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Abstract
Under partial observability, a reinforcement learning agent needs to estimate its true state by solely using its observation 
semantics. However, this interpretation has a drawback, which is called perceptual aliasing, avoiding the convergence guar-
antee of the learning algorithm. To overcome this issue, the state estimates are formed by the recent experiences of the agent, 
which can be formulated as a form of memory. Although the state estimates may still yield ambiguous action mappings due 
to aliasing, some estimates exist that naturally disambiguate the present situation of the agent in the domain. This paper 
introduces an algorithm that incorporates a guidance mechanism to accelerate reinforcement learning for partially observable 
problems with hidden states. The algorithm makes use of the landmarks of the problem, namely the distinctive and reliable 
experiences in the state estimates context within an ambiguous environment. The proposed algorithm constructs an abstract 
transition model by utilizing the landmarks observed, calculates their potentials throughout learning -as a mechanism bor-
rowed from reward shaping-, and concurrently applies the potentials to provide guiding rewards for the agent. Additionally, 
we employ a known multiple instance learning method, diverse density, for automatically discovering landmarks before 
learning, and combine both algorithms to form a unified framework. The effectiveness of the algorithms is empirically shown 
via extensive experimentation. The results show that the proposed framework not only accelerates the underlying reinforce-
ment learning methods, but also finds better policies for representative benchmark problems.
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1 Introduction

Reinforcement Learning (RL) defines a machine learning 
paradigm where an agent tries to learn by interacting with its 
environment [53]. A reinforcement learning agent acts in an 
environment and tries to solve a task by using the rewards or 
punishments given. The learning capabilities of an agent are 
diminished under partial observability. Since the true states 
of the task are hidden from the agent, there is no guarantee 
of forming an optimal policy that can ensure the highest 
returns [6]. Under these circumstances, we can only expect 
an agent to exhibit bounded rationality given the limited 
sensations from the world.

In order to overcome the uncertainty of the environment, 
the agent can devise mechanisms; such as keeping track 
of eligibility trace marks on states to improve the conver-
gence speed of a good policy, or keeping a state estimate 
to distinguish the true state it is in. Although the idea of 
eligibility traces seems simple, it is practical to implement 
and is shown to be useful to speed up the convergence of 
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the underlying RL algorithm [37]. Faster propagation of the 
temporal difference error can improve convergence to a pol-
icy. However, there may be some tasks that no policy that is 
formed upon the pure observations can solve. In such a case, 
the agent has to transform the learning problem to a higher 
dimension by introducing a state estimation to overcome 
perceptual aliasing. By maintaining a sort of memory, it may 
distinguish one experience from another, leading to a more 
effective policy [27, 35, 43]. Yet, finding a suitable estima-
tion to elevate or guarantee learning under partial observ-
ability is a challenge which is beyond the scope of this study.

Most of the time, fortunately, it is possible to generate 
state estimations that can be recognized as reliable parts of 
the agent’s internal representation for an ambiguous envi-
ronment. Such estimated states can clearly distinguish the 
true state of the problem, acting as landmarks for a partially 
observed domain. In general, a landmark is a unique experi-
ence that properly distinguishes the agent’s current state in 
a partially observable setting, and we can exploit presence 
of landmarks to inform the agent about its progress. Rely-
ing on these landmarks, an agent can improve its learning 
performance for a problem with ambiguous observations.

In this study, we focus on tabular Reinforcement Learn-
ing with hidden states where an agent requires to form an 
estimated state from its previous experiences on the environ-
ment. We assume that the agent follows a state estimation 
mechanism in a discrete environment.

Our contributions are summarized as follows:

• We propose a guidance approach for RL with hidden 
states, Landmark Based Guidance (LBG), that requires 
the landmarks of the task. The core idea is that the inter-
landmark transitions form a semi-Markov decision 
process and can be used to devise an abstract guidance 
mechanism by providing guiding rewards based on how 
valuable it is to visit each landmark in the task.

• We employ Diverse Density (DD) to identify landmarks 
in the set of estimated states. Diverse Density (DD) with 
our concept filtering mechanism is shown to work under 
such settings in our previous study.

• We present an end-to-end framework that operates on the 
set of estimated states to identify and utilize landmarks 
by combining DD and LBG during learning.

The experiments on several discrete benchmark problems 
demonstrate the improvement of our proposed framework 
on the learning speed.

The rest of the paper is organized as follows. Section 2 
introduces the background knowledge for POMDPs with 
hidden states and reviews the related works. In Sect. 3, we 
clearly define the concepts of state estimation and landmark 
and describe Landmark Based Guidance with automatic 
landmark discovery. Section 3 also provides a complexity 

analysis of the overall method. Section 4 covers the experi-
ments on several discrete domains. Finally, Sect. 5 gives a 
discussion and a conclusion to the study.

2  Background and related work

In this section, we provide the background necessary to build 
up the notions in the following chapters. The section intro-
duces the environment models, explains well known learn-
ing methods on them and summarizes existing related work 
on the topics of the study.

2.1  Problem models

Two decision process model formalisms based on 
Markov Decision Processes (MDP) are used in this paper. 
Thus, we first recall that an MDP is a tuple ⟨S,A, T ,R⟩ , 
where S is a finite set of states, A is a finite set of 
actions, T ∶ S × A × S → [0, 1] is a transition function, 
R ∶ S × A → ℜ is a reward function [32]. Semantically, 
T(s, a, s�) represents the probability of landing at state s′ after 
taking the action a in the state s, R(s, a) provides the reward 
taken after employing the action a in the state s.

One of the models used in this work is the Semi-MDP 
(SMDP) which is an abstraction of MDP over time aim-
ing to model transitions with stochastic time duration (i.e. 
an action can take more than one time step). It is a tuple 
⟨S,A, T ,R,F⟩ , where the first four terms define an MDP and 
F(t|s, a) denotes the probability that starting at s, action a 
completes within time t [5]. Obviously, MDP is a special 
form of SMDP with a step function having a jump at 1 
[54]. Importance of SMDP is its ability to model temporal 
abstractions on an MDP so that improvements can be made 
both inside the abstracted actions and among the abstrac-
tions [54].

The other model is the Partially Observable MDP 
(POMDP), which is defined by a tuple ⟨S,A, T ,R,Ω,O⟩ 
defined by an MDP (S, A, T and R), a finite set of obser-
vations Ω , and an observation function O ∶ S × A → Π(Ω) . 
O(s�, a, o) represents the probability of getting the observa-
tion o after the agent takes the action a in the state s [33]. 
POMDP is a generalization of MDP that enables to model a 
partially observable environment.

2.2  Reinforcement learning

RL aims at learning which action is best for a learning agent 
by trying to form a model through interacting with the envi-
ronment, utilizing perceptions and rewards based on its 
actions [53]. As the environmental dynamics are unknown, 
the agent needs to discover them during learning.
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In RL point of view, an environment is modeled by one of 
the previous forms and the feedbacks provided to the agent is 
determined by the reward function of the model. The agent 
aims to map an action to every state so that it learns how to 
act in the environment.

Agent’s behaviour is defined in terms of a policy 
� ∶ S × A → [0, 1] which defines how likely an action will 
be selected on a state. A learning agent aims to converge to 
an optimal policy �∗ that maximizes the future discounted 
rewards from a state. Since the dynamics of the problem 
is hidden from the agent, the optimal policy needs to be 
converged by estimating the value function that describes 
the utility of being in a state. Following the idea, temporal 
difference (TD) [52] algorithms iteratively updates the value 
function during the interaction with the environment.

2.2.1  Eligibility traces

As a bridge between the one-step approach of TD methods 
and Monte Carlo methods, eligibility traces were introduced 
where the agent leaves decaying traces over the previous 
transitions and employs the value updates based on these 
traces.

The traces allow a reward to propagate through the pre-
vious transitions much faster, leading to a faster conver-
gence. The algorithms that adapted this idea, like Q(� ) and 
Sarsa(� ), were shown to find good policies [37, 58], where � 
represents the decay factor of the eligibility traces.

Q(� ) is the adaptation of Q-Learning algorithm that 
includes eligibility traces [58]. It keeps a decaying trace 
over the previously visited state-action pairs, representing 
their eligibility to the current temporal difference update. 
Although there are different versions of the algorithm, Wat-
kins’ Q(� ), which is also used in this study, resets the traces 
whenever the agent takes a non-greedy action, to keep the 
algorithm genuinely off-policy.

Sarsa(� ) is an online on-policy learning algorithm that 
also utilizes the eligibility trace mechanism [37]. It follows 
the same pattern of updating the regular Q values of state-
action pairs with an error while leaving a trace over the pre-
viously visited state-action pairs. Unlike Q(� ), Sarsa(� ) uses 
the Q-value of the next state-action pair in the TD error and 
does not reset the eligibility traces upon non-greedy actions, 
since it is an on-policy learning algorithm.

The parameter 0 ≤ � ≤ 1 , decays the eligibility traces, 
whereas they are reset at the end of each episode. While low 
� values translate into applying the TD-error at a time step to 
more recent pairs, higher values of � allow the algorithm to 
propagate it to more in past. Sarsa(� ) is shown to converge 
to a good policy on both fully and partially observable envi-
ronments [37].

2.3  Reinforcement learning with hidden states

In a realistic context, the agent is not capable of gathering 
all information regarding the task, since its perception is 
somehow limited. A corresponding decision process model 
is formulated via partially observable MDPs, providing the 
agent with observations rather than states.

There are two interpretations for POMDPs in the liter-
ature. The first one considers the MDP structure is either 
known or estimated, i.e. the agent knows the set of states, 
the set of observations and the transition function, but does 
not know the observation function. In this interpretation, 
the agent can keep a probability distribution over the set 
of states, called the belief state [2], and update it with new 
observations from the environment by using Bayes rule. This 
approach gives rise to a RL research track called Bayesian 
Reinforcement Learning [15, 31, 48, 49, 56]. Some model-
based studies aim to learn the environment dynamics to esti-
mate the belief state [28] or to form policies over representa-
tions of histories [7, 55, 62].

The other interpretation, which we adopt in this study, 
constitutes a more realistic setting where there is no knowl-
edge about the underlying semantics of the model and the 
agent perceives only observations and rewards from the 
environment. In fact, the agent is clueless about the limits 
of its sensations to represent the current state of the world.

In a POMDP with hidden states [43], the agent has to 
find a policy based only on the observations from the envi-
ronment. According to this interpretation, the observation 
function O can map different states to the same observa-
tion, resulting in a problem called perceptual aliasing [59]. 
Perceptual aliasing makes it very difficult, sometimes even 
impossible, to solve the task especially when the optimal 
actions for these states are different and cannot be found 
relying on the same observation. In fact, it has been shown 
that the regular RL algorithms based on the most recent 
observation, such as Q-Learning [58], fail to converge to 
a good policy when the agent’s perception is limited [51] 
because the task is no longer Markovian [3].

In such a partially observable environment, one way to 
learn is to estimate the true state by employing additional 
approaches. A state estimate is the agent’s representation of 
the current state in the environment, and the agent aims to 
find a policy defined over the set of estimated states. It can 
be formed by a fixed length memory [35], by keeping the 
previous observation-action pairs. A better way is to extend 
the memory whenever it is required to form a good policy, 
leading to variable length memory approaches such as Utile 
Suffix Memory (USM), Nearest Sequence Memory (NSM) 
and U-Tree [43].

RL under partial observability is addressed with the 
advances in deep reinforcement learning methods. Recurrent 
neural networks are utilized to overcome non-Markovian 
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domains [46, 50, 57, 61]. Such methods utilize Long Short-
Term Memory (LSTM) units [27] to summarize the history 
of the agent. However, they are computationally expensive 
and reported to be sample-inefficient and too customized for 
an environment [24].

Finally, algorithms with eligibility traces such as Q(� ) 
and Sarsa(� ) were employed in POMDPs with hidden states, 
and shown to find good policies based on the estimated 
states [37, 58]. The state variable s in the update rules of the 
algorithms is replaced with the estimated state variable x as 
the required methodical transformation.

2.4  Diverse density

With limited observability, it becomes important to notice 
and make use of distinctive information during learning. A 
viable method is to identify which state visit made an epi-
sode successful or unsuccessful according to the observa-
tion it yields. Since an observation does not inherit the state 
features required for dissociation, the identification must be 
on the episode level. For this task, we argue that a method, 
namely Diverse Density, is suitable since it has shown to be 
effective for hidden-state POMDPs [8].

Diverse Density (DD) is originally proposed to address 
multiple-instance (MI) problems where the bag of instances, 
but not the instances, are labeled individually [40]. DD 
forms two types of bags as positive and negative where 
a positive bag is required to contain at least one positive 
instance and a negative bag contains only negative ones. 
Using these bags, the algorithm aims to identify the target 
concept ct that leads to the such classification of positive 
and negative bags.

The original algorithm uses the term concept as an 
abstract notion that is learned by using the bags. Under RL 
setting, a concept can be a state in fully observable prob-
lems, or an observation or an experience of observations and 
actions in partially observable domains.

Diverse density is used for online subgoal discovery [34] 
where the positive-negative classification is applied to the 
episodes in a goal-oriented MDP [44]. According to their 
implementation, if an episode ends with a goal state, it is 
considered as positive; otherwise as negative. With this 
idea, McGovern et al. proposed a method that calculates 
the diverse density value of a state and they argue that a 
state with a higher DD value, makes its episode a successful 
(positive) one and should play an important role in reaching 
to a goal state. Such states must correspond to a bottleneck 
or a subgoal state. In their study, Diverse Density is shown to 
work on the problem of finding subgoals in an MDP online 
[44].

DD is also used in partially observable problems for 
discovering landmarks formed only by pure observations 
[8]. Demir et al. have analyzed why well-known subgoal 

identification methods, such as graph-based algorithms, fail 
to identify landmarks in a partially observable setting. The 
study showed that a multiple-instance algorithm, Diverse 
Density, is more fit for the online landmark discovery task 
and proposed a modified version of DD, namely DD with 
concept filtering (DDCF), that is capable of identifying land-
marks in a hidden-state POMDP. Additionally, it improves 
the speed of identification and removes the necessity of prior 
information on the domain dynamics.

2.5  Reward shaping

Reward shaping has been used to introduce additional 
rewards for the agent so that the learning process is fur-
ther improved. RL with reward shaping operates on the 
new reward function R′ where R� = R + F and F represents 
the shaping reward. Ng et al. showed that policy invari-
ance with reward shaping can be guaranteed in an MDP 
by proposing a potential based reward shaping (PBRS) 
approach where the arbitrary potential function Φ is defined 
for each state and the shaping reward function is formed 
as F(s, a, s�) = �Φ(s�) − Φ(s) [14, 47]. PBRS is further 
extended with potential based advice by forming the poten-
tial function with the actions as Φ(s, a) [60].

Plan based reward shaping uses a STRIPS plan where 
each state maps to an abstract state and the current step in 
the plan is used for the potential of a state [19, 21]. Efthy-
miadis et al. introduced knowledge revision to plan based 
reward shaping when the plan is inconsistent or wrong [17]. 
When a hierarchy exists in the task and it is known before-
hand, it is shown that reward shaping approach can be for-
mulated into MAX-Q, a well known hierarchical RL (HRL) 
algorithm, and can outperform its predecessor [18].

PBRS, on the other hand, can be applied for both model-
free and model-based RL [1], and its effects are further ana-
lyzed. Grzes et al. employed parameter analysis and argued 
that PBRS should conform several conditions in order to 
form a consistent advice to the agent [19, 22]. Devlin et al. 
also showed that dynamic reward shaping, where the poten-
tial function is not fixed, can maintain the guarantees of 
policy invariance [13]. More recently, Grzes stated that the 
potential value of any terminal state must be zero in order 
to keep the policy guarantees of PBRS [20] and Marom 
et al. proposed an algorithm that decays the effect of shap-
ing rewards by experience so that any possible convergence 
problem can be avoided [39]. Reward shaping idea also 
found itself a place in multi-agent RL and it has been shown 
that potential based reward shaping does not alter the Nash 
equilibria [4, 10–12, 38].

Automatic learning of the potential function turns out to 
be an interesting problem and also gained attention. Marthi 
proposed an algorithm that completely solves an abstract 
model with macro actions formed by sampling from the 
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task and using the value function of this abstract model as 
the potential function [41]. Grzes et al. adapted a similar 
abstraction idea which learns the values of the abstract states 
by value iteration while acting in the environment [23].

Although most related work focused on MDP models, 
there are very few that take partial observability into account 
[42]. In [16], PBRS is applied to online POMDP planning 
so that the shaping reward function is defined via the belief 
states of the agent.

3  Providing guiding rewards based 
on landmarks

The problem of perceptual aliasing can be handled by allow-
ing the agent to keep experiences in memory. This way, the 
agent can form a state estimation that may provide distinc-
tion over aliased states. Although finding a distinctive form 
of state estimation is challenging, such an estimation may 
still provide room for learning and contain hints for the 
agent.

In this section, we further dive into the definition of state 
estimation. However, how to design a good state estimation 
method is out of the scope of this paper, so we assume that 
the state estimation method is defined and is available to the 
agent. We provide a formal definition for the state estimates 
that can clearly distinguish a true state and propose a method 
which makes use of these dependable estimations to improve 
learning speed. Finally, we attack the problem of automatic 
identification of those estimates on-line to complete the 
overall learning framework.

3.1  State estimation

An agent can keep a state estimate x by using its previ-
ous experiences in an environment. A straightforward 
example can be the past k observations and actions, form-
ing the estimated state xt = ot−kat−k...ot−1at−1ot for the 
time step t. Regardless of the state estimate’s structure, 
the set of estimated states X, then, becomes the plane 
that the agent forms its policy upon, i.e. the policy is now 
formed as � ∶ X × A → [0, 1] . As a natural result, the func-
tion M ∶ X → P(S) emerges and determines the mapping 
between the two sets (Fig. 1) where P represents power set 
notation. Note that, M is not a one-to-one function because 
two different state estimates can map to the same set of true 
states.

If ∀x ∈ X, |M(x)| = 1 , there is no ambiguity and all the 
state estimates point to distinct true states. But this is almost 
impossible for real-life problems since finding a state estima-
tion method to clearly disambiguate all states of the environ-
ment is very challenging. Alternatively, one may not need 
to distinguish all the states, for problems where it is enough 

for a solution policy to distinguish the estimates yielding 
different optimal actions. In fact, a perfect scenario would 
be to have a smaller set of state estimates abstracting over 
the states with the same optimal action. Methods like USM 
[43] somewhat aim to achieve such abstract representations 
by determining the distinctions based on the return distribu-
tions, where a branch in a USM tree can be considered as 
an estimated state.

3.2  Landmarks

It naturally follows for us to assume that not all of the sensa-
tions from the environment have ambiguity. Usually there 
are few observations that the agent can depend on. Some 
experiences may correspond to specific states and remove 
the uncertainty about the current state in the state space. 
Once we have such estimated states, the agent can make 
use of their “distinctiveness” in the sense of uniqueness, to 
improve learning.

For such estimated states, we adopt the term “landmark” 
having the basic meaning of “an event that is marking an 
important stage or turning point” and put a formal definition 
for Reinforcement Learning setting as in Definition 1.

Definition 1 The state estimate x ∈ X is a landmark if

Definition 1 states that a landmark is an estimated state, 
which is mapped to only one true state, so that there is no 
ambiguity on the current true state for the agent when its 

P(st =s|xt = x) = 1,

and

∀s� ≠ s,P(st =s
�|xt = x) = 0.

Fig. 1  An example mapping from the set of estimated states X to the 
power set of true states S in a POMDP with hidden states
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state estimate yields the corresponding landmark. By Bayes 
rule:

Since this definition is meaningful when there exists a x ∈ X , 
P(xt = x) = 0 is unlikely. Then, either ∀s� ≠ s,P(st = s�) = 0 
or P(xt = x|st = s�) = 0 should be true. Therefore, we con-
clude that there is no other state that can be represented with 
this estimate x, that is x can only map to one true state.

Considering the function M ∶ X → P(S) , a state esti-
mate x is a landmark if and only if |M(x)| = 1 . In the 
example of Fig. 1, the estimated states x and x′′ are land-
marks since M(x) = {s} and M(x��) = {s} but x′ is not since 
M(x�) = {s�, s��} . Note that the definition does not require 
a one-to-one mapping, the agent may have more than one 
representative for the same true state as in the s case, which 
is estimated by x and x′′ . Although they may be redundant 
estimations of the same state, they still are landmarks. More-
over, Definition 1 does not restrict the structure of the esti-
mated states as long as the representations map to only one 
true state. Moreover, the definition is for a state estimate, not 
the true state that it maps to.

Our definition aligns with the one of “sufficient statis-
tics of history” [30] and extends the one proposed for the 
true states that yield unique observations [29]. In the lat-
ter study, a state s ∈ S is a landmark state if ∃o ∈ Ω such 
that O(o|s) = 1 and ∀s� ≠ s,O(o|s�) = 0 . This definition is 
restricted to problems where there are observations uniquely 
representing corresponding true states. With perceptual 
aliasing, however, the agent may still need to keep a memory 
to form state estimations. For such a case, even though there 
are no unique observations for a state, a state estimation can 
still be capable of representing a unique experience, forming 
a landmark according to our definition. Thus it focuses on 
the estimated states instead of observations and provides a 
wider perspective.

Let us clarify the landmark concept with an example 
which is given in Fig. 2. The perceptions of the agent are 
limited to the existence of a wall in the neighboring grid cell 
in four compass directions, and only the goal state provides a 
unique observation. For the rest, every observation is yielded 
by at least two states. In case of pure observations, there is 
only one landmark, which is the goal state marked as G. To 
overcome ambiguity, let’s assume the agent aims to learn 
a policy on the estimations formulated as xt = ot−1ot . That 
is, it keeps the previous observation in memory to form its 
estimated state at time t. Table 2b shows state estimations 
formed accordingly where single observations are ordered 
from left to right following their temporal order. In this set-
ting, having x as shown in Table 2b can only happen after 
the agent takes a transition indicated by the blue arrow. 

∀s� ≠ s,P(st = s�|xt = x) =
P(xt = x|st = s�) ⋅ P(st = s�)

P(xt = x)
= 0

Although single observations do not remove ambiguity 
separately (as they can be observed for three states of the 
environment), the given estimation identifies the location 
of the agent unambiguously, therefore, forms a landmark. 
Similarly, the agent can only have x′′ as shown in Table 2b 
after taking the green transition. Both landmarks x and x′′ 
correspond to the same state, parallel to Fig. 1. However, the 
state estimation x′ is not a landmark since such a transition in 
red can end in two different states of the problem.

It is natural to think that the agent will have a set of land-
marks L in its representation of the world, the set of esti-
mated states X. These landmarks pinpoint distinct true states 
in an environment, making them dependable estimations in 
the agent’s internal representation of an uncertain environ-
ment. Therefore, their presence can be further utilized to 
inform the agent while learning. In the following subsection, 
we propose a method to apply additional rewards based on 
landmarks to guide the agent towards reward peaks.

Note that Definition 1 describes landmarks as a relation 
between the agent’s state estimations and the model’s terms. 
But in a hidden-state POMDP, the agent does not know the 
dynamics of the model, so it cannot know which of its state 
estimations are landmarks by using the probabilities in the 
definition. The agent should instead discover them online 
during the early stages of learning with an additional mecha-
nism. For the automatic landmark discovery task, we argue 
that Diverse Density is a promising candidate.

(a) 2D grid world domain

x x′ x′′

ot−1 ot ot−1 ot ot−1 ot

(b) Example state estimations with xt = ot−1ot

Fig. 2  Example 2D grid world domain a where each cell represents 
a state, the agent can take four navigational actions and gets observa-
tions based on the presence of a wall in those directions. The goal 
state is marked as G. Example state estimations b where the form of 
the estimation is x

t
= o

t−1ot . The observation sketches are ordered 
from left to right according to the time they are observed and the esti-
mated states x, x′, x′′ correspond to the experiences shown with blue, 
red and green arrows, respectively
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Since a landmark can be visited when the agent is located 
in a singular true state, we expect it to be seen less fre-
quently, compared to an aliased estimated state mapping to 
multiple states. Besides, visiting a useful landmark, on the 
way to a goal state, should be relatively rare in successful 
episodes of the agent, making the diverse density of such 
a landmark high compared to the others. Thus, we believe 
that DD is a suitable candidate for automatic landmark 
discovery task. In this study, we couple DD with applying 
guiding rewards to lead to a better learning under partial 
observability.

3.3  Landmark based guidance

Landmarks, by definition, are dependable parts of an uncer-
tain situation. Under partial observability, they carry reliable 
information. The interpretation of Definition 1 pinpoints a 
sole location of the estimated state space corresponding to 
its mapping and carries the potential of a single state to 
achieve the goal, unlike ambiguous estimations correspond-
ing to multiple states. That is, they have the same character-
istics as their underlying true state in terms of learning. If 
the agent performs a series of primitive (atomic) transitions 
from a low-potential landmark to a high-potential one, this 
abstract move can be rewarded, utilizing the landmarks to 
inform the agent about its progress. Such a reward may be 
very useful in partially observable problem domains with 
delayed or sparse reward mechanisms [9].

One may simply propose to provide a bonus upon reach-
ing a landmark. However, a bonus under partial observabil-
ity may cause the agent to get stuck in a landmark. Since a 
visit at a landmark will be rewarded, the agent may eventu-
ally prefer to choose those actions rather than explore the 
uncertain regions enough. Therefore, the agent should be 
rewarded based on whether its actions orient it towards 
transitions with high rewards or not, suggesting a routine 
control on the differences between the potentials of visited 
landmarks.

We argue that application of additional rewards for prob-
lems with hidden states is meaningful if the transitions 
among the landmarks are taken into account only. Since a 
potential value assigned to an ambiguous state estimate is 
unreliable, providing an additional reward to a transition 
with an ambiguous state estimate will not be beneficial 
in a partially observable environment. It might encourage 
the agent to take an action at a state, based on the potential 
value of its current ambiguous state estimate, and the action 
might thus mislead the agent away from a goal state. Instead, 
assuming that the state transitions between two landmarks 

form a temporal abstraction, one can define a meta-level 
transition among two landmarks at an abstract level. This 
meta-level transition may correspond to a series of primitive 
actions in the underlying model, but the additional reward 
is provided only when these actions complete a transition 
between two landmarks.

Note that this approach does not align with the idea of 
the potential based reward shaping and benefit from the 
guarantees of it, since it does not shape the reward in each 
transition and changes the return of the sequence of states 
the agent follows. On the other hand, policy invariance is 
obviously not a concern in a non-Markovian environment 
since an optimal, or even a “good enough” deterministic 
memoryless policy is not guaranteed at all [36]. Due to these 
differences, we avoid to use the term “reward shaping”.

In order to apply additional rewards, one needs to calcu-
late the potentials of the landmarks. Our work is influenced 
by the abstraction and value iteration ideas of [23] where 
an abstraction is created over the set of MDP states and an 
online learning method for the potentials of these abstract 
states is proposed. We make use of this idea for the value 
iteration approach on the abstract model similar to their pro-
posal, where the set of landmarks form an abstract model 
and the agent executes abstract actions lasting over one time 
step between the landmarks. However, our method differ-
entiates in that we assume the problem model is a POMDP 
with hidden state interpretation, and we do not make fur-
ther abstractions over the set of observations. We follow 
their value iteration approach on the abstract model of land-
marks since it better aligns with the reward mechanism of 
the problem, unlike other heuristics. The abstract model is 
in fact an SMDP [54] and we will call it Landmark-SMDP. 
Figure 3 depicts how the Landmark-SMDP of the 6Rooms 
domain looks like, also sketching which true problem state 
each landmark corresponds to.

Definition 2 A Landmark-SMDP is a SMDP whose set of 
states S is constructed by the landmarks L of the formed 
state estimation set X.

The Landmark-SMDP is inherently composed of less 
number of states compared to the set of estimated states 
of the POMDP since usually most states are perceptually 
aliased in a partially observable environment. Therefore, the 
potentials of the landmarks can be easily calculated with 
value iteration and then used to calculate internal rewards 
in the underlying POMDP while performing actions in the 
environment. 
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Fig. 3  An illustration of an abstract model for a sample grid world 
domain (6Rooms, see Fig.  5a for the original sketch). The land-
marks correspond to the doorways and the goal state is marked with 
G, where circles and dashed lines represent the landmarks and tran-

sitions between landmarks in the abstract SMDP model. Note that, 
depending on the observation semantics and state estimation model, 
the formal definition of the natural “doorway” landmarks may vary
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The overall algorithm for Landmark Based Guidance 
(LBG) is given in Algorithm 1. The algorithm assumes that 
the set of landmarks L is given. It requires as input the learn-
ing rate �v and the discount rate �v for the Landmark-SMDP 
value iteration. The algorithm starts with initialization of 
the value function V of the Landmark-SMDP, the time index 
t, the previous and the current landmark variables  and ,  
the previous and the current time variables � and �′ to keep 
the time that  and  are seen and the short history H (Lines 
1–3). Upon deciding that the initial estimated state is a 
landmark,  and � are initialized by the estimated state and 
the current time respectively (Lines 4–5). Then comes the 
familiar observation-action loop, where the agent interacts 
with its environment and observes transitions between the 
estimated states xt and xt+1 . Meanwhile, the algorithm keeps 
track of a transition in H to check if there is a previously 
observed landmark, in order to calculate the discounted sum 
of rewards to be used in the Line 18.

Since the precondition to provide guiding rewards 
through the abstract model, it is checked whether or not the 
agent arrives at a landmark. If it does, the current landmark 

 and the current landmark time �′ are set (Lines 13–14). 
If there is a landmark previously observed, this means it is 
possible to provide the additional reward, which is calcu-
lated in Line 16.

Following the internal reward calculation, the algorithm 
determines the sum of discounted rewards, gathered between 
the previous landmark  and the current landmark  by using 
H and makes a value update on  (Line 18), where n repre-
sents the number of steps taken between the two (Line 17).

Afterwards, the previous landmark variables are shifted 
with the current landmark variables (Line 20) and the cur-
rent landmark variables and the history H are reset (Lines 
21–22). Finally, the updated reward is fed to the underlying 
learning algorithm, and the agent continues to interact with 
the environment. Here, the internal reward is used only if it 
is positive (Line 24). As the agent aims to learn a policy over 
an “uncertain state estimation set”, application of a punish-
ment for attaining a certain estimated state might not be 
beneficial. Instead, rewarding correctly is enough by itself to 
guide the agent towards transitions yielding higher rewards.

3.4  Automatic landmark discovery

Although Algorithm 1 requires the set of landmarks in 
advance, for a more realistic problem setting, the agent has 
no prior knowledge about which state estimates are true 
and unambiguous. In order to increase the autonomy in this 
respect, the agent should discover the landmark set during 
learning.

Our previous study [8] shows that DD, when coupled 
with a concept filtering mechanism (DDCF), is capable to 
identify unique observations under partial observability. It 

is coupled with SarsaLandmark algorithm to discover land-
marks caused by single observations automatically and to 
improve learning speed for RL with hidden states. Former 
performance of DDCF on automatic landmark discovery 
makes it a promising candidate for the wider definition of 
landmarks. However, our previous study is limited to land-
marks that contain single observations and does not extend 
to problems that the agent may form landmarks including 
its memory.

The DD idea is based on identification of the unique 
points in successful histories. It requires a bag level clas-
sification to have successful and unsuccessful episodes. 
Afterwards, it checks the instances that are uniquely seen 
on positive bags but not on negative ones. By definition, a 
landmark maps to only one state, unlike other ambiguous 
state estimations that yielded by visits to different states. 
Hence, in a successful episode, visiting an ambiguous state 
estimation is more likely than visiting a landmark, causing a 
useful landmark to be observed more diversely in an episode, 
yet more densely on successful ones.

With this motivation, one can employ DD, especially the 
DDCF variant, to identify the landmarks during learning to 
form an overall framework that can run in a realistic RL set-
ting. Here, every instance and concept is a state estimation, 
and a bag is an episode throughout the policy execution for 
the problem. The outline of DDCF is follows:

• After each episode, DDCF classifies it according to a 
success criteria (for example, reaching to the goal state 
under a step threshold) as either a positive or a negative 
bag.

• In order to calculate diverse density values for each esti-
mated state, DDCF algorithm requires the shortest path 
distances between each pair.

• After the episode classification, DDCF updates its graph 
of interactions between estimated states.

• Based on this graph, the distance between estimated 
states is calculated.

• DDCF further employs a concept filtering with a metric 
called congestion ratio to filter out the redundant candi-
dates for landmarks.

• Using the distances, DDCF calculates DD value for each 
estimated state in this filtered set.

• Next, it employs the static filter of the original algorithm 
to avoid identifying estimated states close to a goal state.

• As a last step, for each estimated state with a peak diverse 
density value, DDCF increases the relative running aver-
age and if an estimated state passes the threshold, it is 
marked as a landmark.

When DDCF finishes, the identified landmarks can be used 
to provide guiding rewards to the agent. However, these two 
processes should not be executed concurrently, since a newly 
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identified landmark may disrupt the value iteration and initi-
ate misguiding rewards. That is why we first employ DDCF 
to find a set of landmarks to be used to guide the agent. After 
a certain episode threshold is met, the Landmark-SMDP is 
formed by using the identified landmarks and is used by 
LBG to introduce guiding rewards.

The overall framework is depicted in Fig. 4. After each 
interaction with the environment, the underlying RL algo-
rithm forms the estimated state using the new observation 
and reward. The estimated state is then fed to the proposed 
extension. First, the algorithm checks for an episode thresh-
old. Failure means this is the first stage of identifying land-
marks with DDCF and there is no guiding reward yet. If this 
transition ends the episode, DDCF algorithm is employed 
as stated before. If there is a newly identified landmark, it 
is added to the set of identified landmarks. Alternatively, 
upon passing the episode threshold, the algorithm goes into 
stage two of LBG. Together with the landmarks identified 
in the first stage, LBG calculates the guiding reward f and 
updates its Landmark-SMDP by altering the potentials via 
Algorithm 1. The guiding reward is added to the immediate 
reward to be used by the underlying reinforcement learning 
algorithm.

As a use case scenario, consider the training of an autono-
mous agent (such as a robot, vehicle etc.) within a certain 

real, or more realistically, a virtual environment. Consider 
that limitations of the agent’s sensors are represented as 
the observation space, while the previous experiences and 
the current observation forms the agent’s estimated state 
for that time. The first phase of the process focuses on the 
automatic identification of the landmarks within the context 
of the estimated states. By using DDCF, the agent extracts 
the landmarks in the estimated state space, while RL algo-
rithm has already started. The second phase consists of the 
standard exploration-exploitation steps of the RL mecha-
nism, augmented with an abstract model representing the 
Landmark-SMDP, again within the context of the estimated 
states. The abstract model is used to guide the agent by using 
the calculated potential of a landmark reached recently, by 
means of eventually directing the agent to landmarks with 
high potential. This way, the agent uses the landmarks as 
“checkpoints” on the way to the goal, consequently requir-
ing less exploration, resulting in faster convergence. As a 
result, the training of the agent would require less time and 
resource.

3.5  Complexity analysis of the framework

In this section, we analyze the computational overhead of the 
proposed framework over the underlying learning mecha-
nism. We provide the proofs for the theorems concerning the 
time complexity of each part of the framework and formulate 
an overall analysis.

Lemma 1 Let Ei be a sequence of transitions occurred in the 
episode number i, Xi be the set of observed state estimations, 
Ti be the set of transitions between them after the ith episode 
and the operator || represent the cardinality of a sequence or 
a set. Then, Diverse Density with Concept Filtering runs in 
O(|Ei| + |Xi|2 + |Xi| ⋅ |Ti|) at the end of an episode i of the 
main Reinforcement Learning loop.

Proof In order to identify the set of landmarks, DDCF 
employs a search for the state estimations with peak diverse 
density values at the end of an episode. When the episode 
ends, it is traversed to count the occurrence of each state 
estimation and the counts are kept in a hash map with |Xi| 
keys where Xi is the set of unique state estimations after the 
episode i. This operation can run in O(|Ei|) as the iteration 
needs to count every instance in the episode.

The modified version of the algorithm [8] keeps an 
unweighted and undirected graph of transitions between 
the state estimations, in order to calculate the distances 
between pairs and employs filtering mechanism. After each 
step, the newly observed transition is added to the graph, 
so cumulatively, forming the graph takes O(|Xi| + |Ti|) 
where there are |Xi| number of vertices and |Ti| num-
ber of edges after the ith episode. Additionaly, updating 

Fig. 4  The workflow of a RL agent with DDCF and LBG extensions
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the graph requires recalculating of the shortest path dis-
tances. By employing Breadth-first Search from each state 
estimation, the distance matrix can be constructed in 
O(|Xi| ⋅ (|Xi| + |Ti|)) = O(|Xi|2 + |Xi| ⋅ |Ti|) where the graph 
is represented as an adjacency list.

The algorithm advances by classifying the new episode 
either as successful or unsuccessful. This classification takes 
O(|Ei|) time by checking whether the last reward is the high-
est of all throughout the episode or not.

In order to apply concept filtering, our algorithm [8] 
requires a metric, namely congestion ratio CR(k)(x) , to be cal-
culated for each state estimation x. First, the algorithm finds 
the degree and bridging coefficient BC(x) of each node in the 
graph in O(|Ti|) in the adjacency list representation by iter-
ating over all edges. For calculating k-clustering coefficient 
CC(k)(x) of a node, it traverses a row of the distance matrix 
and finds k-neighborhood of a node in O(|Xi|) . Finding the 
number of edges in k-neighborhood of a node takes O(|Ti|) by 
checking the existence of an edge between the nodes within 
the neighborhood. Calculation of CC(k)(x) for all nodes takes 
O(|Xi| ⋅ (|Xi| + |Ti|)) . Hence, calculating CR(k)(x) , takes 
O(|Ti| + |Xi| ⋅ (|Xi| + |Ti|)) = O(|Xi|2 + |Xi| ⋅ |Ti|) for all 
nodes. Deciding that a node has the peak value among its 
direct neighbors again requires an iteration over the set of 
edges, consuming O(|Ti|) time, therefore the time complex-
ity of this step is determined by O(|Xi|2 + |Xi| ⋅ |Ti|).

Following the formation of filtered set of state estimations 
Xf  , the algorithm employs a diverse density search among 
them. The diverse density value of a state estimation can be 
calculated iteratively, so at the end of each episode, only the 
last episode’s value should be calculated and added. Since 
the counts for each episode are stored in a hash map hav-
ing |Xi| number of keys, the search takes O(|Xf | ⋅ |Xi|) time. 
The final steps of the algorithm, which involve the running 
average threshold check and static filter application, are 
employed for the set of peak valued state estimations Xp , 
hence yield O(|Xp|) complexity.

To wrap up, at the end of each episode, DDCF takes 
O(|E
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|2 + |X
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| ⋅ |T
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| + |X
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p
|) . Since |Xp| ≤ |Xf | ≤ |Xi| , this results in 

O(|Ei| + |Xi|2 + |Xi| ⋅ |Ti|) where Ei is the sequence of tran-
sitions in the episode i, Xi and Ti are the sets of observed 
state estimations and the transitions between them, at the 
end of episode i, respectively.   ◻

Lemma 2 Let n be the number of episodes for which DDCF 
is employed, |Ê| be the average length of an episode, Xn 
be the set of observed state estimations and Tn be the set 
of transitions between them after the nth episode. Then, 
the identification of the landmark set by DDCF takes 
O(n ⋅ |Ê| + |Xn|2 + |Xn| ⋅ |Tn|) time.

Proof Assume that DDCF is employed for n episodes. 
Since the graph grows with new episodes, |Xi| ≤ |Xi+1| and 
|Ti| ≤ |Ti+1| . Due to big-Oh notation, the time complexity 
of the graph operations is dominated by the final size of 
the graph. Moreover, the algorithm still needs to parse each 
episode history. So, assuming |Ê| is the average length of an 
episode, using Lemma 1, the identification of the landmark 
set takes O(n ⋅ |Ê| + |Xn|2 + |Xn| ⋅ |Tn|) when DDCF is run 
for n episodes.   ◻

Theorem  1 Let n be the number of episodes for which 
DDCF is employed, m be the number of episodes for which 
overall framework is executed, |Ê| be the average length 
of an episode, Xn be the set of observed state estimations 
and Tn be the set of transitions between them after the 
nth episode. Then, the time overhead of the framework is 
O(m ⋅ |Ê| + |Xn|2 + |Xn| ⋅ |Tn|).

Proof Let DDCF be executed for n episodes to iden-
tify the landmark set. Then, by Lemma 2, it takes 
O(n ⋅ |Ê| + |Xn|2 + |Xn| ⋅ |Tn|) time. Following the for-
mation of the landmark set, LBG is started. At each time 
step, calculation of the guiding reward and a value itera-
tion for the potentials takes place at constant time as the 
accumulated discounted rewards can be iteratively cal-
culated. Hence, these operations take O(|Ê|) assuming 
that |Ê| is the average length of an episode. Since LBG 
is employed after DDCF, it executes for m − n episodes. 
Therefore, time complexity of the whole framework is 
O(n ⋅ |Ê| + |X

n
|2 + |X

n
| ⋅ |T

n
| + (m − n) ⋅ |Ê|) = O(m ⋅ |Ê|+

+|X
n
|2 + |X

n
| ⋅ |T

n
|) , given that DDCF runs for n episodes 

and the framework runs for m episodes.   ◻

4  Experiments

In the experiments, we addressed the following questions: 
(1) Is DDCF capable of identifying complex landmarks? (2) 
Does LBG provide a speed gain in the learning by having the 
set of landmarks either given in advance or identified online? 
(3) How does � effect the learning performance of LBG with 
methods using eligibility traces? (4) How does the coverage 
of landmarks affect the learning speed of LBG?

In order to answer these questions, two well known RL 
algorithms with eligibility traces were used as underlying 
learning algorithms, namely Q(� ) and Sarsa(� ) [37, 58], due 
to their effectiveness in POMDPs with hidden states. Wat-
kins’ Q(� ) version is used for Q(� ) implementation in order 
to keep it truly off-policy. Note that our guidance mechanism 
can be adapted to different learning algorithms and our focus 
for this study is to show that it can provide an improvement 
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over the underlying algorithms with no specific bound to 
them.

For the first question, we analyzed the results of DDCF 
in terms of precision and recall of the discovered landmark 
set. For the second one, the aforementioned algorithms are 
tested in terms of the number of steps to reach to a goal state 
and success rates of the final policies against two LBG vari-
ants: (1) LBG with the landmarks provided in advance, (2) 
LBG coupled with DDCF for automatic landmark identifi-
cation. Experiments were carried out using different forms 
of state estimation since higher level state representations 
are required for some domains in order for the problem to 
be solvable to some extent, i.e. the solution set to include a 
relatively good policy. Note that, the aim of the experimen-
tation is not to find the best state estimation, but to show 
that LBG can be helpful on estimated state formulations of 
various complexity levels.

The effect of trace decay is tested with different values 
of � in terms of speed gain over the underlying algorithm. 
Finally, the last query is addressed by providing subsets 
of landmarks differing in coverage to LBG in advance to 
observe the effect on learning performance.

The following sections include the experimental results 
and their discussion of several problems.

4.1  Problem domains

We carried out experimentation for three domains, two of 
which (6Rooms and 4Rooms4Hallways) are grid world 
domains, and one (ToH3) is a puzzle. The sketches and the 
size characteristics of the problems are shown in Fig. 5 and 
Table 1, respectively. These problems are selected since 
they possess different observation semantics that build 
up landmarks in various state estimation forms. Although 
these forms do not completely overcome the ambiguity in 
the problem, they form landmarks that can be used to guide 
the agent.
6Rooms and 4Rooms4Hallways are navigational 

tasks where the agent can take four actions as north, east, 
south, west. Actions are stochastic, resulting in the intended 
direction with 0.95 probability and either left or right of the 
intended direction with 0.025 probability.

In 6Rooms, the agent’s observations are formed accord-
ing to its distance to the walls in four compass directions 
(one step from the wall, two steps from the wall, closer to 
the wall in this direction than the other, further from the 
wall in this direction than the other). Moreover, the door-
ways of 6Rooms provide unique observations. Conversely, 
4Rooms4Hallways limits the perceptions to the presence 
of a wall in the next cell in four directions. For both naviga-
tional domains, the agent starts at the north-west room and 
aims to reach to uniquely observable goal state (marked as 
G in Fig. 5a and b) where each regular action is receives 

(a) 6Rooms

(b) 4Rooms4Hallways

(c) ToH3

Fig. 5  Sketches of the domains used in the experiments for Landmark 
Based Guidance. The goal states are marked with G in the grid world 
domains

Table 1  Details of the domains used in the experiments for Landmark 
Based Guidance

Problem |S| |A| |Ω| Action Noise References

6Rooms 564 4 43 Yes [45]
4Room-
s4Hallways

374 4 12 Yes [44]

ToH3 161 4 31 No [26]
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−0.01 punishment and upon reaching the goal, the agent is 
rewarded by 1.
ToH3 is a classical puzzle that contains m rods and n 

disks where initially, the disks are placed either on the left-
most or the middle rod in the increasing size order. The 
goal of the agent is to move the disks one at a time so that 
eventually they are placed on the right-most rod with the 
same order. In this version of the problem, the agent has 
an arm that can employ four deterministic actions as left, 
right, pick up and put down. An action yields a reward of 
10 upon reaching to the uniquely visible goal state, and no 
reward or punishment is provided otherwise. ToH3 contains 
3 disks and 3 rods where the middle rod has an additional 
–distinguishing– shape that is visible by the agent with a 
probability of 0.8. The agent’s perception is limited to the 
contents of the rod that the arm is currently on: whether or 
not the current rod is the middle one and whether or not the 
arm is holding a disk. Because of this partial observation 
semantics, the agent has to keep some sort of memory to 
form a good policy for solving the task.

This study focuses on the domains that may lead to land-
marks in different forms of state estimations. 6Rooms, on 
the one hand, contains landmarks within the observation 
space since the doorways provide unambiguous observa-
tions. On the other hand, although the observations 4Room-
s4Hallways are extremely ambiguous, by maintaining a 
memory the agent can form unique estimations. Recalling 
the example in Fig. 2, the two step observation sequence 
where an observation with a north-east wall boundary is 
followed by an observation with a south-west wall bound-
ary is possible for only one estimated state, while these two 
observations are individually yielded by three distinct states 
each. Finally, for ToH3, the agent may need to maintain an 
even more complex memory, including the action between 
the previous observation and the current one, creating land-
marks as shown in Fig. 6.

Note that our experiments contain problems generating 
landmarks in key points of learning on different levels of 
state estimation, in order to illustrate the positive effect of 
our method. However, complex forms of state estimations 
may yield landmarks which do not need to be visited in 
order to reach a goal state. For example, a transition like in 
Fig. 6d occurs due to a redundant action, making the agent 
stay in the same state. This observation-action-observation 
sequence is a landmark since it is a unique experience, but 
it is not a useful one and certainly does not correspond to a 
state that needs to be visited.

As it can be seen in Fig. 7, the observation transition 
semantics do not align with the state space structure of the 
problems. Moreover, Table 2 shows how the size of the esti-
mated state set X and the size of the landmark set L alter by 
different forms of state estimation formulations. In order 
to further understand how ambiguous the estimated states 

are, we propose a metric called the aliasing ratio, which is 
defined as,

where |M(x)| represents the number of true states that the 
state estimate x corresponds to. Note that, this metric should 
not be interpreted as a measure of difficulty of the prob-
lem. Instead, we can argue it indicates the uncertainty of the 
observation semantics. As can be seen in Table 2, a form of 
memory can decrease the aliasing ratio for all of the prob-
lems, yet including the transition action between observa-
tions is only useful for ToH3 due to non-determinism on the 
outcomes of actions in other problems.

4.2  Settings

Q(� ) and Sarsa(� ) algorithms are compared to their versions 
with LBG and the coupling of DDCF and LBG, in terms of 
the number of steps to reach the goal state. The main experi-
ments are performed with different forms of state estimation 
for 6Rooms, 4Rooms4Hallways and ToH3 as xt = ot , 
xt = ot−1ot and xt = ot−1at−1ot , respectively. As baselines, 
optimal MDP policy performance and deep RL approaches 
with LSTM units, namely A2C [46] and ACKTR [61], are 
also plotted.

In the experiments, an episode starts at a randomly 
selected initial state of the problem and ends either when 
the agent reaches a goal state or after 5000 steps are taken. 
The results are averaged over 50 experiments, each of which 
took 25000 episodes.

For the learning parameters, we used the values that 
showed the best performance in the original studies. Conse-
quently, � = 0.9 is used for the main experimentation. For 
both RL algorithms and all the domains, � = 0.01, � = 0.9 
are used, and an �-greedy action selection method is 
employed with � starting at 0.2 and linearly decaying down 
to 0.0001 throughout an experiment (until the last episode).

The value iteration of the Landmark-SMDP used 
�v = 0.99 and �v = 0.05 in all the domains, which give the 
best results for LBG. For LBG, we assumed the landmark 
set L is provided beforehand, that is, the agent can perfectly 
sense whether or not it is in a landmark. For the coupling 
of DDCF and LBG, we let DDCF to run for 2000 episodes, 
then employed LBG with the identified set of landmarks. For 
DDCF, we used � = 10.0 and �DD = 0.95 where an episode 
is considered successful if it ends with a peak reward and 
lasts shorter than a determined step threshold. We used a 
static filter of 2 steps in 6Rooms and 4Rooms4Hall-
ways where it is set to 3 for ToH3 problem. Moreover, we 
employed concept filtering by setting k = 2 in the congestion 
ratio metric.

(1)� =

∑
x∈X �M(x)�
�X�
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We used Stable Baselines implementations [25] for A2C 
and ACKTR algorithms. Both of the methods had a network 
of 5 fully connected layers having 32 neurons per layer. They 
used 256 sampled experiences in each update with the learn-
ing rate of 0.0001. We selected the number of hidden neu-
rons for the LSTM as 32. For ACKTR, we had the weight for 
the entropy loss as 0.01, the weight for the loss on the value 

function as 0.25 and gradient clipping for Kullback-Leibler 
as 0.01. The rest of the parameters are left as their default.

4.3  Learning performances

For the main experiments, we reported the average number 
of steps taken to reach the goal state with the 95% boot-
strapped confidence intervals. The agent used different forms 

Fig. 6  A simple example in 
ToH3 problem where observa-
tion of only one rod may cor-
respond to multiple configura-
tions, but a transition from one 
to another with left action is 
corresponds to a single esti-
mated state, creating a landmark 
formed as x

t
= o

t−1at−1ot

?=

(a) An observation on the middle rod with the smallest disk, corresponding
to four different states.

?=

(b) An observation on a rod with the disks except the smallest one,
corresponding to four different states.

left =

(c) The landmark generated by the transition between the observations via
left action, mapping to only one state.

left =

(d) An unnecessary landmark generated by staying in the same state via left
action, mapping to only one state.
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Fig. 7  Observation transition 
graphs of the domains. The goal 
states are labeled as G

(a) 6Rooms

(b) 4Rooms4Hallways

G

(c) ToH3

Table 2  Details of the estimated 
state space with different state 
estimation forms where � is the 
aliasing ratio

State Estimate 6Rooms 4Rooms4Hallways ToH3

|X| |L| � |X| |L| � |X| |L| �

x
t
= o

t
43 7 14.09 12 1 34.66 31 5 6.87

x
t
= o

t−1ot 305 125 6.28 69 21 12.58 251 26 3.75
x
t
= o

t−1at−1ot 1010 418 6.23 244 76 12.85 442 190 2.64
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of state estimation so that we can show the performance 
of our proposed method with different forms of landmarks.

In Table 3, the identification performance of DDCF + 
LBG is given when the agent used state estimates as xt = ot , 
xt = ot−1ot and xt = ot−1at−1ot for 6Rooms , 4Room-
s4Hallways and ToH3 respectively. As stated earlier, 
DDCF was run for the first 2000 episodes to find the land-
marks in the task. In case of accuracy, DDCF is shown 
to perform well on different levels of state estimation. It 
resulted in noise free sets of landmarks in almost all the 
problems. On the contrary, the table shows DDCF does not 
cover all the landmarks. This behavior originates from the 
focus of DDCF on the landmarks that are most useful for 
success. Especially in ToH3, there are 179 landmarks in the 
form xt = ot−1at−1ot (Table 2), yet only a few of them cause 
the highest DD values and are enough for guiding the agent.

Figure 8 shows the learning performances in 6Rooms. 
Learning a policy based on the pure observations ( xt = ot ) 
seems to work in this domain. Although it is not optimal, 
all the algorithms can find a good policy that can lead the 
agent towards high rewards. It is clear from the figure that 
LBG dramatically improves the learning performance 
of both Q(� ) and Sarsa(� ) since it guides the agent to the 
goal state from the beginning of the learning with the land-
mark set provided beforehand. Likewise, the agent’s per-
formance improves when the set of landmarks found by 
DDCF is fed to LBG and the guidance starts. Around the 
episode 2000, the number of steps to the goal state start to 

decrease significantly. This shows that the landmark set is 
unnecessary in advance, and it can be found online to gain 
learning performance. Although DDCF does not discover 
all the landmarks, the found ones suffice for improving the 
learning speed of the baseline algorithms. Moreover, LBG 
outperforms both A2C and ACKTR that show to be sample-
inefficient during learning.

For 4Rooms4Hallways domain, keeping a memory 
may be required in order to observe some sort of learning. 
In Fig. 9, it is shown that keeping the previous observation 
in the estimated state form ( xt = ot−1ot ) can improve the 
performance of the baseline algorithms, Q(� ) and Sarsa(� ). 
In this level of state estimation, Fig. 10 shows a similar 
result. Both baseline algorithms gives a slow learning sign 
where Sarsa(� ) performs better compared to Q(� ). In con-
trast, LBG improves both of the underlying algorithms and 
also outperforms A2C and ACKTR. The number of steps to 
reach the goal state significantly drops when our guidance 
method is employed with the agent being directed towards 
it in the early stages of learning. Moreover, DDCF + LBG 
has a similar immediate effect on the learning performance 
after the landmarks are discovered and the guidance begins 
around episode 2500. This shows that the overall algorithm 
is also helpful when more complex landmarks are present.

Figure 11 shows that the baseline algorithms cannot 
learn by using the single observations from the environment 
( xt = ot ), yet including the actions between the previous and 
the current observations seems to make the agent solve the 

Table 3  Landmark 
identification performance of 
DDCF under different learning 
algorithms. Values are given 
with their lower and upper 
bound of confidence intervals

Problem Q(�) Sarsa(�)

Precision Recall Precision Recall

6Rooms 1.000 (1.000, 1.000) 0.631 (0.586, 0.674) 1.000 (1.000, 1.000) 0.703 (0.657, 0.743)
4Room-
s4Hall-
ways

1.000 (1.000, 1.000) 0.402 (0.383, 0.427) 1.000 (1.000, 1.000) 0.412 (0.388, 0.442)

ToH3 0.827 (0.798, 0.861) 0.056 (0.053, 0.060) 0.784 (0.754, 0.815) 0.051 (0.047, 0.055)

Fig. 8  Average number of steps 
taken to reach the goal state 
in 6Rooms domain where the 
state estimation has the form 
of x

t
= o

t
 . The dashed line 

represents the best value from 
the MDP version of the prob-
lem and shaded areas are the 
95% bootstrapped confidence 
intervals
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task in ToH3. It can be seen in Fig. 12, all of the algorithms 
except A2C and ACKTR almost converge to the best value 
taken from the MDP version of the problem when the state 
estimation is formed as xt = ot−1at−1ot . A2C and ACKTR, 
on the other hand, struggle to learn, similarly to the other 
experiments. Again, landmark based guidance led the agent 
towards the best policy much sooner. The agent with LBG 
reached the goal state earlier, causing the episode to be much 
shorter. Although DDCF’s coverage on the landmarks is low, 
its improvement over the baseline algorithms is significant. 
This proves that not all the landmarks are to be used to 
achieve good guidance.

Additionally, we have run the final policies learned by dif-
ferent methods greedily on the domains, in order to test the 
success of the learned policies, with no supporting mecha-
nism. The agent followed a final greedy policy for 50 trials 
of 5000 steps, and each trial is considered successful if it 
ends with a goal state. Figure 13 shows the average suc-
cess percentages of the final policies from 50 experiments 
for each domain with their corresponding state estimation 
levels. On one hand, LBG leads to better policies for all the 
problems where the complete algorithm of DDCF + LBG 
also improves the underlying learning algorithms. On the 

other hand, in ToH3 domain, all the algorithms can find 
successful policies.

4.4  Analysis on �

The strength of the baseline RL algorithms used in this study 
comes from the eligibility trace mechanism they incorpo-
rate. Thus, the effect of eligibility traces over the learning 
performance is an important aspect to analyze. � controls 
the decay of the eligibility traces, as well as how far back in 
past the guiding reward can propagate. In this section, the 
experiments are carried out for Sarsa(� ) and Sarsa(� ) w/ 
LBG for several � values. 6Rooms domain is selected for 
testing since it has distant landmarks so that the length of 
the trace can provide more advantage on the learning speed.

Table 4 shows the results averaged over 50 experiments. 
As expected, the learning performance of Sarsa(� ) decreases 
with the decrease of � . Leaving a trace over the past transi-
tions makes the agent converge to a good policy much faster. 
Alternatively, we can see that additional guidance provided 
by LBG can have a better effect when � is high. When the 
agent reaches a landmark, LBG rewards the actions taken 

Fig. 9  Average number of steps taken to reach the goal state in 
4Rooms4Hallways domain with different state estimation forms. 
Shaded areas are the 95% bootstrapped confidence intervals

Fig. 10  Average number of 
steps taken to reach the goal 
state in 4Rooms4Hallways 
domain where the state estima-
tion has the form of x

t
= o

t−1ot . 
The dashed line represents the 
best value from the MDP ver-
sion of the problem and shaded 
areas are the 95% bootstrapped 
confidence intervals

Fig. 11  Average number of steps taken to reach the goal state in 
ToH3 domain with different state estimation forms. Shaded areas are 
the 95% bootstrapped confidence intervals
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if the abstract transition lands in a landmark with a higher 
value. When � is high, the set of past estimated states that 
are affected by this guiding reward becomes larger. We can 
conclude that LBG further strengthens the benefits of invok-
ing an eligibility trace mechanism.

4.5  Analysis on guidance with subsets of landmarks

We further analyzed the learning performance of Landmark 
Based Guidance when only a random subset of the whole 
landmark set is provided to the agent. This way, we can 
demonstrate the effect of the landmark set on the guidance 
method.

At the beginning of each experiment, we took a random 
subset of landmarks and ran LBG with this subset. We 
experimented on 6 different versions of Sarsa(� ) algorithm 
guided by 0% , 20% , 40% , 60% , 80% 100% of landmarks. In 
the experiments, we used 4Rooms4Hallways domain 
with the state estimation xt = ot−1ot where there are 21 land-
marks in this form (Table 2).

Figure 14 shows the number of steps taken to the goal 
averaged over 50 experiments. As expected, knowing a 

bigger subset of the landmarks leads to a better learning 
performance since the agent can depend on more landmarks 
and rewarded more frequently. Additionally, we compared 
these results to the performance of DDCF + LBG where 
the method scored 0.41 recall, which is nearly 40% of the 
landmarks. It can be seen in Fig. 15 that the performance 
of DDCF + LBG matches to having a random subset of 
80% , even though it had a late start on guidance due to the 
episode threshold. This supports our claim that DDCF is 
more focused on landmarks that are useful for learning the 
task at hand.

5  Conclusion

In this study, a landmark based guidance (LBG) approach is 
applied to the partially observable problem setting, where 
the states are hidden from the agent. The proposed method 
makes use of landmarks to baseline a potential function 
for introducing additional rewards. LBG approach argues 
that a RL agent can achieve a better solution by means of 
additional internal rewards upon completion of a transition 

Fig. 12  Average number of 
steps taken to reach the goal 
state in ToH3 domain where the 
state estimation has the form of 
x
t
= o

t−1at−1ot . The dashed line 
represents the best value from 
the MDP version of the prob-
lem and shaded areas are the 
95% bootstrapped confidence 
intervals

Fig. 13  The success rate of the 
final greedy policies to reach the 
goal states in all of the domains
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among two landmarks at the abstract level. Experiments on 
several problems show LBG can significantly improve the 
learning performance of well known off-policy and on-pol-
icy learning algorithms, like Q(� ) and Sarsa(� ). LBG can be 
further coupled with DDCF to discover the landmarks dur-
ing learning, removing the necessity to provide the landmark 

set beforehand. DDCF+LBG not only outperformed the 
literature baselines, but also showed similar performance 
with the pre-defined landmarks setting, in terms of learning 
speed.

The study shows that landmarks usually exist and can be 
identified at different levels of state estimation forms. Their 
natural presence can be utilized by guiding with additional 
rewards. Both the landmarks and their potentials can be 
found online, and DDCF+LBG is an algorithm that com-
bines discovery and usage of landmarks. On one hand, an 
estimated state set without any landmarks may be considered 
nondistinctive since having no landmarks shows that the 
agent’s internal representations are still ambiguous, mapping 
to multiple states with possibly different optimal actions. 
Such a state estimation approach must be improved to clear 
out ambiguity in order for DDCF+LBG to identify and uti-
lize them to guide the agent. On the other hand, in the case 
where the state estimation successfully identifies each state 
of the domain and each estimated state is a landmark, DDCF 
will focus on key landmarks, acting as bottlenecks, and those 
landmarks will guide the agent with LBG. Although find-
ing such state estimation methods is quite challenging, our 
approach can still speed up the learning process.

As the space of estimated states expands, the number of 
natural landmarks also increase. This allows DDCF+LBG 
to scale up easily since DDCF will identify the most useful 
landmarks and LBG will help the agent towards reaching a 
goal state in a bigger estimated state space.

As a follow-up work to Landmark Based Guidance, one 
can experiment with algorithms that devise their state esti-
mations during learning, rather than having a fixed form at 
the beginning. Methods like USM extend the memory when-
ever necessary, causing a set of estimated states of different 
sizes. The proposed framework of DDCF+LBG is still a fit 
candidate to work under those circumstances. DDCF can 
pick the landmarks among the set of estimated states, and 
LBG can fuse them to provide guiding rewards.

Our study on tabular discrete Reinforcement Learning 
with hidden states can be extended to continuous environ-
ments after a proper discretization process is applied to 
clearly describe the estimated states. This way, DDCF+LBG 
can be couple with state-of-the-art deep reinforcement learn-
ing methods, which we leave as a future work.
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