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Abstract 
Purpose Oxidative stress is known to be a decisive 
factor in the wide etiopathogenesis of optic neuropa-
thy. This study aimed to comprehensively evaluate the 
interaction of optic neuropathy’s clinical course with 
systemic oxidative damage and antioxidant response 
dynamics in a large series.
Methods This case-controlled clinical study 
included 33 non-arteritic anterior ischemic optic neu-
ropathy (NAION) patients and 32 healthy individuals. 
Extensive systemic oxidation profiles were statisti-
cally compared between the two groups, and correla-
tions between the clinical and biochemical data in the 
study group were analyzed.

Results Vitamin E and malondialdehyde (MDA) 
levels were significantly higher in the study group. 
Significant correlations were observed in the analyses 
between clinical findings and oxidative stress param-
eters. Correlations between vitamin E and intraocular 
pressure (IOP), between  B12 and cup-to-disk ratio 
(c/d), between antioxidant glutathione and superoxide 
dismutase (SOD) enzyme systems, and between uric 
acid (UA) and age were found to be very significant. 
As significant correlations were found in either clini-
cal and biochemical data or in oxidative stress param-
eters, correlations between vitamin E and cholesterol, 
MDA were found to be very significant.
Conclusions This study not only supplies significant 
information regarding oxidative damage and anti-
oxidant response in NAION, but also points out the 
specific interactions of neuromodulators, like vitamin 
E, in intracellular signaling pathways and regulation Supplementary Information The online version 

contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10792- 023- 02699-x.
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mechanisms. A better reading of these connections 
may help improve diagnosis, follow-ups and treat-
ment criteria and strategies.

Keywords 8-hydroxy-2’-deoxyguanosine · Non-
arteritic anterior ischemic optic neuropathy · Stress · 
Oxidative · Vitamin  B12 · Vitamin E

Introduction

Non-arteritic anterior ischemic optic neuropathy 
(NAION) is one of the major causes of vision loss in 
the elderly, and oxidative stress and apoptosis of the 
retinal ganglion cells play a role in the pathophysiol-
ogy of the neurological damage [1]. The entire nerve 
system is rich in lipids and extremely sensitive to oxi-
dative damage [2]. Oxidation degradation products 
are the sign of oxidative damage in serum and tissue; 
in lipids, the product is MDA [3]. Molecules, such as 
UA, and vitamins A, C, E remain stable after bind-
ing with ionized oxygen, which enables them to exert 
antioxidant action. Vitamins A and E are liposoluble 
vitamins. Such compounds, once formed, block the 
chain reaction by transferring their ions to the sys-
tems in which SOD and glutathione peroxidase are 
rate-limiting enzymes [4]. The DNA damage due to 
oxidative stress can be determined specifically from 
urine 8-hydroxy-2’-deoxyguanosine (8-OHdG) levels 
[4, 5]. Elevated serum MDA levels were reported in 
cataract patients which implies that an ocular pathol-
ogy may cause signs of oxidative stress in serum [6]. 
In an observation study, no antioxidant but folate was 
found to be deficient in prisoners with optic neurop-
athy [7]. Vitamin  B12, on the other hand, is another 
compound which is of vital importance for neuro-
logical damage and required for methylmalonic acid 
(MMA) metabolism [8]. The aim of this study was 
to comprehensively evaluate the interactions between 
clinical optic neuropathy findings, systemic oxida-
tive damage, and antioxidant response dynamics as 
an exploratory analysis to assess for potential interac-
tions between clinical and biochemical variables.

Methods

Thirty-three patients diagnosed and followed-up in 
Izmir Dokuz Eylül University Neuroophthalmology 

Clinic as NAION, and 32 healthy individuals were 
included in this study. Patients with no known ocu-
lar or systemic concomitant disorders, neurologi-
cal diseases, recent surgeries, or antioxidant and/or 
corticosteroid usage were selected. Biochemical and 
clinic findings were noted. For oxidative stress anal-
ysis, plasma MDA as a lipid oxidation product and 
urine 8-OHdG as an oxidatively induced DNA dam-
age product were assessed. Along with antioxidants 
ceruloplasmin (Cp), UA, and vitamins A,  B12, C, E 
and folate, antioxidant systems SOD, total (tGSH) 
and reduced glutathione (GSH) were also evaluated. 
Care was taken to obtain both the samples and clini-
cal data at the same day, and few out-of-range values 
in certain parameters—due to errors occurring during 
and before measurements, were excluded. As exten-
sive systemic oxidation profiles statistically compared 
the two groups, correlations between clinical and bio-
chemical data in the study group were also statisti-
cally analyzed.

Clinical examinations

The patients underwent a detailed ophthalmic 
examination, including mean logarithm of the mini-
mum angle of resolution-best corrected visual acu-
ity (LogMAR-BCVA), color vision (Ishihara test) 
and IOP with PASCAL Dynamic Contour Tonom-
etry (Nidek inc., Fremont, CA, USA) measurements. 
Patients whose IOPs were higher than 21  mm/Hg 
were excluded. Posterior segment analyses with opti-
cal coherence tomography (OCT) were taken with a 
spectral domain OCT (Spectralis; Heidelberg Engi-
neering Ltd, Heidelberg, Germany). c/d, retinal nerve 
fiber layer thickness (RNFL) and macular thickness 
(MT) were also recorded. 30-2 visual field analysis 
via standard achromatic perimetry (SAP) was con-
ducted with a Humphrey Field Analyzer Model 740i 
(Carl Zeiss Inc. Dublin, CA, USA), and mean (MD) 
and pattern standard (PSD) deviations were obtained. 
Each parameter with basic clinical findings (visual 
acuity, color vision, age, and gender) was recorded 
for each patient.

Biochemical analyses

Serum and fist morning urine samples were collected 
from patients and healthy subjects. MDA measure-
ment was performed according to the study of Hong 
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et  al. [9]. The method is based on the condensation 
of MDA with thiobarbituric acid (TBA) in the pres-
ence of reducing substances. Samples were analyzed 
using Prominence LC 20 (Shimadzu, Kyoto, Japan) 
HPLC set equipped with a Sil-20AC autosampler, 
a LC-20AD pump, and a RF-10Axl fluorescence 
detector. MDA was detected by fluorescence (exci-
tation 515  nm; emission 553  nm). The results were 
expressed in µmol/L.

GSH and tGSH activities in serum were deter-
mined by HPLC (Shimadzu, Toyo, Japan). This 
method was based on derivative of GSH with 
o-Phthalaldehyde (OPA) [10]. The analysis was per-
formed using Prominence LC 20 (Shimadzu, Kyoto, 
Japan) HPLC set, equipped with a Sil-20AC autosam-
pler, a LC-20AD pump, and a RF-10Axl fluorescence 
detector. GSH and tGSH were detected by fluores-
cence (excitation 340 nm, emission 420 nm). Results 
were expressed as µmol/L.

The SOD activity was determined using a RAN-
SOD kit (Randox Labs, Crumlin, UK). The absorb-
ance was measured at 505 nm on a microplate reader 
(Bio-Tek Instruments, Inc., VT, USA). Results were 
expressed as µmol/mg protein. Vitamin C levels were 
colorimetrically determined at the Dokuz Eylul Uni-
versity Hospital, via ARLab using the BioTek Syn-
ergy HT ELISA  Reader (Winooski, USA) with the 
Ascorbic Acid  Assay Kit (Sigma-Aldrich MAK074, 
Taufkirchen, Germany). The results were expressed 
in µg/ml.

LC–MS/MS analysis

a. Plasma MMA analysis: Plasma samples were 
collected in tubes containing EDTA anticoagu-
lant and were centrifuged immediately at 4  °C 
and 2000xg for ten minutes. The concentration of 
MMA was measured by LC-MS/MS (Shimadzu 
Prominence UFLC, Japan and 4000 QTRAP, 
Applied Biosystems, Germany, respectively), as 
described previously [11]. Intra- and inter-day 
MMA precisions were < 3.8% and < 5.7%, respec-
tively. Results were given in µmol/L. The cut-off 
value for plasma MMA levels was 0.271 μmol/L, 
which has been frequently used in the previous 
literature [12].

b. 8‑OHdG assessment in urine: To evaluate oxi-
dative DNA damage, first morning urine sam-
ples were spiked with aliquot of 8-OH-dG-15N5 

as internal standard and LC-MS/MS analyses 
were performed using a an HPLC system (Shi-
madzu, Kyoto, Japan) coupled to a triple quadru-
pole ion-trap mass spectrometer (4000 QTRAP 
Applied Biosystems, CA, USA) equipped with 
a TurboIonSpray™ source, as described previ-
ously [13, 14]. The Analyst Software Version 1.5 
(Applied Biosystems) was used for data analy-
ses. Urinary creatinine concentrations were used 
for normalization of the results. The results were 
expressed as nmol/mmol creatinine.

Statistical analyses

Statistical analyses were conducted using the IBM 
Statistical Package for Social Sciences (SPSS) soft-
ware, version 21.0. The normality of the data was 
evaluated via the Shapiro–Wilk test. In comparisons 
between two groups, t-tests and Mann–Whitney U 
tests were applied for variables showing parametric 
and nonparametric distributions, respectively. Chi-
Square test was used for categorical variables. Cor-
relation coefficients were determined with Pearson’s 
and Spearman’s correlation tests for variables show-
ing parametric and nonparametric distributions, 
respectively. For absolute values of correlation coef-
ficients, 0–0.19, 0.2–0.39, 0.40–0.59, 0.6–0.79 and 
0.8–1 were regarded as very weak, weak, moderate, 
strong and very strong correlations, respectively. p 
values less than 0.05 and 0.01 were considered sta-
tistically significant and very significant, respectively.

Results

No significant differences were found in gender distri-
butions of the patient and control groups. Ages, how-
ever, in the control group were significantly higher 
than the study group (Table 1). Regarding oxidative 
stress markers, however, significant differences were 
observed between two groups (Fig.  1). Compared 
to the controls, the levels of GSH; vitamins A,  B12 
and E; folic acid; MMA; MDA; and 8-OHdG were 
higher, while tGSH; SOD; vitamin C; Cp; and UA 
were slightly lower, in the study group. Statistically, 
increments in MDA (t = 2.3 p = 0.025) and Vitamin 
E (z = 3.648 p < 0.001) were found to be significant 
and very significant in the study group, respectively 
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(Table 2). Comparison of oxidative stress parameters 
according to gender in study group is given in Online 
Resource 1 (ESM_1).

In the study group, significant and very significant 
correlations were observed in statistical analyses per-
formed between clinical findings and oxidative stress 
parameters, along with correlations between clini-
cal and biochemical data. In the correlation analysis 
between clinical and biochemical data in the study 
group, negative correlations between color vision 
with age, as well as between RNFL and vision, 
were statistically very significant. Positive correla-
tion between age and vision and negative correlation 
between color vision and RNFL were also signifi-
cant (Table 3). Correlation analysis between clinical 
and biochemical data showing parametric (ESM_2) 
and nonparametric (ESM_3) distributions in the 
study group is given in Online Resources 2 and 3, 
respectively. 

Regarding oxidative stress parameters, UA showed 
very significant and significant positive correlations 

with age and IOP, respectively. Significant positive 
and negative correlations were observed between cho-
lesterol and MDA, and between glucose and Vitamin 
A, 8-OHdG, respectively. Whereas a strong and very 
significant negative correlation was observed between 
Vitamin  B12 and c/d ratio, Vitamin E was very sig-
nificantly and significantly correlated with choles-
terol and IOP, respectively. MD showed very signifi-
cant and significant negative correlations with MMA 
and Cp, respectively (Table  4). Correlation analysis 
of oxidative stress parameters with clinical and bio-
chemical data showing parametric (ESM_4) and non-
parametric (ESM_5) distributions in the study group 
is given in Online Resources 4 and 5, respectively.

In the correlation analysis between oxidative 
stress parameters in the study group, antioxidant 
glutathione and SOD enzyme systems were found 
to correlate very significantly. tGSH showed nega-
tive and positive significant correlations with both 
Vitamin  B12 and MMA, respectively. Significant 
correlations between MMA and Cp, SOD and 

Table 1  Comparison of demographic data between control and study groups

a Chi-Square Test
b t-test
* p < 0.05

Control Patient p value

Gendera Female(n)/Male(n) 23/9 17/16 0.092
Ageb Mean ± Std. Dev. (n) 64.09 ± 13.24 (32) 57.42 ± 10.51(33) 0.028*

0
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35

Control Pa�ent

Fig. 1  Comparison of blood biochemistry and oxidative 
stress parameters between patient and control groups. tGSH: 
Total glutathione (mmol/L × 100), GSH: Reduced glutathione, 
(mmol/L × 100), SOD: Superoxide dismutase (µmol/mg), A: 
Vitamin A (µg/L /100), B12: Vitamin  B12 (pg/mL /10), C: 
Vitamin C (ng/µL × 100), E: Vitamin E (µg/L), Folate (ng/mL), 

Cp: Ceruloplasmin (mg/dL), UA: Uric acid, (µg/L), MMA: 
Methylmalonic acid (µmol/L × 10), MDA: Malonyl dialdehyde 
(µmol/L × 10), 8-OHdG: 8-hydroxy-2’-deoxyguanosine/Cre-
atinine (nmol/mmol), *:p < 0.05 significant, **: p < 0.001 very 
significant
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Table 2  Comparison of blood biochemistry and oxidative stress parameters between control and study groups

Cholesterol (mg/dL), Glucose (mg/dL), tGSH: Total glutathione (mmol/L), GSH: Reduced glutathione, (mmol/L), SOD: Superoxide 
dismutase (µmol/mg), A: Vitamin A (µg/L), B12: Vitamin  B12 (pg/mL), C: Vitamin C (ng/µL), E: Vitamin E (µg/L), Folate (ng/mL), 
Cp: Ceruloplasmin (mg/dL), UA: Uric acid, (µg/L), MMA: Methylmalonic acid (µmol/L), MDA: Malonyl dialdehyde (µmol/L), 
8-OHdG: 8-hydroxy-2’-deoxyguanosine/Creatinine (nmol/mmol), p: p value; n: Number of samples
a t-test
b Mann–Whitney U Test
*p < 0.05    **p < 0.001

Control Patient p

Cholesterola Mean ± Std. Dev. (n) 209.81 ± 42.80(31) 206.28 ± 46.00(32) 0.754
Glucoseb Mean ± Std. Dev. (n) 91.10 ± 30.77(31) 96.77 ± 35.69(30) 0.263

Median (25th–75th Perc.) 85(74–94) 89.5(77–106)
tGSHb Mean ± Std. Dev. (n) 0.06 ± 0.04(32) 0.05 ± 0.017(33) 0.386

Median (25th–75th Perc.) 0.051(0.041–0.063) 0.047(0.039–0.060)
GSHb Mean ± Std. Dev. (n) 0.031 ± 0.015(32) 0.032 ± 0.013(33) 0.679

Median (25th–75th Perc.) 0.03(0.02–0.037) 0.029(0.023–0.04)
SODb Mean ± Std. Dev. (n) 23.01 ± 15.70(32) 22.39 ± 10.06(33) 0.486

Median (25th–75th Perc.) 20.97(11.46–30.49) 24(13.51–30.27)
Ab Mean ± Std. Dev. (n) 929.85 ± 303.73(31) 1051.18 ± 259.52(33) 0.065

Median (25th–75th Perc.) 882.3(676.4–1174.6) 1072.8(925.8–1211.7)
B12b Mean ± Std. Dev. (n) 251.16 ± 169.74(31) 210.93 ± 85.98(30) 0.644

Median (25th–75th Perc.) 215(144–275) 193(159–265)
Cb Mean ± Std. Dev. (n) 0.075 ± 0.032(32) 0.074 ± 0.037(33) 0.454

Median (25th–75th Perc.) 0.074(0.057–0.095) 0.067(0.056–0.086)
Eb Mean ± Std. Dev. (n) 15.03 ± 8.07(32) 22.06 ± 8.54(33)  < 0.001**

Median (25th–75th Perc.) 13.22(11–17.3) 21.6(18.3–28.5)
Folateb Mean ± Std. Dev. (n) 8.17 ± 3.27(31) 9.46 ± 5.04(32) 0.372

Median (25th–75th Perc.) 7.64(5.5–10.7) 8.85(5.9–10.9)
Cpb Mean ± Std. Dev. (n) 20.27 ± 3.31(31) 20.13 ± 4.04(31) 0.899

Median (25th–75th Perc.) 19.8(17.5–21.8) 20.2(17–22.4)
MMAb Mean ± Std. Dev. (n) 0.379 ± 0.496(32) 0.269 ± 0.223(24) 0.345

Median (25th–75th Perc.) 0.202(0.148–0.345) 0.153(0.126–0.408)
Uric  acida Mean ± Std. Dev. (n) 5.38 ± 1.58(31) 5.34 ± 1.17(32) 0.899
MDAa Mean ± Std. Dev. (n) 2.57 ± 0.72(31) 3.04 ± 0.89(32) 0.025*

8-OHdGb Mean ± Std. Dev. (n) 12.41 ± 9.09(27) 14.93 ± 10.36(28) 0.523
Median (25th–75th Perc.) 11.17(5.52–16.35) 11.85(5.56–19.72)

Table 3  Significant and highly significant correlations between clinical and biochemical data in the study group

C Vs: Color vision; RNFL: Retinal nerve fiber layer analysis; r: Pearson correlation coefficients; p: p value; n: Number of samples
* p < 0.05 **p < 0.001

r p n

Age – Vision 0.405 0.19* 32 M
Age – C Vs  − 0.582  < 0.001** 32 S
Vision – C Vs  − 0.633  < 0.001** 32 S
Vision – RNFL  − 0.601  < 0.001** 32 S
C Vs – RNFL 0.354 0.047* 32 W
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glutathiones were positive and negative, respec-
tively. Whereas positive correlation of MDA and 
cholesterol (Table  4) was significant, very sig-
nificant positive correlations between Vitamin E 
with vitamin A and MDA (Table 5) were the other 
prominent findings regarding antioxidant response 
dynamics. Despite statistically significant p values 

in the correlations between GSH and SOD, glu-
cose and vitamin A, correlation coefficients were 
below 0.500 which implies a low correlation 
(Table  5). Correlation analysis between oxidative 
stress parameters and biochemical data showing 
parametric (ESM_6) and nonparametric (ESM_7) 
distributions in the study group is given in Online 
Resources 6 and 7, respectively.

Table 4  Significant and highly significant correlations of oxidative stress parameters with clinical and biochemical data in the study 
group

c/d: Cup disk ratio; Ch: Cholesterol (mg/dL); Glu: Glucose (mg/dL); tGSH: Total glutathione (mmol/L); GSH: Reduced glutathione, 
(mmol/L); SOD: Superoxide dismutase (µmol/mg); A: Vitamin A (µg/L); B12: Vitamin  B12 (pg/mL); C: Vitamin C (ng/µL); E: 
Vitamin E (µg/L); Folate (ng/mL); Cp: Ceruloplasmin (mg/dL); IOP: Intraocular pressure; UA: Uric acid, (µg/L); MMA: Methyl-
malonic acid (µmol/L); MD: Mean deviation; MDA: Malonyl dialdehyde (µmol/L); 8-OHdG: 8-hydroxy-2’-deoxyguanosine/Creati-
nine (nmol/mmol); r: Pearson correlation coefficients; p: p value, n: Number of samples
a Spearman’s rho correlation coefficients
* p < 0.05 **p < 0.01 ***p < 0.001

r p n

Age – UA 0.551 0.001** 31 M
MD – Cp  − 0.412 0.015* 30 M
MD – MMA  − 0.569a 0.004** 24 M
Ch – MDA 0.431 0.014* 32 M
Ch – E 0.52 0.002** 32 M
IOP – E 0.459a 0.007** 32 M
IOP – UA 0.387a 0.029* 32 M
c/d – B12  − 0.700a  < 0.001*** 29 S
Glu – A  − 0.399a 0.029* 30 W
Glu – 8-OHdG  − 0.467a 0.019* 25 M

Table 5  Significant and highly significant correlations between oxidative stress parameters and biochemical data in the study group

Cp: Ceruloplasmin; MMA: Methylmalonic acid; MDA: Malonyl dialdehyde; tGSH: Total glutathione (mmol/L); GSH: Reduced glu-
tathione (mmol/L); SOD: Superoxide dismutase (µmol/mg); A: Vitamin A (µg/L); B12: Vitamin  B12 (pg/mL); E: Vitamin E (µg/L); 
Cp: Ceruloplasmin (mg/dL); MMA: Methylmalonic acid (µmol/L); MDA: Malonyl dialdehyde (µmol/L); r: Pearson correlation coef-
ficients
a Spearman’s rho correlation coefficients
* p < 0.05 **p < 0.01

r p N

tGSH – B12  − 0.402a 0.028* 30 M
tGSH – MMA 0.417a 0.043* 24 M
tGSH – GSH 0.447 0.009** 33 M
tGSH – SOD  − 0.471 0.006** 33 M
Cp – MMA 0.417a 0.043* 24 M
GSH – SOD  − 0.388 0.026* 33 W
MDA – E 0.489 0.005** 32 M
A – E 0.567 0.001** 33 M
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Discussion

The optic neuropathies are various groups of disor-
ders characterized by visual loss resulting from optic 
nerve dysfunction. According to the World Health 
Organization, a form of optic neuropathy is respon-
sible for approximately 15% of the global burden 
of visual impairment [15]. However, clinical stud-
ies on the connection between optic neuropathy and 
oxidative damage mostly focus on glaucoma, a spe-
cific form of optic neuropathy. As it is a valid work-
ing hypothesis that a special form of ischemia is the 
reason for ganglion cell death in glaucoma [16], the 
mechanisms responsible for ischemic optic neuropa-
thy are known to include oxidative stress, excitotox-
icity, angiogenesis, neuroinflammation, and apoptosis 
following retinal ischemia [15] as well.

A random-effects meta-analysis of Parkinson’s dis-
ease, conducted by Wei et al., has shown that patients 
with Parkinson’s have significantly higher levels of 
blood oxidative stress markers-ferritin, 8-OHdG, 
nitrite, and MDA-compared with healthy subjects. In 
contrast, concentrations of UA, catalase, tGSH, and 
total cholesterol are significantly lower in Parkinson’s 
patients compared with healthy subjects. Interest-
ingly, blood levels of Mn, Cu, Zn, Fe, SOD, albumin, 
GSH, vitamin E, Cp, triglycerides, LDL-cholesterol, 
lactoferrin, transferrin, and HDL-cholesterol show no 
significant differences between Parkinson’s patients 
and healthy subjects. In peripheral blood, significant 
heterogeneity is reported for 21 of the 22 oxidative 
stress markers, except for lactoferrin [17]. In com-
paring the blood biochemistry and oxidative stress 
parameters between the patient and control groups in 
the present study, only vitamin E and MDA showed 
statistically significant increments. This finding is 
highly concordant with both the meta-analysis of 
Wei et al. and a similar study carried out by the first 
author and another research group in 2010. Thirty-
one healthy individuals and 160 glaucoma patients 
were included in the latter multicenter case–control 
study. SOD and GSH were found to be decreased, 
and MDA and vitamins A and E were found to be 
increased, in the study group. For vitamin E and 
MDA, this increase was determined to be very sig-
nificant [18]. Serum MDA levels are increased, not 
only in the cataract patients [6], but also in primary 
angle closure glaucoma (PACG) patients [19]. These 
reports are significant regarding nerve tissue damage, 

for MDA is an oxidation degradation product and is 
the most important marker of lipid oxidative damage 
[1, 19]. The increased vitamin E levels reported in 
patients with optic neuropathy can be explained with 
the existence of sensitive mechanisms for regulating 
tissue levels vitamin E. In addition to being an impor-
tant liposoluble antioxidant, however, molecules of 
the vitamin E family exert neuroprotective and anti-
inflammatory activities [20].

All those interactions also imply that the signifi-
cant and very significant interactions between vita-
min E, MDA and cholesterol observed in the pre-
sent study are noteworthy. In a systematic review of 
14 observational and seven randomized controlled 
clinical trials, vitamin E  was found to correlate sig-
nificantly with  MDA and SOD [21]. In a clinical 
study carried out in Africa, patients demonstrated 
higher plasma atherogenic indices and higher levels 
of total cholesterol, along with at least 1,334-fold of 
MDA concentration above normal levels. Also, in the 
same patients, the higher atherogenic plasmatic index 
significantly (p < 0.05) increased with MDA concen-
tration [22]. Sole supplementation of vitamin E, on 
the other hand, may act as a stimulant to HMG-CoA 
activity and, therefore, demonstrate hypercholester-
olemic activity [23]. The hypocholesterolemic effects 
of vitamin E, however, are also well known via sev-
eral membrane proteins [24].

In correlation analysis between the clinical and 
biochemical data, significant correlations between 
color vision and age, as well as between RNFL and 
vision, are consistent with current clinical knowl-
edge and the extant literature [25]. Prominent results 
related with vitamins E and  B12 were observed in 
the correlation analysis of oxidative stress param-
eters with clinical and biochemical data, as well as 
other oxidative stress parameters in the study group. 
Vitamin E was found to significantly correlate with 
IOP in NAION patients. Engin et  al. have reported 
that α-tocopherol exert vasoregulatory effects on 
the retina, which is important for avoiding ischemia 
[26]. Another parameter significantly correlated 
with IOP—UA—is also known to exert protective 
effects against oxidative damage in the central nerv-
ous system. Negative association between UA levels 
and disease severity has been shown in PACG [27] 
patients. Significantly higher UA  levels, however, 
have been reported in NTG  patients [28]. A recent 
large-scale meta-analysis results, however, revealed 
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no significant associations between NAION and glau-
coma or IOP in 1095 and 46 cases, respectively [29].

Along with MDA and cholesterol, Vitamin A was 
the third molecule to show very significant correla-
tion with vitamin E in this study. Vitamins A and E 
are fat soluble vitamins absorbed in the small intes-
tine through different, but interrelated, mechanisms. 
Similar to vitamin E, vitamin A possesses antioxida-
tive properties and the ability to regulate gene expres-
sion by interacting with the retinoic acid receptors 
and the retinoid X receptors, acting as transcription 
factors [30]. Furthermore, the antioxidant properties 
of vitamin E are shown to help to prevent vitamin A 
oxidation and, therefore, serve to enhance vitamin A 
absorption when there is concomitant consumption of 
vitamin A and E [31]. Negative correlation of vitamin 
A with glucose was found to be weak but significant. 
It is evident that hepatic glucose and lipid metabolism 
are regulated by vitamin A metabolites at many dif-
ferent levels [32].

A significant negative correlation between tGSH 
and SOD has been observed in this study. After 
screening 12 articles with 646 long-lived participants 
and 1052 controls, Belenguer-Varea et  al. [33] have 
presented significantly lower SOD and higher  glu-
tathione  reductase activities in elderly individuals, 
concordant with the present results. Low intake of 
folate and vitamin  B12 has also been found to be asso-
ciated with reduced levels of tGSH in patients with 
type 2 diabetes mellitus [34]. In this study, tGSH 
showed negative and positive significant correlations 
with both vitamin  B12 and MMA, respectively. MMA 
was also significantly correlated with Cp. Cp is the 
carrier of the  Cu++ ion, which is a cofactor of oxi-
dation enzymes, and its deficiency affects optic nerve 
function, and the nervous system in general [35]. 
Vitamin  B12 is another antioxidant whose deficiency 
causes antioxidant response disorders related to the 
glutathione system. However, vitamin  B12 deficiency 
can be difficult to diagnose. Due to the lack of a clear 
association between serum vitamin  B12 and its defi-
ciency, it has been proposed that functional vitamin 
 B12 deficiency can occur at any serum level. Moreo-
ver, it was stated that normal or high serum vitamin 
 B12 levels can sometimes be seen in a vitamin  B12 
deficient state, and high levels of MMA have been 
identified as a better indicator of  B12 deficiency than 
the actual serum  B12 level itself [36]. On the other 
hand, vitamin  B12 deficiency is reported to be related 

to both symptomatic and asymptomatic small fiber 
loss and retinal nerve fiber thickness in glaucoma-
tous other non-glaucomatous optic neuropathies [37], 
which highlights the very significant negative correla-
tion of vitamin  B12 with the c/d ratio. In this study, 
MD showed significant negative correlations with 
both MMA and Cp. It has been reported on the asso-
ciation of copper deficiency with the development of 
concomitant neurologic deficits manifested as periph-
eral neuropathies and myeloneuropathy indistinguish-
able from the clinical and T2-weighted MRI findings 
seen in vitamin B12 deficiency [38].

MDA is an important end product for lipid per-
oxidation, and 8-OHdG is a critical marker for DNA 
damage, and increases in both MDA an 8-OHdG, 
implying oxidative damage in lipid tissue, have been 
reported in PACG [19] patients. Although MDA and 
8-OHdG are products of lipid oxidation, damage can 
occur at various organelles and levels, depending on 
the composition of the tissue or organ from which 
the oxidation originates. On the other hand, these 
two compounds are elements of a complex mecha-
nism and interact with each other. MDA is a known 
mutagenic and carcinogenic [39] and reacts physi-
ologically with forming deoxyguanosines, includ-
ing 8-OHdG [3]. Despite MDA being significantly 
increased among the NAION patients in the present 
study, neither increase nor correlations of 8-OHdG 
were statistically significant, except for a negative 
correlation with glucose. Although 8-OHdG is iden-
tified as important biomarkers in the pathogenesis 
process of type 2 diabetes mellitus, understandably 
enhances in blood level as the disease progress [40]. 
Because reviewing clinical studies on 8-OHdG cur-
rently generates interest concerning whether it is an 
actual marker of DNA damage in lipid tissue due to 
oxidative stress, variable reports are encountered. 
8-OHdG has been reported to be increased in the 
plasma of Leber’s hereditary optic neuropathy [41] 
and in both the aqueous humor and plasma of POAG 
patients [42]. Yuki et  al., however, studied urine 
samples in NTG cases and reported decreased urine 
8-OHdG/creatinine ratio, which is concordant with 
the present research [5].

In a recent study among 18 newly diagnosed 
NAION patients and 17 healthy subjects, along with 
serum total oxidant and antioxidant status, solely 
advanced oxidation protein products were studied, 
and no significant differences were reported between 
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the patients and the control group [43]. Although hav-
ing limitations in age dismatch between control and 
study groups and statistical risk of type I error due to 
numerous pairwise comparisons, the present study 
is much more comprehensive, with a larger NAION 
series. Furthermore, the researchers have specifi-
cally focused on the products and defense dynam-
ics of lipid oxidation using more sophisticated assay 
techniques. This study not only obtained clear infor-
mation regarding oxidative damage and antioxidant 
response in a frequent form of optic neuropathy, but 
it also pointed out specific interactions between neu-
romodulators, like vitamin E, and intracellular sign-
aling and regulation mechanisms. Significant eleva-
tions in both vitamin E and MDA levels in the study 
group and their significant interactions with vitamin 
A, cholesterol—and with certain clinical parameters 
as well, observed in the present study are noteworthy. 
Meaningfully, significant correlations between Glu-
tathione/Vitamin  B12 and SOD enzyme systems were 
also revealed. Better reading of these connections and 
focusing on oxidative nerve tissue damage may aid 
the development of more suitable diagnosis, follow-
up and treatment criteria and strategies, alongside a 
fuller understanding of NAION.
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