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Summary. In the present work, we introduce a new local dependence func-
tion characterizing dependence structure between two random variables in an
e—neighborhood of a particular point from the domain of underlying bivariate
distribution and investigate its properties. As an example the local depen-
dence function for Farlie-Gumbel-Morgenstern distribution is provided. Also,
we construct dependence maps for some pairs of random variables. We use the
estimator of local dependence function to construct the dependence map. Per-
mutation test algorithm is applied for P = 500 to obtain more accurate result
in dependence map and also several examples are provided.
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1. Introduction

The concept of dependence among random variables is necessary in statisti-
cal theory and applications. Unless specific assumptions are made about the
dependence no meaningful statistical model can be constructed. The Pearson
correlation coefficient and many other scalar dependence measures, of course,
play an important role in understanding the simplest dependence relationships
between two random variables. In general, the dependence structure between a
pair of random variables is very complex and the scalar dependence measures
can not be adequate to explain the natural association between them.

The study of the local dependence between random variables has attracted some
interest in last years. There are several local dependence measures introduced
and studied in statistical literature in the past decade. Bjerve and Doksum
(1993) and Blyth (1994b) constructed a "correlation curve" that measures the



strength of the association between random variables locally. Holland and Wang
(1987) introduced the local dependence function, which is a localized version of
the Pearson correlation coefficient and is the second order partial derivative
of logarithm of the bivariate density function. Jones (1996) has provided an
alternative motivation for studying this function. Bairamov and Kotz (2000)
have introduced a new local dependence function based on regression concept
which is a radical generalization of the Pearson correlation coefficient. Because
of the difficulty in interpreting the estimated local dependence function, Jones
and Koch (2003) use the dependence maps via local permutation testing by
using Holland and Wang’s (1987) local dependence function.

We introduce a new local dependence function that characterizes the dependence
between two random variables in the e—neighborhood of a particular point.
This local dependence function is essentially different from all local dependence
functions introduced earlier, because it depends on the point itself as well as
the € — value which depends on the nature of the considered model. The local
dependence function in the present paper is constructed by the natural way
considering the localized version of the Hoeffding’s formula and possesses all
properties that must satisfy any dependence measure.

Using the local dependence functions one can construct the dependence maps
that make it possible to interpret the full dependence structure of the data set.
Dependence maps help us to determine the dependence structure between ran-
dom variables visually. Local dependence function becomes more interpretable
tool through dependence maps. A dependence map is generally separated into
three regions: positive (significant), negative (significant) and zero (nonsignifi-
cant) regions. So, by the help of dependence maps we can easily interpret the
dependence structure of the data. We construct the dependence map of the
given data set by using the natural estimators of local dependence functions.
Permutation test algorithm is developed by Visual Basic Script and applied
for approximately 500 times to obtain accurate results. Several examples, con-
cerning inflation with percentage change in ISE-100 Index and with percentage
change in US Dollar and also simulated bivariate normal data are provided.

2.e—Local Dependence Function

Let X and Y be continuous random variables with distribution function Fxy (x,y)
and marginals F'x (z) and Fy (y), respectively with support Nx y. The function
Px.y,e1,e5(T:y) is a local dependence function of X and Y at the (e1,£2) neigh-
borhood of the point (x,y) € Nx,y. The localized version of Hoeffding’s formula
can be written as

y+eaxte,
/ [Py (1, 0) — Fx (u) Fy (0)]dudv

Yy—€2x—E€1
PX,Ye1,e2 (33, y) =

VVar(X)y/Var(Y)
We call this function as the e—local dependence function. If the support of X
and Y is finite interval [a, b], then it is clear that



min(b,y+e2) min(b,x+e1)
[Fxy (u,v) — Fx (u)Fy (v)]dudv

max(a,y—ez)max(a,x—e1)

VVar(X)y/Var(Y)

PX Yer,e0 (:E, y) =

2.1.Properties of the e— Local Dependence Function
1.If X and Y are independent, then px y ., ., (z,y) = 0 for all (z,y)eNx y.

Proof: If X and Y are independent then the bivariate distribution function is
Fxy(z,y) = Fx(x)Fy(y).So,

Yyteoxter
Covx v e, (T,y) = / / [Fx (u)Fy (v) — Fx(u)Fy (v)] dudv = 0,

Yy—eox—€1
then pX,Y,al,EQ (:c,y) =0.
2.|px v, (@ y)| < 1forall (z,y)eNxy.

Proof: It is known that
b b
// [Fxy(z,y) — Fx(z)Fy (y)] dvdy

o (z,y)| = | = <1
\/Var(X) VVar(Y)

If the support of X and Y is finite interval [a, b], then the local depen-
dence,

yt+er1xte;
/ Fxy (23) — Fx(2)Fy () dedy

y—e1Tx—€1

PX Yerer (T i‘/)’ =

\/Var(X) VVar(y)

3.If X = aX+band Y = c¢Y +d, then Covg 3. 0,(@0) = acCovx y 21 =2 (2,y).So
the local dependence function, /



PZ 5 o100 (@ 0) = pxy,a 22(2,Y),

where £ = ax + b and y = cy + d.

Proof:
Fgy(u,v) = P{Xﬁu,?gv} =P{aX +b<u,cY+d<v}
_ P{X<u_b,Y<v_d}
a c
u—b v—d
= FXY( ) ),
a c
Fg(u) = P{f(gu}zp{aXergu}
- P{Xg “_b}
a
—-b
= FX (u )7
a
Fy(v) = P{?S’U}ZP{CY—FCZS’U}
- P{Yg ”_d}
c
v—d
= Ixy < ) )
c
J+ealte,
Covg g ..(&5) = / / [Feo (u,0) — Fi (u)Fy (0)]dudv
5752‘%761
Y+eaite b d b d
u—>b v— u— v —
= / /[FXY( ; ) — Fx( JEy (
a c
5752‘%761
By using transformation,
“ =z and Uﬁd:t




§+52—d i+5] —b
c

COU}?,?,EL%(%’@) = ac / / [Fxy(z,t) — Fx(z)Fy(t)|dzdt

Yy—eg—d T—e1—b
d

a

£ £
y+=2o+t

ac / / [Py (2,1) — Fx (2)Fy (8)]dzdt

€2 €1
y-TT—

= acCovy y e = (2,y),

S0,

acCovy y =, = (7,y)
Y, 2,2

PX Ve, e, (Z,9) ac\/Var(X)\/V@T(Y)

= pxyz (@)

a’ c

2.1.1.Example: Farlie-Gumbel-Morgenstern Copula

Consider Farlie-Gumbel-Morgenstern distributions with uniform marginals. The
p.d.f. (Bairamov and Kotz, 2002) is

falz,y) = 14+a(l—22)(1-2y), 0<z<1,0<y<l1, —1<a<l.
Let e1 = g9 = ¢, then the local covariance function is
min(1,y+¢) min(1,z+4¢)

Covyy..(xy) = auv(1l — u)(1 — v)dudv

max(0,y—e)max(0,x—¢)

[E9)-GED-E)

where

. 1, r>1—¢
2 = mln(l,x+s):{ x+e r<l—e "’
. . S y>1l-—¢
ke = mln(l,y+6)—{ e, y<loc
¢ = maX(O,x—s):{ (:)rfe, izi ,
—g, > ¢
k= maX(O,y—a)z{g :L:/y<€



For simplicity denote Cove = Covy ye(x,y).
CY[(x+sF __(x+af] [(y+sf __(y+sf]
2 3 2 3

9

O<zr<e O<y<e

a[((x+@2 (x+63) (@;e __(z;@s)} Vyg@Q__(ygds]’

<r<l—-e O<y<e
o {l_ ((96 6) _ (@=e)® )} {(W-E)z _ (y—&-a)B}
6 2 3 2 3 J
l—e<z<l O<y<e
a [(aﬁJrE)2 _ (I+E)3] [((HE)“’ _ (y+5)3) _ ((yfs)2 _ (y76)3>]
2 3 2 3 2 3 J
O<zrx<e e<y<l-—e
(§y+622 _ e

a [((m)? _ <z+s>3) _ (<H>2 _ <H>3)] 2 3
Cov, = 2 3 2 3 -~ ((yfs)2 _ (y*€)3> ’
2 3
e<ex<l—c¢ e<y<l—e

o {% _ ((91—26)2 _ (w—;)s)} K(y-EE)z _ (nge)3) _ ((1/—26)2 _ (y—;)s)} ’

l-e<z<l1 e<y<l—e

o[l - ] [ (1 - )],

O<zr<e l1-e<y<l

(e ) - (] [ ()]

e<r<l—e¢ l-e<y<l1
ofp- ()] fi- (2 )
6 2 3 6 2 3 )
l-e<z<l 1-e<y<l1

In Figure 1, we have presented graphs of local dependence function for FGM dis-
tributions with different values of €. It can be observed that lirri Covxyec(z,y) =
£—

2 which is the correlation coefficient of FGM distribution.

Figure 1 Graphs for Local dependence function of FGM Distribution
for the different values of ¢, & = 0.5, VarX = VarY = 1—12



2.2.Estimation of pyy. (7,¥)

We estimate the local dependence function for the data available such as

1
— [max(X7,z+s) max(X;,z—e)][max(Y;,y+e)—max(Y;,y—e)]
i=1

pj;(,Y,sl,SQ(:E?y) = sty

1 n
- max(X;,z —max(X;,x—e)]— max(Y;, —max(Y;,y—
n;[ ax(X;,a-e)—max(X; @ E)]HZ[ ax (Vi yrhe)—max (Vi y—<)]

SxSy

Proof:
Yyteaxter

Covye, en(T,y) = [ [ [F%y(u,v) — F(u)Fs(v)] dudv

Yy—€2x—e€1

Y—€2x—¢€1
n max(Y;,y+ez)max(X;,z+e1)

> J i Idudv

=lmax(Y;,y—ec2)max(X;,z—e1)

i=1

Yy+eax+e, " n
[ Z Iix<uy<oy — (n D1 I{Xﬁu}) (% Dic1 I{Y<v})] dudv

3=

n max(X;,x+e1) n max(Y;,y+e2)
- [ Idu) (23 [ Idv
) 1=lmax(X;,x—e1) =lmax(Y;,y—e2)
= > [max (X;, z + ¢€) — max (X;, z — ¢)] [max (V;,y + ¢) —max (Y, y — €)]
i=1
1 n
- > [max (X;, z + €) — max (X;,x — €)]
i=1
1 n
X~ > [max (Y, y + ) — max (Y, y —€)],
i=1
where
Fiy (u,v) ZI{X <uyi<o), Fx(u ZI{X <uy and Fy (v ZI{Y<U}
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where [ is an indicator function i.e.

lLLbue A

and n is the observation number and Sx and Sy are the sample standard
deviations of X and Y nespectively. By using this formula, we can compute the
sample local dependence function as

CO”;{,Y,EI,EQ (x’ y)
Sx Sy

p;{,Y,El,EQ (.’E, y) =



2.3.Local Permutation Test

Permutation test interests the variables being correlated can be classified on
certain attributes, primarily. This test is a type of statistical significance test
and based on permuting the observed data points across all possible outcomes.
In local permutation testing, for each (z;,y;), we firstly compute px y . (7, y)
for an appropriate e—value firstly. We consider making local permutation test
by comparing these original estimated values. We randomly permute to obtain
new samples satisfying the independence hypothesis, which is p X,Y,s,s(xv y) =0.
This permutation operation is repeated P times, so we obtain P samples which
are satisfying the null hypothesis. pp is computed for each permuted data set,
p=1,...,P. For each permuted data set, the significant estimated local corre-
lations at the e—neighborhood are taken to the list by comparing the original
estimated local correlations. The simulated local correlations in this list are
ranked. At e significance level, we decide the dependence map value, such that
if the observed value of pp is in the highest (/2)% of simulated pp ’s then the
dependence map value is +1, if the observed value of pp is in the lowest (a/2)%
of simulated pp ’s then the dependence map value is -1, otherwise it equals to
0. We take P = 500, since the construction of dependence map does not change
for the value greater than P = 500. Also we prefer a = 0.05 level to test the
significance. We develop an application with Excel Visual Basic which is the
application of the local permutation test.

2.3.1.Examples:

Standard Bivariate Normal Data We generate a standard-normal distrib-
uted data set for n = 100 and plot the dependence map for different values of e.
For this data set, the Pearson correlation coefficient which measures the linear
global correlation coefficient is 0.87. In Figure 2, there is wide positive region in
spite of a small € = 0.01 since dependence between X and Y is strong; but also
zero region is exist. For moderate values of X and Y, it can be said that there
is positive dependence. We can easily say that as € increases, it approximates
to the Pearson correlation coefficient. For ¢ = 1, we generally see positive de-
pendence between X and Y as expected; but also for large values of X and Y
and small values of X and Y, we see that there is independence.

Figure 2 Dependence map for Standard Bivariate Normal Data; zero local
dependence is light grey, positive local dependence is white for e = 0.01, 1
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Percentage Change in CPI - Percentage Change in US Dollar In this
example, we concern that the dependence between monthly percentage change in
consumer price index and monthly percentage change in US dollar between the
years 1995-2005 for Turkey. There is not strong linear correlation for r = 0.314.
In Figure 3, we see that for ¢ = 2.5, dollar percentage changes around zero
is positively dependent with inflation. Also we see that when ¢ = 9.5, there
is generally positive dependence except from the lowest and highest values of
percentage change in dollar, because there is independence at the lowest and
the highest values of change in dollar.

AT T T T T T e e e e e
21012345678 81010 210123486678 8100

x

Figure 3 Dependence map for Consumer Price Index monthly change rate
and dollar monthly change rate; zero local dependence is light grey, positive
local dependence is white for e = 2.5,9.5.(X : inflation, Y : dollar)

Percentage Change in CPI -Percentage Change in ISE-100 In this ex-
ample,we investigate the dependence structure between the variables, monthly
percentage change in consumer price index and monthly percentage change in
Istanbul Stock Exchange-100 index. In Figure 3, in the case that € = 2.5, there
is small positive region that is for the percentage changes in ISE-100 around 10,
but there is generally independence. When ¢ gets larger, it does not effect the
dependence structure very much since there is weak dependence between X and
Y.

7 T O 9 o T e I T e 5
2101234 56788101 21012345678 8101

X X

Figure 4 Dependence map for consumer price index monthly change rate
and ISE-100 monthly change rate; zero local dependence is light grey;
positive local dependence is white for e = 2.5,15. (X : inflation, Y : ISE-100)

3.Conclusions
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In a way that global statistic measure cannot be enough to explain the real
dependence structure of the data; instead local measures of dependence can be
used. Dependence maps provide to interpret easily the dependence structure of
the data. We provide an algorithm of the local permutation test to construct
dependence maps. We use e—local dependence measure that reveals the natural
dependence between the variables by clustering (x;,y;) according to the cho-
sen €.We also provide several examples that constructing dependence map for
different values of . Different ¢ values result different dependence structure of
the same data. The preference of € — value provides the sensitivity of obtained
results. The researcher can determine the ¢ — value via the nature of the data
and the research. These examples can be expanded to the different areas.
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