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Summary.A -out-of- system is working if at least  of its  components are

operating. The system breaks down at the time of the (− +1)th component

failure. Since all components start working at the same time, this approach

leads to a kind of redundancy called active redundancy of  −  components.

Important particular cases of -out-of- system are parallel and series systems

corresponding to =1 and  = , respectively. In this paper, we consider the

mean residual life (MRL) function of a parallel and -out-of- systems consisting

of  components having independent and nonidentically distributed lifetimes.

We provide new representations of the MRL function for such systems. The

MRL functions of systems consisting of components having exponential and

power distributed lifetimes are presented. Also we introduce a numerical ex-

ample to study the effect of increasing the system level and various parameters

on the mean residual life of the systems. Further, the relation between the

mean residual life for the system and the mean residual life of its components

is investigated.

Key words: Mean residual life function, Parallel system, -out-of--system,

Permanents

1. Introduction

When the variables are independent but not assumed to be identically distrib-

uted, the usage of the permanents provides an effective technique to handle the

case of order statistics from nonidentical parents.
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Consider  as the set of permutations of 1 2     . If  is an ×  matrix,

the permanent of , denoted by , is defined as:

 =
X
∈

Y
=1

()

where the summation extends over all permutations of {1 2     } 

The permanent does not change when the rows or columns of the matrix are

permuted. And also, the permanent admits a Laplace expansion along any row

or column of the matrix. Thus if we denote by ( ) the matrix obtained by

deleting row  and column  of the ×  matrix , then for   = 1 2     

 =

X
=1

( )

and

 =

X
=1

( )

If 1 2     are column vectors, then⎡⎢⎣1 |{z}
1

2|{z}
2

 

⎤⎥⎦
will denote the matrix obtained by taking 1 copies of 1, 2 copies of 2 and so

on (Bapat and Beg, 1989).

Vaughan and Venables (1972) have shown that the density of :: is con-

veniently expressed in terms of permanents, when 1 2      are order

statistics of the independent random variables with absolutely continuous dis-

tribution functions 1 2      and densities 1 2      respectively. The

distribution function of :(1 6  6 ) is given by Bapat and Beg (1989)

 (: ≤ ) =

X
=

1

!(− 1)!

⎡⎢⎢⎢⎣
1() 1− 1()
...

...

()| {z }


1− ()| {z }
−

⎤⎥⎥⎥⎦
where −∞    ∞ and  denotes the permanent of a square matrix ;

the permanent is defined just like the determinant, except that all signs in the

expansion are positive. A simple argument shows (David, 1981) that
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 (: 6 ) =

X
=

 (1      6 )

=

X
=

X
1

Y
=1

()

Y
=+1

[1− ()] 

where the summation extends over all permutations 1      of 1      for

which 1  · · ·   and +1  · · ·  .

Most of the fault-tolerant systems such as parallel and -out-of- systems con-

sist of nonidentical components. This type of structures finds wide applications

in both industrial and technical areas. For the improvement of the reliability

of the operation of such complex technical systems the implementation of the

structural redundancy is widely used by the method of the -out-of- reserva-

tion. In this study we provide the results and examples on mean residual life

function for -out-of- systems consisting of  independent and nonidentical

distributed components.

2. The Mrl Functıon Of k-Out-Of-n System

Asadi and Bayramoglu (2006) have studied the MRL function of -out-of-

system under the condition that at time  all the components are working, i.e.

1 :   . In the following theorem we propose the MRL function assuming

that 1 2      are independent but nonidentically distributed random

variables with distribution function  and survival function   = 1 − . Let

also 1 : 6 2: 6 · · · 6 : be the ordered lifetimes of the components.

: ,  = 1 2,. . . , represents the lifetime of (−  + 1)-out-of- system.

Definition 1 The mean residual life function of the -out-of- system under

the condition that all components alive at time  is

(1) 
()() = ( :  −  | 1 :   )  = 1 2     

Theorem 1 If 
()
() is the MRL of the parallel system defined as Eq.(1), then

for  ()  0 =1,2,. . . , and 0

(2) 
()() =

−1X
=0

µ




¶
!

Y
=1

̄()

∞Z




⎡⎢⎣̄ ()− ̄ ()| {z }


̄ ()| {z }
−

⎤⎥⎦
Proof. If  denotes the survival function of conditional random variable : −
 | 1 :    then for   0,
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(|) =  (: − |1:  )

=
 (:  + 1:  )

 (1:  )

(3) =

−1P
=0

P
1 

Q
=1

[(+ )− ()]
Q

=+1

 (+ )

Q
=1

 ()

=

−1P
=0

P
1 

Q
=1

£
 ()−  (+ )

¤ Q
=+1

 (+ )

Q
=1

 ()

Hence the full sum is recognizable as the permanent of a matrix, so ( | ) has
the expression as follows.

(4)

−1P
=0

1
!(−1)!

⎡⎢⎣̄ ()− ̄ (+ )| {z }


̄ (+ )| {z }
−

⎤⎥⎦
Q
=1

 ()

Given that all the components of the system are working at time   0 the

MRL function of the system is


()() =

∞Z
0

(|)

=

−1P
=0

1
!(−1)!

⎡⎢⎣̄ ()− ̄ ()| {z }


̄ ()| {z }
−

⎤⎥⎦ 
Q
=1

 ()

 k=1,2,...,n

Thus the proof is completed.

The motivation for this structure can be given as an example of the high pri-

ority freight train, which is structured as a 3-out-of-4 system consisting of four

locomotives (Nelson, 1982). The train is delayed only if two or more locomo-

tives fail. It is assumed that the four locomotives in a train fail independently
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and times to failure for locomotives are distributed as nonidentical exponential

distribution. The MRL of such a system is,

2
(4)() =

1

1 + 2 + 3
+

1

1 + 3 + 4
+

1

1 + 2 + 4

+
1

2 + 3 + 4
− 3

1 + 2 + 3 + 4


It is clear that the MRL of the system is a decreasing function of failure rates

1 2 3 4 as expected.

2.1. The MRL Function of a Parallel System Having  Components All Alive

at Time 

Consider a parallel system with independent and nonidentically distributed com-

ponents each following the distribution function  and survival function (relia-

bility function)   = 1−,  = 1 2     When the system is put into opera-
tion at time , all components are working. Let also  1: 6 2: 6 · · · 6 :

be the ordered lifetimes of the components. The consideration of the mean

residual life function of this system leads us to the following definition.

Definition 2 The MRL function of a system under the condition all components

alive at time  i.e., 1:  , is

(5) () = (: − |1:  ) = (:|1:  )− 

In Theorem 2 we obtain a representation formula for mean residual life function

of a parallel system under condition that all components are survived.

Theorem 2 Let () be the mean residual life function of a system having a

parallel structure and consisting of  independent and nonidentically distributed

components with distribution function ,  = 1 2     , respectively. Given

that all components of the system are working at time   0 then,

(6) () =
1

Q
=1

 ()

1

(− 1)!

∞Z




⎡⎢⎣()|{z}
1

 ()−  ()| {z }
−1

⎤⎥⎦ − 

Proof. We have,

 (: 6 |1:  )

(7) =
 (1 6       6  1         )

 (1         )

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From Eq.(7) we get

(8)  ( :  6  | 1 :   ) =

Q
=1

[()− ()]

Q
=1

 ()



Differentiating Eq.(8) with respect to  we obtain the probability density func-

tion of conditional random variable ( : |1:  ) as

(9)
1

Q
=1

 ()

X
=1

()
Y
6=
[()− ()] 

Using the identity Eq.(9), in Eq.(5) we have,

Ψ() =
1

Q
=1

 ()

∞Z




X
=1

()
Y
6=
[()− ()] − 

An argument shows that

X
=1

()
Y
6=
[()− ()] =

X
1 

1()

Y
=2

[()− ()] 

where the summation extends over all permutations 1     of 1      for

which 1 and 2      . The result now follows from the definition of the

permanent:

(10)
1

(− 1)!

⎡⎢⎢⎢⎣
1() 1()− 1()
...

...

()| {z }
1

()− ()| {z }
−1

⎤⎥⎥⎥⎦
Given that all components of the system are working at time   0, we obtain

Thus the proof is completed.

Example 1. Let (),  = 1 2      be the exponential distribution function;

() =

½
1− −  ≥ 0   0

0   0

Then, using Eq.(6) one can show that for  = 1 2 3, the MRL function of a

system containing three components has the following form:
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3() =
1

1
+
1

2
+
1

3
− 1

1 + 2
− 1

1 + 3

− 1

2 + 3
+

1

1 + 2 + 3


Note that the MRL of a system having independent and nonidentical exponential

components does not depend on . When the values of  > 1 then the MRL of
the system decreases. The MRL function of a system containing  components

has the form

(11) () =

X
=1

(−1)+1
X

1616

1
P

=1





Example 2. Let (),  = 1 2     , be the power distribution function;

() =

½
1− (1− ) 0    1

0 

Then, the MRL function of a system containing three components has the fol-

lowing form:

3() = (1− )

∙
1− 1

1 + 1
− 2

2 + 1
− 3

3 + 1
+

1 + 2

1 + 2 + 1

+
1 + 3

1 + 3 + 1
+

2 + 3

2 + 3 + 1
− 1 + 2 + 3

1 + 2 + 3 + 1

¸
 0    1

In Fig.1, we have presented the graph of the MRL function of a system contain-

ing three components in which the lifetime of the components are assumed to

be power distribution with different parameter values. It is seen that the MRL

function is a decreasing function of parameters 1 2 and 3

As a result, the MRL function of a system containing  components is,

(12) () = (1− )

⎡⎣1−
⎛⎝ X

=1

(−1)+1
X

1616

X
=1


 + 1

⎞⎠⎤⎦

47



Fig.1. The MRL of a parallel system with =3 power distributed components

with the parameters (1 2 3) = (05 08 03) (05 08 1) (05 1 2) (1 2 3)

respectively.

Asadi and Bayramoglu (2005) have given an extension of the () as assuming

that 1 2      are independent, identically distributed random variables

with distribution function  and survival function  = 1− . They defined the
MRL function of a system, under the condition that :  , i.e., (−  + 1),

 = 1 2     , components of the system are still working as

(13) 
()() = ( :  −  |  :   )  = 1 2     

Then for  ()  0  = 1 2      and 0

(14) 
()() =

−1P
=0

µ




¶
()

−P
=1

(−1)+1
µ

− 



¶
()

−1P
=0

µ




¶
()



where () =

∞Z




()



()

 () =
 ()

 ()


In the following theorem we define the MRL function of a parallel system, assum-

ing that 1 2      are independent but nonidentically distributed random
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variables with distribution function  and survival function   = 1 −   =

1 2     , under the condition that :  , i.e., (− + 1),  = 1 2     ,

components of the system are still working

Theorem 3 Let 
()
() be the mean residual life function of a parallel system

consisting of  independent and nonidentically distributed components. Then

for   0 and  ()  0

(15) 
()() =

−1
=0


1 


=1

 ()
−
=1

(−1)+1

=1

 (+)
(+)

−
=+1

 (+)
()

−1
=0

1
!(−1)!

 ()|{z}


̄ ()|{z}
−


Proof. It is clear that

(|) =  (:  +  :  )

 (:  )

(16) =

−1
=0


1 


=1

 ()
−
=1

(−1)+1

=1

 (+)
(+)

−
=+1

 (+)
()

−1
=0


1 


=1

 ()


=+1
[1− ()]



The full sum in the denominator is recognizable as the permanent of a matrix,

so ( | ) has the form
For  = 1 2      and   0


()() =

∞Z
0

(|)

(17) =

−1
=0


1 


=1

 ()
−
=1

(−1)+1

=1

 (+)
(+)

−
=+1

 (+)
()

−1
=0

1
!(−1)!

 ()|{z}


̄ ()|{z}
−


Therefore the proof is completed.
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3. Numerical Results

This section introduces a numerical example for the various value of  of 

components of system. Further, the relation between the mean residual life for

the system and the mean residual life of its components is investigated as in the

study by Sarhan and Abouammoh (2001). They have investigated the reliability

of nonrepairable -out-of- systems with nonidentical components subjected to

independent and common shocks and the relationship between the failure rate

of the system and that of its components.

Let us consider an airplane that has three engines. Furthermore, suppose that

the design of the aircraft is such that at least two engines are required to function

for the aircraft to remain airborne. This means that the engines are reliability-

wise in a -out-of- configuration, where =2 and =3. More specifically, they

are in a 2-out-of-3 configuration. It is assumed that the engines , =1,2,3, are

Weibull distributed with parameters ( ), respectively (Petit and Turnbull,

2001).

This distribution was selected based on the common usage in engineering, ver-

satility and to reduce the complexity of the data analysis. The two parameter

Weibull distribution is a time dependent distribution that is also one of the

most useful probability distributions in reliability. It can be used to model both

increasing, and decreasing failure rates.  is referred to as the shape parameter.

If  is less than one, the mean residual life function is increasing over time. If

 is greater than one, the mean residual life function is decreasing over time. If

 is equal to one, the mean residual life function is constant over time, that is

the exponential distribution.

The time to failure  of an engine is said to be Weibull distributed with para-

meters 0 and 0 for =1, 2, 3 if the distribution function is given by

(18)  () =

½
1− −()


  0

0 


It is assumed that the scale parameter  is identical for all components lifetimes.

It is also assumed that the working of the components is independent of one

another. The mean residual life of an engine at age  is the average remaining

life among those engines which have survived until time . The mean residual

life function of the 2-out-of-3 system under the condition that all components

alive at time   0 is

(19) 2
(3)() =

1X
=0

 3




3!

3Y
̄

=1

()

∞Z




⎡⎣−() − −()
| {z }



−()
| {z }

3−

⎤⎦ 
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Fig.2a-e shows the mean residual life function of this system with different shape

parameter , =1, 2, 3 of lifetime distribution of components when:

All components have identically distributed i.e. 1 = 2 = 3.

All components have a linear decreasing mean residual life function i.e. 1.

All components have a linear increasing mean residual life function i.e. 1.

The first component has a increasing mean residual life function while the rest

two components have an decreasing mean residual life function.

The first and second components have a increasing mean residual life function

while the third one has an decreasing mean residual life function.
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Fig.2. The MRL Curves of the 2-out-of-3 System with Weibull Distributed

components (=1).
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Table 1. The Mean Residual Life at Different System Level.

Based on the Fig.2, the following conclusions are possible. It is seen from

Fig.2(a) that the components having constant mean residual life functions, i.e

1 = 2 = 3=1, the mean residual life function of the 2-out-of-3 system is

constant. When all components identically distributed and 1, the system has

decreasing MRL function, otherwise the system has increasing MRL function.

When either all components have a linear decreasing mean residual life function

(b), i.e. 1, or two components have linear decreasing mean residual life

function (d), the system has a linear decreasing. As the values of  get larger,

the values of mean residual life decrease (b). Either all components have linear

increasing mean residual life function (c), i.e. 1, or two components have

linear increasing mean residual life function (e), the system has increasing mean

residual life function.

In Table 1, a particular case with =3 and =1, 2, 3 is analyzed numerically

to study the effect of increasing the system level and various parameters on
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the mean residual life of the system. The mean residual life of the -out-of-3

configuration was calculated versus different parameters of required units. All

the computations were done using Maple 5.1.

4. Conclusions

In this paper, we have provided new representations of the MRL function for the

parallel system and -out-of- system. Also we introduce a numerical example

to study the effect of increasing the system level and various parameters on the

mean residual life of the systems.

A parallel system is equivalent to a 1-out-of-3 system, i.e. the  is equal to 1,

while a series system is equivalent to a 3-out-of-3 system, i.e. the  is equal

to 3. The system structure changes from a parallel structure to a 2-out-of-

3 structure, then to a series structure. In other words, the system structure

changes from strong to weak as the system level increases. So it is necessary to

provided redundant equipment in a parallel structure, in cases where the failure

of the system is not acceptable. When the components have constant mean

residual life functions, i.e. coming from the exponential distribution; the mean

residual life function of the system is constant in all the system level. Since the

system structure changes from strong to weak as system levels increases, the

mean residual life decreases for all parameters.
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