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Summary. In the present work, we introduce a new local dependence func-

tion characterizing dependence structure between two random variables in an

−neighborhood of a particular point from the domain of underlying bivariate

distribution and investigate its properties. As an example the local depen-

dence function for Farlie-Gumbel-Morgenstern distribution is provided. Also,

we construct dependence maps for some pairs of random variables. We use the

estimator of local dependence function to construct the dependence map. Per-

mutation test algorithm is applied for  = 500 to obtain more accurate result

in dependence map and also several examples are provided.
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1. Introduction

The concept of dependence among random variables is necessary in statisti-

cal theory and applications. Unless specific assumptions are made about the

dependence no meaningful statistical model can be constructed. The Pearson

correlation coefficient and many other scalar dependence measures, of course,

play an important role in understanding the simplest dependence relationships

between two random variables. In general, the dependence structure between a

pair of random variables is very complex and the scalar dependence measures

can not be adequate to explain the natural association between them.

The study of the local dependence between random variables has attracted some

interest in last years. There are several local dependence measures introduced

and studied in statistical literature in the past decade. Bjerve and Doksum

(1993) and Blyth (1994b) constructed a "correlation curve" that measures the
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strength of the association between random variables locally. Holland and Wang

(1987) introduced the local dependence function, which is a localized version of

the Pearson correlation coefficient and is the second order partial derivative

of logarithm of the bivariate density function. Jones (1996) has provided an

alternative motivation for studying this function. Bairamov and Kotz (2000)

have introduced a new local dependence function based on regression concept

which is a radical generalization of the Pearson correlation coefficient. Because

of the difficulty in interpreting the estimated local dependence function, Jones

and Koch (2003) use the dependence maps via local permutation testing by

using Holland and Wang’s (1987) local dependence function.

We introduce a new local dependence function that characterizes the dependence

between two random variables in the −neighborhood of a particular point.
This local dependence function is essentially different from all local dependence

functions introduced earlier, because it depends on the point itself as well as

the −  which depends on the nature of the considered model. The local

dependence function in the present paper is constructed by the natural way

considering the localized version of the Hoeffding’s formula and possesses all

properties that must satisfy any dependence measure.

Using the local dependence functions one can construct the dependence maps

that make it possible to interpret the full dependence structure of the data set.

Dependence maps help us to determine the dependence structure between ran-

dom variables visually. Local dependence function becomes more interpretable

tool through dependence maps. A dependence map is generally separated into

three regions: positive (significant), negative (significant) and zero (nonsignifi-

cant) regions. So, by the help of dependence maps we can easily interpret the

dependence structure of the data. We construct the dependence map of the

given data set by using the natural estimators of local dependence functions.

Permutation test algorithm is developed by Visual Basic Script and applied

for approximately 500 times to obtain accurate results. Several examples, con-

cerning inflation with percentage change in ISE-100 Index and with percentage

change in US Dollar and also simulated bivariate normal data are provided.

2.−Local Dependence Function
Let and  be continuous random variables with distribution function  ( )

and marginals () and  (), respectively with support  The function


 12

( ) is a local dependence function of  and  at the (1 2) neigh-

borhood of the point ( ) ∈  The localized version of Hoeffding’s formula

can be written as

12( ) =

+2Z
−2

+1Z
−1

[ ( )− () ()]

p
 ()

p
 ( )



We call this function as the −local dependence function. If the support of 
and  is finite interval [ ] then it is clear that
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12( ) =

min(+2)Z
max(−2)

min(+1)Z
max(−1)

[ ( )− () ()]

p
 ()

p
 ( )



2.1.Properties of the − Local Dependence Function

1.If  and  are independent, then 12( ) = 0 for all ( ) 

Proof: If  and  are independent then the bivariate distribution function is

 ( ) = () ()So,

12( ) =

+2Z
−2

+1Z
−1

[() ()− () ()]  = 0

then 12( ) = 0

2.
¯̄
12( )

¯̄
≤ 1 for all ( ) 

Proof: It is known that

| ( )| =

¯̄̄̄
¯̄̄̄
¯̄̄̄

Z


Z


[ ( )− () ()] q
 ()

p
 ( )

¯̄̄̄
¯̄̄̄
¯̄̄̄ ≤ 1

If the support of  and  is finite interval [ ] then the local depen-

dence,

¯̄
12 ( )

¯̄
=

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯

+1Z
−1

+1Z
−1

[ ( )− () ()] 

q
 ()

p
 ( )

¯̄̄̄
¯̄̄̄
¯̄̄̄
¯
≤ 1

3.If e = + and e = +, then   12(̃ ̃) =  1


2

( )So

the local dependence function,
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  12(̃ ̃) =  1


2

( )

where ̃ = +  and ̃ =  + 

Proof:

   ( ) = 
n e ≤  e ≤ 

o
=  { +  ≤   +  ≤ }

= 

½
 ≤ − 


  ≤  − 



¾
= 

µ
− 



 − 



¶


 () = 
n e ≤ 

o
=  { +  ≤ }

= 

½
 ≤ − 



¾
= 

µ
− 



¶


 () = 
ne ≤ 

o
=  { +  ≤ }

= 

½
 ≤  − 



¾
= 

µ
 − 



¶


  
1

2

(̃ ̃) =

̃+2Z
̃−2

̃+1Z
̃−1

[   ( )−  () ()]

=

̃+2Z
̃−2

̃+1Z
̃−1

[ (
− 



 − 


)− (

− 


) (

 − 


)]

By using transformation,

− 


=  and

 − 


= 
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1

2
(̃ ̃) = 

̃+2−
Z

̃−2−


̃+1−
Z

̃−1−


[ ( )− () ()]

= 

+
2
Z

− 2


+
1
Z

− 1


[ ( )− () ()]

= 






2


( )

so,

  
1

2

(̃ ̃) =







2


( )


p
 ()

p
 ( )

= 






2


( )

2.1.1.Example: Farlie-Gumbel-Morgenstern Copula

Consider Farlie-Gumbel-Morgenstern distributions with uniformmarginals. The

p.d.f. (Bairamov and Kotz, 2002) is

( ) = 1+(1−2)(1−2) 0 ≤  ≤ 1 0 ≤  ≤ 1 −1 ≤  ≤ 1
Let 1 = 2 =  then the local covariance function is




( ) =

min(1+)Z
max(0−)

min(1+)Z
max(0−)

(1− )(1− )

= 

∙µ
22
2
− 32
3

¶
−
µ
21
2
− 31
3

¶¸ ∙µ
22
2
− 32
3

¶
−
µ
21
2
− 31
3

¶¸


where

2 = min(1 + ) =

½
1   1− 

+    1− 


2 = min(1  + ) =

½
1   1− 

 +    1− 


1 = max(0 − ) =

½
−    

0   


1 = max(0  − ) =

½
 −    

0   
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For simplicity denote  = ( )

 =
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In Figure 1, we have presented graphs of local dependence function for FGM dis-

tributions with different values of . It can be observed that lim
→1

( ) =

3
, which is the correlation coefficient of FGM distribution.

Figure 1 Graphs for Local dependence function of FGM Distribution

for the different values of ,  = 05,   =   = 1
12
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2.2.Estimation of ( )

We estimate the local dependence function for the data available such as

∗12( ) =

1



X
=1

[max(+)−max(−)][max(+)−max(−)]



−
1



X
=1

[max(+)−max(−)]
1



X
=1

[max(+)−max(−)]




Proof:

∗12( ) =
+2R
−2

+1R
−1

[ ∗ ( )−  ∗()
∗
 ()] 

=
+2R
−2

+1R
−1

∙
1


P
=1

{≤≤} −
¡
1


P
=1 {≤}

¢ ¡
1


P
=1 {≤}

¢¸


= 1


P
=1

max(+2)R
max(−2)

max(+1)R
max(−1)



−
Ã
1


P
=1

max(+1)R
max(−1)



!Ã
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!
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1



P
=1

[max ( + )−max ( − )] [max (  + )−max (  − )]

− 1


P
=1

[max ( + )−max ( − )]

× 1


P
=1

[max (  + )−max (  − )] 

where

 ∗ ( ) =
1



X
=1

{≤≤} 
∗
() =

1



X
=1

{≤} and  ∗ () =
1



X
=1

{≤}

where  is an indicator function i.e.

() =

½
1  ∈ 

0  ∈ 

and  is the observation number and  and  are the sample standard

deviations of  and  nespectively. By using this formula, we can compute the

sample local dependence function as

∗12( ) =
∗12( )
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2.3.Local Permutation Test

Permutation test interests the variables being correlated can be classified on

certain attributes, primarily. This test is a type of statistical significance test

and based on permuting the observed data points across all possible outcomes.

In local permutation testing, for each ( ), we firstly compute ̂( )

for an appropriate −value firstly. We consider making local permutation test
by comparing these original estimated values. We randomly permute to obtain

new samples satisfying the independence hypothesis, which is ̂( ) = 0

This permutation operation is repeated  times, so we obtain  samples which

are satisfying the null hypothesis. ̂ is computed for each permuted data set,

 = 1      . For each permuted data set, the significant estimated local corre-

lations at the −neighborhood are taken to the list by comparing the original
estimated local correlations. The simulated local correlations in this list are

ranked. At  significance level, we decide the dependence map value, such that

if the observed value of ̂ is in the highest (2)% of simulated ̂ ’s then the

dependence map value is +1, if the observed value of ̂ is in the lowest (2)%

of simulated ̂ ’s then the dependence map value is -1, otherwise it equals to

0. We take  = 500, since the construction of dependence map does not change

for the value greater than  = 500. Also we prefer  = 005 level to test the

significance. We develop an application with Excel Visual Basic which is the

application of the local permutation test.

2.3.1.Examples:

Standard Bivariate Normal Data We generate a standard-normal distrib-

uted data set for  = 100 and plot the dependence map for different values of 

For this data set, the Pearson correlation coefficient which measures the linear

global correlation coefficient is 0.87. In Figure 2, there is wide positive region in

spite of a small  = 001 since dependence between  and  is strong; but also

zero region is exist. For moderate values of  and  , it can be said that there

is positive dependence. We can easily say that as  increases, it approximates

to the Pearson correlation coefficient. For  = 1 we generally see positive de-

pendence between  and  as expected; but also for large values of  and 

and small values of  and  we see that there is independence.

Figure 2 Dependence map for Standard Bivariate Normal Data; zero local

dependence is light grey, positive local dependence is white for  = 001 1
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Percentage Change in CPI - Percentage Change in US Dollar In this

example, we concern that the dependence between monthly percentage change in

consumer price index and monthly percentage change in US dollar between the

years 1995-2005 for Turkey. There is not strong linear correlation for  = 0314.

In Figure 3, we see that for  = 25, dollar percentage changes around zero

is positively dependent with inflation. Also we see that when  = 95, there

is generally positive dependence except from the lowest and highest values of

percentage change in dollar, because there is independence at the lowest and

the highest values of change in dollar.

Figure 3 Dependence map for Consumer Price Index monthly change rate

and dollar monthly change rate; zero local dependence is light grey, positive

local dependence is white for  = 25 95( : inflation,  : dollar)

Percentage Change in CPI -Percentage Change in ISE-100 In this ex-

ample,we investigate the dependence structure between the variables, monthly

percentage change in consumer price index and monthly percentage change in

Istanbul Stock Exchange-100 index. In Figure 3, in the case that  = 25, there

is small positive region that is for the percentage changes in ISE-100 around 10,

but there is generally independence. When  gets larger, it does not effect the

dependence structure very much since there is weak dependence between  and



Figure 4 Dependence map for consumer price index monthly change rate

and ISE-100 monthly change rate; zero local dependence is light grey;

positive local dependence is white for  = 25 15. ( : inflation,  : ISE-100)

3.Conclusions
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In a way that global statistic measure cannot be enough to explain the real

dependence structure of the data; instead local measures of dependence can be

used. Dependence maps provide to interpret easily the dependence structure of

the data. We provide an algorithm of the local permutation test to construct

dependence maps. We use −local dependence measure that reveals the natural
dependence between the variables by clustering ( ) according to the cho-

sen We also provide several examples that constructing dependence map for

different values of  Different  values result different dependence structure of

the same data. The preference of −  provides the sensitivity of obtained

results. The researcher can determine the −  via the nature of the data

and the research. These examples can be expanded to the different areas.
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