöründe 
seyrek olarak stoksuz kalındığı düşünülebilir; oysa ki, yapılan araştırmalar bunun doğru 
olmadığını göstermiştir. Andersen Consulting tarafından Coca-Cola için yapılan bir araştırma 
(Coca-Cola Research Council/Andersen Consulting 1996) sıradan bir günde bir 
süpermarkette sunulan ürünlerin %8.2’si için stoksuz kalındığını belirlemiştir. Reklamı 
yapılan ürünler için bu değer %15.0’e yükselmektedir. Sözü edilen stoksuz kalma durumu 
tüm satışların %6.5’na karşılık gelmektedir. Alternatif ürünler sunarak tüketicinin talebinin 
karşılanması halinde dahi perakenciler toplam satışların %3.1’i kadar bir potansiyel hasılatı 
yeteri kadar stok tutmamak sebebiyle kaybetmektedirler (Lee 2003).  

Türkiye için benzer veriler bulunmasa da perakende sektörünün büyüklüğünden 
hareketle çıkarılacak sonuç değişmemektedir. “Planet Retail” (http://www.planetretail.net/) 
tarafından sağlanan en son bağımsız verilere göre, Türk perakende sektörünün cirosu 2006 
yılında 137 milyar dolar olarak gerçekleşmiş ve 2010'a kadar sektörün 199 milyar dolara 
ulaşması beklenmektedir. Türkiye'de perakende sektörü ekonomiye yaklaşık 6.7 milyar dolar 
tutarında bir katma değer yaratmakta ve yine yaklaşık olarak 2.5 milyon kişiyi istihdam 
etmektedir ki buna göre perakende sektörünün tüm ekonomi üzerindeki etkisi, toplam Türkiye 
üretiminin %3.5'i ve istihdamın ise %12'si olacaktır. Bu rakamlar perakende sektörünün Türk 
ekonomisi üzerindeki ağırlığını açıkça gözler önüne sermektedir ve bu sektörde envanter 
planlamasıyla sağlanacak tasarrufun firma ve ulusal ekonomi bazında ne derece önemli 
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olduğunu göstermektedir. ABD için bulunan stoksuz kalma yüzdelerinin Türkiye perakende 
sektörü için de geçerli olduğunun varsayılması halinde sadece stoksuz kalma sebebiyle 
uğranılan yıllık satış kaybının 6 milyar doları bulacağı anlaşılır ki bu da konunun önemini 
açıkca ortaya koymaktadır. Stoksuz kalmanın veya gereğinden fazla stok bulundurmanın 
maliyetli olması hangi ürünün siparişinin ne zaman ve ne miktarda verilmesi gerektiği 
sorusunu perakende sektörünün temel sorunlarından birisi haline getirmektedir. 

Ancak, yukarıda ifade edilen perakendeci seviyesinde envanter planlaması sorununu 
perakende tedarik zincirinin planlamasından bağımsız olarak düşünmek mümkün değildir. 
Bugünün küreselleşen piyasalarında yaşanan yoğun rekabet, yeni ürünler için giderek düşen 
ürün yaşam süreleri ve tüketicilerin yükselen beklentileri firmaların tedarik zincirlerini tekrar 
düzenlemelerine yol açmıştır ve perakende sektörü bunun bir istisnası değildir. Bu çabanın 
arkasında “firmaların değil, onların ait oldukları tedarik zincirlerinin rekabet ediyor” olması 
tesbiti yatmaktadır. Tedarik zinciri yönetimi sistemin etkinliğinde rol oynayan tedarikçiden 
imalatçıya, ana depolardan dağıtım merkezlerine, perakendecilere ve dükkanlara kadar 
bütün aktörleri dikkate alarak, tüketicinin gereksinimlerine cevap verecek ürünün üretilmesine 
ve tüketiciye sunulmasına imkan sağlar. Tedarik zinciri yönetiminde hedef tüm sistemin 
verimli ve maliyet etkin olmasını sağlamaktır; amaç taşıma ve dağıtım maliyetlerinden ham 
madde, ara ürün ve nihai ürün stok maliyetlerine kadar katlanılan toplam maliyeti en aza 
indirgemektir. Tedarik zinciri yönetiminin esas olarak bir şebekeye ilişkin planlama, uygulama 
ve kontrol merkezli tanımlanması sebebiyle zincire dahil olan tüm firmaların stratejik, taktik ve 
operasyonel düzeydeki faaliyetlerinin dikkate alınmasını gerektirir. Bu faaliyetler dağıtım 
şebekesinin tasarımı, üretim planlaması, envanter kontrolü, envanter ve taşımanın 
koordinasyonu, araç filosu yönetimi gibi geniş bir yelpazede verilecek kararlarla birbirlerine 
bağlıdır. Bahsedilen bu karar problemlerinin her biri kendi başına çözümü zor problemlerden 
olan kombinatöryel eniyileme (optimizasyon) problemi sınıfına girmektedir ve hepsinin birlikte 
eşanlı olarak çözümü mümkün değildir. Önerilen bu proje bir ilk adım olarak sadece 
perakende tedarik zincirleri için envanter planlaması sorununa gerçekci varsayımlar altında 
çözüm üretilmeye çalışılmıştır. 

Tedarik zinciri yönetimi alanındaki araştırma faaliyetlerinin uygulamada sonuç 
alabilmesi için iş dünyasının çevresini tanımlayan temel unsurları dikkate alması gereklidir. 
Belirsizlik günümüz iş dünyasını tanımlayan en kritik faktörler arasındadır ve tedarik zinciri 
yönetimi araştırmalarının merkezinde olmalıdır. Rassal tüketici davranışı, eksik bilgi, hatalı 
veri, açık olmayan veya eksik tanımlamalar “tedarik zinciri yönetiminde belirsizlik” temasını 
vurgulayan rassal faktörlerden yalnızca birkaçıdır. Ürün yaşam sürelerinin giderek kısalması 
kullanılabilecek tarihsel verinin de azalmasına ve böylece belirsizliğin artmasına yol 
açmaktadır. Bu durum ise özellikle perakende tedarik zincirlerinde belirsizliğin 
modellenmesinin önemini artırmaktadır. Mevcut rekabetçi ortamda belirsizliği yönetmeye 
yardımcı olacak ve değişen piyasa koşullarına hızlı ve güvenilir şekilde tepki vermeyi 
sağlayacak yeni yaklaşımlara perakende sektörünün ihtiyacı vardır (Fisher, Raman and 
McClelland 2000). 

Belirsizliğin planlamacılar için karmaşıklık yaratan bir faktör olduğuna dair fikir birliği 
bulunmasına rağmen mevcut planlama sistemleri veri için nadiren belirlenimsiz (non-
deterministic) yaklaşım kullanmaktadır (Wu, et al. 1999). Buna ilişkin bir örnek olarak 
İşletmecilik alanından Kurumsal Kaynak Planlaması (Enterprise Resource Planning, ERP) ve 
diğer kurumsal bilgi ve planlama sistemlerinin nadiren rassallığa ilişkin bilgi kullanmaları 
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verilebilir. Yine Wu ve diğerlerine göre, birçok araştırmacı tedarik zinciri yönetimi alanında 
belirsizliğin etkin şekilde dikkate alınamayışının olumsuz etkisini giderek daha çok 
hissettiklerini belirtmekte ve araştırma sonuçlarının uygulamada beklenen etkiyi 
yaratmamasının temel sebebi olarak bunu görmektedir. Bu bağlamda, bu proje perakende 
tedarik zincirleri için envanter planlaması sorununa belirsizlik faktörlerini hesaba katarak 
çözüm üretmeye çalışmıştır. 

Yukarıda yapılan açıklamalar çerçevesinde, tedarik zinciri envanter araştırmalarının 
uygulamada beklenen etkiyi gösterebilmesi için büyük ölçekli stokastik karar problemlerinin 
çözülmesi gerekmektedir. Ancak küçük boyutlu stokastik problemler bile hesaplama 
bakımından zorluklar taşımaktadır. Bu alanda bazı başarılar elde edilmiş olsa da 
araştırılmayı ve çözülmeyi bekleyen birçok soru bulunmaktadır. Bu araştırma projesinin 
hedeflerinin başında uygulamacılar için tedarik zinciri envanter sistemlerinde belirsizlikle baş 
etmeye dönük bir planlama çerçevesinin geliştirilmesi ve belirsizlik altında tedarik zinciri 
envanter yönetimi araştırmalarına yeni bir yaklaşım kazandırmak bulunmaktaydı. Bu hedefe 
ulaşmak için talep belirsizliği ve tedarik süresi riski altında beklenen maliyeti azaltmaya 
dönük tedarik zinciri envanter politikaları geliştirilmiş; strateji parametrelerinin 
hesaplanmasında kullanılacak yeni tedarik zinciri envanter modelleri kurulmuştur; kurulan 
modelleri etkili şekilde çözmek için algoritmalar geliştirilmiştir. 

 

 

3. İlgili Yazın 
 

Bu araştırma projesinin ana temasını oluşturan perakende tedarik zincirleri üzerine 
yayınlanan araştırmalar ve istatistikler konunun makro ve mikro ölçekte önemini açık şekilde 
ortaya koymaktadır. ABD’de perakende sektörünün satış hacmi 2004 yılında 3500 milyar 
doları aşmıştır (ABD Ticaret Bakanlığı istatistikleri, http://www.census.gov/econ/www/). Bu 
satış hacmini gerçekleştirmek için 1200 milyar dolarlık envantere ihtiyaç duyulmuştur. Bu 
envanterin 450 milyarlık kısmı tedarik zincirinin en alt seviyesi olan perakendeciler tarafından 
tutulmuştur. Diğer yandan envanter rakamlarının yüksekliğine rağmen perakende sektöründe 
stoksuz kalınmayla çok sık karşılaşılmaktadır. Andersen Consulting tarafından Coca-Cola 
için yapılan bir araştırma (Coca-Cola Research Council/Andersen Consulting 1996) sıradan 
bir günde bir süpermarkette sunulan ürünlerin %8.2’si için stoksuz kalındığını belirlemiştir. 
Reklamı yapılan ürünler için bu değer %15.0’e yükselmektedir. Sözü edilen stoksuz kalma 
durumu tüm satışların %6.5’na karşılık gelmektedir. Alternatif ürünler sunarak tüketicinin 
talebinin karşılanması halinde dahi perakenciler toplam satışların %3.1’i kadar bir potansiyel 
hasılatı yeteri kadar stok tutmamak sebebiyle kaybetmektedirler (Lee 2003). Türkiye için 
benzer veriler bulunmasa da perakende sektörünün büyüklüğünden hareketle çıkarılacak 
sonuç değişmeyecektir.  

Fisher ve diğerlerine göre son 20 yılda indirimli satışların toplam satışlar içindeki 
payının %8 seviyesinden %33’lere yükselmesinin temel nedeni perakende sektöründe tüm 
gerekli verilerin bilgisayar ortamında tutuluyor olmasına rağmen bunların uygun şekilde 
işlenip kullanılmamasıdır. Bu çalışmada özellikle perakende sektöründe ortalama kar 
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marjlarının %2-3 seviyelerinde olduğu hatırlatılıp, bunun yanında stoksuz kalma sebebiyle 
kaybedilen hasılatın %10’unun ne kadar büyük olduğu gözler önüne serilmektedir. Fisher ve 
diğerlerinin (Fisher, Raman and McClelland 2000) perakende tedarik zincirlerinin 
performanslarını artırmak için iyileştirmenin gerekli görüldüğü üç alandan birisi belirsizlik 
altında envanter planlamasıdır.  

Chen ve diğerleri  (Chen, Frank and Wu, US retail and wholesale inventory 
performance from 1981 to 2004 2007) de perakende sektöründe yaptıkları ve 23 yıllık veriyi 
kapsayan araştırmaları sonucunda yüksek envanter seviyesi ile çalışan firmaların hisse 
senedi ortalama getirilerinin uzun vadede düşük olduğunu görmüşlerdir. Bir diğer 
çalışmalarında (Chen, Frank and Wu, What Actually Happened to the Inventories of 
American Companies Between 1981 and 2000? 2005)  ise 1981-2000 arasındaki 19 yıllık 
dönemde imalat sektöründe ortalama envanter taşıma süreleri 96 günden 81 güne inerken 
(yıllık %2 seviyesinde bir azalış), perakende sektöründe stokta tutulan nihai ürünlerde hiçbir 
azalış gözlenmemiştir. Bu sonuçlar perakendeci seviyesinde envanter planlamasında bir 
başarı kazanılamadığını göstermektedir. 

Enslow tarafından yapılan ve Aberdeen Group tarafından yayınlanan (Enslow 2004) 
raporda günümüzde firmaların %60’dan fazlasının envanter planlamasında uygun planlama 
araçlarını kullanmadıklarını ve bu firmaların sahip olmaları gerekenden %15-30 daha fazla 
envanterle çalıştığı ve servis düzeylerinin de düşük olduğu belirtilmiştir. 

Tedarik zinciri yönetimi alanındaki araştırma faaliyetlerinin uygulamada sonuç 
alabilmesi için iş dünyasının çevresini tanımlayan temel unsurları dikkate alması gereklidir. 
Belirsizlik günümüz iş dünyasını tanımlayan en kritik faktörler arasındadır ve tedarik zinciri 
yönetimi araştırmalarının merkezinde olmalıdır. Wu ve diğerlerine (Wu, et al. 1999) göre 
belirsizliğin planlamacılar için karmaşıklık yaratan bir faktör olduğuna dair fikir birliği 
bulunmasına rağmen mevcut planlama sistemleri veri için nadiren belirlenimsiz (non-
deterministic) yaklaşım kullanmaktadır. Buna ilişkin bir örnek olarak İşletmecilik alanından 
Kurumsal Kaynak Planlaması (Enterprise Resource Planning, ERP) ve diğer kurumsal bilgi 
ve planlama sistemlerinin nadiren rassallığa ilişkin bilgi kullanmaları verilebilir. Yine Wu ve 
diğerlerine göre, birçok araştırmacı tedarik zinciri yönetimi alanında belirsizliğin etkin şekilde 
dikkate alınamayışının olumsuz etkilerini giderek daha çok hissettiklerini belirtmekte ve 
araştırma sonuçlarının uygulamada beklenen etkiyi yaratmamasının temel sebebi olarak 
görmektedir. Bu nokta gerçekleştirilen araştırmanın esasını teşkil etmekte ve proje 
perakende tedarik zincirleri için envanter planlaması sorununa belirsizlik faktörlerini dikkate 
alarak çözüm üretmektedir. 

Belirsizlik altında envanter planlamasına ilişkin literatür incelendiğinde ise (bakınız 
(Graves, Rinnooy Kan and Zipkin 1993), (Porteus 2002), (Zipkin 2000) ve (de Kok and 
Graves 2003)) birçok farklı envanter politikasının uygulamada yer bulduğu görülecektir. 
Bunlar arasında (s,S), (s,Q), (R,S) gibi sipariş noktası (s), sipariş miktarları (Q), sipariş 
aralıkları (R), envanter yükseltme seviyesi (S) parametrelerini sabitleyerek envanter kontrolü 
yapan politikalar öne çıkmaktadır.  

Tek ürün ve tek stok noktası durumu için –doğrusal elde stok tutma ve stoksuz kalma 
maliyetleri ile sabit sipariş maliyeti varsayımı altında– Scarf (Scarf 1959) tarafından ispat 
edildiği üzere (s,S) politikası optimal maliyetli politikadır. Ancak bu varsayımlar, tanım gereği, 
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hemen hiçbir perakende tedarik zincirine uygun değildir. Bunun birçok sebebi bulunsa da 
temelde birçok stok ve üretim merkezinin dikkate alınması gereği ile birden çok ürün için 
planlama yapılması ihtiyacı (s,S) politikasının artık optimal politika olma özelliğini ortadan 
kaldırır. Bu gevşetilmiş varsayımlar altında (s,S) politikasının pratikte uygulanabilirliği de 
kolay görünmemektedir. Hatta tek ürün tek stok noktası için planlama yapmak gerektiği 
zaman bile birçok firma ileriye dönük olarak hiçbir planlamaya imkan vermeyen (s,S) 
politikası yerine (R,S) tipi politikaları tercih etmektedir (bakınız (Silver, Pyke and Peterson, 
Inventory Management and Production Planning and Scheduling 1998)). Envanter alanında 
temel kaynak niteliğinde olan Silver ve diğerlerinde işaret edildiği gibi özellikle birden çok 
ürün için eşanlı sipariş vermenin sipariş maliyetlerini düşürdüğü durumlarda koodinasyon 
imkanı sunan (R,S) politikasının diğer politikalara üstün olduğu ifade edilmiştir. Bu 
açıklamalar çerçevesinde (R,S) politikası perakende envanter sistemleri için cazip bir 
planlama platformu sunmaktadır. 

Yukarıda yapılan açıklamalardan anlaşılacağı üzere perakende tedarik zinciri 
envanter planlamasının temel karakteristiğini çok ürünlülük, çok merkezlilik ve belirsizlik ifade 
eder. Belirsizliği konu alan envanter yazını incelendiğinde hemen tamamının durağanlık 
(stationarity) varsayımında bulunduğu görülür. Oysa bir çok sektörde –bunların başında 
perakende sektörü gelmektedir–  talep durağan olmayan (non-stationary) bir desen gösterir. 
Dolayısıyla yapılan araştırmaların uygulamada beklenen etkiyi yaratabilmesi için belirsizlik 
durağan olmayan bir yapıda tanımlanmalıdır. (R,S) politikası ile ilgili literatür incelendiğinde 
durağan olmayan talep varsayımında bulunan ilk yayının Silver’a (Silver, Inventory control 
under a probabilistic time varying demand pattern 1978) ait olduğu görülür. 

Silver (Silver, Inventory control under a probabilistic time varying demand pattern 
1978) stokastik dinamik parti büyüklüğü problemine sezgisel bir yaklaşım önerir. Bu çalışma, 
dönemsel ortalama maliyeti hesaplayan Silver-Meal (Silver and Meal, A heuristic for 
selecting lot size requirements for the case of a deterministic time-varying demand rate with 
discrete opportunities for replenishment 1973) sezgisel yaklaşımının stokastik sürümüdür. 
Silver'in sezgisel yaklaşımı üç adımdan oluşmaktadır. İlk adım, ne zaman sipariş verileceğini, 
ikinci adım siparişin kaç dönemi kapsayacağını, üçüncü adım ise sipariş miktarını bulmaya 
yöneliktir. Bu çalışmayı takip eden bir diğer sezgisel yöntem ise Askin (Askin 1981) 
tarafından önerilmiştir. 

Durağan olmayan talep altında (R,S) politikası için ilk matematiksel programlama 
modeli (statik-dinamik belirsizlik stratejisi olarak adlandırılmıştır) Bookbinder ve Tan 
(Bookbinder and Tan 1988) tarafından önerilmiştir. Bu stratejiye göre planlama ufku başında 
tedarik dönemleri Wagner-Whitin (Wagner and Whitin 1958) tipi bir dinamik programlama 
modeli ile belirlenmekte ve belirlenen bu dönemler için envanter yükseltme düzeyleri 
doğrusal programlama ile bulunmaktadır. Bookbinder ve Tan’nın çalışması, sipariş 
dönemlerini ve bu dönemlerdeki beklenen sipariş miktarlarını iki adımda hesaplayan bir diğer 
sezgisel yaklaşımdır. 

Bookbinder ve Tan’ın kullandıkları varsayımlar altında problemin ilk optimal çözümü 
Tarim ve Kingsman (Tarim and Kingsman, The stochastic dynamic production/inventory lot-
sizing problem with service-level constraints 2004) tarafından geliştirilen kesinlik dengi 
(certainty equivalent) karışık tamsayı programlama (MIP) modeli ile bulunmuştur. Bu 
formülasyon yardımıyla optimallikten taviz verilmeden sipariş dönemleri ve envanter 
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yükseltme seviyeleri eşanlı olarak bulunabilmektedir. Bookbinder-Tan ve Tarim-Kingsman 
çalışmalarının ortak varsayımları her ikisinde de stoksuz kalma maliyeti yerine servis düzeyi 
kısıtının kullanılmasıdır. Tarim ve Kingsman bu çalışmalarını takiben servis düzeyi kısıtı 
yerine stoksuz kalma maliyetini dikkate alarak (R,S) politikası için politika parametrelerini 
hesaplayacak doğrusal olmayan bir model kurmuşlar ve daha sonra bu model için parçalı 
doğrusal bir tamsayı programlama modeli önermişlerdir (Tarim and Kingsman, Modelling and 
Computing Policies for Inventory Systems with Non-Stationary Stochastic Demand 2006). 
Geliştirilen bu kombinatöryel optimizasyon modellerinin önemli bir envanter planlama 
problemine çözüm önermesine karşın uygulamada ancak küçük ölçekli uygulamaların 
sonuçlandırılması mümkün olmuştur. Hesaplamada karşılaşılan bu güçlüğü aşmak üzere 
Tarim ve Smith (Tarim and Smith, Constraint Programming for Computing Non-Stationary 
(R,S) Inventory Policies 2008) Yapay Zeka alanında geliştirilen Kısıt Programlama 
(Constraint Programming, CP) tekniğini kullanarak çok daha hızlı çözüm elde etmeyi 
başarmışlardır. Bunu takiben Tarim ve diğerleri tarafından geliştirilen bir MIP/CP hibriti 
modelle durağan olmayan talep altında tek ürün ve tek stok noktası için tüm pratik 
uygulamalarda makul sürede planlama yapmak mümkün olmuştur (Tarim, Rossi, et al. 
2008).  

Buraya kadar verilmiş olan literatürden de açıkça görüleceği üzere çok ürün, eşanlı 
siparişler, olasılıksal tedarik süreleri ve çok stok/üretim noktasının dikkate alındığı (R,S) tipi 
politikalar üzerine çalışmalar ise ilk defa bu proje kapsamında yapılmıştır. Bu araştırma 
projesinin uygulamada ve teoride büyük bir boşluğu doldurduğu açıktır. 

Geliştirilen modeller en zor optimizasyon problemi sınıfına giren doğrusal olmayan 
stokastik kombinatöryel optimizasyon modelleri türündedir. Bu modeller için kullanılan 
yaklaşımlar arasında dekompozisyon algoritmaları (örneğin Tarim ve Miguel (Tarim and 
Miguel, A Hybrid Benders' Decomposition Method for Solving Stochastic Constraint 
Programs with Linear Recourse 2006)), senaryo indirgeme yöntemleri (örneğin Kleywegt ve 
diğerleri (Kleywegt, Shapiro and de Mello 2002) ve Santoso ve diğerleri (Santoso, et al. 
2005)), sezgisel yaklaşımlar (örneğin Van Hentenryck ve Bent (Van Hentenryck and Bent 
2006)) ve hibrit yöntemler (örneğin (Hnich, et al. 2004)) bulunmaktadır.  

 
 
 

4. Türkiye’de Perakendecilik ve Envanter Yönetimi  
 

Türkiye’de faaliyet gösteren perakendeci firmaların tedarik zinciri envanter 
planlamasına ilişkin öncelikli sorunlarını ve kullanmakta oldukları karar destek sistemlerini 
belirlemek, ve mevcut envanter planlama yaklaşımlarının bir fotoğrafını çekebilmek amacıyla 
br saha çalışması gerçekleştirilmiştir. Bu çalışmanın kapsamı sektörü temsilen süpermarket 
düzeyindeki perakendeci firmalarla sınırlandırılmıştır. Perakende sektöründe faaliyet 
gösteren firmaların çeşitliliği ve sayılarının çokluğu, öngörülen proje bütçesi ve proje süresi 
kısıtları altında, bu tür bir sınırlandırmaya gidilmesini zorunlu kılmıştır. Saha çalışmasına 
konu edilecek olan firmalar “Soysal Türkiye Perakende Kataloğu -- 2005” (S. Soysal: 
İstanbul, 2005) süpermarketler bölümünde listelenen firmalardan seçilmiştir.  
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İlk olarak perakende tedarik sistemlerine ilişkin mevcut karar destek sistemlerinin 
envanterinin çıkarılmasına dönük olarak kapsamlı bir araştırma yapılmıştır. Araştırma 
sonuçları mevcut sistemlerin fonksiyonelliklerini özetleyen bir rapor (Rapor-I) halinde ekte 
(Ek-1) sunulmuştur. Bu araştırma neticesinde halihazırda kullanılan sistemlerinin (bir istisna 
haricinde) envanter planlaması sürecinde hiçbir belirsizlik unsurunu dikkate almadıkları 
ortaya çıkmıştır. Talep belirsizliğini dikkate alan tek bir yazılımında sadece durağan talep 
varsayımı altında çalıştığı görülmüştür. İncelemeye ilişkin ayrıntılar aşağıda özetlenmiştir. 

Görüşmelerde sorulan başlıca sorular şunlardır: 

• İlgili ERP yazılımı stokta tutulan kalem bazında stok takibi yapabiliyor mu? 
• Yazılım talep tahmini yapabiliyor mu? Cevap eğer evet ise talep tahmini tek dönemli 

(tek bir hafta/ay/yıl) mi yoksa çok dönemli (birden çok hafta/ay/yıl) mi yapılıyor? 
• Yapılan bu tahminler nokta tahmini şeklinde mi gerçekleşiyor, yoksa tahminleme 

hataları da tespit edilebiliyor mu? 
• Yazılım kullanıcıya ne zaman ve ne kadar sipariş verileceğini söyleyebiliyor mu? 
• Yazılım güvenlik stoğu hedefi sunabiliyor mu? 
• Güvenlik stoğu belirlemede kullanılan yöntemler/kurallar/yaklaşımlar nelerdir? 
• Güvenlik stoğu düzeyi optimal biçimde hesaplanabiliyor mu?  

Görüşmelerde, yukarıdaki soruların ışığında mevcut ERP yazılımlarının hangi 
ihtiyaçları ne ölçüde giderebildikleri belirlenmeye çalışılmıştır. Bu görüşmelerin sonucunda 
elde edilen bilgiler aşağıda Tablo 1’de toplu olarak sunulmuştur. 

 Görüşmeler yapılmadan önce mevcut ERP yazılımlarının stok takibi ve talep tahmini 
yapabildikleri tahmin ediliyordu. Fakat birçoğunun gerek deterministik gerekse stokastik 
planlama yönünden yetersiz kalacağı düşünülmekteydi. Görüşmeler sonucunda sadece SAS 
şirketinin yazılımının durağan stokastik planlama yapabildiği tespit edilmiştir. Birkaç büyük 
yazılım firmasının deterministik planlama yapabildikleri, geriye kalan firmaların ise tahmin 
yapabilmekten öteye gidemedikleri ortaya çıkmıştır.  

Araştırma dâhilindeki hiçbir şirketin durağan olmayan talep altında stokastik planlama 
yapamaması, bu yönde yapılacak çalışmaların önemini ve gerekliliğini göstermiştir. Bununla 
birlikte çok uluslu olan yazılım şirketlerinin ürünlerinin genellikle büyük şirketlerin kullandığı, 
yerel bazda olan yazılım şirketlerinin ise küçük ve orta büyüklükteki şirketlere yönelik ürün 
geliştirdikleri tespit edilmiştir.  

ERP yazılımların birçoğu öncelikle imalat sanayiinde faaliyet gösteren işletmelerin 
ihtiyaçlarını karşılamaya dönük olarak hazırlanmıştır. Perakende sektörüne yönelik çözümler 
de, bu paketlere ilave edilmiş veya ayrı bir paket halinde piyasaya sunulmuştur. Bu yüzden 
birçoğunun eksiği bulunması ile birlikte günden güne bu eksiklerin giderilmeye çalışılmakta 
olduğu görülmüştür. 

Proje kapsamında ele alınan perakende tedarik zinciri envanter yönetimi 
optimizasyon modelleri durağan olmayan talep varsayımını taşımaktadır. Bu raporda sunulan 
bulgular, geliştirilen modellerin ve çözüm yöntemlerinin bahsi geçen çabalara büyük destek 
vermenin de ötesine geçeceği ve bu tartışmaların merkezine oturacağı bekletimizi destekler 
niteliktedir.  
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İzleme 

Öngörü 

Planlama Planlama 

Tablo 1   Deterministik Stokastik 

   Nokta  Hata  Heuristik  Optimal  Durağan  
Durağan 
Olmayan 

SAP R/3  9 9 9 9 9 8 8 

Oracle  9 9 9 9 9 8 8 

INFOR ERP(Baan) 9 9 9 8 8 8 8 

IFS Application  9 9 9 8 8 8 8 

SAGE MAS 500  9 9 9 8 8 8 8 

CANIAS ERP  9 9 9 8 8 8 8 

SAS  9 9 9 9 9 9 8 

Fusion@6  9 9 8 8 8 8 8 

LOGO Unity  9 9 8 8 8 8 8 

OBASE  9 9 8 8 8 8 8 

Wolvox  9 9 9 8 8 8 8 

Micro  9 9 8 8 8 8 8 

Compiere  9 8 8 8 8 8 8 

ERP5  9 8 8 8 8 8 8 

GNU ERP  9 8 8 8 8 8 8 

SQL Ledger  9 8 8 8 8 8 8 

OFBiz  9 8 8 8 8 8 8 

Opentaps  9 8 8 8 8 8 8 

Openbravo  9 8 8 8 8 8 8 

OpenERP  9 8 8 8 8 8 8 

OpenPro  9 8 8 8 8 8 8 
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Türkiye'nin süpermarket zincirlerinin tamamına yakınıyla görüşülmüş ve envanter 
planlaması için kullandıkları sistemler hakkında bilgi edinilmiştir. Görüşmeler sektörde 
belirsizlik altında envanter planlamasına dönük herhangi bir sistematik veya "ad hoc" 
uygulamanın olmadığını göstermiştir. Ayrıca firmalar ellerinde bulunan yazılımların mevcut 
fonksiyonlarını dahi çoğu zaman kullanmadıklarını, sadece birer envanter seviyesi izleme 
aracı olarak bu yazılımlardan istifade ettiklerini söylemişlerdir. Buna ilişkin rapor (Rapor-II) 
ekte (Ek-2) sunulmuştur. 

Bu raporun amacı Türkiye perakende sektöründe faaliyet gösteren süpermarketlerin 
tedarik zinciri yönetimi için kullandıkları envanter yönetim yazılımlarını belirlemek ve tedarik 
zinciri yönetiminde bu yazılımlardan ne ölçüde faydalandıklarını tespit etmektir.  

Araştırma kapsamında 31 firma ile görüşme yapılmıştır. Elde ettiğimiz bulgular 
temelde sektör tarafından kullanılan yazılımların etkin şekilde belirsizlikle baş edebilecek 
fonksiyonelliğe sahip olmadıklarını ve çoğu zamanda bu yazılımların sunduğu temel 
fonksiyonların bile firmalar tarafından uygun organizasyonel süreçler ve uzmanlık 
bulunmadığı için kullanılmadığını göstermektedir.  

Genel olarak baktığımızda, sadece 2 süpermarket zinciri yazılımlarının talep tahmini 
yapabildiğini ve tahmin hatasına ilişkin bilgi sunduğunu belirtmiştir. 9 süpermarket 
yazılımlarının sadece talep tahmini yapabildiğini bildirmiştir. 1 süpermarket ise ERP yazılımı 
kullanmadıklarını belirtmiştir.  

Yukarıdaki tabloya baktığımızda hiçbir süpermarketin deterministik planlama 
yapmadığı görülmektedir. Buradan yola çıkarak, günümüz Türkiye perakende sektöründe 
faaliyet gösteren süpermarketlerde yönetici deneyimlerinin, sipariş kararlarında hala en 
önemli faktör olduğuna ulaşabiliriz. Ayrıca yaptığımız görüşmelerde ulaştığımız bir başka 
sonuç ise, yazılımların birçoğunun süpermarketlerde çok görülen mevsimsel satış, indirim, 
kampanya gibi durumlara özel çözümlerinin olmayışıdır. Bu da sipariş miktarlarının 
belirlenmesinde hala yöneticilerin neden kişisel tecrübelerine dayanarak karar verdiklerini bir 
noktaya kadar açıklamaktadır.  

Süpermarketlerin belirsizlik altında ihtiyaçlarına cevap verecek yeni ve kapsamlı 
envanter planlama sistemlerine ihtiyaç olduğu açıktır. Öte yandan bu yazılımların var olması 
halinde dahi etkin şekilde kullanılabileceğine dair bir bulgu yoktur. Bu noktada yöneticilerin 
gerekli eğitimden geçirilmesi, bilinçlendirilmesi ve teknik ekibin yazılımların fonksiyonellikleri 
hakkında bilgilendirilmesi gerekliliği ortadadır. 

Bu incelemenin sonucunda karar destek sistemi yazılımı üreten firmaların durağan 
olmayan belirsiz talep altında planlamaya yapmaya dönük ürünlerinin bulunmadığı ve 
süpermarket zincirlerinin de bu hususta tanımlı bir politika izlemedikleri görülmüştür. 

Bu sonuçlar araştırma projemiz kapsamında geliştirilen modellerin ve çözüm 
tekniklerinin önemli bir boşluğu dolduracağına işaret etmektedir. 

 

15 
 



5. Envanter Yönetimi için Yeni Yaklaşımlar 

 

Perakende tedarik zincirlerinde belirsizlik altında envanter planlamasının taşıdığı 
teorik ve teknik güçlüklere çözüm üretmek bu projenin temel amacıdır. Bu bölümde bu 
güçlüklerin nasıl ele alındığı ve kullanılan temel modelleme ve çözüm paradigmalarının neler 
olduğu konusunda teknik ayrıntıya girmeden özet bilgi sunulmuştur. Yapılan her bir 
çalışmanın ayrıntılı şekilde sunumu eklerde verilmiştir.  

Proje kapsamında yürütülen teorik çalışmalar iki ana grupta tasnif edilebilir. Bu 
gruplardan ilki belirsizlik altında karar almaya dönük olarak yeni tekniklerin geliştirilmesiyle 
ilgilidir. Bu gruptaki çalışmalar genel amaçlı olup daha çok belirsizliğin rol oynadığı karar 
problemlerinin modellenmesine ve çözümüne ilişkin kullanıcıya platformlar sunmaktadır. 
İkinci grup çalışma da ise belirsizlik altında envanter yönetimi ve planlaması problemi dikkate 
alınmıştır. Aşağıda ilk olarak geliştirilen, belirsizliği yönetmeye dönük genel amaçlı, teknikler 
ve platformlar sunulmuş, ardından envanter ve tedarik zinciri yönetimi alanındaki 
çalışmalarımız özetlenmiştir. 

Burada özetlenecek olan ilk çalışma belirsizlik altında karar almaya dönük olarak 
tasarlanmış bir teknik olan “stokastik kısıt programlama” (Stochastic Constraint 
Programming, SCP) için etkin çözüm yöntemlerinin geliştirilmesini hedeflemektedir. Kısıt 
programlama Yapay Zeka alanında geliştirilen bir tekniktir ve kombinatöryel karar 
problemlerinin çözümünde kullanılmaktadır. SCP’nin Yöneylem Araştırması temel 
tekniklerinden olan Matematiksel Programlama’ya karşı en belirgin üstünlüğü doğrusal 
olmayan stokastik kombinatöryel eniyileme problemlerinin modellenmesine ve çözümüne 
imkan vermesidir. Perakende tedarik zinciri envanter planlamasının bu tür bir stokastik 
kombinatöryel optimizasyon problemi olması bu modelleme yaklaşımını proje çalışması için 
anahtar hale getirmiştir. Stokastik Kısıt Programlama yardımıyla kurulacak modellerin 
perakende tedarik zinciri envanter planlaması alanında uygulanabilirliğini sağlamak için etkin 
çözüm algoritmalarının geliştirilmesi gerekmiştir. Bu algoritmaların geliştirilmesi araştırma 
projesinin teorik kapsamını oluşturan ana iş paketlerinde ele alınmıştır. “Cost-Based Domain 
Filtering for Stochastic Constraint Programming” başlığı altında yapılan bu çalışmalarda 
Yapay Zeka ve Yöneylem Araştırması alanından seçilen bazı teknikler melez olarak karar 
değişkenlerinin tanım kümelerinin filtre edilmesinde kullanılmış ve böylece çözüm süreleri 
önemli ölçüde kısaltılmıştır. Lecture Notes in Computer Science, LNCS 5202’de yayınlanan 
ve TÜBİTAK desteğini belirten bu çalışmanın tam metni Ek-3’de sunulmuştur. Bu çalışma 
araştırma projesinin konusu olan talep belirsizliği altında envanter yönetimi gibi stokastik 
kombinatöryel optimizasyon problemlerinin çözümü için kullanılabilecek temel bir tekniğin 
etkin şekilde çözümünü sağlamıştır. Makalenin giriş kısmında genel motivasyon ve çalışma 
konusu verilmiştir. İkinci bölümde “kısıt sağlama problemi” (constraint satisfaction problem) 
nin stokastik versiyonu formal olarak tanımlanmış ve semantiği verilmiştir. Bu semantiğin 
optimizasyon amaçlı olan kısıt sağlama problemi içinde geçerli olduğu ifade edilmiştir. 
Üçüncü bölümde belirsizlik taşıyan bir problemde belirsizliği dikkate alarak çözüm almanın 
sağlayacağı fayda fonksiyonundaki artışa ilişkin bazı önermelerde bulunulmuştur. Bu 
önermeler Jense ve Edmundson-Madansky tipi sınırların bir ifadesidir. Dördüncü bölüm kısıt 
programlama için yeni geliştirilen bir kısıt olan “global optimization chance-constraint” in 
sunumunu yapmaktadır. Bu kısıt özellikle servis düzeyi altında envanter planlaması göz 
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önünde bulundurularak tasarlanmıştır. Bu bölümde ayrıca tanımlanan “global optimization 
chance-constraint” için etkin hesaplama yöntemleri önerilmiştir. Beşinci bölümde “sırt 
çantası” probleminin (knapsack problem) stokastik varyansyonu ve bir stokastik çizelgeleme 
problemi üzerinden önerilen tekniklerin etkinliği sınanmıştır. Sonuçlar incelenen problemlerin 
çozüm süresinde 100 kata varan iyileşmelerin olduğunu göstermiştir.  

Benzer amaçlı olarak yürütülen bir başka çalışma ise “A Steady-State Genetic 
Algorithm with Resampling for Noisy Inventory Control” başlıklı çalışmadır. Bu çalışmada 
stokastik kısıt programlama yerine Yapay Zeka alanından bir başka teknik olan Genetik 
Algoritmalar kullanılmıştır. Projede çalışılan (R,S) envanter kontrol modelinin çözümü ve 
böylece sipariş kontrol parametrelerinin hesaplamasına dönük olarak yeni bir teknik 
önerilmiştir. Yapılan nümerik testler geliştirilen bu tekniğin stokastik envanter planlaması için 
son derece etkili olduğunu göstermiştir. Bu çalışma Lecture Notes in Computer Science 
serisinde LNCS 5199 numara ile yayınlanmış ve tam metni Ek-4’de sunulmuştur. Yine bu 
çalışma da makalede TÜBİTAK desteğini not etmektedir. Makalenin ilk bölümünde Genetik 
Algoritmalar ve diğer Evrimsel Hesap Algoritmalarına ilişkin bir yapısal problemden 
bahsedilmiş ve buna ilişkin yeni bir çözüm önerisinde bulunulmuştur. Bu problem 
kromozomların uygunluğunun direkt olarak belirlenememesi, fakat örneklem üzerinden 
bulunmaya çalışılmasıdır. Bu yaklaşım kaçınılmaz olarak “gürültü”ye (bir tür hataya) sebep 
olmaktadır. Bu bölümde ayrıca ilgili literatüre yer verilmiştir. İkinci bölümde önerilen algoritma 
verilmiştir. Bu algoritmaya “greedy average sampling” adı verilmiştir. Bu algoritmada 
hesaplamada ek olarak yeni bir parametrenin belirlenmesi gerekmektedir. Ancak diğer 
tekniklerde olduğu gibi büyük ana kütle ile çalışma ve gürültünün dağılımı üzerine kısıtlayıcı 
varsayımlarda bulunma gerekliliği yoktur. Üçüncü bölümde geliştirilen algoritmanın 
denemelerinin yapılacağı stokastik envanter problemi tanımlanmıştır. Dördüncü bölümde 
nümerik deneylere ilişkin sonuçlar sunulmuştur. Deneyler önerilen algoritmanın literatürde 
bilinen ve yaygın olarak kullanılan dört tekniğin hepsinden iyi sonuçlar verdiğini göstermiştir. 
Bu çalışma proje kapsamında ele alınan envanter problemlerinden bir tanesi için önerilen 
genel bir tekniğin etkinliğini göstermiştir. Diğer bir deyişle, bu çalışmada incelenen bir 
envanter problemine sadece bu probleme özgü olmayan, fakat genel amaçlı olarak 
kullanılabilecek bir teknikle çözüm bulunmuştur.  

Ek-4’te sunulan çalışmanın bir varyasyonu ise Pekiştirmeli Öğrenme (Reinforcement 
Learning) algoritmaları ve Genetik algoritmalarına bir alternatif olarak Cultural algoritmaların 
denenmesi üzerinedir. SARSA gibi pekiştirmeli öğrenme algoritmaları ve genetik algoritmalar 
“kısmi olarak gözlenebilen Markov karar süreçleri”’nin (Partially Observable Markov Decision 
Processes) analizinde kullanılan temel tekniklerdir. Bu tür Markov süreçleri stokastik 
envanter planlamasında önemli rol oynamaktadırlar. Bu yüzden bahsi geçen süreçlerin 
analizinin etkin olarak yapılabilmesi stokastik envanter sistemlerinin de kolaylıkla çözümü 
anlamına gelecektir. “A Cultural Algorithm for POMDPs from Stochastic Inventory Control” 
başlıklı çalışmada (R,S) envanter kontrol politikası POMDP olarak modellenmiş ve 
çözümünde ilk olarak SARSA ve genetik algoritmalar kullanılmıştır. Ardından bu makalede 
önerilen “cultural” algoritma ile envanter kontrol parametrelerinin hesaplaması yapılmıştır. 
Elde edilen sonuçlar “cultural” algoritmanın her iki alternatiften de iyi sonuç verdiğini 
göstermiştir. Bu çalışma yukarıda bahsedilen çalışmalar gibi belirsizlik altında karar almaya 
dönük olarak geliştirilen bir stokastik kombinatöryel optimizasyon tekniği olarak görülmelidir. 
Aynı zamanda genel amaçlı olan bu tekniğin stokastik bir envanter problemine etkin çözüm 
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sağladığı gösterilmiştir. Çalışma Lecture Notes in Computer Science, LNCS 5296’da 
yayınlanmıştır. Çalışmanın tam metni Ek-5’te verilmiştir. 

Envanter yönetimi alanında gerçekleştirilen ve talep belirsizliğini dikkate alan 
çalışmaların çok büyük bir kısmı durağan talep varsayımında bulunmaktadır. Doğası 
itibarıyla perakendecilik sektöründe talep dönemsellik göstermektedir. Dolayısıyla perakende 
sektöründe kullanılacak olan envanter planlama sistemlerinin bu talep karakteristiklerini göz 
önüne alması gerekmektedir. Proje başlangıcında gerçekleştirilen saha çalışmasının 
bulguları çerçevesinde, daha önce yapılması planlanan "halihazırda kullanılan stratejilerin 
performanslarının ölçülmesi"  çalışmasında süpermarket zincirlerinde belirsizlikle baş etmeğe 
dönük tanımlı ve genel geçer herhangi bir politika tespit edilemediği için süpermarket 
zincirlerinin uygulamaları yerine bu zincirler için üretilen yazılımların kullandıkları politikaların 
performansının incelemesi yapılmıştır. Mevcut envanter planlama yazılımlarına bakıldığında 
sadece SAS'ın, o da durağan talep varsayımı altında, talep belirsizliğini dikkate aldığı ortaya 
çıkmıştır. Bu çerçevede "durağana indirgenmiş durağan olmayan talep" yaklaşımının 
performansı optimal politika ile karşılaştırılmıştır. Böylece planlama yazılımları arasında en 
gelişmiş model tabanı bulunanın performansı hakkında yorum yapmak mümkün olmuştur. Şu 
anda “Omega” dergisinde hakem sürecinde olan bu çalışma Ek-6’da sunulmuştur. Bu 
çalışma, özetle, talep belirsizliğinin dönemsellik arz ettiği durumda -- ki, bu perakende 
sektöründe karşılaşılan temel talep durumudur – literatürde yaygın olarak incelenmiş bulunan 
durağan envanter yönetim politikalarının optimal maliyetlerinin, gerçek talep deseni olan 
durağan olmayan stokastik süreçler dikkate alındığında ve bunun için envanter kontrolü 
yapıldığındaki maliyetlerden çok daha yüksek olduğunu göstermiştir. Çalışma durağan 
olmayan talebin durağan varsayılarak envanter yönetiminin optimalden uzak sonuçlar 
verdiğini göstermiştir ve gerçek talep deseninin kullanılmasının önemine işaret etmiştir.  

Perakende tedarik zincirlerinin yönetiminde dikkate alınması gereken en önemli 
faktörlerden biri kullanılacak olan politikaların belirsizliğe karşı duyarlılığıdır. Duyarlılığı 
yüksek olan politikalar küçük dalgalanmalara aşırı tepki vererek tedarik zincirinin bütününde 
dalgalanmaya sebep olmaktadırlar. Bu yüzden “sağlam” (robust) politikaların geliştirilmesi 
perakende tedarik zincirleri açısından önem taşımaktadır. Bu kapsamda yayınlanan “Finding 
reliable solutions: event-driven probabilistic constraint programming” çalışması güvenilir ve 
sağlam politikaların belirsizlik altında geliştirilmesini sağlayan yeni bir planlama platformudur. 
“Event-driven probabilistic constraint programming – EDP-CP” adı verilen bu çerçeve 
stokastik kısıt programlama mantığına dayanmaktadır ve bu çerçevede daha önce hiçbir 
modelleme paradigması ile ifadesi direkt olarak mümkün olmayan problemlerin modellemesi 
ve çözümü yapılabilmektedir. EDP-CP politikaların duyarlılığı ve katlanılması beklenen 
maliyet arasındaki ödünleşmelerin (trade-offs) incelenmesinde önemli rol oynayacak bir 
teknik olarak görülmektedir. Bu çalışma Annals of Operations Research’de yayınlanmıştır ve 
TÜBİTAK desteğini belirtmektedir. Bu makalenin tam metni Ek-7’de sunulmuştur. Makalenin 
ilk bölümünde bu makalede sunulan EDP-CP tekniğinin yakından ilgili olduğu şans kısıtlı 
stokastik programlama gibi tekniklerle olan benzer ve farklı yönleri tartışılmıştır. İkinci 
bölümde bu tür bir modelleme ve çözüm platformuna neden ihtiyaç duyulduğu bir tedarik 
zinciri/dağıtım planlaması problemi üzerinden verilmiştir. Farklı modelleme paradigmalarının 
bu problemi nasıl ele alabileceği ayrıntılı olarak tartışılmıştır. Üçüncü bölümde EDP-CP 
platformu formal olarak tanımlanmıştır. Dördüncü bölümde bu platform kullanılarak kurulan 
modellerin çözümüne ilişkin yaptığımız çalışmalar sunulmuştur. Bu tip modeller için 
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önerdiğimiz tam çözüm algoritması maalesef problemlerin doğası gereği hızlı çözüm 
üretememektedir. Bu sakıncayı ortadan kaldırmak için, optimallikten fedakarlıkta bulunma 
koşuluyla, bir yaklaşık sonuç üreten senaryo indirgeme tekniği takip eden bölümde (Bölüm 5) 
verilmiştir. Bölüm altı,  farklı örnek problemler üzerinden modelleme ve çözüm yöntemini 
açıklamaktadır. Bu bölümde ele alınan problemler: olasılıksal tedarik zinciri planlama 
problemi, olasılıksal çizelgeleme problemi ve olasılıksal üretim planlama/sermaye 
bütçelemesi problemidir. Yedinci bölümde ilgili literatür üzerine bir tartışma yapılmıştır.  

EDP-CP yaklaşımının ilham aldığı çalışma Liu-Iwamura’nın “bağımlı sanş 
programlama” (dependent chance programming) tekniğidir. Ancak bu tekniğin tasarımında 
ortaya çıkan bazı yanlışlıklar ve eksikler bu proje çalışmaları sırasında fark edilmiş ve bunun 
için bir düzeltme yayınlanmıştır. Bu düzeltme “A note on Liu–Iwamura’s dependent-chance 
programming” başlığıyla European Journal of Operational Research’te yayınlanmıştır. Bu 
makale Ek-8’te sunulmuştur. Özetle, Liu ve Iwamura tarafından önerilen modelleme 
yaklaşımında tüm kararlar arasındaki ilişki karar değişkenlerinin değerinden bağımsız olarak 
varsayılmıştır. Ancak bunun doğru olmayacağı birçok durum vardır. Ve çalışmada aykırı bir 
örnek üzerinden Liu-Iwamura’nın varsayımlarının yanlış sonuç verdiği gösterilmiştir. Diğer 
tüm çalışmalarda olduğu gibi bu çalışmada TÜBİTAK desteğini belirtmektedir.  

Bir kısmının proje öncesi çalışmalara dayandığı “A multi-objective stochastic 
programming approach for supply chain design considering risk” başlıklı çalışma 
International Journal of Producton Economics dergisinde yayınlanmıştır. Bu makalede, 
belirsizlik altında tedarik zinciri tasarımı için çok amaçlı bir stokastik programlama yaklaşımı 
geliştirilmiştir. Talepler, arzlar, işlem süreleri, nakliye süreleri, stoksuz kalma ve kapasite 
artırma maliyetlerinin tamamı rassal değişken olarak alınmıştır. “Sağlam” (robust) bir model 
kurabilmek için, konvansiyonel tedarik zinciri tasarımı problemine iki yeni amaç fonksiyonu 
eklenmiştir. Böylece, çok-amaçlı olarak kurulan model (i) şimdiki yatırım ve gelecekte ortaya 
çıkacak işlem, taşıma, stoksuz kalma ve kapasite genişletme maliyetlerinin beklenen 
değerinin toplamını minimize etmek, (ii) toplam maliyetin varyansını minimize etmek, ve (iii) 
finansal riskin, ya da belirlenmiş bütçenin aşılması olasılığının minimize etmek hedeflerini 
gerçekleştirmektedir. Tam olarak güvenilemeyen arz ve belirsizlik sonrası kapasite 
genişletme durumlarının dikkate alındığı bir model önerilmiştir. Bu modelin çözümü için “goal 
attainment” tekniği kullanılarak Pareto-optimal çözümler elde edilmiştir. Bu çalışmanın tam 
metni Ek-9’da verilmiştir. Çalışma TÜBİTAK desteğini belirtmektedir.  

Projenin ana temaları olan envanter yönetimi ve belirsizlik çerçevesinde yaptığımız 
çalışmalardan bir diğeri de Journal of Combinatorial Optimization dergisinde yayınlanan 
“Scheduling internal audit activities: a stochastic combinatorial optimization problem” başlıklı 
makaledir. Bu makale esas itibariyle bir envanter problemini ele almamaktadır. Ancak ele 
alınan problem, ki bir muhasebe denetim problemidir, envanter modelleriyle 
ilişkinlendirilmiştir. Bu ilişkilendirme konu bağlamında olmayıp tamamen modelleme tabanlı 
bir analojiye dayanmaktadır. Diğer bir deyişle, bir muhasebe denetim problemi sanki bir 
envanter problemiymiş gibi düşünülüp, envanter planlaması için geliştirilen modellerle 
çözülmüştür. Bu makale esas olarak yaptığımız envanter çalışmalarının sadece envanter 
alanı ile sınırlı olmayıp çok daha uzak alanlarda da belirsizlik altında karar alma 
problemlerinin çözümünde kullanılabileceğini göstermektedir. Makalenin basılmış kopyası 
Ek-10’da sunulmuştur. 
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Araştırmalarımızın temel hedeflerinden olan stokastik envanter planlaması modelleri 
için etkin çözüm yöntemlerinin geliştirilmesine yönelik olarak gerçekleştirdiğimiz 
çalışmalardan bir diğeri de Ek-11’de sunmuş olduğumuz “A state space augmentation 
algorithm for the replenishment cycle inventory policy” başlıklı çalışmadır. Bu makale 
International Journal of Production Economics dergisinde yayına kabul edilmiştir. Çalışma 
envanter politikaları arasında önemli bir yer tutan ve dört temel politikadan biri olan (R,S)  
envanter politikasının en genel hali olan durağan olmayan talep altında çözümüne dönük 
yeni yöntemlerin geliştirilmesini konu edinmiştir. Diğer temel politikalar (s,S), (s,Q) ve (R,s,S) 
dir. (R,S) için kullanılan karışık tamsayı programlama modelinin ancak küçük ve orta 
büyüklükteki problemler için makul sürede çözüm verebilmesi, büyük endüstriyel ölçekteki 
envanter problemlerinin çözümüne dönük yeni tekniklerin geliştirilmesi mecburiyetini 
doğurmuştur. Çalışma bu ihtiyaca binaen yapılmıştır. Kullanılan temel teknik dinamik 
programlamadır. Dinamik programlama konvansiyonel şekliyle kullanıldığında bu problem 
için etkili bir çözüm yöntemi değildir. Ancak bu çalışmada gösterildiği üzere, bazı filtreleme ve 
“augmentation” (birleştirme) teknikleri kullanılarak en büyük (R,S) modelleri için dahi optimal 
politika parametrelerinin hesaplanması kolaylıkla yapılabilmektedir. Bu tekniğin ardında yatan 
temel fikir durağan olmayan (R,S) modelinin esnetilmiş (relaxed) halinin bir şebeke olarak 
gösterilebilmesi ve bu şebekenin en kısa yol problemine karşılık gelmesidir. Bu en kısa yol 
probleminin çözümü mümkün bir çözüm vermeyebilir; çünkü esnetilmiş probleme karşılık 
gelmektedir. Bu şebeke üzerinde ilk olarak orijinal şebekeyi küçültmek üzere alt-optimal 
oldukları ispat edilebilen yayların filtrelenmesi yapılmıştır. Daha sonra elde edilen indirgenmiş 
şebeke optimal çözümü verecek şekilde yeniden kurulmuştur. Bu teknikle elde edilen nihai 
şebeke mevcut en kısa yol algoritmaları ile son derece hızlı şekilde çözülebilmektedir. 
Yapılan nümerik deneylerde 200 dönemlik problemlerin 1 saniyenin altında bir sürede 
çözüldüğü gösterilmiştir. Karışık tamsayı programlama formülasyonunun 50 dönemlik 
problemleri çözmesinin saatler aldığı düşünülürse elde edilen çözüm hızının büyüklüğü daha 
iyi anlaşılmaktadır. 

Bu araştırma projesinde kullanılan temel envanter yönetim politikası (R,S) dir. 
Bilindiği üzere (R,S) politikasında planlama ufkunun başında gelecekteki sipariş zamanları 
(R) sabitlenmekte ve sabitlenen bu sipariş zamanlarındaki sipariş miktarları gerçekleşen 
talebe bağlı olarak belirlenmektedir. Herhangi bir sipariş döneminde verilecek olan sipariş 
miktarı o dönemin sipariş yükseltme noktası (order-up-to-level) ve mevcut envanter seviyesi 
arasındaki farktır. Sipariş yükseltme noktaları da planlama ufku başında belirlenmekte ve 
daha sonra değiştirilmemektedir. Bu politikanın beklenen en düşük maliyeti veremeyebileceği 
bilinmektedir. Beklenen en düşük maliyetli politikanın (s,S) politikası olduğu 1960’dan beri 
bilinmektedir. (s,S) politikasında siparişler envanter seviyesi s değerinin altına düştüğünde ve 
envanter seviyesini S değerine yükseltecek kadar verilmektedir. Bu politikanın beklenen en 
düşük maliyetli politika olmasına rağmen, (s,S) politikası uygulamada çok rağbet gören bir 
politika değildir. Bunun en büyük sebebi gelecekteki sipariş zamanlarını ve beklenen sipariş 
miktarlarını şimdiden ön görmenin mümkün olamamasıdır. Dolayısıyla bu tip bir politika 
sistem sinirliliğine (nervousness) açıktır. Ek-12’de sunulan çalışmada (s,S) ve (R,S) 
politikalarının maliyet ve sinirlilik açısından kıyaslaması yapılmıştır. Sonuçları özetlemek 
gerekirse, (R,S) ve (s,S) arasındaki maliyet farkı ortalamada çok yüksek değildir; öte yandan 
sinirlilik bakımından (s,S) çok kötü bir performans göstermektedir. Bu çalışma (R,S) 
politikasının uygulamada, özellikle perakendecilik gibi talebin durağan olmadığı ve belirsizlik 
taşıdığı sektörlerde, kullanımının önemine vurgu yapmaktadır. Geçtiğimiz günlerde bu 
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çalışma International Journal of Production Economics dergisinde yayınlanmak üzere kabul 
edilmiştir.    

Bu bölümün başında da belirtildiği gibi proje kapsamında yapılan teorik çalışmalar iki 
ana grupta tasnif edilebilir: belirsizlik altında karar almaya dönük olarak yeni tekniklerin 
geliştirilmesi ve belirsizlik altında envanter yönetimi ve planlaması. Belirsizlik altında karar 
almaya dönük olarak yeni tekniklerle ilgili olarak yaptığımız bir literatür taraması ve 
sınıflaması Ek-13’te verilmiştir. Perakende tedarik zincirlerine ilişkin büyük boyutlu stokastik 
kombinatöryel karar problemlerinin çözümünde kullanılacak olan yaklaşımın verimli, etkin ve 
ölçeklenebilir olması gerekir. Bu proje çalışmasının teorik kısmının hedeflerinden biri de 
kombinatöryel problemlerin çözümünde kullanılan temel tekniklerden “kısıt programlama”, 
“karışık tamsayı programlama” ve “dinamik programlama”nın tek başlarına kullanımı yerine 
tek bir çerçeve altında üçünün bir melezinin (hibritinin) kullanımının denenmesidir. Buna 
ilişkin çalışmanın literatür incelemesi davet üzerine yapılmış olup, Kısıt Programlama-Yapay 
Zeka ve Yöneylem Araştırması alanı ortak kümesinde geliştirilen belirsizlik altında kara 
almaya dönük melez modelleri kapsamaktadır. İkinci bölümde belirsizlik altında karar almaya 
ilişkin temel kavramlar örnek problemler üzerinden verilmiştir. Kullanılan problemler tek-
aşamalı stokastik sırt çantası problemi ve bunun çok-aşamalı varyasyonudur. Temel 
stokastik programlama kavramları bu bölümde verilmiştir. Üçüncü bölümde Kısıt 
Programlama-Yapay Zeka ve Yöneylem Araştırması melezlerinin kullanıldığı bir problem 
kümesi derlenip sunulmuştur. Bu problemler: stokastik kuyruk kontrol problemi; şartlı görev 
grafilerinin çizelgelemesi; stokastik rezervasyon problemi; olasılıksal sürelerle iş istasyonu 
çizelgelemesi; iki aşamalı stokastik eşleştirme problemi; üretim/envanter yönetimi; stokastik 
“template” tasarımı; denetim faaliyetlerinin planlaması; stokastik sıralama. Bölüm dörtte, kısıt 
programlama ve yöneylem araştırmasıyla belirsizlik altında karar alma için kullanılan melez 
yaklaşımlar incelenmiştir. Bunlar arasında stokastik boolgil sağlama (stochastic boolean 
satisfiability), olasılıksal kısıt sağlama problemi, olay-tabanlı olasılıksal kısıt programlama, 
stokastik kısıt programlama sayılabilir. Takip eden beşinci bölümde var olan platformların bir 
sınıflaması yapılmıştır. Bölüm altıda stokastik mantık yürütmeye dayanan yaklaşımlar 
tartışılmıştır. Bölüm yedi ise yeniden formüle edilme esasına dayalı teknikleri incelemiştir. 
Bölüm sekiz örnekleme tabanlı teknikleri tartışmaktadır. Son olarak bölüm dokuz stokastik 
dinamik programlama gibi ilgili tekniklere yer vermiştir. Bu çalışma bir kitap bölümü olarak 
Springer serisinde basılacaktır.  

Buraya kadar yapılan çalışmalarda belirsizlik unsuru olarak sadece talep ele 
alınmıştır. Yaptığımız iki ayrı çalışmada ise tedarik sürelerindeki belirsizlik taleple birlikte ele 
alınmıştır. Takdir edileceği üzere sadece talep belirsizliği kendi başına büyük zorluk 
yaratırken, bunun üzerine tedarik sürelerindeki belirsizliği de eklemek problemin 
karmaşıklığını daha da artırmıştır. Bu iki çalışmanın ilkinde (“Constraint-based local search 
for inventory control under stochastic demand and lead time”) iki yeni sezgisel yaklaşım bu 
zor problemin çözümü için önerilmiştir. Önerilen bu sezgisel yaklaşımların etkinliği üçük 
problemlerin tam çözümünün bulunması ve sonuçların sezgisel metotlarla elde edilenlere 
kıyaslaması yoluyla yapılmıştır. Nümerik sonuçlar her iki sezgisel yaklaşımında son derece 
etkili olduğunu bize göstermiştir. Bu çalışma alanının önemli dergilerinden “INFORMS 
Journal on Computing” de hakem sürecindedir. Hakemlerden sadece küçük düzeltme alan 
bu çalışmanın yakın bir zamanda kabul edilmesini beklemekteyiz. Bu çalışmanın son hali Ek-
14’te sunulmuştur. 
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Yukarıda bahsedilen tedarik sürelerindeki belirsizliğe ilişkin olarak yaptığımız ikinci 
çalışma “Computing the non-stationary replenishment cycle inventory policy under stochastic 
supplier lead-time” International Journal of Production Economics’te yayınlanmak üzere 
kabul edilmiştir. Bu çalışma (R,S) envanter politikası izlendiğinde ve servis düzeyi kısıtı 
altında optimal politika parametrelerinin hesaplanmasına dönük bir yaklaşım önermektedir. 
Talep ve tedarik sürelerindeki belirsizlik her iki halde de durağan olmayan stokastik tiptedir. 
Çözüm yönteminin özü bir başka çalışmamızda tasarlamış olduğumuz “global chance-
constraint” tabanlı formülasyondur. Ayrıca bu kısıt filtreleme algoritmalarıyla desteklenmiştir. 
Sonuçlar tedarik süresindeki belirsizliğin ne kadar belirleyici olduğunu ve problem 
varsayımları arasında tedarik süresinin deterministik (belirlenimli) kabul edilmesinin uygun 
olmayan koşullarda aslında optimalden büyük ölçüde sapan sonuçlara yol açtığını 
göştermiştir. Bu çalışma Ek-15’te verilmiştir.  

Raporda bahsedilecek son çalışmada esas olarak çok-aşamalı envanter sistemleri 
ele alınmıştır. Talep riski altında stok bulundurma, stoksuz kalma ve sabit sipariş 
maliyetlerinin minimizasyonu küçük boyutlu problemler (en çok 3 aşamalı ve 10 periyotlu) için 
stokastik programlama yardımıyla optimal olarak gerçekleştirilmiştir. Tahmin edilebileceği gibi 
aşama sayısının veya planlama ufkunda dikkate alınan dönem sayısının artması halinde 
stokastik programlama yardımıyla sonuç elde edilmesi imkansız hale gelmektedir. Hatta 
matematiksel modelin bilgisayarın hafızasına yüklenmesi dahi mümkün olamamaktadır. 
Ancak stokastik programlama yardımıyla küçük problemler için bulunan çözümler önerilen 
yeni çözüm tekniklerinin performanslarının değerlendirilmesinde kullanılmıştır. Bu noktada 
Yapay Zeka tekniklerinden yapay sinir ağı (artificial neural network) kullanılarak olası tüm 
senaryolar kompakt bir şekilde ifade edilmiş ve daha sonra ağ bir simülasyon tabanlı 
evrimsel (evolutionary) algoritma yardımıyla eğitilmiştir. Deneysel olarak bu yaklaşımla 
yüksek kalitede sonuçların elde edilebileceği ve stokastik programlama yardımıyla 
modellenmesi mümkün olmayan sistemler için tedarik planlarının bulunabileceği 
gösterilmiştir. Bazı periyodik yapılar kullanılarak aslında yüzlerce döneme sahip problemlerin 
bile çok hızlı bir şekilde çözüldüğü gözlenmiştir. Bu çalışma “Neuroevolutionary inventory 
control in multi-echelon system” baslığıyla Ek-16’da verilmiştir. International Journal of 
Production Research dergisinde hakem sürecinde olan bu çalışma için küçük bir düzeltme 
istenmiştir. Bu düzeltme su sıralarda yapılmaktadır ve en geç yıl sonuna kadar bu makalenin 
de basılmak üzere kabul edilmesi beklenmektedir.  
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Sonuç  
Bu proje, tedarik zinciri envanter yönetimi alanında önemli teorik sorulara cevap aramanın 
yanında, ülkemizin en dinamik ve hızlı büyüyen sektörlerinin başında yer alan perakende 
sektöründe verimlilik artışına dönük yeni teknolojilerin geliştirilmesini sağlamıştır.  

Yapılan çalışmaların ilk aşamasında Türkiye perakende sektöründe faaliyet gösteren 
süpermarketlerin tedarik zinciri yönetimi için kullandıkları envanter yönetim yazılımları 
belirlenmiş ve tedarik zinciri yönetiminde bu yazılımlardan ne ölçüde faydalandıklarını tespit 
edilmiştir. Türkiye’de faaliyet gösteren 31 süpermarket zinciri ile görüşülmüştür. Görüşmeler 
yapılmadan önce kullanımda olan ERP yazılımlarının stok takibi ve talep tahmini 
yapabildikleri tahmin edilmekte ve fakat gerek deterministik (belirlenimli) gerekse stokastik 
(belirlenimsiz) planlama yönünden yetersiz kalacakları düşünülmekteydi. Görüşmeler 
sonucunda sadece bir tek ERP yazılımının durağan (stationary) stokastik planlama 
yapabildiği tespit edilmiştir. Birkaç büyük yazılım firmasının ürününün deterministik planlama 
yapabildikleri, geriye kalan yazılımların ise tahmin yapabilmekten öteye gidemedikleri ortaya 
çıkmıştır. Araştırmaya dâhil edilen hiçbir ERP yazılımının durağan olmayan (non-stationary) 
talep altında stokastik planlama yapamaması, bu yönde yapılacak çalışmaların önemini ve 
gerekliliğini göstermiştir. Bununla birlikte çok uluslu olan yazılım şirketlerinin ürünlerinin 
genellikle büyük şirketlerin kullandığı, yerel bazda olan yazılım şirketlerinin ise küçük ve orta 
büyüklükteki şirketlere yönelik ürün geliştirdikleri tespit edilmiştir. ERP yazılımlarının birçoğu 
öncelikle imalat sanayiinde faaliyet gösteren işletmelerin ihtiyaçlarını karşılamaya dönük 
olarak hazırlanmıştır. Perakende sektörüne yönelik çözümler de, bu paketlere ilave edilmiş 
veya ayrı bir paket halinde piyasaya sunulmuştur. Bu yüzden birçoğunun eksiği bulunması ile 
birlikte günden güne bu eksiklerin giderilmeye çalışılmakta olduğu görülmüştür. Elde ettiğimiz 
bulgular temelde sektör tarafından kullanılan yazılımların etkin şekilde belirsizlikle baş 
edebilecek fonksiyonelliğe sahip olmadıklarını ve çoğu zamanda bu yazılımların sunduğu 
temel fonksiyonların bile firmalar tarafından uygun organizasyonel süreçler ve uzmanlık 
bulunmadığı için kullanılmadığını göstermektedir. Genel olarak baktığımızda, sadece 2 
süpermarket yazılımının talep tahmini yapabildiğini ve tahmin hatasına ilişkin bilgi sunduğunu 
belirtmiştir. 9 süpermarket yazılımlarının sadece talep tahmini yapabildiğini bildirmiştir. 1 
süpermarket ise ERP yazılımı kullanmadıklarını belirtmiştir. Bu tabloya baktığımızda hiçbir 
süpermarketin deterministik planlama yapmadığı görülmektedir. Buradan yola çıkarak, 
günümüz Türkiye perakende sektöründe faaliyet gösteren süpermarketlerde yönetici 
deneyimlerinin sipariş kararlarında hala en önemli belirleyici olduğu sonucuna ulaşabiliriz. 
Ayrıca yaptığımız görüşmelerde ulaştığımız bir başka sonuç ise, yazılımların birçoğunun 
süpermarketlerde çok görülen mevsimsel satış, indirim, kampanya gibi durumlara özel 
çözümlerinin olmayışıdır. Bu da sipariş miktarlarının belirlenmesinde hala yöneticilerin neden 
kişisel tecrübelerine dayanarak karar verdiklerini bir noktaya kadar açıklamaktadır. 

Süpermarketlerin belirsizlik altında ihtiyaçlarına cevap verecek yeni ve kapsamlı envanter 
planlama sistemlerine ihtiyaç olduğu açıktır. Öte yandan bu yazılımların var olması halinde 
dahi etkin şekilde kullanılabileceğine dair bir bulgu yoktur. Bu noktada yöneticilerin gerekli 
eğitimden geçirilmesi, bilinçlendirilmesi ve teknik ekibin yazılımların fonksiyonellikleri 
hakkında bilgilendirilmesi gerekliliği ortadadır. 
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Proje çalışmasının ikinci aşamasında tespit edilen ihtiyaçların giderilmesine dönük olarak 
modelleme ve çözüm algoritması geliştirme faaliyetleri gerçekleştirilmiştir. Ele alınan 
perakende tedarik zinciri envanter yönetimi optimizasyon modelleri durağan olmayan talep 
varsayımını taşımaktadır. Bunun da ötesine geçilmiş ve tedarik sürelerindeki belirsizlikte 
durağan olmayan form varsayımı altında modellemeye dahil edilmiştir. Sadece tek stok 
noktası ile sınırlı kalınmamış çok-aşamalı stok sistemleri için de modelleme ve çözüm 
yöntemleri üzerine çalışılmıştır.  

Proje kapsamında yürütülen teorik çalışmalar iki ana grupta tasnif edilebilir. Bu gruplardan ilki 
belirsizlik altında karar almaya dönük olarak yeni tekniklerin geliştirilmesiyle ilgilidir. Bu 
gruptaki çalışmalar genel amaçlı olup daha çok belirsizliğin rol oynadığı karar problemlerinin 
modellenmesine ve çözümüne ilişkin kullanıcıya platformlar sunmaktadır. İkinci grup 
çalışmada ise belirsizlik altında envanter yönetimi ve planlaması problemi dikkate alınmıştır. 
Bu kapsamda yaptığımız onaltı makale çalışmanın eklerinde sunulmuştur.  

Tedarik zinciri yönetimi alanındaki araştırma faaliyetlerinin uygulamada sonuç alabilmesi için 
iş dünyasının çevresini tanımlayan temel unsurları dikkate alması gereklidir. Bu çerçevede, 
belirsizlik günümüz iş dünyasını tanımlayan en kritik faktörler arasındadır ve tedarik zinciri 
yönetimi araştırmalarının merkezinde olmalıdır. Belirsizliğin planlamacılar için karmaşıklık 
yaratan bir faktör olduğuna dair fikir birliği bulunmasına rağmen mevcut planlama sistemleri 
veri için nadiren belirlenimsiz (non-deterministic) yaklaşım kullanmaktadır. Bu proje 
perakende tedarik zincirleri için belirsizlik altında envanter planlaması sorununu ele almıştır 
ve çeşitli modelleme platformları ve çözüm yöntemleri sunmuştur. Tedarik zinciri envanter 
araştırmalarının uygulamada beklenen etkiyi gösterebilmesi için büyük ölçekli stokastik karar 
problemlerinin çözülmesi gerekmektedir. Ancak küçük boyutlu stokastik problemler bile 
hesaplama bakımından zorluklar taşımaktadır. Bu kapsamda talep belirsizliği ve tedarik 
süresi belirsizliği altında beklenen maliyetleri azaltmaya dönük tedarik zinciri envanter 
politikaları geliştirilmiş, politika parametrelerinin hesaplanmasında kullanılacak yeni tedarik 
zinciri envanter modelleri kurulmuş ve kurulan modelleri etkin şekilde çözmek için 
algoritmalar geliştirilmiştir.  
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SOBAG-108K027   RAPOR-I    29.12.2008 

 

Türkiye’de Süpermarket Tedarik Zinciri Envanter 

Yönetimi için Kullanılan Sistemler Üzerine 

Değerlendirmeler I 

 

1. Giriş 

Tedarik zinciri bir firma açısından, hammaddenin üreticiden alınması ile başlayıp, son 

tüketiciye ulaşmasını sağlayan süreçlerin toplamıdır. Tedarik zinciri içerisinde imalat, satın 

alma, satış, dağıtım gibi birçok faaliyeti barındırmaktadır. Ayrıca tedarik zinciri tedarikçileri, 

nakliyecileri, üretim tesisleri, dağıtım merkezleri, perakendecileri içeren bir kurumsal ağ 

topluluğudur. Bu sebeplerden ötürü tedarik zincirinin düzgün işlemesi işletmeler için çok 

önemlidir. Aksi takdirde şirketler, tedarik zincirinden kaynaklanan sorunlar sebebiyle yüksek 

maliyet, siparişlerde gecikme, yanlış ürün siparişi, hatalı sipariş miktarları gibi olumsuz 

durumlarla yüz yüze gelebilmektedir. Bu tür sorunlar şirkete hem maliyet açısından büyük 

yük getirmekte hem de şirketin hizmet ya da ürün sunduğu tüketicinin gözündeki marka 

değerini etkilemektedir. Şirketler, karşılaşabilecekleri sorunları en aza indirebilmek amacıyla 

zaman içinde sistemlerine bilgisayar yazılımlarını entegre etmişlerdir.  İlk olarak işletmelerin 

sadece envanter takibine imkan veren MRP (Malzeme İhtiyaç Planlaması) yazılımları 

kullanılmaya başlanmıştır. Daha sonra şirketler bu programların yetersiz kalması üzerine ERP 

(Kurumsal Kaynak Planlaması) yazılımlarını kullanmayı tercih etmişlerdir.  

Kurumsal Kaynak Planlaması (ERP), işletmelerin mal ve hizmet üretimlerini 

planlamalarına imkan veren, üretim, finans, pazarlama, insan kaynakları gibi modüller içeren, 

yönetim yazılımlarına verilen genel isimdir. Başta çokuluslu firmalar olmak üzere birçok 

işletme tarafından kullanılan bu yazılımlar verimlilik artışı sağlamada kritik role sahiptirler. 

Son yıllarda ERP yazılımlarının üretim, hizmet, finans, taşımacılık, kamu gibi hemen hemen 
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her sektörde kullanımı yaygın hale gelmiştir. Bizim çalışmamız açısından ERP yazılımlarının 

temel amacı şirketlerin sahip olduğu tedarik zincirlerinin işleyişini düzenlemektir. Şirketler, 

ERP yazılımlarını kullanarak tedarik zincirinde gerçekleşmesi muhtemel sorunların etkilerini 

azaltmak istemektedirler.   

Günümüzde belirsizlik, tedarik zinciri yönetiminde şirketlerin başa çıkması gereken 

çok önemli bir faktör olarak görülmektedir. Belirsizlik faktörü özellikle envanter 

planlamasının temel işlev olduğu perakendecilik gibi sektörlerde dikkatle ele alınmalıdır. 

Buna rağmen birçok planlama sistemi nadiren belirsizlik unsurlarını içeren planlama 

yöntemlerini kullanmaktadır.  

Bu raporun ilk amacı Türkiye’de perakende sektöründe kullanılan tedarik zinciri 

envanter planlama sistemlerinin mevcut durumunun detaylı bir resmini ortaya koymaktır. Bu 

inceleme sonucunda perakende sektöründe, özellikle süpermarket  zincirlerinde, farklı 

ihtiyaçlara cevap verecek ve hâlihazırda kullanıma sunulmuş olan çözümlerin envanteri 

çıkarılacaktır. Perakende sektörü için farklı işlevselliğe sahip çözümler üreten yerli ve yabancı 

yazılım firmalarının ürünlerinin bir karşılaştırması ve işletme yönetimi açısından bir 

değerlendirmesi bu bağlamda yapılmış olacaktır.  

Araştırmanın ilk aşamasında dünyanın belli başlı ülkelerinde faaliyet gösteren ve 

kurumsal kaynak planlaması için yazılım sunan çok uluslu yazılım şirketleri ile birlikte yerli 

ERP yazılım şirketleri tespit edilmiştir. Bunlara açık kaynak kodlu ERP programları da ilave 

edilerek liste son haline getirilmiştir. Böylece kurumsal kaynak planlamasında kullanıcılara 

çözüm sunan başlıca şirketler çalışmaya dahil edilmiştir. Araştırma kapsamına alınan çok 

uluslu yazılım şirketleri Türkiye’de kurumsal kaynak planlama paketleri kullanılan şirketlerle 

sınırlı tutulmuştur. Türkiye’de kurulmuş ve kurumsal kaynak planlaması için yazılım üreten 

şirketlerin tamamına yakınına bu listede yer verilmiştir. Son olarak açık kaynak kodlu ERP 

yazılımlarının ise tamamı listede kendine yer bulmuştur. 

Araştırmanın ikinci aşamasında mevcut kurumsal kaynak planlaması yazılımlarının 

tedarik zinciri yönetimine olan katkısını ve envanter planlaması bakımından kullanıcılara ne 

tür imkanlar sunduklarını belirleyebilmek için ERP yazılımları geliştiren şirketlerle bağlantıya 

geçilmiştir. Görüşmeler elektronik posta, telefon görüşmesi ya da yüz yüze görüşme 

yöntemlerinden bir veya birkaçı kullanılarak yapılmıştır. Yapılan bu görüşmelerle mevcut 

ERP yazılımlarının tahmin ve planlama konusundaki yetenekleri tespit edilmeye çalışılmıştır.   
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Görüşmelerde sorulan başlıca sorular şu şekilde sıralanabilir; 

1- İlgili ERP yazılımı stokta tutulan kalem bazında stok takibi yapabiliyor mu? 

2- Yazılım talep tahmini yapabiliyor mu? Cevap eğer evet ise talep tahmini tek dönemli 

(tek bir hafta/ay/yıl) mi yoksa çok dönemli (birden çok hafta/ay/yıl) mi yapılıyor? 

3- Yapılan bu tahminler nokta tahmini şeklinde mi gerçekleşiyor, yoksa tahminleme 

hataları da tespit edilebiliyor mu? 

4- Yazılım kullanıcıya ne zaman ve ne kadar sipariş verileceğini söyleyebiliyor mu? 

5- Yazılım güvenlik stoğu hedefi sunabiliyor mu? 

6- Güvenlik stoğu belirlemede kullanılan yöntemler/kurallar/yaklaşımlar nelerdir? 

7- Güvenlik stoğu düzeyi optimal biçimde hesaplanabiliyor mu?  

Görüşmelerde, yukarıdaki soruların ışığında mevcut ERP yazılımlarının hangi 

ihtiyaçları ne ölçüde giderebildikleri belirlenmeye çalışılmıştır. Bu görüşmelerin sonucunda 

elde edilen bilgiler raporun sonunda yer alan Tablo 1’de toplu olarak sunulmuştur. 
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2. ERP Yazılımı Sunan Başlıca Çok Uluslu Şirketler 

 

SAP AG 

SAP şirketi 1972 yılında IBM’de çalışan beş mühendisin ortak girişimi sonucunda 

kurulmuştur. Bir yıl sonra ilk finansal muhasebe programı geliştirilmiştir. Daha sonra bu 

program, R/1(R gerçek zamanlı veri işlemeyi temsil eder) sistemi olarak anılacaktır. 70’lerin 

sonuna doğru, SAP veritabanı ve diyalog kontrol sistemlerinde yapılan çalışmalar sonucunda 

SAP R/2 sistemi ortaya çıkmıştır. Ayrıca SAP R/2’nin bir diğer özelliği de farklı dil ve para 

kurlarına sahip çok uluslu şirketlerin ihtiyaçlarına karşılık verebilecek şekilde geliştirilmiş 

olmasıdır. 1988 yılında SAP şirketinin ismi SAP AG olarak değiştirilmiştir. SAP AG şirketi 

1992 yılında R/2 sisteminden R/3 sistemine geçiş yapmıştır. Bu sistemin sahip olduğu 

kullanıcı-sunucu konsepti, birbiri ile bağlantılı veritabanlarının tutarlı bir şekilde 

kullanılmasını sağlamaktadır. Ayrıca sistem, farklı tedarikçilerin bilgisayarlarından gelen 

onaylama isteklerine cevap verebilmektedir [23].  

SAP şirketinin kurumsal kaynak planlama programının ismi SAP ERP’dir. Bu 

program SAP Business Suite isimli beş kurumsal uygulamadan oluşan paketin birinci 

ürünüdür. Diğerleri SAP CRM (Müşteri İlişkileri Yönetimi), SAP PLM (Ürün Ömür Döngüsü 

Yönetimi), SAP SCM (Tedarik Zinciri Yönetimi) ve SAP SRM (Tedarikçi İlişkileri 

Yönetimi) olarak sıralanır.  

Günümüzde 1500’ten fazla SAP ortağı, 25 endüstri odaklı iş çözümü ve 120 ülkede 

yaklaşık 47,800 müşterisi ile SAP şirketi dünyanın büyük yazılım şirketlerinden biridir. SAP 

şirketinin ana rekabet alanı Kurumsal Kaynak Planlaması Endüstrisi’dir. Ancak şirket, 

pazarlama ve satış yazılımı, üretim ve depo yazılımları, tedarik zinciri ve lojistik yazılımı 

alanlarında da yer almaktadır.    
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Oracle 

Oracle şirketi Larry Ellison tarafından 1977 yılında Software Development 

Laboratories ismi ile kurulmuştur. Daha sonra sırasıyla 1979 yılında Relational Software Inc. 

ve 1982 yılında Oracle Systems olarak son halini almıştır. Oracle şirketi 1979 yılında Oracle 

veritabanı yazılımının ilk versiyonu olan Oracle 2’yi piyasaya sürmüştür. Oracle son olarak 

2007 yılında veritabanı yazılımın 11g versiyonunu çıkarmıştır. 

Günümüzde Oracle, büyük yazılım devlerinden biri haline gelmiştir. Orcale şirketi, 

SAP AG ile 1988 yılında başlayan, Sap R/3 sisteminin Oracle veritabanlarına entegrasyonunu 

sağlayan ve yaklaşık on yıl süren bir ortaklık geçirmiştir. Ancak şu an iki şirket birbirinin 

rakibi haline gelmiştir[20].      

Oracle şirketi temelini veritabanı programının üstüne kurmakla birlikte zaman içinde 

başka alanlara yönelik programlar da hazırlamıştır. Oracle bankacılık, iletişim, perakende, 

endüstri uygulamaları gibi birçok farklı alana yönelik programlar oluşturmaktadır. Bunların 

arasında en önemli olanlar, Müşteri İlişkileri Yönetimi (CRM), Tedarik Zinciri Yönetimi 

(SCM), Üretim ve Kurumsal Kaynak Planlaması (ERP) paketleridir.  

 

Infor ERP (Baan) 

Baan firması Jan Baan tarafından 1978 yılında Hollanda’da, finansal ve yönetimsel 

danışmalık servisleri sağlamak amacı ile kurulmuştur. Baan yazılımı, şöhretini teknik 

mimarisine ve 4GL diline borçludur. Boeing firmasının açtığı ihaleyi kazanmaları önemli 

başarılarından biridir. Ancak şirketin halka arzından sonra sermaye piyasasına satış rakamları 

yönetim tarafından abartılı olarak verilmiştir. Bu durum keşfedildiğinde ise 1998 yılında Baan 

hisseleri ani bir düşüş yaşamıştır. Bunun üzerine şirket 2000 yılında ekonomik sebeplerden 

dolayı Invensys şirketine satılmış sonrasında ise 2006 yılında Infor Global Solutions Şirketi 

tarafından satın alınmıştır [2]. 

Baan şirketi kurulduğundan itibaren kurumsal kaynak planlaması yazılımı üzerine 

odaklanarak bütün gücünü bu konu üstünde harcamıştır. Baan ERP yazılımı hizmet yönetimi, 
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yalın üretim, kalite yönetimi, süreç yönetimi ve tedarik zinciri yönetimi gibi birçok alanda 

kullanıcıya destek sağlamaktadır.  

 

IFS 

IFS şirketi, 1983 yılında nükleer santral kontrolünü sağlayacak bir yönetim yazılımı 

geliştirilmesi için İsveç’te kurulmuştur. Özellikle üretim, teknoloji ve kamu sektörlerine 

odaklanmıştır. 

IFS Uygulamaları (IFS Applications) şirketlere, bütün modülleri ile uygulanan ve 

60’dan fazla bileşene sahip bir yazılımdır. IFS Applications’ı SAP gibi diğer ERP 

paketlerinden ayıran fark, bu yazılımın sunduğu Web hizmetleri modülünün önceden 

yüklenmiş olarak satın alınmasıdır [10].   

 

The Sage Group 

Sage, David Goldman ve Graham Wylie tarafından 1981 yılında Newcastle şehrinde, 

küçük ölçekli firmalar için muhasebe ve tahmine yönelik yazılım geliştirmek amacı ile 

kurulmuştur. Şirket 1984 yılında CP/M işletim sistemini kullanan Sage yazılımını piyasaya 

sürmüştür. 2001 yılında müşteri ilişkileri yönetimi alanında yazılım üretmeye başlamıştır.  

Sage şirketinin, muhasebe, üretim ve insan kaynakları bölümlerinin ihtiyaçlarına 

yönelik birçok yazılımı bulunmaktadır. Şirket, Sage Mas 500 isimli ERP yazılımı ile 

müşterilerine finans, envanter yönetimi, sipariş yönetimi, müşteri ilişkileri yönetimi ve insan 

kaynakları yönetimi konularında destek hizmeti vermektedir [29]. 

 

IAS (Industrial Application Software) 

IAS Bilgi İşlemleri Danışmanlık A.Ş. 1989 yılında gerek küçük ve orta ölçekli, 

gerekse büyük ölçekli şirketlerin kurumsal ihtiyaçlarını karşılamak amacı ile Almanya’da 

kurulmuştur. Yazılım geliştirme ofisi İstanbul’da bulunan şirket İtalya, İngiltere, Hollanda, 
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Fransa gibi birçok Avrupa ülkesine ilaveten Çin ve Tayvan gibi uzak doğu ülkelerine proje 

yönetimi, danışmanlık, eğitim ve özel yazılım geliştirme hizmetleri sunmaktadır [5]. 

Şirketin sunduğu CANIAS ERP paketi standart yapısında lojistik, üretim ve kapasite 

kontrol, muhasebe ve finans, fiilî maliyetlendirme, müşteri ilişkileri yönetimi, insan 

kaynakları yönetimi, döküman yönetimi, bakım yönetimi gibi modüllerden oluşmaktadır.  

 

SAS 

SAS Institute 1976 yılında Anthony Barr, James Goodnight, John Sall and Jane 

Helwig tarafından yazılım üreticisi olarak Amerika’da kuruldu. SAS aslında “istatistiksel 

analiz sisteminin” kısaltması olmasına rağmen daha sonra marka ismi haline dönüşmüştür.  

SAS şirketinin ana ürünü IBM sistemli bilgisayarlarda çalışan çok sayıda modülleri 

içeren istatistiksel analiz sunmaktadır. Fakat özellikle Windows programının kullanımının 

yaygınlaşmasından sonra kendi yazılımlarını Windows’a uyarlamıştır. SAS müşteri ilişkileri 

yönetimi ve iş zekâsına yönelik modüller içermektedir. Program dördüncü nesil programlama 

diline sahiptir [25]. 

Havacılık, otomobil, bankacılık, iletişim, üretim, perakende gibi birçok sektöre hizmet 

veren şirket raporlama, sorgulama, veri madenciliği, öngörü, optimizasyon konularında 

firmalara yazılım desteği sunmaktadır.    

 

http://en.wikipedia.org/wiki/Anthony_Barr
http://en.wikipedia.org/wiki/James_Goodnight
http://en.wikipedia.org/wiki/John_Sall
http://en.wikipedia.org/w/index.php?title=Jane_Helwig&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Jane_Helwig&action=edit&redlink=1
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3. ERP Yazılımı sunan başlıca Türk firmaları 

 

LOGO Yazılım 

Logo yazılım 1984 yılında, Türkiye’de kişisel bilgisayarlar için mühendislik 

yazılımları geliştirmek üzere kurulmuştur. Logo, bugün hepsi bilişim teknolojilerine odaklı, 

yedi şirketten oluşan bir teknoloji grubu haline gelmiştir. Logo'nun en yaygın ürün ve 

hizmetleri KOBİ’ler için özel olarak tasarlanmış verimlilik ve rekabetçilik çözümleridir. Bu 

çözümler arasında çeşitli büyüklüklere göre özel tasarlanmış kurumsal kaynak yönetimi, 

tedarik ve talep zinciri otomasyonu, müşteri ilişkileri yönetimi, iş süreçleri tasarımı 

danışmanlığı ürün ve hizmetleri sayılabilir. 

Logo şirketinin geliştirdiği en son ürün kurumsal kaynak planlaması için hazırlanan 

Logo Unity On Demand yazılımıdır. Logo Unity, Java programlama dili ile yazılmış olup 

IBM DB2, MySQL ve Oracle veritabanları ile çalışabilmektedir [13].  

 

Netsis 

1991 yılında kurulan Netsis, farklı sektör ve farklı ölçekteki firmalara çağdaş ve 

uluslararası kriterlere uygun kurumsal iş yazılımları geliştirmektedir. Yüzde yüz Türk 

sermayeli bir kuruluş olan Netsis bugün İstanbul, Ankara, İzmir'deki Türkiye bölge ofisleri, 

İzmir Yüksek Teknoloji Enstitüsü Teknoparkı'ndaki ana yazılım üssü ve Türkiye'ye dağılmış, 

sayısı 400'ü bulan iş ortağı kanalı ile tüm ülke geneline hizmet sunmaktadır.  

Netsis firmasının başlıca yazılımları kurumsal kaynak planlaması Fushion@6 ve 

küçük ölçekli işletmelere yönelik hazırlanmış Entegre@6’dır. Fushion@6 serisi müşteri 

ilişkileri yönetimi, tedarik zinciri yönetimi, finans yönetimi ve insan kaynakları yönetimi gibi 

konularda işletmelere destek sağlamaktadır [15].  

 

http://tr.wikipedia.org/wiki/1984
http://tr.wikipedia.org/wiki/Bili%C5%9Fim_teknolojileri
http://tr.wikipedia.org/wiki/KOB%C4%B0
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OBASE 

OBASE 1995 yılında yazılım ve danışmanlık hizmetleri vermek amacıyla 

kurulmuştur. Müşterilerine veri entegrasyonu, iş zekâsı, kurumsal performans yönetimi, 

müşteri ilişkileri yönetimi gibi hizmetler sunmaktadır. OBASE bilgi yönetimine yönelik 

yazılımları ile perakende, telekomünikasyon, ulaşım, finans, üretim, sigorta, lojistik, ilaç, 

tekstil gibi sektörlerde faaliyet göstermektedir. 

OBASE Retailer, Detailer, Muhasebe ve Finansman Yönetimi, Personel Yönetimi ve 

Reporter yazılımları ile firmalara destek sağlamaktadır. Retailer ve Detailer gibi 

perakendeciliğe yönelik paketler, bu sektördeki firmalara sipariş, alım-satım, stok yönetimi, 

talep yönetimi konularında hizmet sunmaktadır [17].  

 

Akınsoft 

Akınsoft şirketi 1995 yılında Konya’da kurulmuştur. Yurt içi ve yurt dışında çeşitli 

ülkelere kurumsal yazılım alanında çözüm önerileri sunmaktadır. Firma, sunduğu programları 

ticari, sektörel, web tabanlı ve DOS tabanlı olarak ayrılmaktadır. Akınsoft şirketlere ERP 

başta olmak üzere MRP, MRPII, CRM gibi yazılım çeşitleri ile destek vermektedir. Şirketin 

Wolvox olarak adlandırdığı ERP yazılımı malzeme yönetimi, malzeme ihtiyaç planlaması, 

kapasite ihtiyaç planlaması, maliyet muhasebesi, genel muhasebe, üretim kontrol ve kalite 

kontrol sistemleri, planlama, bütçe, bakım, insan kaynakları ve ön muhasebe modüllerini 

kapsamaktadır [1]. 

 

Mikro Yazılım Evi 

Mikro Yazılım Evi, merkezi İstanbul’da bulunan genelde küçük ve orta ölçekli 

işletmelere yönelik bilişim çözümleri sunan bir firmadır. Ürünleri ERP, Retail ve Standart seri 

olmak üzere üç sınıfa ayrılmıştır. ERP sınıfının içinde öne çıkan başlıca yazılımları, 

şirketlerin büyüklük ve ihtiyaçlarına göre uyarlanmış my-ERP, ERP9000 ve MRPII 9000’dir. 

Perakendecilere özel çözümler sunan Retail sınıfının içinde Retail 9000, Ofis ve Microshop 

ürünleri bulunmaktadır. Firmanın kurumsal kaynak planla yazılımı olan ERP9000 paketi 
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üretim kaynak planlaması, satın alma ve satış,  stok yönetimi, finans, personel yönetimi, 

muhasebe modüllerine sahiptir.  
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4. Açık Kodlu ERP Yazılımları 

 

SQL Ledger 

SQL Ledger küçük ve orta ölçekli firmaların temel ihtiyaçlarını karşılamak üzere 

geliştirilmiş, muhasebe ve üretime yönelik bir açık kodlu ERP yazılımıdır. Programın 

özellikleri ulusal muhasebe standartlarına uyarlanabilirlik açısından yeterlidir. Muhasebe 

bölümü yanında alım, satım ve envanter yönetimi için de fonksiyonları mevcuttur. 

Fonksiyonları ve kullanıcı ara yüzü internet üzerinden test edilebilmektedir. Windows, Linux 

ve Mac OS X gibi işletim sistemlerinde çalışabilmektedir. Oracle, IBM DB2 ve Postgre SQl 

gibi veri tabanlarını kullanabilmektedir [9]. 

 

GNUe(Enterprise) ERP 

GNUe yazılımı, form, rapor ve iş akış şemaları bütün veritabanı sürücülerinde 

çalışabilen ve XML yapıda olan, bütünsel bir ERP yazılım paketi sunmaya odaklanmıştır. 

Yazılımın mimarisi ve ara yüzü açık kodlara dayalı çeşitli programlama dilleriyle 

geliştirilmiştir [8]. Paketsel çözümleri güncel olmakla birlikte, tüm ERP modülleri sürekli 

geliştirilme durumundadır. Neredeyse bütün işletim sistemlerinde çalışabilen yazılım, 

PostgreSQL, MySQL, MaxDB, Oracle IBM DB2, Sybase veritabanlarını kullanabilmektedir. 

Python dili ile yazılmış olan program, diğer yazılım dilleri ile geliştirilmesine izin 

vermektedir [6]. 

 

ERP5 

ERP5, 300’den fazla işçi kapasitesine sahip ve uluslararası dağıtım alanlarında faaliyet 

gösteren tekstil endüstrisindeki şirketlerin, organizasyonel yapısını ve karar alma sürecini 

desteklemek amacıyla geliştirilmiştir. Birçok modülü olan programda yer alan başlıca 

modüller şunlardır: 
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- Ticaret: Alım, satım, sipariş ve depolama fonksiyonları 

- Ürün veri yönetimi: Ürün tanımı, çeşitleri, kategorizasyonunu sağlar 

- Malzeme ihtiyaç planlaması 

- Müşteri ilişkileri yönetimi 

- Muhasebe 

- İnsan kaynakları 

ERP5 Windows, Linux ve Mac Os X işletim sistemlerinde çalışabilmektedir. 

Programın yazılım dili Python’dur. Açık kodlu olarak oluşturulan Zope veritabanını 

kullanmaktadır [7]. 

 

Opentaps 

Opentaps programı, kurumsal seviyede ayarlanabilir iş uygulamaları geliştirme imkânı 

sunabilmektedir. Odak noktası e-ticaret olmasına rağmen ERP alanında da gelişme 

kaydetmektedir. Programın hedef grupları arasında perakendeci, dağıtımcı ve üreticiler yer 

almaktadır. E-ticaret, ürün kataloğu, sipariş emri, envanter ve depo yönetimi, üretim, müşteri 

hizmetleri, müşteri ilişkileri yönetimi ve pazarlama yönetimi için modülleri bulunmaktadır. 

Veri modelleri planlama, öngörü ve bütçeleme özelliklerine sahiptir [11]. 

Opentaps programı Windows, Linux, MAC OS X işletim sistemlerinde 

çalışabilmektedir. Veritabanları olarak MySQL, MaxDB, PostgreSQL, Oracle, Microsoft 

SQL, IBM DB2’yi kullanabilmektedir. Yazılım dili olarak Java ve XML’i kullanan program, 

39 ayrı dil desteği sunmaktadır [3]. 

 

Compiere 

Compiere perakende, dağıtım ve hizmet alanlarında faaliyet gösteren küçük ve orta 

ölçekli işletmelere yönelmiştir. Müşteri işlemleri (ön-satış, satış, sipariş ve diğer aktiviteler), 

tedarikçi ilişkileri, muhasebe ve kontrol, hizmet yönetimi ve temel proje yönetimi 

fonksiyonları mevcuttur. Şu anda en popüler açık kodlu ERP yazılımlarının başında gelen 

Compiere, şimdiye kadar 900,000 den fazla kullanıcı tarafından indirilmiştir. 
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Compiere yazılımı Windows, Linux ve Mac OS X işletim sistemlerinde 

çalışabilmektedir. Java programla dili ile geliştirilmiş program, Oracle ve Sybase 

veritabanlarını kullanabilmektedir. Ayrıca 26 farklı dil desteğine ve 4 çeşit muhasebe 

düzenine sahiptir [21]. 

 

OpenERP 

OpenERP’nin ara yüzünde birçok grafik ve diyagram tipleri mevcuttur. Program işçi 

sayısı 150’ye kadar olan ticaret, dağıtım ve hizmet sektöründe faaliyet gösteren küçük ve orta 

ölçekli işletmeleri hedeflemektedir. Muhasebe, müşteri ilişkileri yönetimi, alım-satım, insan 

kaynakları, pazarlama, malzeme ihtiyaç planlaması, envanter kontrolü, proje yönetimi için 

modülleri bulunmaktadır. Ara yüz ve e-ticaret için bazı özel amaçlı modüller de OpenERP 

yazılımının içine entegre edilmiştir. 

OpenERP programı XML, Excel, Pdf ve Open Office ile oluşturulmuş ara yüzleri 

kullanabilmektedir. Windows, Linux ve Mac OS X işletim sistemlerinde çalışabilen program 

PostgreSQL veritabanını kullanmaktadır. Python programlama dili ile yazılmıştır. 11 faklı dil 

seçeneği bulunmaktadır [9]. 

 

OpenPro 

OpenPro, web üzerinde açık kodlu olarak tamamlanmış ERP yazılımını 1999 yılında 

kullanıcılarına sunmuştur. OpenPro yazılımında müşteri ilişkileri yönetimi, tedarik zinciri 

yönetimi, e-ticaret, finans ve muhasebe, insan kaynakları modülleri bulunmaktadır. Esnek bir 

yapıya sahip olan yazılım Windows, Linux, Unix, Sun, IBM işletim sistemlerinde 

çalışabilmektedir. Ms-SQL, MySQL, Oracle, IBM DB2, Postgre SQL veritabanlarını 

kullanabilmektedir. OpenPro yazılımı php programlama dili ile yazılmış olup, ara yüzü 

kullanıcıların isteği doğrultusunda yeniden tasarlanabilme özelliğine sahiptir [19].  
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Openbravo 

Openbravo yazılımının temeli doksanların ortalarında Navara Üniversitesi’nde okuyan 

Nicolas Serrano ve Ismael Ciordia isimli iki öğrencinin, üniversitenin yönetim sistemini 

düzenleyecek bir yazlım oluşturmaları ile atılmıştır. 2001 yılına gelindiğinde kurumsal 

yönetim sistemlerine uygun hale getirilen Openbravo ERP kullanıma sunulmuştur.  

Openbarvo ERP ve Openbarvo Pos olmak üzere iki yazılım üzerine odaklanılmıştır. 

Openbravo ERP veri yönetimi, satın alım yönetimi, depo yönetimi, üretim yönetimi, satış 

yönetimi, finans ve muhasebe, proje yönetimi modüllerini içermektedir. Java dili ile 

geliştirilmiş program XML, Html ve Javascript’i de desteklemektedir [18].   
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5. Değerlendirme Kriterleri 

 

Araştırmaya konu edinilen ERP yazılımlarının sunduğu özelliklerden yola çıkılarak 

hazırlanan Tablo 1’de, tedarik zinciri ve envanter planlaması için önemli olan belli başlı 

kriterler belirlenmiştir. Tablonun satırlarını ERP yazılımları, sütunlarını ise belirlenen kriterler 

oluşturmaktadır. Böylece bu yazılımların sundukları temel envanter planlama işlevselliği özet 

olarak sunulmuştur. Tabloda yer alan kriterler şunlardır; 

i) İzleme: Bu kriter, yazılım paketinde kalem bazında stok takibi yapılıp 

yapılmadığını göstermektedir. Yani bir parçanın satın alımdan itibaren, firma 

içindeki hareketlerinden çıkışına kadar olan süreci, kullanıcıya gösterebilme 

özelliğidir. 

ii) Öngörü (Tahmin): Yazılımın ürünler için talep öngörüsü yapabilme kapasitesini 

göştermektedir. Bu kriter nokta tahmini ve tahmin hatası olmak üzere ikiye 

ayrılmıştır. Nokta tahmin bir kalem için belirli bir zaman diliminde gerçekleşen 

talep miktarının tahminidir. Her hangi bir olasılıksal bilgi içermez. Tahmin hatası 

kriteri, yazılımın stokastik tahminleme yapıp yapmadığını gösterir. Tahmin hatası, 

gerçekleşecek talebin, tahmini değerden olası sapma miktarına ilişkin bir hata 

değeridir.  

iii) Deterministik Planlama: Yazılım paketinin, kullanıcı ihtiyaçları doğrultusunda 

talep, fiyat, tedarik süresi hakkında bilgilerin kesin olarak bilindiği varsayılarak 

planlama yapmasıdır. Burada yazılım ile ilgili, iki önemli noktaya dikkat 

edilmektedir. Birincisi yazılımın bu planlamayı bir "heuristik" (sezgisel yaklaşım) 

kullanarak yapması, diğeri ise bu planlamanın optimal olup olmadığıdır.  

iv) Stokastik Planlama: Yazılımın talep, fiyat, tedarik süresi ve miktarının yalnızca 

olasılıksal dağılımlarının bilindiği varsayılarak kullanıcının ihtiyacı doğrultusunda 

ileriye dönük planlama yapabilme kapasitesidir. Burada yazılım stoksuz kalma 

durumunu engellemek için taşınması gereken güvenlik stoğunu belirlemektedir. 

Bu kriter durağan ve durağan olmayan stokastik planlama olmak üzere ikiye 

ayrılmıştır. Durağan stokastik planlama kapsamında talep gibi bir belirsizlik 

unsurunun dönemler arasında olasılık dağılımının farklılık göstermediği varsayımı 

yapılmaktadır. Durağan olmayan stokastik planlamada ise bunun aksine 
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dağılımların dönemsellik gösterdiği varsayılmaktadır ve bu yüzden öncekine göre 

daha geneldir ve perakende sektörü gibi dönemselliğin önemli olduğu sektörlerde 

kullanılması gerekmektedir. 

Oluşturulan bu tablo sayesinde mevcut kurumsal kaynak planlama yazılımlarının 

envanter planlaması bakımından işlevselliklerinin bir envanteri çıkartılmıştır. Böylece ERP 

yazılımlarında ulaşılan noktanın bir resmi ortaya konmuştur.  
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6. Bulgular 

Bu kısımda önceki bölümde verilen kriterler çerçevesinde ERP yazılımlarının 

perakende tedarik zinciri yönetimi alanına dönük olarak sundukları işlevselliklerin bir 

değerlendirmesi sunulmuştur.   

 

6.1. Çok Uluslu ERP Yazılım Şirketleri 

Bu yazılımlar karmaşık yapıdaki organizasyonların sorunlarını çözmeye yönelik 

olduğundan, genellikle büyük şirketler tarafından tercih edilmektedirler. Uzmanların yardımı 

ile şirket bünyesine entegre edildikten sonra şirketin işleyişine yardımcı olmaktadırlar. Ayrıca 

verimli bir şekilde kullanılabilmeleri için deneyimli elemanlar tarafından kullanılmaları 

gerekmektedir. Gerek uzman kişi gereksinimi gerekse yüksek kurulum masraflarından dolayı 

küçük ve orta büyüklükteki şirketler tarafından kullanılma oranları düşüktür.  

 

SAP R/3 

SAP AG firmasının ERP paketi olan SAP R/3, kullanıcılarına birçok yönden destek 

sağlamaktadır. Yazılımın talep planlama, üretim, sipariş, RFID, dağıtım ve depo modülleri 

bulunmaktadır. Envanter planlaması bakımdan kalem bazında stok takibi yapabilmektedir. 

Talep tahmini, geçmiş veriler kullanılarak üstel düzeltme, hareketli ortalama, doğrusal 

regresyon yöntemleri ile yapılmaktadır. 

SAP R/3 yazılımı deterministik planlama yapabilen yazılımlardan biridir. Tahmin 

aşamasında elde edilen veriler (i) Groff prosedürü, (ii) Parça Dönem Dengesi (Part Period 

Balancing), (iii) Dinamik Parti Büyüklüğü (Dynamic Lot Sizing) yöntemleri içinde 

kullanılarak deterministik optimizasyon gerçekleştirmektedir [27].  
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Oracle 

Oracle firmasının ERP paketi kalem bazında stok takibi yapabilmektedir. Oracle talep 

tahminini "Demantra" isimli modül yapmaktadır. Bu modül esas olarak Bayesgil yaklaşım 

kullanmaktadır. Bayesgil tahmin yaklaşımı, geçmiş satış verileri ile planlanan satış verilerinin 

birleştirilmesi temeline dayanmaktadır. Geçmiş verilerin bulunmadığı zamanlarda bile tahmin 

yapabilmektedir. Bu durum, daha önce planlanan satış verileri ile satış anında elde edilen 

verilerin kullanılması ile gerçekleşmektedir [28].  

Oracle ERP yazılımı kullanıcılara deterministik planlama sunabilen bir diğer pakettir. 

Sipariş yenileme optimizasyonu paketi; satış hacmini, tahmini verilerin uygunluğu, mevsimsel 

değişimleri, kullanıcı kısıtlarını dikkate alarak, stokların optimal seviyesini belirlemeye 

çalışmaktadır. Satışlardaki ve ürün çeşitliliğindeki çokluk ya da azlığa göre öneriler sunabilen 

yazılım, (i) "MinMax", (ii) "Dynamic", (iii) "Poisson", (iv) "TimeSupply" ve (v) "Hybrid" 

isimli sipariş yenileme yöntemlerini kullanmaktadır [16]. 

 

IFS Applications 

IFS şirketinin ERP yazılımı kalem bazında stok takibine imkân vermektedir. Talep 

tahmini yapabilen yazılım hareketli ortalama, en küçük kareler regresyonu, üstel düzlemeli 

hareketli ortalama, Brown modeli, Bayesgil ve çoklu regresyon yöntemlerinden 

faydalanmaktadır. Ayrıca ortalamadan sapma, ortalama hatası, ortalama hata yüzdesi, Theil 

U-istatistiği yöntemlerini kullanarak tahmin hatalarını belirleyebilmektedir. IFS ERP yazılımı 

kullanıcısına ne zaman ve ne kadar sipariş vermesi gerektiğini bildiren bir modüle sahip 

değildir [12]. 
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Infor ERP (Baan) 

INFOR ERP yazılımı stok takibi yapabilme özelliğine sahiptir. Yazılım nokta talep 

tahmininin yanında, tahminleme hatalarını da belirleyebilmektedir. INFOR ERP paketi 

kullanıcılarına planlama imkânı sunmamaktadır [30].  

 

Sage MAS 500 

Sage MAS 500 ERP yazılımı stokta tutulan kalem bazında stok takibi yapmaktadır. 

Buna ilaveten çeşitli istatistiksel yöntemler kullanarak talep tahmini yapabilmektedir. Talep 

tahmininde olası hata oranlarını hesaplayabilmektedir. Sage MAS 500 ERP yazılımında 

planlama olanağı bulunmamaktadır [22]. 

 

CANIAS ERP 

CANIAS ERP paketi stok takibi yapabilme özelliğine sahiptir. Talep öngörüsünü 

çeşitli istatistiksel yöntemlerin yardımı ile gerçekleştirmektedir. Ayrıca tahminlemede olası 

hata paylarını hesaba katabilmektedir. Bu yazılım kullanıcıya planlama bakımından bir çözüm 

sunamamaktadır. Güvenlik stoğu hesaplaması mevcut değildir [4]. 

 

SAS 

SAS ERP yazılımının kalem bazında stok takibi yapabilme kapasitesi vardır. Yazılım 

talep tahmini yapabilmesine olanak kılan “High Performance Forecasting 2.3” isimli bir 

modüle sahiptir. Bu modülün kullandığı yöntemler; mevsimsel modeller, yerel modeller 

(Winters metodu, basit yapısal model), ARIMA zaman serileri, Croston metodu olarak 

sıralanmaktadır [24].   

SAS ERP, araştırmada incelediğimiz ERP paketleri arasında durağan stokastik 

planlama yapabilme özelliğine sahip tek yazılımdır. Yazılım durağan stokastik planlamayı 

“Inventory Optimization 1.3” modülü ile yapmaktadır. Programın bu tür planlama için 
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SS(s,S), BS(base stock), NQ(s, nQ), RQ politikaları olmak üzere dört çeşit yöntem 

kullanmaktadır. Modül, talep ve tedarik sürelerinin ortalamasını ve varyansını hesaplayarak 

tercih edilen politika doğrultusunda hesaplama yapmaktadır. Ayrıca kullanıcı için ceza 

maliyeti ve servis düzeyi hesaplamaları yapılarak güvelik stoğu hedefi belirlenebilmektedir 

[26]. 

 

6.2. Türkiye’de Geliştirilen ERP Yazılımları 

Türkiye’de kurulmuş yazılım şirketlerinin kullanıcıya sunduğu ERP paketlerinin çoğu, 

küçük ve orta ölçekli şirketlerin ihtiyaçları doğrultusunda hazırlanmıştır. Mevcut ERP 

paketlerinin büyük çoğunluğu imalat sanayiinde faaliyet gösteren işletmelere yöneliktir. Fakat 

bir kısmının bankacılık, tekstil, gıda, ilaç, perakende gibi diğer sektörlere de özel çözümleri 

bulunmaktadır. ERP paketleri finans, envanter, muhasebe, insan kaynakları, müşteri ilişkileri 

yönetimi, depo yönetimi, tedarik zinciri yönetimi gibi konularda destek sağlamaktadır.  

Türkiye’de ERP yazılımlarının kullanımı günden güne artış göstermektedir. 

Şirketlerde bu yazılımları kullanabilecek düzeyde bilgiye sahip çalışan sayısının düşük 

olması, yazılımların en etkin şekilde kullanılmasının önündeki en büyük engeldir. 

 

Netsis Fushion@6 

Netsis firmasının sunduğu Fushion@6 ERP paketi kalem bazında stok takibi 

yapabilmektedir. Yazılım hareketli ortalama, trend modeli, mevsimsel model, 

ağırlıklandırılmış hareketli ortalama gibi çeşitli istatistiksel yöntemler kullanarak talep 

tahmini yapabilmektedir. Talep tahminleri için olası hataları hesaplayamamaktadır. Yazılımın 

herhangi bir yöntem ile planlama yapma özelliği bulunmamaktadır [14]. 
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LOGO Unity 

LOGO Unity ERP yazılımı ürün bazında stok takibi yapabilmektedir. İstatistiksel 

yöntemlerden faydalanarak talep tahmini yapabilme desteği sunan paket, taleplerdeki hata 

paylarını tespit etmemektedir. Planlama yapma desteği bulunmamaktadır. 

 

OBASE 

OBASE ERP paketi kalem bazında stok takibi yapabilme özelliğine sahiptir. Yazılım  

geçmiş verileri (normalize edilmiş ortalama satış miktarlarını) kullanarak talep tahmini 

yapabilmektedir. Güvelik stoğu miktarını kullanıcı belirlemektedir. Tahminleme hatalarını 

hesaplayamayan yazılım, planlama bakımından kullanıcıya destek vermemektedir.  

 

Mikro ERP 

Bu yazılım stok takibi yapılmasına olanak sağlamaktadır. Ürünler için tek dönemli 

talep tahmini yapılabilmektedir. Yapılan bu talep tahminleri satış hareketleri ve kritik 

seviyeler dikkate alınarak yapılan nokta tahmini ile gerçekleşir. Güvenlik stoğu seviyesini 

belirleme yöntemi bulunmamakla birlikte, bunu kullanıcıların kendilerinin belirlemesi 

gereklidir. İleriye dönük bir planlama yapma olanağı yoktur. 

 

Wolvox E-Business 

Wolvox E-Business kullanıcılarına stok takibi yapabilme özelliği sunmaktadır. 

Yazılım kullanıcıya çok dönemli talep tahmini yapmasının yanında bu tahminlerde olacak 

olası tahminleme hatalarını içermektedir. Planlama özelliği bulunmayan yazılım güvenlik 

stoğu hedefi sunmamaktadır. 
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6.3. Açık Kodlu ERP Yazılımları 

Araştırma dâhilindeki açık kaynak kodlu ERP yazılımlarının çoğunluğu, küçük ve orta 

büyüklükteki işletmelerin sorunlarına çözüm getirme amaçlıdır. Bu yazılımlar muhasebe, 

tedarik zinciri yönetimi, müşteri ilişkileri yönetimi, stok, finans, insan kaynakları gibi birçok 

bölüm için hazırlanmış modüllere sahiptirler. Bu tür yazılımların en büyük avantajı, açık 

kodlu olduklarından sürekli gelişime elverişli olmasıdır. Kullanıcılar tarafından eksik görülen 

noktaların, bu yazılımların forumlarında belirtilerek kısa zamanda giderilmesi mümkündür. 

Ayrıca bu tür ERP paketleri internet üzerinden elde edilerek kısa zamanda sisteme entegre 

edilebilir.  

Stok yönetimi açısından baktığımızda ise incelenen bütün açık kodlu ERP yazılımları, 

parça bazında stok takibi yapabilme özelliğine sahiptir. Fakat diğer taraftan, bu kategorideki 

hiçbir yazılım ne talep tahmini ne de herhangi bir şekilde planlama yapamamaktadır.   
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7. Sonuç 

Görüşmeler yapılmadan önce mevcut ERP yazılımlarının stok takibi ve talep tahmini 

yapabildikleri tahmin ediliyordu. Fakat birçoğunun gerek deterministik gerekse stokastik 

planlama yönünden yetersiz kalacağı düşünülmekteydi. Görüşmeler sonucunda sadece SAS 

şirketinin yazılımının durağan stokastik planlama yapabildiği tespit edilmiştir. Birkaç büyük 

yazılım firmasının deterministik planlama yapabildikleri, geriye kalan firmaların ise tahmin 

yapabilmekten öteye gidemedikleri ortaya çıkmıştır.  

Araştırma dâhilindeki hiçbir şirketin durağan olmayan talep altında stokastik planlama 

yapamaması, bu yönde yapılacak çalışmaların önemini ve gerekliliğini göstermiştir. Bununla 

birlikte çok uluslu olan yazılım şirketlerinin ürünlerinin genellikle büyük şirketlerin 

kullandığı, yerel bazda olan yazılım şirketlerinin ise küçük ve orta büyüklükteki şirketlere 

yönelik ürün geliştirdikleri tespit edilmiştir.  

ERP yazılımların birçoğu öncelikle imalat sanayiinde faaliyet gösteren işletmelerin 

ihtiyaçlarını karşılamaya dönük olarak hazırlanmıştır. Perakende sektörüne yönelik çözümler 

de, bu paketlere ilave edilmiş veya ayrı bir paket halinde piyasaya sunulmuştur. Bu yüzden 

birçoğunun eksiği bulunması ile birlikte günden güne bu eksiklerin giderilmeye çalışılmakta 

olduğu görülmüştür. 

Projemiz kapsamında önümüzdeki dönemlerde ele alınacak olan perakende tedarik 

zinciri envanter yönetimi optimizasyon modelleri durağan olmayan talep varsayımını 

taşıyacaktır. Bu raporda sunulan bulgular, geliştirilecek olan modellerin ve çözüm 

yöntemlerinin bahsi geçen çabalara büyük destek vermenin de ötesine geçeceği ve bu 

tartışmaların merkezine oturacağı bekletimizi destekler niteliktedir.    
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                                                           TABLO 1 

  Planlama Planlama 

  Öngörü Deterministik Stokastik 

  İzleme Nokta Hata Heuristik Optimal Durağan  

Durağan 

Olmayan 

SAP R/3 EVET EVET EVET EVET EVET HAYIR HAYIR 

Oracle EVET EVET EVET EVET EVET HAYIR HAYIR 

INFOR ERP(Baan) EVET EVET EVET HAYIR HAYIR HAYIR HAYIR 

IFS Application EVET EVET EVET HAYIR HAYIR HAYIR HAYIR 

SAGE MAS 500 EVET EVET EVET HAYIR HAYIR HAYIR HAYIR 

CANIAS ERP EVET EVET EVET HAYIR HAYIR HAYIR HAYIR 

SAS EVET EVET EVET EVET EVET EVET HAYIR 

Fusion@6 EVET EVET HAYIR HAYIR HAYIR HAYIR HAYIR 

LOGO Unity EVET EVET HAYIR HAYIR HAYIR HAYIR HAYIR 

OBASE EVET EVET HAYIR HAYIR HAYIR HAYIR HAYIR 

Wolvox EVET EVET EVET HAYIR HAYIR HAYIR HAYIR 

Micro EVET EVET HAYIR HAYIR HAYIR HAYIR HAYIR 

Compiere EVET HAYIR HAYIR HAYIR HAYIR HAYIR HAYIR 

ERP5 EVET HAYIR HAYIR HAYIR HAYIR HAYIR HAYIR 

GNU ERP EVET HAYIR HAYIR HAYIR HAYIR HAYIR HAYIR 

SQL Ledger EVET HAYIR HAYIR HAYIR HAYIR HAYIR HAYIR 

OFBiz EVET HAYIR HAYIR HAYIR HAYIR HAYIR HAYIR 

Opentaps EVET HAYIR HAYIR HAYIR HAYIR HAYIR HAYIR 

Openbravo EVET HAYIR HAYIR HAYIR HAYIR HAYIR HAYIR 

OpenERP EVET HAYIR HAYIR HAYIR HAYIR HAYIR HAYIR 

OpenPro EVET HAYIR HAYIR HAYIR HAYIR HAYIR HAYIR 

 

 

 

 

 

http://tr.wikipedia.org/w/index.php?title=SQL_Ledger&action=edit&redlink=1
http://tr.wikipedia.org/w/index.php?title=OFBiz&action=edit&redlink=1
http://tr.wikipedia.org/w/index.php?title=TinyERP&action=edit&redlink=1
http://tr.wikipedia.org/w/index.php?title=Opentaps&action=edit&redlink=1
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Türkiye’de Süpermarket Tedarik Zinciri Envanter 

Yönetimi için Kullanılan Sistemler Üzerine 

Değerlendirmeler II 

 

1. Giriş  

Perakendecilik, tüketicinin ihtiyaç duyduğu malların çoğunlukla sabit satış 

noktalarından, küçük parti büyüklüklerinde ve nihai tüketim için pazarlanması faaliyetlerinin 

bütünüdür. Bu tanım çerçevesinde perakendeciler gıda maddeleri, giyim eşyası, mobilya, ev 

eşyası, madeni eşya, cam, ilaç ve ıtriyat, kereste ve inşaat malzemesi, kitap ve kırtasiye gibi 

çok farklı alanlarda faaliyet gösterirler. Perakendeci kuruluşlar kapalı alan büyüklüğüne göre 

bakkal, market, büyük market, küçük süpermarket, büyük süpermarket ve hipermarket 

şeklinde sıralanabilir. Tablo 1 perakendeci kuruluşun büyüklüğü ile sunduğu hizmetlerin 

niceliği arasında doğrusal bir ilişki olduğunu göstermektedir [12]. 

 
Tablo 1 – Süpermarketlerin Sınıflanması 

 

 

 

 

 

 
 2
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“Planet Retail” [30] tarafından sağlanan verilere göre, Türk perakende sektörünün 

cirosu 2006 yılında 137 milyar dolar olarak gerçekleşmiş ve 2010'a kadar sektörün 199 milyar 

dolara ulaşması beklenmektedir. Türkiye'de perakende sektörü ekonomiye yaklaşık 6.7 milyar 

dolar tutarında bir katma değer yaratmakta ve yine yaklaşık olarak 2.5 milyon kişiyi istihdam 

etmektedir ki buna göre perakende sektörünün tüm ekonomi üzerindeki etkisi, toplam Türkiye 

üretiminin %3.5'i ve istihdamın ise %12'si olacaktır. Bu rakamlar perakende sektörünün Türk 

ekonomisi üzerindeki ağırlığını açıkça göz önüne sermekte ve bu sektörde envanter 

planlamasıyla sağlanacak tasarrufun firma ve ulusal ekonomi bazında ne derece önemli 

olduğunu göstermektedir. 

Andersen Consulting tarafından Coca-Cola için yapılan bir araştırma [10] sıradan bir 

günde bir süpermarkette sunulan ürünlerin %8.2’si için stoksuz kalındığını belirlemiştir. 

Reklamı yapılan ürünler için bu değer %15.0’e yükselmektedir. Sözü edilen stoksuz kalma 

durumu tüm satışların %6.5’na karşılık gelmektedir. Alternatif ürünler sunarak tüketicinin 

talebinin karşılanması halinde dahi perakendeciler toplam satışların %3.1’i kadar bir 

potansiyel hasılatı yeteri kadar stok tutmamak sebebiyle kaybetmektedirler [8]. ABD için 

bulunan stoksuz kalma yüzdelerinin Türkiye perakende sektörü için de geçerli olduğunun 

varsayılması halinde sadece stoksuz kalma sebebiyle uğranılan yıllık satış kaybının 6 milyar 

doları bulacağı anlaşılır ki bu da konunun önemini açıkça ortaya koymaktadır. Stoksuz 

kalmanın veya gereğinden fazla stok bulundurmanın maliyetli olması hangi ürünün siparişinin 

ne zaman ve ne miktarda verilmesi gerektiği sorusunu perakende sektörünün temel 

sorunlarından birisi haline getirmektedir. 

Perakendeci seviyesinde envanter planlaması sorununu perakende tedarik zincirinin 

planlamasından bağımsız olarak düşünmek mümkün değildir. Bugünün küreselleşen 

piyasalarında yaşanan yoğun rekabet, yeni ürünler için giderek düşen ürün yaşam süreleri ve 

tüketicilerin yükselen beklentileri firmaların tedarik zincirlerini tekrar düzenlemelerine yol 

açmıştır ve perakende sektörü bunun bir istisnası değildir. 

Günümüzde gelişen teknoloji ile birlikte kurumsal perakende sektöründe envanter 

takibini yapabilmek için bilgisayar yazılımları kullanılmaktadır. Kurumsal kaynak planlama 

yazılımlarının Türkiye süpermarket zincirlerinde kullanımı tarihi yakın bir geçmişe 

dayanmaktadır. Bu sebeple Türkiye’deki süpermarket zincirlerinin kullandıkları yazılımların 

ne olduğu, bu yazılımların envanter planlaması konusunda firmalara ne ölçüde destek 

verdiğine dair bir envanter henüz çıkartılmamıştır.  



 4

Bu raporda Türkiye’de faaliyet gösteren perakendeci firmaların tedarik zinciri 

envanter planlamasına ilişkin kullanmakta oldukları karar destek yazılımları belirlenmeye 

çalışılmıştır. Bunun için araştırma, mevcut envanter yaklaşımlarını ortaya koyabilmek 

amacıyla sektörü temsilen süpermarket düzeyindeki firmalar ile sınırlandırılmıştır. Perakende 

sektöründe faaliyet gösteren firmaların çeşitliliği ve sayılarının çokluğu, bu tür bir sınırlamayı 

gerekli kılmaktadır. Araştırmada konu edilen firmalar “Soysal Türkiye Perakende Kataloğu 

2005” süpermarketler bölümünde listelenen süpermarket zincirleri arasından seçilmiştir.  

 



2. Türkiye'de Perakende Sektörü  

Türkiye’de perakendecilik sektörü 1950'lerde Gima ve Migros'un kuruluşu ile 

gelişmeye başlamıştır. Perakende sektörünün asıl atılım yaptığı yıllar ise 90'lardır. Öncesinde 

bakkalların hâkimiyetinde olan perakendecilik sektörü, 1990'lı yıllardan sonra daha büyük 

alana ve ürün çeşitliliğine sahip olan marketlere doğru kaymaya başlamıştır. Tablo 2’de 

Türkiye perakende sektöründe faaliyet gösteren şirketlerin yıllara göre niceliği 

gözlenmektedir. Bu tabloya göre hipermarket ve süpermarketlerin şube sayıları yıllara göre 

hızla artış göstermektedir. Marketlerdeki artış süpermarketlere göre düşükken, bakkalların 

sayısı son yıllarda azalma yönünde bir eğilime sahiptir [20]. 

 

 Tablo 2 – Perakendeci Şirketlerin Yıllara Göre Mağaza Sayıları 
 

Sınıflandırma Satış Alanı(m2) 1994 1998 1999 2003 
Hipermarket 2500 ve üstü 14 100 105 160 
Süpermarket(Büyük) 1000 - 2499 58 178 227 350 
Süpermarket(Orta) 400 - 999 187 487 596 920 
Süpermarket(Küçük) 100 - 399 773 1.370 1.493 2.070 
Market  50 - 99 9.176 12.196 13.247 16.000 
Bakkal 49 ve altı 66.925 155.420 148.925 131.000 
Toplam   77.133 169.751 164.593 150.500 

 

 

 

 

 

 

Perakendecilik sektöründeki büyüme trendine bakılacak olursa, 2001 yılından 2005’e 

kadar, gıda perakendecileri arasında süpermarketler ve indirim mağazalarının pazar payları 

hızla büyümüştür. Son yıllarda, özellikle indirim mağazaları ve süpermarketlerin pazar 

paylarındaki yükseliş eğilimi göze çarpmaktadır. Bu eğilimin nedeni olarak, bu market 

türlerinin tüketicilerin evlerine yakın olması ve alışveriş için daha az zaman gerekmesi gibi 

kolaylıklarından kaynaklandığı söylenebilir. Bakkallar ise, pazar paylarındaki düşüş eğilimine 

rağmen hala en yüksek paya sahiptir[27]. 
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Tablo 3 - Türkiye’de Gıda Perakendeciliğinde Pazar Payları (%)  

  2001 2002 2003 2004 2005 
Hipermarketler 2,8 2,9 2,9 3,1 3,2 
Süpermarketler 19,3 19,8 20,8 23,1 24,2 
İndirim Mağazaları 3,2 3,7 4 5 5,6 
Marketler  1,1 1,1 1,1 1 1 
Bakkallar 47,4 46,4 45,3 43,1 42 
Şarküteriler  16,8 16,8 16,7 16 15,6 
Diğer 9,4 9,3 9,2 8,7 8,4 
Toplam 100 100 100 100 100 

 

 

Tablo 3 perakende sektöründe şirketlerin kategorik olarak Türkiye’deki pazar paylarını 

göstermektedir. Tablodan görüleceği üzere süpermarketlerin pazar payları yıllar geçtikçe 

büyürken, market ve bakkalların pazar payları küçülmektedir. Bu yöndeki değişimin kaynağı 

süpermarketlerde birçok ürünün bir arada bulunması ve bunların sunduğu kaliteli hizmet 

anlayışı gösterilebilir.  

 

Süpermarketlerin elde ettikleri yıllık cirolarının toplamına bakacak olursak, 2006 

yılının ocak ayında 100,000 YTL, 2007 yılında 133,000 YTL ve 2008 yılının Ağustos ayında 

ise 129,000 YTL olduğu görülmektedir (Grafik 2, Grafik 3). Bu rakamlar perakende 

sektörünün önemini bir kez daha ortaya koymaktadır. 

 

 Grafik 2 – Süpermarketlerin Aylara Göre Toplam Ciroları 
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Kaynak: Alışveriş Merkezi ve Perakendeciler Derneği  

 

 6



 Grafik 3 – Süpermarketlerin Yıllara Göre Toplam Ciroları  
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 Kaynak: Alışveriş Merkezi ve Perakendeciler Derneği  

 

 

Türkiye sıralamasında 2006 yılının şirket bazındaki ciro rakamlarına baktığımızda 

Migros, BİM, Carrefour, Real Hipermarket ve Tesco-Kipa şirketlerinin pazarda elde edilen 

toplam cironun büyük bir kısmı oluşturduğu görülmektedir (Grafik 4). 

 

 

Grafik 4 – Perakende Sektöründe Süpermarketlerin Ciroları  
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Perakende sektörü günden güne artan ivme ile büyümesine devam etmektedir. Bu 

sektörün içindeki süpermarketler için, ciroları ve mağaza sayıları dikkate alınarak sektörün 

yapı taşları haline geldikleri söylenebilir. Bu yüzden süpermarketlerin tedarik zincirlerini nasıl 

yönettikleri ve yönetirken hangi yazılımlardan faydalandıklarının incelenmesi önemli hale 

gelmiştir. Araştırmaya konu olan mağazalar, gerek ciro gerekse mağaza sayısı bakımından 

perakende sektöründe önemli yere sahip olan mağaza zincirlerinden seçilmiştir. 

Araştırmadaki şirketlerin son durumları, bu yönde hazırlanmış olan Soysal Marketler 

Kataloğu 2008’de özet şeklinde görülmektedir (Tablo 4) [34]. 

 

 
Toplam Mağaza Toplam Satış Toplam Süpermarket Listesi Çalışan 

 8

 

 

 

 

 

 

 

 

 

 

 

 

Sayısı Sayısı Alanı Kasa Sayısı

ADESE 2.216 113 80.160 353
ALTUNBİLEKLER 750 30 14.000 90
BAHAR MARKETLER ZİNCİRİ 100 6 3.800 18
BEĞENDİK 1.300 16 100.000 135
BİLDİRİCİ GIDA 320 11 8.000 48
BİM 10.394 1.920 * *
CARREFOURSA * 129 * *
ÇAĞRI HİPERMARKET * 14 20.000 195
ERİMPAŞ 170 4 9.000 26
ESENLİK 286 11 5.100 49
GOP PAZAR MARKETLERİ 185 14 5.405 34
GROSERİ 570 12 9.825 78
GÜN SÜPERMARKET 470 13 12.000 54
MAKROMARKET 3.252 88 86.365 510
MARKETİM 2.221 93 68.100 238
MOPAŞ HİPERMARKET 1.100 4 2.500  15
ÖZHAN MARKETLER ZİNCİRİ 440 16 10.253 54
PEHLİVANOĞLU * 94 38.000  297
PEKDEMİR 850 21 14.000 102
RAMMAR MARKETLER ZİNCİRİ 750 25 32.000 96
REAL HİPERMARKET 2.215 11 97.505 454
SİNCAP MARKETLER ZİNCİRİ 321 14 10.940 45
ŞAYPA 850 19 20.000 180
TESCOKİPA 5.300 80 198.000  *
ÜÇLER SÜPERMARKET 150 4 2.200 17
YİMPAŞ 2.019 37 235.000 390
YUNUS MARKETLER ZİNCİRİ 919 27 21.240 145

 

Tablo 4 – Türkiye'de faaliyet gösteren belli başlı süpermarket zincirleri 

*Hakkında bilgi bulunmamaktadır. 
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Migros Türk A.Ş. 

Migros Türk A.Ş., 1954 yılında İsviçre Migros Kooperatifler Birliği ve İstanbul 

Belediyesi'nin girişimleri ile kurulmuştur. 1975 yılında çoğunluk hisseleri Koç firması 

tarafından satın alınmıştır. Bu gelişmeden sonra hızla büyümeye giren firma, 1988 yılında 

İstanbul dışındaki ilk şubesini İzmir’de açmıştır. Migros, 1996 yılında Azerbaycan'daki 

altyapı çalışmalarını sonlandırarak, ilk yurt dışı mağazası Ramstore'u Bakü'de açmıştır. 2000 

yılında Kangurum isimli sanal alışveriş merkezini kurarak tüketiciye internet üzerinden de 

ulaşmaya başlamıştır. Migros, 2005 yılında önemli perakende zincirlerinden biri olan Tansaş’ı 

da bünyesine katarak büyümesini sürdürmüştür. 2007 yılında Koç grubu tarafından satışa 

çıkarılmıştır.14 Şubat 2008'de Koç Holding hisselerini Moonlight Capital S.A adlı İngiliz 

şirketine satmıştır. 

Günümüzde yurtiçinde 900’den fazla mağazası bulunan Migros, Türkiye’nin en 

önemli süpermarket zincirlerinden biridir. Migros 803.000 m2 kapalı alanda, 4.000 personelle 

ve 75.000 üzerinde ürünle hizmet vermektedir [24]. 

 

CarrefourSA 

15 Haziran 1963’te Fransa’da kurulan Carrefour, Türkiye’deki ilk mağazasını 1993 

yılında İstanbul-İçerenköy’de açmıştır. 1996 yılında Sabancı Holding ile ortaklık kuran 

şirketin, Türkiye’deki ismi CarrefourSA olarak değişmiştir. İlk alışveriş merkezini bir yıl 

sonra Adana’da hizmete sunmuştur. 2005 yılında Gima ve Endi firmalarını bünyesine katarak 

büyümesini sürdürmüştür. 

Şirket hipermarket, süpermarket ve ucuzluk marketleri formatlarında, Türkiye’nin 31 

ilinde ve Anadolu’nun 16 ilçesinde 470 mağaza ile faaliyet göstermektedir. Türkiye’nin 

önemli süpermarket zincirlerinden biri olan firma 7500 çalışana sahiptir [9]. 
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BİM 

Açılımı Birleşik Mağazalar A.Ş. olan BİM, ilk şubesini 1995 yılında İstanbul’da 

hizmete açmıştır. Mağaza büyüklükleri 200–600 m2 arasında değişmektedir. Ürünlerin 

mümkün olan en düşük fiyatta ve düşük maliyette halka sunulduğu “hard discount” modelini 

benimsemiştir. Bu yönden çalışma şekli, Avrupa’da faaliyet gösteren ALDI şirketine çok 

benzemektedir. Ürünler diğer süpermarketlerin aksine raflar yerine kutular içinde sunularak 

maliyetler düşürülmektedir. Tercihen öz markalardan yaklaşık 600 ürün ile sınırlı ürün 

çeşidine sahiptir. BİM, 11.736 çalışanı ve 2.175 mağaza sayısı ile Türkiye süpermarket 

zincirleri içinde pazarda önemli bir paya sahiptir [7]. 

 

YİMPAŞ 

Yimpaş Holding, 1982 yılında Yozgat'ta bir grup girişimci tarafından kurulmuştur. 

Yimpaş Mağazalar Zinciri Türkiye'de 31 ilde 43 mağazanın yanında, Avrupa ve Türk 

Cumhuriyetleri'ndeki mağazaları ile geniş bir kitleye hizmet sunmaktadır. Yimpaş Mağazalar 

Zincirinin veri tabanına göre yaklaşık 50.000 adet ürün çeşidi bulunmakta ve bu 

portföyün %30'u gıda ürünlerini içermektedir. Şirket 2001 yılında Yimpaş PROMA adı 

altında süpermarketler açmaya başlamıştır [38].  

 

TANSAŞ 

Şirket Tansa adıyla, halka ucuz et ve kömür sağlamak hedefiyle 1973 yılında İzmir’de 

kurulmuştur. 1976 yılında Tanzim Satışlar Müdürlüğü çatısı altında, Konak'ta ilk mağazası 

açılmıştır. 15 Aralık 1986 tarihinde Tansaş, İzmir Büyükşehir Belediyesi İç ve Dış Ticaret 

A.Ş. adını almıştır. 1996 yılında, İzmir Büyükşehir Belediyesi'ne ait Tansaş hisselerinin 

%32.98'i halka açılmıştır. 1999 yılında şirket hisselerinin büyük bölümü Doğuş Grubu 

tarafından satın alınmıştır. 2002 yılı içinde, Macrocenter'ı kendi bünyesine katmıştır. %78.1 

oranındaki hissesi Koç Holding ve Migros tarafından satın alınan Tansaş, 10 Kasım 2005’te 

Migros Türk A.Ş. bünyesine katılmıştır.  

http://tr.wikipedia.org/wiki/1982
http://tr.wikipedia.org/wiki/Yozgat
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Tansaş, 2007 yılı içinde 18 yeni mağaza açarak, toplam mağaza sayısını 253’ye 

çıkartmış, toplam faaliyet alanını 330,870 m2’ye ulaştırmıştır. Ege, Marmara, Akdeniz, İç 

Anadolu ve Batı Karadeniz olmak üzere toplam 5 coğrafi bölgede hizmet vermektedir [36]. 

 

Kiler Marketleri 

Kiler Group’un temelleri Nahit, Vahit ve Ümit Kiler tarafından 1983 yılında atılmıştır. 

Perakendecilik sektörü ile iş hayatına başlayan şirket başka sektörlerde de atılımlar 

gerçekleştirmiştir. Hizmet sunduğu mağazalarını üç konsepte ayırarak 0–600 metrekare 

ölçekli mağazalarında 2500 çeşit, 600–1500 metrekare ölçekli mağazalarında 7500 çeşit, 1500 

metrekare ve üzeri mağazalarında 15000–20000 çeşit ürünü müşterilerine ulaştırmaktadır. 

Türkiye genelinde toplamda 130, yurtdışında 2 adet olan mağaza sayısını 2006 yılı sonuna 

kadar 150’ye çıkarmayı hedeflemektedir [21].  

 

Real Hipermarket 

Real, 1992 yılında Divi, Basar, Continent, Esbella ve Real-Kauf gibi küçük markaların 

Metro Group tarafından satın alınarak tek bir marka haline dönüştürülmesi sonucu 

kurulmuştur. Real merkezi Düsseldorf'ta bulunan ve sadece Almanya'da 350 adet satış 

mağazası bulunan, Metro Group'un yan kuruluşlarından birisidir. 2007 yılı rakamlarıyla Real 

firmasının Türkiye'de 11 şubesi bulunmaktadır. Real gıda maddelerinin yanı sıra ev eşyaları, 

elektronik aletler, kitaplar, medya ürünleri, kırtasiye, spor malzemeleri gibi ürünlerle Türkiye 

dâhil olmak üzere dünyanın birçok ülkesinde şubeler açmıştır. Ürünlerin üzerine yapıştırılan 

gizli etiketler sayesinde kasalardan geçmeyen ürünlerin alarm vermesini sağlayan sistemin, ilk 

denendiği kuruluşlardan biridir [32]. 

 

Rammar Grosmarket 

Rammar 1996 yılında küçük çaplı yatırımların birleşimi ile İstanbul’da faaliyete 

geçmiştir. 25 şubesi ile İstanbul'un her iki yakası ve Trakya'daki müşterilerine ulaşmaya 

http://tr.wikipedia.org/wiki/1992
http://tr.wikipedia.org/wiki/D%C3%BCsseldorf
http://tr.wikipedia.org/wiki/Almanya
http://tr.wikipedia.org/wiki/Metro_Group
http://tr.wikipedia.org/wiki/2007
http://tr.wikipedia.org/wiki/T%C3%BCrkiye
http://tr.wikipedia.org/wiki/T%C3%BCrkiye
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devam etmektedir. 2007 yılını 25 şube ve 750 personeliyle bitiren Rammar Marketler Zinciri, 

2008 yılında şube sayısını 35'e, çalışan sayısını ise 1.100'e yükseltmeyi hedeflemektedir [31].  

 

Adese 

Adese şirketi, 1994 yılında İttifak Holding tarafından perakende sektörüne girmek 

amacıyla kurulmuştur. Şirket 2007 yılı sonunda indirim marketleri zinciri olan Mercek Gıda 

ile birleşmiştir. Yazılımlarını ve teknik alt yapısını kendi bünyesinde geliştirerek tamamen öz 

kaynaklarını kullanmaktadır. Adese, Mayıs 2008 itibariyle, yedi şehirde 119 mağazaya ve 

2850 çalışana sahiptir. 2007 sonu itibariyle cirosu 450 milyon YTL olarak hesaplanmıştır [1]. 

 

Makromarket 

Makromarket Mağazalar Zinciri 1991 yılında  Ankara’da kurulmuştur. Bugün  

itibariyle  9 ilde bulunan 106 mağazası ve 3950 personeli ile hizmet sunmaktadır. Hafta içi 

ortalama 110.000–125.000, hafta sonu 135.000–150.000 müşteriye hitap eden  Makromarket; 

55 bini aşan ürün çeşidi ile tüketicisine hizmet vermektedir [22]. 

 

Mopaş Hipermarket 

İstanbul Bayrampaşa’da üç tane market ve Rami’de toptan mağaza işletmesiyle 

hizmete başlayan Mopaş Marketler Birliği, 1996’da üç küçük marketi devrederek Moda’da ilk 

MOPAŞ mağazasını açtı. Bugün İstanbul Anadolu yakasında 31, Bursa bölgesinde 10 şube 

olmak üzere toplam 41 mağaza ve Pendik/ Kurtköy’de 4500m2’lik alan üzerine kurulu Genel 

Müdürlük& Antrepo binaları ile hizmet vermektedir [25]. 
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Tescokipa 

Kipa (Kitle Pazarlama Ticaret ve Gıda Sanayi A.Ş.), 17 Ağustos 1992 tarihinde 100 

ortaklı bir girişim olarak İzmir'de kurulmuştur. Kipa ilk hipermarketini 18 Ekim 1994 

tarihinde İzmir'in Bornova ilçesinde hizmete açmıştır. 1 Kasım 2003 tarihinde dünyanın önde 

gelen perakende devlerinden Tesco ile birleşerek Tesco Kipa ismini almıştır. Kipa 2006 

yılında ilk küçük formatlı ekspres mağazası olan Eşrefpaşa Kipa Ekspres’i İzmir’de açmıştır. 

Tesco Kipa, İzmir'de açtığı 11 ekspres mağazadan sonra, Antalya'da Şarampol Kipa Ekspres 

ve Ali Çetinkaya Kipa Ekspres mağazaları aynı gün hizmete açmıştır [37].  

 

Pehlivanoğlu 

Pehlivanoğlu 14 Haziran 1980 tarihinde İzmir’in Üçkuyular semtinde ilk mağazasını 

açarak faaliyete geçmiştir. Şirket 1999 yılının Ağustos ayında unvanını, Pehlivanoğlu 

Marketçilik Gıda Pazarlama San. ve Tic. A.Ş. olarak değiştirmiştir. Şirket, ana iş kolu olan 

gıda sektörünün yanı sıra; İnşaat, Turizm, Bilgi İşlem, Özel Güvenlik, Ambalaj, Makine, 

Depoculuk, Taşıma, Sigorta Acenteliği gibi farklı sektörlerde de faaliyet göstermektedir. 

Pehlivanoğlu Şirketler Grubu, bugün itibariyle Ege bölgesi ve çevresinde 79 mağazaya, 1223 

personele sahip bir şirket haline gelmiştir [28].  

 

Akyurt Alışveriş Merkezleri 

Akyurt,  1983 yılında Ankara-Keçiören'de Akyurt Besi Çiftliği’ni kurarak perakende 

alanında ilk yatırımını yapmıştır. 1987 yılında Demetevler’de 2’nci mağazasını hizmete 

açmıştır. 1996 yılında branş mağazacılıktan, zincir süpermarket mağazacılığa geçiş yapmıştır. 

2003–2004 yıllarında Etimesgut ve Demetevler Mağazalarını  faaliyete geçirmiştir. Akyurt 

şirketi 2008'de Güneşevler mağazasını açarak Ankara içinde 23. mağazasına ulaşmıştır [2]. 
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Yunus Marketler Zinciri 

Bir aile şirketi olarak ticari geçmişi 1989 yılına dayanan Yunus Market İşletmeleri’nin 

“Yunus Marketler Zinciri” markasıyla perakende sektörüne girişi 1995 yılındadır. 

Faaliyetlerine Ankara’da başlayan Yunus Marketler Zinciri, 28 şubeye ve 30.000 m2 satış 

alanına sahiptir. Şirketin Ankara dışındaki ilk mağazası Nisan 2008'de Düzce’de açılmıştır. 

Yunus Market İşletmeleri zaman içinde bünyesine perakende sektörünün dışında; inşaat, 

metal ve gıda sektörlerinde faaliyet gösteren 3 grup şirketi daha katmıştır [39]. 

 

Beğendik Mağaza İşletmeleri 

Beğendik Mağaza İşletmeleri Ticaret ve Sanayi A.Ş. perakende sektöründeki 

faaliyetlerine 1986 yılında Kayseri’de başlamıştır. Ankara’daki ilk mağazasını 1993 yılında 

Kocatepe’de açan firma, bir yıl sonra Akköprü’de ikici şubesini faaliyete sokmuştur. 1995’te 

İstanbul Carousel ve 1997’de İzmit’te olmak üzere iki şube daha açarak büyümeyi 

sürdürmüştür. Firma, gıda maddeleri ile birlikte tekstil, ev eşyaları, restoran gibi hizmet 

işletmelerini de içeren "Bölümlü Mağaza" tarzını benimsemektedir [5]. 

 

IYAŞ 

İyaş (Isparta Gıda Sanayi Ve Ticaret A.Ş.) 1997 yılında 10 ortaklı bir şirket olarak 

Isparta’da kurulmuştur. 14 Mart 1998 tarihinde Isparta’da ilk alışveriş merkezini hizmete 

sokmuştur. Firma gıda sektöründe üretim ve pazarlama faaliyetlerini gerçekleştirmektedir. 

Antalya İyaş’ı ve Dinar Alışveriş Merkezi’ni açarak büyümesini sürdürmüştür [19].  

 

Sincap Marketler Zinciri 

Sincap Marketler Zinciri, Temmuz 2002’den bu yana Konya’da faaliyet 

göstermektedir. Şirket 5 yıl içerisinde, Konya’da daha önce marketçilik yapan Karipek, 

Özhatunsaraylılar, Ananas, Özkent ve Osmanlı şirketlerinin mağazalarını satın alarak büyüme 
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sürecini sürdürmüştür. 2007 yılı sonunda şirket 14 mağaza, 321 personel ve yıllık 50 milyon 

YTL’lik ciroya ulaşmıştır [33].  

 

ŞAYPA 

Şaypa Marketler Zinciri ilk şubesini 1995 yılında Bursa’nın Yeşilyayla mahallesinde 

faaliyete geçirmiştir. 10 yıllık süre içerisinde Bursa dâhilinde 20 mağaza sayısına ulaşmıştır. 

Şaypa toplamda 20 bin metrekarelik bir alana ve 850 çalışana sahiptir. Çevre illerde yeni 

şubeler açarak büyümeyi hedeflemektedir [35]. 

 

Bahar Marketler 

Bahar Gıda A.Ş. 1985 yılında Merzifon’da kurulmuştur. Marketçilik alanında 

Merzifon, Suluova, Havza ve Ünye ilçelerinde olmak üzere 6 şube ile faaliyet göstermektedir. 

Marketçiliğin yanında un üretimi, hayvancılık, inşaat ve petrol ofisi işletmeciliği de 

yapmaktadır [4]. 

 

Özhan Marketler Zinciri 

Özhan Gıda 1980’li yıllarda toptancılıkla piyasaya giriş yapmıştır. 1992 yılında 

Mudanya yolu mağazasını açarak perakende sektörüne girmiştir. 2008 yılı itibariyle Bursa 

içinde 19 mağazası ile yerel bazda hizmet vermektedir [26]. 

 

Altunbilekler 

Altunbilekler Marketler Zinciri 1983 yılında Ankara’nın Keçiören ilçesinde semt 

marketçiliği ile faaliyetlerine başlamıştır. Günümüzde şirket, Ankara içine yayılmış 32 adet 

süpermarkete sahip bir zincir haline gelmiştir. Şirket toplamda 10.100m2’lik satış alanına ve 

800’e yakın personele sahiptir [3]. 
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Groseri 

Groseri, 1989 yılının Haziran ayında Ersin Özdemir, Mehmet Ali Önür ve Levent 

Uğurses tarafından Adana’da kurulmuştur. Şirket 2007 yılında 12 şube sayısına ulaşmıştır. 

Yerel bir zincir olan Groseri, bölgesel olarak büyüme hedeflemektedir [17]. 

 

Pekdemir 

Pekdemir 1979 yılında küçük bir market olarak Denizli’de açılmıştır. 15 Eylül 2000 

yılında Denizli’nin ilk yerel hipermarketini açan firma, 2005 yılında Umpaş’ın üç mağazasını 

da bünyesine katarak büyümesini sürdürmüştür. Şu an da 18 mağaza, 22.000m2’lik satış 

alanına ve 1000’e yakın çalışana sahip yerel marketler zinciri haline gelmiştir [29].  

 

Çağrı Hipermarket 

Çağrı Gıda, 1980’lerde İstanbul Üsküdar’da hizmete başlamıştır. 1990’larda büyüyen 

firma ismini Çağrı Hipermarket olarak değiştirmiştir. İstanbul iline odaklanmış şirket, il 

genelinde 16 mağazasında 900 kişilik personeli ile hizmet sunmaktadır [13]. 

 

Gün Süpermarket 

1995 yılında Mukaddes Gün tarafından Denizli ilinde kurulmuştur. 1999 yılı 

ortalarında Beltaş şirketinin mağazalarını alarak mağaza sayısını yediye çıkarmıştır. 2006 

yılında Kuyucak, Sarayköy ve Nazilli  ilçelerinde şubeler açılmıştır. Firma bölgesel bazda 

mağaza zinciri olmayı hedeflemektedir [18]. 
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Erimpaş 

Erimpaş şirketi 1997 yılında Ahmet Tanoğlu tarafından Erzincan şehrinde 

kurulmuştur. Erzincen içerisinde bulunan 3 şubesi ve yaklaşık 200 çalışanı ile hizmet 

vermektedir.  

 

Kim Marketleri 

Kim Marketleri 1997 Kiler Marketleri’nden aldığı franchising ile İstanbul’da hizmete 

başlamıştır. Açılımı “Kazançlı İstanbul Mağazaları” olan Kim, daha sonra Kiler 

Marketleri’nden ayrılarak kendi markasını oluşturmuştur. Günümüzde Kim Marketlerin 

İstanbul’da 39, İzmit’te 3 şubesi bulunmaktadır. Firma yaklaşık 1800 çalışanı ile hizmet 

sunmaktadır. 

 

Bildirici Marketler Zinciri 

Bildirici Gıda 1993 yılında Niyazi Bildirici tarafından Ankara’da kurulmuştur. 

Günümüzde firma 11 şube, 280’e yakın çalışan ve 8100 m2 satış alanı ile Ankara içerisinde 

faaliyetlerini sürdürmektedir [6]. 

 

Meşhur peynirci 

Meşhur Peynirci ticari hayatına 1944 yılında Ankara Samanpazarı’nda toptan gıda 

satışı ile başlamış, 1978 yılında ilk perakendeci markerini faaliyete geçirmiştir. Günümüzde 

Ankara içersinde 40’a varan şube sayısı ile yerel bazda hizmetlerini sürdürmektedir [23]. 
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GOP Marketler Zinciri 

GOP Market ticari hayatına 1995 yılında, Gaziosmanpaşa’da açılan mağaza ile 

başlamıştır. GOP Marketleri, şu anda 14 mağazası, toplam 7850 m2 market satış alanı, 34 

kasası ve 219 çalışanı ile tüketicilerine ulaşmaktadır [16]. 

 

Esenlik Süper Market Zinciri 

Esenlik Süper Market Zinciri, Malatya Belediyesinin %95’ine sahip olduğu Esenlik 

İmar İnşaat ve Ticaret Ltd. Şti.’nin bir iştirakidir. Firma Malatya’nın çeşitli yerlerinde faaliyet 

gösteren 11 adet mağazaya sahiptir [14]. 

 

Macit Marketler Zinciri 

Macit Marketler Zinciri, 31 Mart 1987 yılında Orhan Macit tarafından Ankara 

şehrinde kurulmuştur. Ankara içerinde 16 şubeye ve yaklaşık 400 çalışana sahip olmaktadır. 

Firmanın Ankara dışında Çorum şehrinde 1 şubesi bulunmaktadır. 

 

Üçler Süpermarket 

Üçler Süpermarket iş hayatına 1974 yılında İstanbul’da başlamıştır. Yerel düzeyde 

hizmet sunan market, İstanbul’un Avrupa yakasında bulunan 6 şubesi ve yaklaşık 200 çalışanı 

ile faaliyet göstermektedir.  

 

Çağdaş Marketler Zinciri 

Çağdaş Marketler Zinciri, perakendecilik sektörüne 3 Aralık 1987 tarihinde Çağdaş 

Ucuzluk adıyla Ankara’da açılan 150 m2'lik mağazasıyla adım attı. Çağdaş Marketler Zinciri, 

şu anda 22 mağazası ile Ankaralı tüketicilere hizmet vermektedir [11]. 
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GİMSA Marketler Zinciri 

Gimsa merkez şubesi Sincan’da olan, 11 mağazaya ve 1000 çalışana sahip Ankara’da 

kurulmuş bir marketler zinciridir [15].   
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3. Süpermarket zincirleriyle yapılan görüşmeler 

Bu raporda Türkiye'de faaliyet gösteren belli başlı süpermarket zincirlerinin tedarik 

zinciri envanter planlamasına dönük olarak kullandıkları yazılımların bir envanterinin 

çıkarılması hedeflenmiştir. Yöntem olarak süpermarketlerin herbiri ile ayrı ayrı 

yapılandırılmış görüşme yapılması benimsenmiştir. Yapılan görüşmeler, araştırma 

kapsamındaki şirketlerin genel merkezlerinde çalışan satın alma veya bilgi işlemden sorumlu 

yetkililer ile gerçekleştirilmiştir. Bu yapılandırılmış görüşmelerde aşağıdaki sorular verilen 

sırada kullanılmıştır: 

- Şirketinizde stok takibini yapacak bir bilgisayar programı kullanıyor musunuz?. 

Eğer evet ise, 

o Hangi programı kullanıyorsunuz? 

o Bu program talep tahmini yapabiliyor mu? 

o Program bir sonraki dönem için talep, fiyat, maliyet ve tedarik süresi tahmini 

yapıyor mu? 

Eğer evet ise, 

 Program talep tahmini hatasına ilişkin bilgi sunuyor mu? 

 Bu program ürün bazında ne zaman ne miktarda sipariş verilmesi 

gerektiğini size söylüyor mu? 

o Program ileriye dönük olarak tahmin yapabiliyor mu / sipariş zamanlarını 

söyleyebiliyor mu? 

o Kullandığınız program tutulması gereken yedek/güvence stok miktarını 

belirleyebiliyor mu?   

o Sipariş kararlarını verirken programın önerilerini dikkate alıyor musunuz? 

Araştırma neticesinde birçok bulguya ulaşılmıştır. Bu sonuçların bazıları ERP 

yazılımları, bazıları ise süpermarketlerle bağlantılıdır. Bulgular ışığında ERP yazılımlarının 

süpermarketlerin envanter planlaması açısından ihtiyaçlarını karşılayamadıkları görülmüştür. 

Süpermarketlerin 22’si kullandığı yazılımlarla, nokta talep tahmini yapabildiklerini 

bildirmiştir. Bir şirket yazılımlarının talep tahmini hatasına ilişkin bilgi sunabildiğini 
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belirtmiştir. Hiçbir şirket yazılımlarını kullanarak deterministik envanter planlaması 

yapabildiğini belirtmemiştir. Ayrıca bazı şirketlerin kullandığı yazılımlar, nokta talep 

tahminine ve tahmin hatasına ilişkin bilgi sunabilse de, programların bu özellikleri 

kullanıcılar tarafından etkin bir şekilde kullanılamamaktadır. Böylece yazılım sisteme entegre 

olsa bile istenilen düzeyde destek sağlayamamaktadır. Sonuçta kullanılan yazılımlar stok 

takibi için kullanırken, aynı yazılımlar planlama yapmak için kullanılmamaktadır. Şu ana 

kadar tamamlanmış olan şirket görüşmelerinden elde edilmiş olan araştırma bulguları şöyle 

özetlenebilir: 

— Süpermarketlerin çoğunluğu hazır ERP paketleri kullanmaktadır. Bazı süpermarketler 

ise kendilerine özel yazılımlar hazırlatmış ve kullanmaktadır. 

— Hazır ERP paketlerinin çoğu sadece Türkiye'de hizmet veren yazılım şirketleri 

tarafından oluşturulmuştur. 

— ERP paketlerinde envanter yönetimi ile ilgili olan modüllerin büyük çoğunluğu nokta 

talep tahmini yapabilmektedir. Birkaç programın modülleri tahmin hatasına ilişkin 

bilgi sunabilmektedir. 

— Süpermarketlerin hiçbirinde ERP yazılımı kullanılarak planlama yapılmamaktadır.  

— Süpermarketlerde verilen sipariş kararlarında insan faktörü ön plana çıkmaktadır. 

Yazılımın sunduğu öneriler, yöneticilerin deneyimlerine dayanarak verdiği kararların 

gölgesinde kalmaktadır.  

— Birçok süpermarket zinciri, siparişlerini şubelerinden gelen sipariş miktarlarına göre 

ayarlamaktadır. Yazılımların bu durumdan kaynaklanabilecek kırbaç etkisine karşı 

çözümü bulunmamaktadır. 

— Güvenlik stoğu için yazılımların bir önerisi bulunmamaktadır. Kullanıcılar güvenlik 

stoğu miktarını önceki satışlara ve kendi deneyimlerine göre belirleyerek, bu miktarı 

programa girmektedirler. 

— Süpermarketlerde kullanılan yazılımların promosyon, kampanya ve özel günlerdeki 

satışlar (bayram, yılbaşı vs.) gibi durumlarla başa çıkabilmesini sağlayacak çözümleri 

bulunmamaktadır.  

— Süpermarketler ERP yazılımlarını stok hareketlerini takip etmek için kullanmaktadır. 

— Süpermarketler yazılımların planlama yapma konusundaki önemi hakkında yeterli 

bilgiye sahip değildir. 
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Aşağıda firma bazında yapılan görüşmelerin sonuçları verilmiştir. Şu ana kadar Migros, 

Tansaş, Carrefour, Şok ve Tescokipa ile yapılan görüşmeler henüz 

sonuçlandıralamamıştır. Bu görüşmelerinde tamamlanmasından sonra elde eldilen 

bulgularla rapor nihai şeklini alacaktır.  

 

Yimpaş: Şirket stok takibi için kendi yazılımları olan Proma isimli programı 

kullanmaktadır. Yimpaş yazılımın nokta tahmini yapabildiğini, fakat tahmin hatasına 

ilişkin bir seçenek sunmadığını belirtmiştir. Güvenlik stoğu yazılım tarafından 

belirlenmemektedir. 

BİM: Stok takibi yazılımı olarak SAP R/3 kullanılmaktadır. Daha önceki araştırmadan 

programın talep tahmini ve planlama yapabildiği bilinmektedir. Ama şirketin bu 

özellikleri ne oranda kullandığı hakkında detaylı bilgi elde edilememiştir.  

REAL Hipermarket: Real Hipermarket, MMS isimli kendi geliştirdikleri bir stok takip 

programı kullanılmaktadır. Şirketten alınan bilgilere göre program izleme ve nokta 

talep tahmini işlemlerini yapabilmektedir. Tahmin hatasına ve planlamaya ilişkin 

kullanıcılara destek sağlamamaktadır. Güvelik stoğu belirleme seçeneği 

bulunmamaktadır. 

Rammar Grosmarket: Şirket stok takibi için Micro isimli ERP programını 

kullanmaktadır. Yazılımın nokta talep tahmini seçeneği bulunmasına karşın şirket 

tarafından bu seçenek kullanılmamaktadır. Siparişler firmanın kendi deneyimleri 

dikkate alınarak belirlenmektedir. 

Marketim: Netsis firmasının standart muhasebe ağırlıklı programını kullandığı tespit 

edilmiştir. Aktif olarak kullandıkları ERP programı bulunmamaktadır. 

ADESE: Adese stok takibi için kendi yazılımlarını kullanmaktadır.  Şirket yazılımın 

tek dönemli planlama yaptığını belirtmiştir. Yazılım çok dönemli planlama ve tahmin 

hatası içinse kullanıcıya bir seçenek sunmamaktadır. 

Makro Market: Makro market stok takibi için OBASE programını kullanmaktadır. 

Şirket bu programı kullanarak talep tahmini yaptığını belirtmiştir. Yazılım talepteki 
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tahmin hatalarına ilişkin bilgi sunmamaktadır. Yazılım en iyi sipariş miktarını 

kullanıcı için hesaplayamamaktadır.   

Mopaş Hipermarket: Stok takibi için Mikro yazılımını kullanmaktadır. Programın 

talep tahmini yapabilme özelliği bulunmasına rağmen şirket tarafından bu özellik 

kullanılmamaktadır. Yazılımın güvenlik stoğu belirleme özelliği bulunmamaktadır. 

Pehlivanoğlu: Pehlivanoğlu şirketine özel hazırlanan Unix tabanlı bir stok takip 

programı kullanılmaktadır. Şirketin verdiği bilgilere göre program satış ortalamasına 

temel alarak talep tahmini yapabilmektedir. Tahmin hatalarına ve planlamaya dair bir 

seçenek bulunmamaktadır. Asgari stok kullanıcılar tarafından tanımlanmaktadır. 

Akyurt Alışveriş Merkezleri: Şirket stok yazılımı olarak Oracle veritabanlı bir 

program kullanmaktadır. Akyurt firması yazılımın talep tahmini yaptığını bildirmiştir. 

Tahmin hatasına ve planlamaya ilişkin kullanıcılara destek vermemektedir. Geçmiş 

verileri kullanarak sipariş için minimum ve maksimum noktaları kullanıcılara 

bildirmektedir. Bu değerler şirket açısından, yöneticilerin verdiği kararlara göre daha 

az önemlidir.  

Yunus Marketler Zinciri: Stok takibi için Oracle tabanlı Olympos programı 

kullanılmaktadır. Şirket tarafından yazılımın nokta tahmini yaptığı belirtilmiştir. Diğer 

yandan yazılım tahmin hatası ve uzun dönem planlama konusunda kullanıcıya destek 

sağlamamaktadır. 

Beğendik: Stok yazılımı olarak Milenium isimli program kullanılmaktadır. Şirket 

yetkilisi tarafından yazılımın talep tahminlerini tek dönemli ve nokta tahmini şeklinde 

gerçekleştirdiği belirtilmiştir. Tahmin hatası ve planlama yapma özelliği 

bulunmamaktadır. Güvenlik stoğu belirleme özelliği bulunmamaktadır. 

İyaş: Firma stok takibi için Netsis şirketinin ERP yazılımını kullanmaktadır. Şirket 

yazılımı kullanarak talep tahmini yaptığını bildirmiştir. Yazılımın, ne zaman ne kadar 

sipariş verilmesi gerektiği konusunda öneri sunmadığı tespit edilmiştir. Bu kararlar 

firma tarafından verilmektedir. 

Sincap Marketler Zinciri: Firma stok takibi için Mikro yazılımını kullanmaktadır. 

Fakat şirket, yazılımı talep tahmini açısından yeterli görmediği için firma 



 24

bünyesindeki bilgi işlem sorumluları ek bir yazılım yazmışlardır. Mikro ve şirketin 

yazılımı beraber kullanılmaktadır. Bu iki programın kullanılmasına karşın, sipariş 

miktarlarını yine yöneticilerin belirlediği tespit edilmiştir. 

Bahar Marketler: Şirket stok takibi için Logo Gold yazılımını kullanmaktadır. Şirket 

tarafından yazılımın nokta tahmini yaptığı, buna karşın tahmin hatasına ve planlamaya 

dair seçenekler içermediği söylenmiştir. Güvenlik stoğu açısından öneri 

sunmamaktadır. Sipariş kararlarında yöneticilerin belirlediği miktarlar dikkate 

alınmaktadır. 

Şaypa: Şaypa stok takibi için Mikro yazılımını kullanmaktadır. Şirket programı 

kullanarak talep tahmini yapabilmektedir. Yazılım talep tahmini hatası ve planlama 

açısından destek sunmamaktadır. Güvenlik stoğu belirlenememektedir.  

Özhan Market Zinciri: Stok takibi için Mikro yazılımının Retail 9000 isimli 

perakendeciler için geliştirilmiş modülünü kullanmaktadır. Şirket tarafından nokta 

talep tahmini yapılmaktadır. Fakat yazılımın tahmin hatası ve planlama için 

seçeneklerinin bulunmadığı belirtilmiştir. Güvenlik stoğu kullanıcılar tarafından 

belirlenmektedir. 

Altunbilekler: Firma stok takibini Okyanus isimli yazılım ile gerçekleştirmektedir. 

Şirket yazılımın talep tahmini yapma özelliği bulunduğunu bildirmiştir. Yazılım 

sipariş konusunda kullanıcıya bir öneri sunmamaktadır. 

Groseri: Stok takibi yazılımları Okyanus isimli programdır. Şirket programı kullanarak 

talep tahmini yapmadığını belirtmiştir. Sipariş kararları firma yöneticileri tarafından 

alınmaktadır. 

Pekdemir: Şirket stok takibi için Mikro yazılımını kullanmaktadır. Firma yazılımın 

talep tahmini özelliğini kullandığını belirtmiştir. Talep tahmini hatalarına ve 

planlamaya ilişkin özellik bulunmamaktadır. Güvenlik stoğunun, genelde ortalama 

satışlara göre üç günlük stok şeklinde tutulduğu bildirilmiştir. 

Çağrı Hipermarket: Çağrı Hipermarket stok takibi için Kalem yazılım şirketinin 

hazırladığı Santana isimli ürünü kullanmaktadır. Şirket yazılımın talep tahmini 
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yaptığını, tahmin hatası ve planlama seçeneklerinin bulunmadığını belirtmiştir. 

Güvenlik stoğu kullanıcı tarafından belirlenmektedir. 

Gün Süpermarket: Stok takibi yazılımı olarak Netsis Fushion@6 kullanmaktadır. 

Şirket tarafından talep tahmini yapılmamaktadır. Siparişler satışlarına göre mağaza 

bazında belirlenmektedir. Güvenlik stoğunu kullanıcı belirlemektedir. 

Erimpaş: Stok takibi için Mikro yazılımı kullanılmaktadır. Şirket tarafından yazılım 

kullanılarak talep tahmini yapıldığı belirtilmiştir. Yazılım tahmin hatası ve planlama 

bakımından yetersiz kalmaktadır. 

Kim Marketleri: Kim Marketleri stok takibi için Worküp E-iş isimli yazılımı 

kullanmaktadır. Şirket yetkililerince programın talep tahmini ve planlama yapma 

özelliği bulunmadığı bildirilmiştir. 

Bildirici Gıda: Stok takibi için Okyanus isimli yazılım kullanılmaktadır. Firma 

yazılımı kullanarak talep tahmini yapamadığını belirtmiştir. Güvenlik stoğu 

kullanıcılar tarafından belirlenip programa girilmektedir. 

GOP Pazar Marketleri: Şirket stok takibi için Mikro yazılımını kullanmaktadır. 

Program talep tahmini yapmasına rağmen bu özelliği firma tarafından 

kullanılmamaktadır. Sipariş miktarları, şubelerin istekleri doğrultusunda 

belirlenmektedir. Güvenlik stoğu belirleme seçeneği bulunmamaktadır. 

Esenlik: Stok takibi için Netsis firmasının yazılımını kullanılmaktadır. Şirket 

tarafından talep tahmini yapılmamaktadır. Yazılım sipariş verme konusunda 

kullanıcıya destek vermemektedir. 

Macit Marketler Zinciri: Şirket stok takibi için Oracle veritabanını kullanan Olympos 

isimli yazılımı kullanmaktadır. Şirket tarafından ne talep tahmini ne de planlama 

konusunda yazılım kullanılmamaktadır.  

Üçler Süpermarket: Üçler Süpermarket stok takibi için OBASE 2.1 programını 

kullanmaktadır. Şirket tarafından yazılımın nokta talep tahmini yaptığı belirtilmiştir. 

Yazılımda tahmin hatası ve planlamaya yönelik bir seçenek bulunmamaktadır. 
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Meşhur Peynirci: Stok takibi için Omega isimli yazılım kullanılmaktadır. Firma 

yazılımın nokta talep tahmini yaptığını bildirmiştir. Yazılım tahmin hatasına ilişkin 

bilgi sunmamaktadır. Sipariş kararları kullanıcılar tarafından belirlenmektedir. 

Çağdaş Marketler Zinciri: Firma stok takibi için Olympos isimli yazılımı 

kullanmaktadır. Şirket yazılımın nokta talep tahmini yapabildiğini belirtmiştir. 

Yazılım tahmin hatasına ilişkin bilgi sunmamaktadır. Güvenlik stoğu hedefi 

bildirmemektedir. Sipariş kararları tamamen firma yöneticileri tarafından 

verilmektedir. 
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4. Sonuç 

Bu raporun amacı Türkiye perakende sektöründe faaliyet gösteren süpermarketlerin 

tedarik zinciri yönetimi için kullandıkları envanter yönetim yazılımlarını belirlemek ve 

tedarik zinciri yönetiminde bu yazılımlardan ne ölçüde faydalandıklarını tespit etmektir.  

Araştırma kapsamında şu ana kadar 31 firma ile görüşme yapılmıştır. Elde ettiğimiz 

bulgular temelde sektör tarafından kullanılan yazılımların etkin şekilde belirsizlikle baş 

edebilecek fonksiyonelliğe sahip olmadıklarını ve çoğu zamanda bu yazılımların sunduğu 

temel fonksiyonların bile firmalar tarafından uygun organizasyonel süreçler ve uzmanlık 

bulunmadığı için kullanılmadığını göstermektedir.  

Genel olarak baktığımızda, sadece 2 süpermarket yazılımlarının talep tahmini 

yapabildiğini ve tahmin hatasına ilişkin bilgi sunduğunu belirtmiştir. 9 süpermarket 

yazılımlarının sadece talep tahmini yapabildiğini bildirmiştir. 1 süpermarket ise ERP yazılımı 

kullanmadıklarını belirtmiştir.  

Yukarıdaki tabloya baktığımızda hiçbir süpermarketin deterministik planlama 

yapmadığı görülmektedir. Buradan yola çıkarak, günümüz Türkiye perakende sektöründe 

faaliyet gösteren süpermarketlerde yönetici deneyimlerinin, sipariş kararlarında hala en 

önemli faktör olduğuna ulaşabiliriz. Ayrıca yaptığımız görüşmelerde ulaştığımız bir başka 

sonuç ise, yazılımların birçoğunun süpermarketlerde çok görülen mevsimsel satış, indirim, 

kampanya gibi durumlara özel çözümlerinin olmayışıdır. Bu da sipariş miktarlarının 

belirlenmesinde hala yöneticilerin neden kişisel tecrübelerine dayanarak karar verdiklerini bir 

noktaya kadar açıklamaktadır.  

Süpermarketlerin belirsizlik altında ihtiyaçlarına cevap verecek yeni ve kapsamlı 

envanter planlama sistemlerine ihtiyaç olduğu açıktır. Öte yandan bu yazılımların var olması 

halinde dahi etkin şekilde kullanılabileceğine dair bir bulgu yoktur. Bu noktada yöneticilerin 

gerekli eğitimden geçirilmesi, bilinçlendirilmesi ve teknik ekibin yazılımların 

fonksiyonellikleri hakkında bilgilendirilmesi gerekliliği ortadadır.  
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Abstract. Cost-based filtering is a novel approach that combines tech-
niques from Operations Research and Constraint Programming to filter
from decision variable domains values that do not lead to better solu-
tions [7]. Stochastic Constraint Programming is a framework for mod-
eling combinatorial optimization problems that involve uncertainty [19].
In this work, we show how to perform cost-based filtering for certain
classes of stochastic constraint programs. Our approach is based on a
set of known inequalities borrowed from Stochastic Programming — a
branch of OR concerned with modeling and solving problems involving
uncertainty. We discuss bound generation and cost-based domain filter-
ing procedures for a well-known problem in the Stochastic Programming
literature, the static stochastic knapsack problem. We also apply our
technique to a stochastic sequencing problem. Our results clearly show
the value of the proposed approach over a pure scenario-based Stochas-
tic Constraint Programming formulation both in terms of explored nodes
and run times.

1 Introduction

Constraint Programming (CP) [1] has been recognized as a powerful tool for
modeling and solving combinatorial optimization problems. CP provides global
constraints offering concise and declarative modeling capabilities and efficient
domain filtering algorithms. These algorithms remove combinations of values
which cannot appear in any consistent solution. Cost-based filtering is an ele-
gant way of combining techniques from CP and Operations Research (OR) [7].
OR-based optimization techniques are used to remove from variable domains
values that cannot lead to better solutions. This type of domain filtering can be
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combined with the usual CP-based filtering methods and branching heuristics,
yielding powerful hybrid search algorithms. Cost-based filtering is a novel tech-
nique that has been the subject of significant recent research.

Stochastic Constraint Programming (SCP) [19] is an extension of CP, in which
there is a distinction between decision variables, which we are free to set, and
stochastic (or observed) variables, which follow some probability distribution.
SCP is designed to handle problems in which uncertainty comes into play. Un-
certainty may take different forms: data about events in the past may not be
known exactly due to measuring or difficulties in sampling, and data about events
in the future may simply not be known with certainty.

In this work we propose a novel approach to performing cost-based filtering
for certain classes of stochastic constraint programs. Our approach is based on
a well-known inequality borrowed from Stochastic Programming [4], a branch of
OR that is concerned with modeling constraint satisfaction/optimization prob-
lems under uncertainty. We implemented this approach for two problems in
which uncertainty plays a role. In both cases we obtained significant improve-
ments with respect to a pure SCP formulation both in terms of explored nodes
and run times.

The rest of the paper is structured as follows. In Section 2 we give the nec-
essary formal background. In Section 3 we review relevant inequalities from
Stochastic Programming. In Section 4, we introduce global optimization chance
constraints. We describe our empirical results in Section 5 and review related
works in Section 6. Finally, we conclude and outline our future work in Section 7.

2 Formal Background

A Constraint Satisfaction Problem (CSP) [1] is a triple 〈V, C, D〉, where V =
{V1, . . . , Vn} is a set of decision variables, D is a function mapping each element
of V to a domain of potential values, and C is a set of constraints stating
allowed combinations of values for subsets of variables in V . A solution to a
CSP is an assignment to every variable of a value in its domain, such that all
of the constraints are satisfied. We may also be interested in finding a feasible
solution that maximizes (minimizes) the value of a given objective function over
a subset of the variables. With no loss of generality, we restrict our discussion
to maximization problems.

Optimization-oriented global constraints embed an optimization component,
representing a proper relaxation of the constraint itself, into a global constraint
[7]. This component provides three pieces of information: (a) the optimal solu-
tion of the relaxed problem; (b) the optimal value of this solution representing an
upper bound on the original problem objective function; (c) a gradient function
grad(V ,v), which returns for each variable-value pair (V ,v) an optimistic eval-
uation of the profit obtained if v is assigned to V . These pieces of information
are exploited both for propagation purposes and for guiding the search.

In [19], a stochastic CSP is defined as a 6-tuple 〈V, S, D, P, C, θ〉, where V is
a set of decision variables and S is a set of stochastic variables, D is a function
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mapping each element of V and each element of S to a domain of potential
values. A decision variable in V is assigned a value from its domain. P is a func-
tion mapping each element of S to a probability distribution for its associated
domain. C is a set of constraints. A constraint h ∈ C that constrains at least one
variable in S is a chance-constraint. θh is a threshold value in the interval [0, 1],
indicating the minimum satisfaction probability for chance-constraint h. Note
that a chance-constraint with a threshold of 1 (or without any explicit thresh-
old specified) is equivalent to a hard constraint. A stochastic CSP consists of a
number of decision stages. A decision stage is a pair 〈Vi, Si〉, where Vi is a set of
decision variables and Si is a set of stochastic variables. In an m-stage stochastic
CSP, V and S are partitioned into disjoint sets, V1, . . . , Vm and S1, . . . , Sm, and
we consider multiple stages, 〈V1, S1〉, 〈V2, S2〉, . . . , 〈Vm, Sm〉. To solve an m-stage
stochastic CSP an assignment to the variables in V1 must be found such that,
given random values for S1, assignments can be found for V2 such that, given
random values for S2, ..., assignments can be found for Vm so that, given random
values for Sm, the hard constraints are satisfied and the chance constraints are
satisfied in the specified fraction of all possible scenarios. The solution of an m-
stage stochastic CSP is represented by means of a policy tree [18]. A policy tree
is a set of decisions where each path represents a different possible scenario and
the values assigned to decision variables in this scenario. Let S denote the space
of policy trees representing all the solutions of a stochastic CSP. We may be
interested in finding a feasible solution, i.e. a policy tree s ∈ S, that maximizes
the value of a given objective function f(·) over the stochastic variables S (edges
of the policy tree) and over a subset ̂V ⊆ V of the decision variables (nodes in
the policy tree). A Stochastic COP is then defined in general as maxs∈S f(s).
In [19] a policy-based view of stochastic constraint programs is proposed. Such
an approach has been further investigated in [3]. An alternative semantics for
stochastic constraint programs comes from a scenario-based view [4,18]: this so-
lution method consists in generating a scenario-tree that incorporates all possible
realizations of discrete stochastic variables into the model explicitly.

3 Value of Stochastic Solutions

Let Ξ be a discrete stochastic (vector) variable whose realizations correspond
to the various scenarios. Recall that in the policy-based view of stochastic CP a
scenario is a set of edges in the policy tree connecting the root to a leaf. Define

P = max
x∈S

z(x, ξ)

as the optimization problem associated with one particular scenario ξ ∈ Ξ, where
S is a finite set, and z(x, ξ) is a real valued function of two (vector) variables x
and ξ. Note that in what follows the discussion is dual for minimization problems.
In order to simplify the notation used, we will here use the same notation for
referring to a problem and to the value of its optimal solution. The meaning will
be made clear by the context.
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The function z(x, ξ) can be seen as a payoff table that for a given decision x
provides the profit with respect to a given scenario ξ having probability Pr{ξ}.
We may be then interested in computing the optimal solution value to the re-
course problem [4] RP(P)= maxx∈S

∑

Ξ Pr{ξ}z(x, ξ). This can be expressed, by
using the expectation operator E, as

RP(P) = max
x∈S

Ez(x, Ξ),

with an optimal solution x∗.
The expected value problem, the deterministic problem obtained by replacing

all the stochastic (vector) variables by their expected values, is defined as

EV(P) = max
x∈S

z(x, E[Ξ]).

Let us denote by x̂ an optimal solution of the expected value problem, called
the expected value solution. Anyone familiar with Stochastic Programming or
realizing that uncertainty is a fact of life would feel a little insecure about taking
decision x̂. Indeed, unless such a decision is independent of Ξ, there is no reason
to believe that this decision is even close to the optimal solution of the recourse
problem.

For any stochastic maximization (minimization) program, under the assump-
tions that (i) z(x, Ξ), the profit function, is a concave1 (convex) function of Ξ
and (ii) maxx∈S z(x, Ξ) (minx∈S z(x, Ξ)) exists for all Ξ,

Proposition 1. EV(P) - RP(P) ≥ 0 (EV(P) - RP(P) ≤ 0).

Proof. A proof is given in [2].

It directly follows that EV(P) ≥ RP(P) (EV(P) ≤ RP(P)). We will base our
cost-based filtering strategies on this inequality.2 Assumption (i) restricts the
form of the cost function. As witnessed by much of the Stochastic Programming
literature [4,11], many real life applications exhibit such a behavior in the profit
(cost) function. Nevertheless, it is often possible to encounter stochastic con-
straint programs whose objective exhibits a generalized non-convex dependence
on the stochastic variables. Note that, although the classical Jensen (Proposi-
tion 1) and Edmundson-Madansky type bounds [4], which we will employ in
the following sections, or their extensions are generally not available for such
problems, tight bounds may still be constructed under mild regularity condi-
tions as discussed in [13]. Assumption (ii) states that Proposition 1 provides
a valid bound only when a feasible solution exists and its existence is not af-
fected by the distribution of the stochastic variables. Intuitively, this means
that nothing can be inferred by using Proposition 1 if EV(P) is infeasible or,
clearly, if RP(P) is infeasible. Assumption (ii) may be violated in problems where
1 A real-valued function f is convex if for any x1, x2 in the domain and any λ ∈ [0, 1],

λf(x1) + (1 − λ)f(x2) ≥ f(λx1 + (1 − λ)x2) [5]. f is concave if −f is convex.
2 Other inequalities are discussed in [4], pp. 140–141. Effective relaxations can be also

built on these other inequalities.
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chance-constraints appear. We will not discuss how to handle generic chance-
constraints and how to produce deterministic equivalent reformulations for them
in EV(P): the reader may refer to [6]. In this work we will consider only examples
of stochastic COPs that always satisfy assumptions (i) and (ii). In particular,
to comply with assumption (ii), we will consider problems for which a feasible
solution always exists and for which the chance-constraints are “hard” (θ = 1).
Note that “hard” chance-constraints in RP(P) become deterministic in EV(P).

4 Global Optimization Chance-Constraints

Solving stochastic constraint programs is computationally a challenging task.
In [19], the computational complexity — membership in PSPACE — of these
models is discussed. In [18], the authors proposed a standard way of compiling
down these models into conventional (non-stochastic) CP models that can be
solved by any available commercial software. This approach employs a scenario-
based [4] modelling strategy for representing stochastic variables. Of course this
approach has a price since the number of scenarios that need to be considered
in order to fully represent the problem grows exponentially with the number
of decision stages in the problem. A possible way to overcome this difficulty
is to reduce the number of scenarios considered by sampling them, but this
obviously affects the completeness of the model. Another possibility consists
instead in developing specialized and efficient filtering strategies. For this purpose
global chance-constraints have been proposed in [16]. These constraints differ
from conventional global constraints in the fact that they represent relations
among a non-fixed number of decision variables and stochastic variables.

In this work, by creating a parallel with [7], we present optimization-oriented
global chance-constraints as a way of enhancing the solving process of stochas-
tic constraint programs. Conventional optimization-oriented global constraints
perform cost-based filtering by encapsulating in global constraints optimization
components representing suitable relaxations of the constraint itself. Similarly
optimization-oriented global chance-constraints also encapsulate suitable relax-
ations of the constraint considered, but in contrast to conventional optimization-
oriented global constraints this relaxation may involve stochastic variables.

A global optimization chance-constraint provides the same three pieces of in-
formation provided by optimization-oriented global constraints. The difference
is the fact that in a global optimization chance-constraint we find two stages
of relaxations. At the first stage of relaxation, we are mainly involved with the
stochastic variables and we exploit well-known inequalities such as the one in
Proposition 1 to replace stochastic variables in our stochastic programs with
deterministic quantities and to yield a valid relaxation that is a deterministic
problem. This deterministic problem, however, may still be computationally very
challenging (NP-hard in general). Therefore, a second stage of relaxation may be
needed to produce a further relaxation that is computationally more tractable.
Finally, as we will see, a global optimization chance-constraint may also provide
a valid, and possibly good, solution at each node of the search tree.
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Objective:

max

jPk
i=1 riXi − cE

hPk
i=1 WiXi − q

i+
ff

Decision variables:
(1) Xi ∈ {0, 1} ∀i ∈ 1, . . . , k
Stochastic variables:
Wi → item i weight

Fig. 1. RP(SSKP). Note that [y]+ = max{y, 0}.

In this section and in the following ones we will refer to a running example
and we will employ the following problem to better understand the concepts ex-
plained. Consider the Static Stochastic Knapsack Problem (SSKP) [12]: a subset
of k items has to be chosen, given a knapsack of size q into which to fit the
items. Each item i has an expected reward of ri. The size Wi of each item is not
known at the time the decision has to be made, but we assume that the decision
maker has an estimate of the probability distribution of W = (W1, . . . ,Wk). A
per unit penalty of c has to be paid for exceeding the capacity of the knapsack.
By modeling this problem as a one-stage Stochastic COP, the recourse problem
RP(SSKP) can be formulated as shown in Fig. 1. The objective function max-
imizes the trade-off between the reward brought by the objects selected in the
knapsack (those for which the binary decision variable Xi is set to 1) and the
expected penalty paid for buying additional capacity units in those scenarios in
which the low cost capacity q is not sufficient.

Example 1. Consider 5 items, item rewards ri are {10, 15, 20, 5, 25}. The dis-
crete probability distribution functions f(i) for the weight of item i = 1, . . . , 5
are respectively, f(1) = {10(0.5), 8(0.5)}, f(2) = {10(0.5), 12(0.5)}, f(3) =
{9(0.5), 13(0.5)}, f(4) = {4(0.5), 6(0.5)}, f(5) = {12(0.5), 15(0.5)}. The figures
in parenthesis represent the probability that an item takes a certain weight. The
other problem parameters are c = 2, q = 30. The optimal solution of the recourse
problem selects items {2, 3, 5} and has a value of RP(SSKP)=49.

This solution can be obtained by solving a deterministic equivalent conventional
constraint program obtained by employing a scenario-based representation [18].
Let Wj

i be the realized weight of object i in scenario j. We hand-crafted a
deterministic equivalent model DetEquiv(RP(SSKP)) for RP(SSKP) following
the guidelines in [18]. This model is shown in Fig. 2. Constraint (1) states that
Zj , total excess weight in scenario j, must be greater than the sum of the weights
of the objects selected in this scenario minus the low cost capacity q. Constraint
(2) restricts the decision variables Xi to be binary. Xi is equal to 1 iff item i
is selected in the knapsack. Constraint (3) fixes an upper bound for Zj ; this
upper bound is the sum of the weights of all the k objects in scenario j. The
objective function maximizes the trade-off between the total reward brought by
the objects selected and the sum of penalty costs — weighted by the respective
scenario probability — paid for those scenarios where the low cost capacity q is
not sufficient.
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Objective:

max
nPk

i=0 riXi − c
hPn

j=1 Zj Pr{j}
io

Constraints:

(1) Zj ≥ Pk
i=1 Wj

i Xi − q ∀j ∈ 1, . . . , n
Decision variables:
(2) Xi ∈ {0, 1} ∀i ∈ 1, . . . , k

(3) Zj ∈ [0,
Pk

i=1 Wj
i ] ∀j ∈ 1, . . . , n

Fig. 2. DetEquiv(RP(SSKP)). Pr{j} is the probability of scenario j ∈ {1, . . . , n}. Note
that

Pn
j=1 Pr{j} = 1.

4.1 Expectation-Based Relaxation for Stochastic Variables

The first step in our cost-based filtering strategy consists in applying a relaxation
involving the stochastic variables. By applying Proposition 1, if the profit (re-
spectively cost for minimization problems) function satisfies the two assumptions
discussed, an upper (lower) bound for the cost of an optimal solution to RP(P)
can be obtained by solving EV(P), that is the deterministic problem in which
all the stochastic variables are replaced by their respective expected values.

Lemma 1. The profit function for RP (SSKP ) is concave in W.

Proof. When proving concavity w.r.t. W we can ignore the constant term
∑k

i=1 riXi.What remains is f(W)=−cE
[

W
T · X−q

]+

,where “·” is the inner prod-

uct andWT
is vectorW transposed. We now prove that−f(W)=cE

[

WT · X−q
]+

is convex in W . By recalling that a maximum of convex functions is convex [5],
this function is clearly convex w.r.t. each element of vector W and it is therefore
convex in W . This implies that −f is concave in W.

Obviously, in RP(SSKP), it is always possible to find a feasible assignment for
decision variables, therefore both the assumptions are satisfied for this problem.
The expected value problem EV(SSKP) can be obtained by replacing every
random variable Wi in RP(SSKP) with the respective expected value E[Wi],
thus obtaining a fully deterministic model.

Example 2. Here we solve the problem where the weights of the objects are
deterministic and equal to the respective expected weights3: �E[f(1)]	 = 9,
�E[f(2)]	 = 11, �E[f(3)]	 = 11, �E[f(4)]	 = 5, �E[f(5)]	 = 13. This problem
provides the first two pieces of information needed by our cost-based filtering
method, that is (a) the optimal solution of the relaxed problem and (b) the
optimal value of this solution, which represents, according to Proposition 1, an
upper bound for the original problem objective function. In our running example
this solution selects items 3, 4, 5 and has a value of EV(SSKP)= 50.

3 As this is a maximization problem, the expected weight of each object is rounded
down to the nearest integer (� �) in order to keep the bound provided by the relax-
ation optimistic.
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4.2 Relaxing the Expected Value Problem

It should be noted that, although the expected value problem is easier than the
recourse problem, it may still be difficult to solve (NP-hard). For this reason we
can further relax the expected value problem in order to obtain a valid bound
by solving an easier problem. Let R(EV(P)) be a generic relaxation of EV(P).
Then for a maximization problem EV(P)≤ R(EV(P)) holds, therefore R(EV(P))
provides a valid bound for the recourse problem.

In SSKP, for instance, instead of solving to optimality the deterministic (NP-
Complete) knapsack problem obtained for the expected value scenario, we may
instead solve in linear time its continuous relaxation, thus obtaining Dantzig’s
upper bound, DUB(EV(SSKP)) [15]. DUB(EV(SSKP)) ≥ EV(SSKP) therefore
DUB(EV(SSKP)) ≥ RP(SSKP). DUB(EV(SSKP)) is a valid upper bound for
our recourse problem.

Example 3. To obtain DUB(EV(SSKP)) we order items for profit over expected
weight: {25/13, 20/11, 15/11, 10/9, 5/5}, and we insert items until the first that
does not fit completely into the remaining knapsack capacity. Of this last item
we take a fraction of the profit proportional to the capacity available. Therefore
DUB(EV(SSKP))= 25 + 20 + (6 ∗ 15/11) = 53.18.

Obviously at any node of the search tree it is possible to solve the expected
value problem taking into account decision variables already assigned. The bound
obtained can be used to exclude part of the tree that cannot lead to a better
solution.

In [7] the authors discuss filtering strategies based on reduced costs (RC). As
we shall see in the next section a similar technique can be adopted for SSKP,
provided that an efficient way of obtaining bounds is available for the expected
value problem.

4.3 Cost-Based Filtering

In order to perform cost-based filtering, as in RC-based filtering, we need a
gradient function grad(V ,v), which returns for each variable-value pair (V ,v)
an optimistic evaluation of the profit obtained if v is assigned to V . This function
is obviously problem dependent, but regardless of the strategy adopted in the
former section — i.e. whether we are using a relaxation for the expected value
problem or solving this problem to optimality — it is possible to specify it and
use it to filter provably suboptimal values. In what follows we present a gradient
function for SSKP. At each node of the search tree, in order to compute this
function, we use a continuous relaxation of the expected value problem similar
to the one proposed by Dantzig for the well-known 0-1 Knapsack Problem [15].
We will now define the gradient function for SSKP by reasoning on the expected
value problem. Assume that a partial assignment for decision variables is given.
Let K be the set of all the items in the problem, |K| = k. Let S be the set of
items for which a decision has been fixed, with |S| < k. Let q∗ be the sum of the
expected weights of the elements in S that are part of the knapsack. The profit
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r associated with this assignment is equal to the sum of the profits of the items
in the knapsack minus the eventual expected penalty cost c(q∗ − q), if q − q∗ is
negative. Now we consider an element i ∈ K/S. There are two possible options:
taking it into the knapsack or not. If we take it, we increase the profit by ri minus
any eventual expected penalty cost we pay if the expected residual capacity is
or becomes negative. Finally for every other element in K/S we check if the
balance between its profit and the eventual expected penalty gives an overall
positive profit and, if so, we add it to the knapsack. This procedure requires at
most O(k) steps for each element for which a decision has not yet been taken,
therefore it can be applied at each node of the search tree to compute a valid
upper bound associated with a certain decision on an item, which therefore may
be filtered if suboptimal.

Example 4. We now consider the case in which items 2 and 3 have been selected
in the knapsack and item 4 is not selected. We still have to decide on items
1 and 5. The total capacity used is c∗ = 11 + 11 = 22. The profit r brought
by items 2 and 3 is 35. We consider the set of the remaining items for which
a decision must be taken, K/S ≡ {1, 5}. Let us reason on item 1: this is a
critical item, in fact if taken in the knapsack it will use more capacity than
the residual 30 − 22 = 8 units. If we consider the option of taking this item,
then the expected profit is r1 = 10 − 2 ∗ (30 − 22 − 9) = 8, there is no more
residual capacity and item 5 is therefore excluded in the bound computation
since 25 − 4 ∗ 13 ≤ 0. The computed bound is 35 + 8 = 43. The reasoning is
similar for item 5. If we consider the option of taking this item, then the expected
profit is r5 = 25− 2 ∗ (30− 22−13) = 15, there is no more residual capacity and
item 1 is therefore excluded in the bound computation since 10− 4 ∗ 9 ≤ 0. The
computed bound is 35 + 15 = 50. Assume now that the current best solution
has a value of 46, corresponding to a knapsack that contains elements 3, 4 and
5: then element 1 can be excluded from the knapsack.

Obviously, as discussed in [7] the information provided by the relaxed model
(EV(P)), i.e. expected weights, gradient function etc., can be also used to define
search strategies. For instance in SSKP we may branch on variables according to
a decreasing profit over expected weight heuristic, or selecting the one for which
the chosen gradient function gives the most promising value.

4.4 Finding Good Feasible Solutions

In CP, it is critical, in order to achieve efficiency, to quickly obtain a good feasible
solution so that cost-based filtering can prune provably suboptimal nodes as early
as possible. In Stochastic COPs the EV(P) solution can be often used as a good
starting solution in the search process. If such a solution is feasible with respect
to RP(P) — in our examples assumption (ii) guarantees this — we can easily
compute EEV(P), that is the expected result of using the EV(P) solution in
the recourse problem RP(P). Furthermore, at every node of the search tree it is
possible to adopt a variable fixing strategy and compute the EV(P) solution with
respect to such a node, that is the best possible EV(P) solution incorporating the
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partial decisions represented by the given node of the search tree. This provides
a full assignment for decision variables in RP(P) at each point of the search. By
using this assignment, we can again easily compute EEV(P). In this case EEV(P)
is the cost of a feasible, and possibly good, solution for RP(P) incorporating the
partial assignment identified by the current node explored in the search tree.

Example 5. In our SSKP example the solution of the expected value problem,
EV(SSKP), selects items 3, 4 and 5 in the optimum knapsack. This solution
is clearly feasible for RP(SSKP). We can therefore compute EEV(SSKP)= 46.
This is, of course, a good lower bound for the objective function value.

5 Experimental Results

In this section we report our computational experience on two one-stage stochas-
tic COPs, the SSKP and the Stochastic Sequencing with Release Times and
Deadlines (SSEQ). In our experiments we used Choco 1.2, an open source solver
written in Java [14]. We ran our experiments on an Intel(R) Centrino(TM) CPU
1.50GHz with 2Gb of RAM.

5.1 Static Stochastic Knapsack Problem

We created a Choco CP model for DetEquiv(RP(SSKP)), and we implemented
for it a global optimization chance-constraint incorporating the filtering dis-
cussed in the former sections. To recall, within this constraint at each node of
the search tree the stochastic variables are replaced by their respective expected
values. Then, after fixing decision variables according to the partial solution as-
sociated with the given search tree node, EV(SSKP) is solved and the bound
obtained is used to prune suboptimal parts of the search tree. Furthermore cost-
based filtering is performed as explained in Section 4.3. Finally EEV(P), the
expected result of using the EV(P) solution in the recourse problem, is computed
at each node of the search tree and used as a valid lower bound (profit of a
feasible solution). In fact RP(SSKP) satisfies assumption (ii) for Proposition 1,
therefore the solution of EV(SSKP) is feasible for RP(SSKP).

In our experiments we adopted a randomly generated test bed similar to the
one proposed in [12]. There are three sets of instances considered: the first set
has k = 10, the second set has k = 15 and the third has k = 20 items. For
all the instances, item random weights, Wi, from which scenarios are generated,
are independent and normally distributed with probability distribution function
N(μi, σi). The expected weights, μi, are generated from the uniform (20,30)
distribution, and the weight standard deviations, σi, are generated from the
uniform (5,10) distribution. Rewards ri are generated from the uniform (10,20)
distribution. The per unit penalty is c = 4, while the available low cost capacity
is q = 250 for 20 items, q = 187 for 15 items, and q = 125 for 10 items. We
randomly generated, using simple random sampling, sets of scenarios having
different sizes: {100, 300, 500, 1000}. Scenarios are equally likely. The variable
selection heuristic branches first on items with lower profit over expected weight
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Table 1. Experimental results for SSKP. Comparison between a pure SCP approach
(SCP) and an SCP model enhanced with optimization-oriented global-chance con-
straints (SCP-OO), times are in seconds. In each line we indicated in bold the best
performance in terms of run time and explored nodes.

Instance Time Nodes
k Scenarios SCP SCP-OO SCP SCP-OO
10 100 0.4 0.5 916 100
10 300 1.3 0.5 2630 59
10 500 2.4 0.2 4237 8
10 1000 7.2 2.4 6227 120
15 100 2.5 0.3 4577 11
15 300 15 2.3 10408 252
15 500 33 1.1 9982 75
15 1000 150 6.3 16957 222
20 100 70 10 102878 1024
20 300 250 13 85073 953
20 500 860 9.5 129715 225
20 1000 3200 240 134230 7962

ratio. The value selection tries first not to insert an item into the knapsack.
In Table 1 we report our computational results. In all the instances considered
our approach outperforms a pure SCP model in terms of explored nodes: the
maximum improvement reaches a factor of 576.5. Run times are also shorter
in our approach for almost all the instances. An exception is observed for the
smallest instance, where the cost of filtering domains is not compensated by
the payoff in terms of reduction of the search space. The maximum speed-up
observed for run times reaches a factor of 90.5.

5.2 Stochastic Sequencing with Release Times and Deadlines

We consider a specific sequencing problem similar to the one considered by
Hooker et. al [9]. Garey and Johnson [8] also mention this problem in their
list of NP-hard problems and they refer to it as “Sequencing with Release Times
and Deadlines” (SSEQ). An optimization version of this scheduling problem was
also described in [10]. The problem consists in finding a feasible schedule to pro-
cess a set I of k orders (or jobs) using a set M of n parallel machines. Processing
an order i ∈ I can only begin after the release date ri and must be completed
at the latest by the due date di. Order i can be processed on any of the ma-
chines. The processing time of order i ∈ I on machine m ∈ M is Pim. The model
just described is fully deterministic, but we will now consider a generalization
of this problem to the case where some inputs are uncertain. For convenience
we will just consider uncertain processing times Pim for order i ∈ I on machine
m ∈ M . Instead of simply finding a feasible plan we now aim to minimize the
expected total tardiness of the plan (the deterministic version of this problem is
known as “Sequencing to minimize weighted tardiness” [8] and it is NP-hard). A
solution for our SSEQ problem consists in an assignment for the jobs on the ma-
chines and in a total order between jobs on the same machine. In such a plan, a
job will be processed on its release date if no other previous job is still processing,



246 R. Rossi et al.

Objective:

min
nPk

i=1 E [Ci − di]
+

o
Constraints:
(1) Sab + Sba ≤ 1 ∀a, b ∈ 1, . . . , k, a 	= b
(2) Xam + Xbm ≤ Sab + Sba + 1 ∀a, b ∈ 1, . . . , k, a 	= b, ∀m ∈ 1, . . . , n
(3)

Pn
m=1 Xim = 1 ∀i ∈ 1, . . . , k

(4) Ci − Pn
m=1 PimXim ≥ ri ∀i ∈ 1, . . . , k

(5) Sab = 1 → Cb ≥ Ca +
Pn

m=1 PbmXbm ∀a, b ∈ 1, . . . , k, a 	= b
Decision variables:
(6) Xim ∈ {0, 1} ∀i ∈ 1, . . . , k, ∀m ∈ 1, . . . , n
(7) Sab ∈ {0, 1} ∀a, b ∈ 1, . . . , k, a 	= b
Stochastic variables:
Pim: processing time of job i on machine m
Auxiliary variables:
Ci: stochastic completion time of job i.

Fig. 3. RP(SSEQ). Note that [y]+ = max{y, 0}. E denotes the expectation operator.

or as soon as the previous job terminates. The recourse problem RP(SSEQ) can
be formulated as a one-stage Stochastic COP. This is shown in Fig. 3.

Decision variable Xim takes value 1 iff job i is processed on machine m,
decision variable Sab takes value 1 iff job a is processed before job b. Con-
straints (1) and (2) enforce a total order among jobs on the same machine.
Constraint (3) enforces that each job must be processed on one and only one
machine. Constraint (4) states that the (stochastic) completion time, Ci, of a job
i minus its (stochastic) duration Pim on the machine on which it is processed
must be greater than or equal to its release date ri, where Ci is an auxiliary
variable used for simplifying notation. Let Im ≡ {J1m,J2m, . . . ,Jqm} ⊆ I be
the ordered set of jobs assigned to machine m. CJqm is defined recursively as
CJqm = max{rJqm , CJ(q−1)m}+PJqmm, and CJ0m = 0. Constraint (5) states that
if two jobs a and b are processed on the same machine and if a is processed
before b, that is Sab = 1, then the (stochastic) completion time of job a plus
the (stochastic) duration of job b on the machine on which it is processed must
be less than or equal to the (stochastic) completion time of job b. Finally, the
objective function minimizes the sum of the expected tardiness of each job. The
tardiness is defined as max{0, Ci − di}. The cost function to be minimized can
easily be proved convex in the random job durations. The expected total tar-
diness is in fact minimized for n machines. Job completion times on different
machines are independent, therefore if we prove convexity for machine m ∈ M ,
then it directly follows that the cost function of the problem is also convex4. The
cost function for machine m can be expressed as E

[∑

i∈Im
(Ci − di)+

]

.

Lemma 2. The expected total tardiness for machine m is convex in the uncer-
tain processing times Pim.

Proof. Maximum of convex functions is convex. CJ1m = rJ1m +PJ1mm is convex:
it follows that Ci for any i ∈ Im is convex, since function “max” is a convex
function. Therefore the objective function is convex.

4 Note that the sum of convex functions is convex [5].
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Objective:

min
nPk

i=1
Pw

v=1 Pr{w} [Cv
i − di]

+
o

Constraints:
(1) Sab + Sba ≤ 1 ∀a, b ∈ 1, . . . , k, a 	= b
(2) Xam + Xbm ≤ Sab + Sba + 1 ∀a, b ∈ 1, . . . , k, a 	= b, ∀m ∈ 1, . . . , n
(3)

Pn
m=1 Xim = 1 ∀i ∈ 1, . . . , k

and ∀v ∈ 1, . . . , w
(4) Cv

i − Pn
m=1 Pv

imxim ≥ ri ∀i ∈ 1, . . . , k
(5) Sab = 1 → Cv

b ≥ Cv
a +

Pn
m=1 Pv

bmXbm ∀a, b ∈ 1, . . . , k, a 	= b
Decision variables:
(6) Xim ∈ {0, 1} ∀i ∈ 1, . . . , k, ∀m ∈ 1, . . . , n
(7) Sab ∈ {0, 1} ∀a, b ∈ 1, . . . , k, a 	= b
(8) Cv

i ∈ {0, maxi=1,...,k ri+Pk
t=1(maxm=1,...,n πv

tm)} ∀i ∈ 1, . . . , k, ∀v ∈ 1, . . . , w

Fig. 4. DetEquiv(RP(SSEQ)). Note that [y]+ = max{y, 0}. Pr{v} is the probability of
scenario v ∈ {1, . . . , w}. Note that

Pw
v=1 Pr{v} = 1.

In RP(SSEQ) a feasible solution can be found for any given set of stochastic job
lengths, therefore both the assumptions are satisfied for this problem. We hand-
crafted a deterministic equivalent model DetEquiv(RP(SSEQ)) shown in Fig. 4
for the RP(SSEQ) following the guidelines of scenario-based approach described
in [18]. In this model, Pv

im is the deterministic length of job i on machine m in
scenario v and Cv

i is the deterministic completion time of job i in scenario v.
Finally, as discussed for SSKP, we can obtain the expected value problem

EV(SSEQ) by replacing every stochastic variable Pim in RP(SSEQ) with the
respective expected value E[Pim]. Since all the chance-constraints in RP(SSEQ)
are “hard”, they are retained in EV(SSEQ) and they become deterministic.

We implemented DetEquiv(RP(SSEQ)) in Choco and we coded an
optimization-oriented global chance-constraint which exploits the expected value
problem both in order to generate valid bounds at each node of the search tree
and to filter provably suboptimal values from decision variable domains. At each
node of the search tree, we consider the associated partial assignment for deci-
sion variables Xim and Sab and we fix decision variables in EV(SSEQ) according
to it. Then we solve EV(SSEQ) with respect to the remaining decision variables
that have not been assigned. This provides a lower bound for the cost of a locally
optimal solution associated with the node considered. This bound can be used
for pruning suboptimal nodes. Furthermore at any given node, after performing
variable fixing in EV(SSEQ) for every variable Xim and Sab already assigned,
all the remaining binary variables Xim that have not been assigned yet can be
forward checked by fixing the respective value to 1, by solving EV(SSEQ) with
this new decision fixed, and by employing the new bound provided.

In order to generate instances for our experiments, we adopted release times,
deadlines and deterministic processing times from the first two “hard” instances
proposed in [9], the one with 3 jobs and 2 machines and the one with 7 jobs and 3
machines. In each scenario, we generated processing times uniformly distributed
in [1, 2 ∗ Jim], where Jim is the deterministic processing time required for job
i on machine m for the instance considered. We considered different number of
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Table 2. Experimental Results for SSEQ. Comparison between a pure SCP approach
(SCP) and an SCP model enhanced with optimization-oriented global-chance con-
straints (SCP-OO), times are in seconds. In each line we indicated in bold the best
performance in terms of run time and explored nodes.

Instance Time Nodes
Jobs Machines Scenarios SCP SCP-OO SCP SCP-OO
3 2 10 0.3 0.3 203 48
3 2 30 1.3 0.6 701 133
3 2 50 3.2 1.1 927 418
3 2 100 12 3.5 1809 838
7 3 10 180 866 57688 1723
7 3 30 1800 880 186257 5293
7 3 50 3300 1100 212887 6586
7 3 100 14000 1200 277804 8862

scenarios in {10, 30, 50, 100}. Scenarios are equally likely in terms of probability.
The variable selection heuristic branches first on binary decision variables. The
value selection tries increasing values in the domain. In Table 2 we report the
results observed with and without the improvement brought by our cost-based
filtering approach.

It should be noted that in this case, in contrast to the approach employed for
SSKP, we only relax stochastic variables and we do not employ a relaxation for
the deterministic equivalent problem, which therefore remains NP-hard. Recall
that in SSKP we adopted Dantzig’s relaxation to efficiently obtain a bound
for the deterministic equivalent problem. A direct consequence of this is that,
while in the SSKP example the improvement is significant both in terms of
explored nodes and run times for all the instances, in this example the run time
improvement starts to be significant (a factor of 11.6) only for the largest instance
(7 jobs and 3 machines) and for a high number of scenarios (100 scenarios). This
is due to the fact that at every node of the search tree we solve a difficult
problem (though far easier than the original stochastic constraint program) to
obtain bounds and perform cost-based filtering. In terms of explored nodes,
however, we obtain a significant improvement for every instance — the maximum
improvement factor is of 32.3 — since the bounds generated are tight.

6 Related Work

This paper extends the original work by Focacci et al. [7] on optimization-
oriented global constraints. It also extends the original idea of global chance-
constraints [16] to optimization problems. It should be noted that dedicated
cost-based filtering techniques for stochastic combinatorial optimization prob-
lems have been presented in [17], but these techniques are specialized for in-
ventory control problems, while those here presented can be applied to a wider
class of stochastic constraint programs. On the other hand this work also builds
on known inequalities borrowed from Stochastic Programming [2,4] usually ex-
ploited for relaxing specific classes of stochastic programs and obtaining good
bounds or approximate solutions. Nevertheless Stochastic Programming models
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are typically formulated as dynamic programs or MIP models. In both cases
these bounds are not exploited for filtering decision variable domains as in our
approach and they cannot be used for guiding the search.

7 Conclusions

We proposed a novel strategy to performing cost-based filtering for certain classes
of stochastic constraint programs, under the assumptions that (i) the objec-
tive function is concave or convex in the stochastic variables, and (ii) the exis-
tence of a feasible solution is not affected by the distribution of the stochastic
variables. This strategy is based on a known inequality borrowed from Stochas-
tic Programming. We applied this technique to two combinatorial optimiza-
tion problem involving uncertainty from the literature. Our results confirm that
orders-of-magnitude improvements in terms of explored nodes and run times can
be achieved. In the future, we aim to apply cost-based filtering to multi-stage
Stochastic COPs, define strategies to handle generic chance-constraints, which
are currently ruled out by our assumptions, and to extend the approach to other
valid inequalities such as Edmundson-Madansky [4] or to suitable inequalities for
non-convex problems [13]. Finally, we plan to exploit the information provided
by optimization-oriented global chance-constraints to define search strategies.
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Abstract. Noisy fitness functions occur in many practical applications
of evolutionary computation. A standard technique for solving these
problems is fitness resampling but this may be inefficient or need a
large population, and combined with elitism it may overvalue chromo-
somes or reduce genetic diversity. We describe a simple new resampling
technique called Greedy Average Sampling for steady-state genetic algo-
rithms such as GENITOR. It requires an extra runtime parameter to be
tuned, but does not need a large population or assumptions on noise dis-
tributions. In experiments on a well-known Inventory Control problem it
performed a large number of samples on the best chromosomes yet only
a small number on average, and was more effective than four other tested
techniques.

1 Introduction

In many real-world applications of Genetic Algorithms (GAs) and other Evo-
lutionary Computation algorithms, the fitness function is noisy: that is, the
fitness of a chromosome cannot be computed directly but must be averaged over
a number of samples. Examples include the learning of randomised games such as
Backgammon, human-computer interaction, and simulation problems for which
we wish to evolve a robust plan. The standard deviation of the sample mean of
a random variable with standard deviation σ is σ/

√
n where n is the number

of samples, so a large number of samples may be needed for very noisy fitness
functions.

Several techniques for handling fitness noise in EAs are surveyed in [4,13]:
the use of sampling to obtain an average fitness reduces noise; increasing the
population size makes it harder for an unfit chromosome to displace a fitter one
� S.A. Tarim and B. Hnich are supported by the Scientific and Technological Research

Council of Turkey (TUBITAK) under Grant No. SOBAG-108K027. R. Rossi is sup-
ported by Science Foundation Ireland under Grant No. 03/CE3/I405 as part of the
Centre for Telecommunications Value-Chain-Driven Research (CTVR) and Grant
No. 05/IN/I886.

G. Rudolph et al. (Eds.): PPSN X, LNCS 5199, pp. 559–568, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



560 S. Prestwich et al.

(a point also made by [10]) and can be viewed as a form of implicit averaging;
and rescaled mutation samples distant points in the search space then moves
a small distance toward them. [5] propose regression to estimate the fitness of
neighbouring chromosomes. [1] vary sample rates across both chromosomes and
generations in a generational GA. [18] record fitness levels in a search history, and
use a stochastic model of fitness levels to locate new points in the search space.
[3] use a threshold selection heuristic for accepting chromosomes. [17] adapt
the sampling rate to different regions of the search space, a technique they call
dynamic resampling. [19] use a Bayesian approach to sampling called Optimal
Computing Budget Allocation, which assumes normally distributed noise.

A popular approach is to use a Noisy Genetic Algorithm (NGA) which com-
putes the fitness of each chromosome by averaging over a number of samples
[9,11,14,15]. Following [1] we shall refer to this as static sampling, and refer to
this algorithm as NGAs. NGAs wastes considerable time evaluating unpromising
chromosomes, but it can be improved by linearly increasing the number of samples
with search time, starting from a low value [21,27]. We shall refer to this as incre-
mental sampling and the resulting algorithm as NGAi. However, though NGAs
and NGAi have been used to solve real problems, they may not be the most effi-
cient approach. It is pointed out in [22] that a reduction in noise is not necessary
for every chromosome, only for the best ones. Of course, this entails discovering
which are the best chromosomes without performing a large number of samples,
but poor chromosomes might become apparent after just a few samples.

An alternative technique is to resample chromosome fitness: that is, some
chromosomes are allowed to survive for more than one generation, and their
fitness is periodically recomputed to refine the estimate. Various heuristics may
be used to decide when to discard a chromosome. [22] experiments with aver-
aging over a small number of samples, and guiding resampling by a statistical
test which assumes Gaussian noise but is considered to be robust under non-
Gaussian noise. [12] uses the standard deviation of the fitness to correct for
its noise, again under assumptions on noise distribution. Resampling and the
common heuristic of elitism do not always combine well. [6] show that, with
an elitist GA, the probabilistic method of [12] is inferior to a resampling ap-
proach. [2] show that, in Evolutionary Strategies that allow fitness values to
survive for more than one generation, failure to resample can lead to systematic
overvaluation of chromosomes. [8] found that, when applying co-evolutionary
learning to the noisy task of learning how to play Backgammon, more sampling
can have a bad effect on the learning besides incurring overhead. It causes less
fit chromosomes to be pruned more quickly which reduces genetic diversity too
drastically, especially with small populations. Despite these drawbacks, resam-
pling and elitism have been successfully combined. [25] describe an extension of
the Simple (generational) GA that maintains a list of the fittest solutions found
so far, while increasing the number of samples as search proceeds as in NGAi;
they also increase the population size during search.

Another successful resampling elitist GA is the Kalman-extended Genetic Al-
gorithm (KGA) [23], designed for problems whose fitness is both noisy and
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nonstationary. It adapts its sampling rate for each chromosome individually,
based on techniques from Kalman filtering. Removing the nonstationary aspects
of KGA yields a steady-state algorithm that evaluates the fitness of each new
chromosome just once before adding it to the population, then replaces the
least-fit population member by the new chromosome. Alternate iterations are
devoted to resampling chromosomes that are already in the population. The
current fitness estimate of a chromosome is the mean over all its samples. In
KGA a chromosome is selected for resampling according to its current fitness
estimate and how many times it has already been sampled (which is a measure
of the fitness uncertainty): choose the chromosome with fewest samples, among
those whose fitness estimates are greater than the population fitness mean minus
the population fitness standard deviation. The intuition behind this approach is
that unfit chromosomes with high fitness estimate based on only a few samples
will be resampled, and their low fitness will become apparent. We shall refer to
this as Kalman sampling.

In this paper we investigate resampling strategies for the steady-state (there-
fore elitist) GENITOR algorithm [26]. Our aim is to find a simple resampling
strategy that can be used with a steady-state GA, does not assume any noise
properties, does not require a large population, resamples fit chromosomes many
times to avoid overvaluation, yet on average uses only a few samples per chromo-
some. We find it necessary to introduce a new runtime parameter that requires
manual tuning, but this might be automated in future work. We demonstrate our
technique on a well-known problem from Inventory Control. Section 2 describes
our algorithm, Section 3 describes the problem we attempt to solve, Section 4
presents experimental results, and Section 5 concludes the paper.

2 The Algorithm

We use a single GA in our experiments: a basic version of GENITOR [26] without
refinements such as a gene to determine crossover probability. GENITOR is a
steady-state GA that, at each iteration, selects two parent chromosomes, breeds
a single offspring by (optional) crossover followed by mutation, evaluates it, and
uses it to replace the least-fit member of the population. We use random parent
selection, and standard uniform crossover applied with a crossover probability
0.5: if it is not applied then a single parent is selected and mutated. In our
problem (described below) each gene can take any of 100 integer values, plus
a special value denoted by NULL. Because of the special nature of the NULL
value we select it with probability 0.5, otherwise randomly select one of the
100 integer values. Mutation is applied to a chromosome once with probability
0.5, twice with probability 0.25, three times with probability 0.125, and so on.
A small population of size 30 is used. We assume that at least U samples are
required to obtain a sufficiently reliable fitness estimate, and in experiments
we will use the large value U = 1000. Thus we face the challenge of sampling
effectively without incurring the drawbacks described above: inefficiency, lack of
genetic diversity, or overvaluation, while using only a small population.
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This is our basic GA but we have yet to specify a sampling strategy to cope
with fitness noise. We will compare five resampling strategies, three of which are
well-known: static sampling (as in NGAs) in which we take U samples for each
chromosome, incremental sampling (as in NGAs) in which we take a variable num-
ber of samples per chromosome that linearly increases from 1 to U during the GA
execution, and Kalman sampling (as in KGA). The other two strategies are new.

Our first new strategy tries to combine the rapid convergence of Kalman
sampling with the reliability of static sampling. It applies Kalman sampling but
with a number S ≥ 1 of samples to initialise and resample chromosomes, with
the best value of S to be determined by experiment. We shall refer to this as
Kalman averaged sampling and our GA with this sampling scheme as KASGA.
It is inspired by a note in [1] stating that if the fitness variance in the population
is small compared to the noise variance then a GA will make no progress, and
it becomes necessary to increase the sample rate. It is also inspired by the use
of a small number of samples for evolutionary algorithms in [22].

Our second new strategy also takes S samples each time a chromosome is
selected for (re)sampling, but it resamples the chromosome with highest fitness,
ignoring chromosomes that already have U samples. Note that if S < U then
there is always at least one chromosome with fewer than U samples: the most
recently created chromosome, which only has S samples. Note also that we nor-
mally choose S to be a divisor of U to avoid unnecessary resampling, but this is
not strictly required. We shall call this scheme greedy averaged sampling because
it greedily resamples the most promising chromosome, based on current fitness
estimates. Combining this with the GA we obtain a new algorithm we shall call
the Greedy Average Sample GA (GASGA). This is our main contribution and
it is summarised in Figure 1.

GASGA(S, P, U)
create population of size P
evaluate population using S samples
while not(termination condition)
select two parents
breed one offspring O
evaluate O using S samples
replace least-fit chromosome by O
select fittest chromosome F with #samples< U
re-evaluate F using S samples

output fittest chromosome

Fig. 1. GASGA pseudo-code

3 An Inventory Control Problem with Uncertainty

The problem we consider is as follows. Given a planning horizon of N periods and
a demand for each period t ∈ {1, . . . , N}, which is a random variable with a given
probability density function; we assume that these distributions are normal,
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though this is not required by our GA. Demands occur instantaneously at the
beginning of each time period and are non-stationary (can vary from period to
period), and demands in different periods are independent. A fixed delivery cost
a is incurred for each order, a linear holding cost h is incurred for each product
unit carried in stock from one period to the next, and a linear stockout cost s is
incurred for each period in which the net inventory is negative (it is not possible
to sell back excess items to the vendor at the end of a period). The aim is to find
a replenishment plan that minimizes the expected total cost over the planning
horizon.

Different inventory control policies can be adopted to cope with this and
other problems. A policy states the rules used to decide when orders are to
be placed and how to compute the replenishment lot-size for each order. (The
term policy here refers to the form of the plan, whereas in some fields such as
Artificial Intelligence a policy refers to an actual plan. We use the term in both
senses, and the meaning should be clear from the context.) One possibility is the
replenishment cycle policy (R, S) [20]. With non-stationary demands this policy
takes the form (Rn, Sn) where Rn denotes the length of the nth replenishment
cycle and Sn the order-up-to-level for replenishment. In this policy a wait-and-
see strategy is adopted, under which the actual order quantity for replenishment
cycle n is determined only after the demand in former periods has been realized.
The order quantity is computed as the amount of stock required to raise the
closing inventory level of replenishment cycle n − 1 up to level Sn. To provide
a solution we must populate both the sets Rn and Sn for n = {1, . . . , N}. The
(R, S) policy yields plans of higher cost than optimal but has been formulated
to reduce nervousness in inventory control, and is more often used in practice.

There are more efficient algorithms which are guaranteed to yield optimal poli-
cies (under reasonable simplifying assumptions) so a GA would not be applied
to precisely this problem in practice. However, if we complicate the problem in
simple but realistic ways, for example by adding order capacity constraints or
dropping the assumption of independent demands, these efficient algorithms be-
come unusable. In contrast, a GA can be used almost without modification. Thus
the problem is useful as a representative of a family of more complex problems.

The replenishment cycle policy can be modelled as follows. Each chromosome
represents a single policy, each gene corresponds to a period n, an allele specifies
the order-up-to level or the lack of an order (denoted here by the special value
NULL) for that period, and a chromosome’s fitness is the inverse of the total cost
incurred by the policy that it represents. For our experiments we allow 100 differ-
ent order-up-to levels, linearly spaced in the range 1–300. Thus each gene has 101
alleles. These parameters were chosen as suitable for the instances we tested.

4 Experiments

We obtained results using several problem parameter settings, and in each case
found the same relationships between the algorithms. For this reason, and be-
cause of limited space, we present results for only one instance: 100 periods,
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stationary demands with mean 50 and standard deviation 10 in all periods, and
cost parameters h = 1, a = 400 and s = 10. Problems with 100 periods are very
hard: none of the methods we test can find the optimal policy within several
hours (nor did attempts using Mixed Integer Programming and Reinforcement
Learning algorithms). The optimal policy has an expected total cost of 19,561
with replenishment every 4 periods (starting from the first period) and order-
up-to levels of 205 deduced from the cyclic nature of the problem (which is not
exploited by the algorithms we test).

We will compare several GAs using three metrics: the fitness of the selected
chromosome, the reliability of the selected chromosome measured by the number
of samples used to compute the fitness, and the wastefulness of the GA mea-
sured by the number of samples used to estimate the fitness of discarded chro-
mosomes. Almost every chromosome is discarded at some point during search,
so the wastefulness is an approximation to the average number of samples used
per chromosome. Ideally we aim for a GA with high fitness and reliability, but
low wastefulness. In our experiments we aim for a reliability of U = 1000. The
results are shown in Figure 2.

The fitness graph also shows results for the SARSA(λ) Reinforcement Learn-
ing algorithm [24] for comparison, as the problem can be modelled as an episodic
Partially Observable Markov Decision Process in which a state is the period, an
action is either the choice of an order-up-to level or the lack of an order (NULL)
in a period, and a reward (undiscounted) is minus the total cost incurred in a pe-
riod. We use an ε-greedy heuristic, varying ε inversely with time as recommended
in [24], and tuning the α, λ parameters by the common method of hill-climbing
in parameter space. All state-action values were initialised to 0, as the use of
optimistic initial values encourages early exploration [24].

Because there is a range of Pareto-optimal solutions among the chromosomes
of a GA, varying from high fitness based on few samples to low fitness based on
many samples, we have a problem: how should different GAs be compared? We
are interested in fit solutions based on many samples, so for each GA we shall
select the chromosome with the greatest value of samples/cost. The results are
as follows.

The graphs show that NGAs has high reliability, but it converges quite slowly
and has high wastefulness as it uses exactly 1000 samples for every chromosome.
NGAi has much better fitness than NGAs. It reaches this fitness rapidly but
then make little further progress, perhaps because of its increasing wastefulness.
However, it achieves NGAs’s reliability by the end of the run, and only matches
its wastefulness by the end of the run. Note that the reliability does not quite
reach 1000 samples: there is a delay between (i) increasing the number of sam-
ples to a given number, and (ii) obtaining a chromosome whose fitness is both
high and based on that number of samples. This delay would not occur in a
generational GA, in which no chromosome survives to the next generation. We
should perhaps use a generational GA to evaluate incremental sampling, as this
was the form of GA used in the Noisy GA work, but in this paper our aim is to
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compare several sampling techniques on the same (steady-state) GA. However,
a generational GA will presumably exhibit similar wastefulness.

KGA has excellent fitness but very low reliability. Though KGA has given
good results on other problems, here no chromosome survives long enough to
achieve a sufficient number of samples. This is caused by the high fitness noise
in our problem: as chromosomes are resampled their estimated fitnesses fluctuate
significantly, and over many iterations the fittest chromosome is not much more
likely to survive than any other. Our problem is very noisy, with the fitness
standard deviation not much less than the mean, and KGA seems unsuitable for
such problems. KASGA is a marked improvement over KGA. Increasing S until
the reliability is approximately 1000 samples, we reach a value S = 250. The
graphs show that KASGA has better fitness than NGAs but no other algorithm,
probably because of its fairly high wastefulness (approximately 400 samples per
chromosome). But it does have high reliability, making it more usable than KGA.

GASGA outperforms KASGA and the other algorithms. Again increasing S
until reliability is approximately 1000, this time we reach a value of only S = 25.
The graphs show that GASGA has higher fitness than any other GA (other than
KGA). GASGA is also less wasteful than any other GA (other than the unreliable
KGA): though it finds high-fitness solutions using 1000 samples, it uses only 39
samples per chromosome on average. This is exactly what we aimed for: a GA
that achieves high fitness and reliability but low wastefulness.

As noted above, in further experiments using different problem parameters
we obtained the same relationships among the GAs. The only difference was the
SARSA(λ) result: on this instance it found a solution that was approximately as
good as that found by GASGA, on others it found better solutions, and on others
it found worse solutions. This illustrates the known fact that Reinforcement
Learning and Evolutionary Computation are rival approaches to some problems,
and neither dominates the other over all instances [16].

GASGA should find application to many problems with noisy fitness func-
tions. The required number of samples can be chosen by considering the required
solution accuracy and the observed variance in solution fitness. Parameter S
must currently be tuned by hand: too small a value causes GASGA to behave
like KGA, and it never obtains a reliable solution; too large a value causes it to
behave like NGA, and it converges slowly. We tried automating S by maintain-
ing it at a level that only just generates a chromosome with 1000 samples, but
this forced it to a higher value than necessary (over 100); automation of S is a
topic for future work.

5 Conclusion

We designed a simple new resampling strategy for steady-state GAs that makes
no assumptions about fitness noise distributions (though problems with different
distributions will probably require the parameter values to be tuned differently),
does not require a large population, provides a high level of reliability, yet takes
a low number of samples on average. Incorporated into GENITOR and applied
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to a problem from classical Inventory Control, it gave better results than four
other sampling strategies. In future work we will evaluate GASGA on other
problems with noisy fitness functions such as perception [7], image registration
[9,15], network design [27] and remediation design [11].

None of the algorithms we tested are able to find optimal policies for the
inventory problem so it is a challenging benchmark for Evolutionary Computa-
tion, and in further experiments we also found it to be hard for Reinforcement
Learning and Mixed Integer Programming. This makes it an interesting bench-
mark despite its simplicity, and in future work we will add features such as order
capacity constraints.
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Abstract. Reinforcement Learning algorithms such as SARSA with an eligi-
bility trace, and Evolutionary Computation methods such as genetic algorithms,
are competing approaches to solving Partially Observable Markov Decision Pro-
cesses (POMDPs) which occur in many fields of Artificial Intelligence. A pow-
erful form of evolutionary algorithm that has not previously been applied to
POMDPs is the cultural algorithm, in which evolving agents share knowledge
in a belief space that is used to guide their evolution. We describe a cultural algo-
rithm for POMDPs that hybridises SARSA with a noisy genetic algorithm, and
inherits the latter’s convergence properties. Its belief space is a common set of
state-action values that are updated during genetic exploration, and conversely
used to modify chromosomes. We use it to solve problems from stochastic in-
ventory control by finding memoryless policies for nondeterministic POMDPs.
Neither SARSA nor the genetic algorithm dominates the other on these prob-
lems, but the cultural algorithm outperforms the genetic algorithm, and on highly
non-Markovian instances also outperforms SARSA.

1 Introduction

Reinforcement Learning and Evolutionary Computation are competing approaches to
solving Partially Observable Markov Decision Processes, which occur in many fields
of Artificial Intelligence. In this paper we describe a new hybrid of the two approaches,
and apply it to problems in stochastic inventory control. The remainder of this section
provides some necessary background information. Section 2 describes our general ap-
proach, an instantiation, and convergence results. Section 3 describes and models the
problems. Section 4 presents experimental results. Section 5 concludes the paper.

1.1 POMDPs

Markov Decision Processes (MDPs) can model sequential decision-making in situa-
tions where outcomes are partly random and partly under the control of the agent. The
states of an MDP possess the Markov property: if the current state of the MDP at time t
is known, transitions to a new state at time t + 1 are independent of all previous states.
MDPs can be solved in polynomial time (in the size of their state-space) by modelling
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them as linear programs, though the order of the polynomials is large enough to make
them difficult to solve in practice [14]. If the Markov property is removed then we obtain
a Partially Observable Markov Decision Process (POMDP) which in general is compu-
tationally intractable. This situation arises in many applications and can be caused by
partial knowledge: for example a robot must often navigate using only partial knowl-
edge of its environment. Machine maintenance and planning under uncertainty can also
be modelled as POMDPs.

Formally, a POMDP is a tuple 〈S, A, T, R, O, Ω〉 where S is a set of states, A a set of
actions, Ω a set of observations, R : S×A → � a reward function, T : S×A → Π(S) a
transition function, and Π(·) represents the set of discrete probability distributions over
a finite set. In each time period t the environment is in some state s ∈ S and the agent
takes an action a ∈ A, which causes a transition to state s′ with probability P (s′|s, a),
yielding an immediate reward given by R and having an effect on the environment given
by T . The agent’s decision are based on its observations given by O : S ×A → Π(Ω).

When solving a POMDP the aim is to find a policy: a strategy for selecting actions
based on observations that maximises a function of the rewards, for example the total
reward. A policy is a function that maps the agent’s observation history and its current
internal state to an action. A policy may also be deterministic or probabilistic: a deter-
ministic policy consistently chooses the same action when faced with the same informa-
tion, while a probabilistic policy might not. A memoryless (or reactive) policy returns
an action based solely on the current observation. The problem of finding a memoryless
policy for a POMDP is NP-complete and exact algorithms are very inefficient [12] but
there are good inexact methods, some of which we now describe.

1.2 Reinforcement Learning Methods

Temporal difference learning algorithms such as Q-Learning [32] and SARSA [25]
from Reinforcement Learning (RL) are a standard way of finding good policies. While
performing Monte Carlo-like simulations they compute a state-action value function
Q : S×A → � which estimates the expected total reward for taking a given action from
a given state. (Some RL algorithms compute instead a state value function V : S → �.)

The SARSA algorithm is shown in Figure 1. An episode is a sequence of states and
actions with a first and last state that occur naturally in the problem. On taking an action
that leads to a new state, the value of the new state is “backed up” to the state just left
(see line 8) by a process called bootstrapping. This propagates the effects of later actions
to earlier states and is a strength of RL algorithms. (The value γ is a discounting factor
often used for non-episodic tasks that is not relevant for our application below: we
set γ = 1.) A common behaviour policy is ε-greedy action selection: with probability
ε choose a random action, otherwise with probability 1 − ε choose the action with
highest Q(s, a) value. After a number of episodes the state-action values Q(s, a) are
fixed and (if the algorithm converged correctly) describe an optimum policy: from each
state choose the action with highest Q(s, a) value. The name SARSA derives from the
tuple (s, a, r, s′, a′).

RL algorithms have convergence proofs that rely on the Markov property but for
some non-Markovian applications they still perform well, especially when augmented
with an eligibility trace [10,16] that effectively hybridises them with a Monte Carlo
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1 initialise the Q(s, a) arbitrarily
2 repeat for each episode
3 ( s ← initial state
4 choose action a from s using a behaviour policy
5 repeat for each step of the episode
6 ( take action a and observe r, s′

7 choose action a′ from s′ using a behaviour policy
8 Q(s, a) ← Q(s, a) + α [r + γQ(s′, a′) − Q(s, a)]
9 s ← s′, a ← a′

10 )
11 )

Fig. 1. The SARSA algorithm

algorithm. We will use a well-known example of such an algorithm: SARSA(λ) [25].
When the parameter λ is 0 SARSA(λ) is equivalent to SARSA, when it is 1 it is equiva-
lent to a Monte Carlo algorithm, and with an intermediate value it is a hybrid and often
gives better results than either. Setting λ > 0 boosts bootstrapping by causing values
to be backed up to states before the previous one. (See [30] for a discussion of eligi-
bility traces, their implementation, and the relationship with Monte Carlo algorithms.)
There are other more complex RL algorithms (see [13] for example) and it is possible
to configure SARSA(λ) differently (for example by using softmax action selection in-
stead of ε-greedy, and different values of α for each state-action value [30]), but we take
SARSA(λ) as a representative of RL approaches to solving POMPDs. (In fact it usually
outperforms two versions of Q-learning with eligibility trace — see [30] page 184.)

1.3 Evolutionary Computation Methods

An alternative approach to POMDPs is the use of Evolutionary Computation (EC) al-
gorithms such as Genetic Algorithms (GAs), which sometimes beat RL algorithms on
highly non-Markovian problems [3,19]. We shall use the most obvious EC model of
POMDPs, called a table-based representation [19]: each chromosome represents a pol-
icy, each gene a state, and each allele (gene value) an action.

The GA we shall use is based on GENITOR [33] but without the refinements of some
versions, such as genetic control of the crossover probability. This is a steady-state GA
that, at each iteration, selects two parent chromosomes, breeds a single offspring, evalu-
ates it, and uses it to replace the least-fit member of the population. Steady-state GAs are
an alternative to generational GAs that generate an entire generation at each iteration,
which replaces the current generation. Maintaining the best chromosomes found so far
is an elitist strategy that pays off on many problems. Parent selection is random because
of the strong selection pressure imposed by replacing the least-fit member. We use stan-
dard uniform crossover (each offspring gene receives an allele from the corresponding
gene in a randomly-chosen parent) applied with a crossover probability pc: if it is not
applied then a single parent is selected and mutated, and the resulting chromosome
replaces the least-fit member of the population. Mutation is applied to a chromosome
once with probability pm, twice with probability p2

m, three times with probability p3
m,

and so on. The population size is P and the initial population contains random alleles.
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Nondeterminism in the POMDP causes noise in the GA’s fitness function. To han-
dle this noise we adopt the common approach of averaging the fitness over a number
of samples S. This technique has been used many times in Noisy Genetic Algorithms
(NGAs) [4,6,17,18]. NGAs are usually generational and [1] show that elitist algorithms
(such as GENITOR) can systematically overvalue chromosomes, but such algorithms
have been successful when applied to noisy problems [29]. We choose GENITOR for
its simplicity.

1.4 Hybrid Methods

Several approaches can be seen as hybrids of EC and RL. Learning Classifier Systems
[8] use EC to adapt their representation of the RL problem. They apply RL via the EC
fitness function. Population-Based Reinforcement Learning [11] uses RL techniques to
improve chromosomes, as in a memetic algorithm. The paper is an outline only, and
no details are given on how RL values are used, nor are experimental results provided.
GAQ-Learning [15] uses Q-Learning once only in a preprocessing phase, to generate
Q(s, a) values. A memetic algorithm is then executed using the Q(s, a) values to eval-
uate the chromosomes. Q-Decomposition [26] combines several RL agents, each with
its own rewards, state-action values and RL algorithm. An arbitrator combines their
recommendations, maximising the sum of the rewards for each action. It is designed
for distributed tasks that are not necessarily POMPDs. Global convergence is guaran-
teed if the RL algorithm is SARSA but not if it is Q-Learning. In [9] a GA and RL are
combined to solve a robot navigation problem. The greedy policy is applied for some
time (until the robot encounters difficulty); next the GA population is evaluated, and
the fittest chromosome used to update the state-action values by performing several RL
iterations; next a new population is generated in a standard way, except that the state-
action values are used probabilistically to alter chromosomes; then the process repeats.
Several other techniques are used, some specific to robotics applications, but here we
consider only the RL-EC hybrid aspects.

2 A Cultural Approach to POMDPs

A powerful form of EC is the cultural algorithm (CA) [21], in which agents share
knowledge in a belief space to form a consensus. (The belief space of a CA is dis-
tinct from the belief space of a POMDP, which we do not refer to in this paper.)
These hybrids of EC and Machine Learning have been shown to converge more quickly
than EC alone on several applications. CAs were developed as a complement to the
purely genetic bias of EC. They are based on concepts used in sociology and archae-
ology to model cultural evolution. By pooling knowledge gained by individuals in a
body of cultural knowledge, or belief space, convergence rates can sometimes be im-
proved. A CA has an acceptance function that determines which individuals in the
population are allowed to adjust the belief space. The beliefs are conversely used to
influence the evolution of the population. See [22] for a survey of CA applications,
techniques and belief spaces. They have been applied to constrained optimisation [5],
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multiobjective optimisation [2], scheduling [24] and robot soccer [23], but to the best
of our knowledge they have not been applied to POMDPs, nor have they utilised RL.

2.1 Cultural Reinforcement Learning

We propose a new cultural hybrid of reinforcement learning and evolutionary computa-
tion for solving POMDPs called CUltural Reinforcement Learning (CURL). The CURL
approach is straightforward and can be applied to different RL and EC algorithms. A
single set of RL state-action values Q(s, a) is initialised as in the RL algorithm, and the
population is initialised as in the EC algorithm. The EC algorithm is then executed as
usual, except that each new chromosome is altered by, and used to alter, the Q(s, a),
which constitute the CA belief space. On generating a new chromosome we replace,
with some probability pl, each allele by the corresponding greedy action given by the
modified Q(s, a) values. Setting pl = 0 prevents any learning, and CURL reduces to the
EC algorithm, while pl = 1 always updates a gene to the corresponding Q(s, a) value,
and CURL reduces to SARSA(λ) without exploration. We then treat the modified chro-
mosome as usual by the EC algorithm: typically, fitness evaluation and placement into
the population. During fitness evaluation the Q(s, a) are updated by bootstrapping as
usual in the RL algorithm, but the policy followed is that specified by the modified chro-
mosome. Thus in CURL, as in several other CAs [22], all chromosomes are allowed to
adjust the belief space. There is no ε parameter in CURL because exploratory moves
are provided by EC.

We may use a steady-state or generational GA, or other form of EC algorithm, and
we may use one of the Q-Learning or Q(λ) algorithms to update the Q(s, a), but in this
paper we use the GENITOR-based NGA and SARSA(λ). The resulting algorithm is
outlined in Figure 2, in which SARSA(λ,α,O) denotes a SARSA(λ) episode with a
given value of the α parameter, following the policy specified by chromosome O while
updating the Q(s, a) as usual. As in NGA the population in randomly initialised and
fitness is evaluated using S samples. Note that for a deterministic POMDP only one
sample is needed to obtain the fitness of a chromosome, so we can set S = 1 to obtain
a CURL hybrid of SARSA(λ) and GENITOR.

CURL(S,P,pc,pm,α,λ,pl):
( create population of size P

evaluate population using S samples
initialise the Q(s, a)
while not(termination condition)
( generate an offspring O using pc, pm

update O using pl and the Q(s, a)
call SARSA(λ,α,O) S times to estimate O fitness

and bootstrap the Q(s, a)
replace least-fit chromosome by O

)
output fittest chromosome

)

Fig. 2. CURL instantiation
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2.2 Convergence

For POMDPS, unlike MDPs, suboptimal policies can form local optima in policy space
[20]. This motivates the use of global search techniques such as EC, which are less
likely to become trapped in local optima, and a hybrid such as CURL uses EC to di-
rectly explore policy space. CURL also uses bootstrapping to perform small changes
to the policy by hill-climbing on the Q(s, a) values. Hill-climbing has often been com-
bined with GAs to form memetic algorithms with faster convergence than a pure GA,
and this was a motivation for CURL’s design. However, if bootstrapping is used then
optimal policies are not necessarily stable: that is, an optimal policy might not attract
the algorithm [20]. Thus a hybrid might not be able to find an optimal policy even if it
escapes all local optima. The possible instability of optimal policies does not necessar-
ily render such hybrids useless, because there might be optimal or near-optimal policies
that are stable, but convergence is a very desirable property.

Fortunately, it is easy to show that if pl < 1 and the underlying EC algorithm is
convergent then so is CURL: if pl < 1 then there is a non-zero probability that no allele
is modified by the Q(s, a), in which case CURL behaves exactly like the EC algorithm.
This is not true of all hybrids (for example [9]). The GA used in the CURL instantiation
is convergent (to within some accuracy depending on the number of samples used),
because every gene in a new chromosome can potentially be mutated to an arbitrary
allele. Therefore the CURL instantiation is convergent.

2.3 Note

Ideally, we should now evaluate CURL on standard POMDPs from the literature, but
we shall postpone this for future work. The work in this paper is motivated by the
need to solve large, complex inventory control problems that do not succumb to more
traditional methods. In fact we know of no method in the inventory control literature
that can optimally solve our problem in a reasonable time (at least, the constrained
form of the problem: see below). We shall therefore test CURL on POMDPs from
stochastic inventory control. We believe that the problem we tackle has not previously
been considered as a POMDP, but we shall show that it is one.

3 POMDPs from Stochastic Inventory Control

The problem is as follows. We have a planning horizon of N periods and a demand for
each period t ∈ {1, . . . , N}, which is a random variable with a given probability density
function; we assume that these distributions are normal. Demands occur instantaneously
at the beginning of each time period and are non-stationary (can vary from period to
period), and demands in different periods are independent. A fixed delivery cost a is
incurred for each order (even for an order quantity of zero), a linear holding cost h is
incurred for each product unit carried in stock from one period to the next, and a linear
stockout cost s is incurred for each period in which the net inventory is negative (it is
not possible to sell back excess items to the vendor at the end of a period). The aim is
to find a replenishment plan that minimizes the expected total cost over the planning
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Rn−1 Rn

Qn Di+...+Dj

Bij

Sn

Fig. 3. The (R, S) policy

horizon. Different inventory control policies can be adopted to cope with this and other
problems. A policy states the rules used to decide when orders are to be placed and how
to compute the replenishment lot-size for each order.

3.1 Replenishment Cycle Policy

One possibility is the replenishment cycle policy (R, S). Under the non-stationary de-
mand assumption this policy takes the form (Rn, Sn) where Rn denotes the length of
the nth replenishment cycle and Sn the order-up-to-level for replenishment. In this pol-
icy a strategy is adopted under which the actual order quantity for replenishment cycle
n is determined only after the demand in former periods has been realized. The order
quantity is computed as the amount of stock required to raise the closing inventory level
of replenishment cycle n − 1 up to level Sn. To provide a solution we must populate
both the sets Rn and Sn for n = {1, . . . , N}. The (R, S) policy yields plans of higher
cost than the optimum, but it reduces planning instability [7] and is particularly appeal-
ing when items are ordered from the same supplier or require resource sharing [27].
Figure 3 illustrates the (R, S) policy. Rn denotes the set of periods covered by the nth
replenishment cycle; Sn is the order-up-to-level for this cycle; Qn is the expected order
quantity; Di + . . . + Dj is the expected demand; Bij is the buffer stock required to
guarantee service level α.

Though both RL and EC have been applied to a variety of inventory control prob-
lems, some of them POMDPs [31], neither seems to have been applied to this impor-
tant problem. There are more efficient algorithms which are guaranteed to yield op-
timal policies (under reasonable simplifying assumptions) so RL and EC would not
be applied to precisely this problem in practice. However, if we complicate the prob-
lem in simple but realistic ways, for example by adding order capacity constraints or
dropping the assumption of independent demands, then these efficient algorithms be-
come unusable. In contrast, RL and EC algorithms can be used almost without mod-
ification. Thus the problem is useful as a representative of a family of more complex
problems.
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Note that the inventory control term policy refers to the form of plan that we search
for (such as the (R, S) policy), whereas a POMDP policy is a concrete plan (such as
the (R, S) policy with given (Rn, Sn) values). We use the term in both senses but the
meaning should be clear from the context.

3.2 POMDP Model

The replenishment cycle policy can be modelled as a POMDP as follows. Define a state
to be the period n, an action to be either the choice of an order-up-to level or the lack
of an order (denoted here by a special action N), and a reward rn to be minus the total
cost incurred in period n. The rewards are undiscounted (do not decay with time), the
problem is episodic (has well-defined start and end states), the POMDP is nondetermin-
istic (the rewards are randomised), and its solution is a policy that is deterministic and
memoryless (actions are taken solely on the basis of the agent’s current observations).
This problem is non-Markovian but has an underlying MDP. Suppose we include the
current stock level (suitably discretised or approximated) in the state. We then have
the Markov property: the current stock level and period is all the information we need
to make an optimal decision. But the (R, S) policy does not make optimal decisions:
instead it fixes order-up-to levels independently of the stock level.

The problem is slightly unusual as a POMDP for two reasons. Firstly, all actions
from a state n lead to the same state n + 1 (though they have different expected re-
wards): different actions usually lead to different states. Secondly, many applications
are non-Markovian because of limited available information, but here we choose to
make it non-Markovian by discarding information for an application-specific reason: to
reduce planning instability. Neither feature invalidates the POMDP view of the prob-
lem, and we believe that instances of the problem make ideal benchmarks for RL and
EC methods: they are easy to describe and implement, hard to solve optimally, have
practical importance, and it turns out that neither type of algorithm dominates the other.

There exist techniques for improving the performance of RL algorithms on POMDPs,
in particular the use of forms of memory such as a belief state or a recurrent neural
network. But such methods are inapplicable to our problem because the policy would
not then be memoryless, and would therefore not yield a replenishment cycle policy.
The same argument applies to stochastic policies, which can be arbitrarily more efficient
than deterministic policies [28]: for our inventory problem we require a deterministic
policy. Thus some powerful RL techniques are inapplicable to our problem.

4 Experiments

We compare SARSA(λ), the NGA and CURL on five benchmark problems. The in-
stances are shown in Table 1 together with their optimal policies. Each policy is speci-
fied by its planning horizon length R and its order-up-to-level S, and the expected cost
of the policy per period is also shown, which can be multiplied by the number of periods
to obtain the expected total cost of the policy. For example instance (3) has the optimal
policy [159, N, N, 159, N, N, 159, . . .]. However, the policy is only optimal if the total
number of periods is a multiple of R, and we choose 120 periods as a common multi-
ple of R ∈ {1, 2, 3, 4, 5}. This number is also chosen for hardness: none of the three
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Table 1. Instances and their optimum policies

demand demand cost/ cost/120
# h s a mean std dev R S period periods

(1) 1 10 50 50 10 1 63 68 8160
(2) 1 10 100 50 10 2 112 94 11280
(3) 1 10 200 50 10 3 159 138 16560
(4) 1 10 400 50 10 4 200 196 23520
(5) 1 10 800 50 10 5 253 279 33480

algorithms find optimal policies within 108 simulations (a Mixed Integer Programming
approach also failed given several hours). We varied only the a parameter, which was
sufficient to obtain different R values (and different results: see below). We allow 29
different order-up-to levels at each period, linearly spaced in the range 0–280 at inter-
vals of 10, plus the N no-order option, so from each state we must choose between 30
possible actions. This range of order-up-to levels includes the levels in the optimum
policies for all five instances. Of course if none of the levels coincides with some order-
up-to-level in an optimal policy then this prevents us from finding the exact optimum
policy. But even choosing levels carefully so that the exact values are reachable does
not lead to optimal policies using the three algorithms.

As mentioned above, this problem can be solved in polynomial time because of its
special form, which is how we know the optimum policies. We therefore also gener-
ate five additional instances (1c,2c,3c,4c,5c) by adding an order capacity constraint to
instances (1,2,3,4,5) respectively, simply by choosing an upper bound below the level
necessary for the optimum policy. For each instance the 30 levels are linearly spaced
between 0 and �0.8S� (respectively 54, 89, 127, 156 and 223). This problem is NP-
hard and we know of no method that can solve it to optimality in a reasonable time. We
therefore do not know the optimum policies for these instances, only that their costs are
at least as high as those without the order constraints.

We tailored NGA and CURL for our application by modifying the mutation oper-
ator: because of the special nature of the N action we mutate a gene to N with 50%
probability, otherwise to a random order-up-to level. This biased mutation improves
NGA and CURL performance. We also tailored SARSA and CURL for our applica-
tion. Firstly, we initialise all state-action values to the optimistic value of 0, because
the use of optimistic initial values encourages early exploration [30]. Secondly, we ex-
perimented with different methods for varying ε, which may decay with time using
different methods. [3,16] decrease ε linearly from 0.2 to 0.0 until some point in time,
then fix it at 0.0 for the remainder. [30] recommend varying ε inversely with time or
the number of episodes. We found significantly better results using the latter method,
under the following scheme: ε = 1/(1 + ε′e) where e is the number of episodes so far
and ε′ is a fixed coefficient chosen by the user. For the final 1% of the run we set ε = 0
so that the final policy cost reflects that of the greedy policy (after setting ε to 0 we
found little change in the policy, so we did not devote more time to this purely greedy
policy).

Each of the three algorithms has several parameters to be tuned by the user. To simu-
late a realistic scenario in which we must tune an algorithm once then use it many times,
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Fig. 4. Instances (1,2,3,4,5)
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we tuned all three to a single instance: the middle instance (3) without an order capacity
constraint. For SARSA(λ) we tuned ε′, α, λ by the common method of hill-climbing in
parameter space to optimise the final cost of the evolved policy, restricted to λ values
{0.0, 0.1, . . . , 0.9, 1.0} and ε′, α values {0.1, 0.03, 0.01, 0.003, . . .}. This process led
to α = 0.003, ε′ = 0.001 and λ = 0.7. We chose NGA settings pc = pm = 0.5 and
P = S = 30 for each instance: performance was robust with respect to these parame-
ters, as reported by many GA researchers. To tune CURL we fixed the GA parameters
as above, set λ = 0, and applied hill-climbing to the remaining CURL parameters, re-
stricted to pl ∈ {1.0, 0.3, 0.1, 0.03, . . .}, to obtain α = 0.1, pl = 0.3. Using λ > 1
did not make a significant difference to performance (though it necessitated different
values for α and pl): it might be necessary for deterministic problems in which we do
not evaluate chromosome fitness over several simulations, but here we have S = 30
simulations per chromosome in which to perform bootstrapping so we use the more
efficient SARSA(0).

Figures 4 and 5 plots the performances of the algorithms on the instances. The
SARSA(λ) cost is an exponentially-smoothed on-policy cost (the policy actually fol-
lowed by the algorithm during learning). The NGA and CURL costs are those of the
fittest chromosome. All graph points are means over 20 runs. We use the number of
SARSA(λ) episodes or GA simulations as a proxy for time, and allow each algorithm
106 episodes or simulations. This slightly biases the results in favour of SARSA(λ):
one of its episodes takes approximately three times longer than a simulation because of
its eligibility trace. But there may be faster implementations of SARSA(λ) than ours so
we use this implementation-independent metric.

The graphs show that neither SARSA(λ) nor NGA dominates the other over all
instances, though SARSA(λ) is generally better (this might be caused by our choice
of instances). However, CURL is uniformly better than NGA, and therefore some-
times better than SARSA(λ) also. Previous research into EC and RL on POMDPS has
shown that neither dominates over all problems, but that EC is better on highly non-
Markovian problems, so we assume that the problems in which NGA beats SARSA(λ)
are highly non-Markovian. This implies that CURL is a very promising approach to
such POMDPs, though further experiments are needed to confirm this pattern.

It might be suspected that the biased mutation technique unfairly aids NGA and
CURL: but adding this technique to SARSA(λ) worsens its performance. Unlike RL
algorithms, EC algorithms can benefit from application-specific mutation and recombi-
nation operators, and these can also be used in CURL. The current CURL implementa-
tion uses a simple table-based representation of the POMDP, which is often the worst
choice [19], so we believe that there is a great deal of room for improvement.

5 Conclusion

Reinforcement Learning (RL) and Evolutionary Computation (EC) are competing ap-
proaches to solving POMDPs. We presented a new Cultural Algorithm (CA) schema
called CURL that hybridises RL and EC, and inherits EC convergence properties. We
also described POMDPs from stochastic inventory theory on which neither RL nor
EC dominates the other. In experiments a CURL instantiation outperforms the EC
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algorithm, and on highly non-Markovian instances it also outperforms the RL algo-
rithm. We believe that CURL is a promising approach to solving POMDPs, combining
EC and RL algorithms with little modification.

This work is part of a series of studies in solving inventory problems using systematic
and randomised methods. In future work we intend to develop CURL for more complex
inventory problems, and for more standard POMDPs from the Artificial Intelligence
literature.
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THE COST OF USING STATIONARY INVENTORY POLICIES  

WHEN DEMAND IS NON-STATIONARY 

 

Non-stationary stochastic demands are very common in industrial settings with seasonal patterns, 

trends, business cycles, and limited-life items. In such cases, the optimal inventory control 

policies are also non-stationary. However, due to high computational complexity, non-stationary 

inventory policies are not usually preferred in real life applications. In this paper, we investigate 

the cost of using the optimal stationary policy as an approximation for the optimal non-stationary 

one. We show that, using stationary policies can be very expensive depending on the magnitude 

of demand variability and we provide some insight on cases where stationary policies provide 

good approximations to non-stationary policies.  

 

1. Introduction 

  

Stochastic inventory control systems have been studied extensively under various assumptions on 

demand. Nevertheless, the literature reflects a clear dichotomy between inventory models with 

stationary and non-stationary demands. The former assumes a steady demand process, whereas the 

latter assumes a demand process that varies in time. Non-stationary demand is very common in various 

industrial settings with seasonal patterns, trends, business cycles, and limited-life items. Furthermore, 

as product life cycles are becoming shorter, demand which evolves over product life cycles never 

follow stationary patterns (Graves and Willems, 2008).  

 

One major theme in the continuing development of inventory theory is the incorporation of more 

realistic demand assumptions into inventory models. Consequently, one would expect increasing 

number of studies concerned with non-stationary inventory models. However, there is a limited 

literature assuming non-stationary demand, whereas it is vast for stationary demand. A search on the 

ISI Web of Knowledge since the year 2000 with stationary and inventory keywords gives 221 

published papers, whilst this figure is only 29 for non-stationary and inventory. Furthermore, there is a 

large number of papers assuming stationary demand without using stationary as a keyword. This 

disparity is mainly due to the ill structure of non-stationary problems from a theoretical point of view 

and the complexity inherent in non-stationary models from a computational point of view. Silver et.al. 



(1998) point out that non-stationary demand is too complicated for routine use in practice. Furthermore, 

as Kurawalwala and Matsuo (1996) stated, the unique characteristics of non-stationary demand 

preclude the use of traditional forecasting methods not designed for this environment and raise a need 

for tailor-made forecasting methods. Consequently, stationary policies have always been preferred to 

non-stationary policies in many real life applications for the sake of their relative simplicity.  

 

In spite of all the above mentioned issues related to non-stationary inventory policies, when demand is 

non-stationary, a stationary policy is an approximation to the optimal non-stationary one, and hence, is 

sub-optimal with respect to total expected cost. To the best of authors' knowledge, no work has been 

done that can be used as a guideline to compute the cost of using stationary policies when demand is 

non-stationary. This research investigates the magnitude of this sub-optimality under various settings. 

We establish our analysis by using the (s,S) inventory control policy. (s,S) policy is proven to be 

optimal both in stationary and non-stationary demand cases, and therefore, constitutes an inherent 

frame of reference. Our contribution is two-fold. First, we show that using stationary policies can be 

very expensive depending on the extent of demand variability as well as other factors. Secondly, we 

provide some insight on cases where stationary models provide good approximations to non-stationary 

models.  

 

In the remainder of this section, we concisely review related literature. In Section 2, we present the key 

assumptions of the inventory problem considered. In Section 3 we present algorithms used to compute 

the stationary and the non-stationary (s,S) policies. In Section 3, we present the experimental design 

and computational results. Finally, in Section 4, we draw general conclusions and provide some 

managerial insights. 

 

Most of the research in inventory literature assumes either a stationary or a non-stationary demand, and 

develop models and policies accordingly. Therefore, it is difficult to refer to any research addressing 

the cost performance of stationary policies when demand is non-stationary. However, we believe that it 

is necessary to briefly discuss the key literature in order to ease the exposition of the remaining 

sections.  

 

One of the most exciting developments in the inventory theory is Scarf’s (1960) proof of the optimality 

of (s,S) policies. (s,S) policies are characterized by two critical numbers s_n and S_n for each period n, 

such that, the inventory is replenished up to a target level S_n whenever the initial inventory position is 



lower than (or equal to) a re-order level s_n. Scarf (1960) showed the optimal value function satisfies a 

condition, which he called K-convexity, and demonstrated a procedure for establishing the optimal 

policy parameters in a backward recursion. Nevertheless, there was no known way of computing the 

critical numbers at that time (Karlin, 1960). Following Scarf (1960), Iglehart (1963) demonstrated the 

optimality of (s,S) policies in infinite horizon inventory problems with stationary demand. He showed 

that optimal policy parameters converge to two numbers s and S in this case. Iglehart’s work has been 

followed by a large number of researchers (see e.g. Veinott and Wagner, 1965; Archibald and Silver, 

1978; Stidham, 1977; Sahin, 1982,1983; Federgruen and Zipkin, 1984; Zheng and Federgruen, 1991) 

aiming at efficiently computing optimal policy parameters using the stationary analysis approach. 

However, not much work has been done for computing non-stationary (s,S) policies. A few authors 

addressed the inventory problem with non-stationary demands and proposed heuristics based on non-

optimal policies (see e.g. Silver, 1978; Askin, 1981; Morton and Pentico, 1995). Bollapragada and 

Morton (1999) developed an efficient myopic heuristic for computing the non-stationary (s,S) policy 

where consecutive periods are grouped and converted to stationary problems. In this paper, we consider 

the inventory problem addressed in Scarf (1960) and investigate the cost efficiency of stationary and 

non-stationary inventory policies. 

 

2. Problem definition and solution procedures 

 

Our aim is to investigate the cost performance of stationary policies under non-stationary demand. For 

the sake of completeness, we compare the optimal non-stationary policy with the best possible 

stationary policy. We use the (s,S) policy as a frame of reference since it is proven to be optimal both in 

stationary and non-stationary demand cases. 

 

Throughout the paper it is assumed that, the demand, dt in period t, is considered as a random variable 

with known probability density function, gt(dt), and is assumed to occur instantaneously at the 

beginning of each period. The mean rate of demand may vary from period to period. Demands in 

different time periods are assumed independent. A fixed holding cost h is incurred on any unit carried 

in inventory over from one period to the next. Demands occurring when the system is out of stock are 

assumed to be backordered, and satisfied immediately the next replenishment order arrives. A fixed 

shortage cost p is incurred for each unit of demand backordered. A fixed procurement (ordering or set-

up) cost K is incurred each time a replenishment order is placed. For convenience, without loss of 

generality, the initial inventory level and the unit procurement cost are set to zero, and it is assumed 



that there is no replenishment lead-time. 

 

2.1. Non-stationary (s,S) 

 

Scarf (1960) developed the concept of K-convexity and proved that under the aforementioned 

assumptions the optimal inventory policy follows an (s,S) rule. He provided a dynamic programming 

formulation to compute the optimal (s,S) levels for each period. Obviously, (s,S) levels are not constant 

for different periods in non-stationary problems. Thus, parameters of a non-stationary policy can be 

represented as (st,St) for period t. The dynamic program proposed by Scarf is given in Equation 1 where 

Ct,n(x) represents the optimal expected total cost for periods t through n of an inventory system with x 

units of initial inventory. K is the fixed ordering cost, and Lt(x) is the expected holding and penalty 

costs charged in period t when starting inventory is x units. St and st represent the order up to level and 

the reorder point for period t, respectively. 

 

Ct,n (x) = min {Lt(x) + E(Ct+1( x – ξ )), K + Lt(St) + E(Ct+1(St – ξ ))}               (1) 

 

Scarf’s formulation required extensive computational power beyond the limitations of its time. As a 

matter of fact, there was no known way of computing policy parameters at that time (Karlin, 1960). 

Relatively recently, Bollapragada and Morton (1999) were able to compute the (st,St) levels by 

exploiting the property of K-convexity in solving the above dynamic program. In this paper, we 

employed their approach to determining optimal (st,St) values. 

 

In order to introduce the non-stationary (s,S) policy clearly we give two simple examples. Figure 1 

demonstrates the optimal non-stationary (s,S) policies for two different problems. In the first graph 

expected demand pattern is generated randomly, so (s,S) levels fluctuate pursuant to demand pattern 

from period to period. In the second graph demand pattern is stationary. As it can be observed from the 

graph, policy parameters are stationary except at the end of the planning horizon. The deviation in the 

last period is the end of horizon effect.   

 



 

Figure 1 The optimal non-stationary (s,S) policies for two different problem instances: The bottom and the top 
levels of  black columns represent reorder points and order-up-to levels respectively 

2.2. Best Representative Stationary (s,S) 

 

One may think of two possible approaches to obtain the best stationary policy for a non-stationary 

demand pattern. The first approach is to find a stationary demand distribution which best fits the 

original demand with the given inventory system. Once the best stationary demand distribution is 

determined, the corresponding stationary policy can be computed using the well-known Zheng-

Federgruen (1991) algorithm. The second approach is to find a stationary policy which provides the 

minimum cost for the actual non-stationary demand. To the best of our knowledge, there is no 

published work in the literature neither on determining stationary demand distribution nor on 

computing the optimal policy parameters of a stationary (s,S) policy. Therefore we settle to employ an 

exhaustive search procedure. The aforementioned approaches differ in their search spaces, such that, 

the former approach requires a search on various demand patterns, whereas the latter requires a search 

on various policy parameters. Since characterizing the search space of the first approach is rather 

difficult compared to the second one, we employ the second approach, and compute the best stationary 

policy through a two-dimensional search procedure on policy parameters s and S (s<S). The expected 

cost of examined (s,S) pair is computed by means of the recursive formulation given in equation 1. The 

elimination of the end-of-horizon effect is discussed in the next section.   

 

3. Computational Study 

 

The experiment design, results and their interpretation are crucial to understanding the applications of 

stationary policies under the non-stationary demand environments. In the next subsections these will be 

given in detail. 



 

3.1 Experiment Design 

 

In the experiment design phase we concentrate on: (i) end-of-horizon effects, and (ii) designation of 

demand and cost parameters. 

 

Stationary policies are exposed to end-of-horizon effects when the planning horizon is finite. As 

mentioned earlier, non-stationary ones have the ability to adjust policy parameters based on periodic 

oscillations. However, the stationary policy does not have such an ability to dampen the end of horizon 

effect on the expected cost. In order to make a fair assessment of the cost performance of stationary 

policies we adopt the method used in Bollapragada and Morton (1999). They use a simple, yet an 

effective method based on plugging in the optimal non-stationary plan at the end of the planning 

horizon. That is, although a stationary plan is used through out the planning horizon, the stock at the 

end of the horizon is managed using the optimal non-stationary parameters. Hence, the end of horizon 

effect is eliminated from the results. Following Bollapragada and Morton (1999), we set the planning 

horizon to 70 periods and use the optimal non-stationary policy parameters in the last 18 periods so as 

to eliminate the end of horizon effect.  

 

We use a test set of 108 problem instances in order to investigate the effect of various demand and cost 

parameters on the cost performances of non-stationary and approximate stationary policies. Demand is 

characterized by a demand pattern $\pi$, i.e. a sequence of mean demand values 

(d^{pi}={d^{\pi}_1,d^{\pi}_2,…d^{\pi}_N}) through the planning horizon, and a fixed coefficient of 

variation, cv. Note that, a fixed coefficient of variation implies higher standart deviation for larger 

demands. The cost parameters are: the ordering cost per replenishment, the penalty cost per unit 

backlog per period, and the holding cost per unit of excess inventory per period. We construct our test 

set using the following values; 

 

Unit holding cost: h = {1} 

Unit penalty cost: p = {2, 5, 10} 

Fixed ordering cost: K = {50, 200, 500} 

Demand coefficient of variation: cv = {0.05, 0.15, 0.25} 

 

As shown in Figure 1, we employ four different demand patterns: stationary, seasonal, life cycle, and 



erratic (Berry, 1972). The average demand per period is 100 units for each demand pattern. Seasonal 

and life cycle demand patterns are very common in practice. Stationary and erratic patterns represent 

the extreme cases of the stationary and the non-stationary demand dichotomy.  
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Figure 1: Demand Patterns 

 

An illustrative example: In order to demonstrate the method, we provide an illustrative example. 

Figure 2 illustrates the results of the  problem instance-5 from the test set. This instance is characterized 

by a seasonal demand pattern with a coefficient of variation of 0.15. The cost parameters are; K = 50, p 

= 5, h=1. The first graph plots the policy parameters of the optimal non-stationary policy; the second 

one plots the best stationary policy in which the last 18 (?) periods are controlled using the optimal 

non-stationary policy. 
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Figure 2: (st,St) and (s,S) levels of the instance 5 with seasonal demand pattern provided by the optimal 

non-stationary and the best stationary policies 

 

 

3.2 Numerical results and insights 

 

We conduct an extensive numerical study to measure the cost performance of the best stationary policy. 

The results for the 108 instances (i.e., 27 instances for each of the four demand patterns) are presented 

in Table 2 in the appendix. The cost difference, Δ, for an instance is calculated as follows: 

 

 100×
−

=Δ
OP

OPSP

  (2) 

 

where SP and OP are the expected total costs of the system under the best stationary and the optimal 

non-stationary policies, respectively.  

 

Effects of demand pattern: 

We start our analysis by investigating the results related to each demand pattern. Let us define 

$\delta^{\pi}$ as the average $\delta$ of all 27 instances characterized by demand pattern $\pi$. 

Obviously, $\delta^{\pi}$ is closely related to characteristics of the demand pattern; more specifically 

the non-stationarity of $\pi$. Let $\mu^{pi}$ and $\sigma^{\pi}$ be the mean and the standart 

deviation of the demand pattern $\pi$.  

 



 

Note that $\mu^{\pi}$ is identical for all demand patterns, since the total average demand is 

standardized. We use $\sigma$ as the measure of non-stationarity, and examine how it bonds to 

$\delta$. Table 1 provides the summary results.  

 

 

  Erratic Seasonal Life Cycle Stationary 

Δ 75.39 27.11 45.67 0.00 

σ 81.68 65.06 78.16 0.00 

μ 100.00 100.00 100.00 100.00 

 

Table 1: Average expected cost discrepancies with respect to demand patterns 

 

According to Table 1 even at first glance, one can easily claim that cost of neglecting non-stationarity is 

dramatically expensive especially in erratic and life cycle demand patterns. One would expect that 

when $\pi$ is near-stationary then $\delta^{pi}$ will be close to zero. Our results confirm this 

expectation. There is no difference between the cost performance of stationary and non-stationary 

policies when demand is stationary. Similarly, for mean demand patterns with low variances, such as 

the seasonal pattern, the sub-optimality is rather small, whereas, for demand patterns characterized by 

high volatility, such as, life cycle and erratic patterns, the sub-optimality is extremely high. In 

summary, a higher variation in the mean demand pattern, which defines the magnitude of non-

stationarity, resulted in higher Δ. In other words, the optimal non-stationary policy converges to a 

stationary policy as σj approaches zero.   

 

Although the results given in Table 2 provides some general insights on the costs of neglecting non-

stationarity,, understanding the effects of demand variation, i.e. the coefficient of variation, and cost 

parameters, such as ordering and penalty costs is also important for a thorough analysis. In the 

following subsections we discuss the effects of these problem parameters. 

 

Effects of coefficient of variation: 

 

Figure 3 shows the average cost difference for each demand pattern as the coefficient of variation is 



increased from 0.05 to 0.15 and further to 0.25. Note that, given cost differences reflect, boost the 

average cost difference of all problems where the reference parameter, i.e. demand pattern, is the same.  

Each point in the graph corresponds to the average cost difference for a fixed coefficient of variation 

and a given demand pattern. As can be seen from Figure 1, larger coefficient of variation tends to 

decrease the cost difference. In fact, as the coefficient of variation increases the expected total cost of 

the inventory system increases under both the best stationary and the optimal non-stationary policies. 

However, the cost increase rate for the optimal non-stationary policy is relatively higher than the same 

rate for the best stationary one. Hence, an increase in coefficient of variation  results in a decrease in 

the cost difference. Therefore, we can argue that, using a stationary policy may be acceptable in highly 

uncertain environments where the demand patterns is stationary.  
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Figure 3: “cv” vs “Delta” 

 

Effects of setup cost: 

 

Figure 4 illustrates the change in “Delta” for each demand pattern as setup cost increases. As can be 

observed, when the penalty cost and coefficient of variation are kept constant, Δ decreases with the 

increasing ordering cost. Basically, the ordering cost determines the frequency of orders. Obviously, 

higher ordering costs encourage the inventory replenishment plan to have fewer replenishments, and 

leads to longer replenishment cycles where accumulated demand is satisfied by a single replenishment. 

This dampens the fluctuation of demand through the replenishment cycle, and hence, moderates the 

non-stationarity of the optimal plan and decreases Δ. 
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 Figure 4: K vs Delta 

Effects of penalty cost: 

Figure 5 demonstrates the effect of penalty cost for each demand pattern. Unlike ordering costs, penalty 

costs negatively affect the sub-optimality of stationary policies. The penalty cost basically determines 

the level of the safety stock. That is, higher penalty costs necessitate larger safety stocks to avoid stock-

outs. Since non-stationary policy determines safety stock levels optimally, its cost performance 

increases with respect to stationary policy with increasing penalty costs. 
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Figure 5: p vs Delta 

 



4. Conclusion 

 

As product life cycles are getting shorter most of the real world problems exhibit non-stationary 

demand patterns. However, non-stationary inventory policies have not been widespread among neither 

practitioners nor academics due to their complexity in computation and application. However, when 

demand is non-stationary, a stationary policy is only an approximation to the optimal non-stationary 

one, and hence, is sub-optimal with respect to total expected cost. In this paper we analyzed the cost 

efficiency of using stationary inventory policies when demand is non-stationary. We used (s,S) policy 

as a frame of reference, and compared the optimal non-stationary (s,S) policy with the best possible 

stationary (s,S) policy in terms of cost performance.  

 

We conducted an extensive numerical study considering a variety of cases to examine the effects of 

various organizational parameters and showed that cost of neglecting the non-stationarity of demand is 

significantly high for the majority of cases. Our numerical study reveals that, the magnitude of the sub-

optimality of stationary policies depends heavily on the variation of the demand pattern, i.e. the non-

stationarity of demand, among other factors, such as, the coefficient of variation of demand, ordering 

and penalty costs. In order to characterize the variation of the demand patterns, we considered erratic, 

life cycle, seasonal and stationary demands. On average, the cost difference between the non-stationary 

and the stationary policies were; 75% for erratic, 45% for life cycle, 27% for seasonal, and 0% for 

stationary demands. Our study also provides some insight on cases where stationary models provide 

good approximations to non-stationary models. More specifically, when demands follow a rather stable 

pattern with high uncertainty (i.e. variance), stationary policies may be a reasonable substitute for the 

optimal non-stationary policy. Moreover, the cost performance of stationary policies improves when 

setup costs are high and penalty costs for stockouts are low. 

 

Altogether, our study underlines the need for careful evaluation when assuming stationary demands. 

We argue and provide some evidence that it may be very expensive to use stationary policies when 

actual demand is non-stationary. The recent literature is not sufficient to embed the non-stationary 

models into real life problems, and hence, modeling non-stationary demands has not yet been addressed 

satisfactorily in ERP environments. Most, if not all, ERP systems do not support non-stationary 

demands. As a result, our study also brings up the discussion on the percieved importance of non-

stationary demand cases in theory and practice of inventory management.  

 



 

Bollapragada (2006) stated that uncertainty modeling and management has not been satisfactorily 

addressed for MRP/ERP environments. In these environments, replenishment orders are typically 

determined by ad hoc safety stock rules and even stationary demand processes have not been 

adequately embedded to real life planning tools. Hence, non-stationary inventory policies, which are 

based on rather sophisticated stochastic processes, have not been used commonly.  

 

 



Appendix 

 

        % Cost Difference Δi 

i K p cv Erratic Seasonal Life Cycle Stationary

1 50 2 0.05 122.31 49.77 89.04 0.00

2   0.15 93.38 40.32 66.77 0.00

3   0.25 71.93 35.27 54.45 0.00

4  5 0.05 191.13 60.63 108.7 0.00

5   0.15 140.89 53.38 80.11 0.00

6   0.25 106.14 47.07 67.07 0.00

7  10 0.05 232.26 72.56 114.73 0.00

8   0.15 175.15 58.22 86.47 0.00

9   0.25 132.05 52.79 74.1 0.00

10 200 2 0.05 42.4 14.02 26.02 0.00

11   0.15 35.25 13.42 22.42 0.00

12   0.25 28.93 12.12 21.14 0.00

13  5 0.05 60.78 17.07 33.66 0.00

14   0.15 53.25 18.11 29.34 0.02

15   0.25 45.72 18.6 26.99 0.00

16  10 0.05 80.63 21.16 38.04 0.00

17   0.15 68.32 22.51 32.66 0.01

18   0.25 59.6 22.92 30.92 0.00

19 500 2 0.05 26.79 6.47 20.22 0.03

20   0.15 24.29 8.22 18.95 0.02

21   0.25 20.3 8.72 18.32 0.00

22  5 0.05 36.67 9.84 30.18 0.00

23   0.15 33.14 11.96 25.95 0.00

24   0.25 28.33 12.23 23.57 0.00

25  10 0.05 47.64 13.4 35.16 0.00

26   0.15 41.71 15.34 30.22 0.00

27     0.25 36.58 15.92 27.75 0.00

Table 2: Cost differences for all problem instances 
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Abstract Real-life management decisions are usually made in uncertain environments, and
decision support systems that ignore this uncertainty are unlikely to provide realistic guid-
ance. We show that previous approaches fail to provide appropriate support for reasoning
about reliability under uncertainty. We propose a new framework that addresses this issue
by allowing logical dependencies between constraints. Reliability is then defined in terms
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cies. We illustrate our approach on three problems, contrast it with existing frameworks, and
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1 Introduction

Real-life management decisions are usually made in uncertain environments. Random be-
havior such as the weather, lack of essential exact information such as the future demand,
incorrect data due to errors in measurement, and vague or incomplete definitions, exempli-
fies the theme of uncertainty in such environments.
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It is generally impossible for any set of decisions to satisfy all the constraints under
all circumstances. For instance, consider a probabilistic single-item distribution problem in
which there are n independent suppliers with their given probabilistic supply capacities,
and m different customers with known demands. It is realistic to assume that the deliveries
are fixed in advance, by consideration of the probabilistic supply capacities. The need to
fix the deliveries in advance has been at the heart of many problems such as the buying of
raw materials on markets with fluctuating prices (Kingsman 1985). Thus the investigation
of modeling approaches and solution algorithms is potentially important not only from a
theoretical point of view, but also from the perspective of practical applications. It is quite
unrealistic to ask for a plan that satisfies all demand and probabilistic supply constraints,
irrespective of the unfolding of uncertainties. In order to deal with the optimization problems
with stochastic/fuzzy factors, stochastic programming and fuzzy programming have been
greatly developed. The theory of stochastic programming has been summarized by several
books such as Sengupta (1972), Vajda (1972), Kall and Wallace (1994) etc.

To address this and related situations, we propose that one should determine in advance
a distribution plan that satisfies customer demands as far as possible, under some mea-
sure that accurately captures the user’s notion of reliability. To address this important class
of problems, we take a novel approach and develop a modeling framework that supports
more reliable decisions in uncertain environments, yet reduces the cognitive burden on a
decision-maker. Our Event-Driven Probabilistic Constraint Programming (EDP-CP) mod-
eling framework allows users to designate certain probabilistic constraints (such as demand
constraints) as events whose chance of satisfaction must be maximized, subject to hard con-
straints (such as a lower bound on profit), and also logical dependencies among constraints
(such as the dependency of demand constraints on the satisfaction of the probabilistic supply
constraints). We shall show that the EDP-CP framework allows more realistic modeling of
some problems than previous approaches.

Complex decision systems are usually multidimensional, multifaceted, multifunctional
and multicriteria, and include stochastic or fuzzy factors. With the requirement of consider-
ing randomness, appropriate formulations of stochastic programming have been developed
to suit the different purposes of management (Fig. 1). The first method dealing with stochas-
tic parameters in stochastic programming is the so-called expected value model (Birge and
Louveaux 1997), which optimizes the expected objective functions subject to some expected
constraints. The second, chance-constrained programming, was pioneered by Charnes and
Cooper (1959) as a means of handling uncertainty by specifying a confidence level at which
it is desired that the stochastic constraint holds. Chance-constrained programming models

Fig. 1 Techniques for modeling
decision problems under
uncertainty



Ann Oper Res

can be converted into deterministic equivalents for some special cases, and then solved by
some solution methods of deterministic mathematical programming. However it is almost
impossible to do this for complex chance-constrained programming models. In order to
overcome this dilemma, Liu and Iwamura (1997) proposed a stochastic simulation-based
genetic algorithm for solving general chance-constrained programming as well as chance-
constrained multi-objective programming, and chance-constrained goal programming, in
which the stochastic simulation is employed to check the feasibility of solutions and to han-
dle the objective functions. Sometimes a complex stochastic decision system undertakes
multiple tasks called events, and the decision-maker wishes to maximize the chance func-
tions which are defined as the probabilities of satisfying these events. In order to model
this type of problem, Liu (1997) provided a theoretical framework of the third type of sto-
chastic programming, called dependent-chance programming. Dependent-chance multiob-
jective programming and dependent-chance goal programming have also been presented
(for a more detailed discussion see Liu 1999).

Roughly speaking, dependent-chance programming is aimed at maximizing some chance
functions of events in an uncertain environment. In deterministic mathematical program-
ming as well as expected value models and chance-constrained programming, the feasible
set is essentially assumed to be deterministic after the real problem is modeled. That is,
an optimal solution is always given regardless of whether is it can be performed in prac-
tice. However the given solution may be impossible to perform if the realization of un-
certain parameters is unfavorable. Thus, the dependent chance-programming model never
assumes that the feasible set is deterministic. In fact, the feasible set of dependent chance-
programming is described by a so-called uncertain environment. Although a deterministic
solution is given by the dependent chance-programming model, this solution needs to be
performed as far as possible. This special feature of dependent chance-programming is very
different from other existing stochastic programming techniques. However, such problems
do exist in the real world. Some real and potential applications of dependent chance pro-
gramming have been presented by Liu and Ku (1993), Liu (1995a, 1995b), Liu and Iwa-
mura (1997), and more recently by Wu et al. (2005). In what follows we will see that the
framework we propose, EDP-CP, extends and improves Liu’s framework by providing to the
user more expressiveness, in order to capture a more realistic and accurate measure of plan
reliability, and an exact solution method in contrast to Liu’s genetic algorithm.

The rest of this paper is organized as follows. In Sect. 2 we motivate the work. We de-
fine the new modelling framework in Sect. 3 and show how to compile any EDP-CP model
into an equivalent constraint program in Sect. 4. In Sect. 5 we survey a scenario reduc-
tion technique that may be applied to keep the number of possible scenarios under control,
references are given to other works adopting the same strategy to reduce the number of sce-
narios considered. In Sect. 6 we illustrate the flexibility and usefulness of our framework
by studying three examples: probabilistic supply chain planning, scheduling, and produc-
tion planning/capital budgeting. In Sect. 7 we survey related work. Finally, in Sect. 8 we
summarise our work and discuss future directions.

2 Motivation

Our motivation for this work comes from an application in the supply chain management
area: more precisely, addressing supply and demand uncertainties. The main inherent diffi-
culty in dealing with this class of probabilistic problems is the fact that certain constraints
(such as the ones imposing on complete satisfaction of customer demands) may hinge on
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Fig. 2 Distribution problem

the satisfaction of others (such as supply constraints). The problem is particularly interesting
when the latter constraints are exposed to uncertainty.

2.1 A motivating example

We provide a concrete example of the distribution problem to motivate the work. Fig-
ure 2 depicts a distribution system with three suppliers S1,2,3 and three customers D1,2,3.
The scopes of the suppliers are S1 � {D1,D2}, S2 � {D1,D2,D3}, S3 � {D2,D3}. The
deterministic customer demands are [8,7,4]. The suppliers’ probabilistic capacities are
expressed as discrete probability density functions: fS1 = {3(0.3),7(0.5),12(0.2)}, fS2 =
{6(0.4),7(0.2),10(0.4)} and fS3 = {3(0.3),8(0.7)}, where values in parentheses represent
probabilities. The objective is to obtain the most reliable distribution plan. In the follow-
ing sections we shall consider a series of models of increasing sophistication. Our running
example will emphasize differences between these models.

2.2 Model 1: Naive

Define decision variables xs,c where s, c ∈ {1,2,3}, denoting the planned supply from sup-
plier s to customer c. Also define random variables ξi denoting the uncertain supply avail-
able to supplier i. A constant ζc denotes the deterministic demand of customer c. Any plan
must satisfy the hard constraints

∑

s∈Sc

xs,c = ζc

where Sc is the set of suppliers for customer c. There are also probabilistic constraints be-
tween decision and random variables:

∑

c∈Cs

xs,c ≤ ξs

where Cs is the set of customers for supplier s. These probabilistic constraints are “soft”:
they may be violated in some scenarios. We therefore do not add them to the model (as with
the deterministic constraints), but instead use them to define an objective function:

max
∑

s

E

{
∑

c∈Cs

xs,c ≤ ξs

}
(1)

where E{C}, the “expectation operator” (Jeffreys 1961), is the sum of the probabilities of the
scenarios in which constraint C is satisfied. This model may be viewed as a Soft Probabilistic
CSP, that is a Probabilistic CSP (Fargier et al. 1995) where some contraints are hard, plus
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Table 1 Representative distribution plans and event realization measures (ERM), that is reliability measures,
computed by the different models we presented

Plan
No.

Planned delivery Si � Dj : (i, j) ERM

(1,1) (1,2) (2,1) (2,2) (2,3) (3,2) (3,3) Model 1 Model 2 Model 3 Model 4

1 3 0 5 6 1 1 3 1.7 0.0 0.0 0.0

2 3 5 5 1 1 1 3 1.5 0.6 0.6 0.6

3 0 2 0 2 4 3 0 0.0 0.0 0.0 2.0

4 5 0 3 3 0 4 4 2.4 1.8 2.1 2.1

5 6 0 2 0 4 7 0 2.4 1.8 2.4 2.4

an optimization criterion that we wish to maximise the probability that other probabilistic
soft constraints are satisfied.

A drawback of this model is that the objective function does not measure plan reliability
in a realistic way. For example, in any scenario in which supplier 2 cannot meet its demands
(so that x2,1 + x2,2 + x2,3 > ξ2) we cannot guarantee that any customer is supplied. This is
therefore a worst-case plan for the given scenario, yet in the above model only one proba-
bilistic constraint is violated under this scenario. A plan in which two or three probabilistic
constraints are violated would be assigned a lower objective function value, but would be
no less reliable. Worse still, consider a similar problem in which supplier 1 supplies only
customer 1, supplier 3 supplies only customer 3, and supplier 2 again supplies customers 1,
2 and 3. A plan in which suppliers 1 and 3 are unable to meet their demands under some
scenario would be classed as less reliable than one in which supplier 2 is unable to meet its
demand under the same scenario, because more probabilistic constraints are violated. How-
ever, the latter plan is less reliable: in the first plan customer 2 is satisfied, but in the second
plan no customer is.

In Table 1 we show how this naive model (column “Model 1”) classifies reliability of
five different plans for our concrete example. In the next sections we will show that other
models can give a more accurate and realistic measure of the reliability of these plans.

2.3 Model 2: Dependent-chance programming

To improve the naive model we may define a more intelligent objective function: the reli-
ability of a plan is now the sum of the reliabilities of three events, where an event is the
satisfaction of a customer:

max
∑

c

E

{
∧

s∈Sc

(
∑

c′∈Cs

xs,c′ ≤ ξs

)}
(2)

where ∧ denotes logical conjunction: E{C ∧ C ′} is the sum of the probabilities of the sce-
narios in which both C and C ′ are satisfied. For example the reliability of satisfaction of
customer 1 is the sum of the probabilities of the scenarios in which suppliers 1 and 2 both
meet their demands. Under this objective function, our worst-case plan (in which supplier 2
cannot meet its demands) is assigned reliability 0 in the scenario, because the violated prob-
abilistic constraint x2,1 + x2,2 + x2,3 ≤ ξ2 affects the reliability of each customer. Allowing
logical connectives between constraints allows us to express the problem more accurately.
This model is similar to a Dependent-Chance Programming (Liu and Iwamura 1997) ap-
proach to a related problem.
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Let us observe in Table 1 how this new notion of reliability affects the plans already con-
sidered. Note that the new objective function defines a completely new notion of reliability,
therefore results provided by Model 1 and 2 are incomparable since Model 1 measures reli-
ability in terms of expected number of suppliers that meet their demand, while in Model 2
the measure refers to the expected number of unsatisfied customers. We shall see that the
second notion of reliability reflects a higher level of expressiveness and is closer to what is
perceived as reliable by common sense.

To gain more insight into the notion of reliability captured by Model 2 we now examine
two different distribution plans, 1 and 2. These two plans share common decisions, except
at S1 � D2 and S2 � D2. Plan 1 (2) requires a capacity value of 3 units (8 units) at S1

to be feasible, which is available with probability 1.0 (0.2). However if we consider S2,
Plan 1 (2) requires a capacity value of 12 units (7 units) to be feasible. The corresponding
probability is 0.0 (0.6), thus Plan 2 is more reliable than Plan 1. It is now easy to see how
logical connectives introduced in (2) capture a more intuitive and accurate measure for the
reliability of a plan that, as seen, is expressed in terms of expected number of satisfied
customers, respectively 0.0 and 0.6 for Plans 1 and 2. Note that the reliability measure
in Model 1 classifies Plan 1 as more reliable than Plan 2, since the latter violates more
probabilistic constraints. Obviously such a measure is flawed since Plan 1 is never able to
reliably satisfy any customer as supplier 2 can not provide 12 units of capacity.

2.4 Model 3: EDP-CP

However, even the second model is flawed. Consider a plan in which x1,1 = 0 so that cus-
tomer 1 must receive all supplies from supplier 2. The reliability of the satisfaction of cus-
tomer 1 should now be independent of the ability of supplier 1 to meet its demand, but in the
second model it is still dependent; this point was not considered in Liu and Iwamura (1997).
We should therefore refine the objective via further logical connectives between constraints:

max
∑

c

E

{
∧

s∈Sc

(
xs,c �= 0 ⇒

∑

c′∈Cs

xs,c′ ≤ ξs

)}
(3)

where ⇒ denotes logical implication: E{C ⇒ C ′} is the sum of the probabilities of the sce-
narios in which either C is violated or C ′ is satisfied, or both. Because of this modification,
under a scenario in which x1,1 = 0 there is no longer a penalty if

∑

c′∈C1

xs,c′ ≤ ξ1

is violated. In this case, the reliability of a plan is gauged by an event realization measure
which gives equal importance (i.e., equal weights) to satisfying demands completely at D1,
D2, and D3.

We now consider Plans 4 and 5. By observing differences between these plans it is easy to
see how the further logical connectives introduced in (3) affects reliability of the solutions. In
Plan 4, {S1, S2} � D1, {S2, S3} � D2, S3 � D3. In other words, S3 supplies two customers.
In Plan 5 {S1, S2} � D1, but S3 � D2 and S2 � D3. Therefore in both the plans S1 supplies
the same customer D1, and S2 supplies two customers (respectively D1, D2 and D1, D3),
while S3 in Plan 4 supplies two customers (D2 and D3) and in Plan 5 only supplies one
customer (D3). If S1 fails to meet the requirement in both the plans it will affect only D1

with probability 0.3. S2 cannot fail to meet the demand in both the plans. But in Plan 4 if
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S3 does not provide 8 units as required, with probability 0.3, it will affect both D2 and D3,
while in Plan 5 if S3 does not provide 7 units, with the same probability 0.3, it will affect
only D2. Thus Plan 5 is obviously more reliable than Plan 4. Such a notion is captured by
Model 3, which therefore provides a more accurate reliability measure with respect to the
former ones we presented. In fact the reader may observe that in Models 1 and 2 Plans 4
and 5 are classified as equally reliable.

2.5 Model 4: EDP-CP

So far, the decision-maker’s objective has been to maximize the plan reliability, defined in
such a way that all violated plans are treated equally. In other words, plans in which not
all customer demand constraints hold are considered equally unreliable, irrespective of the
number of customers that are completely satisfied. This obviously constitutes a limit for the
first three models presented, since often we may get unrealistic solutions where we try to
satisfy every customer achieving a poor overall reliability. An alternative objective could
aim to satisfy as many customers as possible, that is to meet as many demand constraints as
possible under probabilistic supply constraints. Clearly, this new objective may have a wider
application and may lead to more realistic solutions where some customers may be dropped
in order to serve the others with higher reliability.

In the first EDP-CP model any plan must satisfy the hard constraints on demands ζc , but
a plan that reliably satisfies two customers might be more desirable than one that satisfies all
three customers less reliably. We can model such a measure of plan reliability by removing
the hard constraints and using them in the objective function instead:

max
∑

c

E

{[
∧

s∈Sc

(
xs,c �= 0 ⇒

∑

c′∈Cs

xs,c′ ≤ ξs

)]
∧

(
∑

s′∈Sc

xs′,c = ζc

)}
. (4)

A direct consequence of this new objective on optimized plans is that solutions may no
longer aim for complete satisfaction of all customers, but most likely a subset of it, with
higher reliability. Under this new objective, distribution Plan 3 in Model 4 guarantees com-
plete satisfaction of D2 and D3 with a reliability score of 2.0, whereas under the previous
models it is assigned reliability score 0.

In Table 1 the column for Model 4 depicts an accurate and realistic classification for the
reliability measures of the plans considered in our concrete example.

2.6 A meta-constraint

We believe that our final model is of a form that will apply to many problems. The following
sections present a formalization of a modeling framework to express such problems naturally
and propose a compilation from the given formalization into a standard constraint program.
In Sect. 3.2, we shall introduce a meta-constraint to simplify complex expressions such as
those in our final model, so that it can be written in the form

Maximize
∑

c E{ec : ∑s′∈Sc
xs′,c = ζc }

given that

(∀c) (∀s ∈ Sc) DEPENDENCY(ec,
∑

c′∈Cs
xs,c′ ≤ ξs, xs,c �= 0).
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This construct is equivalent to (4), but by expressing the problem in this form, through
the new keyword “given that”, we separate the logical dependencies involving the events
from the definition of the events. This way we aim to reduce the cognitive burden on the
user. It should be noted that events ec , although they appear as deterministic constraints,1

are actually probabilistic. In fact their probabilistic nature is induced by the given depen-
dencies. In practice the satisfaction of customer demands, that is constraints ec , depends
on the selected suppliers and on the capacity they can provide. More formally, constraints
ec (

∑
s′∈Sc

xs′,c = ζc) are the events whose reliability we wish to maximize, and in each
scenario these events are subject to certain pre-requisite constraints (

∑
c′∈Cs

xs,c′ ≤ ξs ) and
certain conditions (xs,c �= 0). Intuitively, if a pre-requisite is unsatisfied in a scenario then
the event is also classed as unsatisfied in that scenario; and if a condition is unsatisfied in a
scenario then the event is classed as satisfied in that scenario.

3 Event-driven probabilistic constraint programming

In this section we formalise the EDP-CP modeling framework.

3.1 Preliminaries

Recall that a constraint satisfaction problem (CSP) consists of a set of variables X , each with
a finite domain of values Di , and a set of constraints C, each over a subset of X (denoted
by Scope(C)) and specifying allowed combinations of values for given subsets of variables.
A solution is an assignment of values to the variables satisfying the constraints. A Constraint
Optimisation Problem (COP) is a CSP with given objective function over a subset of X that
we wish to maximize or minimize.

Recall that a probabilistic CSP as introduced in Fargier et al. (1995) is defined as a 6-tuple
〈X ,D,Λ,W,C,Pr〉 where:

– X = {x1, . . . , xn} is a set of decision variables;
– D = D1 × · · · × Dn, where Di is the domain of xi ;
– Λ = {λ1, . . . , λl} is a set of uncertain parameters;
– W = W1 × · · · × Wl , where Wi the domain of λi ;
– C is a set of (probabilistic) constraints each involving at least one decision variable (and

possibly some uncertain parameters);
– Pr : W → [0,1] is a probability distribution over uncertain parameters.

In Fargier et al. (1995) a complete assignment of the uncertain parameters (resp. of the
decision variables) is called a world (resp. a decision). The probability that a decision is a
solution is the probability of the set of the worlds in which it is a solution.

In its most general form, event-driven probabilistic CP supports uncertain parameters as
well as decision variables. A constraint is said to be probabilistic, if it involves both decision
variables and uncertain parameters. In the rest of this paper we will sometimes refer to
classical constraints as deterministic constraints to distinguish them from the probabilistic
ones. We will refer to the possible values of an uncertain parameter λi as W(λi) and to the
probability of λi taking a given value v in W(λi) as Pr(λi = v). As in Fargier et al. (1995),
we refer to a complete assignment of uncertain parameters as a possible world and denote
by W the set of all possible worlds. We also assume that the probability of each possible
world w is given by the probability function Pr : W → [0,1].

1Note that in the general case customer demand ζc may also be a random variable.
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Definition 1 (Fargier et al. 1995) Given a probabilistic constraint c over decision variables
and some uncertain parameters, the reduction of c by world w ∈ W , denoted by c↓w , is the
deterministic constraint obtained by setting all its uncertain parameters as in w.

3.2 Modeling framework

In EDP-CP some of the constraints can be designated by the user as event constraints. The
user’s objective is to maximize his/her chances of realizing these events. For instance, in
our running example the user may consider the customer demand constraints as events.
The objective is then to construct a plan satisfying customer demand constraints as far as
possible.

The feasibility of certain event constraints depends on the satisfaction of other con-
straints. For instance, having a plan that meets the customer demands depends on whether
or not the supply constraints are met with such a plan. For this purpose we introduce a new
meta-constraint (already described in Sect. 2.6) useful for modeling such situations in our
EDP-CP framework, which we refer to as a dependency meta-constraint. We first introduce
the dependency constraint in the deterministic setting.

Definition 2 DEPENDENCY(e,p, c) iff Scope(e) ∩ Scope(p) �= ∅ & Scope(c) ⊆
Scope(e) ∩ Scope(p) & e ∧ (c ⇒ p), where e, p, and c are all deterministic constraints.

The DEPENDENCY meta-constraint is satisfied if and only if e is satisfied and, if c holds,
p is satisfied. We refer to p as a pre-requisite constraint for event constraint e, and c as a
condition constraint for p. Note that by definition, DEPENDENCY(e,p, c ∨ c′) is equivalent
to DEPENDENCY(e,p, c) ∧ DEPENDENCY(e,p, c′), and similarly DEPENDENCY(e,p ∧
p′, c) is equivalent to DEPENDENCY(e,p, c) ∧ DEPENDENCY(e,p′, c).

We now introduce a measure for event realization in a deterministic setting, and later
generalize it to probabilistic events.

Definition 3 Given a deterministic event constraint e with Scope(e) = {x1, . . . , xk}, an event
realization measure E{e} on e is a mapping M from D(x1) × · · · × D(xk) into {0,1} such
that for all t ∈ D(x1)×· · ·×D(xk), M(t) = 1 iff t satisfies all the DEPENDENCY constraints
that have e as event constraint argument.

Example 1 Given the meta-constraint DEPENDENCY(e, x1 ≤ 4, x2 �= 0), an event realization
measure on event constraint e : x1 + x2 = 8, denoted by E{e}, takes value 1 only when the
values v1 and v2 assigned to decision variables x1 and x2 (resp.) sum to 8 and, if x2 is
different than zero, x1 is less or equal to 4, otherwise it takes value 0.

When the events are probabilistic constraints, the event realization measure is defined on
the set of possible worlds as follows.

Definition 4 Given a probabilistic event constraint e with Scope(e) = {x1, . . . , xk} and un-
certain parameters Λ = {λ1, . . . , λl}, an event realization measure E{e} on e is a mapping
M from D(x1) × · · · × D(xk) into interval [0,1] such that

E{e} =
∑

w∈W(λ1)×···×W(λl )

Pr(w)E{e↓w}.
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Example 2 An event realization measure on probabilistic constraint e : x1 + x2 ≤ ξ , where
ξ is a discrete random variable assuming {6(0.2),8(0.7),11(0.1)}, is denoted by E{e} and
takes the value 0.8 when x1 = 4 and x2 = 3, and the value 0.1 when x1 = 6 and x2 = 3.

For convenience we shall only considered the “expectation operator” in defining an event
realization measure. However, any other relevant operator, such as the nth moment generator
(Jeffreys 1961), can be used instead.

The following example demonstrates the use of the DEPENDENCY meta-constraint in a
probabilistic setting.

Example 3 In Fig. 2 the event e1 is the demand constraint for the first customer e1 :
x1,1 + x2,1 = 8, while the pre-requisite constraints are the probabilistic supply constraints
p1 : x1,1 + x1,2 ≤ ξ1, p2 : x2,1 + x2,2 + x2,3 ≤ ξ2, and p3 : x3,2 + x3,3 ≤ ξ3. Now con-
sider event e1. From the constraint scopes we see that Scope(e1) ∩ Scope(p1) = {x1,1},
Scope(e1) ∩ Scope(p2) = {x2,1} and Scope(e1) ∩ Scope(p3) = ∅, so e1 depends on p1 and
p2, not p3. From the problem semantics we should introduce the condition constraints
c1 : x1,1 �= 0 and c2 : x2,1 �= 0, to express the fact that there is no dependency relation be-
tween e1 and p1 if x1,1 = 0, and that there is no dependency relation between e1 and p2 if
x2,1 = 0. Thus we write the dependency meta-constraints DEPENDENCY(e1,p1, x1,1 �= 0)

and DEPENDENCY(e1,p2, x2,1 �= 0).

Equipped with these concepts, we now define EDP-CP as follows.

Definition 5 An EDP-CP is a 9-tuple P = 〈X ,D,Λ,W,E,C,H, Ψ,Pr〉 where:

– X = {x1, . . . , xn} is a set of decision variables;
– D = D1 × · · · × Dn, where Di is the domain of Xi ;
– Λ = {λ1, . . . , λl} is a set of uncertain parameters;
– W = W1 × · · · × Wl , where Wi the domain of λi ;
– E = {e1, . . . , em} is a set of event constraints. Each ei may either be probabilistic (involv-

ing a subset of X and a subset of Λ) or deterministic (involving only a subset of X );
– C = {c1, . . . , co} is a set of dependency meta-constraints. For each dependency meta-

constraint ci : DEPENDENCY(e,p,f ) we have e ∈ E , where p may be either a prob-
abilistic or a deterministic pre-requisite constraint, and f is a deterministic condition
constraint;

– H = {h1, . . . , hp} is a set of hard constraints. Each hi may either be probabilistic (involv-
ing a subset of X and a subset of Λ) or deterministic (involving only a subset of X );

– Ψ is any expression involving the event realization measures on the event constraints in
E ;

– Pr : W → [0,1] is a probability distribution over uncertain parameters.

In Fig. 3 we show a modeling template for EDP-CP.

Example 4 The motivational example of Sect. 2 can be expressed as an EDP-CP P =
〈X ,D,Λ,W,E,C,H, Ψ,Pr〉 where:

– X = {x1,1, x1,2, x2,1, x2,2, x2,3, x3,2, x3,3};
– D = [0..99] × [0..99] × [0..99];
– Λ = {ξ1, ξ2, ξ3};
– W = {3(0.3),7(0.5),12(0.2)} × {6(0.4),7(0.2),10(0.4)} × {3(0.3),8(0.7)};
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Fig. 3 An EDP-CP template
Maximize:

Ψ (E{e1}, . . . ,E{em})

Given that:

dependency meta-constraint c1

. . .

dependency meta-constraint co

Subject to:

hard constraint h1

. . .

hard constraint hp

– E = {e1 : x1,1 + x2,1 = 8, e2 : x1,2 + x2,2 + x3,2 = 7, e3 : x2,3 + x3,3 = 4};
– C = {c1 : DEPENDENCY(e1,p1 : x1,1 + x1,2 ≤ ξ1, f1,1 : x1,1 �= 0),

c2 : DEPENDENCY(e1,p2 : x2,1 + x2,2 + x2,3 ≤ ξ2, f2,1 : x2,1 �= 0),
c3 : DEPENDENCY(e2,p1, f1,2 : x1,2 �= 0),
c4 : DEPENDENCY(e2,p2, f2,2 : x2,2 �= 0),
c5 : DEPENDENCY(e2,p3 : x3,2 + x3,3 ≤ ξ3, f3,2 : x3,2 �= 0),
c6 : DEPENDENCY(e3,p2, f2,3 : x2,3 �= 0),
c7 : DEPENDENCY(e3,p3, f3,3 : x3,3 �= 0)};

– H = {x1,1 ≥ 0, . . . , x3,3 ≥ 0};
– Ψ is E{e1} + E{e2} + E{e3};
– Pr(〈ξ1 = 3, ξ2 = 6, ξ3=3〉) = 0.036, . . . ,Pr(〈ξ1 = 12, ξ2 = 10, ξ3 = 8〉) = 0.056.

Finally, we define optimal solutions to EDP-CPs as follows.

Definition 6 An optimal solution to an EDP-CP P = 〈X ,D,Λ,W,E,C,H,Ψ,Pr〉 is any
assignment S to the decision variables such that:

1. for each h ∈ H, for each w ∈ W , h↓w is satisfied; and
2. there exists no other assignment satisfying all the hard constraints with a strictly better

value for Ψ , according to the DEPENDENCY constraints introduced in the model.

Note that when the total number of worlds is 1 with probability 1, the event realization
measure on c is the same as in the deterministic case.

4 Solution methods for EDP-CP

We now show how to map an EDP-CP P = 〈X ,D,Λ,W,E,C,H,Ψ,Pr〉 into an equivalent
classical COP P ′ = 〈X ′,D′,C′,Ψ ′〉.
4.1 Mapping variables and domains

Algorithm 1 shows how to create the decision variables in P ′ starting from P , in two steps.
The first step (Line 3) duplicates the decision variables in P ′ along with their domains. The
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Algorithm 1: Variable-Mapping(X ,D,Λ,W,E,C):〈 X ′,D′ 〉
X ′ ← ∅;1

D′ ← ∅;2

foreach x ∈X do3

create x′ with the same domain as x and add it to X ′ ;

foreach e ∈ E do4

foreach w ∈ W do
create a Boolean be

w and add it to X ′ ;

Algorithm 2: Constraint-Mapping(X ,D,Λ,W,E,C,H):C′

C′ ← ∅;1

foreach e ∈ E do2

foreach w ∈W do

k ← e↓w ∧
⎡

⎣ ∧

{DEPENDENCY(ε,p,c)∈C|ε=e}
(c ⇒ p↓w)

⎤

⎦;

add be
w = 1 ↔ k to C′ ;

foreach h ∈H do3

foreach w ∈W do
add h↓w to C′ ;

second step (Line 4) introduces a Boolean variable that is used later to represent the truth
value of each event e in each possible world w.

4.2 Mapping constraints

Algorithm 2 shows how to create the constraints in P ′, again in two steps. In step one
(Line 2) we introduce a reification constraint for each event e in each possible world
w ∈ W . This ensures that be

w is assigned the value 1 iff e↓w is satisfied and, for each
DEPENDENCY(e,p, c) constraint involving event e, if the given condition c is met, the
respective prerequisite p↓w is satisfied. In the second step (Line 3) each probabilistic con-
straint is transformed into a set of deterministic constraints in C′.

4.3 Mapping the objective function

Finally, the objective function of P ′ is the same function Ψ as in P , except that we replace
each occurrence of an event measure E{e} with

∑

w∈W

Pr(w)be
w

as shown in Algorithm 3.



Ann Oper Res

Algorithm 3: Objective-Function-Mapping(X ,D,Λ,W,E,C,H, Ψ ):Ψ ′

Ψ ′ ← Ψ ;1

foreach E{e} ∈ Ψ ′ do2
replace E{e} with

∑
w∈W Pr(w)be

w ;

5 Scenario reduction

In the former section we showed how to compile any EDP-CP program in an equivalent
ordinary constraint program. Unfortunately the more scenarios we consider the more deci-
sion variables need to be introduced in the model. This may easily lead to large intractable
problems when the number of scenarios is high. In Tarim et al. (2006) the authors discuss
several scenario sampling techniques to cope with a similar problem arising in a scenario
based approach for stochastic constraint programming. The purpose of these techniques is
to replace a large intractable set of scenarios with a small tractable set so that solving the
problem over the small set yields a solution not much different than the solution over the
large one. Obviously these technique may also be applied to reduce the number of scenar-
ios considered in EDP-CP. The scenario reduction techniques presented are well known in
statistics. Typically they determine a subset of scenarios and a redistribution of probabilities
relative to the preserved scenarios. No requirements on the stochastic data process are im-
posed and therefore the concept is general. However the authors point out that, depending
on their sophistication, the reduction algorithms may require different types of data.

The simplest scenario reduction algorithm considers just a single scenario in which sto-
chastic variables take their expected values. This is called the expected value problem. In
what follows we recall one of the best sampling methods for experimental design, that is
Latin Hypercube Sampling (LHS) (McKay et al. 1979). This method ensures that a range of
values for a variable are sampled. Suppose we want the sample size to be n. We divide the
unit interval into n intervals, and sample a value for each stochastic variable exactly once.
More precisely, let fi(a) be the cumulative probability that Xi takes the value a or less,
Pi(j) be the j th element of a random permutation Pi of the integers {0, . . . , n− 1}, and r be
a random number uniformly drawn from [0,1]. Then the j th Latin hypercube sample value
for the random variable Xi is:

f −1
i

(
Pi(j) + r

n

)
.

However it should be noted that the sample size n does not guarantee to produce a sample
of n scenarios, since a single scenario may be chosen more than once due to, for example,
the discreteness of the data.

Techniques like the one illustrated may be applied to reduce the number of scenarios to a
reasonable size so that the resulting reduced problem is a tractable one. An example of this
will be presented in Sect. 6.2, where LHS is applied to a probabilistic scheduling problem
in order to reduce the set of scenarios considered and preserve the quality of the solution
provided by the EDP-CP model described.

6 Illustrative examples

In this section we present three illustrative problems and model them using the EDP-CP
framework. The first example is a probabilistic supply chain planning problem, which is an
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extended version of the example of Sect. 2. In this extended version, demand uncertainty, as
well as supply uncertainty, is considered. The second example is a probabilistic scheduling
problem which generalizes the one proposed in Jain and Grossmann (2001). In this example
task durations are uncertain. The third example is a production planning problem with an
emphasis on capital budgeting, and assumes that production rates, demands, prices and costs
are all uncertain parameters.

6.1 An EDP-CP model for probabilistic supply chain planning

There is a sizeable literature on supply chain modeling under uncertainty (see, for example,
de Kok and Graves 2003 and Porteus 2002). Recently, the authors of this work also expe-
rienced at first-hand the relevance of modeling supply and demand uncertainties during a
research project carried out for a leading international telecommunications company.

Here we adopt a simplified version of the problem, which was presented in Sect. 2.1
and Fig. 2. The objective is to determine the most reliable plan that will meet customers’
realised demands at D1,2,3 by means of uncertain deliveries from suppliers denoted by S1,2,3.
It is assumed that (i) the order batch sizes xi,j from supplier i to customer j is not allowed
to exceed 6 units, xi ≤ 6, (ii) D3 requires that its order is supplied by only one supplier,
x2,3x3,3 = 0. Scenario parameters are given in Table 2. These parameters can be obtained,
for instance, through a sampling method like LHS, which we presented in the former section.
Excess supplies from suppliers are stored at customers with a negligible inventory carrying
cost until the next order issue.

We consider two possible EDP-CP models for this probabilistic supply chain problem.
In the first one we try to find a solution in which all events are realised, while in the second

Table 2 Scenario data

Pr(w) 0.036 0.084 0.018 0.042 0.036 0.084 0.060 0.140 0.030

w 1 2 3 4 5 6 7 8 9

S1 3 3 3 3 3 3 7 7 7

S2 6 6 7 7 10 10 6 6 7

S3 3 8 3 8 3 8 3 8 3

D1 8 8 8 7 7 7 8 8 8

D2 7 7 7 5 5 5 5 7 7

D3 4 6 6 4 4 6 6 4 4

Pr(w) 0.070 0.060 0.140 0.024 0.056 0.012 0.028 0.024 0.056

w 10 11 12 13 14 15 16 17 18

S1 7 7 7 12 12 12 12 12 12

S2 7 10 10 6 6 7 7 10 10

S3 8 3 8 3 8 3 8 3 8

D1 9 9 9 8 8 8 7 7 7

D2 5 5 5 5 3 3 3 5 5

D3 6 6 4 4 6 6 4 4 6
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Maximize:
E{e1 : x1,1 + x2,1 ≥ ζ1}

+ E{e2 : x1,2 + x2,2 + x3,2 ≥ ζ2}
+ E{e3 : x2,3 + x3,3 ≥ ζ3}

Given that:

DEPENDENCY(e1,p1 : x1,1 + x1,2 ≤ ξ1, f1,1 : x1,1 �= 0)

DEPENDENCY(e1,p2 : x2,1 + x2,2 + x2,3 ≤ ξ2, f2,1 : x2,1 �= 0)

DEPENDENCY(e2,p1, f1,2 : x1,2 �= 0)

DEPENDENCY(e2,p2, f2,2 : x2,2 �= 0)

DEPENDENCY(e2,p3 : x3,1 + x3,2 ≤ ξ3, f3,2 : x3,2 �= 0)

DEPENDENCY(e3,p2, f2,3 : x2,3 �= 0)

DEPENDENCY(e3,p3, f3,3 : x3,3 �= 0)

Subject to:

0 ≤ xi,j ≤ 6, ∀i, j ∈ {1,2,3}
x2,3.x3,3 = 0
ei, ∀i ∈ {1,2,3}
xi,j ∈ Z

0,+

Fig. 4 An EDP-CP model for probabilistic supply chain planning

this condition is relaxed. The EDP-CP model in Fig. 4 describes the first case. The second
case can be simply achieved by dropping e1–e3 from the set of hard constraints.

The EDP-CP model is compiled into a standard CP model using the algorithm presented
in Sect. 4. The optimal solution is x1,1 = 6, x1,2 = 1, x2,1 = 3, x2,2 =4, x2,3 =0, x3,2 = 2,
x3,3 = 6. In the optimal plan E{e1} = 0.420, E{e2} = 0.294 and E{e3} = 0.700, giving
an optimal objective function value of 1.414. In other words, this plan guarantees to meet
customer demands at D1,2,3 with probabilities 42.0%, 29.4% and 70.0%, respectively. This
plan aims to satisfy customer demands completely.

In most circumstances it would be more realistic to assume that the event constraints e1,
e2, and e3 are not hard constraints and the expected plan should not aim for a complete de-
mand satisfaction. When we drop these hard event constraints, the following plan is optimal
under such a relaxation: x1,1 = 6, x1,2 = 0, x2,1 = 3, x2,2 = 3, x2,3 = 0, x3,2 = 2, x3,3 = 6.
The event constraint satisfaction probabilities are now E{e1} = 0.700, E{e2} = 0.476 and
E{e3} = 0.700, giving a total of 1.876.

A comparison of two plans shows that there are differences between them at x1,2 and
x2,2. It may not be immediately obvious why we change x1,2 from 1 to 0, as in both plans
the probability of acquiring the required capacity at S1 (7 and 6, respectively) is 0.8. The
explanation lies in the probability distribution of the uncertain capacity of S2. Supplier S2

can provide 6 units with a probability of 1.0, but not 7 units. The second plan exploits this
situation and aims for a partial satisfaction at D2 by providing only 5 units. Thus there is no
need for any delivery from S1 to D2. The second plan has higher reliability at the expense
of partial satisfaction at D2. It should be noted that there are alternative optimal solutions to
this instance.
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6.2 An EDP-CP model for scheduling

We consider a specific scheduling problem similar to the one considered by Hooker et al.
(1999). This scheduling problem was described in Jain and Grossmann (2001) and it in-
volves finding a least-cost schedule to process a set of orders I using a set of dissimilar
parallel machines M . Processing an order i ∈ I can only begin after the release date ri and
must be completed at the latest by the due date di . Order i can be processed on any of the
machines. The processing cost and the processing time of order i ∈ I on machine m ∈ M

are cim and pim, respectively.
The model just described is fully deterministic, but we will now consider a generalization

of this problem to the case where some inputs are uncertain. For convenience we will just
consider uncertain processing times πim for order i ∈ I on machine m ∈ M . Nevertheless it
is easy to see that EDP-CP can be also employed to model more complicated generalizations
of this problem where release dates and due dates are uncertain or processing costs are
uncertain.

Scheduling with uncertainty is a topic that has been explored in a variety of fields in-
cluding artificial intelligence, operations research, fault-tolerant computing and systems.
For surveys on the literature see Davenport and Beck (2000), Herroelen and Leus (2005),
and Bidot (2005). In Beck and Wilson (2007) a classification of possible approaches for
scheduling under uncertainty is summarized. They report three techniques that are usually
employed to face uncertainty. In redundancy-based techniques extra resources/time are al-
located to every task to cushion the impact of unexpected events during execution. Proba-
bilistic techniques instead tend to build a schedule that optimizes a measure of probabilistic
performance, such as expected makespan or expected weighted tardiness. Contingent and
policy based approaches typically generate a branching or contingent schedule or, in extreme
cases, a policy, that specify a set of actions to be taken when a particular set of circumstances
arises. Our EDP-CP approach can be classified as probabilistic under a predefined policy.

Since EDP-CP is meant to model and optimize the reliability of a given plan we will
assume in our problem that a fixed budget B is given and that our plan has to meet such a
constraint on the costs. Therefore we will no longer look for a least-cost plan, rather we will
optimize a reliability measure expressed in terms of events, as it is usual in EDP-CP. The
specific event whose probability we wish to maximize is the successful completion of each
job within the given time frame defined by its release and due date. Since jobs are scheduled
in sequence on each machine dependencies will arise between subsequent jobs. We adopt a
specific policy that unschedules a job whether this is not processed within the given due date
or before the planned start time of the subsequent job on the respective machine. This policy
guarantees that every order will always start at the planned start time, since the respective
machine will be free and will start processing it. More complicated EDP-CP models may
also consider the case where we aim to minimize total tardiness or total completion time of
a given plan. In this cases the realized processing time of an order may affect the scheduling
time of subsequent orders. We will not analyze these cases in this example. An EDP-CP
model for the problem described is given in Fig. 5. Let us analyze the given model. The
objective function maximizes the expected number of tasks completed by the respective due
dates. DEPENDENCY constraint states that, when two jobs i, j are executed in sequence on
the same machine (condition σij = 1), job i has to be completed by its due date (event ei is
satisfied) and before the start time of job j (pre-requisite sj ≥ si + ∑

m∈M πim ∗ δim). The
hard constraints respectively state that: the start time of job i, si , must be no less than the
release time ri for this job; if two jobs i, j are processed on the same machine m and i is
processed before j then the start time of i, si , must be less than the start time of j , sj ; each
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Maximize:∑
i∈I E{ei : si + ∑

m∈M πim ∗ δim ≤ di}

Given that:

DEPENDENCY(ei, sj ≥ si + ∑
m∈M πim ∗ δim, σij = 1), ∀i, j ∈ I, i �= j

Subject to:

si ≥ ri,∀i ∈ I

σij = 1 ⇒ si < sj ,∀i, j ∈ I, i �= j∑
m∈M δim = 1,∀i ∈ I

σij + σji ≥ δim + δjm − 1,∀m ∈ M,∀i, j ∈ I, i �= j

σij + σji ≤ 1,∀i, j ∈ I, i �= j∑
i∈I (

∑
m∈M cim ∗ δim) ≤ B

σij ∈ {0,1},∀i, j ∈ I

δim ∈ {0,1},∀i ∈ I,∀m ∈ M

si ∈ [Ls,Le],∀i ∈ I

Fig. 5 An EDP-CP model for scheduling

job must be processed on a machine; if two jobs i, j are processed on the same machine m,
either i is processed before j , σij = 1, or j is processed before i, σji = 1; the processing
costs must be no greater than the given budget B .

We now consider an instance of this problem. We consider 5 orders {I1, . . . , I5} on 2
parallel machines {M1,M2}. The uncertain processing times of each order on each machine
are shown in Table 3. The release dates for the orders are [2,4,6,8,10]. The due dates are
[16,13,30,41,35]. The costs for processing orders on machine M1 are [10,8,12,11,9],
and on machine M2 they are [16,5,17,9,4]. The given budget B is 40.

We define

Ls = min
i∈I

ri

and

Le = Ls + min
m∈M

∑

i∈I

�πim�

where �πim� is the maximum duration of order i ∈ I on machine m ∈ M for every possible
world w ∈ W . Therefore

�πim� = max
w∈W

πim.

In order to solve the proposed scheduling problem we compiled the EDP-CP model into
a standard constraint program as described in Sect. 4. This constraint program was solved
using OPL Studio 3.7 on an Intel(R) Centrino(TM) CPU 1.50 GHz with 2 Gb RAM. We
chose the provided dichotomic strategy and depth-bounded discrepancy search procedure.
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Table 3 Order processing times

w ∈ W 1 2 3 4 5 6

Pr{w} 0.1 0.1 0.05 0.1 0.05 0.2

m ∈ M M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

i ∈ I 1 10 14 9 15 11 13 9 14 9 15 11 13

2 6 8 5 9 7 7 7 8 5 9 7 12

3 11 16 10 18 12 15 4 16 10 18 14 15

4 7 9 6 10 8 8 8 9 6 10 8 8

5 12 17 11 18 13 16 12 17 4 18 13 16

w ∈ W 7 8 9 10 11 12

Pr{w} 0.05 0.05 0.1 0.05 0.05 0.1

m ∈ M M1 M2 M1 M2 M1 M2 M1 M2 M1 M2 M1 M2

i ∈ I 1 10 14 9 15 11 13 10 14 9 15 11 13

2 6 8 15 9 7 7 16 8 5 9 7 7

3 16 16 10 18 10 15 11 16 10 18 12 15

4 7 9 6 10 8 8 17 9 6 10 8 8

5 12 17 11 18 13 16 12 17 11 18 13 6

An optimal solution for the given instance was found in 6.97 seconds, it has a cost of
40 and an overall reliability measure of 4.8, which means that in our plan 4.8 orders over 5
will be, in the average case, processed within the required due date and before the next order
scheduled on the same machine. More specifically, the realization measures for each event
constraint are: E{e1} = 100%, E{e2} = 80%, E{e3} = 100%, E{e4} = 100% and E{e5} =
100%. The optimal plan assigns orders {1,3} to M1 and orders {2,4,5} to M2. The start
times for the orders are [2,4,13,31,13].

In order to reduce the size of the model input we will now perform a LHS on the original
problem instance presented in Table 3. The original 12 scenarios are then reduced to only
4 sampled scenarios. The reduced instance is presented in Table 4. The optimal solution
for the LHS reduced instance was found in 2.08 seconds, it has a cost of 40 and an overall
reliability measure of 4.8. More specifically, the optimal plan assigns orders {1,3} to M1

and orders {2,4,5} to M2. The start times for the orders are [2,4,13,31,13]. This is the
same optimal plan found for the original problem with 12 scenarios.

We now reduce the number of scenarios to only 2 samples as shown in Table 5. The
optimal solution was found in only 0.72 seconds and also in this case it corresponds to the
same optimal plan described above.

We finally solved the expected value problem in which the random order processing
times are replaced with their expected values. The expected times for processing orders on
machine M1 are [10,7,11,8,12], and on machine M2 they are [14,9,16,9,16]. The opti-
mal solution for the expected value problem was found in 0.25 seconds, it has a cost of 40
and an overall reliability measure of 3.55. More specifically, the optimal plan assigns orders
{1,3} to M1 and orders {2,4,5} to M2. The start times for the orders are [2,4,12,32,16].
This plan is 26.04% less reliable than the previous ones.

As this simple example demonstrates, the expected value approach to probabilistic prob-
lems may produce solutions which are far from being close to the optimal solutions, while
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Table 4 Order processing times, LHS with 4 samples

w ∈ W 2 6 7 10

Pr{w} 0.25 0.25 0.25 0.25

m ∈ M M1 M2 M1 M2 M1 M2 M1 M2

i ∈ I 1 9 15 11 13 10 14 10 14

2 5 9 7 12 6 8 16 8

3 10 18 14 15 16 16 11 16

4 6 10 8 8 7 9 17 9

5 11 18 13 16 12 17 12 17

Table 5 Order processing times,
LHS with 2 samples w ∈ W 3 11

Pr{w} 0.5 0.5

m ∈ M M1 M2 M1 M2

i ∈ I 1 11 13 9 15

2 7 7 5 9

3 12 15 10 18

4 8 8 6 10

5 13 16 11 18

a sampling approach usually brings benefits in terms of processing time without sacrificing
too much the optimality of the solution produced.

6.3 An EDP-CP model for production planning/capital budgeting

In this section, a production planning problem with an emphasis on capital budgeting is
used to demonstrate the flexibility of the proposed modeling framework in dealing with
uncertainties.

The production planning/capital budgeting problem assumes that there are n = 7 types
of products to be produced, under uncertain demands di , i = 1, . . . ,7. Each product can
be produced on only one type of machine which is assigned to this product only. The
existing production floor space is A = 50 m2, in which each machine type requires mi

(m = [3,6,5,3,7,8,9]) in m2 per machine of type i. The cost of operating each machine
involves two types of costs: fixed cost fi (f = [40,75,62,39,53,19,38]) and variable pro-
duction cost ci . The total production budget is B = $670. The variable production cost
components c1,...,7 are uncertain, taking different values in each world w1,...,4 (see Table 6).
The produced amount of each product depends on the number of machines used, xi , and
the uncertain machine production rate, ri , is also given in Table 6. Table 6 shows two more
uncertain problem parameters: demand di and selling price pi .

Under these uncertainties, a realistic objective is to determine the most reliable plan (i.e.
how many machines to purchase of each type) that maximizes our chances of meeting our
demand constraints as much as possible, while achieving a specified target profit of T = $40,
not exceeding our budget B , and meeting all space and production constraints. It is assumed
that meeting customer demands and the profit target are equally important events.

In specific solution/plans, depending on unfolding of uncertainties, the budget constraint
may hold, as well as demand and target profit objectives. It should be noted that it is not gen-
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Table 6 Problem data

w Pr Production cost Demand

c1 c2 c3 c4 c5 c6 c7 d1 d2 d3 d4 d5 d6 d7

1 0.16 3 6 1 1 6 10 2 4 7 2 8 3 5 2

2 0.19 4 4 7 2 4 7 7 7 9 9 9 4 7 4

3 0.38 5 3 5 8 7 6 10 9 11 12 10 7 8 7

4 0.27 5 6 8 5 5 3 6 11 13 17 11 13 16 13

w Pr Selling price Production rate

p1 p2 p3 p4 p5 p6 p7 r1 r2 r3 r4 r5 r6 r7

1 0.16 8 14 4 16 14 10 4 2 3 2 1 2 1 2

2 0.19 10 16 18 18 10 14 14 4 4 5 2 4 3 6

3 0.38 18 22 14 18 14 16 24 5 5 6 3 5 5 4

4 0.27 22 26 26 22 16 24 18 9 6 8 4 7 7 7

Maximize:
1

2n

∑n

i=1 E{ei : min(rixi, di) = di}
+ 1

2E{ē : ∑n

i=1 pi min(rixi, di) − fixi − cirixi ≥ T }

Given that:

DEPENDENCY(ej ,
∑n

i=1(fi + ciri)xi ≤ B,True), ∀j ∈ {1, . . . , n}
DEPENDENCY(ē,

∑n

i=1(fi + ciri)xi ≤ B,True)

Subject to:

∑n

i=1 mixi ≤ A

xi ∈ Z
0,+

Fig. 6 An EDP-CP model for production planning/capital budgeting

erally possible to find a solution which always satisfies all the constraints. For that reason,
the problem addressed here is very different from the well-established techniques dealing
with uncertainty.

An EDP-CP model of the production planning/capital budgeting problem is shown in
Fig. 6, where rixi and min(rixi, di) denote the amount produced and sold, respectively, of
product type i ∈ {1, . . . , n}, and xi denotes the number of machine used in the production
of type i product. There is only one pre-requisite constraint (the budget constraint) and no
condition constraint.

The optimal solution found is x∗ = [2,0,2,0,0,2,2]. This production plan gives
E{e1} = 100%, E{e2} = 0, E{e3} = 73%, E{e4} = 0, E{e5} = 0, E{e6} = 38%, E{e7} =
100%, where event constraint ei denotes the complete satisfaction of demand for product
type i. In this plan the profit target is achieved E{ē} = 65% of the time.
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Table 7 Expected value problem data

Product type 1 2 3 4 5 6 7

Production cost 4.49 4.48 5.55 4.93 5.73 6.02 7.07

Demand 8.36 10.52 11.18 9.76 7.41 9.49 7.25

Selling price 15.96 20.66 16.40 18.76 13.78 16.82 17.28

Production rate 5.41 4.76 5.71 2.76 4.87 4.52 4.87

We also solved the expected value problem in which the random variables production
cost, demand, selling price and production rate are replaced with their expected values. The
expected value data used in the deterministic problem are given in Table 7.

The solution to this resultant deterministic problem is x∗ = [2,0,0,4,2,0,2]. We used
this plan in the original probabilistic setting to evaluate the quality of the expected value
solution. The expected value solution gives E{e1} = 35%, E{e2} = 0, E{e3} = 0%, E{e4} =
0, E{e5} = 35, E{e6} = 0%, E{e7} = 35%, where event constraint ei denotes the complete
satisfaction of demand for product type i. It is not possible to achieve the profit target under
any scenario using this plan; in other words, E{ē} = 0%.

Also in this case the expected value approach to probabilistic problems produces a solu-
tion which is far from being close to the optimal one.

7 Related works

The EDP-CP framework we present is a generalization of the work of Liu and Iwamura
(1997) on dependent-chance programming. Firstly, our notion of constraint dependency in-
troduces condition constraints in addition to the event and pre-requisite constraints. It should
be noted that constraint dependency without condition constraints does not guarantee opti-
mal plans since in certain instances common variables may take values which break the link
between two dependent constraints. Secondly, while a feasible solution in Liu’s framework
satisfies all event constraints, in our framework such a requirement is relaxed, and this gives
the decision-maker more flexibility in modeling. Finally, while Liu’s work only considers
Monte Carlo-based simulation methods, we propose a complete solution method.

EDP-CP is also related to the probabilistic CSP framework (Fargier et al. 1995). How-
ever, probabilistic CSP treats all probabilistic constraints uniformly, whereas EDP-CP dis-
tinguishes between event, pre-requisite, condition, and hard constraints. For instance, in
probabilistic CSP, all customer and demand constraints will be treated in the same way. In
a given world, either all constraints are satisfied or the problem is over-constrained. While
finding a plan that has the highest probability of success is an interesting objective, our
approach answers different questions and achieves different objectives.

It should also be noted that, when all the constraints are deterministic, our EDP-CP
framework is closely related to Partial CSPs (Freuder and Richard 1992). Partial CSPs can
be divided into two main categories: The Minimal Violation Problem and the Maximal Util-
ity Problem. In the first case the goal is to find a solution which satisfies as many constraints
as possible (e.g. Soft CSPs Bistarelli et al. 2002) or equivalently to minimise the number of
violated constraints. In the Maximal Utility Problem the objective is to find a partial solution,
which violates none of the constraints where a partial solution is an assignment in which not
all variables are assigned a value. In our approach we also find partial solutions, but instead
of treating all constraints equally we have shown that we can obtain partial assignments
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that satisfy as many event constraints as possible according to the given probability distri-
butions for the random variables and to the dependencies that have been modeled. Partial
CSPs do not explicitly model high level concepts such as probability distributions, event,
pre-requisite, condition, and hard constraints.

Another technique addressing constraint problems under uncertainty is Stochastic Con-
straint Programming (SCP) (Tarim et al. 2003). The SCP approach assumes that the con-
straints are stochastically independent (i.e., there are no DEPENDENCY constraints among
them). Thus SCP addresses a completely different class of stochastic problems.

8 Conclusion

In this paper we propose EDP-CP as a novel modeling framework that helps decision makers
in uncertain environments to realistically model their problems and find reliable solutions.
The characteristic features of our modeling framework can be summarized as follows:

– To better model the uncertainties in real-world problems, we allow the set of constraints
to be either deterministic or probabilistic;

– We move away from classical approaches that treat all constraints uniformly to one that
distinguishes between event, pre-requisite, condition, and hard constraints;

– We introduce the DEPENDENCY meta-constraint that allows the modeler to state a prob-
lem by explicitly specifying dependency relationships between event, pre-requisite, and
condition constraints;

– In an uncertain environment, it is quite unrealistic to assume that a solution is valid irre-
spective of the unfolding of the uncertain parameters. In fact, there is a certain degree of
fuzziness associated with each candidate solution. Therefore, in our framework, we view
the set of feasible solutions as probabilistic due to the inherent uncertainties;

– We introduce an event realization measure, which can be used by the modeler to define
solution reliability.

Our future work will extend the proposed framework in various directions, and provide
efficient and effective solving methods. Our first steps will be:

– The development of specialized solution methods for EDC-CP. For instance a specialized
global constraint for the DEPENDENCY meta-constraint can be designed;

– In large-scale uncertain problems, the number of worlds can be prohibitively large. We
proposed a well-known scenario reduction technique that may help to reduce the number
of scenarios considered. However we will investigate further ways of reducing the number
of world as well as employing effective decomposition techniques;

– We will look at ways of extending EDP-CP to deal with recourse actions.
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1. Introduction

Chance-constrained programming, pioneered by Charnes and
Cooper [1], provides a means of handling uncertainty by specifying
a confidence level at which it is desired that the stochastic con-
straint holds. Chance-constrained programming models can be
converted into deterministic equivalents only for some special
cases, and then solved by using solution methods of deterministic
mathematical programming. In order to overcome this difficulty,
Liu [4] provided a new stochastic programming framework, called
dependent-chance programming, in which a complex stochastic
decision system undertakes multiple tasks called events, and the
decision-maker wishes to maximize the chance functions which
are defined as the probabilities of satisfying these events. Liu and
Iwamura [6] proposed a stochastic simulation-based genetic algo-
rithm for solving general chance-constrained programming as well
as chance-constrained multi-objective programming, and chance-
constrained goal programming (for a more detailed discussion
see [5]).

Roughly speaking, dependent-chance programming is aimed at
maximizing some chance functions of events in an uncertain envi-
ronment. In deterministic mathematical programming the feasible
ll rights reserved.

Computation Centre, Univer-
d. Tel.: +353 (0)85 122 3582;
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nich), s.prestwich@4c.ucc.ie
set is essentially assumed to be deterministic and the optimal solu-
tion can always be implemented. However when uncertainty is
taken into account the given solution may be infeasible if the real-
ization of uncertain parameters is unfavorable. In other words, the
feasible set of dependent chance-programming is described by a
so-called uncertain environment. Although a deterministic solution
is given by the dependent chance-programming model, this solu-
tion needs to be as flexible as possible with respect to the uncertain
environment. This special feature of dependent chance-program-
ming is very different from other existing stochastic programming
frameworks. However, such problems do exist in the real world.
Some applications of dependent chance programming have been
presented by Liu and Ku [7], Liu [2,3], Liu and Iwamura [6], and
more recently by Wu et al. [8].

In this note, we argue that the original dependent chance-pro-
gramming framework proposed by Liu and Iwamura needs to be
extended in order to capture an exact notion of reliability and we
show that the way Liu and Iwamura express constraint dependen-
cies, without taking into account the values assigned to decision
variables, does not guarantee optimal plans since in certain in-
stances common variables may take values which break the link
between dependent constraints.

This paper is organized as follows: In Section 2, we recall the
dependent-chance programming framework proposed by Liu and
Iwamura. In Section 3, we describe a motivational water supply-
allocation problem originally proposed in [4] and we analyze the
reliability of different distribution plans according to their frame-
work. In Section 4, we propose an exact notion of reliability ob-
tained by expressing constraint dependencies taking into account
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Fig. 1. Water supply-allocation problem.
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the values assigned to decision variables. An exact reliability mea-
sure is then proposed for the distribution plans being analyzed. In
Section 5, we draw conclusions.

2. Formal background

This section presents a summary of dependent-chance pro-
gramming of Liu [2,3] and underlying concepts.

If X is a collection of objects denoted generally by x, then the
stochastic set A in X is defined as a set of ordered pairs:

A ¼ fðx;lAðxÞÞjx 2 Xg;

where lA(x) is called the probability function of x in A. In uncertain
environments, the feasible set, represented by a series of stochastic
constraints, may be described by a stochastic set. In contrast to the
deterministic case, we cannot say a point is feasible or not when our
problem is defined on a stochastic set. We have to say a point x* is
feasible with probability a, where a is the value of probability func-
tion lA(x*).

Usually, a solution x is a vector composed of n components,
x1,x2, . . . ,xn. We will suppose that we know the following relation-
ship among the decision components.

Stochastic relationship: there is a known partition of n compo-
nents of a decision vector into k groups such that these k groups
are mutually stochastically independent and in each group any ele-
ments are stochastically dependent and have the same chance to
appear if they require to be realized simultaneously.

Thus, in stochastic decision systems, the feasible set of decision
vectors is represented by a stochastic set, say S, whose probability
function is lS(x).

Next we consider the purpose of our system. Usually there are
multiple purposes, functions or tasks of a complex system. Liu de-
notes the actions meeting the purposes or performing the tasks as
events. Each event is represented by a set E which is composed of
all the possible decisions meeting certain conditions. Let V(E) de-
note the set of all components of x which are necessary to the
event E and D(E) be the set of all components which are stochasti-
cally dependent of any elements in V(E). It is clear that V(E) � D(E).

For each element of an event E, we have to give an evaluation,
i.e. criterion function, of a decision vector. In view of the uncer-
tainty of the stochastic decision system, we are not certain
whether a decision is feasible before knowing the realization of
stochastic parameters, so we employ chance functions as objective
functions to evaluate some of the events. Generally, the chance
function, denoted by f(x), is the probability function on the event E.

Thus, for single event case, the dependent-chance programming
(DCP) is given as follows:

max
x2S

f ðxÞ; ð1Þ

where x is an n-dimensional decision vector, S is a stochastic set on
Rn with probability function lS(x), f(x) is a chance function of a cer-
tain event, borrowing the symbol 2 from classical set theory, x 2 S
means x is feasible with probability lS(x). A point x* 2 S is called
an optimal solution of the problem in Eq. (1) if f(x*) P f(x) for any
x 2 S.

As an extension, the dependent-chance multiobjective pro-
gramming (DCMOP) for multiple events case is given as follows,

max
x2S

f ðxÞ ¼ ½f1ðxÞ; f2ðxÞ; . . . ; fmðxÞ�; ð2Þ

where f(x) is a vector of real-valued functions fi which are chance or
deterministic functions.

In Liu and Iwamura [6] the authors highlight that the key aspect
of algorithm for solving DCP, DCMOP and DCGP (i.e. dependent-
chance goal programs, for a detailed discussion refer to [6]) con-
sists in constructing the relationship between the decision vectors
and chance functions. They consider a set of t objectives
fi(x), i = 1,2, . . . , t. They assume that every fi(x) is a chance function
that represents a probability of a certain event which is repre-
sented by Ei. Then they define

E ¼ E1 \ E2 \ � � � \ Et ;

and

VðEÞ ¼ VðE1Þ [ VðE2Þ [ � � � [ VðEtÞ:

In order to realize each event Ei, as far as possible without sacrific-
ing the chances of other events, they treat all elements in the sto-
chastically dependent set D(Ei) of V(Ei) at an equitable level, i.e.,
these elements would have the same chance to be realized. On
the other hand they disregard elements out of V(E) because they
do not make any contribution to the events that have to be realized.
Thus the authors consider all the elements in and only in
D(Ei) \ V(E) simultaneously for the event Ei. From the stochastic
relationship it follows that all the elements in D(Ei) \ V(E) are inde-
pendent of any other elements in V(E), therefore we can perform the
elements in D(Ei) \ V(E) as far as possible.

It has to be noted that the relationship between the decision
vectors and chance functions is defined by the authors in [6] with-
out taking into account the values assigned to decision variables.
For this reason we shall see that their definition does not guarantee
optimal plans, since in certain instances common variables may
take values which break the link between two dependent con-
straints. In order to show this, in the following section we recall
the water supply-allocation problem presented in Liu and Iwamura
[6] to demonstrate the subtleties inherent in dependent-chance
programming.

3. A dependent-chance programming example

Fig. 1 depicts a water supply system with three suppliers
S1; S2; S3 with their given probabilistic supply capacities and three
different customers, denoted by C1;C2; C3, with known demands.
The scopes of the suppliers are S1 ,fC1;C2g; S2 ,fC1;C2; C3g;
S3 ,fC2;C3g.

The deterministic customer demands are [8,7,4]. The suppliers’
probabilistic capacities are expressed as discrete probability den-
sity functions:

/S1
¼ f3ð0:3Þ;7ð0:5Þ;12ð0:2Þg;

/S2
¼ f6ð0:4Þ;7ð0:2Þ;10ð0:4Þg;

/S3
¼ f3ð0:3Þ;8ð0:7Þg;

where values in parentheses represent probabilities. We must
answer the following two types of question.



R. Rossi et al. / European Journal of Operational Research 198 (2009) 983–986 985
� Supply problems. In order to achieve certain objectives in the
future, decisions must be made concerning present actions to
be taken. That is, we must determine the optimal combination
of inputs, for example to determine the quantities ordered from
the 3 inputs.

� Allocation problems. One of the basic allocation problems is the
optimal allocation of the resources. Here the task is to determine
the outputs that result from various combinations of resources
such that certain objectives are achieved.

Certainly, in this system supply and allocation decisions should
not be separate.

Let S be the set of suppliers and C the set of customers. Define
decision variables xs;c 2 Zþ

S
f0g denoting the planned non-nega-

tive supply from supplier s to customer c. Also define random
variables ns, with probability density function /s, denoting the
uncertain supply available to supplier s. First we have the following
constraintsX
c2Cs

xs;c 6 ns; 8s 2 S;

where Cs is the set of customers for supplier s. A constant fc denotes
the deterministic demand of customer c. Event Ec is defined as
follows:

Ec :
X
s2Sc

xs;c ¼ fc;

where Sc is the set of suppliers for customer c. Event Ec means that
the decision should satisfy the demand of customer c. In view of the
uncertainty of this system, we are not sure whether a decision is
feasible before knowing the realization of stochastic variables, so
we employ chance functions to evaluate these events. Let

fcðxÞ ¼ Pr Ec :
X
s2Sc

xs;c ¼ fc

( )
;

where Pr denotes the probability of the event in {�}. Usually we hope
to maximize all the chance functions, i.e. increase the reliability lev-
els of all the events as much as possible.

Without loss of generality we will now assume that all the
events have the same priority and we will formulate the problem
as DCGP. The model is therefore

max
X
c2C

fcðxÞ ð3Þ

subject to; ð4ÞX
c2Cs

xs;c 6 ns s 2 S; ð5Þ

xs;c 2 Zþ
[
f0g s 2 S; c 2 C: ð6Þ

The stochastic feasible set S will be defined by a probability function
Table 1
Representative distribution plans.

Plan no. Planned delivery Si ,Dj : ði; jÞ

(1,1) (1,2) (2,1) (2,2)

1 3 5 5 1
2 4 7 4 0
3 6 2 2 5
4 5 0 3 3
5 7 5 1 1
6 2 5 6 0
7 8 2 0 2
8 0 7 8 0
9 5 0 3 3

10 6 0 2 0
lSðxÞ ¼ Pr
X
c2Cs

xs;c 6 ns; 8s 2 S

( )
: ð7Þ

The authors in Liu and Iwamura [6] divide the decision components
into three groups {xs,cjs = S1}, {xs,cjs = S2} and {xs,cjs = S3} which are
mutually stochastically independent and in each group any element
has the same probability of occurring. From the water supply-allo-
cation problem definition it follows that

VðE1Þ ¼ fxS1 ;C1 ; xS2 ;C1g; ð8Þ
VðE2Þ ¼ fxS1 ;C2 ; xS2 ;C2 ; xS3 ;C2g; ð9Þ
VðE3Þ ¼ fxS2 ;C3 ; xS3 ;C3g; ð10Þ

and

DðE1Þ ¼ fxS1 ;C1 ; xS1 ;C2 ; xS2 ;C1 ; xS2 ;C2 ; xS2 ;C3g; ð11Þ
DðE2Þ ¼ fxS1 ;C1 ; xS1 ;C2 ; xS2 ;C1 ; xS2 ;C2 ; xS2 ;C3 ; xS3 ;C2 ; xS3 ;C3g; ð12Þ
DðE3Þ ¼ fxS2 ;C1 ; xS2 ;C2 ; xS2 ;C3 ; xS3 ;C2 ; xS3 ;C3g; ð13Þ

therefore the induced constraint on D(E1) \ V(E) is then, according
to Liu and Iwamura, fxS1 ;C1 þ xS1 ;C2 6 nS1

; xS2 ;C1 þ xS2 ;C2 þ xS2 ;C3 6 nS2
g;

on D(E2) \ V(E) it is fxS1 ;C1 þ xS1 ;C2 6 nS1
; xS2 ;C1þ xS2 ;C2 þ xS2 ;C3 6 nS2

;

xS3 ;C2 þ xS3 ;C3 6 nS3
g; and finally on D(E3) \ V(E) it is fxS2 ;C1 þ xS2 ;C2þ

xS2 ;C3 6 nS2
; xS3 ;C2 þ xS3 ;C3 6 nS3

g. Hence

fC1 ðxÞ ¼ PrfðnS1
; nS2
ÞjxS1 ;C1 þ xS1 ;C2 6 nS1

; xS2 ;C1 þ xS2 ;C2 þ xS2 ;C3 6 nS2
g;
ð14Þ

fC2 ðxÞ ¼ PrfðnS1
; nS2

; nS3
ÞjxS1 ;C1 þ xS1 ;C2

6 nS1
; xS2 ;C1 þ xS2 ;C2 þ xS2 ;C3 6 nS2

; xS3 ;C2 þ xS3 ;C3 6 nS3
g; ð15Þ

fC3 ðxÞ ¼ PrfðnS2
; nS3
ÞjxS2 ;C1 þ xS2 ;C2 þ xS2 ;C3 6 nS2

; xS3 ;C2 þ xS3 ;C3 6 nS3
g:
ð16Þ

Table 1 presents some representative distribution plans (columns
2–8) and their corresponding reliability measures according to Liu
and Iwamura (column under heading ‘‘Liu–Iwamura”).
4. Decision variable value based dependency

Liu–Iwamura’s framework ignores the important dependency
between constraints and values of decision variables.

Consider a plan in which xS1 ;C1 ¼ 0 so that C1 must receive all
supplies from S2. The reliability of the satisfaction of C1 (event E1)
should now be independent of the ability of S1 to meet its demand.
But the dependent-chance programming, in its current form which
does not take variable assignments into account, always relates the
demand satisfaction of C1 to S1 and S2 (Eq. (14)), which is not neces-
sarily correct. Therefore, one should refine the objectives (Eqs. (14)–
(16)) via further logical connectives between constraints:
Reliability measures

(2,3) (3,2) (3,3) Liu–Iwamura New

1 1 3 0.624 0.624
4 0 0 0.560 0.680
0 0 4 0.624 0.940
4 4 0 0.756 0.960
1 1 3 1.040 1.040
4 2 0 0.960 1.380
4 3 0 1.400 1.400
0 0 4 0.756 1.800
0 4 4 1.890 2.100
4 7 0 1.890 2.400
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fcðxÞ ¼ Pr xs;c–0!
X
c02Cs

xs;c0 6 ns; 8s 2 Sc

( )
; ð17Þ

where ? denotes logical implication: C! C0 is the sum of the prob-
abilities of the scenarios in which either C is violated or C0 is satis-
fied, or both. Because of this modification, under a decision in which
xS1 ;C1 ¼ 0 there is no longer a penalty ifX
c02C1

xs;c0 6 n1

is violated.
The new reliability measures calculated using Eq. (17) are listed

in the last column in Table 1.
To gain more insight into this problem class we examine alloca-

tion plans given in Table 1 in three categories: Plans {1,5}, Plans
{2,3,4,6,8,9,10}, and Plan {7}.

In the first category (Plans 1 and 5) the plans have non-zero val-
ues assigned to all decision variables and, therefore, as expected the
results of Liu–Iwamura and those produced by the extended model
proposed here are the same (in Eq. (17), xs,c – 0 becomes redun-
dant). In the second group, however, since certain variables have
zero assignments now a discrepancy between the Liu–Iwamura
model and the extended model proposed here is observed. As ex-
plained above, this difference in probabilistic measure values is
due to the broken constraint dependencies that arise when decision
variables are assigned value zero. In the third group, we have only
one plan (Plan 7). In this case, although two decision variables are
assigned zero values the two frameworks produce the same result.
To understand the reason behind this observation we need to look
at the amounts committed by suppliers S2 and S3 according to Plan
7. Supplier S2 (S3) is expected to provide in total xS2 ;C1 þ xS2 ;C2þ
xS2 ;C3 ¼ 6 (xS3 ;C2 þ xS3 ;C3 ¼ 3) units. When we look at the uncertain
supply capacities for suppliers S2 and S3, it is clear that these units
can be provided in full even under the worst-case scenarios. In
other words, the zero assignment does not make any difference in
Plan 7, because breaking the dependency is important only if there
is a chance of failure in complying with supply commitments.
5. Conclusion

We showed how to extend Liu and Iwamura’s original depen-
dent-chance programming framework in order to obtain an exact
reliability measure. Our experiments show that in most cases
expressing constraint dependency without taking into account
the values assigned to decision variables does not guarantee opti-
mal plans, in fact in certain instances common variables may take
values which break the link between two dependent constraints.
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a b s t r a c t

In this paper, we develop a multi-objective stochastic programming approach for supply

chain design under uncertainty. Demands, supplies, processing, transportation, shortage

and capacity expansion costs are all considered as the uncertain parameters. To develop

a robust model, two additional objective functions are added into the traditional

comprehensive supply chain design problem. So, our multi-objective model includes (i)

the minimization of the sum of current investment costs and the expected future

processing, transportation, shortage and capacity expansion costs, (ii) the minimization

of the variance of the total cost and (iii) the minimization of the financial risk or the

probability of not meeting a certain budget. The ideas of unreliable suppliers and

capacity expansion, after the realization of uncertain parameters, are also incorporated

into the model. Finally, we use the goal attainment technique to obtain the Pareto-

optimal solutions that can be used for decision-making.

& 2008 Elsevier B.V. All rights reserved.
1. Introduction

A supply chain (SC) is a network of suppliers,
manufacturing plants, warehouses and distribution chan-
nels organized to acquire raw materials, convert these
raw materials to finished products and distribute these
products to customers. The concept of SC management,
which appeared in the early 1990s, has recently raised a
lot of interest since the opportunity of an integrated
management of the SC can reduce the propagation of
unexpected/undesirable events through the network and
can affect decisively the profitability of all the members.

A crucial component of the planning activities of a
manufacturing firm is the efficient design and operation
ll rights reserved.

strial Engineering,

l.com (A. Azaron).
of its SC. Strategic-level SC planning involves deciding the
configuration of the network, i.e., the number, location,
capacity and technology of the facilities. The tactical-level
planning of SC operations involves deciding the aggregate
quantities and material flows for purchasing, processing
and distributing of products. The strategic configuration of
the SC is a key factor influencing efficient tactical
operations, and therefore has a long-lasting impact on
the firm. Furthermore, the fact that the SC configuration
involves the commitment of substantial capital resources
over long periods of time makes the SC design problem an
extremely important one.

Many attempts have been made to model and optimize
SC design, most of which are based on deterministic
approaches, see for example Bok et al. (2000), Timpe and
Kallrath (2000), Gjerdrum et al. (2000) and many others.
However, most real SC design problems are characterized
by numerous sources of technical and commercial
uncertainty, and so the assumption that all model

www.sciencedirect.com/science/journal/proeco
www.elsevier.com/locate/ijpe
dx.doi.org/10.1016/j.ijpe.2008.08.002
mailto:a.azaron@dal.ca,
mailto:aazaron@gmail.com
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parameters, such as cost coefficients, supplies, demand,
etc., are known with certainty is not realistic.

In order to take into account the effects of the
uncertainty in the production scenario, a two-stage
stochastic model is proposed in this paper. Decision
variables, which characterize the network configuration,
namely those binary variables that represent the existence
and the location of plants and warehouses of the SC, are
considered as first-stage variables—it is assumed that
they have to be taken at the design stage before the
realization of the uncertainty. On the other hand, decision
variables related to the amount of products to be
produced and stored in the nodes of the SC and the
flows of materials transported among the entities of
the network are considered as second-stage variables,
corresponding to decisions taken after the uncertain
parameters have been revealed.

In traditional stochastic programming approaches, the
objective function consists of the sum of the first-stage
performance measure and the expected second-stage
performance, and most commonly, the dominant uncer-
tain parameters are the product demands. Approaches
differ primarily in the selection of the decision variables
and the way in which the expected value term, which in
principle involves a multidimensional integral involving
the joint probability distribution of the uncertain para-
meters, is computed.

There are a few research works addressing compre-
hensive (strategic and tactical issues simultaneously)
design of SC networks using two-stage stochastic models.
MirHassani et al. (2000) considered a two-stage model for
multi-period capacity planning of SC networks. The
authors used Benders decomposition to solve the result-
ing stochastic integer program. Tsiakis et al. (2001) also
considered a two-stage stochastic programming model for
SC network design under demand uncertainty. The
authors developed a large-scale mixed-integer linear
programming model for this problem. Alonso-Ayuso
et al. (2003) proposed a branch-and-fix heuristic for
solving two-stage stochastic SC design problems. Santoso
et al. (2005) integrated a sampling strategy with an
accelerated Benders decomposition to solve SC design
problems with continuous distributions for the uncertain
parameters. There are also some other papers in SC
planning under uncertainty. Petkov and Maranas (1997),
Gupta and Maranas (2003) and Gupta et al. (2000)
incorporated the uncertain demands as multivariate-
normal distributions. Then, they converted stochastic
features of the problem into a chance-constraint program-
ming problem. Goh et al. (2007) developed a stochastic
model of the multi-stage global SC network problem,
considering supply, demand, exchange and disruption as
the uncertain parameters. However, the robustness of
decision to uncertain parameters is not considered in
above studies.

Although stochastic programming has been studied for
four decades, conventional stochastic programming mod-
els are severely limited owing to its inability to handle risk
aversion or decision-makers’ preferences in a direct
manner, subsequently excluding many important domains
of application. Mulvey et al. (1995) presented an improved
stochastic programming called robust programming cap-
able of tackling the decision-makers’ favored risk aversion.
In this method, the variance term is simply added into the
main objective function with an associated weighting
parameter that represents the risk tolerance of the
modeler, see for example Yu and Li (2000) and Lai and
Ng (2005). This idea has also been used in some other
areas, which are not directly related to the SC design
problem. For example, Ahmed and Sahinidis (1998) used
this construct to develop a linear programming recourse
formulation for production planning in the presence of
scenarios. Bok et al. (1998) also employed the penalized
variance term and introduced an additional penalized
term reflecting the underutilization of capacity.

The main disadvantages of traditional stochastic SC
design approaches are as follows:
1.
 Minimizing cost or maximizing profit as a single
objective is often the optimization focus (Cohen and
Lee, 1989; Tsiakis et al., 2001).
2.
 Most multi-objective SC approaches are either deter-
ministic (Chen et al., 2003) or only demand is
considered as the source of uncertainty (Guillen
et al., 2005).
3.
 Minimizing the risk reflected by the variance of the
total cost and the financial risk has not been con-
sidered in existing comprehensive SC design models.
4.
 Reliability issues have not been considered during the
strategic planning phase.
To overcome these disadvantages, we develop a robust
stochastic programming approach for designing SCs under
uncertainty. In our approach, not only demands, but also
supplies, processing, transportation, shortage and capacity
expansion costs are all considered as the uncertain
parameters. Moreover, we assume that suppliers are
unreliable and may lose their abilities to supply, like oil
suppliers in the Middle East. The reliabilities of suppliers
are known in advance, but the actual situations of
suppliers become clear after building the facilities.

The first objective function of our proposed model is
the minimization of the sum of first-stage investment
costs and the expected second-stage processing, trans-
portation, shortage and capacity expansion costs. To
develop a robust model, two additional objective func-
tions are added into the final model. The first additional
objective function is the minimization of the variance of
the total cost. The variance of the total cost should be
considered in the model, because when we focus only on
the expected total cost, the design scheme may be sub-
optimal if the total cost substantially varies because of
randomness. Practically, the variance of the total cost is
difficult to interpret. Therefore, it is necessary to introduce
a new objective function to clearly capture the notion of
risk. This objective function is the minimization of the
financial risk. The financial risk associated with a design
project under uncertainty is defined as the probability of
not meeting a certain cost level or budget.

Although the ideas of variance and financial risk have
been considered in other areas, but to the best of our
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knowledge, it is the first time they are considered all
together in a multi-objective scheme to design robust
SCs under uncertainty and unreliable suppliers. Moreover,
the idea of capacity expansion at the second stage,
after the realization of uncertain parameters, is also
incorporated into the model. Using this idea, we have
the option of expanding the capacities of plants and
warehouses, if we face favourable economic conditions
with large demands.

Since the expected total cost, the variance of the total
cost and the financial risk are in conflict with each other, it
is proposed to set up a multi-objective design problem
whose solution will be a set of Pareto-optimal possible
design alternatives representing the trade-off among
different objectives rather than a unique solution. To the
best of our knowledge, only e�constraint method (Guillen
et al., 2005) and fuzzy optimization (Chen and Lee, 2004)
have been used to solve multi-objective SC design models.
We use the goal attainment technique, see Hwang and
Masud (1979) for details, to solve the resulting multi-
objective problem.

The present work formulates the SC design problem as
a multi-objective stochastic mixed-integer nonlinear
programming problem, which is solved by using the goal
attainment technique. This formulation takes into account
not only SC expected total cost, but also the risk reflected
by the variance of the total cost and the financial risk. The
result of the model provides a set of Pareto-optimal
solutions to be used by the decision-maker in order to find
the best SC configuration according to his/her preferences.

This paper is organized as follows. In Section 2, we
describe the SC design problem. Section 3 presents the
multi-objective SC design problem considering risk. In
Section 4, we explain about the goal attainment technique
to solve the multi-objective problem. Section 5 presents
the computational experiments. Finally, we draw the
conclusion of the paper in Section 6.
2. Problem description

We first describe a deterministic mathematical for-
mulation for the SC design problem. Consider an SC
network G ¼ (N, A), where N is the set of nodes and A is
the set of arcs. The set N consists of the set of suppliers S,
the set of possible processing facilities P and the set of
customer centers C, i.e., N ¼ S[P[C. The processing
facilities include manufacturing centers M and ware-
houses W, i.e., P ¼ M[W. Let K be the set of products
flowing through the SC.

The SC configuration decisions consist of deciding
which of the processing centers to build. We associate a
binary variable yi to these decisions: yi ¼ 1 if processing
facility i is built, and 0 otherwise. The tactical decisions
consist of routing the flow of each product kAK from the
suppliers to the customers. We let xk

ij denote the flow of
product k from a node i to a node j of the network where
(ij)AA, and zk

j denote shortfall of product k at customer
center j, when it is impossible to meet demand.
A deterministic mathematical model for this SC design
problem is formulated as follows (see Santoso et al. (2005)
for more details):

Min
X
i2P

ciyi þ
X
k2K

X
ðijÞ2A

qk
ijx

k
ij þ

X
k2K

X
j2C

hk
j zk

j

s:t: (1.1)

y 2 Y � f0;1gjPj (1.2)

X
i2N

xk
ij �

X
l2N

xk
jl ¼ 0 8j 2 P; 8k 2 K (1.3)

X
i2N

xk
ij þ zk

j Xdk
j 8j 2 C; 8k 2 K (1.4)

X
j2N

xk
ijpsk

i 8i 2 S; 8k 2 K (1.5)

X
k2K

rk
j

X
i2N

xk
ij

 !
pmjyj 8j 2 P (1.6)

xk
ijX0 8ðijÞ 2 A; 8k 2 K (1.7)

zk
j X0 8j 2 C; 8k 2 K (1.8)

In the above model, ci denotes the investment cost for
building facility i, qk

ij denotes the per-unit cost of
processing product k at facility i and/or transporting
product k on arc (ij), and hk

j denotes the per-unit penalty
incurred for failing to meet demand of product k at
customer center j. The objective function (1.1) consists of
minimizing total investment, tactical and shortage costs.
Constraint (1.2) enforces the binary nature of the config-
uration decisions for the processing facilities. Constraint
(1.3) enforces the flow conservation of product k across
each processing node j. Constraint (1.4) requires that the
total flow of product k to a customer node j plus shortfall
should exceed the demand dj

k at that node. Constraint
(1.5) requires that the total flow of product k from a
supplier node i should be less than the supply si

k at that
node. Constraint (1.6) enforces capacity constraints of the
processing nodes. Here, rj

k denotes per-unit processing
requirement for product k at node j. The capacity
constraint then requires that the total processing require-
ment of all products flowing into a processing node j

should be smaller than the capacity mj of facility j if it is
built (yj ¼ 1). If facility j is not built (yj ¼ 0), the constraint
will force all flow variables xk

ij ¼ 0 for all iAN. Finally, the
last set of constraints enforces the non-negativity of the
flow variables and shortfalls.

It will be convenient to work with the following
compact notation for models (1.1)–(1.8):

Min cT yþ qT xþ hT z

s:t: (2.1)

y 2 Y � f0;1gjPj (2.2)

Bx ¼ 0 (2.3)

Dxþ zXd (2.4)

Sxps (2.5)
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RxpMy (2.6)

x 2 RjAj�jKjþ ; z 2 RjCj�jKjþ (2.7)

Above vectors c, q, h, d and s correspond to investment
costs, processing/transportation costs, shortfall costs,
demands and supplies, respectively. The matrices B, D

and S are appropriate matrices corresponding to the
summations on the left-hand side of the expressions
(1.3)–(1.5), respectively. The notation R corresponds to a
matrix of rj

k, and the notation M corresponds to a matrix
with mj along the diagonal.

We now propose a stochastic programming approach
based on a recourse model with two stages to incorporate
the uncertainty associated with demands, supplies, pro-
cessing costs, transportation costs, shortage costs and
capacity expansion costs.

In a two-stage stochastic optimization approach, the
uncertain parameters are considered as random variables
with an associated probability distribution and the
decision variables are classified into two stages. The
first-stage variables correspond to those decisions that
need to be made here-and-now, prior to the realization of
the uncertainty. The second-stage or recourse variables
correspond to those decisions made after the uncertainty
is unveiled and are usually referred to as wait-and-see
decisions. After the first-stage decisions are taken and the
random events realized, the second-stage decisions are
subjected to the restrictions imposed by the second-stage
problem. Due to the stochastic nature of the performance
associated with the second-stage decisions, the objective
function, traditionally, consists of the sum of the first-
stage performance measure and the expected second-
stage performance; refer to Birge and Louveaux (1997) for
more details.

It is assumed that we have the option of expanding the
capacities of plants and warehouses after the realization
of uncertain parameters. Clearly, when we face favourable
economic conditions with high demands, at the second-
stage, it may be reasonable to expand the capacities of
sites, even if unit expansion costs are relatively high.

Considering vectors e, f, O and x ¼ (q, h, f, d, s) as
capacity expansions, per-unit expansion costs, expansion
limits and random data, respectively, the two-stage
stochastic model is formulated as follows:

Min cT yþ E½Gðy; xÞ�
s:t: (3.1)

y 2 Y � f0;1gjPj (3.2)

where G(y,x) is the optimal value of the following
problem:

Min qT xþ hT zþ f T e

s:t: (3.3)

Bx ¼ 0 (3.4)

Dxþ zXd (3.5)

Sxps (3.6)
RxpMyþ e (3.7)

epOy (3.8)

x 2 RjAj�jKjþ ; z 2 RjCj�jKjþ ; e 2 RjPjþ (3.9)

Note that the optimal value G(y,x) of the second-stage
problem (3.3)–(3.9) is a function of the first-stage decision
variable y and a realization x ¼ (q, h, f, d, s) of the
uncertain parameters. The expectation in (3.1) is taken
with respect to the joint probability distribution of
uncertain parameters.

In the above problem, decision variables, which
represent the existence of the different nodes of the SC,
are considered as first-stage variables as it is assumed that
they have to be taken at the design stage before the
uncertain parameters are unveiled. On the other hand,
decision variables related to the amount of products to be
produced and stored in the nodes of the SC, the flows of
materials transported among the entities of the network,
shortfalls at the customer centers and the amount of
expansion of the capacities of sites are considered as
second-stage variables.

It should be mentioned that stochastic programming is
generally difficult to handle and implement. The readers
may refer to van Delft and Vial (2004), which describes a
powerful tool for practical implementation of stochastic
programming in an SC problem.

In this paper, the uncertainty associated with demands,
supplies, processing, transportation, shortage and capacity
expansion costs is represented by a set of discrete
scenarios with given probability of occurrence. Such
scenarios together with their associated probabilities,
and also the reliabilities of suppliers are provided as input
data into the model. The difficulty of continuous distribu-
tions is avoided by introducing discrete scenarios, or
combinations of discrete samples of all the uncertain
parameters using Monte Carlo simulation. This approach
is explained in detail at the end of Section 4.

3. Multi-objective supply chain design problem

As explained, to develop a robust model, two addi-
tional objective functions are added into the traditional SC
design problem. The first is the minimization of the
variance of the total cost, and the second is the
minimization of the probability of not meeting a certain
budget. However, by considering the variance of the total
cost as an objective function, we actually introduce
nonlinearity into the proposed model, but that is the only
nonlinear term in the final mathematical program.

We also assume that some suppliers may lose their
abilities to supply, like oil suppliers in the Middle East.
The reliabilities of suppliers are known in advance. But the
situations of suppliers will actually clear after building the
facilities. So, we will have 2jSj scenarios for the situations
of suppliers, in some of them one or more suppliers are
unable to supply. If in each scenario, some suppliers are
unable to supply, those suppliers with their external links
can be easily dropped off from further consideration. So, it
will affect the topology of network and decrease the
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number of decision variables and constraints of the final
mathematical model. An alternative method to deal with
unreliable suppliers is to set the supply values of the
unreliable suppliers in the corresponding scenarios to
zero.

Let T be the set of scenarios with given probability of
occurrence associated with demands, supplies, processing
costs, transportation costs, shortage costs and capacity
expansion costs. Such scenarios together with their
associated probabilities must be provided as input data
into the model.

A different value for the sum of the first-stage and the
second-stage costs is obtained for each particular realiza-
tion of uncertain parameters. The proposed model
accounts for the minimization of the sum of first-stage
and the expected second-stage costs, minimization of the
variance of second-stage costs and the minimization of
financial risk or the probability of not meeting a certain
budget.

The financial risk associated with a design project
under uncertainty is defined as the probability of not
meeting a certain target cost level. For the two-stage
stochastic problem, the financial risk associated with a
certain budget O can be rewritten with the help of binary
variables as follows:

Risk ¼
XL

l¼1

plul (4)

where pl denotes the occurrence probability of the lth
scenario, L ¼ jTj �2jSj denotes the total number of scenar-
ios including those related to the reliabilities of suppliers
and ul is a new binary variable defined for each scenario as
follows:

ul ¼
1 if Costl4O;
0 otherwise

�
(5)

where Costl is the total cost when the lth scenario is
realized.

Considering V as a very large constant value (approach-
ing infinity), the proper multi-objective stochastic model
for our SC design problem would be

Min cT yþ
XL

l¼1

plðq
T
l xl þ hT

l zl þ f T
l elÞ (6.1)

Min
XL

l¼1

pl qT
l xl þ hT

l zl þ f T
l el �

XL

l¼1

plðq
T
l xl þ hT

l zl þ f T
l elÞ

 !2

(6.2)

Min
XL

l¼1

plul

s:t: (6.3)

Bxl ¼ 0 l ¼ 1; . . . ; L (6.4)

Dxl þ zlXdl l ¼ 1; . . . ; L (6.5)

Sxlpsl l ¼ 1; . . . ; L (6.6)
RxlpMyþ el l ¼ 1; . . . ; L (6.7)

elpOy l ¼ 1; . . . ; L (6.8)

cT yþ qT
l xl þ hT

l zl þ f T
l el �OpVul l ¼ 1; . . . ; L (6.9)

y 2 Y � f0;1g Pj j; u 2 U � f0;1gL (6.10)

x 2 RjAj�jKj�L
þ ; z 2 RjCj�jKj�L

þ ; e 2 RjPj�L
þ (6.11)

Objective function (6.1) is related to the expected total
cost or the sum of the first-stage and the expected second-
stage costs. Objective function (6.2) is related to the
variance of second-stage costs or the variance of total cost.
Objective function (6.3) is related to the financial risk.
Constraint (6.8) enforces the capacity expansion limit for
each processing facility, if it is built. According to
constraint (6.9), if the total cost for a scenario is greater
than a certain budget O, then the binary variable
associated with that particular scenario will be equal to
1, which increases the financial risk (6.3) by the
corresponding probability. Otherwise, if the total cost for
a scenario is smaller than O, then the binary variable
associated with this scenario will be equal to 0, because
we intend to minimize (6.3). Therefore, this situation will
not change the value of financial risk.

Using a multi-objective model in an SC context is not
an artificial one, as we know from ‘‘portfolio optimization’’
that it is not possible to give any monetary value to risk,
which leads to the concept of ‘‘efficient frontier’’ defined
by Markowitz (1952, 1959). We may treat volatility and
expected return as proxies for risk and reward. Out of the
entire universe of possible portfolios, certain ones will
optimally balance risk and reward. These comprise what
Markowitz called an efficient frontier of portfolios. This
frontier is a curve in the ‘‘risk vs expected return’’ space. If
it was possible to replace risk by reward/loss, then we
would have had only a single dot in this space represent-
ing the optimal portfolio. But we know from finance
theory that it is not the case; having said that it is possible
only if one can clearly define his/her utility function
(a relation between risk and return).

Now, the question is how to define the firm’s utility
function in an SC. We will show in one SC problem
(Section 5) that the relationship between cost, variance
and risk is not clear, and that decision-makers need
support in determining what that utility function should
be—they need to see the effect of weighting the criteria
differently before they can make their decision, and
obviously, setting a single function does not guarantee
us a Pareto-optimal solution. That is why we are adopting
a multi-objective approach to this SC problem.

4. Goal attainment technique

We use the goal attainment technique, which is a
variation of goal programming technique, to solve the
multi-objective problem. Goal attainment method is one
of the multi-objective techniques with priori articulation
of preference information given. In this method, the
preferred solution is sensitive to the goal vector and the
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weighting vector given by the decision-maker; the same
as the goal programming technique.

Goal attainment method has fewer variables to work
with and is a one-stage method, unlike interactive multi-
objective techniques, so it will be computationally faster.
Therefore, in terms of computational time, it is one of the
best techniques to solve our SC problem, whose determi-
nistic equivalent form is a large-scale mixed-integer
nonlinear program. We successfully applied the goal
attainment technique in solving a number of real-world
multi-objective problems arising in reliability optimiza-
tion (Azaron et al., 2007a), project management (Azaron
et al., 2007b) and production systems (Azaron et al.,
2006), and it is for the first time that we use this
technique to solve a multi-objective SC design problem
and to generate its Pareto-optimal solutions.

This method requires setting up a goal and weight, bj

and gj (gjX0) for j ¼ 1, 2, 3, for the three mentioned
objective functions. The gj relates the relative under-
attainment of the bj. For under-attainment of the goals, a
smaller gj is associated with the more important objec-
tives. When gj approaches 0, then the associated objective
function should be fully satisfied or the corresponding
objective function value should be less than or equal to its
goal bj. gj, j ¼ 1, 2, 3, are generally normalized so thatP3

j¼1gj ¼ 1. The proper goal attainment formulation for
our problem is

Min w

s:t: (7.1)

cT yþ
XL

l¼1

plðq
T
l xl þ hT

l zl þ f T
l elÞ � g1wpb1 (7.2)

XL

l¼1

pl qT
l xl þ hT

l zl þ f T
l el �

XL

l¼1

plðq
T
l xl þ hT

l zl þ f T
l elÞ

 !2

� g2wpb2 (7.3)

XL

l¼1

plul � g3wpb3 (7.4)

Bxl ¼ 0 l ¼ 1; . . . ; L (7.5)

Dxl þ zlXdl l ¼ 1; . . . ; L (7.6)

Sxlpsl l ¼ 1; . . . ; L (7.7)

RxlpMyþ el l ¼ 1; . . . ; L (7.8)

elpOy l ¼ 1; . . . ; L (7.9)

cT yþ qT
l xl þ hT

l zl þ f T
l el �OpVul l ¼ 1; . . . ; L (7.10)

y 2 Y � f0;1g Pj j; u 2 U � f0;1gL (7.11)

x 2 RjAj�jKj�L
þ ; z 2 RjCj�jKj�L

þ ; e 2 RjPj�L
þ (7.12)

Lemma 1. If (y*, u*, x*, z*, e*) is Pareto-optimal, then there
exists a b, g pair such that (y*, u*, x*, z*, e*) is an optimal
solution to the optimization problem (7).
The optimal solution using this formulation is sensitive
to b and g. Depending on the values for b, it is possible that
g does not appreciably influence the optimal solution.
Instead, the optimal solution can be determined by the
nearest Pareto-optimal solution from b. This might require
that g be varied parametrically to generate a set of Pareto-
optimal solutions. In the next section, we consider several
pairs of b and g to generate different Pareto-optimal
solutions.

The mixed-integer nonlinear programming problem
(7) has (jAj � jKj+jCj � jKj+jPj)� L+1 continuous decision
variables, excluding slack variables, jPj+L binary variables
and
(jAj � jKj+2� jCj � jKj+jPj � jKj+jSj � jKj+3� jPj+1)� L+3
constraints.

In case the random data vector x ¼ (q, h, f, d, s) follows
a known continuous joint distribution, one should resort
to a sampling procedure, for example Santoso et al.
(2005), to solve the proposed model. In the sampling
strategy, a random sample x1,x2,y, xQ of Q realizations of
the random vector x is generated. Then, considering
L ¼ Q�2jSj in this case, the proper goal attainment
formulation can be approximated as

Min w

s:t: (8.1)

cT yþ
1

L

XL

l¼1

ðqT
l xl þ hT

l zl þ f T
l elÞ � g1wpb1 (8.2)

1

L� 1

XL

l¼1

qT
l xl þ hT

l zl þ f T
l el

�

�
1

L

XL

l¼1

ðqT
l xl þ hT

l zl þ f T
l elÞ

!2

� g2wpb2 (8.3)

1

L

XL

l¼1

ul � g3wpb3 (8.4)

Bxl ¼ 0 l ¼ 1; . . . ; L (8.5)

Dxl þ zlpdl l ¼ 1; . . . ; L (8.6)

Sxlpsl l ¼ 1; . . . ; L (8.7)

RxlpMyþ el l ¼ 1; . . . ; L (8.8)

elpOy l ¼ 1; . . . ; L (8.9)

cT yþ qT
l xl þ hT

l zl þ f T
l el �OpVul l ¼ 1; . . . ; L (8.10)

y 2 Y � f0;1gjPj; u 2 U � f0;1gL (8.11)

x 2 RjAj�jKj�L
þ ; z 2 RjCj�jKj�L

þ ; e 2 RjPj�L
þ (8.12)

where the expected total cost, the variance of the total
cost and financial risk are approximated by (8.2), (8.3) and
(8.4), respectively.

Let vQ and ŷQ be the optimal value and the optimal
solution vector, respectively, of the approximated problem
(8). Clearly, for a particular realization x1, x2,y, xQ of the
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random vector, problem (8) is deterministic. It is possible
to show that under mild regularity conditions, as the
sample size Q increases, vQ and ŷQ converge with
probability one to their true counterparts, see Kleywegt
et al. (2001). The performance of the sampling strategy is
beyond the scope of this paper and can be considered as a
direction for future research in this area.

5. Numerical experiments

Consider the SC network design problem depicted in
Fig. 1 (modified from Yu and Li, 2000). A wine company is
willing to design its SC. This company owns three
customer centers located in three different cities L, M
and N. Uniform-quality wine in bulk (raw material) is
supplied from four wineries located in A, B, C and D. There
are four possible locations E, F, G and H for building the
bottling plants.

For simplicity, without considering other market
behaviors (e.g. novel promotion, marketing strategies of
competitors and market-share effect in different markets),
each market demand merely depends on the local
economic conditions. Assume that the future economy is
either boom, good, fair or poor, i.e. four situations with
associated probabilities of .13, .25, .45 or .17, respectively.
The unit production costs and market demands under
each scenario are shown in Table 1.

The supplies, transportation costs and shortage costs
are considered as deterministic parameters. In all,
A

B

C

D

L

N

M

E

F

G

H

Fig. 1. The supply chain design problem of the wine company.

Table 1
Characteristics of the problem

Future economy Demands Unit

L M N E

Boom 400 188 200 755

Good 350 161 185 700

Fair 280 150 160 675

Poor 240 143 130 650
475,000, 425,000, 500,000 and 450,000 are investment
costs for building each bottling plant E, F, G and H,
respectively. In all, 65.6, 155.5, 64.3, 175.3, 62, 150.5, 59.1,
175.2, 84, 174.5, 87.5, 208.9, 110.5, 100.5, 109, 97.8 are the
unit costs of transporting bulk wine from each winery A,
B, C and D to each bottling plant E, F, G and H, respectively.
The unit costs of transporting bottled wine from each
bottling plant E, F, G and H to each distribution center L,
M, and N, respectively, are 200.5, 300.5, 699.5, 693, 533,
362, 163.8, 307, 594.8, 625, 613.6, 335.5. The unit shortage
costs at each distribution center L, M and N are 10,000,
13,000 and 12,000, respectively. In all, 375, 187, 250 and
150 are the maximum amount of bulk wine that can be
shipped from each winery A, B, C and D, respectively, if it
is reliable. In all, 315, 260, 340 and 280 are the capacities
of each bottling plant E, F, G and H, respectively, if it is
built.

We also have the option of expanding the capacity of
bottling plant F, if it is built. In all, 100, 80, 60 and 50 are
the unit capacity expansion costs, when the future
economy is boom, good, fair or poor, respectively. In
addition, we cannot expand the capacity of this plant
more than 40 units in any situation. Moreover, winery D is
an unreliable supplier and may lose its ability to supply
the bottling plants. The reliability of this winery is
estimated as .9. So, the total number of scenarios for this
SC design problem is equal to 4�2 ¼ 8.

Clearly, this system produces one type of product and
the processing facilities include only manufacturing
centers M. So, the per-unit processing requirements rj

k

are all equal to 1 and W ¼ f.
This problem attempts to minimize the expected total

cost, the variance of the total cost and the financial risk in
a multi-objective scheme while making the following
determinations:
(a)
produ
Which of the bottling plants to build (first-stage
variables)?
(b)
 Amount of bulk wine to be bottled in each bottling
plant, amount of bulk wine and bottled wine to be
transported among the entities of the network,
amount of shortfall at each customer center and
finally amount of expansion of the capacity of bottling
plant F, if it is built (second-stage variables)?
We use goal attainment formulation (7) to solve this
multi-objective SC design problem. The mathematical
model has 12 binary variables, 257 continuous decision
variables and 407 constraints.
ction costs Probabilities

F G H

650 700 800 .13

600 650 750 .25

580 620 720 .45

570 600 700 .17
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Table 2
Pareto-optimal solutions

No. g1 g2 g3 b1 b2 b3 O E F G H Mean Variance Risk Time

1 E�6 .99999 E�8 185E4 E9 .1 218E4 1 1 1 0 2,007,034 109,871E5 .13 2:21

2 E�4 .99989 E�8 185E4 E8 .1 218E4 1 1 1 0 2,086,941 246,917E4 .13 2:49

3 .01 .98999 E�8 185E4 E8 .1 218E4 1 1 1 0 2,184,688 133,134E3 .397 2:52

4 .01 .98999 E�9 185E4 E8 .1 218E4 1 1 1 0 2,184,467 134,974E3 .13 3:11

5 .1 .89999 E�9 185E4 E9 .1 221E4 1 1 0 1 2,221,661 912,376E3 .13 4:15

6 .1 .89999 E�8 185E4 E9 .1 221E4 1 1 1 0 2,150,000 715,080E3 .13 0:46

7 .1 .89999 E�8 185E4 E8 .1 221E4 1 1 1 0 2,188,285 103,045E3 .13 0:48

8 .1 .89999 E�8 185E4 E8 .1 218E4 1 1 1 0 2,186,120 127,592E3 .4 2:21

9 .1 .89999 E�9 185E4 E8 .1 218E4 1 1 1 0 2,184,467 134,974E3 .13 3:51

10 .1 .89999 E�7 185E4 E8 .1 218E4 1 1 1 0 2,192,098 105,670E3 .73 1:01

11 .1 .89999 E�7 185E4 E9 .1 218E4 1 1 1 0 2,132,511 100,254E4 .13 5:12

12 .25 .74999 E�8 185E4 E8 .1 218E4 1 1 1 0 2,186,493 125,924E3 .442 2:30

13 .25 .74999 E�9 185E4 E8 .1 218E4 1 1 1 0 2,184,503 137,060E3 .13 4:01

14 .25 .74999 E�8 185E4 E9 .1 218E4 1 1 1 0 2,184,596 146,415E3 .13 3:51

15 .5 .49999 E�8 185E4 E8 .1 218E4 1 1 1 0 2,187,987 121,750E3 .535 2:26

16 .5 .49999 E�9 185E4 E8 .1 218E4 1 1 1 0 2,184,582 134,462E3 .155 0:41

17 .75 .24999 E�8 185E4 E8 .1 218E4 1 1 1 0 2,188,794 115,646E3 .622 1:48

18 .75 .24999 E�9 185E4 E8 .1 218E4 1 1 1 0 2,184,893 133,072E3 .217 1:59

19 .9 .09999 E�8 185E4 E8 .1 218E4 1 1 1 0 2,192,212 106,300E3 .73 1:54

20 .9 .09999 E�9 185E4 E8 .1 218E4 1 1 1 0 2,185,957 128,321E3 .38 5:21

21 .9 .09999 E�9 185E4 E9 .1 218E4 1 1 1 0 2,184,470 135,165E3 .13 2:48

22 .9 .09999 E�9 185E4 E10 .1 218E4 0 1 1 1 2,192,825 110,321E4 .13 3:55

23 .99 .00999 E�8 185E4 E8 .1 218E4 1 1 1 0 2,194,198 100,677E3 .777 1:23

24 .99 .00999 E�8 185E4 E9 .1 218E4 1 1 1 0 2,184,469 135,041E3 .13 1:10

25 .9999 E�4 E�8 185E4 E8 .1 218E4 1 1 1 0 2,192,571 100,007E3 .777 2:51

26 .99999 E�6 E�9 220E4 E2 .1 222E4 1 0 0 0 1022E5 0 1 1:16

27 9E�4 .9991 E�8 185E4 E8 .1 220E4 1 1 1 0 2,159,937 444,064E3 .13 2:03

28 E�5 .99999 E�9 185E4 E8 .1 220E4 1 1 1 0 2,007,034 109,871E5 .13 1:56

29 E�8 .99999 E�8 185E4 E9 .1 220E4 0 1 1 0 1,853,385 310,218E6 .13 2:37

30 9E�6 .99999 E�6 200E4 E8 .1 222E4 1 1 1 0 2,046,929 531,427E4 .013 0:55

31 9E�6 .99999 E�6 185E4 E9 .1 222E4 1 1 1 0 2,007,034 109,871E5 .013 2:32

32 E�6 .99999 E�6 185E4 E10 .1 221E4 1 1 1 0 2,007,034 109,871E5 .13 2:16

33 E�7 .99999 E�7 185E4 E10 .1 221E4 0 1 1 0 1,878,088 290,880E6 .13 2:18

34 E�7 .99999 E�9 185E4 E10 .1 210E4 1 1 1 0 2,104,936 232,243E4 .13 1:48

35 .099 .9 .001 185E4 E7 .1 220E4 1 1 1 0 2,205,472 132,316E2 1 1:18

36 .099 .9 .001 185E4 E9 .1 220E4 1 1 1 0 2,132,510 100,257E4 .13 3:10

37 .08999 .91 3E�7 185E4 E7 .1 220E4 1 1 1 0 2,205,337 135,929E2 1 1:57

38 .09 .90999 2E�7 185E4 E7 .1 220E4 1 1 1 0 2,206,307 136,992E2 .913 2:14

39 .005 .99499 E�6 185E4 E8 .1 220E4 1 1 1 0 2,181,185 165,906E3 .13 3:02

40 .009 .99 .001 185E4 E8 .1 220E4 1 1 1 0 2,184,267 136,769E3 .13 2:48

41 .009 .99 .001 185E4 E9 .1 220E4 1 1 1 0 2,131,358 103,095E4 .13 2:12

42 .49999 .5 5E�7 185E4 E7 .1 220E4 1 1 1 0 2,209,452 108,300E2 .93 1:49

43 .89999 .1 5E�7 185E4 E7 .1 220E4 1 1 1 0 2,222,635 970,609E1 .983 6:06

44 .89999 .1 E�9 185E4 E10 .1 221E4 0 1 1 1 2,215,469 851,956E3 .13 2:30

45 .79999 .2 2E�6 185E4 E7 .1 220E4 1 1 1 0 2,209,999 930,143E1 1 3:51

46 .94999 .05 5E�6 185E4 E6 .1 220E4 1 1 1 0 2,215,476 101,924E1 1 4:23

47 .98999 .01 E�5 185E4 E6 .1 220E4 1 1 1 0 2,215,543 100,369E1 1 1:26

48 .99899 .001 E�5 215E4 E6 .1 220E4 1 1 1 0 2,239,909 251,188 1 1:46

49 .9989 .001 E�4 215E4 E5 .1 220E4 1 1 1 0 2,221,516 100,072 1 3:26

50 .99989 E�4 E�6 215E4 E5 .1 220E4 1 0 1 1 2,279,960 61,998 1 3:47

51 .99998 E�6 E�5 220E4 E4 .1 220E4 1 0 1 1 2,278,040 2229 1 4:31

52 .99999 E�6 E�6 220E4 E2 .1 220E4 1 1 1 1 2,689,734 0 1 3:24

53 .99998 E�6 E�5 220E4 E4 .1 222E4 1 1 1 0 2,225,870 4104 1 3:48

54 .99999 E�6 E�6 220E4 E2 .1 222E4 1 1 1 0 2,224,348 57 1 4:39

55 .99989 E�4 E�6 200E4 E6 .1 225E4 1 1 1 0 2,215,559 10,0002E1 0 1:29
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Then, we use LINGO 10 to solve the problem on a PC
Pentium IV 2.1-GHz processor and to generate different
Pareto-optimal solutions. Table 2 shows 55 generated
Pareto-optimal configurations (1 means the bottling plant
is built and 0 otherwise), the values of the expected total
cost, the variance of the total cost, the financial risk and
the computational times (mm:ss).

To generate the Pareto-optimal solutions, b, g and O are
varied manually. When one of the parameters is varied
and the others are fixed, changing the output shows its
sensitivity with respect to that parameter. According to
the obtained absolute minimum values for the expected
total cost, the variance of the total cost and the financial
risk, by solving the associated single objective problems,
b3 is fixed at .1, b2 is varied from 100 to 10,000,000,000, b1

is varied from 1,850,000 (close to the absolute minimum
expected total cost) to 2,200,000 (close to the absolute
minimum expected total cost plus three times of the
maximum goal for the standard deviation of the total
cost), g1 is varied from .00000001 to .99999, g2 is varied
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from .000001 to .99999, g3 is varied from .000000001 to
.001 and O is varied from 2,100,000 to 2,250,000.

As mentioned, the weights relate the relative under-
attainment of the goals and a smaller gj is associated with
the more important objectives. For each goal vector b, the
corresponding weight vector g can be obtained using
Saaty’s method of pairwise comparisons (Hwang and
Yoon, 1981). For each pair of b and g, the solution
is Pareto-optimal. If we are not satisfied with any
Pareto-optimal solution or there are much differences
between some of the obtained objective function values
and the corresponding goals, the g vector should be
modified. For example, if the obtained financial risk value
is much greater than .1, g3 should be decreased (e.g. 10
times) and both g1 and g2 should be increased from their
earlier values, appropriately, in which the summation
of gj remains unchanged. This process continues with
several different pairs of b and g, and several Pareto-
optimal solutions are generated that can be used for
decision-making.

For example, the first set of g in Table 2 (instance 1)
implies that one dollar deviation of the expected total cost
from 1,850,000 is about 1,000,000 times as important as
one unit deviation of the variance of total cost from
1,000,000,000 and the same important as .01 deviation of
the financial risk from .1. In this instance, the goal and
weight for the expected total cost and weight for financial
risk are relatively low, which causes the solution to have
low expected total cost and risk values. In instance 26, we
have a high budget O, and a low financial risk weight g3,
which seems to indicate that the solution should have a
low risk value, but the goal for variance, b2, is very low,
with a low weight g2, and in the solution this overrides
risk, and the variance is minimized.

The lowest expected cost is from instance 29, with a
value of 1,853,385. This has relatively low risk, but high
variance. The optimal variance is obtained in two separate
instances (26 and 52), but these give widely different
values for cost (2.69E6 or 1.02E8). The optimal financial
risk is obtained in instance 55, with a cost of 2.22E6, a
variance of 1.00E6 and a budget of 2.25E6. So, the
expected cost ranges from 1.85E6 to 1.02E8. If we aim
for a financial risk of .13, within the budget of 2.20E6, then
the variance can still range from 1.37E8 to 3.10E11, and the
cost ranges from 1.85E6 to 2.18E6.

In order to make sense of this, and to arrive at an
appropriate solution, the decision-maker needs to see this
range of outcomes, to be able to trade-off one criteria
against the other in terms of the results. So, by solving this
SC design problem, it is concluded that the relationship
between cost, variance and risk is not clear and it is not
possible to easily define a utility function (a relation
between risk and return). That is why we are adopting a
multi-objective approach to this SC problem.

According to the numerical results, increasing goal for
the variance and also decreasing weight for the expected
total cost cause the financial risk to be decreased.
Moreover, increasing goal for the variance causes both
the expected total cost and the financial risk to be
decreased. Also, increasing goal for the expected
total cost causes the variance of the total cost to be
decreased. So, it seems by increasing goal for any of the
objectives, we give more space for other objectives to be
improved. It is also concluded that there are some positive
correlations between the expected cost and the financial
risk.

It is also seen that in most instances we have to build
the bottling plant in F, which is expandable, and then
expand it when we either face boom economy or reliable
suppliers. For example, in instance 5, where the bottling
plants are built in E, F and H, the capacity of F should be
expanded 40, 31.4 and 40 units, when the economy is
boom and D is reliable (scenario 1), the economy is fair
and D is reliable (scenario 3) and the economy is boom
and D is not reliable (scenario 5), respectively.

In order to evaluate the performance of the proposed
method in solving larger cases, we consider another
problem with 10 suppliers, 10 plants and 10 customer
centers with the same number of unreliable suppliers,
expandable plants and scenarios as the earlier case. In this
case, the unit production costs, market demands and
capacity expansion costs are uncertain, while the other
parameters are supposed to be certain following the
similar pattern of the earlier case. Then, it is solved on the
same computer and 10 new Pareto-optimal solutions are
generated. The mean computational time for this medium
size case is equal to 14:18, while the mean computational
time in 55 generated Pareto-optimal solutions of the
earlier small size case was equal to 2:41.

In order to show the sensitivity of the numerical
solution with respect to the number of scenarios, we also
conduct two more experiments with 4 and 16 scenarios.
In the smaller case with 4 scenarios, it is assumed that all
suppliers are reliable. In the bigger case with 16 scenarios,
it is assumed that the future economy will have eight
situations, instead of four in the original problem, and one
of the suppliers is unreliable. In both cases, the uncertain
parameters are the unit production costs, capacity expan-
sion costs and market demands, but with different values
for each scenario, while the other parameters are all
certain following the same pattern of the original
problem. Then, 10 new Pareto-optimal solutions for each
of the new problems are generated. The mean computa-
tional time for the smallest size case with 4 scenarios and
the largest size case with 16 scenarios are equal to 0:57
and 6:46, respectively, comparable to 2:41 in the original
case with 8 scenarios. So, it seems the proposed model can
at least solve the medium size cases with limited number
of scenarios in acceptable CPU time.
6. Conclusion

Determining the optimal SC configuration is a difficult
problem since a lot of factors and objectives must be taken
into account when designing the network under uncer-
tainty. The proposed model in this paper accounts for the
minimization of the expected total cost, the variance of
the total cost and the financial risk in a multi-objective
scheme to design a robust SC network. Therefore, this
approach seems to be a good way of capturing the high
complexity of the problem.
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According to the numerical experiments, considering
risk directly affects the design of the SC networks under
uncertainty. By using this methodology, the trade-off
between the expected total cost and risk terms can be
obtained. The interaction between the design objectives
has been shown. This way of generating different possible
configurations will help the decision-maker determine the
best design among all generated Pareto-optimal solutions
based on his/her preferences.

We used the goal attainment technique, which is a
variation of the goal programming technique, to solve
the multi-objective SC design problem and to generate the
Pareto-optimal solutions. Goal attainment method is one
of the multi-objective techniques with priori articulation
of preference information given. This method has the
same disadvantages as those of goal programming,
namely, the preferred solution is sensitive to the goal
vector and the weighting vector given by the decision-
maker. However, the goal attainment method has fewer
variables to work with, and therefore is one of the best
methods to solve this large-scale mixed-integer nonlinear
programming problem, in terms of computational time. In
this regard, using a meta-heuristic approach such as
genetic algorithm or simulated annealing in solving large-
scale cases would be suitable.

An interactive multi-objective technique such as SWT
or STEM can also be used to solve the multi-objective
problem (6). The main disadvantage of the interactive
approaches is that the number of variables and also the
number of stages which we need to solve the associated
single-objective optimization problems to get the final
solution are much more than the goal attainment
technique. So, in terms of computational time, the goal
attainment technique is much better than any interactive
multi-objective technique for solving the SC design
problem proposed in this paper.

The proposed model can also be extended to the
multi-period case considering the associated production,
transportation and especially inventory-holding costs at
different time intervals. In this case, the suppliers’
lifetimes can also be considered as independent random
variables with time-dependent continuous or discrete
distributions such as exponential or geometric. Then, we
will need to develop a proper stochastic optimal control
model to solve the resulting problem.
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This work generalises a previous approach by relaxing the assumption of instanta-
neous audits, and by prohibiting concurrent auditing.

Keywords Uncertainty · Audit scheduling · Combinatorial optimization ·
Mathematical programming · Constraint programming

1 Introduction

Based on costs and benefits that change over time, the focus of the internal audit
scheduling problem is how often to conduct an internal audit on an auditable unit.
Auditable units are the units upon which internal control procedures are applied, in
order to safeguard assets and assure the reliability of information flows. The scope
of auditable units depends on organizational characteristics: they could be organiza-
tional units (finance, accounting department), geographic regions (branches, cities)
or activities (budgeting, purchasing, etc.) (Boritz and Broca 1986).

The problem of finding the optimal timing of audit activities within an organisa-
tion has been addressed by many researchers including Wilson and Ranson (1971),
Hughes (1977), Boritz and Broca (1986), and Knechel and Benson (1991). The first
study of audit scheduling was by Wilson and Ranson (1971) who found the audit fre-
quency that minimizes the discounted present value of losses and audit costs. Audit
costs are assumed to be incurred at a uniform rate, while losses in the absence of
auditing are assumed to rise exponentially from zero to an asymptotic level. After an
audit is conducted, the losses drop to zero but start to accrue until the next audit. In
Hughes (1977) the audits are chosen at the beginning of each of an infinite number of
periods, conditional upon available information concerning the state of internal con-
trol system, and a model is proposed for determining the optimal timing of internal
audits. The model proposed by Boritz and Broca (1986) determines the optimal audit
interval, assuming that expected losses accrue if a unit remains unaudited and audit
cost is incurred each time the decision to audit is made. In order to use their formula-
tion, each audit unit is assessed using an index of loss riskiness called the Audit Unit
Priority Score (AUPS). The parameters of the model (i.e. the shape of the loss func-
tion and the rate of increase in losses) are determined through auditors’ judgmental
process, which gives auditors flexibility in the scheduling of audit activities.

In a recent paper by Tarim et al. (2008) a stochastic version of the internal audit
scheduling problem is formulated under relatively relaxed assumptions. Unlike previ-
ous models that determine optimal timing for one audit unit, their model determines
the optimal timing of audit activities for multiple audit units. This is important be-
cause many firms have more than one auditable unit to which audit resources must
be allocated. Moreover, their formulation takes into account uncertainty in the losses
accrued in the absence of auditing, and employs a chance-constraint to keep the ex-
pected losses below a certain level with a given probability. However, in Tarim et al.
(2008) it is assumed that audit activities are instantaneous, i.e. that conducting an
audit does not take any time. The computational issues are not addressed by Tarim
et al.

Mixed Integer Linear Programming (MILP) (Nemhauser and Wolsey 1988) and
Constraint Programming (CP) (Hanus 2001) are two orthogonal approaches used to
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address combinatorial problems. MILP-based methods are rooted at the area of Op-
erations Research (Nemhauser and Wolsey 1988), whereas CP-based methods are
the result of research by the Artificial Intelligence community in the areas of Logic
Programming and Constraint Satisfaction (Colmerauer 1985; Van Hentenryck 1989;
Tsang 1993). MILP and CP methods have both been successfully applied to solve
diverse problems such as network synthesis, crew scheduling, planning, and capital
budgeting. Determining which type of problems or instances are best solved by which
method is an active research area. This is the line of research pursued in this paper. We
relax the assumption of instantaneous audits and propose a stochastic programming
formulation for this important class of combinatorial problems involving uncertainty.
To solve this stochastic program we develop two alternatives deterministic equivalent
models: a MILP model and a CP model. The two approaches are complementary in
the sense that for some instances MILP is superior and for other instances CP is supe-
rior. Our numerical experiments show that the certainty-equivalent MILP formulation
is efficient when the time to perform an audit is relatively short. However, as the audit
time gets longer our CP model proved to be significantly much more effective than
the MILP model.

The paper is organised as follows. Section 2 describes the problem, Sect. 3 pro-
vides a stochastic programming formulation of the problem, Sect. 4 surveys possi-
ble solution methods, Sect. 5 reports experimental results comparing methods, and
Sect. 6 concludes the paper. Finally, in the Appendix we provide a complete list of
the notation adopted in the paper.

2 Problem statement

We consider a planning horizon comprising N time periods. We are given a set of
M audit units over which random losses may accrue over time. In particular, lmt cor-
responds to the losses that accrue in audit unit m during period t . lmt is a random
variable with a known probability density function glmt

(lmt ). For convenience, losses
in each period are assumed to be normally distributed with a constant coefficient of
variation: ρ = σm

t /μm
t in this problem, but this assumption may be relaxed without

loss of generality. The distribution of losses may vary from period to period, i.e. it
is non-stationary. Losses in different time periods are assumed to be independent.
Figure 1 illustrates expected losses on a single auditable unit.

Without loss of generality, we consider the case in which a single audit team has to
be employed to keep losses under control. Auditing is a time-consuming task, and we

Fig. 1 Expected losses; E[lmt ]
denotes the expected value of lmt
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Fig. 2 Multiple units

assume that the team is given a strict deadline for performing an audit. Specifically,
an audit must be completed in T time periods (T > 0). Therefore after T periods
the accrued losses will drop to zero. If a team has already started auditing a unit at
a given period, then no other audit can be initiated during this period for the given
audit team. Figure 2 depicts such a situation in which an audit duration of 2 periods
is assumed. An audit scheduled for unit 1 at the beginning of period 3 rules out any
following audit for unit 2 until period 5.

Note that the timing of audits are fixed once and for all at the beginning of the
planning horizon, and cannot be changed thereafter even if it is suspected that certain
auditable units have accrued unexpected losses. The objective is to find the optimal
audit schedule while respecting the maximum loss level criterion. That is, the invari-
ant audit costs (i.e. fixed audit costs incurred each time an audit is conducted) and
expected total discounted audit losses (i.e. cumulative losses accrued at the end of
each period) are minimized by satisfying a maximum loss level constraint, which in
this problem is defined by specifying a minimum probability α that the losses will not
exceed a predetermined level L̄ (allowed maximum loss) in any given audit period
for any auditable unit.

Example 1 In what follows we will employ a running example to better exemplify
the above concepts. We consider the following simple instance:

M: the total number of audit units, equal to 2

N : the number of periods in the planning horizon, equal to 6

T : the duration of an audit in time periods, equal to 2

a: the fixed cost incurred each time an audit is conducted, equal to 100

h: the loss discount factor measuring the opportunity cost associated to a given

loss level, equal to 1
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L̄: a threshold indicating the maximum allowed loss level in each period, equal

to 200

α: the probability of not exceeding the loss threshold L̄, equal to 0.95.

We assume the losses accrued in each period to be normally distributed with
a constant coefficient of variation ρ = 0.2, where ρ = σm

t /μm
t . The expected

value, μm
t , for the losses in each period t and for each audit unit m is respec-

tively {50,30,50,30,50,30} in each period t = 1, . . . ,6 for audit unit 1, and
{10,20,30,40,50,60} in each period for audit unit 2.

3 Stochastic programming formulation

Stochastic programming (Birge and Louveaux 1997) is a well known modeling tech-
nique that deals with problems where uncertainty comes into play. Problems of
optimization under uncertainty are characterized by the necessity of making de-
cisions without knowing what their full effect will be. Stochastic programming
needs to represent uncertain elements of the problem. Typically random variables
are employed to model this uncertainty to which probability theory (Ventsel 1979;
Jeffreys 1961) can be applied. For this purpose such uncertain elements must have a
known probability distribution. The typical requirement in stochastic programs is to
maintain certain constraints, called chance constraints (Charnes and Cooper 1959),
satisfied at a prescribed level of probability. The objective is typically related to the
minimization/maximization of some expectation on the problem costs.

The stochastic programming model we propose balances the discounted cost of
losses accrued due to lack of audits with the cost of conducting audits. Taking the
discounted cost of losses into account is particularly relevant when the cost of money
must be considered. Consider, for instance, the situation in which some losses are
due to a specific reason in a given period. Then in the following periods this loss
will affect company assets until the originating factor is discovered by an audit and
cleared. Obviously these effects will have a higher impact the longer it takes to clear
such an originating factor. Consider, for instance, the case in which a company’s
tax liabilities are overestimated. The capital tied into tax liabilities could be invested
in a more profitable way if the accounts were not flawed. In this case the discount
factor would reflect the opportunity cost associated with the fact that capitals may be
invested in a more profitable way if an audit were scheduled.

We employ the expected value criterion to minimize the sum of the expected dis-
counted period losses and audit costs over an N period planning horizon. Let us
consider, without loss of generality, an initial loss levels Lm

1 set to any non-negative
values for each audit unit m = 1, . . . ,M . Let

Lm
t : the loss level in audit unit m at the beginning of period t .

The objective function below and the following constraints give the optimum au-
dit timing for each audit unit by minimizing E[T C], that is the sum of expected
audit costs and discounted period losses that are expected to accrue in the absence of
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auditing.

minE[T C] =
M∑

m=1

∫

lm1

∫

lm2

. . .

∫

lmN

N∑

t=1

(aKm
t + h(Lm

t + lmt ))

× glm1
(lm1 )glm2

(lm2 ) · · ·glmN
(lmN)d(lm1 )d(lm2 ) . . . d(lmN) (1)

where

M: the total number of audit units

N : the number of periods in the planning horizon

a: the amount of cost incurred each time an audit is conducted

h: the loss discount factor measuring the opportunity cost associated to

a given loss level

Km
t : a variable that takes the value of 1 if an internal audit (lasting T periods)

is started for audit unit m in period t , otherwise 0.

The above objective function is subject to several constraints. If (Km
t = 1) an internal

audit is conducted at the beginning of period t (i.e. at the end of period t − 1), then
the loss level at the beginning of period t + T should be 0. Yet, if an internal audit
is not conducted, the loss level at the beginning of period t + T will be equal to the
loss level at the beginning of the preceding period plus the loss accrued during the
preceding period. This can be expressed as

Lm
t+T ≥ Lm

t+T −1 + lmt+T −1 − MKm
t , m = 1, . . . ,M, t = 1, . . . ,N − T , (2)

where M is some very large number. Obviously in the first T periods no audit can be
completed, therefore

Lm
t ≥ Lm

t−1 + lmt−1, m = 1, . . . ,M, t = 1, . . . , T . (3)

For convenience we consider lmt = Lm
t = 0, for {t | t < 1}.

Now consider a plan for audit unit m, which schedules r audits over the N pe-
riod planning horizon with audits conducted at {Am

1 , . . . ,Am
r }, where Am

j > Am
j−1,

Am
r ≤ N − T . For convenience Am

1 = 1 − T , because the initial loss level is set to 0;
Am

r+1 = N − T + 1 is defined as the earliest period for which an associated audit

Fig. 3 Chance-constraint on the
maximum loss level. Assuming
losses to be normally
distributed: α is the desired
minimum probability (area
marked in the figure) that the
loss level in any time period will
not exceed a subjectively
determined level, L̄
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would be completed only after the end of the horizon. The associated audits will take
place at the beginning of periods Am

i , i = 1 to r . In the considered plan there are
clearly no audits scheduled for audit unit m except at periods Am

1 , . . . ,Am
r . The accu-

mulated loss level Lm
t+1 carried over from period t to period t + 1 is the loss to date

since the last completed audit. This can be written as

Lm
t+1 =

t∑

k=Am
i +T

lmk , Am
i + T ≤ t < Am

i+1 + T , i = 1, . . . , r. (4)

As defined above, α is the desired minimum probability that the loss level in any time
period will not exceed a subjectively determined level, L̄ (Fig. 3). In this regard the
chance constraint becomes

Pr{Lm
t + lmt ≤ L̄} ≥ α, t = 1 + T , . . . ,N. (5)

Using (4), this can be written alternatively as, for t ≥ 1 + T

Pr

{
t∑

k=Am
i +T

lmk ≤ L̄

}
≥ α, Am

i + T ≤ t < Am
i+1 + T , i = 1, . . . , r, (6)

which implies

Glm
Am

i
+T

+lm
Am

i
+T +1

+···+lmt
(L̄) ≥ α, Am

i + T ≤ t < Am
i+1 + T , (7)

where Glmt
(x) = ∫ x

−∞ glmt
(τ )dτ is the cumulative distribution function of lmt . By as-

suming Glmt
(x) to be strictly increasing, thus invertible, (7) can then be rewritten as

L̄ ≥ G−1
lm
Am

i
+T

+lm
Am

i
+T +1

+···+lmt
(α), Am

i + T ≤ t < Am
i+1 + T , (8)

where G−1
lmt

(α) is the inverse cumulative distribution function (or α-quantile) of lmt .
Since the problem has a finite planning horizon of N periods, for all the relevant

cases the right-hand side of (8), G−1
lm
Am

i
+T

+lm
Am

i
+T +1

+···+lmt
(α), can be computed or pos-

sibly read from a table, once the form of glmt
(.) is decided. If the binary variable P m

t,j

is defined as taking a value of 1 if the most recent audit prior to period t was in period
j and zero elsewhere for a given audit unit m, then (8) can be written as

L̄ ≥
t∑

j=1

(
G−1

lmj +lmj+1+···+lmt
(α) P m

t,j−T

)
. (9)

There can be at most only one most recent audit prior to period t . Thus P m
t,j must

satisfy

t∑

j=1−T

P m
t,j = 1, m = 1, . . . ,M, t = 1, . . . ,N. (10)
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Note that losses in the first T periods cannot be controlled with respect to the thresh-
old L̄ and the probability α. In fact benefits from the first possible audit appear only
in period T + 1. Therefore we assume, for all m = 1, . . . ,M , Km

1−T = 1 (according
to the fact that initial losses should be equal to 0) and Km

i−T = 0, i = 2, . . . , T .
The following equation (11) is necessary to identify uniquely the period in

which the most recent audit prior to any period t took place. For each audit unit
m = 1, . . . ,M

P m
t,j ≥ Km

j −
t−T∑

k=j+1

Km
k , t = 1, . . . ,N, j = 1 − T , . . . , t − T . (11)

It is not common practice for internal audit teams to conduct multiple audits simul-
taneously. To have a modicum of resemblance to reality, as already stated, here it is
assumed that a team can conduct an internal audit only for one audit unit at a given
time period. In our model we shall consider the following capacity constraint

m∑

k=1

Km
t ≤ C, m = 1, . . . ,M, t = 1, . . . ,N − T , (12)

which states that the firm can assign at most C audit teams to conduct audits in any
given time period. For simplicity, in what follows we will assume C = 1.

Example 2 For the running example introduced in Sect. 2, in Table 1 we show the
values of G−1

lmj +lmj+1+···+lmt
(α) for audit unit m = 1,2. Values in italic are those that

satisfy constraint (9), that is values that stay below the loss threshold L̄ = 200. Un-
derlined values identify audit cycles1 in the optimal solution. The optimal audit plan
is also presented graphically in Fig. 4. In this plan, in order to keep accrued losses
under control, one single audit for unit 1 is scheduled at the beginning of period 2,
and this audit terminates at the end of period 3. Similarly, for unit 2 a single audit is
scheduled at period 4 and this audit terminates at the end of period 5. The expected
total cost for this plan is 1090.

Fig. 4 Optimal audit plan for
the numerical example

1An audit cycle is a set of periods {j, . . . , t}, j ≤ t , where j is the first period after the completion of an
audit, and no other audit is completed by period t .
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Table 1 Values of
G−1

lm
j

+lm
j+1+···+lmt

(α) for audit

unit m = 1,2. Values in italic are
those that satisfy constraint (9).
That is, values that stay below
the loss threshold L̄ = 200.
Underlined values identify audit
cycles in the optimal solution

t

j 1 2 3 4 5 6

Unit 1

1 66.5 99.2 155.3 187.1 241.7 273.2

2 39.9 99.2 131.6 187.1 218.9

3 66.5 99.2 155.3 187.1

4 39.9 99.2 131.6

5 66.5 99.2

6 39.9

Unit 2

1 13.3 37.4 72.3 118.0 174.4 241.4

2 26.6 61.9 107.7 164.2 231.2

3 39.9 86.5 143.3 210.5

4 53.2 111.1 178.9

5 66.5 135.7

6 79.7

We now show in detail how the values in Table 1 are computed. Let GN

be the standard normal distribution function. This function is strictly increas-
ing, therefore G−1

N is uniquely defined.2 G−1
N (0.95) = 1.645 corresponds to the

0.95-quantile. Therefore, since all the random variables lmt , t = 1, . . . ,N , m =
1, . . . ,M , are independent and normally distributed, G−1

l12+l13+l14
(0.95) = 1.645 · 0.2 ·√

302 + 502 + 302 = 131.6. This value can be found in the first matrix presented in
Table 1 at position (2, 4). It corresponds to a sequence of periods starting in period
2 and ending in period 4, where no audit is completed and where the last audit per-
formed has been completed by the end of period 1 (therefore losses at the beginning
of period 2 are null). Since 131.6 < 200 it follows that this set of periods constitutes
a feasible audit cycle.

4 Solution methods

In this section we present two alternative certainty equivalent (Birge and Louveaux
1997) models for the stochastic programming model presented in the former section:
a Mixed Integer Linear Programming model and a Constraint Programming model.

4.1 A certainty equivalent MILP model

In Linear Programming (Dantzig 1963; Chvtal 1983; Schrijver 1986) a model, called
a “program”, consists of continuous variables and linear constraints (inequalities or

2Tables are available for obtaining values of the inverse normal cumulative distribution function (also
known as α-quantile, Ventsel 1979).
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equalities), and the aim is to optimize(minimize or maximize) a linear cost func-
tion. In matrix notation the standard form of a linear program is min{cTx | Ax = b,
x ≥ 0}, where c ∈ R

n, b ∈ R
n, A ∈ R

m×n. Here c represents the cost vector and x

is the vector of variables. Linear programs are usually solved by the simplex method
(Dantzig 1951) which is very fast in practice, though it has exponential worst-case
time complexity. A Mixed Integer Linear Program (MILP) is a Linear Program (LP)
plus integrality requirements on some decision variables. Discrete variables in MILP
are often 0–1 variables representing yes/no, on/off or true/false choices. Logical con-
ditions between 0–1 variables such as ∨ (or), ∧ (and), ¬ (not), ⇒ (if . . . then), and ⇔
(if and only if) can be imposed using appropriate linear constraints (Williams 1994).
Solution methods for MILP typically employ tree search in which internal nodes cor-
respond to partial solutions, branches are choices partitioning the search space, and
leaf nodes are solutions. Branching is intertwined with a relaxation to eliminate the
exploration of nodes for which the relaxation is either infeasible or worse than the
best solution found so far. Each node represents a partial assignment of the discrete
variables, and at each node a relaxation is formed by turning the integrality require-
ments into bounds, thus transforming the subproblem into an LP. This LP is solved,
and if the solution is not suboptimal then descendant nodes are formed by branch-
ing on the fractional relaxation value of a discrete variable. The historical popularity
of MILP derives from Dantzig’s discovery that the vocabulary of LP is surprisingly
versatile in many applications. MILP-based methods have been developed over the
last four decades by the Operations Research community (Nemhauser and Wolsey
1988).

The mathematical programming model of the previous section, as presented, is a
stochastic nonlinear combinatorial optimization model, which is extremely complex
to solve. In this section we adopt the static-dynamic uncertainty strategy, proposed
by Bookbinder and Tan (1988) to solve their stochastic inventory lot-sizing prob-
lem, and apply it to the mathematical programming model of Sect. 3. The model can
be expressed as minimizing the objective function given in (1) subject to the con-
straints (2–4), (9–12), and non-negativity and 0/1 integrality conditions for Lm

t , Km
t

and P m
i,j .

In our internal audit scheduling problem the analysis is completed at the beginning
of the planning horizon by taking expectations (see Bookbinder and Tan 1988). Hence
the deterministic equivalent model for the original chance-constrained stochastic pro-
gramming model is obtained. The resultant model is in the form of a mixed-integer
program, given below, in which the expected value operator is denoted by E[.].

min
M∑

m=1

(
N∑

t=1

aKm
t +

N∑

t=1

hE[Lm
t + lmt ]

)
(13)

subject to, for m = 1, . . . ,M, (14)

E[Lm
1 ] = 0, (15)

E[Lm
t+1] ≥ E[Lm

t ] + E[lmt ], t = 1, . . . , T , (16)

E[Lm
t+T ] ≥ E[Lm

t−1+T ] + E[lmt−1+T ] − MKm
t , t = 1, . . . ,N − T , (17)
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M∑

k=1

min(t+T −1,N)∑

h=1

Kk
h ≤ 1, t = 1, . . . ,N, (18)

L̄ ≥
t∑

j=1

G−1
lmj +lmj+1+···+lmt

(α) · P m
t,j−T , t = 1, . . . ,N, (19)

t∑

j=1

P m
t,j = 1, t = 1 − T , . . . ,N, (20)

Pm,t,j ≥ Km
j −

t−T∑

k=j+1

Km
k , j = 1 − T , . . . , t − T , (21)

Km
1−T = 1, (22)

Km
t−T = 0, t = 2, . . . , T , (23)

E[Lm
t ] ≥ 0, (24)

Km
t ,P m

t,j ∈ {0,1}, t = 1, . . . ,N, j = 1 − T , . . . , t. (25)

This model thus determines the optimal audit schedule by balancing the fixed audit
costs and discounted expected period losses that accrue in the absence of auditing.
The problem is to determine the values of the 0/1 integer variables, Km

t for m =
1, . . . ,M , t = 1, . . . ,N , and P m

t,j for t = 1, . . . ,N , j = 1 − T , . . . , t , and the non-
negative continuous variable E[Lm

t ] for t = 1, . . . ,N , that minimize the objective
function. The times of the audit reviews in each audit unit m are given by the values
of t such that Km

t = 1. Constraint (15) states that the initial losses are equal to 0.
Constraint (16) lets expected losses accumulate in the first T periods for each audit
unit, since no audit can be terminated before period T + 1. Constraint (17) states that
if an audit is planned in period t , then expected losses must drop to zero in period
t + T , as soon as the audit terminates, while if no audit is planned in period t , then
expected losses in period t + T must be equal to the expected losses accumulate till
the beginning of the previous period (t + T − 1) plus the expected losses accrued in
such a period. Constraint (18) prevents multiple audits in any given period. If an audit
team starts an audit in period t on a given unit, this means that no other audit can be
performed on any unit before period t + T . Constraints (19–21) implement (8) and
therefore they identify feasible audit schedules, that is those for which losses never
exceed the given threshold L̄ more than α percent of the times.

Example 3 By employing the mathematical programming model presented in this
section we can solve the running example originally presented in Sect. 2. The optimal
plan, which we already described in Sect. 3, is shown in Fig. 5. In this picture, we
also show the expected losses accumulated in each period and computed by the MILP
model. The plan schedules one single audit for unit 1 at period 2, and for unit 2 at
period 4. The expected total cost for this plan is 1090. Note that for each audit, losses
drop to 0 only after T = 2 periods, which is in fact the time required to perform an
audit. It is also clear from the plan shown that the audit team cannot perform multiple
audits at any given time period.
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Fig. 5 Optimal audit plan for
the numerical example

4.2 A certainty equivalent CP model

A Constraint Satisfaction Problem (CSP) (Apt 2003; Brailsford et al. 1999; Lustig
and Puget 2001) is a triple 〈V,C,D〉 where V is a set of decision variables, D is a
function mapping each element of V to a domain of potential values, and C is a set
of constraints stating allowed combinations of values for subsets of variables in V .
A solution to a CSP is simply a set of values of the variables such that the values are
in the domains of the variables and all the constraints are satisfied. We may also be
interested in finding a feasible solution that minimizes or maximizes the value of a
given objective function over a subset of the variables.

We now recall some key concepts in Constraint Programming (CP): constraint
filtering algorithm, constraint propagation and arc-consistency (Regin 2003). A fil-
tering algorithm is typically associated with a constraint, and removes values from
the domains of its variables that cannot belong to any solution of the CSP. These al-
gorithms are repeatedly called until no new deduction can be made, a process called
propagation. In conjunction with this process CP uses a search procedure (typically
a backtracking algorithm) in which filtering is systematically applied whenever the
domain of a variable is modified. One of the most interesting properties of a filter-
ing algorithm is arc-consistency: we say that a filtering algorithm associated with a
constraint establishes arc-consistency if it removes all the values from the domains
of the variables involved in the constraint that are not consistent with the constraint.
Studies on arc-consistency are often limited to binary constraints, but modeling prob-
lems by means of binary constraints has drawbacks: they are not very expressive,
and their domain reduction is typically weak. To overcome both these drawbacks,
constraints that capture a relation among a non-fixed number of variables were intro-
duced. These constraints are not only more expressive than the equivalent aggregation
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of simple constraints, but they can be associated with more powerful filtering algo-
rithms that take into account the simultaneous presence of several simple constraints
to further reduce the domains of the variables. These more powerful constraints are
called global constraints. One of the best-known examples is the alldiff con-
straint (Regin 1994), both because of its expressiveness and its efficiency in estab-
lishing arc-consistency. A comprehensive and up-to-date survey of the state of knowl-
edge regarding CP is Apt (2003), while a general account of the CP–MP relationship
is given by Brailsford et al. (1999) and Lustig and Puget (2001).

In this section we propose a CP reformulation for the mathematical programming
model in Sect. 4.1. This reformulation follows the approach originally proposed in
Tarim and Smith (2008), it exploits non-binary (global) constraints and other features
of CP. The CP model, similarly to the mathematical programming one, can be ex-
pressed as minimizing the objective function given in (1). But, as we shall see, in
the CP model constraints (2–4) and (9–12) are now reformulated and expressed in a
more compact and readable way. Furthermore, as we will see, the number of decision
variables employed is dramatically reduced as we do not employ anymore the binary
decision variables P m

i,j . The number of constraints is also significantly reduced. The
CP model is as follows.

min
M∑

m=1

(
N∑

t=1

aKm
t +

N∑

t=1

hE[Lm
t + lmt ]

)
(26)

subject to, for m = 1, . . . ,M , (27)

E[Lm
1 ] = 0, (28)

E[Lm
t+1] ≥ E[Lm

t ] + E[lmt ], t = 1, . . . , T , (29)

Km
t = 1 → E[Lm

t+T ] = 0, t = 1, . . . ,N − T , (30)

Km
t = 0 → E[Lm

t+T ] = E[Lm
t−1+T ] + E[lmt−1+T ], t = 1, . . . ,N − T , (31)

M∑

k=1

min(t+T −1,N)∑

h=1

Kk
h ≤ 1, t = 1, . . . ,N, (32)

�
[
m, t + T ,max

(
1, max

j=1,...,t
(j + T ) · Km

j

)]
≥ 0, t = 1 − T , . . . ,N − T ,

(33)

where

�[m, t, j ] = L̄ − G−1
lmj +lmj+1+···+lmt

(α), t = 1, . . . ,N, j = 1, . . . ,N.

The objective function, as in the mathematical programming model, balances the
fixed audit costs and discounted expected period losses that accrue in the absence of
auditing. Constraint (28) states that the initial losses are equal to 0. Constraint (29)
lets losses accumulate in the first T periods for each audit unit, since no audit can be
terminated before period T + 1. Constraint (30) states that if an audit is planned in
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period t , then losses must drop to zero in period t +T , as soon as the audit terminates.
Conversely, constraint (31) states that if no audit is planned in period t , then losses in
period t + T must be equal to the losses accumulated till the beginning of the previ-
ous period (t + T − 1) plus the losses accrued in such a period. These two non-linear
constraints are equivalent to constraint (17) in the mathematical programming for-
mulation. Constraint (32), similarly to constraint (18), prevents multiple audits in any
given period. If an audit team starts an audit in period t on a given unit, this means that
no other audit can be performed on any unit before period t +T . Constraint (33) iden-
tifies feasible audit schedules, that is those for which losses never exceed the given
threshold L̄ more than α percent of the time. This constraint replaces the set of con-
straints (19–21). The model given in (26–33) can be directly implemented using the
OPL optimization programming language (Van Hentenryck 1999). It should be noted
that, in OPL, constraint (33) is implemented using the element(I,A,J ) constraint
(Van Hentenryck and Carillon 1988). The element constraint holds iff A[I ] = J ,
where I and J are decision variables, and A is an array of decision variables.

5 Experiments

In this section, we compare the computational performance of the MILP formulation,
presented in Sect. 4.1, versus the CP equivalent formulation, presented in Sect. 4.2,
on a number of test problems.

Computational tests are performed on a 1.5 GHz, 2 GB RAM, Centrino machine
using ILOG Cplex 9.0 (Ilog 2007a) in OPL Studio 3.7 (Ilog 2007b). The packages
are used with their default settings.

In the MILP model, the M in constraint (17) must have a numerical value. It is well
known that the computational performance of the MILP model can be improved by
choosing M as small as possible, without ruling out any possible solution. It is also
clear that in different time periods, the corresponding M may have been assigned
different numerical values. One way of generating such M is by observing that, by
assuming a reasonably high service level (that is α > 0.5) the loss level will never
exceed L̄. Hence, M = L̄.

It should be also noted that, while the integer program is treated in its matrix
form, and different heuristics are used to choose the variable to branch on based on
the solution of the LP relaxation that is solved at each node, in a CP approach the
user specifies the branching strategy in terms of the formulation of the problem. The
following search strategy is employed in solving the CP model proposed: Km

t = 0
and 1 are tried in order, for all m ∈ {1, . . . ,M}, for all t ∈ {1, . . . ,N}.

5.1 Experimental settings

The design of the test problems is as follows. We consider the following inputs:

M: the total number of audit units, equal to 5

N : the number of periods in the planning horizon, taking values in {20,30,40}
T : the duration of an audit in time periods, taking values in {1, . . . ,6}
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Fig. 6 Expected value μm
t for the losses in each period t and for each audit unit m



J Comb Optim

a: the amount of cost incurred each time an audit is conducted, taking values in

{500,750,1000}
h: the loss discount factor measuring the opportunity cost associated to a given

loss level, equal to 1

L̄: a threshold indicating the maximum allowed loss level in each period, taking

values in {1500,2500,3500}
α: the probability of not exceeding the loss threshold L̄, equal to 0.95.

We assume the losses accrued in each period to be normally distributed with a
constant coefficient of variation ρ ∈ {0.15,0.3}, where ρ = σm

t /μm
t . The expected

value μm
t for the losses in each period t and for each audit unit m is shown in Fig. 6.

The total number of test problems generated is 108. We further partition our set of
problem instances into two classes as follows:

– The instances where the audit time is 1, i.e., T = 1 (18 instances).
– The instances where the audit time is greater than 1, i.e., T ∈ {2, . . . ,6} (90 in-

stances).

We now analyze each set separately.

5.1.1 Instances for which T = 1

For each test problem the solution time (in seconds), for both the MILP and the CP
approach, is given in Table 2. In this table italic figures highlight the approach that
produced the best run time. In Table 3 instead we reported for the MILP approach and
for the CP approach, respectively, the simplex iterations performed and the nodes ex-
plored. In this first set of 18 instances, where T = 1, the MILP approach always
dominates the CP approach in terms of run time. Nevertheless the discrepancy be-
tween the two approaches reaches only one order of magnitude in the worst case. In
the average case MILP is faster than CP by a factor of 7.7.

5.1.2 Instances for which T > 1

For each test problem the solution time (in seconds), for both the MILP and the CP
approach, is given in Table 4. In this table, again italic figures highlight the approach
that produced the best run time, while those instances for which the figures are un-
derlined are infeasible. In Table 5 we reported for the MILP approach and for the CP
approach, respectively, the simplex iterations performed and the nodes explored.

In contrast to what we observed in the first set of 18 instances, where T = 1, in
this second set of 90 instances, where T > 1, the CP approach always dominates the
MILP approach in terms of run time. When T > 1 the MILP approach does not scale
particularly well with respect to N , L̄ and ρ. Instances with a large N , T , L̄ and
ρ require, in fact, up to more than 30000 seconds to be solved. For these instances
CP is able to quickly prove optimality or efficiently detect infeasibility. In contrast,
CPLEX requires several simplex iterations and a long time to prove infeasibility. The
discrepancy between the two approaches for infeasible problems reaches a factor of
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Table 2 Computational times (in sec) for the MILP approach (MILP) and for the CP approach (CP). Italic
figures in the table highlight the approach that produced the best run time

L̄ 1500 2500 3500 T N

a 500 750 1000 500 750 1000 500 750 1000

ρ = 0.15

MILP 1.1 0.98 0.7 1.4 1.5 0.56 0.72 1.4 0.59 1 10

CP 6.2 7.6 8.2 6.7 8.1 8.2 7.2 9.2 8.8 1 10

ρ = 0.3

MILP 1.1 0.96 0.63 1.3 1.1 0.57 1.2 1.0 0.59 1 10

CP 5.9 6.8 7.5 6.5 7.5 7.8 6.5 7.7 8.05 1 10

Table 3 Simplex iterations performed by the MILP approach (MILP-SI) and nodes explored by the CP
approach (CP-Nod). Italic figures in the table highlight the approach that produced the best run time

L̄ 1500 2500 3500 T N

a 500 750 1000 500 750 1000 500 750 1000

ρ = 0.15

MILP-SI 14122 13383 8071 15868 13483 6666 15350 13854 7083 1 10

CP-Nod 83480 103442 108266 83480 103442 108266 83480 103372 108266 1 10

ρ = 0.3

MILP-SI 16084 13460 8381 16937 13649 6683 15357 13854 7083 1 10

CP-Nod 1 83480 103442 108266 83480 103442 108266 83480 103442 108266 1 10

3900, that is three orders of magnitude. Although MILP performs better at proving
optimality, its performances are still far from those achieved by the CP approach. In
fact the discrepancy between the two approaches with respect to feasible problems
reaches a factor of 88: almost two orders of magnitude.

5.2 Discussion of results

The results presented indicate that the CP approach is in general more tractable than
the mathematical programming one for this class of scheduling problems. The av-
erage solution time over all the instances considered is 950 seconds for the MILP
approach and 24 seconds for the CP approach. This shows that, on average, CP is
about one order of magnitude faster than MILP for the test bed analyzed. A compar-
ison of solution times for the test problems reveals that, as the value of T increases
(Fig. 7), CP is orders of magnitude faster than MILP, irrespectively of N , L̄ and ρ.
It should be noted that CP, as a consequence of constraint propagation, is extremely
good at proving infeasibility, while this is the class of problems for which MILP re-
quires significant computational efforts. CP also shows a more stable behavior and
scalable performances as T , N , L̄ and ρ increase. MILP performs poorly for the
largest instances considered both in proving optimality and detecting infeasibility.
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Table 4 Computational times (in sec) for the MILP approach (MILP) and for the CP approach (CP).
Italic figures in the table highlight the approach that produced the best run time. Underlined figures are
infeasible instances. +30000 means that the search has been stopped before infeasibility could be proved,
after 30000 sec (8,3 hour)

L̄ 1500 2500 3500 T N

a 500 750 1000 500 750 1000 500 750 1000

ρ = 0.15

MILP 150 120 98 240 240 200 310 420 310 2 20

CP 9.4 9.6 9.6 92 110 130 110 120 170 2 20

MILP 22 17 41 37 25 26 36 30 48 3 20

CP 0.12 0.11 0.10 7.6 7.3 7.4 6.4 6.8 7.6 3 20

MILP 20 110 80 500 320 400 610 540 610 4 30

CP 0.07 0.07 0.07 8.3 7.9 8.4 100 100 100 4 30

MILP 0 0 0 700 1500 810 250 140 420 5 30

CP 0.06 0.07 0.06 1.0 1.0 1.0 20 20 21 5 30

MILP 0 0 0 2300 1500 1900 660 1200 1500 6 40

CP 0.11 0.11 0.10 0.45 0.39 0.41 17 20 17 6 40

ρ = 0.3

MILP 70 100 87 190 420 200 340 400 260 2 20

CP 4.3 4.12 4.3 87 120 130 100 140 130 2 20

MILP 17 12 36 22 31 26 36 34 33 3 20

CP 0.08 0.08 0.08 6.2 7.2 6.9 6.5 6.8 7.4 3 20

MILP 39 20 23 160 370 550 550 580 620 4 30

CP 0.06 0.06 0.06 5.0 4.9 5.2 110 110 120 4 30

MILP 0 0 0 400 310 320 300 130 440 5 30

CP 0.07 0.07 0.07 0.77 0.77 0.77 20 20 20 5 30

MILP 0 0 0 1600 1500 700 20000 24000 +30000 6 40

CP 0.1 0.1 0.1 0.35 0.39 0.47 7.7 7.7 7.7 6 40

The performance of CP-based and MILP-based approaches for solving a number
of combinatorial optimization problems has been the scope of many recent studies
(e.g., the modified generalized assignment problem, Darby-Dowman et al. 1997; the
template design problem, Proll and Smith 1998; the progressive party problem, Smith
et al. 1995). There has been effort to characterise the properties of different problems
by their effect on the performance of CP and MILP approaches (Darby-Dowman
et al. 1997; Jain and Grossmann 2001). The key result of that work is that MILP is
very efficient when the relaxation is tight and the models have a structure that can be
effectively exploited, while CP seems to work better for highly constrained discrete
optimization problems in which the expressiveness of MILP is a major limitation.
Our results confirm that the best model of choice depends on the characteristics of the
instances rather than of the structure exposed at the problem level. Our experiments
suggest that when the audit time is small the relaxation is tight, hence MILP performs
well; when the audit time gets longer the problem becomes more constrained, and CP
seems to scale up much better than MILP.
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Table 5 Simplex iterations performed by the MILP approach (MILP-SI) and Nodes explored by the CP
approach (CP-Nod). Italic figures in the table highlight the approach that produced the best run time.
Underlined figures are infeasible instances. +59652116 means that the search has been stopped before
infeasibility could be proved, after 30000 sec (8,3 hour)

L̄ 1500 2500 3500 T N

a 500 750 1000 500 750 1000 500 750 1000

ρ = 0.15

MILP-SI 737530 534238 444055 1115993 1102108 952999 1548908 2182999 1346656 2 20

CP-Nod 70246 75317 80386 636450 764147 911016 636450 764147 911134 2 20

MILP-SI 115666 107912 227602 191912 133002 137485 179505 150434 204205 3 20

CP-Nod 511 511 511 48025 51003 54077 48025 51003 54077 3 20

MILP-SI 23915 176870 122716 1745261 1056964 1285394 1842453 1580697 1565614 4 30

CP-Nod 90 90 90 56456 56526 56620 517734 538358 559576 4 30

MILP-SI p. p. p. 1889563 4362836 2365598 889056 484259 1493608 5 30

CP-Nod 26 26 26 6017 6017 6017 104956 107308 109671 5 30

MILP-SI p. p. p. 3068784 2184342 2979721 1440912 2280890 3245663 6 40

CP-Nod 17 17 17 1358 1358 1358 94461 94465 94467 6 40

ρ = 0.3

MILP-SI 358921 455248 425701 902365 1946679 965218 1477861 2142193 1347372 2 20

CP-Nod 38004 39394 40679 636450 764147 911134 636450 764147 911134 2 20

MILP-SI 105962 80243 210615 117851 174027 129448 181685 165411 177510 3 20

CP-Nod 511 511 511 48025 51003 54077 48025 51003 54077 3 20

MILP-SI 62566 29487 30184 492571 1145508 1771707 1470525 1691075 1694070 4 30

CP-Nod 90 90 90 33660 33622 33622 511950 532192 553003 4 30

MILP-SI p. p. p. 1317658 951745 1052849 1226532 444214 1482423 5 30

CP-Nod 26 26 26 4885 4885 4885 97399 99383 101332 5 30

MILP-SI p. p. p. 2267185 2616084 884031 34210413 46569011 +59652116 6 40

CP-Nod 17 17 17 1198 1198 1198 35354 35354 35354 6 40

Fig. 7 Comparison of the average solution time for the CP approach and for the MILP approach as a
function of the audit time T
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6 Conclusions

This paper addresses the stochastic combinatorial optimization problem of schedul-
ing internal audit activities. In Tarim et al. (2008) a related problem has been tackled
by means of a similar MILP approach, but the authors assume that audit activities
are instantaneous (conducting an audit does not take any time). Our work is more
general and more realistic since we consider non-instantaneous audit activities, and
we schedule the audit team in such a way as to prevent concurrent auditing.

We proposed a stochastic programming formulation and we developed two alter-
native certainty equivalent approaches to solve this model: an MILP model and a CP
model. Our computational experience shows that MILP proved to be effective when
the time required to perform an audit is short (T ≤ 1). In contrast, our CP approach
proved to be very effective when the audit time T is greater than one period. The CP
approach proved extremely effective both in proving optimality and detecting infea-
sibility for most of the instances considered. For instances where the audit time T

is greater than one, the CP approach proves optimality or detect infeasibility in a
time that is typically orders-of-magnitude less than the one required by the MILP
approach. Nevertheless the performance of the CP approach when the audit time is
short still remains acceptable and close to that achieved by the MILP approach.

Finally, we believe that introducing additional complexity in the model may con-
stitute an interesting direction for future research. For instance, heterogeneous audit
teams may be considered, which may take different times to perform audits; alterna-
tively, random audit durations—rather than a fixed and deterministic duration T —
may be incorporated in the stochastic programming model.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.

Appendix

In this Appendix a complete list of the notation adopted in the paper is given.

N : (constant) number of time periods in the planning horizon

i, j, t : (index) a time period

M: (constant) number of audit units

m: (index) an audit unit

lmt : (random variable) a normally distributed random variable repre-
senting losses that accrue in audit unit m during period t

glmt
(lmt ): (function) probability density function of lmt

E[.]: (function) expected value operator

μm
t : (constant) expected value of lmt , sometimes expressed as E[lmt ]

σm
t : (constant) standard deviation of lmt

ρ: (constant) coefficient of variation of lmt , ρ = σm
t /μm

t
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T : (constant) number of time periods required by the audit team to
complete an audit

a: (constant) the fixed cost incurred each time an audit is conducted

h: (constant) the loss discount factor measuring the opportunity cost
associated with a given loss level

L̄: (constant) a threshold indicating the maximum allowed loss level
in each period

α: (constant) the probability of not exceeding the loss threshold L̄

Lm
t : (decision variable) the loss level in audit unit m at the beginning of

period t

E[T C]: (objective function) the sum of expected audit costs and discounted
period losses that are expected to accrue in the absence of auditing

Km
t : (decision variable) a variable that takes the value of 1 if an inter-

nal audit (lasting T periods) is started for audit unit m in period t ,
otherwise 0

M: (constant) some very large number

Am
r : (index) time period in which the rth audit is performed on unit m

Glmt
(x): (function) Glmt

(x) = ∫ x

−∞ glmt
(τ )dτ is the cumulative distribution

function of lmt

G−1
lmt

(α): (function) the inverse cumulative distribution function (or α-
quantile) of lmt

GN(.): (function) the standard normal distribution function

G−1
N (.): (function) the inverse of GN(.)

P m
t,j : (decision variable) a binary variable that takes a value of 1 if the

most recent audit prior to period t was in period j and zero else-
where for a given audit unit m

C: (constant) maximum number of audit teams that the firm can assign
to conduct audits in any given time period

�[m, t, j ]: (constant table) a 3-dimensional table whose elements are defined
as �[m, t, j ] = L̄−G−1

lmj +lmj+1+···+lmt
(α), t = 1, . . . ,N , j = 1, . . . ,N
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a b s t r a c t

In this work we propose an efficient dynamic programming approach for computing replenishment

cycle policy parameters under non-stationary stochastic demand and service level constraints. The

replenishment cycle policy is a popular inventory control policy typically employed for dampening

planning instability. The approach proposed in this work achieves a significant computational efficiency

and it can solve any relevant size instance in trivial time. Our method exploits the well known concept

of state space relaxation. A filtering procedure and an augmenting procedure for the state space graph

are proposed. Starting from a relaxed state space graph our method tries to remove provably

suboptimal arcs and states (filtering) and then it tries to efficiently build up (augmenting) a reduced

state space graph representing the original problem. Our experimental results show that the filtering

procedure and the augmenting procedure often generate a small filtered state space graph, which can

be easily processed using dynamic programming in order to produce a solution for the original problem.

& 2010 Published by Elsevier B.V.
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UNCORRECTED1. Introduction

Inventory theory provides methods for managing and controlling
inventories under different constraints and environments. An inter-
esting class of production/inventory control problems is the one that
considers the single-location, single-product case under non-station-
ary stochastic demand and service level constraints. Such a problem
has been widely studied because of its key role in practice.

Different inventory control policies can be adopted for the
above mentioned problem. For a discussion of inventory control
policies, see Silver et al. (1998). One of the possible policies that can
be adopted is the replenishment cycle policy, (R,S). A detailed
discussion on the characteristics of (R,S) can be found in de Kok
(1991). In this policy an order is placed every R periods to raise the
inventory level to the order-up-to-level S. This provides an effective
means of dampening planning instability (deviations in planned
orders, also known as nervousness (de Kok and Inderfurth, 1997;
Heisig, 2002) and coping with demand uncertainty. As pointed out
by Silver et al. (1998, pp. 236–237), (R,S) is particularly appealing
when items are ordered from the same supplier or require resource
sharing. In these cases all items in a coordinated group can be given
91
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95
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the same replenishment period. Periodic review also allows a
reasonable prediction of the level of the workload on the staff
involved, and is particularly suitable for advanced planning
environments and risk management (Tang, 2006).

Under the non-stationary demand assumption the replenish-
ment cycle policy takes the form (Rn,Sn) where Rn denotes the
length of the nth replenishment cycle and Sn the respective order-
up-to-level. In this policy, the actual order quantity for replen-
ishment cycle n is determined after the demand in previous
periods has been observed. The order quantity is computed as the
amount of stock required to raise the closing inventory level of
replenishment cycle n�1 up to level Sn. In order to provide a
solution for our problem under the (Rn,Sn) policy we must
populate both the sets fRnjn¼ 1, . . . ,Mg and fSnjn¼ f1, . . . ,Mg,
where M denotes the number of replenishment cycles scheduled
over a finite planning horizon of N periods.

The problem of populating these sets has been solved to
optimality only recently, due to the complexity involved in the
modeling of uncertainty and of the policy-of-response. As Silver
points out, computing replenishment cycle policy parameters
under non-stationary stochastic demand is a computationally
hard task (Silver, 1978). Early works in this area adopted heuristic
strategies such as those proposed by Silver (1978), Askin (1981),
and Bookbinder and Tan (1988). Under some mild assumptions,
the first complete solution method for this problem was
introduced by Tarim and Kingsman (2004), who proposed a
97

ation algorithm for the replenishment cycle inventory policy.
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deterministic equivalent mixed integer programming (MIP)
formulation for computing (Rn,Sn) policy parameters. Tempelme-
ier (2007) extended Tarim and Kingsman’s MIP formulation in
order to consider different service level measures, such as the ‘‘fill
rate’’. Nevertheless, empirical results showed that Tarim and
Kingsman’s model is unable to solve large instances. Tarim and
Smith (2008) therefore introduced a more compact and efficient
constraint programming formulation of the same problem that
showed a significant computational improvement over the MIP
formulation. The constraint programming formulation has been
further enhanced by means of dedicated cost-based filtering
algorithms developed by Tarim et al. (2009). A stochastic
constraint programming (Tarim et al., 2006) approach for
computing optimal (Rn,Sn) policy parameters is proposed in Rossi
et al. (2008). In this work the authors drop the mild assumptions
originally introduced by Tarim and Kingsman and compute
optimal (Rn,Sn) policy parameters. Of course, there is a price to
pay for dropping Tarim and Kingsman’s assumptions, in fact this
latter approach is less efficient than the one in Tarim and Smith
(2008). Finally, Pujawan and Silver (2008) recently proposed a
novel and effective heuristic approach.

In this paper, we build on Tarim and Kingsman’s modeling
assumptions and we develop a state-of-the-art algorithm for
computing optimal (Rn,Sn) policy parameters. Two existing
techniques—dynamic programming and state space relaxatio-
n—are combined in order to obtain an effective approach for
computing (Rn, Sn) policy parameters. Dynamic programming (DP)
is an optimization procedure that solves optimization problems
by decomposing them into a nested family of subproblems. DP is
based on the principle of optimality (Bellman, 1957; Dreyfus and
Law, 1989) and it has been applied to solve a wide variety of
combinatorial optimization problems, as well as optimal control
problems. State space relaxation (SSR) considers the DP formula-
tion of a combinatorial optimization problem, and modifies this
formulation to obtain a different—and possibly more com-
pact—DP formulation whose optimal solution is a lower bound
for the original problem. Christofides et al. (1981) proposed that
SSR has been successfully applied to constrained variants of
routing problems (see, e.g. Mingozzi et al., 1997; Focacci and
Milano, 2001). Roughly speaking, SSR maps the original state
space graph to a new state space graph having a smaller number
of vertices, and whose shortest path represents a lower bound for
the cost of the shortest path in the original state space graph.

In this work, we enhance these known approaches with a novel
strategy: we introduce a filtering procedure for the state space
graph and an augmenting procedure that is able to build a reduced
state space graph for the original problem starting from a filtered
state space graph for the relaxed problem. The concept of state
space augmentation (Boland et al., 2006) is known in the
operations research literature. A dual approach to state space
augmentation also exists and is known as decremental SSR (Righini
and Salani, 2008). Nevertheless, the idea of filtering a relaxed state
space graph is, to the best of our knowledge, a novel contribution.
Our experimental results prove the effectiveness of such an
approach for computing optimal (Rn, Sn) policy parameters.

The paper is structured as follows. In Section 2 we introduce the
problem definition and the modeling assumptions adopted in this
work. In Section 3 we describe a DP reformulation for Tarim and
Kingsman’s model. An SSR for this reformulation is presented in
Section 4. A procedure for filtering the relaxed state space graph is
presented in Section 5. An augmenting procedure for the relaxed
state space graph is described in Section 6. An example that
demonstrates the algorithm proposed is given in Section 7. Our
computational experience and a comparison with the state-of-the-
art approaches for computing replenishment cycle policy para-
meters are discussed in Section 8. In Section 9 we draw conclusions.
Please cite this article as: Rossi, R., et al., A state space augment
International Journal of Production Economics (2010), doi:10.1016/j
ROOF

2. Problem definition and modeling assumptions

The single-location, single-product production/inventory con-
trol problem under non-stationary stochastic demand and service
level constraints are formulated in this paper by using the
following inputs and assumptions.

We consider a planning horizon of N periods and a demand dt for
each period tAf1, . . . ,Ng, which is a non-negative random variable
with known probability density function and expected value ~dt . We
assume that the demand occurs instantaneously at the beginning of
each time period. The demand is non-stationary, that is it can vary
from period to period, demands in different periods are assumed to
be independent. Demands occurring when the system is out of stock
are assumed to be back-ordered and satisfied as soon as the next
replenishment order arrives. The sell-back of excess stock is not
allowed, if the actual stock exceeds the order-up-to-level for a given
review, this excess stock is carried forward and it is not returned to
the supply source. However, as in Bookbinder and Tan (1988), Tarim
and Kingsman (2004), Tarim and Smith (2008), and Tempelmeier
(2007) such occurrences are regarded as rare events and accordingly
the cost of carrying this excess stock and its effect on the service
levels of subsequent periods are ignored.

A fixed delivery cost a is incurred for each order. A linear
holding cost h is incurred for each unit of product carried in stock
from one period to the next. Our aim is to find a replenishment
plan that minimizes the expected total cost, which is composed of
ordering costs and holding costs, over the N-period planning
horizon, satisfying the service level constraints. As a service level
constraint we require that, with a probability of at least a given
value a, at the end of each period the net inventory will be non-
negative. As pointed out in Tempelmeier (2007), since period
demands are random, the net inventory may become negative.
However, the number of stock-outs is restricted by the service level
constraints enforced. While computing holding costs, we will
assume, as in Bookbinder and Tan (1988), Tarim and Kingsman
(2004), Tarim and Smith (2008), and Tempelmeier (2007), that the
service level is set large enough to ensure that the net inventory
will be a good approximation of the inventory on hand.
3. A DP formulation for the deterministic equivalent problem

We hereby introduce a deterministic equivalent DP formula-
tion for computing optimal (Rn,Sn) policy parameters.

Definition. A replenishment cycle, T(i,j), is the time span between
two consecutive orders/productions occurring in periods i and
j+1, jZ i.

Definition. The cycle buffer stock, b(i,j), denotes the minimum
expected buffer stock level required to satisfy the required non-
stock-out probability during T(i,j).

We define b(i,j), i¼1,y,N, j¼ i,y,N, as

bði,jÞ ¼ G�1
diþdiþ 1þ���þdj

ðaÞ�
Xj

k ¼ i

~dk, ð1Þ

where Gdiþdiþ 1þ���þdj
is the cumulative probability distribution

function of di+di +1+?+dj. It is assumed that G is strictly
increasing, hence G�1 is uniquely defined. It should be noted
that it is possible to consider different service level measures—for
instance the ‘‘fill rate’’—simply by introducing a different
definition for the cycle buffer stock (see also Tempelmeier, 2007).

Since N is the number of periods in our planning horizon, this
will also be the number of steps in the system. A state sk at step k

represents a possible expected closing-inventory-level, ~Ik, at the
end of period k. The decision xk to be taken at step k is to place an
ation algorithm for the replenishment cycle inventory policy.
.ijpe.2010.04.017
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order in such a period or not; if an order is placed, xk also indicates
how many subsequent periods this order should cover.

Let Xk(sk�1) denote the set of possible feasible decisions xk at
period k, when the expected closing inventory level at period k�1
is sk�1. This set may comprise: the decision of not placing an order
(xk¼0), the decision of covering one period with the order placed
(xk¼k), the decision of covering two periods with the order placed
(xk¼k+1),y, and the decision of covering N�k+1 periods with the
order placed (xk¼N). In other words, if xk¼0, no order is placed in
period k; if krxkrN, xk schedules a replenishment cycle T(k,xk).
However, one should note that the decision xk¼0 is only allowed if

bðv,kÞrsk�1�
~dk,

where v¼maxftj1rtrk,xt 40g. Intuitively, we can decide not to
place an order at the beginning of period k if and only if we have
sufficient stocks to guarantee the required service level at least for
this period.

Given a pair /sk,xkS the cost function pk(sk,xk) is clearly given
by the sum of the fixed ordering cost a, which is charged if xk

states that an order should be placed, and of the inventory holding
cost at the end of the period, which is equal to the expected
closing-inventory-level sk, multiplied by the per-unit holding cost
h. A per-unit purchase/production cost may also be considered,
this will be briefly discussed in Section 6.

The state transition function, sk¼tk(sk�1,xk), is as follows:

sk ¼
sk�1�

~dk if xk ¼ 0,

maxðsk�1�
~dk, bðk,xkÞþ

Pxk

i ¼ kþ1
~diÞ if krxkrN:

8<
: ð2Þ

Sk, the set of feasible expected closing-inventory-levels at the end
of period k, is obtained recursively from the state transition
functions t1,t2,y,tk, by assuming s0¼0 and, therefore, that an
order should be always placed at period 1 in order to cover one or
more following periods. In other words, X1(s0) does not include
the option of not placing an order.

The objective function is

z¼min
XN

k ¼ 1

pkðsk,xkÞ

( )
: ð3Þ

To determine the value of z, DP solves a set of problems
i¼1,y,N, each corresponding to a system composed by i steps
and characterized by the state si at the end of step i. The recursive
formulation of the cost function at step i is

fiðsiÞ ¼ min
xi AXiðsi�1Þ

ffi�1ðsi�1Þþpiðsi,xiÞg, ð4Þ

where si¼ti(si�1,xi). In addition, we have the following boundary
condition:

f1ðs1Þ ¼ min
x1 AX1ðs0Þ

fp1ðs1,x1Þg, ð5Þ

where s1¼t1(s0,x1).
Clearly, a mere recursive approach would immediately generate

a very large state space graph that would certainly be unmanage-
able. For this reason, in the following sections we will propose an
effective strategy for limiting the size of the state space graph.
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Fig. 1. Shortest path problem graph.
UN
4. A state space relaxation for the deterministic equivalent
problem

Intuitively, the first way of keeping the state space graph
compact consists in employing a relaxation that clusters states
together. More specifically, in order to do so we will employ a
relaxation proposed by Tarim (1996).

The core observation in Tarim’s relaxation lies in the fact that,
if we relax the constraint which enforces non-negative order
Please cite this article as: Rossi, R., et al., A state space augment
International Journal of Production Economics (2010), doi:10.1016/j
 P
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quantities—i.e. we give the opportunity to sell back items in
excess to the supplier at the beginning of a given replenishment
cycle—then the model proposed can be reduced to a shortest path
problem on a state space graph having a number of nodes and
arcs polynomial in the number N of periods.

In this relaxation, since the inventory conservation constraint
is relaxed between replenishment cycles, each replenishment
cycle can be treated independently and its expected total cost can
be computed a priori. In fact, given a replenishment cycle T(i,j), we
recall that b(i,j), as defined above, denotes the minimum expected
buffer stock level required to satisfy a given service level
constraint during the replenishment cycle T(i,j). It directly follows
that ~I j ¼ bði,jÞ. Furthermore for each period tAfi, . . . ,j�1g the
expected closing-inventory-level is ~It ¼ bði,jÞþ

Pj
k ¼ tþ1

~dk. Since
all the ~It for tAfi, . . . ,jg are known it is easy to compute the
expected total cost for T(i,j), which is by definition the sum of the
ordering cost and of the holding cost components, aþh

Pj
t ¼ i

~It .
We now have a set S of N(N+1)/2 possible different replen-

ishment cycles and their respective costs. Our new problem is to
find an optimal set S� � S of consecutive disjoint replenishment
cycles that covers our planning horizon at the minimum cost.

We shall now show that the optimal solution to this relaxation
is given by the shortest path in a state space graph from a given
initial node to a final node (boundary condition) where each arc
represents a replenishment cycle cost. If N is the number of
periods in the planning horizon of the original problem, we
introduce N+1 nodes. Since we assume that an order is always
placed at period 1, we take node 1, which represents the
beginning of the planning horizon, as the initial node. Node N+1
represents the end of the planning horizon.

Definition. The cycle cost, c(i,j), denotes the expected cost of the
optimal policy for T(i,j). It can be expressed as

cði,jÞ ¼ aþhðj�iþ1Þbði,jÞþh
Xj

t ¼ i

ðt�iÞ ~dt : ð6Þ

The cycle cost is the sum of two components. A fixed ordering cost
a, that is charged at the beginning of the cycle when an order is
placed, and a variable holding cost ht charged at the end of each
time period within the replenishment cycle and proportional to
the amount of stock held in inventory.

For each possible replenishment cycle T(i,j�1) such that
i,jAf1, . . . ,Nþ1g and io j, we introduce an arc (i,j) with associated
cost c(i,j�1) (Fig. 1). Since we are dealing with a one-way temporal
feasibility problem (Wagner and Whitin, 1958), when iZ j, we
introduce no arc. As shown in Tarim (1996), the cost of the shortest
path from node 1 to node N+1 in the given graph is a valid lower
bound for the original problem, as it is a solution of the relaxed
problem. A shortest path can be efficiently found by applying
Dijkstra’s algorithm that runs in O(n2) time, where n is the number
of nodes in the graph. Details on efficient implementations of
Dijkstra’s algorithm can be found in Sedgewick (1988).
ation algorithm for the replenishment cycle inventory policy.
.ijpe.2010.04.017
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It is easy to map the optimal solution for the relaxed problem, that
is the set of arcs participating to the shortest path, to an assignment
for the original problem by noting that each arc (i,j) represents a
replenishment cycle T(i,j�1). The set of arcs in the optimal path,
therefore, uniquely identifies a set of disjoint replenishment cycles,
that is a replenishment plan. Furthermore for each period
tAfi, . . . ,j�1g in cycle T(i,j�1) we already showed that all the
expected closing-inventory-levels ~It , tAfi, . . . ,j�1g, are known. This
produces a complete assignment for decision variables in our model.
The feasibility of an assignment with respect to the original problem
can be checked by verifying that it satisfies every relaxed constraint,
that is no negative expected order quantity is scheduled.
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5. A filtering procedure for the relaxed state space graph

In the previous section we presented a known relaxation for
the deterministic equivalent formulation of the (Rn,Sn) policy. In
this relaxation we solve a shortest path problem over a given
graph in order to find a lower bound for the cost of the optimal
solution for the original problem.

We now aim to reduce a priori as much as possible the number
of arcs in the graph we defined in the previous section. To do so
we exploit a reduction procedure based on an upper bound for
replenishment cycle lengths that was originally presented by
Tarim and Smith (2008).

Definition. Cycle opening inventory level, R(i,j), denotes the
minimum opening inventory level in period i to meet demand
until period j+1 and Rði,jÞ ¼ bði,jÞþ

Pj
t ¼ i

~dt .
UNCORRECTED P
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input : a relaxed and filtered state space graphRSG(S,T)
output : an augmented state space graph ASGðS0,T 0Þ

1 begin
2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

i0 ¼Nþ1;

ASGðS0,T 0Þ’RSGðS,TÞ;

for each node i¼ 1, . . . ,N in S0 do
for each arc ðp,iÞ in T 0 do

let b� be the buffer stock associate to ðp,iÞ

for each arc ði,jÞ in T 0 do

If b�4Rði,j�1Þ then

i0 ¼ i0 þ1;

create a new node i0 in S0;

introduce arc ðp,i0Þ in T 0 with associated buffer stock b�;

remove arc ðp,iÞ from T 0;

let t4 i be the minimum index for which

b�rRði,t�1ÞrRði,tÞr � � �rRði,NÞ;

introduce arc ði0,tÞ T 0 with buffer stock bði,t�1Þ;

for each arc ði,kÞ, k¼ tþ1, . . . ,Nþ1 in T 0 do

introduce arc ði0,kÞ in T 0 with associated buffer stock

bði,k�1Þ;

$

let t�14 i be the maximum index for which

b�4 � � �ZRði,t�2Þ;

introduce arc ði0,t�1Þ in T 0 with associated buffer stock

b��
Pt�1

k ¼ i
~dk

6666666666666666666666666666666664

6666666666666666666666666666666666664

666666666666666666666666666666666666666664

666666666666666666666666666666666666666666664

�������������������������������������������������������
19 end
Let us assume now that period i is a replenishment period. It is
not generally possible, prior to obtaining the optimal solution to
an instance of the problem, to determine the length of the
Please cite this article as: Rossi, R., et al., A state space augment
International Journal of Production Economics (2010), doi:10.1016/j
optimum replenishment cycle for a particular replenishment
period; however, an upper bound on the length can be
determined using Proposition 1.

Proposition 1 (Tarim and Smith, 2008). If 8kAfi, . . . ,j�1g,
ðcði,kÞþcðkþ1,jÞ4cði,jÞÞ3ðbði,kÞ4Rðkþ1,jÞÞ and (kAfi, . . . ,jg
ðcði,kÞþcðkþ1,jþ1Þrcði,jþ1ÞÞ4ðbði,kÞrRðkþ1,jþ1ÞÞ then for per-

iod i the optimum length replenishment cycle is T(i,p)n where

irpr j, and j indicates an upper bound.

Since we have an upper bound j for the length of an optimum
replenishment cycle starting at period i, we can remove from our
graph every arc (i,t), where t4 jþ1.
F

6. An augmenting procedure for the relaxed state space graph

Once the shortest path problem on the graph constructed as
shown above is solved, we can easily verify if every relaxed constraint
is satisfied by the solution found, that is, if no expected negative
replenishment quantity is scheduled in the optimal replenishment
plan. In this case, the solution found is feasible and optimal for the
original problem. If, on the other hand, the solution is not feasible for
the original model and it schedules expected negative replenishment
quantities, we can augment the graph with additional nodes and arcs
in such a way that the shortest path on the augmented graph is
guaranteed to provide a feasible and optimal solution for the original
problem. In what follows we shall show how to augment the graph
and efficiently compute an optimal solution for the original problem.

Algorithm 1. Augmenting procedure
For convenience, instead of associating a cost c(i,j�1) to each
arc (i,j) in the graph, we will now associate the respective cycle
buffer stock, b(i,j�1), as defined above. From the definitions
ation algorithm for the replenishment cycle inventory policy.
.ijpe.2010.04.017
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Fig. 4. Connection matrix with expected buffer stock levels.

Fig. 5. Connection matrix with expected cycle costs.
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given, it is easy to see that, once this expected buffer stock level is
fixed, also the cost c(i,j�1) is uniquely defined.

Let RSG(S,T) be a relaxed state space graph built according to
the discussion in Section 4 and filtered according to the discussion
in Section 5. Let S denotes the set of nodes and T the set of arcs in
the graph. The pseudo-code for the proposed augmenting
procedure is presented in Algorithm 1. The procedure eventually
generates an augmented state space graph ASGðS0,T 0Þ, where S0 is
the set of nodes and T 0 is the set of arcs in the augmented graph.

Algorithm 1 initially creates a copy ASGðS0,T 0Þ of RSG(S,T) (line
3). Then it considers each node in S0 in order (line 4), starting from
node 1 up to node N. Note that node N+1 has no outbound arcs, so
we do not have to consider it. The process is repeated for each
node i, therefore we will only describe the steps performed on a
single node.

We consider every inbound arc at node i (line 5) and we
operate in the following fashion. Given an inbound arc (p,i) with
associated buffer stock bn (line 6), for each outbound arc (i,j) in the
graph (line 7) we check that b�rRði,j�1Þ. If this condition is
satisfied for every outbound arc, then we preserve the inbound
arc (p,i) at node i with the associated buffer stock bn (Fig. 2).
Otherwise, if b�4Rði,j�1Þ (line 8), for a subsequent pair of
replenishment cycles a negative order quantity is scheduled. In
order to resolve this infeasibility we perform the following
transformation (lines 10y18). We introduce a new node i0 in
the graph. We remove arc (p,i) and we introduce a new arc ðp,i0Þ
with associated buffer stock bn (Fig. 3). Then we connect this new
node in the following way.

Let t4 i be the minimum index for which
b�rRði,t�1ÞrRði,tÞr � � �rRði,NÞ. We introduce arc ði0,tÞ with
buffer stock bði,t�1Þ. Then, for each arc (i,t+1),y,(i,N+1) in the

graph, we also introduce ði0,tþ1Þ, . . . ,ði0,Nþ1Þ with buffer stock,
respectively, b(i,t),y,b(i,N). It should be noted that some of the
arcs (i,t+1),y,(i,N+1) may have been removed by the filtering
described in Section 5.

Let t�14 i be the maximum index for which
b�4 � � �ZRði,t�2Þ. We introduce arc ði0,t�1Þ with buffer stock
b��

Pt�1
k ¼ i

~dk. Obviously arcs ði0,t�2Þ,ði0,t�3Þ, . . . are suboptimal
and should not be introduced, since the inventory carried on from
the previous replenishment cycle is enough to cover subsequent
periods up to t�1.

Note that, when the process is iterated on subsequent nodes
i+1,y,N, the new inbound arcs that may have been introduced
UNCORREC

Fig. 2. Feasible node point.

Fig. 3. Infeasible node point.

Please cite this article as: Rossi, R., et al., A state space augment
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must also be considered among all the possible ones for a given
node.

By starting from node 1 and by iterating this process for each
node i, 1r irN, we obtain an augmented graph. By construction
the cost of the shortest path in this augmented graph is the
optimal solution cost for our original problem since every possible
negative order quantity scenario has been considered and
replaced with the respective feasible possible courses of action.
Nevertheless, as a consequence of the original filtering performed
on the relaxed graph, the augmented graph will typically feature a
very limited number of node and arcs. This will be shown in the
following sections.
109

111

112

113

114

115

116

117

118

119

120

Fig. 6. Filtered connection matrix. Expected buffer stock levels and expected cycle

costs (in parentheses) are shown for each arc. The shortest path is highlighted.

Fig. 7. Augmented connection matrix. Expected buffer stock levels and expected

cycle costs (in parentheses) are shown for each arc. The shortest path is

highlighted. Node 3 (and obviously arc (3,4)) has been removed from the network

since the augmenting procedure removed all its inbound arcs.

ation algorithm for the replenishment cycle inventory policy.
.ijpe.2010.04.017

dx.doi.org/10.1016/j.ijpe.2010.04.017
Original Text:
nodethe 



 P
ROOF

ARTICLE IN PRESSPROECO 4398 XML-IS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

71

73

75

77

79

81

83

85

87

89

91

93

95

97

99

101

103

105

107

109

111

112

Table 1
Test set P5.

a N a¼ 0:95 a¼ 0:99

CP DP CP DP

Nod Sec Graph Sec Nod Sec Graph Sec

st= ~dt ¼ 1=3

25 50 857 45 /64;76S 0.33 2474 170 /67;82S 0.30

75 41 386 5400 /102;125S 0.38 180 000� 20 000� /106;133S 0.37

50 50 441 17 /66;84S 0.34 1242 170 /69;88S 0.33

75 23 805 2400 /104;133S 0.37 180 000� 20 000� /108;139S 0.37

100 50 /51;87S 0.21 104 5 /73;109S 0.34

75 /76;134S 0.24 329 30 /113;167S 0.21

200 50 /51;139S 0.23 /51;131S 0.24

75 /76;212S 0.26 /76;200S 0.28

st= ~dt ¼ 1=6

25 50 22 1 /58;65S 0.34 325 17 /61;70S 0.33

75 245 35 /90;103S 0.2 10 118 970 /98;116S 0.20

50 50 /51;69S 0.20 70 3 /63;80S 0.42

75 /76;106S 0.14 155 14 /100;126S 0.37

100 50 /51;103S 0.13 /51;94S 0.12

75 /76;161S 0.26 /76;145S 0.25

200 50 /51;158S 0.22 /51;184S 0.15

75 /76;242S 0.27 /76;226S 0.26

A figure marked with n means that the instance could not be solved in the given limit of 20 000 s (5.55 h).
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Before demonstrating our method on a simple numerical

example, it is worth mentioning the following. Our model, for the
sake of simplicity, assumes a zero unit purchase/production cost,
also in line with the model in Tarim and Smith (2008).
Nevertheless, the extension of our algorithm to the case of a
non-zero unit production/purchasing cost is quite straightfor-
ward. In fact, as shown in Tarim and Kingsman (2004, p. 113), the
total unit variable cost can be reduced to a function of the
expected closing-inventory-level of the very last period N. There-
fore, considering such an effect in our algorithm is easy, since it
only requires us to modify, in the graph connection matrix, the
costs that appear in the rightmost column, which represents
every possible replenishment cycle that ends in period N.
113

114

115

116

117

118

119

1201 For clarity, in order to keep the graphical presentation as compact as

possible, the expected buffer stock levels have been rounded to the nearest integer

value.
UNCOR
7. An example

We shall consider here a simple example in detail, to show
how in practice it is possible to apply the procedure described.

A single problem over a 5-period planning horizon is
considered and the expected values for period demand are [100,
125, 25, 40, 30]. We assume an initial null inventory level and a
normally distributed demand for every period with a coefficient of
variation st= ~dt ¼ 0:3 for each tAf1, . . . ,Ng, where st denotes the
standard deviation of the demand in period t. We consider an
ordering cost value a¼50 and a holding cost h¼1 per unit per
period. The non-stock-out probability in each period is set to
a¼ 0:95.

Firstly we build the connection matrix for the relaxed problem as
described in Section 4. In Fig. 4 we show the connection matrix with
Please cite this article as: Rossi, R., et al., A state space augment
International Journal of Production Economics (2010), doi:10.1016/j
the respective expected buffer stock level b(i,j�1) associated with
each arc (i,j).1 In Fig. 5 instead with each arc (i,j) we associate the
respective expected cycle cost c(i,j�1). It should be noted that the
two representations are equivalent, since the expected cycle cost
can be easily computed once the expected buffer stock level for a
given cycle is fixed. In Fig. 6 the connection matrix is filtered
according to the procedure presented in Section 5. Expected buffer
stock levels and expected cycle costs (in parentheses) are indicated
for each arc that has not been removed by the filtering. The shortest
path in this reduced network has a cost of 403. The order periods
and the order quantities are, respectively, [1, 2, 3, 4] and [149, 138,
�25, 83]. This assignment is infeasible for the non-relaxed problem
since the expected order quantity in period 3 is �25, therefore its
cost is a lower bound for the optimal solution cost of our original
problem. According to the procedure described in Section 6 we
augment the filtered graph and we obtain the new graph in Fig. 7.
The shortest path in this augmented network has a cost of 412 and
represents the optimal solution cost of our original problem. The
replenishment periods in this optimal solution can be obtained from
the indexes of the nodes in the shortest path. The respective order
quantities can also be easily obtained from the expected buffer stock
levels associated with each arc in the shortest path. The order
periods and the order quantities are therefore, respectively, [1, 2, 3,
5] and [149, 138, 26, 22].
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8. Experimental results

We compared the results obtained with our approach with the
results obtained with the state-of-the-art constraint program-
ming (CP) approach in Tarim et al. (2009), based on the set of
instances originally proposed in Berry (1972). All the experiments
presented in this section were performed on an Intel(R)
Centrino(TM) CPU 1.50 GHz with 500 Mb RAM. As in Tarim et al.
(2009), the demand in each period is assumed to be normally
distributed and we also assume that its coefficient of variation
remains sufficiently low (i.e. less or equal to 1/3) to ensure that
negative demand values can be ignored. We recall that in Tarim
et al. (2009) period demands are generated from seasonal data
with no trend: ~dt ¼ 50½1þsinðpt=6Þ�. In addition to the ‘‘no trend’’
case (P1) three others are also considered:
81
(P2)
Table
Test s

a

250

500

10 0

20 0

Ple
Int
positive trend case, ~dt ¼ 50½1þsinðpt=6Þ�þt,

83
(P3)
 negative trend case, ~dt ¼ 50½1þsinðpt=6Þ�þð52�tÞ,

(P4)
 life-cycle trend case, ~dt ¼ 50½1þsinðpt=6Þ�þminðt,52�tÞ.
85

87

89

91

93

95

97
Tests are performed using four different ordering cost values
aAf40,80,160,320g and two different st= ~dt Af1=3,1=6g. The
planning horizon length takes even values in the range [24, 50]
when the ordering cost is 40 or 80 and [14, 24] when the ordering
cost is 160 or 320. The holding cost used in these tests is h¼1 per
unit per period. Tests consider two different service levels
a¼ 0:95 ðza ¼ 0:95 ¼ 1:645Þ and a¼ 0:99 ðza ¼ 0:99 ¼ 2:326Þ.

For almost all these instances our DP approach is either
better—in terms of run time—than the CP approach or equivalent,
with some exceptions for the smallest instances. When the
number of periods considered in the planning horizon grows, our
UNCORRECTED
2
et P6.

N st= ~dt ¼ 1=3

a¼ 0:95 a¼ 0:99

Graph Sec Graph

0 75 /102;125S 0.44 /106;133S
110 /153;194S 0.36 /160;208S
145 /197;246S 0.41 /208;266S
180 /242;301S 0.48 /255;327S
215 /284;350S 0.96 /297;376S
250 /329;407S 0.79 /346;439S

0 75 /104;133S 0.20 /108;139S
110 /155;202S 0.57 /162;214S
145 /199;255S 0.36 /210;272S
180 /245;317S 0.46 /258;337S
215 /287;366S 0.85 /300;386S
250 /332;426S 0.76 /349;450S

00 75 /76;134S 0.13 /116;174S
110 /170;270S 0.29 /171;256S
145 /216;344S 0.62 /224;332S
180 /271;439S 0.51 /279;422S
215 /317;517S 0.85 /324;493S
250 /365;593S 1.02 /375;569S

00 75 /76;212S 0.14 /76;201S
110 /111;306S 0.21 /111;292S
145 /146;408S 0.27 /146;388S
180 /181;514S 0.35 /181;485S
215 /216;617S 0.67 /216;585S
250 /251;713S 0.68 /251;675S

ase cite this article as: Rossi, R., et al., A state space augment
ernational Journal of Production Economics (2010), doi:10.1016/j
OF

DP approach clearly scales better than the CP approach. The
maximum improvement observed reaches a factor of 24. Never-
theless, for this set of instances the CP approach remains
competitive and achieves reasonable run times of a few seconds
also for the largest instances.

In what follows, we aim to highlight the limits of the CP
approach and we want to show that our DP approach remains
very effective even for those instances for which the CP approach
performs poorly. In order to do so, we consider the following set
of instances (test set P5). The expected period demands, ~dt , are
generated as uniformly distributed random numbers in [0, 100].
Empirically, in fact, we observed that generating random
sequences of demands rather than seasonal patterns or trends
makes the problem harder to solve. Again we consider four
different ordering cost values aAf25,50,100,200g and two
different st= ~dt Af1=3,1=6g. The planning horizon length takes
the values {50, 75}. The holding cost used in these tests is h¼1 per
unit per period. Again we consider two different service levels
a¼ 0:95 ðza ¼ 0:95 ¼ 1:645Þ and a¼ 0:99 ðza ¼ 0:99 ¼ 2:326Þ. Table 1
compares the CP and the DP approach for this new set of
instances. In our test results, the heading ‘‘CP’’ refers to the state-
of-the-art CP approach in Tarim et al. (2009), while ‘‘DP’’ refers to
our novel DP approach. For the CP approach we report the number
of nodes explored (Nod) and the run time in seconds (Sec); for our
DP approach we report the size of the state space graph generated
(Graph) and the run time in seconds (Sec). The size of the state
space graph is described as a pair /N;AS, where N is the number
of nodes and A is the number of arcs. When a field is empty in the
table, this means that the CP approach and the DP approach are
equivalent, since for that particular instance the CP approach was
able to prove optimality at the root node in polynomial time using
the DP relaxation originally proposed in Tarim (1996).
 P
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99

101

103

105

107

109

111

112

113

114

115

116

117

118

119

120

st= ~dt ¼ 1=6

a¼ 0:95 a¼ 0:99

Sec Graph Sec Graph Sec

0.38 /90;103S 0.25 /98;116S 0.26

0.36 /134;157S 0.31 /144;175S 0.28

0.41 /174;202S 0.41 /185;222S 0.41

0.49 /211;245S 0.46 /225;268S 0.47

0.93 /248;285S 0.93 /263;310S 0.88

0.79 /287;330S 0.75 /305;361S 0.77

0.48 /76;107S 0.13 /100;126S 0.22

0.29 /111;152S 0.18 /146;185S 0.28

0.40 /146;198S 0.21 /187;234S 0.62

0.55 /181;250S 0.30 /230;295S 0.49

0.94 /216;296S 0.75 /268;338S 0.49

0.74 /251;347S 0.61 /312;399S 0.95

0.34 /76;162S 0.15 /76;147S 0.04

0.19 /111;230S 0.22 /111;211S 0.10

0.35 /146;300S 0.26 /146;280S 0.19

0.69 /181;377S 0.34 /181;354S 0.25

0.61 /216;448S 0.70 /216;423S 0.58

0.99 /251;512S 0.62 /251;485S 0.67

0.15 /76;242S 0.15 /76;228S 0.17

0.13 /111;352S 0.17 /111;332S 0.16

0.24 /146;460S 0.39 /146;437S 0.26

0.49 /181;575S 0.38 /181;546S 0.54

0.44 /216;685S 0.50 /216;652S 0.47

0.60 /251;787S 0.80 /251;750S 0.79
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It is immediately clear that for low a/h ratios (that is for the
lowest ordering costs considered), the CP approach has to explore
a large search space and requires a long time to prove optimality,
while our DP approach still generates small state space graphs
and achieves fast runtimes. As the ratio a/h increases, the CP
approach performs better and, for some instance, it is equivalent
to our DP approach.

In the last set of instances considered (test set P6) we aim to
show that our approach is effective even when the planning
horizon is significantly longer, and that the computation is not
affected by the magnitude of the demands considered. The
planning horizon length now ranges up to 250 periods, in order
to show that our approach scales well in the number of periods.
The expected period demands ~dt are generated as uniformly
distributed random numbers in [0, 10 000], in order to show that
large values for the expected demands do not affect the scalability
of our approach. Once more, we consider four different ordering
cost values aAf2500,5000,10 000,20 000g and two different
st= ~dt Af1=3,1=6g. The planning horizon length takes the following
values {75, 110, 145, 180, 215, 250}. The holding cost used in
these tests is h¼1 per unit per period. Also in this case, we
consider two different service levels a¼ 0:95 ðza ¼ 0:95 ¼ 1:645Þ
and a¼ 0:99 ðza ¼ 0:99 ¼ 2:326Þ. The computational results in
Table 2 present that the graphs generated are still extremely
compact and that the run times are mostly under one second even
if a long planning horizon and large demands are considered.
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9. Conclusions

We proposed a novel DP approach for computing (Rn,Sn) policy
parameters. Our experimental results show that our approach,
based on the described filtering algorithm for the state space graph
and on the state space graph augmenting procedure, can solve
instances over planning horizons comprising hundreds of periods.
State space relaxation and state space augmentation are two
known strategies in operations research, nevertheless, the idea of
filtering a relaxed state space graph is, to the best of our
knowledge, a novel contribution. As our computational experience
shows, our DP reformulation performs significantly better than the
original MIP approach proposed by Tarim and Kingsman and it also
beats the state-of-the-art reformulations proposed by Tarim and
Smith and Tarim et al. Furthermore our results are not affected by
the magnitude of the demand considered in each period.
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An investigation of setup stability in non-stationary

stochastic inventory systems
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Abstract

In stochastic inventory planning systems unfolding uncertainties in demand lead to revision of earlier
production/order plans. This results in different order release decisions in successive planning cycles,
which in turn leads to an instability in inventory plan, or so-called system nervousness. In this paper,
we provide the grounds for measuring system nervousness in non-stationary demand environments, and
gauge the setup stability and cost performance of (R,S) and (s, S) inventory control policies. We conduct a
numerical study using a test set including a variety of costs, demand patterns, and coefficients of demand
variation. The results reveal that both the stability and the performance of inventory policies are affected
by the demand pattern as well as the cost parameters. Furthermore, our analysis point out that (R,S)
policy has the potential to replace the cost-optimal (s, S) policy, especially for systems characterized by a
low degree of flexibility to setup changes.
Keywords: Inventory policies, Stability, Non-stationary demand

1 Introduction

In inventory planning systems, inventory plans experience changes in response to realized demand. In
practice, when this is the case, the plan is regenerated for the rest of the planning horizon. This results in
different order decisions causing planning instability or so-called system nervousness (Vollmann et al., 1988).

Inventory management involves application of various inventory control policies. These policies are
extensively investigated in terms of their cost performance. However, in systems with a low degree of
flexibility, the cost of implementing revisions in setup decisions may overcome the advantage of using the
cost-efficient technique. In this context inventory control rules show different levels of instability. Thus
system nervousness, as a performance criterion, can be of high importance in assessing inventory control
rules. Omitting the planning instability can turn out to be a serious problem because it gives rise to a
considerable amount of alteration efforts (Heisig, 2001).

The (s, S) control policy has been shown to be cost-optimal under very relaxed assumptions in both
stationary and non-stationary cases (see Scarf, 1959; Iglehart, 1963). Heisig (1998, 2001), and de Kok and
Inderfurth (1997) have questioned the performance of (s, S) policy with respect to the nervousness criterion

∗Corresponding author: o.a.kilic@rug.nl
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in the stationary case. Their research reveals the trade-off between cost effectiveness and nervousness and
show that (s, S) policy exhibits the worst stability performance among a number of policies considered.
Different strategies for dealing with the problem of nervousness are examined by Blackburn et al. (1986).
They suggest an effective strategy based on freezing certain orders so they cannot be changed. In this
regard, (R,S) policy, in which the timing of future orders are fixed, provides a means of dampening the
setup instability. Silver et al. (1998) points out that (R,S) policy, which provides a rhythmic rather than a
random replenishment pattern, is usually appealing from a practitioners point of view.

One major difficulty in the continuing development of inventory theory is to incorporate more realistic
assumptions about demand into inventory models. In many stable environments it is an adequate approx-
imation to treat period demands as identically distributed random variables. However, many times the
demand pattern is heavily seasonal, or has a significant trend, especially in industrial settings with busi-
ness cycles. On the other hand, as product life cycles get shorter, the randomness and unpredictability of
demand processes become even greater. The essence of such situations can only be captured by means of
finite horizon non-stationary inventory models.

Literature provides guidelines about the stability performance of inventory policies in stationary sys-
tems. However, those may not be directly generalized to non-stationary systems due to differences in their
natures. In stationary systems policy parameters are also stationary, and therefore, the measure of stabil-
ity of the whole system can be determined by means of observing any two consecutive planning cycles.
However, in non-stationary systems, policy parameters are determined in connection with each and every
period through the horizon, and consequently, stability is a function of the demand pattern. To the best of
our knowledge, no work has been done on the measures of nervousness in non-stationary systems. In this
paper, we aim to fill in this gap by investigating the system nervousness under non-stationary stochastic de-
mand. Our contribution is two-fold. First we propose an exact method for measuring system nervousness
in non-stationary demand environments. Secondly we gauge the setup stability of (R,S) and (s, S) type
inventory control policies and demonstrate that (R,S) policy has the potential to replace the cost-optimal
(s, S) policy, especially for systems characterized by a low degree of flexibility to setup changes.

The remainder of this paper is organized as follows. Section 2 investigates the related literature. Section
3 gives the notation and the definitions regarding the addressed inventory system. Section 4 provides the
grounds for computing setup instability in non-stationary environments and proposes a method for the
computation thereof. Section 5 gives the models and methods for computing (s, S) and (R,S) policies.
Section 6 presents the computational experiments, tests the proposed inventory control rules with respect
to setup instability, and clarifies and discusses our findings. Section 7 presents the conclusions and some
likely extensions of the study.

2 Background

The most important issue in the investigation of the performance of inventory control rules with respect
to stability is the definition of nervousness. Previous research specify two classes of general nervousness
types: short/long term and setup/quantity oriented nervousness. The former involves rating order deci-
sion instability between the first two periods for the short term and between all consecutive periods for
the long term. The latter distinguishes between considering adjustments on pure setup actions (cancella-
tion of a planned order or placement an unplanned order) and adjustments on the setup quantities. It is
noted by Inderfurth (1994) and Heisig (2001) that setup oriented system nervousness is considered as the
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most serious in practice. In this paper we address long term, setup oriented nervousness or so-called setup
instability.

Generally it is hard to express instability in terms of cost. For this reason, rather than integrating ner-
vousness into pure cost-based inventory models, like for instance in Kropp et al. (1983) and Kropp and
Carlson (1984), we define stability as an independent attribute of an inventory control system and refer to
the measures used in Jensen (1996) and Heisig (2001).

Early studies in nervousness involves a wide set of simulation studies, where the impact of different
planning parameters on system nervousness are investigated in deterministic demand environments (see
e.g. Blackburn et al., 1986, 1987; Sridharan et al., 1988; Minfie and Davis, 1990; Kadipasalioglu and Srid-
haran, 1997). A systematic development of nervousness measures in stochastic environments is given in
Inderfurth (1994), de Kok and Inderfurth (1997), Heisig (1998) and Heisig (2001). Analytical results are
presented in Inderfurth (1994) where the performance of (s, S) and (s, nQ) policies with respect to short-
term, setup-oriented nervousness is analyzed. In de Kok and Inderfurth (1997), the short-term, setup-oriented
as well as the short-term, quantity-oriented nervousness are examined for (s, S), (s, nQ) and (R,S) policies.
Long-term, setup-oriented nervousness performance of (s, S) and (s, nQ) policies are analyzed in Heisig (1998)
and Heisig (2001). Above mentioned studies define instability as the ratio of expected deviations over the
maximum deviations that can take place in the worst case. These studies show that there exists a trade-off
between cost effectiveness and stability performance, and therefore the (s, S) policy, which is optimal in
terms of cost performance, exhibits the worst stability performance among all other policies considered.

Previous studies investigate nervousness in the rolling horizon framework. In this framework, although
setups and associated quantities are computed over the entire planning horizon, only the first period deci-
sion is implemented, and then the schedule is rolled forward to the next period with new demand appended
to the horizon. Within this approach, there are two sources of nervousness: demand uncertainty and rolling
horizon planning (Kadipasalioglu and Sridharan, 1997). Demand uncertainty implies that actual demand
may differ from the forecast, and therefore, leads to a revision of setups as necessary. Rolling horizon plan-
ning, however, may cause planned orders to change because of the new information obtained about future
demands. In this study we adapt a re-planning approach rather than a rolling horizon framework. In a
re-planning approach, new periods are not appended to the fixed length planning horizon and setup plans
are generated only for the remaining periods. One positive side effect of this approach is that the inventory
system is no longer exposed to the instability due to the rolling horizon planning. Hence it gives us the
opportunity to investigate the sole effect of demand uncertainty on stability performance.

3 Notation and definitions

In this paper we address a multi-period stochastic inventory problem which is characterized by a finite
horizon comprising N periods. The demand, dt in period t is considered as a random variable with known
probability density function, gt(dt), and is assumed to occur instantaneously at the beginning of each pe-
riod. The mean rate of demand may vary from period to period. Demands in different time periods are
assumed independent. A fixed holding cost h is incurred on any unit carried in inventory over from one
period to the next. Demands occurring when the system is out of stock are assumed to be backordered,
and satisfied immediately the next replenishment order arrives. A fixed shortage cost p is incurred for each
unit of demand backordered. A fixed setup cost K is incurred each time a replenishment order is placed,
whatever the size of the order. For convenience, without loss of generality, the direct item cost is assumed
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to be zero, and the delivery lead-time is not incorporated. We assume that inventory plans are updated in
response to the realized demands throughout the planning horizon. When this is the case, no-more-optimal
inventory plans are replaced by optimal ones in successive re-planning states (see Definition 1).

Definition 1 (Re-planning State). A re-panning state is denoted by a pair ξ = (t, k), ξ ∈ Ξ, for any given period t
and inventory level k.

Definition 2 (Re-planning Period). For a re-planing state ξ, the re-planning period Θ(ξ) ∈ {t + 1, . . . , N |ξ =
(t, k)} denotes the period the next replenishment is due.

Definition 3 (Re-planning Transition Probability). Transition probabilities for successive re-planning states ξ1
and ξ2 are represented by a transition matrix P with entries p(ξ1, ξ2) = Pr(Xn+1 = ξ2|Xn = ξ1).

Definition 4 (State Probability). State probability π(ξ) of state ξ is the probability of visiting state ξ starting from
a given initial state.

Definition 5 (Opening Inventory Level). For any given state ξ = (t, k), the opening inventory level I(ξ) equals
k +Q where Q is the order quantity.

The proposed inventory system can be expressed as a stochastic process defined over the state space Ξ
with transition probabilities P . One of the aims of this paper is to propose a measure of system nervousness
and develop a methodology for the computation thereof for any given inventory policy. Such a measure
and a methodology can be characterized over the aforementioned stochastic process. This is done in the
following section.

4 Setup instability

In the inventory setting described in Section 3 the measure of long term, setup oriented system nervousness
is given in Definition 6.

Definition 6 (Setup instability). For any given inventory system the setup instability measure is the expected
number of setup changes (a new setup is scheduled or a formerly planned setup is canceled) throughout the planning
horizon.

An expression of the setup instability between two states ξ1 = (t1, k1) and ξ2 = (t2, k2) of consecutive
re-planning periods (i.e. t2 = Θ(ξ1)) is given in (1).

N∑
t=t2

|T (ξ1, t)− T (ξ2, t)| (1)

where T (ξ, h) is a binary variable equals to 1 if the setup plan at state ξ = (t, k) calls for a replenishment
for period h, h > t and 0 otherwise. In (2) we use (1) to express the total instability throughout the planning
horizon, N .

N =
∑
ξ1

∑
ξ2

π(ξ1)p(ξ1, ξ2)
N∑
t=t2

|T (ξ1, t)− T (ξ2, t)| (2)

In order to compute the nervousness we need to determine the state probabilities π(ξ), and the transition
probabilities p(ξ1, ξ2). It is clear that the recursive formulation (3) gives the state probabilities.
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π(ξ2) =
∑
ξ1

π(ξ1)p(ξ1, ξ2) (3)

Transition probabilities can be written as follows:

p(ξ1, ξ2) = Pr(I(ξ1)−D(t1, t2) = k2), ξj = (tj , kj) and t2 = Θ(ξ1) (4)

where D(t1, t2) =
∑t2−1
t=t1

dt.

5 Non-stationary (s, S) and (R, S) policies

The optimal values of decision variables, Θ(ξ), I(ξ), and T (ξ, h), given in the previous section, can only be
determined in connection with an inventory control rule. This section provides the models for computing
these decision variables under (s, S) and (R,S) type inventory policies.

5.1 (s, S) policy

In this section we present a dynamic programming approach following Bollapragada and Morton (1997) to
compute optimal policy parameters for the non-stationary (s, S) problem. This approach is based on the
dynamic programming formulation given below,

Jt,N = min{Lt(x) + E(Jt+1,N (x− dt)),K + Lt(St) + E(Jt+1,N (St − dt))}, t = 1, . . . , N (5a)
JN+1,N (i) = 0. (5b)

The state variable is the inventory on hand at the beginning of the time period, x. Jt,N (i) denotes the
expected cost of following the optimal policy from period t onwards, Lt(i) represents the expected period
cost function if the opening inventory level is i, and K is the fixed setup cost. The K-convexity property
(Scarf, 1959) is used in obtaining a solution in each stage of the dynamic program.

Optimal parameters of (s, S) policy are independent of the current state of the system, every period is
a re-planning period, and optimal policy parameters do not propose a clear setup plan. The lack of a clear
setup plan demands the use of an expected setup plan based on the expected value problem (i.e. expected
demand replaces random demand) as suggested in Heisig (1998) and Heisig (2001). In this study we adopt
their approach.

5.2 (R, S) policy

In this paper we employ the non-stationary (R,S) model presented in Tarim and Kingsman (2006). They
propose a certainty equivalent mixed integer programming (MIP) model to compute the optimal policy
parameters. Since (R,S) is a periodic review policy in contrast to (s, S), it can be used both with and without
re-planning. In the rest of this paper (R,S)

′
will donate (R,S) policy with re-planning. (R,S) policy results

in zero setup instability since setup periods are fixed in the beginning of the planning horizon. On the
other hand in (R,S)

′
policy only the foremost setup is certain and the rest of the setup plan is exposed to

revisions in the following re-planning periods. It should also be noted that policy parameters of (R,S) and
(R,S)

′
policies depend on the current state of the system.
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As one might expect, using (R,S)
′

yields lower expected costs compared to (R,S) in the expense of
increasing instability. That is, E{C(R,S)} ≥ E{C(R,S)′} and N ′

(R,S) ≥ N(R,S) = 0, where CΩ and NΩ are the
realized cost and the setup instability under policy Ω respectively. E{C(R,S)} can be obtained by solving the
MIP model. However, in computing E{C(R,S)′} one should consider the possible states and corresponding
state probabilities as well as the expected cost of the immediate replenishment cycle, E{Ccyc

(R,S)′
(ξ)}. The

exact expected cost calculations can be carried out by means of the following expression.

E{C(R,S)′} =
∑
ξ

π(ξ)E{Ccyc
(R,S)′

(ξ)} (6)

6 Numerical Experiments

In this section we evaluate (s, S), (R,S) and (R,S)
′

policies with respect to long-term, setup oriented system
nervousness and expected cost, and investigate the effects of (i) setup frequency, (ii) uncertainty, and (iii)
non-stationarity on those measures. To serve this purpose, we vary setup cost, coefficient of variation, and
demand pattern to build a test set of 64 instances. We use 4 different setup costs K = {10, 250, 500, 1000},
4 different coefficient of variations σ/µ = {0.10, 0.15, 0.20, 0.25}, and 4 different demand patterns (static,
sinusoidal, life-cycle, and erratic) adopted from Berry (1972) (see Figure 1). It is assumed that demand is
normally distributed. The planning horizon is set to 20 periods with no initial inventory. Without loss
of generality, holding and penalty costs are set at 1 and 10 per unit per period respectively, and unit cost
is ignored. Expected costs and setup instabilities of test instances are computed under (s, S), (R,S) and
(R,S)

′
policies using the models and methods described in Sections 4 and 5.
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Since (s, S) policy is optimal in terms of cost performance, we present the cost performances of (R,S)
and (R,S)

′
policies, ∆(R,S) and ∆(R,S)′ respectively, on % differences from the optimal cost. Note that,

(R,S) has zero instability by definition, and therefore, not included in the table. The results are listed in
Table 1. We investigate the behavior of the cost performance of (R,S) and (R,S)

′
and stability performance

of (s, S) and (R,S)
′

policies by elaborating upon the standalone effects of setup costs, coefficient of variation
and demand patterns. These are summarized in Figures 1 to 3. In each figure, we plot (i) the average cost
increment due to the use of non-optimal policy for (R,S) and (R,S)

′
policies, and (ii) the setup instability

of (s, S) and (R,S)
′

policies against the values of one of the three parameters. The values on the y-axis are
the averages of all instances having the same specified parameters. We summarize our results as follows.

Effects of setup cost: Consider the extreme cases of setup costs such thatK = 0 andK =∞. The former
leads to a setup in all periods, and the latter leads to a single setup only in the first period. Both cases result
in zero setup instability since regenerated plans are the same as the original one. Our observations on test
results verify these comments. The cost and stability performances with respect to setup cost are given in
Figure 2. It is clear that low setup costs encourages frequent setups whereas large setup costs reduce setup
frequency. For extreme values of setup cost such as 10 and 1000 all policies have lower instabilities than for
setup costs 250 and 500. In a similar fashion, cost penalty of using (R,S) and (R,S)

′
policies rather than

(s, S) is smaller for the extreme values of setup cost.
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Figure 2: Effects of setup cost

Effects of demand variability: Figure 3 illustrates the average cost and instability performances with
respect to demand uncertainty. We can observe that the coefficient of variation has adverse effects on both
instability and expected cost of all inventory policies as one might expect. It should be noted that the
effect of uncertainty is rather weak for small values of coefficient of variation and grows exponentially as
coefficient of variation increases.

Effects of demand demand patterns: Figure 4 illustrates the effects of demand patterns on the cost and
stability performances of inventory polices. The experiments indicate that, as the erraticity of demand in-
creases (i.e. from static to erratic), the expected costs increase, and the instability decreases for all inventory
control policies considered. Although this observation is valuable on its own sake, it is more important to
investigate the effects of the demand pattern on the cost-instability trade-off. As it can be observed from
Figure 4, for static, sinusoidal and life-cycle patterns, the cost difference from the optimal policy is rather
low for both (R,S) and (R,S)

′
. On the other hand, especially for static and sinusoidal patterns, the differ-

ence in the instability is rather large. Therefore, we can conclude that the trade-off between the cost and the
stability performance of inventory policies is a function of the demand pattern.
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To summarize, we observe that the extent of cost and instability performances of inventory policies
depend on the system parameters in our numerical study. The cost differences of (R,S) and (R,S)’ policies
from the optimal cost of (s, S) policy are lower than 0.01% for 46 and 0.05% for 78 of 80 test instances
respectively. For all 80 instances (R,S)’ is superior to (s, S) policy in terms of instability performance.

To provide more insight it might be useful to examine an instance in detail. Consider the instance with
static demand pattern, setup cost 250 and coefficient of variation 0.25. When (s, S) policy is employed, the
expected number of setup changes is 11.3. If (R,S)’ policy is used the expected number of setup changes
decreases to 1.5, but the expected cost increases by 0.88%. On the other hand, if (R,S) policy is employed,
there will be no instability and expected cost is increases by 1.52%.

7 Conclusions and extensions

In this study, we extended first the system nervousness definitions in the literature to cover non-stationary
stochastic demand, and we investigated the cost and stability performances of (R,S) and cost-optimal (s, S)
inventory policies in terms of system nervousness. In contrast to previous studies using a rolling horizon
framework which itself is a source of nervousness, we employed a re-planning approach and we analyzed
the nervousness resulting from pure demand uncertainty. With the strategy we proposed we obtain the
expected cost and instability values of a given inventory problem simultaneously. We characterized the
effects of cost parameters, demand variability and non-stationary demand patterns on the cost and insta-
bility performances of inventory policies. Our findings can be used to assess inventory control policies
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under different system settings and can be of help to choose the most efficient inventory policy depending
on the flexibility of the system to setup changes and importance of cost.

We showed that (R,S) policy is clearly dominant to (s, S) policy in terms of stability performance even
when the inventory plan is regenerated through the planning horizon, and the cost penalty of using (R,S)
policy, rather than cost-optimal (s, S) policy, is fairly small under general settings. In addition to that, we
clarified that the cost performance of (R,S) policy can be improved to some extent by employing a re-
planning approach in expense of some degree of instability. These all together shows that (R,S) can be a
strong alternative to (s, S) with its superior stability performance, especially for systems characterized by a
low degree of flexibility to setup changes.

In this study we assumed that the setup changes in the imminent and the following periods effect the
instability value identically. Therefore, our results do not account for the cases where the importance of the
instabilities diminish in time. Investigating such a case, possibly by using a discount factor, is one of the
interesting directions for further research. Another potential extension is to consider different inventory
policies.
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Abstract. In this survey we focus on problems of decision making under
uncertainty. Firstly, we clarify the meaning of the word “uncertainty” and
we describe the general structure of problems that fall into this class. Sec-
ondly, we provide a list of problems from the Constraint Programming,
Artificial Intelligence and Operations Research literatures in which un-
certainty plays a role. Thirdly, we survey existing modeling frameworks
that provide facilities for handling uncertainty. A number of general pur-
pose and specialized hybrid solution methods are surveyed, which deal
with the problems in the list provided. These approaches are categorized
into three main classes: stochastic reasoning-based, reformulation-based
and sample-based. Finally, we provide a classification for other related
approaches and frameworks in the literature.

1 Introduction

In this work we survey problems in which we are required to make decisions
under uncertainty, and we categorize existing hybrid techniques in Constraint
Programming (CP), Artificial Intelligence (AI) and Operations Research (OR)
for dealing with them. The word uncertainty is used to characterize the existence,
in these problems, of uncontrollable or “random” variables1, which cannot be
influenced by the decision maker. In addition to these random variables, prob-
lems also comprise controllable or “decision” variables, to which a value from
given domains has to be assigned. More specifically, a problem classified as de-
terministic with respect to the degree of uncertainty does not include random
variables, while a stochastic problem does.

Random variables are typically employed to model factors such as the cus-
tomer demand for a certain product, the crop yield of a given piece of land during
? B. Hnich and A. Tarim are supported by the Scientific and Technological Research

Council of Turkey (TUBITAK) under Grant No. SOBAG-108K027.
1 Alternatively, in the literature, these variables are also denoted as “stochastic”.



a year, the arrival rate of orders at a reservation center and so forth. A continu-
ous or discrete domain of possible values that can be observed is associated with
each random variable. A probabilistic measure — typically a probability distri-
bution — over such a domain is assumed to be available in order to fully quantify
the likelihood of each value (respectively, range of values in the continuous case)
that appears in the domain.

The decision making process comprises one or more subsequent decision
stages. In a decision stage, a decision is taken by the decision maker who as-
signs a value to each controllable variable related to this decision stage of the
problem and, subsequently, the uncontrollable variables related to this stage are
observed and their realized values become known to the decision maker.

It should be noted that, in this work, we do not consider situations in which
the decision maker has the power to modify the probability distribution of a given
random variable by using his decisions. Random variables are therefore fully
uncontrollable. To clarify, this means that a situation in which the decision maker
has the option of launching a marketing campaign to affect the distribution of
customer demands will not be considered.

This work is structured as follows: in Section 2 we employ a motivating exam-
ple and a well established OR modeling framework — Stochastic Programming
— in order to illustrate key aspects associated with the process of modeling
problems of decision making under uncertainty; in Section 3 we provide a list of
relevant problems from the literature on hybrid approaches for decision making
under uncertainty and, for each problem, we also provide a short description and
a reference to the work in which such a problem has been proposed and tack-
led; in Section 4 we introduce frameworks, respectively from AI and from CP,
that aim to model problems of decision making under uncertainty; in Section 5,
we classify existing hybrid approaches for tackling problems of decision making
under uncertainty into three classes: in the first class (Section 6) we identify
general and special purpose approaches that perform “stochastic reasoning”, in
the second class (Section 7) we list approaches, general and special purpose, that
use reformulation, and in the third class (Section 8) we categorize approximate
techniques based on a variety of strategies employing sampling; finally, in Sec-
tion 9 we point out connections with other related works, and in Section 10 we
draw conclusions.

2 Decision making under uncertainty

Several interesting real world problems can be classified as “stochastic”. In this
section we use a variant of the Stochastic Knapsack Problem (SKP) discussed in
[34] as a running example to demonstrate ideas and concepts related to stochas-
tic problems.

Single-stage Stochastic Knapsack. A subset of k items must be chosen,
given a knapsack of size c into which to fit the items. Each item i, if included
in the knapsack, brings a deterministic profit ri. The size ωi of each item is



stochastic and it is not known at the time the decision has to be made. Never-
theless, we assume that the decision maker knows the probability mass function
PMF(ωi) [31], for each i = 1, . . . , k. A per unit penalty cost p has to be paid
for exceeding the capacity of the knapsack. Furthermore, the probability of the
plan not exceeding the capacity of the knapsack should be greater than or equal
to a given threshold θ. The objective is to find the knapsack that maximizes the
expected profit.

We now discuss Stochastic Programming, which is one of the most well known
modeling approaches in OR for problems of decision making under uncertainty,
such as the SKP. We arbitrarily chose to employ such a framework to introduce
the key concepts of decision making under uncertainty. In the next sections,
the following frameworks will be also introduced: Stochastic Boolean Satisfiabil-
ity, Probabilistic Constraint Satisfaction Problems, Event-Driven Probabilistic
Constraint Programming and Stochastic Constraint Programming.

Stochastic Programming (SP) [11, 32] is a well established technique often
used for modeling problems of decision making under uncertainty. A Stochastic
Program typically comprises a set of decision variables defined over continuous
or discrete domains, a set of random variables also defined over continuous or
discrete domains and, for each random variable, the respective probability den-
sity function (PDF) if continuous or probability mass function (PMF) if discrete.
Decision and random variables are partitioned into decision stages. Within a de-
cision stage, firstly, all the associated decision variables are assigned values; and
secondly, all the associated random variables are observed. A set of constraints
is usually enforced over decision and random variables in the model. These con-
straints may be hard, that is they should always be met regardless of the values
that are observed for the random variables, or they may be chance-constraints
[15]. Chance-constraints are constraints that should be satisfied with a prob-
ability exceeding a given threshold. If the problem is an optimization one, it
may minimize/maximize an objective function defined over some expressions on
possible realisations (for example, maximize the worst case performance of the
stochastic system under control, or minimize the difference between the max-
imum and minimum values a performance measure may take to increase the
robustness of a system) or some probabilistic measure — such as expectation or
variance — of decision and random variables in the model.

To clarify these concepts we now introduce a Stochastic Programming model
for the single-stage SKP (Fig. 1). The objective function maximizes the trade-off
between the reward brought by the objects selected in the knapsack (those for
which the binary decision variable Xi is set to 1) and the expected penalty paid
for buying additional capacity units in those scenarios in which the available ca-
pacity c is not sufficient. Control actions that are performed after the uncertainty
is resolved — such as buying additional capacity at a high cost — are called,
in SP, “recourse actions”. The only chance-constraint in the model ensures that
the capacity c is not exceeded with a probability of at least θ. There is only a
single decision stage in the model. Decision stages define how uncertainty unfolds



Objective:

max

{∑k
i=1 riXi − pE

[∑k
i=1 ωiXi − c

]+
}

Subject to:

Pr
{∑k

i=1 ωiXi ≤ c
}
≥ θ

Decision variables:
Xi ∈ {0, 1} ∀i ∈ 1, . . . , k

Random variables:
ωi → item i weight ∀i ∈ 1, . . . , k

Stage structure:
V1 = {X1, . . . , Xk}
S1 = {ω1, . . . , ωk}
L = [〈V1, S1〉]

Fig. 1. A Stochastic Programming formulation for the single-stage SKP. Note that
[y]+ = max{y, 0} and E denotes the expected value operator.

in the decision making process. In other words, what the alternation should be
between decisions and random variable observations. In a decision stage 〈Vi, Si〉,
first we assign values to all the decision variables in the set Vi, then we observe
the realized values for all the random variables in the set Si. More specifically, in
the single decision stage 〈V1, S1〉 of the SKP, first we select all the objects that
should be inserted into the knapsack, that is we assign a value to every decision
variable Xi ∈ V1, ∀i ∈ 1, . . . , k; second, we observe the realized weight ωi ∈ S1

for every object i ∈ 1, . . . , k.
We now introduce a numerical example for the single-stage SKP.

Example 1. Consider k = 5 items whose item rewards ri are {16, 16, 16, 5, 25}.
The discrete probability mass functions for the weight ωi of item i = 1, . . . , 5 are
respectively:
PMF(ω1) = {10(0.5), 8(0.5)}, PMF(ω2) = {9(0.5), 12(0.5)}, PMF(ω3) = {8(0.5),
13(0.5)}, PMF(ω4) = {4(0.5), 6(0.5)}, PMF(ω5) = {12(0.5), 15(0.5)}.
The figures in parenthesis represent the probability that an item takes a certain
weight. The other problem parameters are c = 30, p = 2 and θ = 0.6.

As discussed, the problem has a single decision stage. This means that every
decision has to be taken in a proactive way, before any of the random variables is
observed. Therefore the optimal solution can be expressed as a simple assignment
for the decision variables Xi, ∀i ∈ 1, . . . , k. More specifically, the optimal solution
for Example 1 proactively selects items {1, 4, 5} and achieves an expected profit
of 45.75. Such a solution can be validated using a scenario tree, as shown in Fig.
2. This tree considers every possible future realisation for the random variables
ωi, ∀i ∈ 1, . . . , k. Since every random variable in the problem takes each of
the possible values in its domain with uniform probability, all the paths in the
scenario tree are equally likely. Therefore, it is easy to compute the expected
profit of such an assignment and the expected additional capacity required. By
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Fig. 2. Scenario tree representing the solution of the single-stage SKP in Example 1.

plugging these values into the objective function, the profit associated with this
solution can be easily obtained (i.e. 46−2·0.125 = 45.75). Finally, it can be easily
verified that the chance-constraint in the model is also satisfied by this solution.
In fact, a shortage is observed only in 4 out of 32 scenarios, therefore the chance
constraint is satisfied, in this solution, with probability 0.875 ≥ θ = 0.6.

The problem discussed in the former paragraphs only comprises a single de-
cision stage. However, in general, stochastic programs may comprise multiple
decision stages, that is a sequence of decisions and observations. In order to



Objective:
maxX1{r1X1 + Eω1{maxX2 r2X2 + Eω2{. . . {maxXk−1 rk−1Xk−1+

Eωk{maxXk rkXk + p[
∑k

i=1 ωiXi − c]+}} . . .}}}
Subject to:

Pr
{∑k

i=1 ωiXi ≤ c
}
≥ θ

Decision variables:
Xi ∈ {0, 1} ∀i ∈ 1, . . . , k

Random variables:
ωi → item i weight ∀i ∈ 1, . . . , k

Stage structure:
Vi = {Xi} ∀i ∈ 1, . . . , k
Si = {ωi} ∀i ∈ 1, . . . , k
L = [〈V1, S1〉, 〈V2, S2〉, . . . , 〈Vk, Sk〉]

Fig. 3. Stochastic programming formulation for the multi-stage SKP.

clarify this, we slightly modify the SKP presented above in such a way as to
allow for multiple decision stages. Therefore, we introduce the multi-stage SKP.

Multi-stage Stochastic Knapsack. The single-stage problem description
and assumptions are valid here with the exception that the items are considered
sequentially, starting from item 1 up to item k. In other words, first we take the
decision of inserting or not a given object into the knapsack, then we immedi-
ately observe its weight, which is a random variable, before any further item is
taken into account.

A stochastic programming model for the multi-stage SKP is shown in Fig. 3.
The model is similar to the one presented in Fig. 1, but the structure of the
objective function is different. In this new model, expectation (Eωi) and maxXi

operators are nested and parameterized each by, respectively, the random vari-
able ωi over which the expectation is computed and the decision variable Xi

that should be assigned in order to maximize the objective function value. This
means, in practice, that an object may be selected or not, depending on the re-
alized weights for previous objects. The stage structure is also different, because
now the problem comprises multiple decision stages that alternate decisions and
observations according to the arrival sequence of the objects.

We refer, once more, to the Example 1 presented above. The numerical data
introduced there can be used to obtain an instance of the multi-stage SKP.
As discussed, the problem now has multiple decision stages. This means that
decisions are taken in a dynamic way, and they are alternated with observations
for random variables. Therefore, the optimal solution is now expressed by using a
solution tree. A solution tree encodes full information on how to act at a certain
decision stage, when some random variables have been already observed. More
specifically, the optimal solution tree for the instance of the multi-stage SKP
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Fig. 4. Solution tree for the multi-stage SKP in Example 1.

defined by the data in Example 1 achieves an expected profit of 47.75 and it is
shown in Fig. 4. To clarify: at the root node no uncertainty has been unfolded.
The optimal solution tree in Fig. 4 shows that it is always optimal to take item
1 in the knapsack. Nevertheless, depending on the observed value for the weight
of item 1, two alternative decisions may be optimal: not taking item 2 if the
observed weight for item 1 is 10; or taking item 2 if the observed weight for item
1 is 8. To reiterate, since every random variable in the problem takes each of
the possible values in its domain with uniform probability, all the paths in the



solution tree are equally likely. Therefore, it is easy to compute the expected
profit of such an assignment and the expected additional capacity required. By
plugging these values into the objective function, the profit associated with this
solution can be easily obtained. Finally, it can be also easily verified that the
chance-constraint in the model is also satisfied by this solution. In fact, a shortage
is observed only in 12 out of 32 scenarios, therefore the chance constraint is
satisfied, in this solution, with probability 0.625 ≥ θ = 0.6.

In this section we discussed the SKP; in Section 3 we provide a further list
of problems from the literature discussing hybrid approaches to decision making
under uncertainty.

3 A Collection of Stochastic Problems

In this section we provide a list of 9 other problems of decision making under
uncertainty for which hybrid approaches have been proposed in the literature.
This list is comprehensive, in the sense that it contains representative problems
for each hybrid CP-AI-OR approach for decision making under uncertainty sur-
veyed in this work.

The problems are:

– Stochastic queueing control problem [8, 75, 74]
– Scheduling Conditional Task Graphs [40]
– Stochastic reservation [5]
– Job shop scheduling with probabilistic durations [3]
– Two-stage stochastic matching problem [33]
– Production/inventory management [78]
– Stochastic template design [52, 71]
– Scheduling internal audit activities [60]
– Stochastic sequencing with release times and deadlines [57].

For each of these problems we provide a textual description; the reader may refer
to the respective works where these problems were first introduced to obtain a
more detailed description. In Section 5 we discuss and classify the hybrid solution
methods proposed for modeling and solving these problems.

3.1 Stochastic queueing control problem

In a facility with front room and back room operations, the aim is to switch
workers between the rooms in order to cope with changing customer demand.
Customer arrival and service time are stochastic and the decision maker seeks
a policy for switching workers such that the expected customer waiting time is
minimized, while the staff in the back room remains sufficient to perform all
work. The problem was originally proposed and analyzed in [8]. Terekhov and
Beck investigated it in [75, 74].



3.2 Scheduling conditional task graphs

This is the problem, discussed in [40], of scheduling conditional task graphs in
presence of unary and cumulative resources, minimizing the expected makespan.
Conditional task graphs are directed acyclic graphs containing activities linked
by precedence relations. Some of the activities represent branches. At run time
only one of the successors of a branch is chosen for execution, depending on
the occurrence of a condition labeling the corresponding arc. Since the truth or
the falsity of those conditions is not known a priori, the problem is stochastic.
Therefore all the possible future scenarios must be taken into account while
constructing the schedule.

3.3 Stochastic reservation

This problem, introduced in [5], is a particular application of the stochastic
multi-knapsack problem. A travel agency may aim at optimizing the reservation
of holiday centers during a specific week with various groups in the presence
of stochastic demands and cancellations. The requests are coming according a
given probability distribution and they are characterized by the size of the group
and the price the group is willing to pay. The requests cannot specify the holiday
center. However, the travel agency, if it accepts a request, must inform the group
of its destination and must commit to it. Groups can also cancel the requests
at no cost. Finally, the agency may overbook the centers, in which case the
additional load is accommodated in hotels at a fixed cost.

3.4 Job shop scheduling with probabilistic duration

This problem was originally proposed in [3]. The problem is a classic Job Shop
Scheduling (JSP) (see [23], p. 242) in which the objective is to find the minimum
makespan. In contrast to the classic formulation for the JSP presented in [23]
the authors assume, in this case, that the job durations are probabilistic. The
objective is therefore accordingly modified to account for uncertainty: the au-
thors search for a proactive plan, consisting of a partial order among activities
and of resource-activity allocations, which attains the lowest possible makespan
with probability greater or equal to a given threshold.

3.5 Two-stage stochastic matching problem

We consider the minimum cost maximum bipartite matching problem discussed
in [33]. The task is to buy edges of a bipartite graph which together contain
a maximum-cardinality matching in the graph. The problem is formulated as
a two-stage stochastic program with recourse, therefore edges can be bought
either during the first stage, or with a recourse action after uncertainty has
been resolved. There are two possible variants of this problem. In the first, the
uncertainty is in the second stage edge-costs, that is the cost of an edge can
either increase or decrease in the second stage. In the second variant all edges



become more expensive in the second stage, but the set of nodes that must be
matched is unknown. This problem can model real-life stochastic integral plan-
ning problems such as commodity trading, reservation systems and scheduling
under uncertainty.

3.6 Production/inventory management

Uncertainty plays a major role in production and inventory management. In this
simplified production/inventory planning example there are a single product, a
single stocking point, production capacity constraints, service level constraints
and a stochastic demand. The objective is to find a replenishment plan associated
with the minimum expected total cost. The cost components taken into account
are inventory holding costs and fixed replenishment (or setup) costs. The opti-
mal plan gives the timing of the replenishments as well as the order quantities,
which depend upon the previously realized demand. This production/inventory
management problem has been investigated in [71, 78]. In [69] the authors in-
vestigate the same problems under the assumption that the production capacity
constraints are relaxed.

3.7 Stochastic template design

The deterministic template design problem (prob002 in CSPLib2) is described
as follows. We are given a set of variations of a design, with a common shape and
size and such that the number of required pressings of each variation is known.
The problem is to design a set of templates, with a common capacity to which
each must be filled, by assigning one or more instances of a variation to each
template. A design should be chosen that minimises the total number of runs
of the templates required to satisfy the number of pressings required for each
variation. As an example, the variations might be for cartons for different flavours
of cat food, such as fish or chicken, where ten thousand fish cartons and twenty
thousand chicken cartons must be printed. The problem would then be to design
a set of templates by assigning a number of fish and/or chicken designs to each
template such that a minimal number of runs of the templates is required to print
all thirty thousand cartons. Proll and Smith [55] address this problem by fixing
the number of templates and minimising the total number of pressings. In the
stochastic version of the problem [52] the demand for each variation is uncertain.
In compliance with production/inventory theory, the authors incorporate two
conventional cost components: scrap cost, incurred for each template that is
produced in excess of the realized demand, and shortage cost, incurred for each
unit of demand not fulfilled. The objective is then to minimize the expected total
cost.

2 http://www.csplib.org



3.8 Scheduling internal audit activities

Based on costs and benefits that change over time, the focus of the internal audit
scheduling problem is how often to conduct an internal audit on an auditable
unit. Auditable units are the units upon which internal control procedures are
applied, in order to safeguard assets and assure the reliability of information
flows. The problem, originally introduced in [60], can be stated as follows. We
consider a planning horizon comprising of N time periods. We are given a set
of M audit units over which random losses may accrue over time. Losses in
each period are assumed to have a known probability mass function that could
easily be estimated from available historical data. The distribution of losses may
vary from period to period, i.e., it is non-stationary. Losses at different periods
are assumed to be independent. Auditing is a time-consuming task, and the
auditing team is given a strict deadline for performing an audit. Specifically,
an audit must be completed in T time periods. Therefore after T periods the
accrued losses drop to zero. If a team has already started auditing a unit at a
given time period, then no other audit can be initiated during this period for
the given audit team. The timing of audits are fixed once and for all at the
beginning of the planning horizon and cannot be changed thereafter, even if it
is suspected that certain auditable units have accrued unexpected losses. The
objective is to find the optimal audit schedule while respecting the maximum loss
criteria. That is, the invariant audit cost (i.e., fixed audit costs incurred each
time an audit is conducted) and expected total discounted audit losses (i.e.,
cumulative losses accrued at the end of each period) are minimized by satisfying
a minimum probability α that the losses will not exceed a predetermined level
(allowed maximum loss) in any given audit period for any auditable unit.

3.9 Stochastic sequencing with release times and deadlines

The problem, introduced in [57], consists in finding an optimal schedule to pro-
cess a set of orders using a set of parallel machines. The objective is to minimize
the expected total tardiness of the plan. Processing an order can only begin after
its release date and should be completed at the latest by a given due date for
such an order. An order can be processed on any of the machines. The process-
ing time of a given order, when processed on a certain machine, is a random
variable. A solution for this problem consists in an assignment for the jobs on
the machines and in a total order between jobs on the same machine. A job will
be processed on its release date if no other previous job is still processing, or as
soon as the previous job terminates.

4 Frameworks for decision making under uncertainty in
CP and AI

In Section 2 we introduced SP, a well established OR framework for decision
making under uncertainty. In this section, we introduce other existing frame-
works for decision making under uncertainty from, respectively, AI and CP.



Stochastic Boolean Satisfiability extends a well established AI modeling frame-
work, Propositional Satisfiability, by considering uncertainty. Probabilistic CSP,
Event-Driven Probabilistic Constraint Programming and Stochastic Constraint
Programming set the scene for dealing with uncertainty in CP. Where appropri-
ate, we describe connections and similarities among these different frameworks.

4.1 Stochastic Boolean Satisfiability

The Boolean Satisfiability (SAT) community have investigated problems involv-
ing uncertainty, with the Stochastic Satisfiability (SSAT) framework. SSAT aims
to combine features of logic and probability theory, and has been applied to prob-
abilistic planning, belief networks and trust management. We base our discussion
on a recent survey [43].

Definitions The SAT problem is to determine whether a Boolean expression
has a satisfying labelling (set of truth assignments). The problems are usually
expressed in conjunctive normal form: a conjunction of clauses c1∧. . .∧cm where
each clause c is a disjunction of literals l1 ∨ . . . ∨ ln and each literal l is either a
Boolean variable v or its negation v̄. A Boolean variable can be labelled true (T )
or false (F ). Many constraint problems can be SAT-encoded (modelled as a SAT
problem) and vice-versa. In fact any SAT problem can be viewed as a Constraint
Satisfaction Problem (CSP) with binary domains and non-binary constraints via
the non-binary encoding [77]: for example a clause a ∨ b ∨ c̄ corresponds to the
constraint (or conflict) preventing the assignments {a ← F, b ← F, c ← T}. The
SSAT terminology is somewhat different than that of SP but there are many
correspondences.

An SSAT problem Φ = Q1v1 . . . Qnvnφ is specified by:

– a prefix Φ = Q1v1 . . . Qnvn that orders the Boolean variables v1 . . . vn of the
problem and quantifies them. Each variable vi is quantified by its quantifier
Qi either as existential (∃) or randomised (

R

);
– a matrix φ: a Boolean formula containing the variables, usually in conjunc-

tive normal form (CNF).

An existential variable is a standard SAT variable (corresponding to a decision
variable in SP), while a randomised variable vi is a Boolean variable that is
true with associated probability πi (corresponding to a random variable in SP).
Sequences of similarly quantified variables may be grouped together into (ex-
istential or randomised) blocks, and an SP stage corresponds to an existential
block followed by a randomised block. The values of existential variables may be
contingent on the values of (existential or randomised) variables earlier in the
prefix, so an SSAT solution takes the form of an assignment tree (corresponding
to the solution tree in SP) specifying an assignment to each existential variable
for each possible instantiation of the randomised variables preceding it in the
prefix. An optimal assignment tree is one that yields the maximum probabil-
ity of satisfaction; alternatively, the decision version of SSAT asks whether the
probability of satisfaction exceeds a threshold θ.



SSAT is simpler than a Stochastic Program in three ways: the variable do-
mains are Boolean only (as in SAT), the constraints (clauses) are of a fixed
type (as in SAT), and no distinction is made between scenarios in which dif-
ferent clauses are violated. The latter means that SSAT is akin to a stochastic
program with a single chance-constraint.

Restrictions and generalizations Some special cases have been identified in
the literature: if all variables are randomised then we have a MAJSAT problem;
if the prefix has only an existential block followed by a randomised block then we
have an E-MAJSAT problem; and if each block contains a single variable then
we have an Alternating SSAT (ASSAT) problem. SSAT has also been extended
by the addition of universal quantifiers (∀) to give Extended SSAT (XSSAT).
A formula ∀vφ must be true for both v = T and v = F . XSSAT subsumes
Quantified Boolean Formulae (QBF), which is the archetypal PSPACE-complete
problem: QBF is XSSAT without randomised quantifiers.

4.2 Probabilistic Constraint Satisfaction Problems

The Probabilistic CSP framework, proposed in [19], is an extension of the CSP
framework [1] that deals with some decisions problems under uncertainty. This
extension relies on a differentiation between the agent-controllable decision vari-
ables and the uncontrollable parameters whose values depend on the occurrence
of uncertain events. The uncertainty on the values of the parameters is assumed
to be given under the form of a probability distribution.

Definitions A probabilistic CSP is a CSP equipped with a partition between
(controllable) decision variables and (uncontrollable) parameters, and a probabil-
ity distribution over the possible values of the parameters. More specifically, the
authors define a Probabilistic CSP as a 6-tuple P = 〈Λ,W,X,D, C, pr〉, where
Λ = {λ1, . . . , λp} is a set of parameters; W = W1 × · · · ×Wp, where Wi is the
domain of λi; X = {x1, . . . , xn} is a set of decision variables; D = D1× . . .×Dn,
where Di is the domain of xi; C is a set of constraints, each of them involving
at least one decision variable; and pr : W → [0, 1] is a probability distribution
over the parameter assignments. Constraints are defined as in classical CSP. A
complete assignment of the parameters (resp. of the decision variables) is called
a “world” (resp. a “decision”).

The authors consider successively two assumptions concerning the agents
awareness of the parameter values at the time the decision must imperatively be
made.

– “No more knowledge”: the agent will never learn anything new before the
deadline for making a decision; all it will ever know is already encoded by
the probability distribution.

– “Complete knowledge”: the actual parameters will be completely revealed
before the deadline is reached (possibly, just before), so that it it useful to



the agent to compute off-line a ready-to-use conditional decision, that the
agent will be able to instantiate on-line, as soon as it knows what the actual
parameters are.

For the first case, a solution is an unconditional decision that is most likely
to be feasible according to world probabilities. For the second case, a solution
provides a set of decisions with their conditions of applicability — i.e. under
which world(s) a given decision should be used — together with the likelihood
of occurrence of these conditions, which also follows from world probabilities.

4.3 Event-driven Probabilistic Constraint Programming

In Event-driven Probabilistic Constraint Programming (EDP-CP), which is an
extension of the Probabilistic CSP framework, some of the constraints can be
designated by the user as event constraints. The user’s objective is to maximize
his/her chances of realizing these “events”. In each world — as defined in the
Probabilistic CSP framework — events are subject to certain pre-requisite con-
straints and to certain conditions. If a pre-requisite is unsatisfied in a given world
then the event is also classed as unsatisfied in that world; and if a condition is
unsatisfied in a world then the event is classed as satisfied in that scenario. In-
tuitively, this means that in EDP-CP it is possible to express the fact that the
feasibility of certain event constraints may depend on the satisfaction of other
constraints (denoted as “pre-requisite constraints”) under certain “conditions”.
In order to model such situations, a new meta-constraint — the dependency
meta-constraint — is introduced.

Definitions An EDP-CP is a 9-tuple P = 〈X ,D,Λ,W, E , C,H, Ψ, Pr〉 where:

– X = {x1, . . . , xn} is a set of decision variables;
– D = D1 × . . .×Dn, where Di is the domain of Xi;
– Λ = {λ1, . . . , λl} is a set of uncertain parameters;
– W= W1 × . . .×Wl, where Wi the domain of λi;
– E = {e1, . . . , em} is a set of event constraints. Each ei may either be proba-

bilistic (involving a subset of X and a subset of Λ) or deterministic (involving
only a subset of X );

– C = {c1, . . . , co} is a set of dependency meta-constraints. For each depen-
dency meta-constraint ci : Dependency(e, p, f) we have e ∈E , where p may
be either a probabilistic or a deterministic pre-requisite constraint, and f is
a deterministic condition constraint;

– H= {h1, . . . , hp} is a set of hard constraints. Each hi may either be proba-
bilistic (involving a subset of X and a subset of Λ) or deterministic (involving
only a subset of X );

– Ψ is any expression involving the event realization measures on the event
constraints in E ;

– Pr : W → [0, 1] is a probability distribution over uncertain parameters.



An optimal solution to an EDP-CP P = 〈X ,D,Λ,W, E , C,H, Ψ, Pr〉 is any
assignment S to the decision variables such that:

1. the hard constraints are satisfied in each possible world; and
2. there exists no other assignment satisfying all the hard constraints with

a strictly better value for Ψ , according to the Dependency constraints
introduced in the model.

Relations to other Frameworks The Event-driven Probabilistic Constraint
Programming (EDP-CP) framework, proposed in [67], extends both the Proba-
bilistic CSP framework [19] and the Dependent-chance Programming framework
[38]. In contrast to probabilistic CSP, which treats all probabilistic constraints
uniformly, EDP-CP distinguishes between event, pre-requisite, condition, and
hard constraints. Furthermore, in Dependent-chance Programming a feasible
solution satisfies all event constraints, whilst in EDP-CP such a requirement
is relaxed. This gives the decision-maker more flexibility in modeling. Finally,
the notion of constraint dependency introduced in [67] comprises condition con-
straints, in addition to the event and pre-requisite constraints. As the authors
remark, constraint dependency without condition constraints does not guaran-
tee optimal plans since in certain instances common variables may take values
which break the link between two dependent constraints.

4.4 Stochastic Constraint Programming

Stochastic Constraint Programming (SCP) was first introduced in [78] in order
to model combinatorial decision problems involving uncertainty and probability.
According to Walsh, SCP combines together the best features of CP (i.e. global
constraints, search heuristics, filtering strategies, etc.), of SP (expressiveness in
representing problems involving random variables), and of Stochastic Satisfia-
bility.

Definitions An m-stage Stochastic Constraint Satisfaction Problem (SCSP) is
defined, according to [78], as a 7-tuple 〈V, S, D, P, C, θ, L〉3, where V is a set of
decision variables and S is a set of random variables, D is a function mapping
each element of V and each element of S to a domain of potential values. In what
follows we assume that both decision and random variable domains are finite.
P is a function mapping each element of S to a probability distribution for its
associated domain. C is a set of chance-constraints over a non-empty subset of
decision variables and a subset of random variables. θ is a function mapping each

3 The original formulation, proposed in [78], does not directly encode the stage struc-
ture in the tuple and actually defines a SCSP as a 6-tuple; consequently the stage
structure is given separately. We believe that a more adequate formulation is the one
proposed in [30], that explicitly encodes the stage structure as a part of the tuple,
giving a 7-tuple.



Objective:

max

{∑k
i=1 riXi − pE

[∑k
i=1 ωiXi − c

]+
}

〈V, S, D, P, C, θ, L〉:
V = {X1, . . . , Xk}
S = {ω1, . . . , ωk}
D = {X1, . . . , Xk ∈ {0, 1}, D(ω1), . . . , D(ωk)}
P = {PDF (ω1), . . . , PDF (ωk)}
C =

{
Pr

{∑k
i=1 ωiXi ≤ c

}
≥ θ

}

L = [〈{X1, . . . , Xk}, {ω1, . . . , ωk}〉]

Fig. 5. Stochastic Constraint Programming formulation for the single-stage SKP.

chance-constraint h ∈ C to θh which is a threshold value in the interval (0, 1], in-
dicating the minimum satisfaction probability for chance-constraint h. Note that
a chance-constraint with a threshold of 1 (or without any explicit threshold spec-
ified) is equivalent to a hard constraint. L = [〈V1, S1〉, . . . , 〈Vi, Si〉, . . . , 〈Vm, Sm〉]
is a list of decision stages such that each Vi ⊆ V , each Si ⊆ S, the Vi form a
partition of V , and the Si form a partition of S.

To solve an m-stage SCSP an assignment to the variables in V1 must be
found such that, given random values for S1, assignments can be found for V2

such that, given random values for S2, . . ., assignments can be found for Vm

so that, given random values for Sm, the hard constraints are satisfied and the
chance constraints are satisfied in the specified fraction of all possible scenarios.
The solution of an m-stage SCSP is represented by means of a policy tree. A
policy tree is a set of decisions where each path represents a different possible
scenario and the values assigned to decision variables in this scenario. The policy
tree, in fact, corresponds to the solution tree adopted in SP.

Let S denote the space of policy trees representing all the solutions of a SCSP.
We may be interested in finding a feasible solution, i.e. a policy tree s ∈ S, that
maximizes the value of a given objective function f(·) over a set Ŝ ⊆ S of random
variables (edges of the policy tree) and over a set V̂ ⊆ V of the decision variables
(nodes in the policy tree). A stochastic constraint optimization problem (SCOP)
is then defined in general as maxs∈S f(s).

Unlike SP, SCP offers a richer modeling language which supports chance-
constraints over global, nonlinear, and logical constraints in addition to linear
ones.

It is easy to reformulate the running example discussed in Section 2 (SKP) as
a single-stage SCOP, the respective model is given in Fig. 5. As in the SP model,
in the SCP model we have sets of decision and random variables with their
respective domains. For the random variables the respective probability mass
function is specified. There is a chance-constraint with an associated threshold
θ. In fact, the SCOP in Fig. 5 fully captures the structure of the stochastic
program in Fig. 1.



5 A Classification of Existing Approaches

In previous sections we stressed the fact that this survey is centered on “uncer-
tainty”, and we also clarified the precise meaning we associate with the term
uncertainty. Other literature surveys tend to merge uncertainty with other con-
cepts; in Section 9 we will briefly discuss related works in these different areas,
and the reader may refer to these surveys for more details. Furthermore, there
exist surveys that are more explicitly focused on pure AI [10] or OR [62] tech-
niques, but little attention has been dedicated so far to hybrid techniques.

In this section, we propose a classification for existing hybrid approaches
and frameworks that blend CP, AI and OR for decision making under uncer-
tainty. The integration of CP, AI and OR techniques for decision making under
uncertainty is a relatively young research area. We propose to classify existing
approaches in the literature within three main classes (Fig. 10).

Hybrid Approaches
in Decision Making
under Unceratinty

Reformulation-based Sample-basedSearch & filtering
based on
stochastic reasoning

Fig. 6. A classification of hybrid approaches in CP-AI-OR for decision making under
uncertainty.

– The first class comprises those approaches that perform some form of “stochas-
tic reasoning” by using dedicated — general or special purpose — search
procedures, filtering algorithms, neural networks, genetic algorithms etc.

– The second class, in contrast, includes approaches that exploit reformulation
— once again employing either a specialized analytical derivation for a given
problem, or general purpose techniques — in order to produce a deterministic
model that can be solved using existing solvers.

– Finally, the third class comprises incomplete approaches that exploit sam-
pling in order to attain a near-optimal solution for problems of optimiza-
tion under uncertainty. We believe that approaches based on sampling are
particularly attractive and deserve a dedicated class. In fact, a high level
of complexity is a typical trait of decision problems involving uncertainty,
therefore it seems that the only feasible way of tackling many of these prob-
lems consists in developing effective approximation strategies.

Before discussing further this classification, it is worth mentioning that we be-
lieve it would be impractical to list all existing applications of hybrid methods



from CP, AI, and OR in decision making under uncertainty. For this reason we
aim rather to classify the different strategies — and not the specific applica-
tions — adopted in the literature for solving this class of problems using hybrid
approaches. Nevertheless, for each strategy mentioned in this section, we will
report some of the respective applications.

In Section 6, we will discuss approaches performing “stochastic reasoning”;
in Section 7 we will discuss approaches that exploit reformulation; and finally in
Section 8 we will discuss incomplete approaches that exploit sampling.

6 Approaches based on stochastic reasoning

In this section we will analyze existing approaches that perform some sort of
“stochastic reasoning” by using dedicated — general or special purpose — tech-
niques. These techniques take several different forms: search procedures, filtering
algorithms, neural networks, genetic algorithms etc.

Firstly, we shall distinguish between general purpose and problem specific
strategies (Fig. 7).

Hybrid Approaches
in Decision Making
under Unceratinty

Reformulation-based Sample-basedSearch & filtering
based on
stochastic reasoning

General purpose strategies:
- Probabilistic CSP
- Stochastic CP
- Evolved Parameterised Policies
- Stochastic SAT

Problem specific strategies:
Complete
- Scheduling conditional task graphs
- Computing optimal R,S policy parameters under

service level constraints
- Computing optimal R,S policy parameters under

penalty cost scheme

Approximate
- Cost-based filtering for stochastic inventory control
- Evolutionary search for replenishment cycle policies
- Neuroevolutionary Inventory Control

Fig. 7. A classification of hybrid approaches in CP-AI-OR for decision making under
uncertainty: approaches based on stochastic reasoning.



General purpose strategies aim to develop frameworks that provide model-
ing and solving facilities to handle generic problems of decision making under
uncertainty. The modeling frameworks proposed in the literature typically ag-
gregate concepts from different domains, for instance global constraints from CP,
chance-constraints and random variables from SP (OR). These frameworks ex-
ploit well established AI strategies, such as forward checking procedures and
genetic algorithms, in the solution process.

Problem specific strategies typically develop specialized reasoning algorithms
that, during the search, are able to perform inference by exploiting the specific
structure of the problem. For instance a typical approach is to encapsulate the
reasoning within a dedicated global constraint that prunes decision variable do-
mains according to the underlying stochastic reasoning.

In addition, both general purpose and problem specific strategies may be
complete or heuristic. We shall now discuss in more detail these two different
classes of approaches based on stochastic reasoning, by providing pointers to
works in the literature.

6.1 General purpose strategies

We survey four different general purpose strategies for modeling and solving
different classes of problems of decision making under uncertainty. These are:
Probabilistic CSP, Stochastic CP, Evolving Parameterised Policies, and Stochas-
tic SAT.

Probabilistic CSP. One of the first general purpose frameworks for model-
ing uncertainty in CP is the Probabilistic CSP [19]. In the Probabilistic CSP
a distinction is made between controllable and uncontrollable variables which
correspond, respectively, to decision and random variables in SP. As in SP, a
probability density function is associated with each uncontrollable variable. The
authors discuss two different settings. Under the first of these settings, for each
of the possible realizations that may be observed for the uncontrollable variables,
the best decision is determined. This strategy corresponds to the wait-and-see
policy in SP ([32], pp. 8) and it presents a posterior analysis. The second setting
simply corresponds to a conventional single stage stochastic program where an
optimal decision has to be taken before observing the realized values for the un-
controllable variables. The optimal decision, in this second case, is the one that
guarantees the maximum likelihood to result feasible with respect to the given
probability density functions for the uncontrollable variables.

The authors propose two algorithms for solving Probabilistic CSPs. The first
algorithm, used for solving problems formulated under the first setting discussed,
borrows ideas from solution methods developed in for solving Dynamic CSPs [18]
and, in particular, reuses a procedure proposed in [21]. The second proposed
algorithm consists of a depth first branch and bound algorithm and of a forward
checking procedure. These are employed to solve problems formulated under the
second setting discussed.



Stochastic Constraint Programming. The Probabilistic CSP represents the
first attempt to include random variables, and thus uncertainty, within the CP
framework. Nevertheless, only in [78] is a clear link established between CP and
SP with the introduction of SCP. We have already discussed in detail SCP as
a modeling framework in Section 4.4. In [78] Walsh discusses the complexity of
Stochastic CSPs, and proposes a number of complete algorithms and of approx-
imation procedures for solving them. Namely, a backtracking algorithm and a
forward checking procedure are proposed, which resemble those proposed in [19]
for Probabilistic CSPs. Nevertheless, we want to underscore the fact that the key
difference between a Probabilistic CSP and a Stochastic CSP is the fact that the
former does not handle multiple decision stages.

In [2] Balafoutis et al. build on the SCP framework introduced in [78], they
correct a flaw in the original forward checking procedure for Stochastic CSPs and
they also extend this procedure in order to better take advantage of probabilities
and thus to achieve stronger pruning. In addition, arc-consistency is defined for
Stochastic CSPs and an arc-consistency algorithm able to handle constraint of
any arity is introduced. Tests are carried on random binary Stochastic CSPs
formulated as single and multi-stage problems.

In [13] Bordeaux and Samulowitz investigate two extensions to the original
SCP framework. Firstly, they investigate situations in which variables are not
ordered sequentially, corresponding to situations in which the future can follow
different branches; they show that minor modifications allow the framework to
deal with non-sequential forms. Secondly, they investigate how to extend the
framework in such a way as to incorporate multi-objective decision making. An
algorithm is proposed, which solves multi-objective stochastic constraint pro-
grams in polynomial space.

Global chance-constraints — which we discussed in Section 4.4 — were in-
troduced first in [58], and they bring together the reasoning power of global
constraints from CP and the expressive power of chance-constraints from SP. A
general purpose approach for filtering global chance-constraints is proposed in
[30]. This approach is able to reuse existing propagators available for the respec-
tive deterministic global constraint which corresponds to a given global chance-
constraint when all the random variables are replaced by constant parameters.
In addition, in [57] Rossi et al. discuss some possible strategies to perform cost-
based filtering for certain classes of Stochastic COPs. These strategies exploit
well-known inequalities borrowed from SP and used to compute valid bounds
for any given Stochastic COP that respects some mild assumptions. Examples
are given for a simplified version of the stochastic knapsack problem previously
discussed and for the stochastic sequencing problem discussed in Section 3.9.

Evolved Parameterised Policies. Inspired by the success of machine learning
methods for stochastic and adversarial problems, a recent approach to Stochastic
CSPs/COPs called Evolved Parameterised Policies (EPP) is described in [53].
Instead of representing a policy explicitly in a Stochastic Constraint Program,
an attempt is made to find a rule that decides, at each decision stage, which



domain value to assign to the decision variable(s) at that stage. The quality
of a rule can be determined by constructing the corresponding policy tree and
observing the satisfaction probability of each chance constraint (and the value
of the objective function if there is one). Evolutionary or other non-systematic
search algorithms can be used to explore the space of rules.

EPP treats a Stochastic CSP/COP problem as an unconstrained noisy opti-
misation problem with at worst the same number of (real-valued) variables. This
allows a drastic compression of the policy tree into a small set of numbers, and
this compression together with the use of evolutionary search makes EPP scal-
able to large multi-stage Stochastic CSPs/COPs. It has the drawback that only
policies of a relatively simple form can be discovered, but it results much more
robust than a scenario-based approach on a set of random multi-stage problems
[53]. Moreover, arbitrarily complex rules could be discovered by using artificial
neural networks instead of these simple functions, a neuroevolutionary approach
that has been successfully applied to many problems in control [24, 29, 64].

Stochastic SAT. Another general purpose framework for modeling and solving
a well established class of problems under uncertainty in AI — and especially
in planning under uncertainty — is Stochastic SAT. We introduced the model-
ing framework in Section 4.1. Current SSAT algorithms fall into three classes:
systematic, approximation, and non-systematic.

The systematic algorithms are based on the standard SAT backtracking algo-
rithm — the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [17, 16] —
and correspond roughly to some current SCSP algorithms. The first such algo-
rithms were described in [36], in particular the evalssat algorithm for XSSAT
which formed the basis for future systematic SSAT algorithms. evalssat did not
use branching heuristics as in current SAT and CSP solvers, though [36] also used
some restricted branching heuristics, but assigned variables in the order speci-
fied by the prefix. However, it did use SAT-based techniques (unit propagation
and pure variable elimination) and reasoning on the probability threshold θ to
prune the search tree. The policy-based SCSP algorithm of [78] is essentially
evalssat with forward checking. Systematic algorithms have also been devised
for special cases of XSSAT. MAXPLAN [45], ZANDER [46] and DC-SSAT [44]
all use special techniques for planning problems modelled as XSSAT problems.

The sampleevalssat approximation algorithm uses random sampling to se-
lect paths, then uses SAT techniques to search the restricted tree to maximise θ.
The APPSSAT algorithm [42] considers scenarios in decreasing order of probabil-
ity to construct a partial tree for the special case of planning problems modelled
as SSAT problems.

The randevalssat algorithm [36] is based on the sampleevalssat algo-
rithm mentioned above, but applies stochastic local search to the existential
variables in a random set of scenarios, thus it is non-systematic. Other ways
of applying local search were described in [41], including periodically restart-
ing randevalssat with different sampled scenarios, an approach used by the
WALKSSAT algorithm [79].



6.2 Problem specific strategies

In the previous section we discussed general purpose solution methods that bring
together CP, AI and OR techniques for decision making under uncertainty. We
will now discuss some special purpose approaches proposed in the literature that
perform stochastic reasoning on specific problems.

Scheduling conditional task graphs. The work of [40] describes a complete,
special purpose approach that concerns the problem — discussed in Section 3.2
— of scheduling conditional task graphs. Similarly to the approach in [56], the
authors propose an analytical formulation of the stochastic objective function,
in this case based on the task graph analysis, and a conditional constraint able
to handle such a formulation efficiently. The authors show the benefit of such
an approach by comparing the results with a deterministic model, which dis-
regards uncertainty, and with a scenario-based formulation [71] that requires
an exponential number of scenarios to fully represent the stochastic objective
function.

Computing optimal R,S policy parameters under service level con-
straints. Another special purpose strategy is presented in [58], and proposes a
dedicated global chance-constraint for computing replenishment cycle inventory
policy parameters under service level constraints. More specifically, the problem
considered in this work is the production/inventory problem described in Section
3.6. Computing optimal replenishment cycle policy parameters for such a prob-
lem is a complex task [69]. By using a dedicated global chance-constraint the
authors were able to perform the complex stochastic reasoning required to com-
pute optimal replenishment cycle policy parameters. Such a complete algorithm
performs a numerical integration step in order to compute the real service level
provided in each period by a given set of policy parameters and the associated
expected total cost.

Computing optimal R,S policy parameters under penalty cost scheme.
Similarly, a dedicated global constraint has been proposed in [56] in order to
solve to optimality the problem of computing optimal replenishment cycle policy
parameters under a penalty cost scheme. Such a problem has been investigated
in [70], but in this work the authors could only solve the problem in a heuristic
way, by employing a piecewise linear approximation of the convex cost function
in the problem in order to build up a deterministic equivalent MIP model. In [56]
the authors were able to embed a closed-form non-linear analytical expression for
such a convex cost function within a global constraint, thus obtaining a complete
model able to compute optimal replenishment cycle policy parameters.

Cost-based filtering for stochastic inventory control. The work in [68]
has a different flavor. In this case, the underling model is the deterministic equiv-
alent CP formulation proposed in [73] for computing near-optimal replenishment



cycle policy parameters under service level constraints. The CP formulation was
originally proposed as a reformulation of the MIP model in [69]. Such a refor-
mulation showed significant benefits in terms of efficiency. The authors, in [68],
propose three independent cost-based filtering strategies that perform stochastic
reasoning and that are able to significantly speed up the search when applied to
the original CP model in [73].

Evolutionary search for replenishment cycle policies. A recent applica-
tion of a genetic algorithm to a multi-stage optimisation problem in inventory
control is described in [51]. Each chromosome represents a replenishment cycle
policy plan as a list of order-up-to levels, with a level of 0 representing no order,
and the fitness of a chromosome is averaged over a large number of scenarios.
This approach is enhanced in [50] by hybridising the genetic algorithm with the
SARSA temporal difference learning algorithm [61]. This is shown to greatly
improve the performance of genetic search for replenishment cycle policies, both
with and without order capacity constraints.

Neuroevolutionary Inventory Control. One may evolve an artificial neural
network to optimally control an agent in an uncertain environment. The network
inputs represent the environment and its outputs the actions to be taken. This
combination of evolutionary search and neural networks is called neuroevolution.
A recent paper [54] applies neuroevolution to find optimal or near-optimal plans
in inventory control, following no special policy. The problems are multi-stage
and involve multi-echelon systems (they have more than one stocking point).
Such problems have no known optimal policy and rapidly become too large for
exact solution. The inputs to the network are the current stock levels and the
outputs are the order quantities.

7 Reformulation-based approaches

In this section, we will analyze existing approaches that are based on a refor-
mulation that produces a deterministic model, which can be solved using an
existing solver.

Once more, we shall distinguish between general purpose and problem specific
strategies (Fig. 8).

Hybrid general purpose reformulation strategies have recently appeared es-
pecially at the borderline between CP and OR. These typically take the form of
a high level language — such as Stochastic OPL — used to formulate the prob-
lem under uncertainty, and of a general purpose compiler that can handle the
high level stochastic model and produce a compiled deterministic equivalent one.
Often, the compilation relies on a well known technique in SP: scenario-based
modeling. In addition, due to the complexity of stochastic programs in general,
approximation strategies are often proposed in concert with these general pur-
pose frameworks in order to make the size of the compiled model manageable.
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- Event-Driven Probabilistic CP
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Complete
- Stochastic queueing control problem
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- Local search for stochastic template design

Fig. 8. A classification of hybrid approaches in CP-AI-OR for decision making under
uncertainty: approaches based on a deterministic reformulation.

In contrast, problem specific strategies aim to fully exploit the structure of
the problem in order to produce a deterministic — and possibly equivalent —
model that can be handled efficiently by existing solver. In many cases, in order
to obtain a model that is manageable by existing solvers, it is necessary to intro-
duce some assumptions that affect the completeness and, thus, the quality of the
solution found the the deterministic model. We will provide examples of appli-
cations in which a special purpose deterministic equivalent model is built, which
is equivalent to the original model and also examples in which the deterministic
model can only approximate the original stochastic model.

7.1 General purpose strategies

We survey two different general purpose strategies based on reformulation for
modeling and solving classes of problems of decision making under uncertainty.
These are Scenario-based Stochastic CP and Event-Driven Probabilistic Con-
straint Programming.

Scenario-based Stochastic Constraint Programming. The first general
purpose framework based on reformulation that we present is Scenario-based
Stochastic Constraint Programming, which was proposed by Tarim et al. in [71].
The novelty in this work is the fact that the authors adopt a semantics for
stochastic constraint programs based on scenario trees. By using this semantics



the authors can compile stochastic constraint programs into conventional (non-
stochastic) constraint programs and they can therefore use existing constraint
solvers to effectively solve this class of problems.

In a scenario based approach — frequently used in SP [11] — a scenario
tree is generated which incorporates all possible realizations of discrete random
variables into the model explicitly. A path from the root to an extremity of
the event tree represents a scenario. With each scenario a given probability is
associated. Within each scenario we have a conventional (non-stochastic) con-
straint program to solve. All we need to do is replace the random variables by
the values taken in the scenario, and ensure that the values found for the de-
cision variables are consistent across scenarios, as certain decision variables are
shared across scenarios. Constraints are defined (as in traditional constraint sat-
isfaction) by relations of allowed tuples of values, and can be implemented with
specialized and efficient algorithms for consistency checking. Furthermore, the
scenario-based view of stochastic constraint programs also allows later-stage ran-
dom variables to take values which are conditioned by the earlier-stage random
variables. This is a direct consequence of employing the scenario representation,
in which random variables are replaced with their scenario dependent values.

Scenario-based SCP has been outlined in Section 4.4. Tarim et al. [71] not
only defined a general way to compile stochastic constraint programs into con-
ventional constraint programs, but they also proposed a language, Stochastic
OPL, which is based on the OPL constraint modeling language [28]. Using this
language the authors modeled optimization problems under uncertainty from a
variety of fields, such as portfolio selection, agricultural planning, and produc-
tion/inventory management (Section 3.6). We will not discuss the language in
detail, but in the Appendix we show how to model the single and multi-stage
SKP problems of Section 2 by using the Stochastic OPL.

Among the benefits of the scenario based approach in [71] is the fact that it
allows multiple chance-constraints and a range of different objectives to be mod-
eled. The authors point out that each of these changes would require substantial
modifications in the backtracking and forward checking algorithms proposed in
[78]. The scenario based view allows each of these extensions to be modeled
easily using stochastic OPL, compiled down into standard OPL, and solved by
means of existing solvers. It should be noted that the approach is general and
the compilation need not necessarily be performed using OPL, but it can be im-
plemented using any available CP language and/or software package. The main
drawback of this approach is the fact that the scenario tree required to model
a given problem grows exponentially in size when random variable domains are
large, thus leading to large models that are difficult to solve.

In addition to this general purpose modeling/solving framework the authors
also proposed some techniques to improve the efficiency of the solution process.
In order to do so, they proposed scenario reduction techniques, such as Monte
Carlo Sampling or Latin Hypercube Sampling [65], to reduce the number of sce-
narios considered in the model. Their experimental results show the effectiveness
of this approach, which in practice is able to find high quality solutions using a



small number of scenarios. Finally, inspired by robust optimization techniques
used in OR [35], the authors also proposed some techniques to generate robust
solutions, that is solutions that adopt similar (or the same) decisions under dif-
ferent scenarios.

Event-Driven Probabilistic Constraint Programming. We now briefly
discuss a second general purpose framework based on reformulation: Event-
Driven Probabilistic Constraint Programming [67]. This framework was intro-
duced to address different problems than those for which SCP is a suitable mod-
eling tool. Event-Driven Probabilistic Constraint Programming, as the name
suggest, is connected to Probabilistic CSPs and, mainly, to Dependent-chance
Programming [37, 38].

Sometimes a complex probabilistic decision system undertakes multiple tasks,
called events here, and the decision-maker wishes to maximize chance functions
which are defined as the probabilities of satisfying these events. This is espe-
cially useful in situations where a particular measure of the “reliability” or
“robustness” of a given plan has to be maximized. The Event-Driven Prob-
abilistic Constraint Programming modeling framework allows users to desig-
nate certain probabilistic constraints, involving both decision and random vari-
ables, as events whose chance of satisfaction must be maximized, subject to
hard constraints which should be always satisfied, and also logical dependencies
among constraints. Event-Driven Probabilistic Constraint Programming builds
on Dependent-chance Programming and provides more expressiveness to the
user, in order to capture a more realistic and accurate measure of plan relia-
bility [59]. It also provides an exact solution method, employing scenario-based
reformulation, in contrast to the approximate genetic algorithm in [38].

7.2 Problem specific strategies

We now discuss some problem specific strategies based on deterministic equiva-
lent reformulations.

Stochastic queueing control problem. In [75, 74] the authors propose a
set of deterministic equivalent CP models for solving the stochastic queueing
control problem discussed in Section 3.1. [75] not only provides the first ap-
plication of CP to solving a stochastic queueing control problem, but it also
provides a complete approach for a problem for which only a heuristic algorithm
[8] existed. Three deterministic equivalent constraint programming models and
a shaving procedure are proposed. The complete models provide satisfactory
performances when compared with the heuristic procedure, which nevertheless
remains superior in terms of solution quality over time. A hybrid method is
therefore proposed, which combines the heuristic in [8] with the best constraint
programming method. Such a hybrid approach performs better than either of
these approaches separately.



The interesting aspect of this work is that, as in [60], all the stochastic in-
formation is encoded as constraints and expected values, and there is no need of
random variables or scenarios. The three models proposed explore different sets
of variables and different configurations for the constraint set, for instance using
duality. Nevertheless, all the three models use predefined constraints available
in standard CP solvers.

A stochastic allocation and scheduling problem. The problem, discussed
in [39], is the scheduling problem described in Section 3.2 applied to multipro-
cessor systems on chip: given a conditional task graph characterizing a target
application and a target architecture, with alternative memory and computa-
tion resources, the authors compute an allocation and schedule that minimize
the expected value of communication costs, since — as they point out — com-
munication resources are one of the major bottlenecks in modern multiprocessor
systems on chips. The approach they propose is complete and efficient. As in the
previous cases, it is based on a deterministic equivalent reformulation of the orig-
inal stochastic integer linear programming model. More specifically, the authors
employ logic based Benders decomposition. The stochastic allocation problem
is solved through an Integer Programming solver, while the scheduling problem
with conditional activities is handled with CP. The two solvers interact through
no-goods. Once more, one of the main contributions is the derivation of an ana-
lytical deterministic expression employed in order to compute the expected value
of communication costs in the objective function. This expression makes it pos-
sible for the authors to transform the original stochastic allocation problem into
a deterministic equivalent one that can be solved using any available Integer
Programming solver.

Scheduling internal audit units. In [60] the authors analyze the problem of
scheduling internal audit units discussed in Section 3.8. A stochastic program-
ming formulation is proposed with Mixed Integer Linear Programming and CP
certainty-equivalent models. Both the models transform analytically the chance-
constraints in the model into deterministic equivalent ones. In experiments nei-
ther approach dominates the other. However, the CP approach is orders of mag-
nitude faster for large audit times, and almost as fast as the MILP approach for
small audit times.

Finally, we discuss works in which the deterministic model obtained through
reformulation for a given stochastic program is not “equivalent”; rather, it is
based on some simplifying assumption that makes it possible to obtain a com-
pact deterministic formulation able to provide a near-optimal solution and an
approximate value for the cost of such a solution, or a bound for such a cost.

Job shop scheduling with probabilistic durations. In [3] an approximate
deterministic reformulation is employed to compute valid bounds to perform



cost-based filtering. In this work the authors analyze the Job Shop Scheduling
problem discussed in Section 3.4, in which the objective is to find the mini-
mum makespan. In contrast to the classic formulation presented in [23], in [3]
the authors assume that the job durations are probabilistic. The objective is
therefore accordingly modified to account for uncertainty. More specifically, the
authors search for a proactive plan, consisting of a partial order among activities
and of resource-activity allocations, which attains the lowest possible makespan
with probability greater or equal to a given threshold. For this problem the
authors propose a deterministic formulation, which depends on a given non-
negative parameter q. A correct choice of such a parameter guarantees that the
minimum makespan for the deterministic model is a lower bound for the mini-
mum makespan that can be attained with a certain threshold probability in the
original model. This deterministic model can be efficiently solved with classic
constraint programming techniques and can provide tight bounds at each node
of the search tree that are employed to perform cost-based filtering. A number
of heuristic techniques are proposed for correctly choosing a “good” value for
the parameter q.

Production/inventory control problem. Consider the production/inventory
problem discussed in Section 3.6. The deterministic reformulation proposed in
Tarim et al. [73] relies on some mild assumptions — discussed in [69] — concern-
ing order-quantities. Under these assumptions, it was possible for the authors
to obtain analytical deterministic expressions for enforcing the required service
level in each period of the planning horizon, and to compute the expected total
cost associated with a given set of policy parameters. By using these expressions,
it was possible for the authors to formulate a deterministic model by employing
standard constraints available in any CP solver. In [58], the authors compare the
solutions obtained through a complete formulation with those obtained with the
model in [73]. This comparison shows that the assumptions do not significantly
compromise optimality, whereas they allow the construction of a model that
can significantly outperform the complete one, and solve real-world instances
comprising long planning horizons and high demand values.

Local search for stochastic template design. In [52] the stochastic template
design problem discussed in Section 3.7 is reformulated as a deterministic equiv-
alent constrained optimisation problem, using all possible scenarios and a novel
modeling technique to eliminate non-linear constraints. The result is a standard
integer linear program that proved to be hard to solve by branch-and-bound.
However, a local search algorithm design for linear integer programs performed
very well, and was more scalable than the Bender’s decomposition algorithm in
[72].



8 Approaches based on sampling

In this section we will discuss sample-based approximation strategies for solving
problems of decision making under uncertainty. Due to the complexity of these
problems in general, several works in the literature have been devoted to ana-
lyzing the effectiveness of heuristic approaches based on sampling. In Fig. 9 it is
possible to observe how three main trends have been identified in the CP and AI
literature, which apply sampling in a hybrid setting for solving problems of de-
cision making under uncertainty: the Sample Average Approximation approach
(SAA), Forward Sampling and Sample Aggregation.

Hybrid Approaches
in Decision Making
under Unceratinty

Reformulation-based Sample-basedSearch & filtering
based on
stochastic reasoning

Forward sampling
- Multi-choice stochastic

knapsack with deadlines
- Job shop scheduling with
probabilistic durations

Sample aggregation:
Consensus
- Multi-choice stochastic
knapsack with deadlines

Regret
- Multi-choice stochastic
knapsack with deadlines

SAA
- Two-stage stochastic matching

Fig. 9. A classification of hybrid approaches in CP-AI-OR for decision making under
uncertainty: approaches based on sampling.

text under figure

– In OR, and particularly in SP, the state-of-the-art technique that applies
sampling in combinatorial optimization is the Sample Average Approxima-
tion approach [34]. In this approach a given number of samples is drawn
from the random variable distributions, and the combinatorial problem of
interest is repeatedly solved by considering different samples as input in each
run. The real expected cost/profit of a solution produced for a given sample
is then computed by simulating a sufficient number of samples. Among all
the solutions computed, the one that provides the minimum expected cost



(or the maximum expected profit) is retained. Two criteria are given by the
authors: one for deciding when a given sample size is no more likely to pro-
duce better solutions, and one to decide if it increasing the sample size may
lead to better solutions.

– Forward sampling, as the name suggests, is a sort of forward checking that
employs samples in order to make inference about which values are not
consistent in decision variable domains or about the expected cost/profit of
associated with a given (partial) assignment for decision variables, which
is assessed against the generated samples by computing, for instance, the
expected profit/cost of such an assignment with respect to these samples.

– Sample aggregation is a strategy in which a number of samples is generated,
for each of these samples a deterministic problem is solved, then the results
obtained for all these samples are aggregated and analyzed according to
some rule. The “best” among these decisions is implemented in practice. For
instance, a possible rule may always choose the decision that is optimal for
the highest number of samples.

In the CP and AI literature, sampling is often applied in concert with a so
called “online” optimization strategy. Online refers to the fact that decisions and
observations are interleaved in the problem, and each time an observation occurs
an optimization step takes place to compute the next decision, by taking into
account the probability density function of future random variables and the ob-
served values for the past ones. It is easy to notice that a multi-stage stochastic
program subsumes an online strategy if the decision maker has a complete knowl-
edge of the probability density function of the random variables in the problem.
In this case we may compute the entire solution tree at the beginning, and use
it in order to find the best following decision each time a random variable is
observed. Nevertheless, several reasons justify the use of an online strategy (also
called a “rolling horizon” approach in the OR literature and especially in In-
ventory Control). The most compelling reason for using an online approach is
that it does not require the decision maker to have a complete knowledge of the
probability density functions of the random variables. Consider, for instance, the
Stochastic Knapsack Problem introduced in the previous sections. If the problem
is formulated as a multi-stage stochastic program and we have a full knowledge
about the possible weights that can be observed for all the objects, the policy
tree will prescribe exactly what to do in each possible future course of action.
Nevertheless, if at some stage one of the objects takes a weight that is not part
of the probability density function we considered for such an object, the policy
tree will not be able to prescribe an appropriate action. In contrast, an online
approach would simply take into consideration this weight in the following opti-
mization step and it would however provide a valid decision to be implemented
next.

Stochastic problems solved using online strategies, and to which either for-
ward sampling or sample aggregation strategies are applied, appear in a number
of works within the CP and AI literatures. In what follow we shall classify some
of these works on the basis of which sampling technique is applied.



8.1 Sample Average Approximation

In this section we provide a pointer to a work that proposes to apply SAA
to a modified version of a classic matching problem: the two-stage stochastic
matching problem.

Two-stage stochastic matching problem. In [33] Katriel et al. consider the
two-stage stochastic matching problem discussed in Section 3.5. The authors
prove lower bounds and analyze efficient strategies. We do not provide here a
general survey for this work, as the reader may refer to the cited article for more
details. Instead, we focus on one of the authors’ contributions in which they
firstly observe that, in this problem, with independently activated vertices the
number of scenarios is extremely large. However, in such a situation there is often
a black box sampling procedure that provides, in polynomial time, an unbiased
sample of scenarios; then they observe that one can use the SAA method to
simulate the explicit scenarios case and, under some mild assumptions, obtain
a tight approximation guarantee. The main observation is that the value of the
solution defined by taking a polynomial number of samples of scenarios tightly
approximates the value of the solution defined by taking all possible scenarios.

8.2 Forward Sampling

In this section we survey two relevant works in which forward sampling is applied:
the multi-choice stochastic knapsack with deadlines and the job shop scheduling
with probabilistic durations.

Multi-Choice Stochastic Knapsack with Deadlines. In [5] the authors
analyze different techniques for performing online stochastic optimization. A
benchmark problem is proposed in order to assess all these different techniques.
The benchmark stemmed from the authors’ industrial experience and it consist of
a Multi-Choice Stochastic Knapsack with Deadlines. This problem corresponds,
in practice, to the stochastic reservation problem discussed in Section 3.3 and
it is used to test four different online strategies exploiting combinations of the
stochastic and combinatorial aspects of the problem. These strategies are, re-
spectively, forward sampling, average values, most likely scenario analysis and
yield management techniques.

Initially, the authors propose two naive order handling policies: a first-come/first-
serve policy and a best-fit policy. Furthermore, in order to assess the quality of
a given policy, the authors also discuss “far seeing” strategies, which assume ad-
vanced knowledge of the realized demand and can therefore solve the associated
deterministic multi-choice knapsack problem.4

One of the strategies used in this work to estimate the quality of a given policy
— for instance first-come/first-serve or best-fit — employs forward sampling in
4 We recall that in SP this corresponds to using a wait-and-see policy and performing

a posterior analysis.



order to generate samples from the current date to the end of the planning
horizon. The evaluation of a sample can be done, for instance, by simulating
the behavior of a best-fit strategy for the specific sample. The policy evaluation
then will be a measure (for instance the average) over the evaluations of many
generated samples.

Job Shop Scheduling with probabilistic durations. Forward sampling is
also employed in [3]. We recall that in this work the authors analyze the Job
Shop Scheduling problem discussed in Section 3.4, in which the authors assume
that the job durations are probabilistic. A number of algorithms are proposed
for solving this problem through sampling. Firstly, a branch-and-bound proce-
dure is introduced, which exploits at each node of the search tree a Monte Carlo
simulation approach to compute — with respect to the partial assignment as-
sociated with such a node — a valid lower bound for the minimum possible
makespan that may be attained with a probability greater or equal to the given
threshold. Since sampling is employed for computing the bound, confidence in-
terval analysis is employed to estimate if the attainment probability associated
with the given makespan is a sufficiently reliable estimate. Secondly, the authors
propose a number of heuristic techniques that aim to limit the amount of time
spent on Monte Carlo simulation during the search, by using the deterministic
makespan as an oracle for selecting and simulating only the most promising plans
in order to save CPU time and to dedicate more time to the exploration of the
search space rather than on simulating non-promising plans. Finally, dedicated
tabu search strategies are proposed in order to propose a valid alternative to the
constructive search techniques above, which are mainly based on tree-search.

8.3 Sample Aggregation

In this section, we discuss works in which two alternative sample aggregation
strategies are employed: the “Consensus” strategy and the “Regret” strategy.
The problem to which these strategies are applied is, once more, the multi-choice
stochastic knapsack with deadlines.

Multi-Choice Stochastic Knapsack with Deadlines. In [27] the authors
consider the same Online Multi-Choice Knapsack with Deadlines problem con-
sidered in [5]. In order to solve this problem the authors employ the following
online algorithm. The algorithm receives a sequence of online requests and starts
with an empty allocation. At each decision point the algorithm considers the cur-
rent allocation and the current request, and chooses a bin in which to allocate
the request, which is then included in the current assignment. Eventually, the
algorithm returns the final allocation and the respective value. In order to de-
cide in which bin to allocate a given request, the algorithm employs a function
“chooseAllocation” which is based on two black boxes: a function “getSample”
that returns a sample of the arrival distribution; and a function “optSol” that,
given the current assignment and a request, returns an optimal allocation of the



request by taking into account the past decisions. The authors then consider
four possible options for implementing “chooseAllocation”:

– The best-fit strategy discussed in [5].
– A strategy called “Expectation” — in practice performing a forward sam-

pling —- that generates future requests by sampling and that evaluates each
possible allocation for a given request (i.e. in which bin to fit such a request)
against the samples.

– A strategy called “Consensus”, which was introduced in [47], and whose key
idea is to solve each sample only once. More specifically, instead of evaluating
each possible bin at a given time point with respect to each sample, “con-
sensus” executes the optimization algorithm only once per sample. The bin
to which the request is eventually allocated by this optimization step is then
credited with the respective profit, while the other bins receive no credit.
The algorithm eventually returns the bin with which the highest profit is
associated.

– A strategy called “Regret” [6, 7] based on a sub-optimality approximation,
which is a fast estimation of the loss caused by sub-optimal allocations. The
key steps in the process of choosing a bin resemble the “consensus” algorithm.
But in “regret”, instead of assigning some credit only to the bin selected by
the optimal solution, the sub-optimality approximation is used to compute,
for each possible request allocation, an approximation of the best solution
that makes such a choice. Therefore every available bin is given an evaluation
for every sample at a given time, at the cost of a single optimization.

Consensus and regret are two examples of what we previously defined as “sample
aggregation” strategies.

9 Related works

In this section we will first briefly discuss Stochastic Dynamic Programming, a
related and well established technique in OR that deals with decision making
under uncertainty. We will also clarify why this technique has not been covered
in the former sections. Secondly, we will cast our work within a broader picture,
and contrast our survey with existing similar works that address the topics of
uncertainty and change.

9.1 Stochastic Dynamic Programming

An alternative and effective technique for modeling problems of decision making
under uncertainty is Dynamic Programming. In [4] Bellman explicitly states that
Dynamic Programming was initially conceived for modeling multi-stage decision
processes. He also argues that these processes arise in practice in a multitude
of diverse field and in many real life problems, for instance in stock control,
scheduling of patients through a medical clinic, servicing of aircraft at an airfield,
etc. Dynamic Programming has been applied to a multitude of deterministic



multi-stage decision problems, but in [4] Bellman also discussed its application
to stochastic multi-stage decision processes. As in the deterministic case, in the
stochastic case the modeling also relies mainly on the development of adequate
functional equations capturing the dynamics of the system, and the expected
cost (or profit) function associated with the possible decisions and affected by the
random variables in the problem. The multi-stage decision process, in Dynamic
Programming, is typically defined recursively, starting from a bounding condition
that describes a degenerate state of the system that can be easily characterized.
Depending on the specific nature of the process being analyzed (Markovian,
Semi-Markovian, etc. — see [25], Chapter 8) it is possible to exploit its structure
to devise efficient solution methods or closed form solutions for the optimal
control policy, which corresponds to the policy tree that constitutes a solution
of a given Stochastic Program.

In this work we mainly focused on the connections between and integration
of SP, CP and AI. So far Dynamic Programming has not played a role as sig-
nificant as SP in the development of hybrids approaches for decision making
under uncertainty. For this reason, Stochastic Dynamic Programming and its
extension to infinite horizon case Markov Decision Processes are not thoroughly
covered here. For more details on Stochastic Dynamic Programming the reader
may refer to the seminal work of Bellman [4], and to the works of Bertsekas [9],
Warren [49], Sutton and Barto [66] and Gosavi [25].

9.2 Related Modeling Frameworks

Recently, the topic of decision making under uncertain and dynamic environ-
ment has been discussed in two literature surveys [76, 14]. Nevertheless, these
two works discuss a variety of different problems that can hardly be classified
within a unique group. For instance, consider a problem whose structure changes
dynamically over time. As an example we may refer to the Dynamic Constraint
Network discussed in [18], in which, from time to time, new facts that become
known about the model induce a change in the constraint network. We find that
such a problem has almost nothing in common with a problem where some pa-
rameters are random — thus may assume a certain value with a given probability
— and a decision has to be taken proactively, before the realized values for these
parameters are known. As an example for this second class, we may consider
the proactive Job Shop Scheduling problem discussed in [3], in which an optimal
plan — that achieves a minimum makespan with a certain probability — has to
be determined before the actual job durations are known. Also consider, as in
[22], a constraint satisfaction problem in which we allow some of the constraints
to be violated by a solution, and in which we search for a solution that tries to
satisfy the original constraint problem as much as possible; or, alternatively, con-
sider a constraint satisfaction problem, as in [26], in which some of the values in
the decision variable domains may suddenly become unavailable after a solution
has been computed and for which we are looking for robust solutions that can
be “repaired” with little effort. These two latter examples, again, significantly
differ from the previous ones and among each others.



A clear and comprehensive classification of all these different problems and
frameworks is still missing. For this reason, in this section we propose a classi-
fication in three distinct classes and we try to position in each of these classes
some of the frameworks proposed in the literature.

In our classification (Fig. 10) there are three criteria based on which a par-
ticular framework is classified: Degree of Change, Degree of Satisfiability and
Degree of Uncertainty.

deterministic stochastic

dynamic

static

Degree of
Uncertainty

Degree of
Change

Degree of
Satisfiability

crisp

soft

Fig. 10. A classification for existing frameworks based on problem structure.

– With respect to the Degree of Change, “static” refers to a classic, static
CSP, while “dynamic” refers to the fact that the model is assumed to change
dynamically, since constraints are added/removed. The solution has to be
flexible enough to be adapted to these changes without too many modifica-
tions and with limited computational effort. Existing frameworks that, with
respect to the Degree of Change, are classified as “dynamic” are: Dynamic
Constraint Satisfaction (Dechter [18]); Conditional CSP (Minton et al. [48]);
and Super-solutions in CP (Hebrard et al. [26]).

– With respect to the Degree of Satisfiability “crisp” refers to a classic CSP
in which all the constraints have to be satisfied by a given solution, while
“soft” refers to the fact that some of the constraints in the model may be
violated by a solution. The aim is to find a solution that typically violates
the minimum number of constraints or that, in general, minimizes some
violation measure. Existing frameworks that, with respect to the Degree
of Satisfiability, are classified as “soft” are: Partial Constraint Satisfaction
(Freuder [20]); Constraint solving over semi-rings (Bistarelli et al. [12]); and
Valued Constraint Satisfaction (Schiex et al. [63]).



– With respect to the Degree of Uncertainty, “deterministic” refers to clas-
sic CSPs, while “stochastic” refers to the existence of uncontrollable (ran-
dom) variables in the model for which a probability distribution is given.
Stochastic problems present an alternation of decisions and observations.
Constraints are assigned a satisfaction threshold that must be met by any
given solution.

Some of the frameworks presented in the literature do, in fact, cover more than
one of the classes presented, and for this reason the circles are intersecting each
others. Clearly, this classification does not cover several other frameworks that
in the years have been proposed to deal with other problem classes.

We have introduced pointers to relevant frameworks that can be either clas-
sified under Degree of Change (“dynamic”) or Degree of Satisfiability (“soft”).
Problems that are classified as “stochastic” with respect to their Degree of Un-
certainty have been widely surveyed in the former part of this work. We argue
that such a classification better positions existing works with respect to aspects
that are, in fact, orthogonal among each others.

10 Conclusions

In this survey we focused on hybrid CP-AI-OR methods for decision making un-
der uncertainty. Firstly, we explicitly defined what “uncertainty” is and how it is
possible to model it by using SP, a well established existing modeling framework
in OR. We surveyed additional existing frameworks — one from AI and one
from CP — for modeling problems of decision making under uncertainty and we
also identified the relevant connections among these frameworks. Secondly, we
introduced a list of problems from the literature in which uncertainty plays a
role and we categorized existing hybrid techniques that have been proposed for
tackling these problems into three classes. In the first class we identified general
and special purpose approaches that perform “stochastic reasoning”. In the sec-
ond class we listed approaches, once more general and special purpose, that use
reformulation. In the third class we categorized approximate techniques based on
a variety of strategies employing sampling. Finally, we pointed out connections
with other related works.

11 Appendix

In [71] Stochastic OPL, a language for modeling stochastic constraint programs,
is proposed. We will now show how the single and multi-stage SKP problems
introduced in Section 2 can be easily modeled using such a language.

In Fig. 11 the Stochastic OPL model for the single stage SKP is presented. As
in the model presented in Fig. 1, the objective function maximizes the revenue
brought by the objects in the knapsack minus the expected penalty for exceed-
ing capacity. Chance-constraint prob(sum(i in Items) W[i]*x[i] <= c) >=
θ ensures that the capacity is not exceeded with a probability higher than θ.



int k = ...;

int p = ...;

int c = ...;

float θ = ...;

range Items 1..k;

range onestage 1..1;

stoch myrand[onestage]=...;

float W[Items,onestage]^myrand = ...;

float r[Items] = ...;

dvar float+ z;

dvar int x[Items] in 0..1;

maximize sum(i in Items) x[i]*r[i] - expected(p*z)

subject to{
z >= sum(i in Items) W[i]*x[i] - c;

prob(sum(i in Items) W[i]*x[i] <= c) >= θ;
};

Fig. 11. Stochastic OPL formulation for the single-stage SKP.

We now refer to the numerical Example 1 for SKP. In Fig. 12 the Stochastic
OPL data file corresponding the numerical instance in Example 1 is presented.
We recall that the strategy proposed in [71] employs a scenario-based formula-
tion. In fact it is easy to see that, given the random variables in the example
and the values in their domains, there are a total of 32 scenarios that should
be considered. Each row for variable W in Fig. 12 has, in fact, 32 entries (i.e.
[<10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,
8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8>]). There are in total 5 rows, each having
32 entries, so a column — containing all the entries at the same position in each
row — therefore fully encodes one of the possible 32 scenarios. The probability
of each of the 32 scenarios is provided using the array myrand. By using the
compilation strategy proposed in [71], any model and data file written using
Stochastic OPL can be easily compiled into a classic (deterministic) constraint
program and solved by using classic solvers. The optimal solution for Example
1 — computed using the compiled OPL code obtained from the Stochastic OPL
model and data file presented — selects items {1, 4, 5} and achieves an expected
profit of 45.75, as shown in Fig 2.

The SKP can be also formulated as a multi-stage stochastic constraint pro-
gram as shown in Fig 3. In Fig. 13 the Stochastic OPL model for the multi-stage
SKP is presented. The model is similar to the one presented in Fig. 11. Never-
theless, now the weight of each object is observed at a different decision stage.
Therefore we have an array of k random variables (stoch W[Items]) in contrast
to the previous model that only had one random variable (myrand) to model
the probability distribution of the possible scenarios. In Fig. 14 the data file
corresponding to the numerical instance in Example 1 is presented. The opti-



k = 5;

p = 2;

c = 30;

θ = 0.6;

W = [

[<10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,10,8,8,8,

8,8,8,8,8,8,8,8,8,8,8,8,8>],

[<9,9,9,9,9,9,9,9,12,12,12,12,12,12,12,12,9,9,9,9,9,9,

9,9,12,12,12,12,12,12,12,12>],

[<8,8,8,8,13,13,13,13,8,8,8,8,13,13,

13,13,8,8,8,8,13,13,13,13,8,8,8,8,13,13,13,13>],

[<4,4,6,6,4,4,6,6,4,4,6,6,4,4,6,6,4,4,

6,6,4,4,6,6,4,4,6,6,4,4,6,6>],

[<12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15,

12,15,12,15,12,15,12,15,12,15,12,15,12,15,12,15>]

];

myrand = [

<0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),

0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),

0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),

0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),

0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),

0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),

0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),

0.0 (0.03125),0.0 (0.03125),0.0 (0.03125),0.0 (0.03125)>

];

r = [16,16,16,5,25];

Fig. 12. Stochastic OPL Data File for the single-stage SKP.

mal solution for Example 1, when the problem is formulated as a multi-stage
Stochastic COP, can be computed using the compiled OPL code obtained from
the Stochastic OPL model in Fig. 13 and from the data file presented in Fig. 14.
This solution takes the form of a policy tree — graphically rendered in Fig. 4 —
and achieves an expected profit of 47.75.
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In this paper, we address the general multi-period production/inventory problem with non-

stationary stochastic demand and supplier lead time under service-level constraints. A re-

plenishment cycle policy is modeled. We propose two hybrid algorithms that blend Con-

straint Programming and Local Search for computing near-optimal policy parameters. Both

the algorithms rely on a coordinate descent Local Search strategy, what differs is the way this

strategy interacts with the Constraint Programming solver. These two heuristics are, firstly,

compared for small instances against an existing optimal solution method. Secondly, they

are tested and compared with each other in terms of solution quality and run time on a set

of larger instances that are intractable for the exact approach. Our numerical experiments

show the effectiveness of our methods.
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1. Introduction

Inventory theory provides methods for managing and controlling inventories under different

constraints and environments. An interesting class of production/inventory control prob-

lems is the one that considers the single-location, single-product case under non-stationary

stochastic demand and service level constraints. Such a problem has been widely studied

because of its key role in practice.

Different inventory control policies can be adopted for the above mentioned problem. For

a discussion of inventory control policies see [33]. One of the possible policies that can be

1



adopted is the replenishment cycle policy, (R, S). A detailed discussion on the characteristics

of (R,S) can be found in [12]. In this policy an order is placed every R periods to raise the

inventory level to the order-up-to-level S. This provides an effective means of dampening

planning instability (deviations in planned orders, also known as nervousness [13, 19]) and

coping with demand uncertainty. As pointed out by Silver et al. ([33], pp. 236–237), (R,S)

is particularly appealing when items are ordered from the same supplier or require resource

sharing. In these cases all items in a coordinated group can be given the same replenishment

period. Periodic review also allows a reasonable prediction of the level of the workload on

the staff involved, and is particularly suitable for advanced planning environments and risk

management [35]. For these reasons, as stated by Silver et al. [33], (R, S) is a popular

inventory policy.

Under the non-stationary demand assumption this policy takes the form (Rn,Sn), where

Rn denotes the length of the nth replenishment cycle, and Sn the order-up-to-level value for

the nth replenishment. It should be noted that this inventory control policy yields at most

2N policy parameters fixed at the beginning of an N -period planning horizon, therefore it

is particularly easy to be implemented.

Due to its combinatorial nature, the computation of optimal (Rn,Sn) policy parameters,

even in the absence of stochastic lead time, presents a difficult problem to solve to optimality.

An early work in this area, by Bookbinder and Tan [9], proposes a two-step heuristic method.

Tarim and Kingsman [38, 39] and Tempelmeier [42] propose a mathematical programming

approach to compute policy parameters. Tarim and Smith [41] give a computationally

efficient Constraint Programming formulation. An exact formulation of the policy and a

solution method are presented in Rossi et al. [30].

All the above mentioned research assumes either zero or a fixed (deterministic) supplier

lead time (i.e., replenishment lead time). However, the lead time uncertainty, in various

industries an inherent part of the business environment, is having a detrimental effect on

inventory systems. For this reason, there is a vast inventory control literature analyzing the

impact of supplier lead time uncertainty on the ordering policy (Whybark and Williams [43],

Speh and Wagenheim [34], Nevison and Burstein [23]). A comprehensive work on stochastic

supplier lead time in continuous-time inventory systems is presented in Zipkin [44]. Kaplan

[21] characterizes the optimal policy for a dynamic inventory problem, where the lead time

is a discrete random variable with known distribution and the demands in successive periods

are assumed to form a stationary stochastic process. Since tracking all the outstanding
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orders through the use of Dynamic Programming requires a large multi-dimensional state

vector, Kaplan assumes that orders do not cross in time and supplier lead time probabilities

are independent of the size/number of outstanding orders (for details on order-crossover, see

Hayya et al. [18]). The assumption that orders do not cross in time is valid for systems

where supplier’s production system has a single-server queue structure operating under a

FIFO policy. Nevertheless, there are settings in which this assumption is not valid and

orders do cross in time. This has been recently investigated in Hayya et al. [17], Riezebos

[28], Bashyam and Fu [5]. In a recent work, Babäı et al. [3] analyze a dynamic re-order point

control policy for a single-stage, single-item inventory system with non-stationary demand

and lead time uncertainty. We argue that incorporating both a non-stationary stochastic

demand and a stochastic supplier lead time in an optimization model that computes (Rn,Sn)

policy parameters — without assuming that orders do not cross in time — is a relevant and

novel contribution. To the best of our knowledge, the only existing work that addresses

the computation of optimal (Rn,Sn) policy parameters under these assumptions is the one

proposed in Rossi et al. [31]. Nevertheless, the approach proposed in [31] is only able to

solve, in reasonable time, instances comprising a limited number of periods and a stochastic

lead time that ranges over a small finite support.

In order to address this efficiency issue, in this paper we propose two heuristic techniques

for computing (Rn,Sn) policy parameters under stochastic supplier lead time. We build on

the work of Eppen and Martin [14], and by following a similar scenario-based approach (see

also Birge and Louveaux [7]), we develop two constraint-based local search methods, based

on a coordinate descent strategy, for finding near-optimal (Rn,Sn) policy parameters under

non-stationary stochastic demand and supplier lead time (for a complete discussion on local

search strategies in the literature refer to Focacci et al. [15], Nocedal and Wright [24]).

In the first part of this paper, we develop a technique that is analogous to a classical

strategy of blending constraints with local search procedures (Backer et al. [4], Pesant and

Gendreau [25]). In this approach, the local search engine is used to “guide” the search,

while Constraint Programming is used to explore promising neighborhoods. In order to

implement this strategy, we exploited Tarim and Smith’s model [41] within a coordinate

descent local search approach. In the second part of this work, we adopt an alternative

strategy for integrating Constraint Programming and Local Search. In this strategy, Local

Search techniques are introduced within a constructive global search algorithm (Cesta et

al. [10]). In order to do so, we realized a deterministic equivalent modeling of the chance-
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constraints (Charnes and Cooper [11]) enforcing the required service level, by employing a

scenario based approach, and once more a coordinate descent heuristic for propagating these

constraints. In this second strategy, cost-based filtering (Focacci et al. [16]) is employed to

speed up the search. The results obtained with these two heuristic approaches are compared,

for small instances, with the optimal solution produced by the approach presented in Rossi

et al. [31].

Experimental results show that the approach proposed in Section 6 typically performs

better the one discussed in Section 5 in terms of solution quality. Nevertheless, the approach

in Section 5 scales better and is faster than the approach in Section 6 in solving larger

instances. Both the approaches run faster than the complete approach presented in Rossi et

al. [31], which is able to solve only very small instances.

The paper is organized as follows. In Section 2, we introduce the problem and the assump-

tions adopted throughout the paper. In Section 3, we provide a Stochastic Programming

formulation of the problem. In Section 4, we discuss a deterministic equivalent non-linear

formulation of the Stochastic Programming model. In Section 5, we introduce a first heuristic

solution method for the non-linear model discussed in Section 4. A second heuristic strategy

is discussed in Section 6. Computational results are presented in Section 7. Summary and

Conclusions are presented in Section 8.

2. Problem Definition

We discuss the general multi-period production/inventory control problem with non-stationary

stochastic demand and lead time.

We consider a finite planning horizon of N periods and a demand dt for each period

t ∈ {1, . . . , N}, which is a random variable with probability density function gt(dt). The

demand we consider is non-stationary, that is it can vary from period to period, and we also

assume that demands in different periods are independent.

As in Eppen and Martin [14], an order placed in period t ∈ {1, ..., N} is subject to a

stochastic lead time lt with probability mass function ft(·). Note that {lt} are mutually inde-

pendent and they are also independent of the respective order quantity. Since we consider a

discrete stochastic lead time with probability mass function ft(·) in each period t = 1, . . . , N ,

this implies that an order placed in period t will be received exactly after k periods with

probability ft(k). Since ft(k) is discrete, we assume that there is a maximum lead time L for
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which
∑L

k=0 ft(k) = 1, i = 1, . . . , N . The probability of observing any lead time length p > L

will always be 0. Therefore, the possible lead time lengths are limited to Λ = {0, . . . , L},
and the probability mass function is defined on the finite set Λ.

A fixed delivery cost a is incurred for each order at the time such an order is placed. A

linear holding cost h is incurred for each unit of product carried in inventory from one period

to the next, as well as those that are part of an outstanding order. This reflects the fact that

we charge interests not only on the actual amount of items we have in stock, but also on

outstanding orders. Doing so often makes sense, since companies may assess holding cost on

their total invested capital and not simply on items in stock — this cost accounting strategy

has been observed during our collaboration with Alcatel-Lucent manufacturing divisions. A

further detailed justification for this cost accounting strategy can be found in Hunt [20].

Demands not met are assumed to be back-ordered, and satisfied as soon as the next

replenishment order arrives. We assume that it is not possible to sell back excess items to

the vendor at the end of a period and that negative orders are not allowed. If the actual

inventory exceeds the order-up-to-level for that review, this excess stock is carried forward

and not returned to the supply source. However, such occurrences are regarded as rare

events and accordingly the cost of carrying this excess stock and its effect on the service

levels of subsequent periods are ignored. This assumption is consistent with previous works

in the literature (Bookbinder and Tan [9], Tarim and Kingsman [38], Tarim and Smith [41],

Tempelmeier [42] and Tarim et al. [37]). Furthermore, a computational study in Rossi et al.

[30] showed that such an assumption does not significantly impact the quality of the optimal

solution obtained.

As a service level constraint, we require the probability that at the end of every period

the net inventory will be non-negative to be at least a given value α. This value is assumed

to be set by the management to a reasonably high threshold, therefore we will not consider

values of α that are less than 0.5 — in real applications, α takes greater values, i.e. 0.95. Our

aim is to minimize the expected total cost, which is composed of ordering costs and inventory

holding costs, over the N -period planning horizon, satisfying the service level constraints.

The actual sequence of ordering and delivery is similar to the one described in Kaplan

[21]. We adopt the same sequence of actions described in his paper, since it handles all the

deliveries symmetrically, and allows for some delay in the arrival deliveries at the beginning

of a period. The sequence is therefore as follows. At the beginning of a period, the inventory

on-hand after the realization of demands from the previous periods is known. Since we are
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assuming complete backlogging, this quantity may be negative. We also know the orders

placed in previous periods, that have not been delivered yet. On the basis of this information,

an ordering decision is made for the current period. All deliveries made during a period are

assumed to arrive immediately after this ordering decision, and hence are on hand at the

beginning of the period. A further discussion that states the convenience of this sequence

of events can be found in Kaplan [21]. To summarize there are three successive events

at the beginning of each period. First, the inventory on-hand and outstanding orders are

determined. Second, an ordering decision is made on the basis of this information. Third,

all supplier deliveries for the current period, including the most recent orders, are received.

3. Stochastic Programming Formulation

A stochastic programming formulation for the problem discussed in the previous section is

given below,

min E{TC} =
∫

d1

. . .

∫

dN

N
∑

t=1

[

a · δt + h ·max

(

t
∑

k=1

(Xk − dk), 0

)]

g1(d1)g2(d2) . . . gN(dN)d(d1)d(d2) . . .d(dN)

(1)

subject to,

It = I0 +
∑

{k|k≥1,lk≤t−k}

Xk −
t
∑

k=1

dk t = 1, . . . , N (2)

δt =

{

1, if Xt > 0
0, otherwise

t = 1, . . . , N (3)

Pr{It ≥ 0} ≥ α t = L + 1, . . . , N (4)

It ∈ R, Xt ≥ 0, t = 1, . . . , N. (5)

where

E{.} : the expectation operator,

TC : total cost,

dt : the demand in period t, a random variable with probability density

function, gt(dt),

a : the fixed ordering cost (incurred when an order is placed),

h : the proportional inventory holding cost,
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lt : the lead time length of the order placed in period t, a discrete

random variable with probability mass function ft(·).
δt : a {0,1} variable that takes the value of 1 if a replenishment occurs in

period t and 0 otherwise,

It : the inventory level (stock on hand minus back-orders) at the end of

period t,

I0 : the initial inventory,

Xt : the size of the replenishment order placed in period t, Xt ≥ 0,

(received in period t + L).

In this model, the objective function (Eq. 1) minimizes the expected total cost, which is

comprised of ordering costs and inventory holding costs. As discussed earlier, the latter are

charged in each period on delivered and outstanding orders, for this reason the stochastic

lead time does not play a direct role in the objective function. Eq. 2 represents the inventory

balance constraint, which states that the inventory level at period t, It, is the sum of the

initial inventory, I0, and of all the subsequent order quantities that are delivered by period

t,
∑

{k|k≥1,lk≤t−k} Xk, minus the cumulative demand up to period t,
∑t

k=1 dk. Eq. 3 states

that if a replenishment occurs in period t — i.e. the order quantity Xt is greater than 0

— then the corresponding indicator variable δt must take a value of 1. Eq. 4 enforces the

required service level constraint in each period. That is, the probability inventory level at

the end of each period is positive, must be greater or equal to the threshold α. Finally, the

inventory levels, It, are real valued decision variables and the order quantities, Xt, must be

positive. Note that, depending on the lead time probability mass functions, it may not be

possible to provide the required service level for some initial periods. In general, reasoning

in a worst case scenario, it is always possible to provide the required service level α starting

from period L+1. For this reason the service level constraints are only enforced over periods

L + 1, . . . , N .

4. Deterministic Equivalent Modeling

In order to solve the above model, it is necessary to reformulate the service level constraints

in Eq. 4, in terms of deterministic equivalent expressions. To do so, we blend a scenario
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based approach — since the lead time probability distribution is assumed to be discrete —

with a strategy similar to Bookbinder and Tan’s “static-dynamic” uncertainty [9].

To begin, we discuss how to obtain a deterministic equivalent formulation for the chance-

constraints that enforce the required service level when the lead time in each period varies

and assumes a given deterministic value. Subsequently, we will generalize the same reasoning

to the case in which the lead time is stochastic and assumes a different distribution from

period to period.

When a dynamic deterministic lead time Lt ≥ 0 is considered in each period t = 1, . . . , N ,

an order placed in period t will be received only at period t + Lt. Eq. 2 therefore becomes,

It = I0 +
∑

{k|k≥1,Lk+k≤t}

Xk −
t
∑

k=1

dk t = 1, ..., N. (6)

Let us denote the inventory position (the total amount of inventory on-hand plus out-

standing orders minus backorders) at the end of period t as Pt. It directly follows that

Pt = It +
∑

{k|1≤k≤t,Lk+k>t}

Xk, (7)

where we assume P0 = I0. It is easy, then, to reformulate the model using the inventory

position. Furthermore, consider the expectation operator E{·}, and since the demands {dt}
are assumed to be mutually independent, we may rewrite the objective function as

min E{TC} =
N
∑

t=1

(h · E {max(Pt, 0)}+ a · δt) . (8)

When a stock-out occurs, all demand is back-ordered and fulfilled as soon as an adequate

supply arrives. Following Bookbinder and Tan [9], since we have assumed that the man-

agement will set the non-stockout probability to a reasonably high level — certainly greater

than 0.5 — we can safely replace the term E{max(Pt, 0)} with the term E{Pt}.
The general stochastic programming formulation can then be modified to incorporate the

“replenishment cycle policy”. Consider a review schedule, which has m reviews over the N

period planning horizon with orders placed at T1, T2, . . . , Tm, where Ti > Ti−1, Tm ≤ N−LTm
.

For convenience, T1 is defined as the start of the planning horizon and Tm+1 = N + 1 as the

period immediately after the end of the planning horizon.1 The associated inventory reviews

1The review schedule may be generalized to consider the case where T1 > 1, if the opening inventory I0

is sufficient to cover the immediate needs at the start of the planning horizon.
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will take place at the beginning of periods Ti, i = 1, . . . , m. In the replenishment cycle

policy considered here, clearly the orders Xi are all equal to zero except at replenishment

periods T1, T2, . . . , Tm. The inventory level It carried from period t to period t + 1 is the

opening inventory plus any orders that have arrived up to and including period t less the

total demand to date. Hence, the inventory balance equation becomes,

It = I0 +
∑

{i|LTi
+Ti≤t}

XTi
−

t
∑

k=1

dk, t = 1, . . . , N. (9)

Define Tp(t) as the latest review before period t in the planning horizon, for which all the

former orders, including the one placed in Tp(t), are delivered within period t. Therefore,

p(t) = max
{

i|∀j ∈ {1, . . . , i}, Tj + LTj
≤ t, i = 1, . . . , m

}

. (10)

The inventory level It at the end of period t (Eq. 9) can be expressed as

It = I0 +

p(t)
∑

i=1

XTi
+

∑

{i|i>p(t),LTi
+Ti≤t}

XTi
−

t
∑

k=1

dk, t = 1, . . . , N. (11)

We now want to reformulate the constraints of the chance-constrained model in terms of

a new set of decision variables RTi
, i = 1, . . . , m.

Define,

Pt = RTi
−

t
∑

k=Ti

dk, Ti ≤ t < Ti+1, i = 1, . . . , m (12)

where RTi
can be interpreted as the inventory position up to which inventory should be

raised after placing an order at the ith review period Ti. We now express Eq. 11 using RTi

as decision variables

It = RTp(t)
+

∑

{i|i>p(t),LTi
+Ti≤t}

(

RTi
−RTi−1

+ dTi−1
+ . . . + dTi−1

)

−
t
∑

k=Tp(t)

dk,

t = 1, . . . , N.

(13)

As mentioned earlier, α is the desired minimum probability that the net inventory level in

any time period is non-negative. Depending on the values assigned to Lt, it may not be

possible to provide the required service level for some initial periods. In general, we provide

the required service level α starting from the period t, for which the value t+Lt is minimum.

Let M be this period. Note that, it will never be optimal to place any order in a period t
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such that t + Lt > N , since such an order will not be received within the given planning

horizon.

By substituting It with the right hand term in Eq. 13 we obtain

GS



RTp(t)
+

∑

{i|i>p(t),LTi
+Ti≤t}

(RTi
−RTi−1

)



 ≥ α,

t = M, . . . , N.

(14)

where S =
∑t

k=Tp(t)
dk −

∑

{i|i>p(t),LTi
+Ti≤t}(dTi−1

+ . . . + dTi−1), and GS(.) is the cumula-

tive distribution function of S. The service level constraints are now deterministic and are

expressed only in terms of the order-up-to-positions.

It is now relatively easy to obtain a deterministic equivalent model in which lead times

are stochastic, under the original assumption that the lead time in each period is a discrete

random variable lt.

We first reformulate the chance-constrained model under stochastic lead time using the

inventory position,

min E{TC} =

∫

d1

. . .

∫

dN

N
∑

t=1

(aδt + h · Pt)

g1(d1)g2(d2) . . . gN(dN)d(d1)d(d2) . . .d(dN)

(15)

subject to,

δt =

{

1, if Xt > 0
0, otherwise

t = 1, ..., N (16)

Pt = I0 +
t
∑

k=1

(Xk − dk) t = 1, ..., N (17)

Pr{Pt ≥
∑

{k|1≤k≤t,lk>t−k}

Xk} ≥ α t = L + 1, ..., N (18)

Pt ≥ 0, Xt ≥ 0, t = 1, ..., N. (19)

Also in this case, we want to adopt a replenishment cycle policy and express the whole

model in terms of the new set of variables RTi
, so that order quantities are decided only after

the demand in the former periods is realized.

Similar to the dynamic deterministic lead time case, we now express the service level

constraint as a relation between the opening-inventory-positions, such that the overall service

level provided at the end of each period is at least α. In order to express this service level

constraint, we propose a scenario based approach over the discrete random variables {lt}. In
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a scenario based approach (see also Birge and Louveaux [7] and Tarim et al. [40]), a scenario

tree is generated which incorporates all possible realizations of discrete random variables

into the model explicitly, yielding a fully deterministic model under the non-anticipativity

constraints.

In our problem, we can divide random variables into two sets: the random variables {lt}
which represent lead times and the random variables {dt} which represent demands. We deal

with each set in a separate fashion, by employing a scenario based approach for the {lt} and a

deterministic equivalent modeling approach for the {dt}. This is possible since under a given

scenario discrete random variables are treated as constants. The problem is then reduced

to the general multi-period production/inventory problem with dynamic deterministic lead

time and stochastic demands, which has been previously analyzed.

Consider a review schedule, which has m reviews over the N period planning horizon

with orders placed at T1, T2, . . . , Tm. A scenario ωt is a possible lead time realization for all

the orders placed up to period t in a given review schedule. Let (lTi
|ωt) be the realized lead

time in scenario ωt for the order placed in period Ti. Finally, let Ωt be the set of all the

possible scenarios ωt.

Under a given scenario ωt, the service level constraint for a period t can be easily expressed

using Eq. 14. It follows that the service level constraint is always a relation between at most

L + 1 decision variables RTi
that represent the order-up-to-positions of the replenishment

cycles covering the span t − L, . . . , t. Let pω(t) be the value of p(t) under a given scenario

ωt, when a review schedule Z is considered. In order to satisfy the service level constraints

in our original model, we require that the overall service level under all possible scenarios,

for each set of at most L + 1 decision variables, is at least α. Equivalently, by using Eq. 14,

∑

ωt∈Ωt

Pr{ωt} ·GS



RTpω(t)
+

∑

{i|i>pω(t),(lTi
|ωt)≤t−Ti}

(RTi
−RTi−1

)



 ≥ α,

t = L + 1, . . . , N,

(20)

where S =
∑t

k=Tpω(t)
dk −

∑

{i|i>pω(t),(lTi
|ωt)≤t−Ti}

(dTi−1
+ . . . + dTi−1). It should be noted that

this equation is non-linear. In the remainder of the paper, we refer to Eq. 20 as “service level

constraints” or “SL Constraints”, as this equation is refered most commonly throughtout.

In our chance-constrained model, we can now replace the original service level constraints

with the new formulation in Eq. 20. As a consequence, the service level constraints are now

expressed only in terms of the order-up-to-levels. Therefore, the expectation operator can
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be safely applied to the closing-inventory-levels, {Pt}, and to the stochastic demands, {dt},
since these variables are only affecting the objective function in which we are minimizing an

expected value. In what follows, the expected value of Pt and dt are denoted by P̃t and d̃t,

respectively.

We can now express the whole model in terms of a new set of decision variables Rt,

t = 1, . . . , N . If there is no replenishment scheduled for period t, that is if δt = 0, then

Rt must be equal to the expected closing-inventory-position in period t − 1, that is Rt =

P̃t−1. If there is a review Ti in period t, Rt is equal to the order-up-to-position RTi
for this

review. Therefore, the desired order-up-to-positions, {RTi
}, as required for the solution to

the problem, are those values of Rt, for which δt = 1.

The complete model under the replenishment cycle policy is then:

min E{TC} =
N
∑

t=1

(

h · P̃t + a · δt

)

(21)

subject to,

Eq. 20 (SL Constraints)

Rt > P̃t−1 ⇒ δt = 1 t = 1, . . . , N (22)

Rt ≥ P̃t−1 t = 1, . . . , N (23)

Rt = P̃t + d̃t t = 1, . . . , N (24)

Rt ≥ 0, P̃t ≥ 0, δt ∈ {0, 1} t = 1, . . . , N, (25)

where {T1, . . . , Tm} = {t ∈ {1, . . . , N}|δt = 1}.
It should be noted that the domain of each P̃t variable — as in the zero lead time case (see

Tarim and Smith [41]) — is limited. In fact, since the period demand variance is additive, the

uncertainty can only increase in the length of a replenishment cycle. Therefore the longer a

cycle is, the higher the inventory levels that are required to achieve a certain service level. It

directly follows that a single replenishment covering the whole planning horizon will provide

upper bounds for the expected period closing-inventory-positions throughout the horizon.

4.1. An example

We assume an initial null inventory level and a normally distributed demand with a coefficient

of variation σt/d̃t = 0.3 for each period t ∈ {1, . . . , 5}. The expected values for the demand

in each period are: {36, 28, 42, 33, 30}. The other parameters are a = 1, h = 1, α =
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Policy cost: 356
Period (t) 1 2 3 4 5

d̃t 36 28 42 33 30
Rt 125 124 129 87 55
δt 1 1 1 1 1
Shortage probability − − 5% 5% 5%

Table 1: A replenishment plan.
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Figure 1: A graphical illustration of the replenishment plan in Table 1.

0.95(zα=0.95 = 1.645). We consider that every period i in the planning horizon has following

lead time probability mass function ft(k) = {0.3(0), 0.2(1), 0.5(2)}. This implies that we

receive an order placed in period i after t ∈ {0, . . . , 2} periods with a given probability (0

periods: 30%; 1 period: 20%; 2 periods: 50%). It is obvious that in this case, we will always

receive the order within 2 periods, after it is placed. In Table 1, we show the optimal solution.

The optimal replenishment plan is also illustrated in Fig. 1. We now show, through Eq. 20

(SL Constraints), that the order-up-to-positions in this example satisfy every service level

constraint in the model. We assume that for the first 2 periods, no service level constraint

is enforced, since it is not possible to control the inventory in the first 2 periods. Therefore,

we enforce the required service level on period 3, 4 and 5 (that is Eq. 20 or SL Constraints)

for t = 3, . . . , N . Let us verify that the given order-up-to-levels satisfy this condition for

these three periods. Since we know the probability mass function ft(·) for each period t in

the planning horizon, we can compute the probability Pr(ωt) for each scenario ωt ∈ Ωt. We

thus have four of these scenarios for each period t ∈ {3, . . . , N}, as we are placing an order

in each period.

• S1, Pr{S1} = 0.15; in this scenario for period t, we receive all the former orders
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• S2, Pr{S2} = 0.35; in this scenario for period t, we do not receive the last order placed

in period t

• S3, Pr{S3} = 0.35; in this scenario for period t, we do not receive the last two orders

placed in period t and t− 1

• S4, Pr{S4} = 0.15; in this scenario for period t, we do not receive the order placed in

period t− 1, and we observe order-crossover.

In the described scenarios, every possible configuration is considered, without loss of gen-

erality. In fact, if some of the configurations are unrealistic (for instance, if we assume

that order-crossover may not take place) we just need to set the probability of the respec-

tive scenario to zero. Now, it is possible to write SL Constraints (Eq. 20) for each period

t ∈ {3, . . . , N}. For period 3,

Pr{S1} ·G
(

129− 42

0.3
√

422

)

+ Pr{S2} ·G
(

124− (28 + 42)

0.3
√

282 + 422

)

+

Pr{S3} ·G
(

125− (36 + 28 + 42)

0.3
√

362 + 282 + 422

)

+

Pr{S4} ·G
(

125 + (129− 124)− (36 + 42)

0.3
√

362 + 422

)

= 94.60 ∼= 95,

(26)

where G(·) is the standard normal distribution function with zero mean and unit standard

deviation. This implies that the combined effect of order delivery delays in our policy, under

any possible scenario results in a stock-out probability of exactly 95% for period 3. A similar

reasoning can be applied to verify that the given solution satisfies the required service level

for period 4 and 5.

5. Heuristic Method I

In this section, we introduce a first heuristic method, named Heuristic I or, shortly, H1,

for computing near optimal replenishment cycle policy parameters under non-stationary

stochastic demand and lead time. The key intuition behind this heuristic strategy consists in

noticing that when all the replenishment decisions have been fixed, then SL Constraints

(Eq. 20) can be used to check if in a given period the required service level constraint is met.

If the service level is not met, the gradient function is able to indicate which order-up-to-

position should be increased in order to achieve the maximum service level improvement for
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that period. This method employs one of the efficient techniques proposed in the literature

such as the one in Tarim and Smith [41].

min E{TC} =

N
∑

t=1

(

aδt + hĨt

)

(27)

subject to, for t = 1 . . .N

Ĩt + d̃t − Ĩt−1 ≥ 0 (28)

Ĩt + d̃t − Ĩt−1 > 0⇒ δt = 1 (29)

Ĩt ≥ b

(

max
j∈{1,...,t}

j · δj , t

)

(30)

Ĩt ∈ Z
+ ∪ {0}, δt ∈ {0, 1}, (31)

where b(i, j) = G−1
di+di+1+...+dj

(α)−∑j

k=i d̃k, and G−1
di+di+1+...+dj

(·) denotes the inverse cumu-

lative distribution function of di + di+1 + . . . + dj.

In Tarim and Smith’s model (Eqs. 27–31), each decision variable Ĩt, represents the

expected inventory level at the end of period t. Each d̃t represents the expected value of

the demand in a given period t, according to its probability density function gt(dt). The

binary decision variables δt state whether a replenishment is fixed for period t (δt = 1) or

not (δt = 0). The objective function (27) minimizes the expected total cost over the given

planning horizon. The two terms that contribute to the expected total cost are ordering

costs and inventory holding costs. Constraint (28) enforces a no-buy-back condition, which

means that received goods cannot be returned to the supplier. As a consequence of this, the

expected inventory level at the end of period t must be no less than the expected inventory

level at the end of period t − 1 minus the expected demand in period t. Constraint (29)

expresses the replenishment condition. We have a replenishment if the expected inventory

level at the end of period t is greater than the expected inventory level at the end of period

t−1 minus the expected demand in period t. This means that we receive some extra goods as

a consequence of an order. Constraint (30) enforces the required service level α. This is done

by specifying the minimum expected closing-inventory-level (or “buffer stock”) required for

each period t in order to assure that, at the end of each time period, the probability that the

net inventory is not negative is at least α. These buffer stocks, which are stored in matrix

b(·, ·), are pre-computed following the approach suggested in Tarim and Kingsman [38].

The buffer stocks mentioned in the previous paragraph refer to the case in which no lead

time is considered and where every order is delivered immediately. These buffer stocks are
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typically lower than those required to provide the required service level α, when a stochastic

delivery lead time is considered. Our strategy, in this first heuristic, consists in iteratively

adjusting the buffer stocks in the matrix in order to increase the service level in each period

till the required service level α is met in every period of the planning horizon. The local search

procedure to compute policy parameters under stochastic lead time is shown in Algorithm

1.

Algorithm 1: Heuristic Method I

input : d1, . . . , dN ; a; h; α
output: a replenishment plan

begin1

for each period i in 1, . . . , N do2

for each period j in i, . . . , N do3

b(i, j)← G−1
di+di+1+...+dj

(α)−∑j

k=i d̃k4

Solve the model in Eqs. 27–31 with input d1, . . . , dN , a, h, α, and buffer matrix5

b(·, ·);
By using SL Constraints (Eq. 20), check if the solution found provides the6

required service level α at the end of each period;
while the current solution does not provide service level α do7

Let R be the set of consecutive replenishment cycles in the solution;8

for each replenishment cycle R(i, j) in R do9

for each period t in R(i, j) do10

Let P be the set of former cycles influencing the service level in period t11

according to Eq. 20;
while the service level in period t is less than α do12

For each cycle R(m, n) ∈ P⋃{R(i, j)} obtain the respective13

minimum allowed order-up-to-position Rm = Ĩn +
∑n

i=m d̃i;
Let R(m, n) ∈ P⋃{R(i, j)} be the cycle for which a unit increment14

in Rm produces the highest service level improvement;
b(m, n)← Ĩn + 1;15

Ĩn ← Ĩn + 1;16

Solve the model in Eqs. 27–31 with input d1, . . . , dN , a, h, α, and modified17

buffer matrix b(·, ·);
By using SL Constraints (Eq. 20), check if the solution found provides the18

required service level α at the end of each period;

return the current replenishment plan;19

end20

The method initially solves the model in Eqs. 27–31 (Algorithm 1, line 5), with buffer
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Period (t) 1 2 3 4 5

d̃t 36 28 42 33 30
Rt 54 42 63 49 45
δt 1 1 1 1 1
Shortage probability − − 78% 78% 77%

Table 2: No lead time solution.

stocks set as in the no lead time case. This gives a replenishment plan, that is assignments

for decision variables δt and a (possibly) infeasible set of assignments for the respective

order-up-to-positions. A replenishment plan is made of a number of replenishment cycles.

A replenishment cycle R(i, j) is the set of periods that are located between two consecutive

replenishment periods i and j + 1. If this assignment is infeasible (Algorithm 1, line 6)

with respect to the lead time and the service level considered, using SL Constraints (Eq.

20), we consider sequentially (Algorithm 1, line 10) each period in every replenishment cycle

scheduled and we increase the buffer stocks (Algorithm 1, line 15) of replenishment cycles

affecting the service level in the current period (Algorithm 1, line 11), according to SL

Constraints, until the required service level α is met for that specific period (Algorithm 1,

line 12). Buffer stocks are increased according to a rule that increments at each step the

buffer stock that produces the highest service level improvement for the period considered

(Algorithm 1, line 14). This process is iterated by solving again the model in Eqs. 27–

31 using this modified buffer stock matrix (Algorithm 1, line 17), until the model directly

produces a feasible solution (Algorithm 1, line 18). We now provide a simple example to

illustrate this procedure.

We present the same example proposed in Section 4.1. By disregarding the information

on the stochastic lead time, we use the relevant data in the model shown in Eqs. 27–31.

By solving this model, we obtain the solution shown in Table 2. Considering the stochastic

lead time and by using SL Constraints (Eq. 20), it is possible to compute the service level

provided in period 3, 4 and 5 for this solution (These service levels are also shown in Table

2). Clearly, these service levels are not higher than the required minimum service level α.

Therefore, using SL Constraints we modify the buffer stock matrix b(·, ·) in such a way as

to increase the relevant buffers and thus obtain a feasible solution. For instance, we increase

the buffer stock level b(1, 1) of replenishment cycle R(1, 1) from 18 to 102, the buffer stock

level b(2, 2) of replenishment cycle R(2, 2) from 14 to 106, the buffer stock level b(3, 3) of
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Period (t) 1 2 3 4 5

d̃t 36 28 42 33 30
Rt 138 102 74 83 50
δt 1 0 0 1 1
Shortage probability − − 5% 35% 48%

Table 3: Solution with increased buffers.

Policy cost: 397
Period (t) 1 2 3 4 5

d̃t 36 28 42 33 30
Rt 138 134 136 94 61
δt 1 1 1 0 0
Shortage probability − − 2% 2% 5%

Table 4: Feasible solution.

replenishment cycle R(3, 3) from 21 to 94, and the buffer stock level b(4, 4) of replenishment

cycle R(4, 4) from 16 to 50. This is based on the greedy rule discussed in Algorithm 1,

and further based on the SL Constraints. We solve the model again using the modified

buffer stock matrix b(·, ·). Since some of the buffers are increased, it is not anymore optimal

to schedule a replenishment in each period, as noticed in the solution obtained using this

new modified buffer stock matrix (Table 3). The service level provided in period 3 is now

sufficiently high, but those provided in period 4 and 5 is not. We shall therefore iterate

the process until we eventually converge to the feasible solution presented in Table 4. This

heuristic is about 11% more costly than the optimal replenishment strategy.

6. Heuristic method II

The Heuristic Method I presented in the former section typically converges to a good solution

in a few iterations, but often it may not produce solutions that are sufficiently close to the

optimal. In order to produce higher quality solutions, we discuss here a different strategy

that employs a Constraint Based Local Search approach. We name this second heuristic

Heuristic II or H2.
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6.1. Constraint Reasoning

Constraint Programming (see Apt [2]) is a declarative programming paradigm in which re-

lations between decision variables are stated in the form of constraints. Informally speaking,

constraints specify the properties of a solution to be found. The constraints used in con-

straint programming are of various kinds: logic constraints (i.e. ”x or y is true”, where x

and y are boolean decision variables), linear constraints, and global constraints (Régin [27]).

A global constraint captures a relation among a non-fixed number of variables. One of the

most well known global constraints is the alldiff constraint (Régin [26]), that can be enforced

on a certain set of decision variables in order to guarantee that no two variables are assigned

the same value.

With each constraint, CP associates a filtering algorithm able to remove provably infea-

sible or suboptimal values from the domains of the decision variables that are constrained

and, therefore, to enforce some degree of consistency (see Rossi et al. [29]). These filtering

algorithms are repeatedly called until no more values are pruned. This process is called

constraint propagation.

In addition to constraints and filtering algorithms, constraint solvers also feature some

sort of heuristic search engine (e.g. a backtracking algorithm). During the search, the

constraint solver exploits filtering algorithms in order to proactively prune part of the search

space that cannot lead to a feasible or to an optimal solution.

6.2. Local Search

A neighborhood structure is a function N : S → 2S that assigns to every solution s ∈ S, a

set of neighbors N (s) ⊆ S. N (s) called the neighborhood of s. Without loss of generality,

we here restrict the discussion to minimization problems. A locally minimal solution (or

local minimum) with respect to a neighborhood structure N is a solution ŝ such that ∀s ∈
N (ŝ) : f(ŝ) ≤ f(s). We call ŝ a strict local minimal solution if ∀s ∈ N (ŝ) : f(ŝ) < f(s).

Local search (LS) algorithms for COPs start from some initial solution and iteratively try to

replace the current solution by a better solution in an appropriately defined neighborhood of

the current solution. In this process, it is extremely important to achieve a proper balance

between diversification and intensification of the search. The term diversification generally

refers to the exploration of the search space, whereas the term intensification refers to the

exploitation of the accumulated search experience. Among the most popular local search
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strategies we recall the Iterative Improvement, or Hill Climbing, in which each move is only

performed if the resulting solution is better than the current solution and the algorithm stops

as soon as it finds a local minimum. Tabu Search is a more advanced strategy, in fact it is

among the most cited and used. Tabu search explicitly uses the history of the search, both

to escape from local minima and to implement an explorative strategy. Iterated Local Search

and Variable Neighborhood Search constitute other examples of local search strategies. For

a comprehensive survey on local search and metaheuristic strategies, the reader may refer to

Blum and Roli [8]. In what follows, we will employ a strategy known as coordinate descent.

Coordinate descent algorithms, sometimes called one-at-a-time, minimize (maximize) a given

function by minimizing (maximizing) it over a single variable while holding all other variables

constant. There are two approaches: cyclic algorithms that cycle through all of the variables;

and greedy algorithms that choose the variable that reduces the cost by the largest amount in

each iteration. In the coordinate descent strategy discussed in the next section, an algorithm

belonging to this second “greedy” class will be employed.

6.3. The Approach

The key intuition behind the second heuristic strategy slightly differs from that of the first

heuristic. In this heuristic, we emphasize that when some replenishment decisions have

been fixed, SL Constraints (Eq. 20) can be used to check if in a given period, the required

service level constraint is met. If the service level is not met, a gradient function indicates

which order-up-to-position should be increased in order to achieve the maximum service level

improvement in such a period. We shall now provide a simple example to clarify how this

procedure works.

We consider again the example proposed in Section 4.1. In Table 5, we show a possible

partial replenishment plan that schedules orders in period 1, 2, and 3; the remaining replen-

ishment decisions are not yet fixed. Clearly, the order-up-to-level in each period t = 1, . . . , 3

will be at least as high as those required to provide the service level α, when the lead time

is 0. Therefore, a good starting configuration for the order-up-to-level is 54, 42, and 63

respectively for R1, R2, and R3. As it is easy to observe using SL Constraints, it is now

possible to compute the service level provided in period 3.
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Period (t) 1 2 3 4 5

d̃t 36 28 42 33 30
Rt 54 42 63 − −
δt 1 1 1 − −
Shortage probability − − 78% − −

Table 5: Partial assignment.

Policy cost: 366
Period (t) 1 2 3 4 5

d̃t 36 28 42 33 30
Rt 131 128 130 88 55
δt 1 1 1 1 1
Shortage probability − − 3% 3% 5%

Table 6: Full assignment.

Pr{S1} ·G
(

63− 42

0.3
√

422

)

+ Pr{S2} ·G
(

42− (28 + 42)

0.3
√

282 + 422

)

+

Pr{S3} ·G
(

54− (36 + 28 + 42)

0.3
√

362 + 282 + 422

)

+

Pr{S4} ·G
(

54 + (63− 42)− (36 + 42)

0.3
√

362 + 422

)

= 0.2192 ∼= 0.22

(32)

The service level provided (about 0.22) is not sufficient to satisfy SL Constraints (Eq. 20) in

period 3. In order to decide which order-up-to-position to increase, we analyze the behavior

of the service level at period 3, when R1, R2, and R3 are increased respectively. If we increase

R1 by one unit, the service level at period 3 becomes 0.2229; if we increase R2 by one unit,

the service level at period 3 becomes 0.2175; finally, if we increase R3 by one unit, the service

level at period 3 becomes 0.2239 It follows that, an increase of one unit for R3 achieves the

maximum service level improvement. We proceed in a similar fashion by increasing at each

step the order-up-to-position Rt that produces the maximum increase in the service level

provided, until SL Constraints are satisfied for the period of interest. The reader may be

easily convinced that, when we consider period 3, this process terminates after a few steps,

when R1 = 131, R2 = 95, and R3 = 75. We then proceed and repeat the same process,

assuming that the ordering decisions are all fixed and that an order is scheduled in every

period. In this case, we consider period 4 and period 5 sequentially. The final solution

produced by this approach is shown in Table 6.

We next describe the complete approach. Our technique exploits the model presented in
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Eq. 21 - 25. This model is implemented within Choco 1.2 (Laburthe et al. [22]), an open

source Constraint Programming solver developed in Java. The variable selection heuristic

branches first on decision variables δt. These variables are selected according to their natural

order, that is {δ1, . . . , δN}. The value selection heuristic selects values in increasing order.

SL Constraints (Eq. 20) cannot be directly implemented as such, and therefore are replaced,

in our Constraint Programming model, by a global constraint able to dynamically compute

the required order-up-to-level for a given partial replenishment plan (that is, a partial as-

signment for decision variables δt). As discussed, the order-up-to-levels are computed using

the gradient-based local search approach shown in the former example, which in practice

follows a coordinate descent strategy. A pseudo-code describing the propagation logic of this

constraint is presented below in Algorithm 2.

Algorithm 2: Heuristic Method II - Propagation

input : a partial assignment for decision variables δt, t = 1, . . . , N ,
the expected closing-inventory-positions P̃t, t = 1, . . . , N ,
the service level α

begin1

Let R be the set of consecutive replenishment cycles identified by the partial2

assignment for decision variables δt;
for each replenishment cycle R(i, j) in R do3

for each period t in R(i, j) do4

Let P be the set of former cycles influencing the service level in period t5

according to SL Constraint (Eq. 20);
while the service level in period t is less than α do6

For each cycle R(m, n) ∈ R⋃{R(i, j)} obtain the respective minimum7

allowed order-up-to-position Rm as Inf{Dom(P̃m)}+ d̃m;
Let R(m, n) ∈ R⋃{R(i, j)} be the cycle for which a unit increment in8

Rm produces the highest service level improvement;
Inf{Dom(P̃m)} ← Inf{Dom(P̃m)}+ 1;9

end10

The propagation logic described in Algorithm 2 is triggered each and every time, during

the search, a replenishment decision is fixed. Recall that our search strategy branches first on

decision variables δt, according to their natural sequence, so that at each node of the search

tree we have a set of consecutive replenishment decisions {δ1, . . . , δt} that have been assigned.

This implies, that at each node of the search tree, we will also have a set of consecutive
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replenishment cycles, R ≡ {R(1, i), . . . ,R(j, t)}, that are uniquely identified by the current

partial assignment (Algorithm 2, line 2). For each cycle, we consider each and every period

(Algorithm 2, line 4). By using SL Constraints (Eq. 20) and more specifically condition

10, we can easily identify which former cycles (and order-up-to-positions) are affecting the

service level in the period under consideration (Algorithm 2, line 5). We consider each of

these order-up-to-positions, say Rm, and observe the behavior of the service level when the

minimum value allowed for it, Rm = Inf{Dom(P̃m)}+ d̃m, (Algorithm 2, line 7) is increased

by one unit. That is, when the minimum value (Inf) in the domain (Dom) of P̃m plus d̃m, is

increased by one unit. Once the order-up-to-position Rm that produces the maximum service

level improvement for the period considered is identified (Algorithm 2, line 8), we restrict the

domain of the corresponding expected closing inventory position P̃m by removing the value

Inf{Dom(P̃m)} (Algorithm 2, line 9). This process eventually produces (by subsequent

greedy improvements), a set of order-up-to-positions that meet the required service level.

Also this second approach is clearly heuristic, since the order-up-to-levels are adjusted

by using “local” moves that aim to locally maximize the improvement in the service level

provided at a given period. It is also an example of a hybrid method that employs local

search, at each node of the search tree, within the propagation logic of a global constraint.

Nevertheless, this approach does perform better than the previous one in terms of quality

of the solutions produced. For instance, with respect to the example presented in Section

4.1, this second heuristic approach produces a solution with cost 366, that is only 2.8% more

costly than the optimal solution.

It is worth recalling that, as discussed in Section 1, the strategy described in this sec-

tion introduces local search techniques within a constructive global search algorithm, i.e.

the Constraint Programming solver. More specifically, a coordinate descent heuristic is em-

ployed in order to heuristically propagate the service level constraints within a Constraint

Programming model. In contrast, the technique discussed in Section 5 exploits the local

search engine to “guide” the search, by restructuring the buffer stock matrix, while Con-

straint Programming is used to explore promising neighborhood, i.e. to find the optimal

solution with respect to a given buffer stock matrix.
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7. Computational Results

In the illustrative example provided in the previous section, it was shown that Heuristic I

and Heuristic II are 11% and 3% more costly than the optimal solution. In this section,

we aim to further analyze both the effectiveness and the efficiency of these two heuristics.

More specifically, we consider a large set of instances and we will investigate, for each of the

two heuristics, how close the solution produced is to the optimal solution obtained with the

complete approach in Rossi et al. [31] and how long the heuristic search runs in order to

produce the approximate solution. In addition, we investigate how well the two heuristics

scale, when the instances become intractable for the complete approach.

We consider four patterns for the expected value of the demand in each period of the

planning horizon. These patterns resemble the structure of the experiments proposed in

Berry [6] and comprise a constant level, a life-cycle trend, a sinusoidal change, and a very

erratic pattern (Fig. 2). The demand is normally distributed, in each period, about the

forecast value. We consider two possible values for the coefficient of variation, cv ∈ {0.2, 0.3}.
cv shows the effect of the size of random variation in demand about the mean. Recall that

σt = d̃tcv, where σt is the standard deviation of the demand in period t and d̃t is the expected

value of the demand in period t. The holding cost h is assumed to be fixed to 1 for all the

instances, while the ordering cost a takes values in the set {100, 175, 250}. We consider two

possible service levels α ∈ {0.85, 0.95}. In our experiments, we consider five possible discrete

probability density functions for the stochastic lead time. These are shown in Fig. 3. The

lead time may therefore take one of the values shown in the x-axis with the probability

indicated on the y-axis. It should be noted that it is not relevant in this work to compare

the performance of our heuristics for a deterministic lead time. In fact, efficient complete

solution methods have been proposed in the literature [37] for the case in which the lead

time is absent. These methods, according to the discussion in [36], can be directly applied

to solve instances in which the lead time is deterministic.

All the experiments were performed on an Intel R© Pentium R©4 3.66 Ghz with 2 Gb of

RAM. Heuristic I has been implemented using ILOG OPL Studio 3.7 [1] and Solver 6.0

interfaced with a Java routine for updating the buffer stock matrix. Heuristic II has been

implemented on the top of Choco 1.2 (Laburthe et al. [22]).

The CP model repeatedly solved by Heuristic I has a very compact size, in fact it com-

prises only 2N variables and 3N constraints, as discussed in [41]. Several efficient approaches
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Figure 2: The mean demand patterns over time as in Berry [6].
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Figure 3: The lead time probability density functions.
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[41, 37, 32] exist for solving such a model in fraction of a second for planning horizons com-

prising hundreds of periods. Both the complete approach in Rossi et al. [31] and Heuristic

II operate on CP models that comprise 3N variables and 3N + 1 constraints. Therefore

all these models remain quite compact as the lead time and the planning horizon length

increase.

In order to assess the quality of the solutions produced by the two heuristics, we first

consider small instances over a 6-period planning horizon. We also limit the maximum length

of the stochastic lead time, so that the resulting instances are tractable for the complete

approach, which can therefore prove optimality in a reasonable time. In order to do so, we

only consider, in Fig. 2, the expected demand in periods {1, . . . , 6}, and, in Fig. 3, the lead

time probability density functions (LT) 1, 2, and 3. By varying the model parameters (a,

cv, α, etc.) as discussed in the previous paragraphs, we obtain a total of 144 instances.

The results obtained by running the exact approach in Rossi et al. [31] over the test bed

are shown in Table 9 and Table 10.2 The exact approach often required a significant amount

of time in order to solve these instances to optimality. More precisely, in the worst case it

ran for 105 hours before finding the optimal solution. On an average, the optimal solution

was found in 2 hours. For half of the instances, the optimal solution was found in less than

45 seconds; approximately 80% of the instances required less than 30 minutes to be solved;

and about 90% of the instances required less than 2 hours.

In Table 11, we compare the cost of the solutions found by the two heuristics to the

optimal ones. For convenience, results are also summarized in Table 7. Heuristic I found the

optimal solution only for 2.7% of the instances, while Heuristic II succeeded in finding the

optimal solution for about 25% of the instances. For half of the instances, the cost overhead

incurred by Heuristic I was below 3.1%, while that incurred by Heuristic II was significantly

lower, being only 0.54%. In Table 7 we provide further statistics, namely, the 80% and the

90% percentile. In the worst case, Heuristic I produced a solution 22% costlier than the

optimal one, while Heuristic II produced a solution that is 8.5% more costly. On an average,

the solution found by Heuristic I was 3.8% expensive than the optimal one, while Heuristic

II produced a solution that was 0.56% more expensive than the optimal. It should be noted

that, since none of the two heuristics fully dominates the other in terms of solution quality, if

they are used in conjunction (Table 7, column “H1
⊕

H2”) the overall performance improves.

In fact, the average cost overhead decreases to 0.48%, the maximum cost overhead is halved

2Note that Tables 9,. . .,15 are presented in the Appendix
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Cost Overhead
Instances H1 H2 H1

⊕

H2 Exact - 10 secs
2.7% 0 0 0 0
25% < 0.26% 0 0 0
50% < 3.1% < 0.54% < 0.29% 0
80% < 7% < 1% < 0.75% < 8.5%
90% < 10% < 2% < 1% < 16%
100% < 22% < 8.5% < 4.27% < 45.7%

Table 7: Statistics on the cost overhead, over a 6-period planning horizon, incurred by
Heuristic I (H1), Heuristic II (H2), a strategy that combines H1 and H2 (H1

⊕

H2), and a
strategy that limits to 10 seconds the run time of the exact approach (Exact - 10 secs). The
cost overhead is expressed in percentage of the optimal policy cost.

to 4.27%, and also the other quantiles, as shown in Table 7, significantly improve.

In Table 12, we present the run-times for the two heuristics. It is easy to observe that for

all the instances Heuristic II was faster than Heuristic I. Nevertheless, both the heuristics

did not require more than a few seconds to solve any of the instances. More precisely, the

maximum run time observed is 8.5 seconds.

It might be argued that the exact approach in Rossi et al. [31] may converge quickly to

good solutions and therefore be used as a heuristic approach by simply limiting the run time

and collecting the best solution found within the given time limit. Since the maximum run

time observed for our heuristic methods over the given test bed is 8.5 seconds, we allocated

a run time of 10 seconds to the exact approach and observed the cost difference between the

optimal solution produced by the exact approach without a time limit and the best solution

that this approach could find in the given time limit of 10 seconds. In Table 13 we present

cost differences, in percentage of optimal costs. For convenience, we also summarized the

results in Table 7, column “Exact - 10 secs”. The exact approach with a 10 seconds limit

was able to reach the optimal solution for more than 50% of the instances. Nevertheless,

the performance of this heuristic strategy quickly deteriorates when we consider the 30 most

difficult instances. For 20% of the instances, the error exceeded 8.5%. For 10% of the

instances, the error exceeded 16%. In the worst case, the error reached 45.7%. On an

average, the solution found by this strategy was 4.8% more expensive than the optimal one.

As shown, both Heuristic I and II produced better average and worst case results. In the

light of these results, it is clear that imposing a time limit to the exact approach in Rossi et

al. [31] does not constitute a viable heuristic strategy. It is should be also noted that longer
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planning horizons exacerbate the poor performance of this heuristic.

In order to assess the scalability of the two heuristics, we now consider the full demand

patterns in Fig. 2, therefore we now run tests over a 15-period planning horizon. In addition,

we also consider all the 5 possible discrete probability density functions shown in Fig. 3

(therefore LT ranges now in {1, . . . , 5}) and we vary the remaining model parameters (a, h,

cv and α) as discussed before. By doing so, we obtain a total of 240 instances. In Table 14

and Table 15 we compare, respectively, the run times and the cost of the solutions found by

the two heuristics for this new set of instances. Since these instances are intractable for the

exact approach, we will only compare the two heuristics among each other.

Over the 240 instances considered, Heuristic I produced the best solution only 25% of

the times. In all the other cases, Heuristic II found a better solution (75% of the instances).

In the worst case, Heuristic I produced a solution that was 14.6% more costly than the one

obtained by using Heuristic II. Heuristic II, in contrast, produced a solution that was only

3.5% more costly than the one found by Heuristic I, in the worst case. On an average, for

the instances in which Heuristic I could not produce the best solution, the solution produced

was 3.66% more costly than that produced by Heuristic II; for those instances for which

Heuristic II could not find the best solution, the solution found by this heuristic was only

0.80% more costly than that produced by Heuristic I.

From this comparison, and from the previous discussion, it is possible to observe that

Heuristic II typically performs better than Heuristic I in terms of quality of the solution

produced. Nevertheless, in terms of run times (Table 8), the picture is different. In fact,

Heuristic I maintains good performances over all the instances in the 15-period planning

horizon test bed. More specifically, the average run time for Heuristic I was 30 seconds,

in contrast to an average run time of about 16 minutes for Heuristic II. In the worst case,

Heuristic I took less than 3 minutes to complete the search, while Heuristic II completed the

search in 1 hour and 10 minutes. About 50% of the instances could be solved by Heuristic I

in less than 25 seconds, in contrast to the 11 minutes required by Heuristic II. Furthermore,

we observed that 80% of the instances required less than 40 seconds in order to be solved

by using Heuristic I, in contrast to the 30 minutes required by Heuristic II. Finally, the 90%

quantile was less than a minute for Heuristic I and about 35 minutes for Heuristic II.
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Run time
Instances H1 H2

25% 0 0
50% < 25 seconds < 11 minutes
80% < 40 seconds < 30 minutes
90% < 1 minute < 35 minutes
100% < 3 minutes < 1 hour and 10 minutes

Table 8: Statistics on the run times incurred by Heuristic I (H1) and Heuristic II (H2), over
a 15-period planning horizon.

8. Summary and Conclusions

We addressed the computation of near-optimal replenishment cycle policy parameters under

non-stationary stochastic demand, stochastic supplier lead time and service-level constraints.

Two hybrid heuristic algorithms that blend Constraint Programming and Local Search were

proposed.

Firstly, we compared these two heuristics for small instances against an exact method.

In our experiments, Heuristic I was within 3.8% of the optimal, while Heuristic II was within

0.56% of the optimal. In addition, when used in conjunction, the two heuristics were within

0.48% of the optimal. In terms of computational time, the average run time for Heuristic I,

Heuristic II and the Optimal solution is 2.96 seconds, 0.75 seconds and 2 hours respectively.

The results proved that Heuristic II typically performs better than Heuristic I in terms of

quality of the solutions produced, by achieving a very little cost overhead.

Secondly, the two heuristics were tested and compared with each other, in terms of both

solution quality and run time over a set of larger instances that are intractable for the exact

approach. In terms of solution quality, Heuristic II performed better and was on average

3% better than the performance of Heuristic I, while the average run times for Heuristic I

and Heuristic II were 30 seconds and 16 minutes respectively. The results confirmed that

Heuristic I typically produces lower quality solutions than Heuristic II, but also that Heuristic

I runs much faster than Heuristic II.

We can conclude that, if run time is a critical aspect, Heuristic I may be a viable choice,

while if the quality of the solution produced is a major concern, then Heuristic II (or a

combination of the two heuristics) should be chosen, as it achieves high quality solutions

and is orders of magnitude faster than the exact approach.
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a = 100 a = 175 a = 250
cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3

Set LT α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95

1
1 620 682 640 728 770 833 797 893 920 983 947 1043
2 677 764 686 826 834 914 836 976 970 1042 986 1126
3 703 820 738 869 853 967 888 1020 970 1042 1030 1138

2
1 715 783 745 847 895 973 937 1051 1045 1123 1087 1201
2 803 961 838 1028 1028 1131 1057 1215 1187 1281 1207 1365
3 903 1025 953 1103 1057 1243 1105 1317 1207 1383 1255 1467

3
1 772 854 798 924 966 1052 1016 1148 1116 1202 1166 1298
2 836 1032 886 1098 1061 1182 1100 1280 1214 1332 1250 1430
3 889 1087 950 1162 1065 1278 1137 1362 1215 1378 1287 1504

4
1 530 590 560 650 680 740 710 800 808 886 860 950
2 576 662 588 716 726 811 738 866 808 886 874 994
3 545 678 600 734 695 811 750 884 808 886 874 994

Table 9: Exact approach, optimal policy costs, 6-period planning horizon.

a = 100 a = 175 a = 250
cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3

Set LT α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95

1
1 20 46 15 47 0.98 2.5 0.86 3.7 0.39 0.72 0.52 1.2
2 210 582 142 793 4.4 16 3.2 24 0.66 1.9 0.80 4.5
3 3188 15570 4258 18496 27 243 35 318 0.66 2.8 2.0 19

2
1 210 583 212 934 7.2 20 9.4 37 1.1 2.9 1.4 4.8
2 1611 14409 1993 23781 150 521 148 935 16 43 13 76
3 46082 88934 62789 132963 794 16092 1224 24845 49 537 82 943

3
1 571 1800 436 2413 28 69 39 153 3.3 8.3 4.3 16
2 1866 16488 2486 20712 340 1176 379 2016 17 115 14 234
3 70805 216835 104318 380934 2630 49724 6767 79378 110 1261 208 5472

4
1 3.6 6.1 3.1 9.5 0.42 1.2 0.69 1.9 0.19 0.53 0.44 1.1
2 52 211 32 292 1.4 12 1.2 15 0.19 0.53 0.49 1.4
3 90 2684 304 4139 2.0 40 7.7 90 0.20 0.53 0.47 1.4

Table 10: Exact approach, run times (secs), 6-period planning horizon.
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a = 100 a = 175 a = 250
cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3

α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95
Set LT H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2

1
1 3.4 0.48 0.44 0 3.1 0.63 1.4 0.55 3.4 0.39 0.12 0.36 4.6 0.38 0.11 0.67 2.7 0.33 0.10 0.31 4 0.32 0 0.58
2 5.0 0.44 0.52 0.79 5.4 0.87 0.85 0.97 3.2 0.48 0.44 0.66 4.4 0.72 0.82 0.82 4.2 0 0.19 0 4 0.61 0 0.71
3 22 0 0.12 3.3 8.0 0.54 0.12 4.1 5.0 0 0.21 0 4.6 0.45 0.10 4.2 7.6 0 0.19 0 5 0 0.09 0

2
1 4.2 0.56 0.77 0.51 6.7 0.27 2.7 0.71 4.9 0.67 0.31 0.31 7.5 0.64 0.10 0.29 4.2 0.57 0.27 0.27 6 0.55 0.08 0.25
2 14 0.50 1.2 0.94 14 1.1 1.6 0.58 5.6 0.39 0.27 0.18 6.0 0.85 0.25 0.49 4.1 0.17 0.23 0.16 5 0.75 0.22 0.44
3 2.3 0 6.9 0.68 4.0 0.10 7.7 1.1 13 0 0.16 0.80 7.1 0 0 1.2 4.8 0 0.14 0 6 0 0.07 1.1

3
1 2.8 0.78 0.35 0.70 3.9 0.75 0.22 0.65 5.1 0.62 1.2 0.57 3.6 0.30 0.26 0.52 4.4 0.54 0.17 0.50 5 0.26 0.23 0.46
2 15 2.0 0.29 0.78 8.9 2.6 2.3 0.82 6.4 1.0 0.25 0.68 4.7 0.91 0.47 0.31 5.4 0.66 0.23 0.60 4 0.80 0.28 0.28
3 13 4.3 4.0 6.0 10 2.4 4.5 6.3 8.8 3.5 0.16 1.9 8.9 0 0.22 1.8 7.8 3.0 0.15 0 7 0 0.07 0

4
1 5.7 0.38 0.34 1.0 9.3 1.1 1.2 1.2 4.4 0.29 0.27 0.81 6.6 0.85 0.12 1.0 6.4 0 0.56 0 5 0.70 0.11 0.84
2 5.2 0.69 0.76 1.2 9.4 1.0 0.42 1.1 4.1 0.55 0.49 0 6.1 0.81 0.35 0.92 10 0 0.45 0 7 0 0.10 0
3 21 0 1.2 8.6 9.5 0 0.82 8.2 10 0 0.37 0 10 0 0.68 4.0 10 0 0.34 0 12 0 0.10 0

Table 11: Additional cost, in % of the cost of the optimal policy, incurred if Heuristic I (H1) or Heuristic II (H2) are used,
6-period planning horizon.

a = 100 a = 175 a = 250
cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3

α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95
Set LT H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2

1
1 3.5 0.72 2.4 0.16 1.2 0.14 2.8 0.16 1.2 0.11 1.7 0.13 0.88 0.34 1.8 0.20 1.3 0.39 1.2 0.36 0.91 0.69 1.4 0.14
2 3.9 0.72 3.5 0.33 3.0 0.56 5.2 0.41 1.8 0.19 2.4 0.27 2.3 0.45 1.5 0.27 1.6 0.30 1.8 0.70 2.0 1.0 1.8 0.67
3 3.4 0.36 4.4 1.3 3.5 1.2 2.2 1.1 2.3 0.27 2.2 1.8 2.8 0.49 2.1 1.27 1.5 0.70 1.4 0.69 1.3 0.77 1.2 1.5

2
1 2.8 0.45 3.2 0.17 2.4 0.20 3.2 0.20 1.8 0.17 2.4 0.55 2.4 0.17 2.6 0.20 1.8 0.52 2.1 0.44 2.0 0.16 2.5 0.50
2 3.8 0.89 2.9 0.66 4.7 0.77 3.2 1.5 3.5 0.70 3.4 0.95 3.6 0.38 3.4 1.1 2.2 0.83 2.2 0.94 2.3 0.39 2.6 1.0
3 3.3 0.83 3.7 2.0 4.4 1.4 4.3 1.7 3.1 1.5 2.7 2.5 3.8 1.5 3.4 1.6 3.0 0.97 2.0 0.88 2.7 1.5 3.1 1.3

3
1 2.7 0.53 3.8 0.78 2.4 0.16 4.4 0.20 3.4 1.2 3.7 0.58 1.5 0.55 3.6 0.70 2.3 0.41 2.0 0.31 2.4 0.47 4.6 0.34
2 4.3 0.80 6.4 1.7 3.2 0.88 5.7 1.0 3.8 1.1 4.3 0.67 2.9 0.78 3.9 1.2 4.1 0.69 2.5 0.91 3.0 0.61 4.1 0.94
3 7.7 1.1 5.5 2.4 6.3 1.4 5.5 3.4 4.0 2.6 4.5 1.6 4.8 1.4 3.5 1.1 3.7 1.2 2.1 1.3 4.0 0.36 5.6 1.3

4
1 2.5 0.33 2.6 0.39 2.8 0.33 3.0 0.38 2.4 0.16 2.1 0.31 1.3 0.23 2.7 0.39 1.3 0.31 1.4 0.34 0.7 0.09 1.7 0.30
2 3.2 0.59 4.0 0.74 3.9 0.70 3.0 0.58 2.7 0.16 2.9 0.50 1.7 0.72 3.9 0.70 2.0 0.50 2.1 0.55 2.1 0.36 2.3 0.17
3 3.8 0.49 8.5 0.61 3.2 0.63 4.8 2.3 2.6 0.16 2.7 1.1 4.0 0.55 2.9 1.2 1.4 0.16 1.3 0.78 1.8 0.45 3.3 0.47

Table 12: Heuristic I (H1) and Heuristic II (H2) run times (secs), 6-period planning horizon.
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a = 100 a = 175 a = 250
cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3

Set LT α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95

1
1 0 0 0 2.0 0 0 0 0 0 0 0 0
2 1 2.3 0 0.85 0 0 0 0 0 0 0 0
3 12 8.7 6.7 10 0.59 0 0 4.2 0 0 0 0

2
1 4.2 5.1 5.6 6.3 0 0 0 0 0 0 0 0
2 42 28 45 31 1.3 15 22 17 0 2.4 0 1.6
3 26 20 28 22 15 5.2 17 8.4 7.1 0 9.2 2.4

3
1 5.7 7 8.5 8 0 1.1 0 0 0 0 0 0
2 12 17 7 17 2.8 3.9 0 11 0 3.4 0 1.6
3 25 12 24 14 12 1.9 12 4.9 2.5 0 5.6 0

4
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 2.9 0 0 0 0 0 0 0 0
3 11 0 5 4.5 0 0 0 0 0 0 0 0

Table 13: Exact approach with a run time limited to 10 seconds. Additional cost, in % of the cost of the optimal policy.
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a = 100 a = 175 a = 250
cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3

α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95
Set LT H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2

1

1 1.5 0 0.5 0 1.7 0 0 0.21 0.68 0 0 0.45 1.2 0 0 0.59 1.4 0 0 0.50 1.7 0 0 0.54
2 2.0 0 0 0.18 1.1 0 0.04 0 1.3 0 0 0.84 1.5 0 0 0.91 1.5 0 0 0.37 2.2 0 0 0.85
3 1.6 0 1.4 0 2.7 0 0 0.12 1.5 0 0 0 0.76 0 0 0.71 2.2 0 0 0.93 1.4 0 0 0.97
4 9.8 0 3.4 0 11 0 2.6 0 11 0 1.0 0 5.0 0 2.3 0 2.6 0 1.3 0 1.6 0 0.33 0
5 18 0 6.1 0 5.1 0 2.1 0 16 0 2.4 0 9.9 0 0 0.94 8.9 0 1.3 0 9.6 0 0.53 0

2

1 0.9 0 0 0.04 1.6 0 0 0 1.3 0 0 0.43 0.82 0 0 0.5 0.88 0 0 0.09 1.1 0 0 0.49
2 6.2 0 0.5 0 4.0 0 0.9 0 3 0 0 0.48 2.4 0 0 0 3.0 0 0 0.55 0.77 0 0 0.58
3 5.4 0 4.3 0 1.0 0 1.1 0 1.0 0 2.5 0 2.0 0 0.65 0 1.9 0 2.1 0 1.5 0 0.44 0
4 2.9 0 5.7 0 1.7 0 2.5 0 3.5 0 2.9 0 3.2 0 3.5 0 2.5 0 2.6 0 3.0 0 2.88 0
5 9.4 0 6.9 0 1.1 0 0 3.3 14 0 0 0.29 0.09 0 0 0.19 8.1 0 1.6 0 3.7 0 0 0.84

3

1 3.0 0 0 0.44 4.0 0 0 0 2.4 0 0 0 4.8 0 0.25 0 4.5 0 0 0.51 5.3 0 0 0.73
2 8.6 0 0.5 0 5.5 0 0.42 0 6.0 0 0 0.54 2.4 0 0 0 3.6 0 0 0.48 4.3 0 0.32 0
3 8.1 0 0 1.4 8.5 0 0 0 6.2 1.1 0.45 0 6.1 0 0 3.5 5.2 0 1.7 0 5.9 0 0 3.4
4 15 0 3.3 0 11 0 0 0 6.0 2.6 2.4 0 9.6 0 0 0.32 5.3 0 2.2 0 9.5 0 0 0.27
5 6.4 0 0.8 0 1.8 0 0 0 14 0.73 1.6 0 4.3 0 0 2.8 7.5 0 1.5 0 4.1 0 0 1.4

4

1 2.7 0 0.0 0.65 3.5 0 0 0.82 0.82 0 0 0.47 2.1 0 0 0.71 2.4 0 0 0.20 3.0 0 0 0.61
2 2.2 0 1.9 0 3.7 0 0.55 0 2.6 0 0 0.70 3.1 0 0 0.86 2.3 0 0 0.44 2.7 0 0 0.81
3 2.2 0 0.3 0 3.7 0 1.7 0 2.9 0 0 1.3 3.7 0 0 0.65 3.2 0 0 0.88 3.8 0 0 0.58
4 14 0 7.0 0 8.0 0 3.9 0 5.0 0 6.2 0 1.5 0 5.3 0 5.5 0 3.0 0 3.1 0 2.85 0
5 8.7 0 4.6 0 11 0 3.0 0 5.6 0 3.2 0 6.1 0 0.64 0 1.2 0 0 0.03 2.8 0 0 0.03

Table 14: Cost comparison between Heuristic I (H1) and Heuristic II (H2). A value of 0 is associated with the heuristic that
has found the best solution, the other value denotes the cost difference — in percentage of the best solution — achieved by the
other heuristic, 15-period planning horizon.
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a = 100 a = 175 a = 250
cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3 cv = 0.2 cv = 0.3

α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95 α = 0.85 α = 0.95
Set LT H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2 H1 H2

1

1 24 161 17 224 18 195 15 218 12 150 16 196 10 127 18 194 21 69 21 102 14 60 21 104
2 26 446 33 420 14 311 28 404 23 327 30 421 12 275 27 405 28 210 36 360 19 153 30 355
3 26 602 33 763 24 568 43 741 29 588 36 762 19 560 36 742 40 437 49 730 28 397 46 702
4 36 1096 53 1294 46 1088 51 1516 39 1098 43 1296 19 1089 41 1439 43 979 56 1291 38 935 46 1431
5 48 1874 48 2178 37 1902 66 2391 30 1870 42 2190 31 1909 47 2391 54 1646 50 2191 50 1678 44 2402

2

1 11 295 16 328 14 281 15 327 17 299 15 331 10 282 16 330 12 255 23 311 12 231 21 310
2 25 520 29 669 18 472 28 648 25 524 35 674 18 480 29 653 24 523 29 673 16 473 37 651
3 28 959 35 1345 24 924 51 1219 23 961 35 1272 25 930 35 1220 26 961 40 1272 25 925 53 1217
4 32 1837 99 2105 35 1826 27 2443 36 1836 59 2099 32 1825 38 2449 31 1843 71 2103 36 1825 84 2447
5 37 3129 48 3470 46 3223 36 4206 38 3122 46 3479 38 3207 73 4221 30 3123 66 3475 33 3213 67 4267

3

1 21 196 21 218 18 189 21 220 13 120 21 172 12 122 19 194 12 43 18 80 6 50 17 110
2 35 359 32 442 27 342 39 440 28 323 26 438 19 318 25 439 20 178 24 308 17 165 22 357
3 33 629 33 793 36 605 38 811 25 587 34 792 25 576 26 809 22 360 30 689 22 366 24 761
4 36 1219 42 1303 32 1202 29 1549 24 1207 30 1304 32 1190 31 1551 21 883 20 1283 27 853 28 1519
5 30 1800 31 2076 30 1915 34 2422 26 1794 20 2070 28 1906 23 2421 19 1559 17 2044 22 1697 19 2418

4

1 11 200 12 219 9 182 12 217 12 98 22 141 9 75 17 137 15 39 17 64 4 29 16 61
2 18 343 22 400 17 322 27 387 26 313 29 401 21 283 26 385 20 153 24 276 18 128 22 270
3 13 547 27 722 21 530 39 706 19 515 29 721 26 493 30 705 21 290 29 616 21 278 27 605
4 65 1018 153 1347 23 992 65 1353 30 1016 46 1345 32 1045 48 1351 33 784 35 1289 25 706 39 1288
5 25 1709 40 2067 22 1720 52 2126 139 1702 46 2069 47 1717 37 2124 28 1465 41 2055 36 1471 53 2121

Table 15: Heuristic I (H1) and Heuristic II (H2) run times (secs), 15-period planning horizon.
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In this paper we address the general multi-period production/inventory problem with non-stationary

stochastic demand and supplier lead-time under service level constraints. A replenishment cycle policy

(Rn,Sn) is modeled, where Rn is the nth replenishment cycle length and Sn is the respective order-up-to-

level. We propose a stochastic constraint programming approach for computing the optimal policy

parameters. In order to do so, a dedicated global chance-constraint and the respective filtering

algorithm that enforce the required service level are presented. Our numerical examples show that a

stochastic supplier lead-time significantly affects policy parameters with respect to the case in which

the lead-time is assumed to be deterministic or absent.

& 2010 Published by Elsevier B.V.
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1. Introduction

An interesting class of production/inventory control problems
is the one that considers the single location, single product case
under stochastic demand. One of the well-known policies that can
be adopted to control such a system is the ‘‘replenishment cycle
policy’ (R,S). Under the non-stationary demand assumption this
policy takes the form (Rn,Sn), where Rn denotes the length of the
nth replenishment cycle, and Sn the order-up-to-level value for
the nth replenishment. This easy to implement inventory control
policy yields at most 2N policy parameters fixed at the beginning
of an N-period planning horizon. For a discussion on inventory
control policies see Silver et al. (1998). The replenishment cycle
policy provides an effective means of damping the planning
instability. Furthermore, it is particularly appealing when items
are ordered from the same supplier or require resource sharing. In
such a case all items in a coordinated group can be given the same
replenishment period. Periodic review also allows a reasonable
prediction of the level of the workload on the staff involved and is
particularly suitable for advanced planning environments.
For these reasons, as stated by Silver et al. (1998), (R,S) is a
93
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97
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 Ppopular inventory policy. Due to its combinatorial nature, the
computation of (Rn,Sn) policy parameters is known to be a difficult
problem to solve to optimality. An early approach proposed by
Bookbinder and Tan (1988) is based on a two-step heuristic method.
Tarim and Kingsman (2004, 2006) and Tempelmeier (2007) propose
a mathematical programming approach to compute policy para-
meters. Tarim and Smith (2008) give a computationally efficient
constraint programming formulation. An exact formulation and a
solution method are presented in Rossi et al. (2008).

All the above mentioned works assume either zero or a fixed
(deterministic) supplier lead-time (i.e., replenishment lead-time).
However, the lead-time uncertainty, which in various industries is an
inherent part of the business environment, has a detrimental effect on
inventory systems. For this reason, there is a vast inventory control
literature analysing the impact of supplier lead-time uncertainty on
the ordering policy (Whybark and Williams, 1976; Speh and
Wagenheim, 1978; Nevison and Burstein, 1984). A comprehensive
discussion on stochastic supplier lead-time in continuous-time
inventory systems is presented in Zipkin (1986). Kaplan (1970)
characterises the optimal policy for a dynamic inventory problem
where the lead-time is a discrete random variable with known
distribution and the demands in successive periods are assumed to
form a stationary stochastic process. Since tracking all the outstanding
orders through the use of dynamic programming requires a large
multi-dimensional state vector, Kaplan assumes that orders do not
cross in time and supplier lead time probabilities are independent of
the size/number of outstanding orders (for details on order-crossover
see Hayya et al., 1995).
99

tionary replenishment cycle inventory policy under stochastic
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The assumption that orders do not cross in time is valid for
systems where the supplier production system has a single-server
queue structure operating under a FIFO policy. Nevertheless,
there are settings in which this assumption is not valid and orders
cross in time. This has been recently investigated in Hayya et al.
(2008), Bashyam and Fu (1998) and Riezebos (2006). As Riezebos
underscores, the types of industries that have a higher probability
of facing order crossovers are either located upstream in the
supply chain, or use natural resources, or order strategic materials
from multiple suppliers or from abroad. In a case study, he
showed that the potential cost savings realized by taking order
crossovers into account were approximately 30%. Unfortunately,
he remarks, modern ERP systems are not able to handle order
crossovers effectively.

In a recent work, Babaı̈ et al. (2009) analyze a dynamic
re-order point control policy for a single-stage, single-item
inventory system with non-stationary demand and lead-time
uncertainty. To the best of our knowledge, there is no complete or
heuristic approach in the literature that addresses the
computation of (Rn,Sn) policy parameters under stochastic
supplier lead time and service level constraints. Computing
optimal policy parameters under these assumptions is a hard
problem from a computational point of view. We argue that
incorporating both a non-stationary stochastic demand and a
stochastic supplier lead time—without assuming that orders do
not cross in time—in an optimization model is a relevant and
novel contribution.

In this work, we propose a stochastic constraint programming
(Walsh, 2002) model for computing optimal (Rn,Sn) policy
parameters under service level constraints and stochastic supplier
lead times. In stochastic constraint programming, complex
non-linear relations among decision and stochastic variable-
s—such as the chance-constraints that enforce the required
service level—can be effectively modeled by means of global

chance-constraints (Hnich et al., 2009). Examples of global chance-
constraints applied to inventory control problems can be found in
Rossi et al. (2008) and Tarim et al. (2009). Our model incorporates
a dedicated global chance-constraint that enforces, for each
replenishment cycle scheduled, the required non-stockout prob-
ability. The model is tested on a set of instances that are solved to
optimality under a discrete stochastic supplier lead time with
known distribution.

The paper is organized as follows. In Section 2 we provide the
formal definition of the problem and we discuss the working
assumptions. In Section 3 we provide a deterministic reformula-
tion for the chance-constraints that enforce the required service
level. In Section 4 we introduce stochastic constraint program-
ming and we discuss how it is possible to embed the deterministic
reformulation of the chance-constraints within a global chance-
constraint. This global chance-constraint is then enforced in the
stochastic constraint programming model for computing the
optimal policy parameters. In Section 5 we present our computa-
tional experience on a set of instances. Finally, in Section 6, we
draw conclusions.
 C
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117
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UN2. Problem definition

We consider the uncapacitated, single location, single product
inventory problem with a finite planning horizon of N periods and
a demand dt for each period tAf1, . . . ,Ng, which is a random
variable with probability density function gt (dt). We assume that
the demand occurs instantaneously at the beginning of each time
period. The demand we consider is non-stationary, that is it can
vary from period to period, and we also assume that demands in
different periods are independent.
Please cite this article as: Rossi, R., et al., Computing the non-sta
supplier lead-times. International Journal of Production Economics (
ROOF

Following Eppen and Martin (1988), an order placed in period t

will be received after lt periods, where lt is a discrete random
variable with probability mass function ftð�Þ. This means that an
order placed in period t will be received after k periods with
probability ft(k). We shall assume that there is a maximum lead-
time L for which

PL
k ¼ 0 ftðkÞ ¼ 1. Therefore the possible lead-time

lengths are limited to L¼ f0, . . . ,Lg and the probability mass
function is defined on the finite set L. Note that lead-times are
mutually independent and each of them is also independent of
the respective order quantity.

A fixed delivery cost a is incurred for each order. A linear
holding cost h is incurred for each unit of product carried in stock
from one period to the next. Without loss of generality, we will
adopt the following assumption that concerns the accounting of
inventory holding costs: we will charge an inventory holding cost
at the end of each period based on the current inventory position,
rather than the current inventory level. This will reflect the fact
that interests are charged not only on the actual amount of items
in stock, but also on outstanding orders. Doing so often
makes sense since companies may assess holding cost on their
total invested capital and not simply on items in stock. A
further and detailed justification for this can be found in Hunt
(1965).

We assume that it is not possible to sell back excess items to
the vendor at the end of a period and that negative orders are not
allowed, so that if the actual stock exceeds the order-up-to-level
for that review, this excess stock is carried forward and not
returned to the supply source. However, such occurrences are
regarded as rare events (see the discussion in Bookbinder and Tan,
1988 and Tarim and Kingsman, 2004) and accordingly the cost of
carrying this excess stock and its effect on the service levels of
subsequent periods are ignored.

As a service level constraint we require that, with a probability
of at least a given value a, at the end of each period the net
inventory will be non-negative. Our aim is to minimize the
expected total cost, which is composed of ordering costs and
holding costs, over the N-period planning horizon, satisfying the
service level constraints by fixing the future replenishment
periods and the corresponding order-up-to-levels at the
beginning of the planning horizon.

The actual sequence of actions is adopted from Kaplan (1970).
At the beginning of a period, the inventory on hand after
all the demands from previous periods have been realized is
known. Since we are assuming complete backlogging, this
quantity may be negative. Also known are orders placed in
previous periods which have not been delivered yet. On the basis
of this information, an ordering decision is made for the
current period. All the deliveries that are to be made during a
period are assumed to be made immediately after this ordering
decision and hence are on hand at the beginning of the period. In
summary, there are three successive events at the beginning of
each period. First, stock on hand and outstanding orders
are determined. Second, an ordering decision is made on the
basis of this information. Third, all supplier deliveries for the
current period, possibly including the most recent orders, are
received.
3. Non-stationary stochastic lead-time

Let us denote the inventory position (the total amount of stock
on hand plus outstanding orders minus back-orders) at the end of
period t as Pt. It directly follows that

Pt ¼ Itþ
X

fkj1rkr t,lkþk4 tg

Xk, ð1Þ
tionary replenishment cycle inventory policy under stochastic
2010), doi:10.1016/j.ijpe.2010.05.011
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Original Text:
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where It is the inventory level (stock on hand minus back-orders)
at the end of period t, Xk is the size of the replenishment order
placed in period k, XkZ0 (received in period k+ lk), and it is
assumed that I0 equals the initial inventory.

The general chance-constrained programming model for the
problem described in Section 2 is given below. The reader is
referred to Bookbinder and Tan (1988) for the zero lead-time
version of this problem.

min EfTCg ¼

Z
d1

. . .

Z
dN

XN

t ¼ 1

ðadtþhPtÞ

g1ðd1Þ . . . gNðdNÞdðd1Þ . . . dðdNÞ, ð2Þ

subject to

dt ¼
1 if Xt 40,

0 otherwise,

(
t¼ 1, . . . ,N, ð3Þ

Pt ¼ I0þ
Xt

k ¼ 1

ðXk�dkÞ t¼ 1, . . . ,N, ð4Þ

Pr Pt Z

X
fkj1rkr t,lk 4 t�kg

Xk

8<
:

9=
;Za t¼ Lþ1, . . . ,N, ð5Þ

Pt AR, Xt Z0, t¼ 1, . . . ,N, ð6Þ

where we comply with the following notation:

95
Plea
supp
Ef:g
 the expectation operator
97
TC
 total cost

dt
99
the demand in period t, a random variable with
probability density function, gt (dt)
a
 the fixed ordering cost (incurred when an order is placed)
101
h
 the proportional stock holding cost

lt
103
the lead-time length of the order placed in period t, a
discrete random variable with a probability mass function

ftð�Þ
105
dt

Da {0,1} variable that takes the value of 1 if a replenishment

occurs in period t and 0 otherwise
 E
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the objective function (Eq. (2)) minimizes the expected total
ordering and inventory holding cost. It should be noted that, by
charging holding cost on the inventory position rather than on the
inventory level, the objective function becomes particularly
simple and it resembles the one employed when the lead time
is zero. Eq. (3) states that if a replenishment occurs in period
t—i.e. the order quantity Xt is greater than 0—then the
corresponding indicator variable dt must take value 1. Eq. (4)
enforces the inventory conservation constraint for each period t.
This constraint is expressed in terms of the inventory position Pt.
Eq. (5) enforces the required service level in each period t, and it is
also expressed in terms of the inventory position Pt. Finally
Eq. (6) states that the inventory position in each period may
either be zero or take any positive/negative value (i.e. full
backorders) and that the order quantity is forced to be greater
or equal to 0.

Note that depending on the probabilities assigned to each lead
time length by the probability mass function, it may not be
possible, in general, to provide the required service level for some
initial periods. Nevertheless, by reasoning on a worst case
scenario, it will always be possible to provide the required service
level a starting from period L+1. Hence, the service level
constraints are enforced in periods L+1,y,N (see Eq. (5)).
se cite this article as: Rossi, R., et al., Computing the non-sta
lier lead-times. International Journal of Production Economics
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Consider a review schedule, which has m reviews
over the N period planning horizon with orders placed at
T1,T2,y,Tm, where TioTiþ1. In order to incorporate the
‘‘replenishment cycle policy’’ into this model, we express the
whole model in terms of a new set of decision variables, RTi

,
i¼1,y,m. Define

Pt ¼ RTi
�
Xt

k ¼ Ti

dk, TirtoTiþ1, i¼ 1, . . . ,m, ð7Þ

where RTi
(‘‘order-up-to-position’’) can be interpreted as the

inventory position up to which inventory should be raised after
placing an order at the ith review period Ti. By doing so, order
quantities Xt have to be decided only after the demands in the
former periods have been realized. Under such a policy the orders
Xt are all equal to zero except at replenishment periods
T1,T2,y,Tm.

The service level constraint has to be expressed as a relation
between the order-up-to-positions such that the overall service
level provided at the end of each period is at least a. In order to
express this service level constraint we propose a scenario-based
approach over the discrete random variables lt, t¼1,y,N. In a
scenario-based approach (Birge and Louveaux, 1997; Tarim et al.,
2006), a scenario tree is generated which incorporates all possible
realisations of discrete random variables into the model explicitly,
yielding a fully deterministic model under the non-anticipativity
constraints.

In our problem we can divide random variables into two sets:
the random variables fltjt¼ 1, . . . ,Ng, which represent lead-times,
and the random variables fdtjt¼ 1, . . . ,Ng, which represent
demands. We deal with each set in a separate fashion,
by employing a scenario-based approach for the lt and a
deterministic equivalent modeling approach for the dt variables.
This is possible since under a given scenario discrete random
variables are treated as constants. The problem is then reduced to
the general multi-period production/inventory problem with
dynamic deterministic lead-times and stochastic demands. It
should be noted that, although it has been assumed that the
supplier lead-time is zero in Tarim and Kingsman (2004), it is
possible to extend their model for the non-zero lead-time
situation without any loss of generality when the lead time is
deterministic and remains constant for each order. In the
Appendix we show how to model the situation in which the
lead time is deterministic and dynamic (i.e. it may take a
different deterministic value in each period). This more general
situation corresponds to what is observed within any given
scenario.

A scenario ot is a possible lead-time realization for all the
orders placed up to period t in a given review schedule. We
denote the probability of a scenario ot as Prfotg. Let lTi

ðotÞ be the
realized lead-time in scenario ot for the order placed in period Ti,
where i¼1,y,m. Finally, let Ot be the set of all the possible
scenarios ot . Note that

P
Ot

Prfotg ¼ 1 for all t¼1,y,N. We define
Tp(t) as the latest review before period t in the planning horizon,
for which we are sure that all the former orders, including the one
placed in Tp(t), have been delivered within period t. Under the
assumption that the probability mass function ftð�Þ is defined on a
finite set L, the index p(t) provides a bound for the scenario tree
size. In fact if the possible lead-time lengths in L are 0,y,L, the
earliest order that is delivered in period t with probability 1 under
every possible scenario ot is the latest placed in the span
1,y,t�L. Therefore since each scenario ot identifies the orders
that have been received before or in period t, it directly follows
that the number of scenarios in the tree that is needed to compute
the order-up-to-positions for periods t�L,y,t under any possible
tionary replenishment cycle inventory policy under stochastic
(2010), doi:10.1016/j.ijpe.2010.05.011
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review schedule is at most 2L, when we place L+1 orders in
periods t�L,y,t, but it may be lower if fewer reviews are planned.
In order to clarify this concept, a small numerical example is
provided in the Appendix.

The service level constraint at period t is always a relation over
at most L+1 decision variables RTi

that represent the order-up-to-
positions of the replenishment cycles covering the span t�L,y,t.
Let poðtÞ be the value of p(t) under a given scenario ot

when a review schedule is considered. In order to satisfy the
service level constraints in our original model, we require
that the overall service level under all the possible scenarios for
each set of at most L+1 decision variables is at least a or
equivalently,

X
ot AOt

Prfotg � GS RTpo ðtÞ
þ

X
fiji4poðtÞ,lTi

ðot Þr t�Tig

ðRTi
�RTi�1

Þ

0
@

1
AZa, t¼ Lþ1, . . . ,N,

ð8Þ

where S¼
Pt

k ¼ Tpo ðtÞ
dk�

P
fiji4poðtÞ,lTi

ðot Þr t�Tig
ðdTi�1

þ � � � þdTi�1Þ,

and GS( � ) is the cumulative distribution function of S. Further
details on the derivation of Eq. (8) are provided in the Appendix.

As the reader may notice, the service level constraints (Eq. (8))
are now fully deterministic constraints expressed only in terms of
the order-up-to-positions, RTi

. This makes it possible to replace
throughout the rest of the model the Pt variables with their
expected values ~Pt , as originally proposed in Bookbinder and Tan
(1988), since these affect only the objective function in which we
are considering expected values.

We can now express the whole model in terms of the new set
of decision variables Rt, t¼1,y,N. If there is no replenishment
scheduled for period t, that is if dt ¼ 0, then Rt must be equal to the
expected closing-inventory-position in period t�1, that is
Rt ¼

~Pt�1. If there is a review Ti in period t, Rt is simply the
order-up-to-position, RTi

, for this review. Therefore, the set of
the desired order-up-to-positions, fRTi

ji¼ 1, . . . ,mg, as required for
the solution to the problem, comprises those values of Rt for
which dt ¼ 1.

Hence, the complete deterministic equivalent model under the
replenishment cycle policy can be expressed as

min EfTCg ¼
XN

t ¼ 1

ðadtþh ~PtÞ ð9Þ

subject to

dt ¼ 0) Rt ¼
~Pt�1 t¼ 1, . . . ,N, ð10Þ

Rt Z
~Pt�1 t¼ 1, . . . ,N, ð11Þ

Rt ¼
~Ptþ

~dt t¼ 1, . . . ,N, ð12Þ

Eq. (8)(service level constraints,

Rt Z0, ~Pt Z0, dt Af0,1g t¼ 1, . . . ,N, ð13Þ

where fT1, . . . ,Tmg ¼ ftAf1, . . . ,Ngjdt ¼ 1g.
The model neatly resembles the original stochastic program-

ming formulation. The reader can easily notice that, while the
objective function and the remaining constraints in the model are
now deterministic and linear—thus they can be easily modeled by
means of existing mathematical programming packages—Eq. (8)
is deterministic but non-linear and it cannot be implemented in a
straightforward manner by using existing solvers. For this reason,
in the following section, we will introduce a stochastic constraint
Please cite this article as: Rossi, R., et al., Computing the non-sta
supplier lead-times. International Journal of Production Economics (
programming formulation that we will employ to solve the above
model.
4. A stochastic constraint programming approach

In this section, we aim to propose a stochastic constraint
programming approach for modeling and solving the model
discussed in the previous section. Firstly, we introduce the key
concepts in constraint programming and stochastic constraint
programming, the extension of constraint programming that
deals with problems of decision making under uncertainty.
Secondly, we introduce our stochastic constraint programming
model.
ROOF

4.1. Constraint reasoning

Constraint programming (CP) (Apt, 2003) is a declarative
programming paradigm in which relations between decision
variables are stated in the form of constraints. Informally
speaking, constraints specify the properties of a solution to be
found. The constraints used in constraint programming are of
various kinds: logic constraints (i.e. ‘‘x or y is true’’, where x and y

are boolean decision variables), linear constraints, and global

constraints (Régin, 2003). A global constraint captures a relation
among a non-fixed number of variables. One of the most well
known global constraints is the alldiff constraint (Régin, 1994),
that can be enforced on a certain set of decision variables
in order to guarantee that no two variables are assigned the same
value.

With each constraint, CP associates a filtering algorithm able to
remove provably infeasible or suboptimal values from the
domains of the decision variables that are constrained and,
therefore, to enforce some degree of consistency (see Rossi et al.,
2006). These filtering algorithms are repeatedly called until no
more values are pruned. This process is called constraint

propagation. In addition to constraints and filtering algorithms,
constraint solvers also feature some sort of heuristic search engine

(e.g. a backtracking algorithm). During the search, the constraint
solver exploits filtering algorithms in order to proactively prune
parts of the search space that cannot lead to a feasible or to an
optimal solution.

Stochastic constraint programming (SCP) was first introduced
in Walsh (2002) in order to model combinatorial decision
problems involving uncertainty and probability. According to
Walsh, SCP combines together the best features of CP (i.e. global
constraints, search heuristics, filtering strategies, etc.) and of
stochastic programming (Kall and Wallace, 1994) (i.e. stochastic
variables, chance-constraints, etc.). In addition to decision vari-
ables, SCP features stochastic variables. Furthermore, in SCP it is
possible to capture complex non-linear relations among decision
and stochastic variables by means of global chance-constraints

(Rossi et al., 2008; Hnich et al., 2009). Similarly to global
constraints, global chance-constraints incorporate efficient stra-
tegies for performing logical inference on these relations during
the search in order to enforce some degree of consistency through
constraint propagation.

In what follows we will introduce an SCP model for computing
(Rn,Sn) policy parameters under non-stationary stochastic de-
mand, lead time, and service level constraints. In order to capture
the service level constraints, a dedicated global chance-constraint
and the respective propagation logic are introduced and incorpo-
rated in the SCP model.
tionary replenishment cycle inventory policy under stochastic
2010), doi:10.1016/j.ijpe.2010.05.011

dx.doi.org/10.1016/j.ijpe.2010.05.011
Original Text:
Stochastic Programming (
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4.2. A stochastic constraint programming model

We now present an SCP formulation for computing (Rn,Sn)
policy parameters under stochastic lead times. Results from
Section 3 will be employed in the SCP formulation. More
specifically, in order to model the service level constraint (Eq.
(8)), a new global chance-constraint, serviceLevel(�), will be
defined. Such a constraint is needed to dynamically compute the
correct expected closing-inventory-positions f ~Pt jt¼ 1, . . . ,Ng on
the basis of the current replenishment plan, that is fdtjt¼ 1, . . . ,Ng
assignments.

The SCP model that incorporates our dedicated global chance-
constraint is therefore

min EfTCg ¼
XN

t ¼ 1

ða � dtþh � ~PtÞ ð14Þ

subject to

dt ¼ 0) ~Ptþ
~dt�

~Pt�1 ¼ 0 t¼ 1, . . . ,N, ð15Þ

~Ptþ
~dt�

~Pt�1Z0 t¼ 1, . . . ,N, ð16Þ

serviceLevelðd1, . . . ,dN , ~P1, . . . , ~PN ,g1ðd1Þ, . . . ,gNðdNÞ,f ð�Þ,aÞ, ð17Þ

~Pt Z0, dt Af0,1g t¼ 1, . . . ,N: ð18Þ

It should be noted that the domain of each ~Pt variable—as in the
zero lead time case (see Tarim and Smith, 2008)—is limited. In
fact, since the period demand variance is additive, the uncertainty
can only increase in the length of a replenishment cycle. Therefore
the longer a cycle is, the higher are the inventory levels that are
required to achieve a certain service level. It directly follows that a
single replenishment covering the whole planning horizon will
provide upper bounds for the expected period closing-inventory-
positions throughout the horizon.

We now describe the signature of the new constraint we have
introduced. serviceLevelð�Þ describes a relation between all the
decision variables in the model. It also accepts as parameters the
distribution of the demand in each period t, g(dt); the probability
mass function of the lead time f ð�Þ, which, without loss of
generality, is here assumed to be the same for all the periods; and
the required service level a.

A high-level pseudo-code for the propagation logic of
serviceLevelð�Þ is presented in Algorithm 1. Note that to keep
the description of the algorithm simple we assume here a
stochastic lead time l with probability mass function f(l) in every
period. The maximum lead time length is L.

In order to propagate this constraint, we consider every set of
consecutive replenishment cycles covering at least L+1 periods
(that is the one of interest plus L former periods) and having the
smallest possible cardinality in terms of replenishment cycle
number (Algorithm 1, line 5). Obviously, to identify such a group
of cycles, we have to wait until, during the search, a subset of
consecutive dt variables is assigned (Algorithm 1, line 10). Then, in
order to verify if the service level constraint is satisfied for the last
UN
Table 1
Optimal solution.

E{TC}: 356

Period (t) 1 2
~dt

36 28

Rt 125 124

dt 1 1

Shortage probability – –

Please cite this article as: Rossi, R., et al., Computing the non-sta
supplier lead-times. International Journal of Production Economics
period in this group, we check that for each replenishment
cycle in the group identified at least one decision variable ~Pt

is assigned (Procedure checkBuffers, line 3 and line 22). If
this is the case the partial policy for the span is completely
defined and, by recalling that Rt ¼

~Ptþ
~dt , its feasibility can

be checked by using the condition in Eq. (8) (Procedure
checkBuffers, line 25). If the condition is not satisfied we
backtrack (Procedure checkBuffers, line 26). Notice that such a
condition involves for each period only a subset of all the decision
variables in the model, which means that our constraint is able to
detect infeasible partial assignments, i.e. nogoods (Rossi et al.,
2006).

Finally, it should be emphasized that, during the search, any CP
solver will be able to exploit constraint propagation and detect
infeasible or suboptimal assignments with respect to the other
constraints in the model. Furthermore, suboptimal solutions may
be pruned by using dedicated cost-based filtering methods (Focacci
et al., 1999; Tarim et al., 2009).
Algorithm 1. propagate
tionar
(2010)
input: d1, . . . ,dN , ~P1, . . . , ~PN , a, d1,y,dN, l, L, N
1
 begin
P

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16
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20
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23

24
ROOF
cycles’fg;

pointer’1;

periods’0;

For each period i in 2, . . . ,N do

if di is not assigned then

cycles’fg;

periods’0;

pointer¼�1;

66664
elseif di is assigned to 1 then

if pointera�1 then

cycle’a replenishment cycle over fpointer, . . . ,i�1g;

add cycle to cycles;

$

if periods ZL then�
checkBuffersðÞ;

pointer’i;

periods’periodsþ1;

666666666666666664
else�

periods’periodsþ1;

66666666666666666666666666666666666664
if pointer a�1 then

cycle’a replenishment cycle over fpointer, . . . ,Ng;

add cycle to cycles;

$

if periodsZL then�
checkBuffersðÞ;

�������������������������������������������������������������������

25
 end
116

117

118

119

120

3 4 5

42 33 30

129 87 55

1 1 1

5% 5% 5%

y replenishment cycle inventory policy under stochastic
, doi:10.1016/j.ijpe.2010.05.011

dx.doi.org/10.1016/j.ijpe.2010.05.011
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Fig. 1. Optimal policy under stochastic lead time, ft(k)¼{0.3, 0.2, 0.5}.
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4.2.1. An example

We assume an initial null inventory level and a normally
distributed demand with a coefficient of variation st= ~dt ¼ 0:3 for
each period tAf1, . . . ,5g. The expected values for the demand in
each period are: {36, 28, 42, 33, 30}. The other parameters are
a¼1, h¼1, a¼ 0:95. We consider for every period t in the
planning horizon the following lead time probability mass
function ft(k)¼{0.3(0), 0.2(1), 0.5(2)}, which means that we
receive an order placed in period t after {0,y,2} periods with
the given probability (0 periods: 30%; 1 period: 20%; 2 periods:
50%). It is obvious that in this case we will always receive the
order at most after 2 periods. In Table 1 (Fig. 1) we show the
optimal solution found by the SCP model. We now want to show
that the order-up-to-positions—computed in this example by
using Eq. (8)—satisfy every service level constraint in the model.
We assume that for the first 2 periods no service level constraint
is enforced, since it is not possible to fully control the inventory in
the first 2 periods. Therefore we enforce the required service level
on periods 3, 4 and 5, that is Eq. (8) for t¼3,y,N. Let us verify that
the given order-up-to levels satisfy this condition for each of these
three periods. Since we know the probability mass function ftð�Þ

for each period t in the planning horizon we can easily compute
the probability PrðotÞ for each scenario ot AOt . We have four of
these scenarios for each period tAf3, . . . ,Ng, since we are placing
an order in every period:
�
 107

109

111

P
s

CTES1, PrfS1g ¼ 0:15¼ ð0:3þ0:2Þ0:3; in this scenario at period t all
the orders placed are received. That is the order placed in
period t�1 is received immediately (probability 0.3), or after
one period (probability 0.2), while the order placed in period t

is received immediately (probability 0.3)

�

112

113

114
ORRES2, PrfS2g ¼ 0:35¼ ð0:3þ0:2Þð0:2þ0:5Þ; in this scenario at
period t we do not receive the last order placed in period t.
That is the order placed in period t�1 is received immediately
(probability 0:3), or after one period (probability 0.2), while the
order placed in period t is not received immediately, therefore
it is received after one period (probability 0.2), or after two
periods (probability 0.5)
115
�
116

117

118
UNCS3, PrfS3g ¼ 0:35¼ 0:5ð0:2þ0:5Þ; in this scenario at period t we
do not receive the last two orders placed in periods t and t�1.
That is the order placed in period t�1 is received
after two periods (probability 0.5), and the order placed in
period t is not received immediately, therefore it is received
after one period (probability 0.2), or after two periods
(probability 0.5)

�

119

120
S4, PrfS4g ¼ 0:15¼ 0:5 � 0:3; in this scenario at period t we do
not receive the order placed in period t�1 and we
observe order-crossover. That is the order placed in period
t�1 is received after two periods (probability 0.5), and
the order placed in period t is received immediately
(probability 0.3)
lease cite this article as: Rossi, R., et al., Computing the non-sta
upplier lead-times. International Journal of Production Economics (
Procedure 1. checkBuffers
tiona
2010
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cycle ’ the last element in cycles,

a replenishment cycle over fi, . . . ,jg;

if no decision variable ~Pi, . . . , ~Pj is assigned then

breturn;

counter ’ 1;

For each period t covered by cycle do

formerCycles ’ cycles;

remove cycle from formerCycles;

coveredPeriods ’ the number of periods

covered by cycles in formerCycles;

head ’ first element in formerCycles;

headLength ’ periods covered by head;

if counteroL then

while coveredPeriods�headLengthþcounterZL do

remove head from formerCycles;

head ’ first element in formerCycles;

headLength ’ periods covered by head;

66664
else

b formerCycles ’ fg;

condition ’ true;

For each cycle c in formerCycles do

let fm, . . . ,ng be the periods covered by c;

if no decision variable ~Pm, . . . , ~Pn is assigned then

b condition ’ false;

6666664
if condition then

if Eq:ð8Þ for period t n cycle

and former replenishment

cycles in formerCycles is not satisfied then

b backtrackðÞ;

66666664
counter ’ counterþ1;

6666666666666666666666666666666666666666666666666666666666664
�������
28 e
nd
In the described scenarios every possible configuration is
considered. We do this without any loss of generality. In fact if
some of the configurations are unrealistic (for instance if we
assume that order-crossover may not take place) we need only to
set the probability of the respective scenario to zero. Now it is
possible to write Eq. (8) for each period tAf3, . . . ,Ng. Consider
period 3:

PrfS1g � G
129�42

0:3
ffiffiffiffiffiffiffiffi
422

p
 !

þPrfS2g � G
124�ð28þ42Þ

0:3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
282
þ422

p
 !

þPrfS3g � G
125�ð36þ28þ42Þ

0:3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
362
þ282

þ422
p

 !

þPrfS4g � G
125þð129�124Þ�ð36þ42Þ

0:3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
362
þ422

p
 !

¼ 94:60%ffi95% ð19Þ

where Gð�Þ is the standard normal distribution function. This
means that the combined effect of order delivery delays in
our policy, when all the possible scenarios are taken into
account, gives a no-stock-out probability of about 95% for
period 3. Similar reasoning can be employed to verify that
the given solution satisfies the required service level also for
period tAf4,5g.
ry replenishment cycle inventory policy under stochastic
), doi:10.1016/j.ijpe.2010.05.011
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The reader may notice that, since we are placing an order in
every period and since the lead time is at most of two periods, the
service level in any given period is only influenced by the
replenishment in such a period and by the last two replenish-
ments. For instance, the service level in period 4 is only influenced
by the order-up-to-position in periods 3 and 2. Let us consider the
partial assignment in Table 2. The shortage probability in period 4
is greater than the required 5% therefore this partial assignment
constitutes a nogood. As soon as our global chance-constraint
detects this partial assignment during the search, it will
immediately trigger a backtrack and it will prevent the CP
solver from exploring any assignment that extends such a
partial assignment.
OO

79
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85
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91

93

95

97

99
Table 4
Optimal policy under no lead time.
5. Computational experience

In this section we solve to optimality an 8-period inventory
problem under stochastic demand and lead time. Different lead
time configurations are considered. The stochastic, deterministic
and zero lead time cases are compared. As in the previous
example we assume an initial null inventory level and a normally
distributed demand with a coefficient of variation st= ~dt ¼ 0:3 for
each period tAf1, . . . ,8g. The expected value ~dt for the demand in
each period t¼1,y,N are listed in Table 3. The other parameters
are a¼30, h¼1, a¼ 0:95. Initially, we consider the problem under
stochastic demand and no lead time. An efficient CP approach to
find policy parameters in this case was presented in Tarim and
Smith (2008) and Tarim et al. (2009). Obviously our approach is
general and can provide solutions for this case as well, although
less efficiently. The optimal solution for the instance considered is
presented in Fig. 2; details about the optimal policy are
reported in Table 4. We observe five replenishment cycles;
policy parameters are: cycle lengths ¼[1, 2, 1, 2, 2] and
UNCORRECTED

Table 3
Forecasts of period demands.

Period (t) 1 2 3 4 5 6 7 8
~dt

15 18 13 33 30 18 23 15

Fig. 2. Optimal policy under no lead time.

Table 2
A partial assignment and the respective shortage probability in period 4. The

dashes, ‘‘–’’, are used to denote decision variables that have not been assigned yet.

E{TC}: 211 (lower bound)

Period (t) 1 2 3 4 5
~dt

36 28 42 33 30

Rt – 124 100 87 –

dt – 1 1 1 –

Shortage probability 6%

Please cite this article as: Rossi, R., et al., Computing the non-sta
supplier lead-times. International Journal of Production Economics
F

order-up-to-positions ¼[72, 42, 49, 65, 52]. The shortage
probability is at most 5%, therefore the service level is met in
every period. The E{TC} is 303.

We now consider the same instance, but with a deterministic
lead time of one period. The optimal solution is presented in
Fig. 3; details about the optimal policy are reported in Table 5. We
observe now only four replenishment cycles; policy parameters
are: cycle lengths¼[2, 1, 2, 3] and order-up-to-positions¼[59, 64,
105, 72]. Again the shortage probability is at most 5% in every
period, which means that the service level constraint is met. The
E{TC} is 456. Therefore we observe now an expected total cost that
is 50.5% higher than the zero lead time case. The replenishment
plan is significantly affected by the lead time both in term of
replenishment cycle lengths and order-up-to-positions.

When a deterministic lead time of two periods is considered,
as the reader may expect, we observe again higher costs and a
different replenishment policy. The optimal solution is presented
in Fig. 4; details about the optimal policy are reported in Table 6.
The number of replenishment cycles is now again 5; policy
parameters are: cycle lengths¼[1, 1, 2, 1, 3] and order-up-to-
positions¼[59, 84, 119, 92, 72]. The service level constraint is met
in every period. The E{TC} is 602. This means that we observe a
cost 98.6% and 32.0% higher than respectively the zero lead time
case and the one period lead time case. The replenishment plan is
again completely modified as a consequence of the lead time
length.

We now concentrate on two instances where a stochastic lead
time is considered and we compare results with the former cases.
Firstly we analyze a stochastic lead time with probability mass
function ft(k)¼{0.2(0), 0.6(1), 0.2(2)}. That is an order is received
 P
R
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111
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113

114

115

116

117

118

119

120

E{TC}: 303

Period (t) 1 2 3 4 5 6 7 8

Rt 22 42 24 49 65 35 52 29

dt 1 1 0 1 1 0 1 0

Shortage probability 5% 0% 5% 5% 0% 5% 0% 5%

Fig. 3. Optimal policy under deterministic one period lead time.

Table 5
Optimal policy under deterministic one period lead time, notice that the service

level in the first period can obviously not be controlled.

E{TC}: 456

Period (t) 1 2 3 4 5 6 7 8

Rt 59 44 64 105 72 72 54 31

dt 1 0 1 1 0 1 0 0

Shortage probability – 0% 5% 5% 0% 5% 0% 5%

tionary replenishment cycle inventory policy under stochastic
(2010), doi:10.1016/j.ijpe.2010.05.011

dx.doi.org/10.1016/j.ijpe.2010.05.011
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Fig. 4. Optimal policy under deterministic two-period lead time.

Table 6
Optimal policy under deterministic two-period lead time.

E{TC}: 602

Period (t) 1 2 3 4 5 6 7 8

Rt 59 84 119 106 92 72 54 31

dt 1 1 1 0 1 1 0 0

Shortage probability – – 5% 5% 0% 5% 5% 5%

Fig. 5. Optimal policy under stochastic lead time, ft(k)¼{0.2(0), 0.6(1), 0.2(2)}.

Table 7
Optimal policy under stochastic lead time, ft(k)¼{0.2(0), 0.6(1), 0.2(2)}, in periods

{1, 2} the inventory cannot be controlled.

E{TC}: 532

Period (t) 1 2 3 4 5 6 7 8

Rt 50 72 101 88 79 72 54 31

dt 1 1 1 0 1 1 0 0

Shortage probability – – 5% 5% 3% 5% 5% 5%

Fig. 6. Optimal policy under stochastic lead time, fi(t)¼{0.5(0), 0.0(1), 0.5(2)}.

Table 8
Optimal policy under stochastic lead time, fi(t)¼{0.5(0), 0.0(1), 0.5(2)}.

E{TC}: 562

Period (t) 1 2 3 4 5 6 7 8

Rt 53 79 107 94 87 72 54 31

dt 1 1 1 0 1 1 0 0

Shortage probability – – 5% 5% 0% 5% 5% 5%

/ Int. J. Production Economics ] (]]]]) ]]]–]]]8
UNCORRECTEDimmediately with probability 0.2, after one period with prob-
ability 0.6, and after two periods with probability 0.2. The optimal
solution is presented in Fig. 5; details about the optimal policy are
reported in Table 7. The number of replenishment cycles is again
5, as in the two-period lead time case; policy parameters are:
cycle lengths¼[1, 1, 2, 1, 3] and order-up-to-positions¼[50, 72,
101, 79, 72]. Therefore we see that the number and the length of
replenishment cycles does not change from the deterministic
two-period lead time case, although we observe lower order-up-
to-positions as we may expect since the lead time is in average
one period therefore lower than in the former case. Also the cost
reflects this, in fact it is 11.6% lower than in the two-period
deterministic lead time case. It should be noted that the
uncertainty of the lead time plays a significant role, in fact
although the average lead time is one period, the structure of the
policy resembles much more the one under a two-period
deterministic lead time than the one under a deterministic one
period lead time. Moreover the expected total cost is 16.6% higher
than in this latter case.

We finally consider a different probability mass function for
the lead time: ft(k)¼{0.5(0), 0.0(1), 0.5(2)}, which means that we
maintain the same average lead time of one period, but we
increase its variance. The optimal solution is presented in Fig. 6;
details about the optimal policy are reported in Table 8. The
number of replenishment cycles is still 5; policy parameters are:
cycle lengths¼[1, 1, 2, 1, 3] and order-up-to-positions¼[50, 72,
101, 79, 72]. Although the average lead time is still one period,
Please cite this article as: Rossi, R., et al., Computing the non-sta
supplier lead-times. International Journal of Production Economics (
R
order-up-to-positions are slightly higher than in the former case
where the variance of the lead time was lower. Also the cost
reflects this, in fact it is 5.6% higher than in the former case, but
this is still lower than the expected total cost of the two-period
deterministic lead time case.

To summarize, in our experiments we saw that supplier lead
time uncertainty may significantly affect the structure of the
optimal (Rn,Sn) policy. Computing optimal policy parameters
constitutes a hard computational and theoretical challenge. Under
different degrees of lead time uncertainty, when other input
parameters for the problem remain fixed, order-up-to-positions
and reorder points in the optimal policy change significantly.
Deciding what the optimal decisions are for certain input
parameters is a counterintuitive task. Our approach provides a
systematic way to compute optimal policy parameters.
6. Conclusions

A novel approach for computing replenishment cycle policy
parameters under non-stationary stochastic demand, stochastic
lead time and service level constraints has been presented. The
approach is based on SCP and it employs a dedicated global
chance-constraint in order to enforce the required service level in
each period. The assumptions under which we developed our
approach for the stochastic lead time case proved to be less
restrictive than those commonly adopted in the literature for
complete methods. In particular we faced the problem of order-
crossover, which is a very active research topic. Our approach
merged well-known concepts such as deterministic equivalent
tionary replenishment cycle inventory policy under stochastic
2010), doi:10.1016/j.ijpe.2010.05.011
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modeling of chance-constraints and scenario-based modeling.
Our computational experience showed that a stochastic supplier
lead time may significantly impact the structure and the cost of
the optimal replenishment cycle policy with respect to the case in
which the lead time is deterministic or absent. In our future
research, we aim to develop dedicated cost-based filtering
algorithms able to significantly speed up the search for the
optimal policy parameters.
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Appendix A

A.1. Deterministic equivalent non-linear formulation of the service

level constraints

We discuss the main steps required to derive the deterministic
equivalent non-linear formulation of the service level constraints
(Eq. (8)).

To begin, we discuss how to obtain a deterministic equivalent
formulation for the chance-constraints that enforce the required
service level when the lead time in each period varies and
assumes a given deterministic value. The same reasoning is then
easily generalized to the case in which the lead time is stochastic
and assumes a different distribution from period to period.

When a dynamic deterministic lead time Lt Z0 is considered in
each period t¼1,y,N, an order placed in period t will be received
only at period t+Lt, that is

It ¼ I0þ
X

fkjkZ1,Lkþkr tg

Xk�
Xt

k ¼ 1

dk t¼ 1, . . . ,N: ð20Þ

Let us recall that the inventory position, Pt, represents the total
amount of inventory on-hand plus outstanding orders minus
backorders at the end of period t. It directly follows that

Pt ¼ Itþ
X

fkj1rkr t,Lk þk4 tg

Xk, ð21Þ

where we assume P0 ¼ I0. It is easy, then, to reformulate the
model using the inventory position.

Next, we modify the general stochastic programming formula-
tion in order to incorporate the ‘‘replenishment cycle policy’’.
Consider a review schedule, which has m reviews over the N

period planning horizon with orders placed at {T1,T2,y,Tm}, where
Ti4Ti�1, TmrN�LTm

. For convenience, T1 is defined as the start of
the planning horizon and Tm +1¼N+1 as the period immediately
after the end of the planning horizon.2 The associated inventory
reviews will take place at the beginning of periods Ti, i1,y,m. In
the replenishment cycle policy considered here, clearly the orders
Xt are all equal to zero except at replenishment periods
T1,T2,y,Tm. The inventory level It carried from period t to period
tþ1 is the opening inventory plus any orders that have arrived up
to and including period t less the total demand to date. Hence, the
inventory balance equation becomes,

It ¼ I0þ
X

fijLTi
þTi r tg

XTi
�
Xt

k ¼ 1

dk, t¼ 1, . . . ,N: ð22Þ

Define Tp(t) as the latest review before period t in the planning
horizon, for which all the former orders, including the one placed
in Tp(t), are delivered within period t, therefore

pðtÞ ¼maxfij8jAf1, . . . ,ig,TjþLTj
rt, i¼ 1, . . . ,mg, ð23Þ
2 The review schedule may be generalized to consider the case where T1 41, if

the opening inventory I0 is sufficient to cover the immediate needs at the start of

the planning horizon.
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for all t¼1,y,N. The inventory level It at the end of period t

(Eq. (22)) can be expressed as

It ¼ I0þ
XpðtÞ
i ¼ 1

XTi
þ

X
fiji4pðtÞ,LTi

þTi r tg

XTi
�
Xt

k ¼ 1

dk, t¼ 1, . . . ,N: ð24Þ

We now want to reformulate the constraints of the chance-
constrained model in terms of a new set of decision variables RTi

,
i¼1,y,m. Define,

Pt ¼ RTi
�
Xt

k ¼ Ti

dk, TirtoTiþ1, i¼ 1, . . . ,m, ð25Þ

where RTi
can be interpreted as the inventory position up to which

inventory should be raised after placing an order at the ith review
period Ti. We can now express the whole model in terms of these
new decision variables RTi

. The new problem is to determine the
number of reviews, m, the Ti, and the associated RTi

for i¼1,y,m.
Let us now express Eq. (24) using RTi

as decision variables

It ¼ RTpðtÞ
þ

X
fiji4pðtÞ,LTi

þTi r tg

ðRTi
�RTi�1

þdTi�1
þ � � � þdTi�1Þ

�
Xt

k ¼ TpðtÞ

dk, t¼ 1, . . . ,N: ð26Þ

As mentioned earlier, a is the desired minimum probability
that the net inventory level in any time period is non-negative.
Depending on the values assigned to Lt it is obviously not possible
to provide the required service level for some initial periods. In
general, we provide the required service level a starting from the
period t, for which the value t+Lt is minimum. Let M be this
period. Notice that, it will never be optimal to place any order in a
period t such that tþLt 4N, since such an order will not be
received within the given planning horizon.

By substituting It with the right hand term in Eq. (26) we obtain

GS RTpðtÞ
þ

X
fiji4pðtÞ,LTi

þTi r tg

ðRTi
�RTi�1

Þ

0
@

1
AZa, t¼M, . . . ,N: ð27Þ

where S¼
Pt

k ¼ TpðtÞ
dk�

P
fiji4pðtÞ,LTi

þTi r tgðdTi�1
þ . . . þdTi�1Þ, and

GS(.) is the cumulative distribution function of S.
The service level constraints are now deterministic and they

are expressed only in terms of the order-up-to-positions. Eq. (27)
can be directly employed in order to obtain Eq. (8), under the
original assumption that the lead time in each period tAf1, . . . ,Ng
is a discrete random variable lt.

A.2. Scenarios for orders in the pipeline: a numerical example

Consider a planning horizon of N¼6 periods. The probability
mass function for the lead-time in each period t¼1,y,6 is
ftð�Þ ¼ f0ð1=3Þ,1ð1=3Þ,2ð1=3Þg, therefore an order will arrive im-
mediately with probability 1/3, after one period with probability
1/3, and after 2 periods with probability 1/3. It follows that in our
example L¼2 and ftð�Þ is defined on a finite set L that comprises 3
possible states. Let us now consider period t¼5. Clearly, Tp(t)¼3,
in fact with probability 1.0 an order placed at period 3, as well as
any other order placed at previous periods, is received by period 5.
Under a review schedule that places an order in every period,
there are 2L

¼4 possible scenarios for the remaining orders that
have been delivered by period 5:
�

120

tion
(20
S1, PrfS1g ¼ ð1=3þ1=3Þ1=3; both the orders placed at periods 4
and 5 have been delivered by period 5;

�
 S2, PrfS2g ¼ ð1=3þ1=3Þð1=3þ1=3Þ; the order placed at period 4

has been delivered by period 5, but not the one placed at period 5;
ary replenishment cycle inventory policy under stochastic
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P
s

S3, PrfS3g ¼ 1=3 � 1=3; the order placed at period 5 has been
delivered by period 5, but not the one placed at period 4;
45
�
47

49

51

53

55
S4, PrfS3g ¼ 1=3ð1=3þ1=3Þ; the orders placed at periods 4 and 5
have not been delivered by period 5;

It is easy to see that under any other possible review schedule
the number of scenarios to be considered for the orders that have
been delivered by period 5 is less or equal to 2L

¼4. For instance,
consider a review schedule in which orders are placed only in
period 1, period 3, and period 5. In this case we only have 2
possible scenarios at period 5. As in the previous case, any order
placed at period 3 or before will be received with probability 1.0
by period 5. No order is placed at period 4. The 2 scenarios for the
remaining order are
57
�
 S1, PrfS1g ¼ 1=3; the order placed at period 5 has been
delivered by period 5;
59
�
 P

61

63

65
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69

71
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S2, PrfS1g ¼ 2=3; the order placed at period 5 has not been
delivered by period 51 .
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Régin, J.-C., 2003. Global constraints and filtering algorithms. In: Milano, M. (Ed.),
Constraints and Integer Programming Combined. Kluwer.

Riezebos, J., 2006. Inventory order crossovers. International Journal of Production
Economics 104 (2), 666–675.

Rossi, F., van Beek, P., Walsh, T., 2006. Handbook of constraint programming
(foundations of artificial intelligence). Elsevier Science Inc., New York, NY,
USA.

Rossi, R., Tarim, S.A., Hnich, B., Prestwich, S., 2008. A global chance-constraint for
stochastic inventory systems under service level constraints. Constraints 13
(4), 490–517.

Silver, E.A., Pyke, D.F., Peterson, R., 1998. Inventory Management and Production
Planning and Scheduling. Wiley, New York.

Speh, T.W., Wagenheim, G., 1978. Demand and lead-time uncertainty: the impacts
of physical distribution performance and management. Journal of Business
Logistics 1 (1), 95–113.

Tarim, S.A., Hnich, B., Rossi, R., Prestwich, S., 2009. Cost-based filtering techniques
for stochastic inventory control under service level constraints. Constraints 14
(2), 137–176.

Tarim, S.A., Kingsman, B.G., 2004. The stochastic dynamic production/inventory
lot-sizing problem with service-level constraints. International Journal of
Production Economics 88 (1), 105–119.

Tarim, S.A., Kingsman, B.G., 2006. Modelling and computing (Rn,Sn) policies for
inventory systems with non-stationary stochastic demand. European Journal
of Operational Research 174 (1), 581–599.

Tarim, S.A., Manandhar, S., Walsh, T., 2006. Stochastic constraint programming: a
scenario-based approach. Constraints 11 (1), 53–80.

Tarim, S.A., Smith, B., 2008. Constraint programming for computing non-stationary
(R,S) inventory policies. European Journal of Operational Research 189 (3),
1004–1021.

Tempelmeier, H., 2007. On the stochastic uncapacitated dynamic single-item
lotsizing problem with service level constraints. European Journal of Opera-
tional Research 181 (1), 184–194.

Walsh, T., 2002. Stochastic constraint programming. In: Proceedings of the 15th
European Conference on Artificial Intelligence, ECAI’2002, Lyon, France, pp.
111–115.

Whybark, D.C., Williams, J.G., 1976. Material requirements planning under
uncertainty. Decision Science 7 (4), 595–606.

Zipkin, P., 1986. Stochastic leadtimes in continuous-time inventory models. Naval
Research Logistics Quarterly 33 (4), 763–774.
E
CT
tionary replenishment cycle inventory policy under stochastic
2010), doi:10.1016/j.ijpe.2010.05.011

dx.doi.org/10.1016/j.ijpe.2010.05.011
Original Text:
Inventory Systems 



Neuroevolutionary Inventory Control
in Multi-Echelon Systems⋆

S. D. Prestwich1, S. A. Tarim2, R. Rossi3, and B. Hnich4

1Cork Constraint Computation Centre, Ireland
2Operations Management Division, Nottingham University Business School, Nottingham, UK

3Logistics, Decision and Information Sciences Group, Wageningen UR, the Netherlands
4Faculty of Computer Science, Izmir University of Economics, Turkey

s.prestwich@cs.ucc.ie, armtar@yahoo.com.tr,
roberto.rossi@wur.nl, brahim.hnich@ieu.edu.tr

Abstract. Stochastic inventory control in multi-echelon systems poses hard prob-
lems in optimisation under uncertainty. Stochastic programming can solve small
instances optimally, and approximately solve large instances via scenario reduc-
tion techniques, but it cannot handle arbitrary nonlinear constraints or other non-
standard features. Simulation optimisation is an alternative approach that has
recently been applied to such problems, using policies thatrequire only a few
decision variables to be determined. However, to find optimal or near-optimal so-
lutions we must consider exponentially large scenario trees with a corresponding
number of decision variables. We propose a neuroevolutionary approach: using
an artificial neural network to approximate the scenario tree, and training the net-
work by a simulation-based evolutionary algorithm. We showexperimentally that
this method can quickly find good plans.

1 Introduction

In the area of optimisation under uncertainty, one of the most mature fields is inventory
control. This field has achieved excellent theoretical and practical results using tech-
niques such as dynamic programming, but some problems are too large or complex
to be solved by classical methods. Particularly hard are those involvingmulti-echelon
systems, in which multiple stocking points form a supply chain. In such cases we may
resort to simulation-based methods. Simulation alone can only evaluate a plan, but when
combined with an optimisation algorithm it can be used to findnear-optimal solutions
(or plans). This approach is calledsimulation optimisation(SO) and has a growing lit-
erature in many fields including production scheduling, network design, financial plan-
ning, hospital administration, manufacturing design, waste management and distribu-
tion. It is a practical approach to optimisation under uncertainty that can handle prob-
lems containing features that make them difficult to model and solve by other methods:
for example non-linear constraints and objective function, and demands that are corre-
lated or have unusual probability distributions.

⋆ B. Hnich is supported by the Scientific and Technological Research Council of Turkey
(TUBITAK) under Grant No. SOBAG-108K027.



SO approaches to inventory control are typically based on policies known to be opti-
mal in certain situations, involving a small number of reorder points and reorder quanti-
ties. For example in(s, S) policies whenever a stock level falls belows it is replenished
up toS, while in (R, S) policies the stock level is checked at times specified byR, and
if it falls below S then it is replenished up toS. SO can apply standard optimisation
techniques such as genetic algorithms to these policies by assigning genes to reorder
points and replenishment levels. In more complex situations involving constraints, mul-
tiple stocking points, etc, these policies may be suboptimal in terms of expected cost,
though they can have other desirable properties such as improved planning stability.
But a cost-optimal plan for a multi-stage problem with recourse must specify an order
quantity in every possible scenario, so the plan must be represented via ascenario tree.
The number of scenarios might be very large, or infinite in thecase of continuous prob-
ability distributions, making the use of SO problematic. Scenario reduction techniques
may be applied to approximate the scenario tree, but it mightnot always be possible to
find a small representative set of scenarios.

An alternative form of approximation is to use an artificial neural network (ANN)
to represent the policy. For example, the inputs to the ANN could be the current stock
levels and time, and the outputs could be the recommended actions (whether or not to
replenish and by how much). We must then train the ANN so that its recommendations
correspond to a good plan. No training data is available for such a problem so the usual
ANN backpropagation training algorithm cannot be applied.Instead we may use an
evolutionary algorithm to train the network to minimise costs. Thisneuroevolutionary
approach has been applied to control problems [8, 9, 21] and to playing strategies for
games such as Backgammon [16] and Go [14], but it has not been extensively applied
to inventory control. In this paper we apply neuroevolutionto stochastic inventory con-
trol in multi-echelon systems. Section 2 presents our method, Section 3 evaluates the
method experimentally, Section 4 surveys related work, andSection 5 concludes the
paper.

2 A neuroevolutionary approach

To approximate the scenario tree, we construct a function whose input is a vector con-
taining the time period and current inventory levels, and whose output is a vector of
order quantities (which might be zero). We design the function automatically by simu-
lation optimisation.

2.1 Scenario tree compression by neural network

An obvious choice for this function is an artificial neural network (ANN), which can
approximate any function with arbitrary accuracy given a sufficient number of units.
ANNs also come with a ready-made algorithm for optimisation: the well-known back-
propagation algorithm. However, there is a problem with this approach: we do not have
training data available (this also precludes the use of Support Vector Machines). To
obtain training data we would have to solve a set of instances, and there is no known
method for solving the harder instances to optimality. Instead we must use an ANN to
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Fig. 1. The feedforward ANN used

solve a problem inreinforcement learning, in which we must choose its weights in order
to maximise reward (in this case to minimise expected cost).Backpropagation cannot be
used for this task, but we can instead use an evolutionary algorithm (EA) whose genes
are the weights and whose fitness function is minus the cost. This neuroevolutionary
approach has been applied to control problems and game learning.

In our experiments we began with a standard three-layer feedforward ANN, which
is a universal function approximator: it can approximate any function to arbitrary ac-
curacy given a sufficient number of hidden units. We tried different numbers of hid-
den units, including multiple hidden layers, with different transfer functions in all the
units (including sigmoids, limiter functions and polynomial expressions), and with two
alternative representations of time periodt: as an integert = 1 . . . P and using the
well-knownunary encodingwhich is often used to represent symbolic ANN inputs and
gave better results here. In the unary encoding we associatea binary variable with each
period, and periodt is represented by a vector(01, . . . , 0t−1, 1, 0t+1, . . . , 0P ). Surpris-
ingly, we obtained best results using an extremely simple network, with no hidden layer
and the identity transfer functionf(x) = x. No bias term is needed because the unary
encoding already provides a time-dependent bias.

The ANN corresponding to three stocking points is shown in Figure 1, where Si
denotes theith stock level, Oi theith order level, and Tj thejth binary variable in
the unary time encoding. All units use the identity transferfunction. Each arrowed
line connecting two units in the diagram has an associated weight, so the ANN has
K(P + K) weights, whereK is the number of stocking points. This ANN represents a
simple set of affine relationships

Oj =
∑

i

Siwij + wtj

wherewij is the ANN weight between stock levelSi and order levelOj , andwtj is the
ANN weight between timet and order levelOj . (An affine transformation is a linear
transformation followed by a translation.) One would not expect this to yield an efficient



or even a sensible policy, but our policy is not yet complete as we have not handled the
problem constraints.

2.2 Constraint handling

The ANN forms only part of the policy. We also need a way of handling the constraints
of the problem, which forbid (i) negative orders (corresponding to selling unused stock
back to the supplier), and (ii) negative stock levels. We will train the ANN by an EA
and there are several ways of handling constraints in EAs. Weuse adecoderwhich
transforms the (possibly infeasible) ANN solution into onethat violates no constraints.
Decoders are a way of finding feasible solutions from chromosomes that represent in-
feasible states. They are problem-specific and ours works asfollows. Suppose at period
t we have stock levelsSi and the ANN suggests ordering quantitiesOi. We modify
each quantityOi by

Oi ← max(Oi, 0)

to avoid violating constraints of type (i). Then for any stocking point i that supplies a
set of stocking pointsXi we modify its order levelOi by

Oi ← max



Oi,





∑

j∈Xi

Oj



− Si





This ensures that each supplier orders sufficient stock to fulfil its deliveries, and avoids
violating constraints of type (ii). The policy is now the composition of the ANN and the
decoder, which transforms the affine function of the ANN intoa continuous piecewise
affine function.

Note that we must modify the order levels of the stocking points earlier in the supply
chain first. This is always possible if the supply chain is in the form of a directed acyclic
graph. If lateral transshipments are allowed (orders between stocking points at the same
level) or if there are constraints on order sizes or storage capacities then the decoder
must be modified; we leave this issue for future work.

2.3 The evolutionary algorithm

To train the ANN we use an EA. There are many such algorithms inthe literature, and
we now describe our choice and the design decisions behind it. Firstly, we decided not
to use genetic recombination. When training an ANN by EA one can encounter the
well-knowncompeting conventionsproblem (see [20] for example). This is caused by
two forms of symmetry: an ANN’s hidden units can be permuted without changing
its output, and a hidden unit’s weights can all be multipliedby−1 without changing its
output. Thus if there areh hidden units then there are2hh! equivalent ANNs. Crossover
is unlikely to give good results unless the parent chromosomes are aiming for symmet-
rically similar representations, though it is possible to design crossover operators that
handle the symmetries [23]. This problem does not apply to our simple ANN because it
has no hidden units, but in experiments crossover did not improve results so we do not
use it.



We decided to use a(µ + 1)-Evolution Strategy (ES) because it is almost exactly a
steady-state genetic algorithm without crossover, and an efficient method for handling
noise in the fitness function is known for a steady-state genetic algorithm (see below).
However, we adapted it to acellular ES, in which each chromosome is notionally placed
in an artificial space and nearby chromosomes form its neighbourhood. Cellular algo-
rithms can reduce premature convergence, which we found to be a problem with our
initial standard ES. In our ES the population size isµ, at each iteration a new chromo-
somec′ is created by mutating a randomly selected chromosomec, and ifc′ is fitter than
the least-fit chromosomec∗ in the neighbourhood ofc then it replacesc∗, otherwisec′

is discarded. We used a ring topology and define the neighbourhood of a chromosome
to be its two adjacent chromosomes.

A common form of mutation adds normally distributed noise toeach gene, but we
use a method that gave better results in experiments. For each chromosome we gen-
erate two uniformly distributed random numbers,p in the range(0, 1) and q in the
range(0, 0.5). Then for each allele in the chromosome, with probabilityp we change
it, otherwise with probability1− p we leave it unchanged. If we do change it then with
probabilityq we set it to 0, otherwise with probability1 − q we add a random number
with Cauchy distribution to it.Cauchy mutationhas been shown to speed up EAs [24].
It can be computed ass tan(u) whereu is a uniformly distributed random variable in the
range(−π, π) ands is a scale factor. For each chromosome we compute a random scale
factor, itself with Cauchy distribution and fixed scale factor 100. Finally, if no allele was
modified (which is possible for smallp) then we modify one randomly selected allele
as described. This rather complex mutation operator is designed to generate a variety of
random moves, with different numbers of modified alleles anddifferent scale factors.
All chromosomes initially contain alleles generated randomly using the same Cauchy
distribution. We do not use the well-known technique of self-adapting step sizes, be-
cause in a(µ + 1)-ES offspring with reduced mutation variances are always preferred
[2].

2.4 Handling uncertainty

When demand is probabilistic the fitness function of the EA isnoisy. In such cases we
must average costs over a number of simulations. In some previous SO approaches to
inventory control, this problem was tackled by averaging costs over a small number of
simulations because the simulations were computationallyexpensive: for example [13]
use 3 samples. The standard deviation of the sample mean of a random variable with
standard deviationσ is σ/

√
n wheren is the number of samples, so a large number of

samples may be needed for very noisy fitness functions. Here we use smaller problems
than those in [13] so we can afford to use a much larger number of simulations and
obtain reliable cost estimates. To do this for every chromosome would be expensive but
there are more efficient methods, and we use thegreedy averaged samplingresampling
scheme of [17]. This requires two parameters to be tuned by the user:U andS. On
generating a new chromosomec it takesS samples to estimate its fitness before placing
it into the population. It then selects another chromosomec′ (which may bec) for
resampling: anotherS samples are taken forc′ and used to refine its fitness estimate.
c′ is the chromosome with highest fitness among those with fewerthanU samples, so



the function ofU is to prevent any chromosome from being sampled more times than
necessary. If all chromosomes in the population have been sampledU times then no
resampling is performed. The algorithm is summarised in Figure 2.

train(µ,S, U)
create ANN population of size µ

evaluate population using S samples
while not(termination condition)

select a parent
breed an offspring O by mutation
evaluate O using S samples
if O fitter than locally least-fit chromosome L

replace L by O
select globally fittest chromosome F with #samples< U

if F exists
re-evaluate F using S more samples

return best chromosome found with #samples≥ U

Fig. 2. Cellular evolution strategy with resampling

The aim of this resampling method is to obtain chromosomes with good fitness
averaged over many samples, while expending a smaller number of samples on less-
promising chromosomes. In our experiments we setU = 10000 so that cost estimates
are obtained over 10000 samples, but by settingS = 1 we only expend approximately
200 samples per chromosome on average (this number was foundby experiment). As
the population size is 50, and50×200 = 10000, this implies that a typical chromosome
uses little more than one sample before being rejected as unfit. Using smallS also has an
effect beyond reducing the average number of samples per chromosome: it encourages
exploration by preserving less-fit chromosomes for longer.We found this to be a very
beneficial effect.

Some points are glossed over in Figure 2 for the sake of readability. Firstly, if S is
not a divisor ofU then fewer thanS samples are needed in the final resampling of any
chromosome to bring its total toU . Secondly, the termination condition is unspecified,
and we simply use a timeout. Thirdly, if no chromosome hasU samples on termination
then we must choose another chromosome to return. To avoid this,S should be assigned
a sufficiently large value so that in experiments there is always a chromosome withU
samples on termination. This value must be chosen by experimentation.

2.5 Discussion of the method

We refer to our method as NEMUE1 (Neuro-Evolution for MUlti-Echelon systems).
NEMUE is the result of many experiments with alternative versions. We experimented
with an array of ANNs, one for each time period. This model has12P weights and

1 The “lady of the lake” in Arthurian legend.



clearly subsumes the model above: any plan that can be represented by that model can
also be represented by this one. The results should therefore be at least as good, but
in experiments they were significantly worse. We believe that the ANN array is simply
harder to train than a single ANN.

We also tried a non-unary encoding of time, in which order levels are linear func-
tions of stock levels and polynomial functions of time. Fixing the polynomial degree
makes the size of the ANN independent of the number of time periods. Using a cubic
function of time gave reasonable results but was inferior tothe unary encoding.

We used a decoder to handle the problem constraints, but there are other ways of
handling constraints in EAs. The simplest is to use apenalty functionwhich adds a large
artificial cost for each violated constraint. In our problemthis forces the ANN to learn
to order sufficient stock in order to avoid stockout. We trieda penalty function but it
gave inferior results to the decoder.

3 Experiments

Ultimately we are interested in solving large, realistic inventory problems with multiple
stocking points, stochastic lead times, correlated demands and other features that make
classical approaches impractical. Unfortunately there are no known methods for solving
such problems to optimality, so there is no way of evaluatingour method. Instead we
consider more modest problems to test the ability of NEMUE tofind good plans.

Our benchmark problems have two multi-echelon topologies:arborescentandse-
rial . In the arborescent case we have three stocking points A, B and C, with C supplying
A and B, while in the serial case C supplies B which supplies A.In both cases we have
linear holding costs, linear penalty costs, fixed ordering costs, and stationary proba-
bilistic demands. The closing inventory levels for periodt areIA

t = IA
t−1 + QA

t − dA
t ,

IB
t = IB

t−1 +QB
t − dB

t andIC
t = IC

t−1 +QC
t −QA

t −QB
t whereQt is the order placed

in periodt anddt is the demand in periodt. If It < 0 then the incurred cost is−It.π,
otherwise it isIt.h, whereπ is the penalty cost andh the holding cost. Suppliers are
not allowed to run out of stock. We prepared 28 instances of both the arborescent and
serial types, with various costs and 2–9 time periods, giving a total of 56 instances with
a range of characteristics as follows. The holding costs forA, B and C are 4, 5 and 1
respectively for arborescent instances 1–14; 3, 2 and 1 for arborescent instances 15–28;
and 3, 2 and 1 for all serial instances. For the arborescent instances the penalty costs for
A and B are 12 and 25 respectively for instances 1–14; and 3 and6 for instances 15–28.
For all the serial instances the penalty cost for instance A is 12. The ordering costs for
A, B and C are 150, 130 and 170 respectively for arborescent instances 1–14; 80, 75
and 100 for arborescent instances 15–28; and 75, 80 and 100 for all serial instances.
For space reasons we do not specify the demands in detail, butwe used 10 patterns for
arborescent instances and 4 patterns for serial instances.In each period we specify a
deterministic demand which is then multiplied by either2

3
with probability 0.25,1 with

probability 0.5, or4
3

with probability 0.25. Thus the number of possible scenarios is
3P , giving 59,049 scenarios for the largest problems (P = 10).

We solved these problems in two ways: using Stochastic Programming (SP) [3] and
NEMUE. SP is a field of Operations Research designed to solve optimisation problems



under uncertainty via scenario reduction techniques: a representative subset of all pos-
sible scenarios is selected and used to generate a deterministic equivalent optimisation
problem, which is then typically solved using integer linear programming. We use the
SP results to evaluate the quality of plans found by NEMUE. The optimal replenishment
plans are obtained using the following Stochastic Integer Programming model:

min E[C] =
∑N

t=1

∑

p∈P

(

apδpt + hpI
+
pt + πpI

−

pt

)

s.t. t = 1, . . . , N and p ∈ P
Ipt = Ip,t−1 + Qpt −QPp,t − dpt

Ipt = I+
p,t − I−p,t

Qpt ≤Mδpt

δpt ∈ {0, 1} Qpt ≥ 0

where

C : total holding and ordering/set-up cost of the system overN periods;
a : fixed ordering/set-up cost;
h : proportional inventory holding cost per period;
P : the set of all stocking points;
Pp : the set of stocking points supplied directly by the stocking pointp;
dpt : random demand at stocking pointp, in periodt;
δpt : a binary variable that takes the value of 1 if a replenishment occurs

: at stocking pointp in periodt and 0 otherwise;
Ipt : the inventory level at the end of periodt at stocking pointp;

Qpt : the order quantity at the beginning of periodt at stocking pointp;

andI+ andI− denote positive and negative closing inventory levels. Except for the
lowest echelon stocking points,I− is zero.M is some large positive number. In this
stochastic model ahere-and-nowpolicy is adapted: all decision variables are set before
observing the realisation of the random variables. The certainty equivalent model is
obtained using the compiler described in [22] and solved with CPLEX 11.2.

Results comparing SP and NEMUE are shown in Table 1. All SP runs were termi-
nated after one hour and all NEMUE results after 30 minutes ona 2.8 GHz Pentium (R)
4 with 512 RAM, each figure being the best of six five-minute runs. The NEMUE pa-
rameters used wereS = 1, U = 10000 andµ = 50. SP runs that were aborted because
of memory problems are denoted by “—”. (In the few cases that SP found and proved
optimality, this sometimes took much less than one hour.) The columns marked “%opt”
denote the optimality gap: a reported costc and gapg means that SP proved that the
optimal solution cannot have cost lower thanc′ = c(100− g)/100 (this does not imply
the existence of a solution with costc′). In several cases NEMUE finds superior plans
to those found by SP, showing that on larger instances SP fails to find optimal plans. In
a few cases NEMUE appears to find plans that are slightly better than optimal: this is
of course impossible, and is a consequence of the empirical nature of the data. In such
cases we assume that NEMUE found an optimal plan.

SP was unable to find provably optimal plans for all but the smallest instances. We
believe that for the medium-sized instances SP finds optimalplans but does not prove
optimality before timeout. For the largest instances SP ranout of memory, though we



arborescent serial
SP NEMUE SP NEMUE

# periods cost %opt cost %opt# periods cost %opt cost %opt
1 4 2507 0 2573 2.61 4 995 0 993 0
2 5 3124 1.4 3180 3.12 5 1269 0.7 1298 2.9
3 6 3657 2.7 3775 5.73 6 1493 1.8 1491 1.7
4 7 4214 5.6 4250 6.44 7 1794 7.4 1797 7.6
5 8 4654 8.2 4722 9.55 8 2087 12.0 1987 7.6
6 9 5472 16.9 5164 11.96 9 2741 25.7 2295 11.3
7 10 — ? 5590 ? 7 10 — ? 2603 ?
8 4 2100 0 2169 3.28 4 1311 0.2 1306 0.0
9 5 2626 0.6 2722 4.19 5 1598 2.2 1594 2.0

10 6 3311 1.8 3409 4.610 6 1833 4.3 1832 4.2
11 7 4065 2.5 4153 4.611 7 2024 6.7 2024 6.7
12 8 4454 3.4 4542 5.312 8 2160 9.3 2142 8.5
13 9 5158 10.3 5115 9.513 9 2678 25.1 2264 11.4
14 10 — ? 5432 ?14 10 — ? 2407 ?
15 4 1342 0.2 1340 0.115 4 1104 0 1104 0
16 5 1657 1.8 1671 2.616 5 1417 2.1 1423 2.5
17 6 1930 2.2 1938 2.617 6 1759 4.1 1763 4.3
18 7 2180 4.5 2192 5.018 7 2057 5.4 2055 5.3
19 8 2428 6.1 2393 4.719 8 2266 6.6 2258 6.3
20 9 2853 13.9 2617 6.120 9 2706 17.7 2479 10.2
21 10 — ? 2864 ?21 10 — ? 2627 ?
22 4 1086 0 1096 0.922 4 828 0 828 0
23 5 1334 0.2 1330 0.023 5 931 0 934 0.3
24 6 1680 0.6 1677 0.424 6 1259 1.3 1265 1.8
25 7 2055 0.7 2051 0.525 7 1633 2.4 1639 2.8
26 8 2219 1.1 2220 1.126 8 1757 2.7 1766 3.2
27 9 2479 2.0 2531 4.027 9 1983 3.9 2000 4.7
28 10 — ? 2665 ?28 10 — ? 2150 ?

Table 1. Experimental results



use the state-of-the-art CPLEX solver and a powerful machine (an Intel Core 2 Duo
CPU E7200 with 2.53 GHz and 3GB of RAM). On the largest instances for which
SP did not run out of memory, it was unable to prove optimalityeven within several
days. Thus our benchmark problems straddle the borderline of solvability by classical
methods.

Despite the simplicity of the policy and the large number of scenarios (at least on
the larger instances) the NEMUE results are remarkably good. On 13 of the 28 arbores-
cent instances and 19 of the 28 serial instances, NEMUE foundplans that were at least
as good as those found by SP. On the three serial instances forwhich SP found prov-
ably optimal plans, NEMUE found equally good plans. On most of the larger instances
NEMUE found better plans than SP. These results show that: (i) a relatively simple,
continuous, piecewise affine function can closely approximate a large policy tree for
multi-echelon systems; (ii) such a function can be effectively represented by an affine
function followed by a decoder function; (iii) the affine function can be learned in a
reasonable time by evolutionary search; (iv) that our approach is more scalable than SP.

It is tempting to speculate that with improved heuristics and longer runtimes we
might find optimal strategies forall instances. But there is no guarantee that all sce-
nario trees can be well-approximated in this way, and in moreextensive experiments
on arborescent instance 1 (for example) we have been unable to find an optimal plan.
Nevertheless, the results are very promising.

4 Related work

Though simulation was originally used only to evaluate solutions found by other means,
the field of SO has recently become more popular — see the survey of [5]. SO may be
recursiveor non-recursive. In the non-recursive approach an approximate cost function
is learned during a simulation phase, then this function is minimised using an optimisa-
tion algorithm during a second phase. NEMUE is an example of recursive SO in which
simulation and optimisation alternate and inform each other.

A tutorial and survey of the application of SO to inventory control is given in a
recent paper [12]. Relatively little work has been done on applying SO to multi-echelon
systems, and we have been unable to find any other work on inventory control via
neuroevolution, though several papers use EAs to evolve plans (for example [1, 13,
15, 18]). Another difference of NEMUE is that it aims to approximate optimal policy
trees, whereas most SO methods aim to find parameters for special policies such as
(s, S). A different way of using ANNs for inventory control is to solve a set of training
instances by some other method, then train an ANN to learn howto find good solutions
from new instances (for example [6]). But we then need another algorithm to solve the
problems, which is the aim of NEMUE. A related approach to neuroevolution isgenetic
programming, in which an EA is used to evolve an algorithm for solving the problem,
instead of an ANN. This approach has also been applied to inventory control [11].

Another interesting approach to sequential decision problems such as those in in-
ventory control is the field variously referred to asneuro-dynamic programming, tempo-
ral difference learningandapproximate dynamic programming. This blend of dynamic
programming and simulation has been applied to many problems including inventory



control: see for example [4, 7, 10, 19]. A drawback is that special techniques are needed
to cope with the well-known “curse of dimensionality”: the vast number of states that
result from a simple discretisation of the continuum of states in these problems. In con-
trast, neuroevolution can directly handle a continuum of states.

5 Conclusion

We have proposed what seems to be the first neuroevolutionarymethod for approxi-
mating optimal plans in multi-echelon stochastic inventory control problems. Large or
infinite scenario trees are approximated by a neural network, which is trained by an
evolutionary algorithm with resampling, while problem constraints are handled by a
decoder. Because the method is simulation-based and uses general-purpose techniques
such as evolutionary algorithms and neural networks, it does not rely on special proper-
ties of the problem and can be applied to inventory problems with non-standard features.
We showed experimentally that the method can find near-optimal solutions. In future
work we will extend the method to handle problem features such as capacity constraints.
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	Bildirici Gıda: Stok takibi için Okyanus isimli yazılım kullanılmaktadır. Firma yazılımı kullanarak talep tahmini yapamadığını belirtmiştir. Güvenlik stoğu kullanıcılar tarafından belirlenip programa girilmektedir.
	GOP Pazar Marketleri: Şirket stok takibi için Mikro yazılımını kullanmaktadır. Program talep tahmini yapmasına rağmen bu özelliği firma tarafından kullanılmamaktadır. Sipariş miktarları, şubelerin istekleri doğrultusunda belirlenmektedir. Güvenlik stoğu belirleme seçeneği bulunmamaktadır.
	Esenlik: Stok takibi için Netsis firmasının yazılımını kullanılmaktadır. Şirket tarafından talep tahmini yapılmamaktadır. Yazılım sipariş verme konusunda kullanıcıya destek vermemektedir.
	Macit Marketler Zinciri: Şirket stok takibi için Oracle veritabanını kullanan Olympos isimli yazılımı kullanmaktadır. Şirket tarafından ne talep tahmini ne de planlama konusunda yazılım kullanılmamaktadır. 
	Üçler Süpermarket: Üçler Süpermarket stok takibi için OBASE 2.1 programını kullanmaktadır. Şirket tarafından yazılımın nokta talep tahmini yaptığı belirtilmiştir. Yazılımda tahmin hatası ve planlamaya yönelik bir seçenek bulunmamaktadır.
	Meşhur Peynirci: Stok takibi için Omega isimli yazılım kullanılmaktadır. Firma yazılımın nokta talep tahmini yaptığını bildirmiştir. Yazılım tahmin hatasına ilişkin bilgi sunmamaktadır. Sipariş kararları kullanıcılar tarafından belirlenmektedir.
	Çağdaş Marketler Zinciri: Firma stok takibi için Olympos isimli yazılımı kullanmaktadır. Şirket yazılımın nokta talep tahmini yapabildiğini belirtmiştir. Yazılım tahmin hatasına ilişkin bilgi sunmamaktadır. Güvenlik stoğu hedefi bildirmemektedir. Sipariş kararları tamamen firma yöneticileri tarafından verilmektedir.
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