
Vol.:(0123456789)1 3

International Journal of Machine Learning and Cybernetics (2023) 14:1543–1563
https://doi.org/10.1007/s13042-022-01713-5

ORIGINAL ARTICLE

Landmark based guidance for reinforcement learning agents
under partial observability

Alper Demir1 · Erkin Çilden2 · Faruk Polat3

Received: 19 April 2022 / Accepted: 1 November 2022 / Published online: 16 November 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022, corrected publication 2023

Abstract
Under partial observability, a reinforcement learning agent needs to estimate its true state by solely using its observation
semantics. However, this interpretation has a drawback, which is called perceptual aliasing, avoiding the convergence guar-
antee of the learning algorithm. To overcome this issue, the state estimates are formed by the recent experiences of the agent,
which can be formulated as a form of memory. Although the state estimates may still yield ambiguous action mappings due
to aliasing, some estimates exist that naturally disambiguate the present situation of the agent in the domain. This paper
introduces an algorithm that incorporates a guidance mechanism to accelerate reinforcement learning for partially observable
problems with hidden states. The algorithm makes use of the landmarks of the problem, namely the distinctive and reliable
experiences in the state estimates context within an ambiguous environment. The proposed algorithm constructs an abstract
transition model by utilizing the landmarks observed, calculates their potentials throughout learning -as a mechanism bor-
rowed from reward shaping-, and concurrently applies the potentials to provide guiding rewards for the agent. Additionally,
we employ a known multiple instance learning method, diverse density, for automatically discovering landmarks before
learning, and combine both algorithms to form a unified framework. The effectiveness of the algorithms is empirically shown
via extensive experimentation. The results show that the proposed framework not only accelerates the underlying reinforce-
ment learning methods, but also finds better policies for representative benchmark problems.

Keywords Diverse density · Landmark based guidance · Partial observability · Reinforcement learning

1 Introduction

Reinforcement Learning (RL) defines a machine learning
paradigm where an agent tries to learn by interacting with its
environment [53]. A reinforcement learning agent acts in an
environment and tries to solve a task by using the rewards or
punishments given. The learning capabilities of an agent are
diminished under partial observability. Since the true states
of the task are hidden from the agent, there is no guarantee
of forming an optimal policy that can ensure the highest
returns [6]. Under these circumstances, we can only expect
an agent to exhibit bounded rationality given the limited
sensations from the world.

In order to overcome the uncertainty of the environment,
the agent can devise mechanisms; such as keeping track
of eligibility trace marks on states to improve the conver-
gence speed of a good policy, or keeping a state estimate
to distinguish the true state it is in. Although the idea of
eligibility traces seems simple, it is practical to implement
and is shown to be useful to speed up the convergence of

The datasets generated during and/or analysed during the current
study are available from the corresponding author on reasonable
request.

 * Alper Demir
 alper.demir@ieu.edu.tr

 Erkin Çilden
 erkin.cilden@stm.com.tr

 Faruk Polat
 polat@ceng.metu.edu.tr

1 Department of Computer Engineering, İzmir University
of Economics, İzmir 35330, Turkey

2 STM Defense Technologies Engineering and Trade Inc.,
Ankara 06530, Turkey

3 Department of Computer Engineering, Middle East
Technical University, Ankara 06531, Turkey

http://crossmark.crossref.org/dialog/?doi=10.1007/s13042-022-01713-5&domain=pdf
http://orcid.org/0000-0003-2646-4850

1544 International Journal of Machine Learning and Cybernetics (2023) 14:1543–1563

1 3

the underlying RL algorithm [37]. Faster propagation of the
temporal difference error can improve convergence to a pol-
icy. However, there may be some tasks that no policy that is
formed upon the pure observations can solve. In such a case,
the agent has to transform the learning problem to a higher
dimension by introducing a state estimation to overcome
perceptual aliasing. By maintaining a sort of memory, it may
distinguish one experience from another, leading to a more
effective policy [27, 35, 43]. Yet, finding a suitable estima-
tion to elevate or guarantee learning under partial observ-
ability is a challenge which is beyond the scope of this study.

Most of the time, fortunately, it is possible to generate
state estimations that can be recognized as reliable parts of
the agent’s internal representation for an ambiguous envi-
ronment. Such estimated states can clearly distinguish the
true state of the problem, acting as landmarks for a partially
observed domain. In general, a landmark is a unique experi-
ence that properly distinguishes the agent’s current state in
a partially observable setting, and we can exploit presence
of landmarks to inform the agent about its progress. Rely-
ing on these landmarks, an agent can improve its learning
performance for a problem with ambiguous observations.

In this study, we focus on tabular Reinforcement Learn-
ing with hidden states where an agent requires to form an
estimated state from its previous experiences on the environ-
ment. We assume that the agent follows a state estimation
mechanism in a discrete environment.

Our contributions are summarized as follows:

• We propose a guidance approach for RL with hidden
states, Landmark Based Guidance (LBG), that requires
the landmarks of the task. The core idea is that the inter-
landmark transitions form a semi-Markov decision
process and can be used to devise an abstract guidance
mechanism by providing guiding rewards based on how
valuable it is to visit each landmark in the task.

• We employ Diverse Density (DD) to identify landmarks
in the set of estimated states. Diverse Density (DD) with
our concept filtering mechanism is shown to work under
such settings in our previous study.

• We present an end-to-end framework that operates on the
set of estimated states to identify and utilize landmarks
by combining DD and LBG during learning.

The experiments on several discrete benchmark problems
demonstrate the improvement of our proposed framework
on the learning speed.

The rest of the paper is organized as follows. Section 2
introduces the background knowledge for POMDPs with
hidden states and reviews the related works. In Sect. 3, we
clearly define the concepts of state estimation and landmark
and describe Landmark Based Guidance with automatic
landmark discovery. Section 3 also provides a complexity

analysis of the overall method. Section 4 covers the experi-
ments on several discrete domains. Finally, Sect. 5 gives a
discussion and a conclusion to the study.

2 Background and related work

In this section, we provide the background necessary to build
up the notions in the following chapters. The section intro-
duces the environment models, explains well known learn-
ing methods on them and summarizes existing related work
on the topics of the study.

2.1 Problem models

Two decision process model formalisms based on
Markov Decision Processes (MDP) are used in this paper.
Thus, we first recall that an MDP is a tuple ⟨S,A, T ,R⟩ ,
where S is a finite set of states, A is a finite set of
actions, T ∶ S × A × S → [0, 1] is a transition function,
R ∶ S × A → ℜ is a reward function [32]. Semantically,
T(s, a, s�) represents the probability of landing at state s′ after
taking the action a in the state s, R(s, a) provides the reward
taken after employing the action a in the state s.

One of the models used in this work is the Semi-MDP
(SMDP) which is an abstraction of MDP over time aim-
ing to model transitions with stochastic time duration (i.e.
an action can take more than one time step). It is a tuple
⟨S,A, T ,R,F⟩ , where the first four terms define an MDP and
F(t|s, a) denotes the probability that starting at s, action a
completes within time t [5]. Obviously, MDP is a special
form of SMDP with a step function having a jump at 1
[54]. Importance of SMDP is its ability to model temporal
abstractions on an MDP so that improvements can be made
both inside the abstracted actions and among the abstrac-
tions [54].

The other model is the Partially Observable MDP
(POMDP), which is defined by a tuple ⟨S,A, T ,R,Ω,O⟩
defined by an MDP (S, A, T and R), a finite set of obser-
vations Ω , and an observation function O ∶ S × A → Π(Ω) .
O(s�, a, o) represents the probability of getting the observa-
tion o after the agent takes the action a in the state s [33].
POMDP is a generalization of MDP that enables to model a
partially observable environment.

2.2 Reinforcement learning

RL aims at learning which action is best for a learning agent
by trying to form a model through interacting with the envi-
ronment, utilizing perceptions and rewards based on its
actions [53]. As the environmental dynamics are unknown,
the agent needs to discover them during learning.

1545International Journal of Machine Learning and Cybernetics (2023) 14:1543–1563

1 3

In RL point of view, an environment is modeled by one of
the previous forms and the feedbacks provided to the agent is
determined by the reward function of the model. The agent
aims to map an action to every state so that it learns how to
act in the environment.

Agent’s behaviour is defined in terms of a policy
� ∶ S × A → [0, 1] which defines how likely an action will
be selected on a state. A learning agent aims to converge to
an optimal policy �∗ that maximizes the future discounted
rewards from a state. Since the dynamics of the problem
is hidden from the agent, the optimal policy needs to be
converged by estimating the value function that describes
the utility of being in a state. Following the idea, temporal
difference (TD) [52] algorithms iteratively updates the value
function during the interaction with the environment.

2.2.1 Eligibility traces

As a bridge between the one-step approach of TD methods
and Monte Carlo methods, eligibility traces were introduced
where the agent leaves decaying traces over the previous
transitions and employs the value updates based on these
traces.

The traces allow a reward to propagate through the pre-
vious transitions much faster, leading to a faster conver-
gence. The algorithms that adapted this idea, like Q(�) and
Sarsa(�), were shown to find good policies [37, 58], where �
represents the decay factor of the eligibility traces.

Q(�) is the adaptation of Q-Learning algorithm that
includes eligibility traces [58]. It keeps a decaying trace
over the previously visited state-action pairs, representing
their eligibility to the current temporal difference update.
Although there are different versions of the algorithm, Wat-
kins’ Q(�), which is also used in this study, resets the traces
whenever the agent takes a non-greedy action, to keep the
algorithm genuinely off-policy.

Sarsa(�) is an online on-policy learning algorithm that
also utilizes the eligibility trace mechanism [37]. It follows
the same pattern of updating the regular Q values of state-
action pairs with an error while leaving a trace over the pre-
viously visited state-action pairs. Unlike Q(�), Sarsa(�) uses
the Q-value of the next state-action pair in the TD error and
does not reset the eligibility traces upon non-greedy actions,
since it is an on-policy learning algorithm.

The parameter 0 ≤ � ≤ 1 , decays the eligibility traces,
whereas they are reset at the end of each episode. While low
� values translate into applying the TD-error at a time step to
more recent pairs, higher values of � allow the algorithm to
propagate it to more in past. Sarsa(�) is shown to converge
to a good policy on both fully and partially observable envi-
ronments [37].

2.3 Reinforcement learning with hidden states

In a realistic context, the agent is not capable of gathering
all information regarding the task, since its perception is
somehow limited. A corresponding decision process model
is formulated via partially observable MDPs, providing the
agent with observations rather than states.

There are two interpretations for POMDPs in the liter-
ature. The first one considers the MDP structure is either
known or estimated, i.e. the agent knows the set of states,
the set of observations and the transition function, but does
not know the observation function. In this interpretation,
the agent can keep a probability distribution over the set
of states, called the belief state [2], and update it with new
observations from the environment by using Bayes rule. This
approach gives rise to a RL research track called Bayesian
Reinforcement Learning [15, 31, 48, 49, 56]. Some model-
based studies aim to learn the environment dynamics to esti-
mate the belief state [28] or to form policies over representa-
tions of histories [7, 55, 62].

The other interpretation, which we adopt in this study,
constitutes a more realistic setting where there is no knowl-
edge about the underlying semantics of the model and the
agent perceives only observations and rewards from the
environment. In fact, the agent is clueless about the limits
of its sensations to represent the current state of the world.

In a POMDP with hidden states [43], the agent has to
find a policy based only on the observations from the envi-
ronment. According to this interpretation, the observation
function O can map different states to the same observa-
tion, resulting in a problem called perceptual aliasing [59].
Perceptual aliasing makes it very difficult, sometimes even
impossible, to solve the task especially when the optimal
actions for these states are different and cannot be found
relying on the same observation. In fact, it has been shown
that the regular RL algorithms based on the most recent
observation, such as Q-Learning [58], fail to converge to
a good policy when the agent’s perception is limited [51]
because the task is no longer Markovian [3].

In such a partially observable environment, one way to
learn is to estimate the true state by employing additional
approaches. A state estimate is the agent’s representation of
the current state in the environment, and the agent aims to
find a policy defined over the set of estimated states. It can
be formed by a fixed length memory [35], by keeping the
previous observation-action pairs. A better way is to extend
the memory whenever it is required to form a good policy,
leading to variable length memory approaches such as Utile
Suffix Memory (USM), Nearest Sequence Memory (NSM)
and U-Tree [43].

RL under partial observability is addressed with the
advances in deep reinforcement learning methods. Recurrent
neural networks are utilized to overcome non-Markovian

1546 International Journal of Machine Learning and Cybernetics (2023) 14:1543–1563

1 3

domains [46, 50, 57, 61]. Such methods utilize Long Short-
Term Memory (LSTM) units [27] to summarize the history
of the agent. However, they are computationally expensive
and reported to be sample-inefficient and too customized for
an environment [24].

Finally, algorithms with eligibility traces such as Q(�)
and Sarsa(�) were employed in POMDPs with hidden states,
and shown to find good policies based on the estimated
states [37, 58]. The state variable s in the update rules of the
algorithms is replaced with the estimated state variable x as
the required methodical transformation.

2.4 Diverse density

With limited observability, it becomes important to notice
and make use of distinctive information during learning. A
viable method is to identify which state visit made an epi-
sode successful or unsuccessful according to the observa-
tion it yields. Since an observation does not inherit the state
features required for dissociation, the identification must be
on the episode level. For this task, we argue that a method,
namely Diverse Density, is suitable since it has shown to be
effective for hidden-state POMDPs [8].

Diverse Density (DD) is originally proposed to address
multiple-instance (MI) problems where the bag of instances,
but not the instances, are labeled individually [40]. DD
forms two types of bags as positive and negative where
a positive bag is required to contain at least one positive
instance and a negative bag contains only negative ones.
Using these bags, the algorithm aims to identify the target
concept ct that leads to the such classification of positive
and negative bags.

The original algorithm uses the term concept as an
abstract notion that is learned by using the bags. Under RL
setting, a concept can be a state in fully observable prob-
lems, or an observation or an experience of observations and
actions in partially observable domains.

Diverse density is used for online subgoal discovery [34]
where the positive-negative classification is applied to the
episodes in a goal-oriented MDP [44]. According to their
implementation, if an episode ends with a goal state, it is
considered as positive; otherwise as negative. With this
idea, McGovern et al. proposed a method that calculates
the diverse density value of a state and they argue that a
state with a higher DD value, makes its episode a successful
(positive) one and should play an important role in reaching
to a goal state. Such states must correspond to a bottleneck
or a subgoal state. In their study, Diverse Density is shown to
work on the problem of finding subgoals in an MDP online
[44].

DD is also used in partially observable problems for
discovering landmarks formed only by pure observations
[8]. Demir et al. have analyzed why well-known subgoal

identification methods, such as graph-based algorithms, fail
to identify landmarks in a partially observable setting. The
study showed that a multiple-instance algorithm, Diverse
Density, is more fit for the online landmark discovery task
and proposed a modified version of DD, namely DD with
concept filtering (DDCF), that is capable of identifying land-
marks in a hidden-state POMDP. Additionally, it improves
the speed of identification and removes the necessity of prior
information on the domain dynamics.

2.5 Reward shaping

Reward shaping has been used to introduce additional
rewards for the agent so that the learning process is fur-
ther improved. RL with reward shaping operates on the
new reward function R′ where R� = R + F and F represents
the shaping reward. Ng et al. showed that policy invari-
ance with reward shaping can be guaranteed in an MDP
by proposing a potential based reward shaping (PBRS)
approach where the arbitrary potential function Φ is defined
for each state and the shaping reward function is formed
as F(s, a, s�) = �Φ(s�) − Φ(s) [14, 47]. PBRS is further
extended with potential based advice by forming the poten-
tial function with the actions as Φ(s, a) [60].

Plan based reward shaping uses a STRIPS plan where
each state maps to an abstract state and the current step in
the plan is used for the potential of a state [19, 21]. Efthy-
miadis et al. introduced knowledge revision to plan based
reward shaping when the plan is inconsistent or wrong [17].
When a hierarchy exists in the task and it is known before-
hand, it is shown that reward shaping approach can be for-
mulated into MAX-Q, a well known hierarchical RL (HRL)
algorithm, and can outperform its predecessor [18].

PBRS, on the other hand, can be applied for both model-
free and model-based RL [1], and its effects are further ana-
lyzed. Grzes et al. employed parameter analysis and argued
that PBRS should conform several conditions in order to
form a consistent advice to the agent [19, 22]. Devlin et al.
also showed that dynamic reward shaping, where the poten-
tial function is not fixed, can maintain the guarantees of
policy invariance [13]. More recently, Grzes stated that the
potential value of any terminal state must be zero in order
to keep the policy guarantees of PBRS [20] and Marom
et al. proposed an algorithm that decays the effect of shap-
ing rewards by experience so that any possible convergence
problem can be avoided [39]. Reward shaping idea also
found itself a place in multi-agent RL and it has been shown
that potential based reward shaping does not alter the Nash
equilibria [4, 10–12, 38].

Automatic learning of the potential function turns out to
be an interesting problem and also gained attention. Marthi
proposed an algorithm that completely solves an abstract
model with macro actions formed by sampling from the

1547International Journal of Machine Learning and Cybernetics (2023) 14:1543–1563

1 3

task and using the value function of this abstract model as
the potential function [41]. Grzes et al. adapted a similar
abstraction idea which learns the values of the abstract states
by value iteration while acting in the environment [23].

Although most related work focused on MDP models,
there are very few that take partial observability into account
[42]. In [16], PBRS is applied to online POMDP planning
so that the shaping reward function is defined via the belief
states of the agent.

3 Providing guiding rewards based
on landmarks

The problem of perceptual aliasing can be handled by allow-
ing the agent to keep experiences in memory. This way, the
agent can form a state estimation that may provide distinc-
tion over aliased states. Although finding a distinctive form
of state estimation is challenging, such an estimation may
still provide room for learning and contain hints for the
agent.

In this section, we further dive into the definition of state
estimation. However, how to design a good state estimation
method is out of the scope of this paper, so we assume that
the state estimation method is defined and is available to the
agent. We provide a formal definition for the state estimates
that can clearly distinguish a true state and propose a method
which makes use of these dependable estimations to improve
learning speed. Finally, we attack the problem of automatic
identification of those estimates on-line to complete the
overall learning framework.

3.1 State estimation

An agent can keep a state estimate x by using its previ-
ous experiences in an environment. A straightforward
example can be the past k observations and actions, form-
ing the estimated state xt = ot−kat−k...ot−1at−1ot for the
time step t. Regardless of the state estimate’s structure,
the set of estimated states X, then, becomes the plane
that the agent forms its policy upon, i.e. the policy is now
formed as � ∶ X × A → [0, 1] . As a natural result, the func-
tion M ∶ X → P(S) emerges and determines the mapping
between the two sets (Fig. 1) where P represents power set
notation. Note that, M is not a one-to-one function because
two different state estimates can map to the same set of true
states.

If ∀x ∈ X, |M(x)| = 1 , there is no ambiguity and all the
state estimates point to distinct true states. But this is almost
impossible for real-life problems since finding a state estima-
tion method to clearly disambiguate all states of the environ-
ment is very challenging. Alternatively, one may not need
to distinguish all the states, for problems where it is enough

for a solution policy to distinguish the estimates yielding
different optimal actions. In fact, a perfect scenario would
be to have a smaller set of state estimates abstracting over
the states with the same optimal action. Methods like USM
[43] somewhat aim to achieve such abstract representations
by determining the distinctions based on the return distribu-
tions, where a branch in a USM tree can be considered as
an estimated state.

3.2 Landmarks

It naturally follows for us to assume that not all of the sensa-
tions from the environment have ambiguity. Usually there
are few observations that the agent can depend on. Some
experiences may correspond to specific states and remove
the uncertainty about the current state in the state space.
Once we have such estimated states, the agent can make
use of their “distinctiveness” in the sense of uniqueness, to
improve learning.

For such estimated states, we adopt the term “landmark”
having the basic meaning of “an event that is marking an
important stage or turning point” and put a formal definition
for Reinforcement Learning setting as in Definition 1.

Definition 1 The state estimate x ∈ X is a landmark if

Definition 1 states that a landmark is an estimated state,
which is mapped to only one true state, so that there is no
ambiguity on the current true state for the agent when its

P(st =s|xt = x) = 1,

and

∀s� ≠ s,P(st =s
�|xt = x) = 0.

Fig. 1 An example mapping from the set of estimated states X to the
power set of true states S in a POMDP with hidden states

1548 International Journal of Machine Learning and Cybernetics (2023) 14:1543–1563

1 3

state estimate yields the corresponding landmark. By Bayes
rule:

Since this definition is meaningful when there exists a x ∈ X ,
P(xt = x) = 0 is unlikely. Then, either ∀s� ≠ s,P(st = s�) = 0
or P(xt = x|st = s�) = 0 should be true. Therefore, we con-
clude that there is no other state that can be represented with
this estimate x, that is x can only map to one true state.

Considering the function M ∶ X → P(S) , a state esti-
mate x is a landmark if and only if |M(x)| = 1 . In the
example of Fig. 1, the estimated states x and x′′ are land-
marks since M(x) = {s} and M(x��) = {s} but x′ is not since
M(x�) = {s�, s��} . Note that the definition does not require
a one-to-one mapping, the agent may have more than one
representative for the same true state as in the s case, which
is estimated by x and x′′ . Although they may be redundant
estimations of the same state, they still are landmarks. More-
over, Definition 1 does not restrict the structure of the esti-
mated states as long as the representations map to only one
true state. Moreover, the definition is for a state estimate, not
the true state that it maps to.

Our definition aligns with the one of “sufficient statis-
tics of history” [30] and extends the one proposed for the
true states that yield unique observations [29]. In the lat-
ter study, a state s ∈ S is a landmark state if ∃o ∈ Ω such
that O(o|s) = 1 and ∀s� ≠ s,O(o|s�) = 0 . This definition is
restricted to problems where there are observations uniquely
representing corresponding true states. With perceptual
aliasing, however, the agent may still need to keep a memory
to form state estimations. For such a case, even though there
are no unique observations for a state, a state estimation can
still be capable of representing a unique experience, forming
a landmark according to our definition. Thus it focuses on
the estimated states instead of observations and provides a
wider perspective.

Let us clarify the landmark concept with an example
which is given in Fig. 2. The perceptions of the agent are
limited to the existence of a wall in the neighboring grid cell
in four compass directions, and only the goal state provides a
unique observation. For the rest, every observation is yielded
by at least two states. In case of pure observations, there is
only one landmark, which is the goal state marked as G. To
overcome ambiguity, let’s assume the agent aims to learn
a policy on the estimations formulated as xt = ot−1ot . That
is, it keeps the previous observation in memory to form its
estimated state at time t. Table 2b shows state estimations
formed accordingly where single observations are ordered
from left to right following their temporal order. In this set-
ting, having x as shown in Table 2b can only happen after
the agent takes a transition indicated by the blue arrow.

∀s� ≠ s,P(st = s�|xt = x) =
P(xt = x|st = s�) ⋅ P(st = s�)

P(xt = x)
= 0

Although single observations do not remove ambiguity
separately (as they can be observed for three states of the
environment), the given estimation identifies the location
of the agent unambiguously, therefore, forms a landmark.
Similarly, the agent can only have x′′ as shown in Table 2b
after taking the green transition. Both landmarks x and x′′
correspond to the same state, parallel to Fig. 1. However, the
state estimation x′ is not a landmark since such a transition in
red can end in two different states of the problem.

It is natural to think that the agent will have a set of land-
marks L in its representation of the world, the set of esti-
mated states X. These landmarks pinpoint distinct true states
in an environment, making them dependable estimations in
the agent’s internal representation of an uncertain environ-
ment. Therefore, their presence can be further utilized to
inform the agent while learning. In the following subsection,
we propose a method to apply additional rewards based on
landmarks to guide the agent towards reward peaks.

Note that Definition 1 describes landmarks as a relation
between the agent’s state estimations and the model’s terms.
But in a hidden-state POMDP, the agent does not know the
dynamics of the model, so it cannot know which of its state
estimations are landmarks by using the probabilities in the
definition. The agent should instead discover them online
during the early stages of learning with an additional mecha-
nism. For the automatic landmark discovery task, we argue
that Diverse Density is a promising candidate.

(a) 2D grid world domain

x x′ x′′

ot−1 ot ot−1 ot ot−1 ot

(b) Example state estimations with xt = ot−1ot

Fig. 2 Example 2D grid world domain a where each cell represents
a state, the agent can take four navigational actions and gets observa-
tions based on the presence of a wall in those directions. The goal
state is marked as G. Example state estimations b where the form of
the estimation is x

t
= o

t−1ot . The observation sketches are ordered
from left to right according to the time they are observed and the esti-
mated states x, x′, x′′ correspond to the experiences shown with blue,
red and green arrows, respectively

1549International Journal of Machine Learning and Cybernetics (2023) 14:1543–1563

1 3

Since a landmark can be visited when the agent is located
in a singular true state, we expect it to be seen less fre-
quently, compared to an aliased estimated state mapping to
multiple states. Besides, visiting a useful landmark, on the
way to a goal state, should be relatively rare in successful
episodes of the agent, making the diverse density of such
a landmark high compared to the others. Thus, we believe
that DD is a suitable candidate for automatic landmark
discovery task. In this study, we couple DD with applying
guiding rewards to lead to a better learning under partial
observability.

3.3 Landmark based guidance

Landmarks, by definition, are dependable parts of an uncer-
tain situation. Under partial observability, they carry reliable
information. The interpretation of Definition 1 pinpoints a
sole location of the estimated state space corresponding to
its mapping and carries the potential of a single state to
achieve the goal, unlike ambiguous estimations correspond-
ing to multiple states. That is, they have the same character-
istics as their underlying true state in terms of learning. If
the agent performs a series of primitive (atomic) transitions
from a low-potential landmark to a high-potential one, this
abstract move can be rewarded, utilizing the landmarks to
inform the agent about its progress. Such a reward may be
very useful in partially observable problem domains with
delayed or sparse reward mechanisms [9].

One may simply propose to provide a bonus upon reach-
ing a landmark. However, a bonus under partial observabil-
ity may cause the agent to get stuck in a landmark. Since a
visit at a landmark will be rewarded, the agent may eventu-
ally prefer to choose those actions rather than explore the
uncertain regions enough. Therefore, the agent should be
rewarded based on whether its actions orient it towards
transitions with high rewards or not, suggesting a routine
control on the differences between the potentials of visited
landmarks.

We argue that application of additional rewards for prob-
lems with hidden states is meaningful if the transitions
among the landmarks are taken into account only. Since a
potential value assigned to an ambiguous state estimate is
unreliable, providing an additional reward to a transition
with an ambiguous state estimate will not be beneficial
in a partially observable environment. It might encourage
the agent to take an action at a state, based on the potential
value of its current ambiguous state estimate, and the action
might thus mislead the agent away from a goal state. Instead,
assuming that the state transitions between two landmarks

form a temporal abstraction, one can define a meta-level
transition among two landmarks at an abstract level. This
meta-level transition may correspond to a series of primitive
actions in the underlying model, but the additional reward
is provided only when these actions complete a transition
between two landmarks.

Note that this approach does not align with the idea of
the potential based reward shaping and benefit from the
guarantees of it, since it does not shape the reward in each
transition and changes the return of the sequence of states
the agent follows. On the other hand, policy invariance is
obviously not a concern in a non-Markovian environment
since an optimal, or even a “good enough” deterministic
memoryless policy is not guaranteed at all [36]. Due to these
differences, we avoid to use the term “reward shaping”.

In order to apply additional rewards, one needs to calcu-
late the potentials of the landmarks. Our work is influenced
by the abstraction and value iteration ideas of [23] where
an abstraction is created over the set of MDP states and an
online learning method for the potentials of these abstract
states is proposed. We make use of this idea for the value
iteration approach on the abstract model similar to their pro-
posal, where the set of landmarks form an abstract model
and the agent executes abstract actions lasting over one time
step between the landmarks. However, our method differ-
entiates in that we assume the problem model is a POMDP
with hidden state interpretation, and we do not make fur-
ther abstractions over the set of observations. We follow
their value iteration approach on the abstract model of land-
marks since it better aligns with the reward mechanism of
the problem, unlike other heuristics. The abstract model is
in fact an SMDP [54] and we will call it Landmark-SMDP.
Figure 3 depicts how the Landmark-SMDP of the 6Rooms
domain looks like, also sketching which true problem state
each landmark corresponds to.

Definition 2 A Landmark-SMDP is a SMDP whose set of
states S is constructed by the landmarks L of the formed
state estimation set X.

The Landmark-SMDP is inherently composed of less
number of states compared to the set of estimated states
of the POMDP since usually most states are perceptually
aliased in a partially observable environment. Therefore, the
potentials of the landmarks can be easily calculated with
value iteration and then used to calculate internal rewards
in the underlying POMDP while performing actions in the
environment.

1550 International Journal of Machine Learning and Cybernetics (2023) 14:1543–1563

1 3

Fig. 3 An illustration of an abstract model for a sample grid world
domain (6Rooms, see Fig. 5a for the original sketch). The land-
marks correspond to the doorways and the goal state is marked with
G, where circles and dashed lines represent the landmarks and tran-

sitions between landmarks in the abstract SMDP model. Note that,
depending on the observation semantics and state estimation model,
the formal definition of the natural “doorway” landmarks may vary

1551International Journal of Machine Learning and Cybernetics (2023) 14:1543–1563

1 3

The overall algorithm for Landmark Based Guidance
(LBG) is given in Algorithm 1. The algorithm assumes that
the set of landmarks L is given. It requires as input the learn-
ing rate �v and the discount rate �v for the Landmark-SMDP
value iteration. The algorithm starts with initialization of
the value function V of the Landmark-SMDP, the time index
t, the previous and the current landmark variables and ,
the previous and the current time variables � and �′ to keep
the time that and are seen and the short history H (Lines
1–3). Upon deciding that the initial estimated state is a
landmark, and � are initialized by the estimated state and
the current time respectively (Lines 4–5). Then comes the
familiar observation-action loop, where the agent interacts
with its environment and observes transitions between the
estimated states xt and xt+1 . Meanwhile, the algorithm keeps
track of a transition in H to check if there is a previously
observed landmark, in order to calculate the discounted sum
of rewards to be used in the Line 18.

Since the precondition to provide guiding rewards
through the abstract model, it is checked whether or not the
agent arrives at a landmark. If it does, the current landmark

 and the current landmark time �′ are set (Lines 13–14).
If there is a landmark previously observed, this means it is
possible to provide the additional reward, which is calcu-
lated in Line 16.

Following the internal reward calculation, the algorithm
determines the sum of discounted rewards, gathered between
the previous landmark and the current landmark by using
H and makes a value update on (Line 18), where n repre-
sents the number of steps taken between the two (Line 17).

Afterwards, the previous landmark variables are shifted
with the current landmark variables (Line 20) and the cur-
rent landmark variables and the history H are reset (Lines
21–22). Finally, the updated reward is fed to the underlying
learning algorithm, and the agent continues to interact with
the environment. Here, the internal reward is used only if it
is positive (Line 24). As the agent aims to learn a policy over
an “uncertain state estimation set”, application of a punish-
ment for attaining a certain estimated state might not be
beneficial. Instead, rewarding correctly is enough by itself to
guide the agent towards transitions yielding higher rewards.

3.4 Automatic landmark discovery

Although Algorithm 1 requires the set of landmarks in
advance, for a more realistic problem setting, the agent has
no prior knowledge about which state estimates are true
and unambiguous. In order to increase the autonomy in this
respect, the agent should discover the landmark set during
learning.

Our previous study [8] shows that DD, when coupled
with a concept filtering mechanism (DDCF), is capable to
identify unique observations under partial observability. It

is coupled with SarsaLandmark algorithm to discover land-
marks caused by single observations automatically and to
improve learning speed for RL with hidden states. Former
performance of DDCF on automatic landmark discovery
makes it a promising candidate for the wider definition of
landmarks. However, our previous study is limited to land-
marks that contain single observations and does not extend
to problems that the agent may form landmarks including
its memory.

The DD idea is based on identification of the unique
points in successful histories. It requires a bag level clas-
sification to have successful and unsuccessful episodes.
Afterwards, it checks the instances that are uniquely seen
on positive bags but not on negative ones. By definition, a
landmark maps to only one state, unlike other ambiguous
state estimations that yielded by visits to different states.
Hence, in a successful episode, visiting an ambiguous state
estimation is more likely than visiting a landmark, causing a
useful landmark to be observed more diversely in an episode,
yet more densely on successful ones.

With this motivation, one can employ DD, especially the
DDCF variant, to identify the landmarks during learning to
form an overall framework that can run in a realistic RL set-
ting. Here, every instance and concept is a state estimation,
and a bag is an episode throughout the policy execution for
the problem. The outline of DDCF is follows:

• After each episode, DDCF classifies it according to a
success criteria (for example, reaching to the goal state
under a step threshold) as either a positive or a negative
bag.

• In order to calculate diverse density values for each esti-
mated state, DDCF algorithm requires the shortest path
distances between each pair.

• After the episode classification, DDCF updates its graph
of interactions between estimated states.

• Based on this graph, the distance between estimated
states is calculated.

• DDCF further employs a concept filtering with a metric
called congestion ratio to filter out the redundant candi-
dates for landmarks.

• Using the distances, DDCF calculates DD value for each
estimated state in this filtered set.

• Next, it employs the static filter of the original algorithm
to avoid identifying estimated states close to a goal state.

• As a last step, for each estimated state with a peak diverse
density value, DDCF increases the relative running aver-
age and if an estimated state passes the threshold, it is
marked as a landmark.

When DDCF finishes, the identified landmarks can be used
to provide guiding rewards to the agent. However, these two
processes should not be executed concurrently, since a newly

1552 International Journal of Machine Learning and Cybernetics (2023) 14:1543–1563

1 3

identified landmark may disrupt the value iteration and initi-
ate misguiding rewards. That is why we first employ DDCF
to find a set of landmarks to be used to guide the agent. After
a certain episode threshold is met, the Landmark-SMDP is
formed by using the identified landmarks and is used by
LBG to introduce guiding rewards.

The overall framework is depicted in Fig. 4. After each
interaction with the environment, the underlying RL algo-
rithm forms the estimated state using the new observation
and reward. The estimated state is then fed to the proposed
extension. First, the algorithm checks for an episode thresh-
old. Failure means this is the first stage of identifying land-
marks with DDCF and there is no guiding reward yet. If this
transition ends the episode, DDCF algorithm is employed
as stated before. If there is a newly identified landmark, it
is added to the set of identified landmarks. Alternatively,
upon passing the episode threshold, the algorithm goes into
stage two of LBG. Together with the landmarks identified
in the first stage, LBG calculates the guiding reward f and
updates its Landmark-SMDP by altering the potentials via
Algorithm 1. The guiding reward is added to the immediate
reward to be used by the underlying reinforcement learning
algorithm.

As a use case scenario, consider the training of an autono-
mous agent (such as a robot, vehicle etc.) within a certain

real, or more realistically, a virtual environment. Consider
that limitations of the agent’s sensors are represented as
the observation space, while the previous experiences and
the current observation forms the agent’s estimated state
for that time. The first phase of the process focuses on the
automatic identification of the landmarks within the context
of the estimated states. By using DDCF, the agent extracts
the landmarks in the estimated state space, while RL algo-
rithm has already started. The second phase consists of the
standard exploration-exploitation steps of the RL mecha-
nism, augmented with an abstract model representing the
Landmark-SMDP, again within the context of the estimated
states. The abstract model is used to guide the agent by using
the calculated potential of a landmark reached recently, by
means of eventually directing the agent to landmarks with
high potential. This way, the agent uses the landmarks as
“checkpoints” on the way to the goal, consequently requir-
ing less exploration, resulting in faster convergence. As a
result, the training of the agent would require less time and
resource.

3.5 Complexity analysis of the framework

In this section, we analyze the computational overhead of the
proposed framework over the underlying learning mecha-
nism. We provide the proofs for the theorems concerning the
time complexity of each part of the framework and formulate
an overall analysis.

Lemma 1 Let Ei be a sequence of transitions occurred in the
episode number i, Xi be the set of observed state estimations,
Ti be the set of transitions between them after the ith episode
and the operator || represent the cardinality of a sequence or
a set. Then, Diverse Density with Concept Filtering runs in
O(|Ei| + |Xi|2 + |Xi| ⋅ |Ti|) at the end of an episode i of the
main Reinforcement Learning loop.

Proof In order to identify the set of landmarks, DDCF
employs a search for the state estimations with peak diverse
density values at the end of an episode. When the episode
ends, it is traversed to count the occurrence of each state
estimation and the counts are kept in a hash map with |Xi|
keys where Xi is the set of unique state estimations after the
episode i. This operation can run in O(|Ei|) as the iteration
needs to count every instance in the episode.

The modified version of the algorithm [8] keeps an
unweighted and undirected graph of transitions between
the state estimations, in order to calculate the distances
between pairs and employs filtering mechanism. After each
step, the newly observed transition is added to the graph,
so cumulatively, forming the graph takes O(|Xi| + |Ti|)
where there are |Xi| number of vertices and |Ti| num-
ber of edges after the ith episode. Additionaly, updating

Fig. 4 The workflow of a RL agent with DDCF and LBG extensions

1553International Journal of Machine Learning and Cybernetics (2023) 14:1543–1563

1 3

the graph requires recalculating of the shortest path dis-
tances. By employing Breadth-first Search from each state
estimation, the distance matrix can be constructed in
O(|Xi| ⋅ (|Xi| + |Ti|)) = O(|Xi|2 + |Xi| ⋅ |Ti|) where the graph
is represented as an adjacency list.

The algorithm advances by classifying the new episode
either as successful or unsuccessful. This classification takes
O(|Ei|) time by checking whether the last reward is the high-
est of all throughout the episode or not.

In order to apply concept filtering, our algorithm [8]
requires a metric, namely congestion ratio CR(k)(x) , to be cal-
culated for each state estimation x. First, the algorithm finds
the degree and bridging coefficient BC(x) of each node in the
graph in O(|Ti|) in the adjacency list representation by iter-
ating over all edges. For calculating k-clustering coefficient
CC(k)(x) of a node, it traverses a row of the distance matrix
and finds k-neighborhood of a node in O(|Xi|) . Finding the
number of edges in k-neighborhood of a node takes O(|Ti|) by
checking the existence of an edge between the nodes within
the neighborhood. Calculation of CC(k)(x) for all nodes takes
O(|Xi| ⋅ (|Xi| + |Ti|)) . Hence, calculating CR(k)(x) , takes
O(|Ti| + |Xi| ⋅ (|Xi| + |Ti|)) = O(|Xi|2 + |Xi| ⋅ |Ti|) for all
nodes. Deciding that a node has the peak value among its
direct neighbors again requires an iteration over the set of
edges, consuming O(|Ti|) time, therefore the time complex-
ity of this step is determined by O(|Xi|2 + |Xi| ⋅ |Ti|).

Following the formation of filtered set of state estimations
Xf , the algorithm employs a diverse density search among
them. The diverse density value of a state estimation can be
calculated iteratively, so at the end of each episode, only the
last episode’s value should be calculated and added. Since
the counts for each episode are stored in a hash map hav-
ing |Xi| number of keys, the search takes O(|Xf | ⋅ |Xi|) time.
The final steps of the algorithm, which involve the running
average threshold check and static filter application, are
employed for the set of peak valued state estimations Xp ,
hence yield O(|Xp|) complexity.

To wrap up, at the end of each episode, DDCF takes
O(|E

i
| + |X

i
|2 + |X

i
| ⋅ |T

i
| + |E

i
| + |X

i
|2 + |X

i
| ⋅ |T

i
| + |X

f
|

⋅|X
i
| + |X

p
|) . Since |Xp| ≤ |Xf | ≤ |Xi| , this results in

O(|Ei| + |Xi|2 + |Xi| ⋅ |Ti|) where Ei is the sequence of tran-
sitions in the episode i, Xi and Ti are the sets of observed
state estimations and the transitions between them, at the
end of episode i, respectively. ◻

Lemma 2 Let n be the number of episodes for which DDCF
is employed, |Ê| be the average length of an episode, Xn
be the set of observed state estimations and Tn be the set
of transitions between them after the nth episode. Then,
the identification of the landmark set by DDCF takes
O(n ⋅ |Ê| + |Xn|2 + |Xn| ⋅ |Tn|) time.

Proof Assume that DDCF is employed for n episodes.
Since the graph grows with new episodes, |Xi| ≤ |Xi+1| and
|Ti| ≤ |Ti+1| . Due to big-Oh notation, the time complexity
of the graph operations is dominated by the final size of
the graph. Moreover, the algorithm still needs to parse each
episode history. So, assuming |Ê| is the average length of an
episode, using Lemma 1, the identification of the landmark
set takes O(n ⋅ |Ê| + |Xn|2 + |Xn| ⋅ |Tn|) when DDCF is run
for n episodes. ◻

Theorem 1 Let n be the number of episodes for which
DDCF is employed, m be the number of episodes for which
overall framework is executed, |Ê| be the average length
of an episode, Xn be the set of observed state estimations
and Tn be the set of transitions between them after the
nth episode. Then, the time overhead of the framework is
O(m ⋅ |Ê| + |Xn|2 + |Xn| ⋅ |Tn|).

Proof Let DDCF be executed for n episodes to iden-
tify the landmark set. Then, by Lemma 2, it takes
O(n ⋅ |Ê| + |Xn|2 + |Xn| ⋅ |Tn|) time. Following the for-
mation of the landmark set, LBG is started. At each time
step, calculation of the guiding reward and a value itera-
tion for the potentials takes place at constant time as the
accumulated discounted rewards can be iteratively cal-
culated. Hence, these operations take O(|Ê|) assuming
that |Ê| is the average length of an episode. Since LBG
is employed after DDCF, it executes for m − n episodes.
Therefore, time complexity of the whole framework is
O(n ⋅ |Ê| + |X

n
|2 + |X

n
| ⋅ |T

n
| + (m − n) ⋅ |Ê|) = O(m ⋅ |Ê|+

+|X
n
|2 + |X

n
| ⋅ |T

n
|) , given that DDCF runs for n episodes

and the framework runs for m episodes. ◻

4 Experiments

In the experiments, we addressed the following questions:
(1) Is DDCF capable of identifying complex landmarks? (2)
Does LBG provide a speed gain in the learning by having the
set of landmarks either given in advance or identified online?
(3) How does � effect the learning performance of LBG with
methods using eligibility traces? (4) How does the coverage
of landmarks affect the learning speed of LBG?

In order to answer these questions, two well known RL
algorithms with eligibility traces were used as underlying
learning algorithms, namely Q(�) and Sarsa(�) [37, 58], due
to their effectiveness in POMDPs with hidden states. Wat-
kins’ Q(�) version is used for Q(�) implementation in order
to keep it truly off-policy. Note that our guidance mechanism
can be adapted to different learning algorithms and our focus
for this study is to show that it can provide an improvement

1554 International Journal of Machine Learning and Cybernetics (2023) 14:1543–1563

1 3

over the underlying algorithms with no specific bound to
them.

For the first question, we analyzed the results of DDCF
in terms of precision and recall of the discovered landmark
set. For the second one, the aforementioned algorithms are
tested in terms of the number of steps to reach to a goal state
and success rates of the final policies against two LBG vari-
ants: (1) LBG with the landmarks provided in advance, (2)
LBG coupled with DDCF for automatic landmark identifi-
cation. Experiments were carried out using different forms
of state estimation since higher level state representations
are required for some domains in order for the problem to
be solvable to some extent, i.e. the solution set to include a
relatively good policy. Note that, the aim of the experimen-
tation is not to find the best state estimation, but to show
that LBG can be helpful on estimated state formulations of
various complexity levels.

The effect of trace decay is tested with different values
of � in terms of speed gain over the underlying algorithm.
Finally, the last query is addressed by providing subsets
of landmarks differing in coverage to LBG in advance to
observe the effect on learning performance.

The following sections include the experimental results
and their discussion of several problems.

4.1 Problem domains

We carried out experimentation for three domains, two of
which (6Rooms and 4Rooms4Hallways) are grid world
domains, and one (ToH3) is a puzzle. The sketches and the
size characteristics of the problems are shown in Fig. 5 and
Table 1, respectively. These problems are selected since
they possess different observation semantics that build
up landmarks in various state estimation forms. Although
these forms do not completely overcome the ambiguity in
the problem, they form landmarks that can be used to guide
the agent.
6Rooms and 4Rooms4Hallways are navigational

tasks where the agent can take four actions as north, east,
south, west. Actions are stochastic, resulting in the intended
direction with 0.95 probability and either left or right of the
intended direction with 0.025 probability.

In 6Rooms, the agent’s observations are formed accord-
ing to its distance to the walls in four compass directions
(one step from the wall, two steps from the wall, closer to
the wall in this direction than the other, further from the
wall in this direction than the other). Moreover, the door-
ways of 6Rooms provide unique observations. Conversely,
4Rooms4Hallways limits the perceptions to the presence
of a wall in the next cell in four directions. For both naviga-
tional domains, the agent starts at the north-west room and
aims to reach to uniquely observable goal state (marked as
G in Fig. 5a and b) where each regular action is receives

(a) 6Rooms

(b) 4Rooms4Hallways

(c) ToH3

Fig. 5 Sketches of the domains used in the experiments for Landmark
Based Guidance. The goal states are marked with G in the grid world
domains

Table 1 Details of the domains used in the experiments for Landmark
Based Guidance

Problem |S| |A| |Ω| Action Noise References

6Rooms 564 4 43 Yes [45]
4Room-
s4Hallways

374 4 12 Yes [44]

ToH3 161 4 31 No [26]

1555International Journal of Machine Learning and Cybernetics (2023) 14:1543–1563

1 3

−0.01 punishment and upon reaching the goal, the agent is
rewarded by 1.
ToH3 is a classical puzzle that contains m rods and n

disks where initially, the disks are placed either on the left-
most or the middle rod in the increasing size order. The
goal of the agent is to move the disks one at a time so that
eventually they are placed on the right-most rod with the
same order. In this version of the problem, the agent has
an arm that can employ four deterministic actions as left,
right, pick up and put down. An action yields a reward of
10 upon reaching to the uniquely visible goal state, and no
reward or punishment is provided otherwise. ToH3 contains
3 disks and 3 rods where the middle rod has an additional
–distinguishing– shape that is visible by the agent with a
probability of 0.8. The agent’s perception is limited to the
contents of the rod that the arm is currently on: whether or
not the current rod is the middle one and whether or not the
arm is holding a disk. Because of this partial observation
semantics, the agent has to keep some sort of memory to
form a good policy for solving the task.

This study focuses on the domains that may lead to land-
marks in different forms of state estimations. 6Rooms, on
the one hand, contains landmarks within the observation
space since the doorways provide unambiguous observa-
tions. On the other hand, although the observations 4Room-
s4Hallways are extremely ambiguous, by maintaining a
memory the agent can form unique estimations. Recalling
the example in Fig. 2, the two step observation sequence
where an observation with a north-east wall boundary is
followed by an observation with a south-west wall bound-
ary is possible for only one estimated state, while these two
observations are individually yielded by three distinct states
each. Finally, for ToH3, the agent may need to maintain an
even more complex memory, including the action between
the previous observation and the current one, creating land-
marks as shown in Fig. 6.

Note that our experiments contain problems generating
landmarks in key points of learning on different levels of
state estimation, in order to illustrate the positive effect of
our method. However, complex forms of state estimations
may yield landmarks which do not need to be visited in
order to reach a goal state. For example, a transition like in
Fig. 6d occurs due to a redundant action, making the agent
stay in the same state. This observation-action-observation
sequence is a landmark since it is a unique experience, but
it is not a useful one and certainly does not correspond to a
state that needs to be visited.

As it can be seen in Fig. 7, the observation transition
semantics do not align with the state space structure of the
problems. Moreover, Table 2 shows how the size of the esti-
mated state set X and the size of the landmark set L alter by
different forms of state estimation formulations. In order
to further understand how ambiguous the estimated states

are, we propose a metric called the aliasing ratio, which is
defined as,

where |M(x)| represents the number of true states that the
state estimate x corresponds to. Note that, this metric should
not be interpreted as a measure of difficulty of the prob-
lem. Instead, we can argue it indicates the uncertainty of the
observation semantics. As can be seen in Table 2, a form of
memory can decrease the aliasing ratio for all of the prob-
lems, yet including the transition action between observa-
tions is only useful for ToH3 due to non-determinism on the
outcomes of actions in other problems.

4.2 Settings

Q(�) and Sarsa(�) algorithms are compared to their versions
with LBG and the coupling of DDCF and LBG, in terms of
the number of steps to reach the goal state. The main experi-
ments are performed with different forms of state estimation
for 6Rooms, 4Rooms4Hallways and ToH3 as xt = ot ,
xt = ot−1ot and xt = ot−1at−1ot , respectively. As baselines,
optimal MDP policy performance and deep RL approaches
with LSTM units, namely A2C [46] and ACKTR [61], are
also plotted.

In the experiments, an episode starts at a randomly
selected initial state of the problem and ends either when
the agent reaches a goal state or after 5000 steps are taken.
The results are averaged over 50 experiments, each of which
took 25000 episodes.

For the learning parameters, we used the values that
showed the best performance in the original studies. Conse-
quently, � = 0.9 is used for the main experimentation. For
both RL algorithms and all the domains, � = 0.01, � = 0.9
are used, and an �-greedy action selection method is
employed with � starting at 0.2 and linearly decaying down
to 0.0001 throughout an experiment (until the last episode).

The value iteration of the Landmark-SMDP used
�v = 0.99 and �v = 0.05 in all the domains, which give the
best results for LBG. For LBG, we assumed the landmark
set L is provided beforehand, that is, the agent can perfectly
sense whether or not it is in a landmark. For the coupling
of DDCF and LBG, we let DDCF to run for 2000 episodes,
then employed LBG with the identified set of landmarks. For
DDCF, we used � = 10.0 and �DD = 0.95 where an episode
is considered successful if it ends with a peak reward and
lasts shorter than a determined step threshold. We used a
static filter of 2 steps in 6Rooms and 4Rooms4Hall-
ways where it is set to 3 for ToH3 problem. Moreover, we
employed concept filtering by setting k = 2 in the congestion
ratio metric.

(1)� =

∑
x∈X �M(x)�
�X�

1556 International Journal of Machine Learning and Cybernetics (2023) 14:1543–1563

1 3

We used Stable Baselines implementations [25] for A2C
and ACKTR algorithms. Both of the methods had a network
of 5 fully connected layers having 32 neurons per layer. They
used 256 sampled experiences in each update with the learn-
ing rate of 0.0001. We selected the number of hidden neu-
rons for the LSTM as 32. For ACKTR, we had the weight for
the entropy loss as 0.01, the weight for the loss on the value

function as 0.25 and gradient clipping for Kullback-Leibler
as 0.01. The rest of the parameters are left as their default.

4.3 Learning performances

For the main experiments, we reported the average number
of steps taken to reach the goal state with the 95% boot-
strapped confidence intervals. The agent used different forms

Fig. 6 A simple example in
ToH3 problem where observa-
tion of only one rod may cor-
respond to multiple configura-
tions, but a transition from one
to another with left action is
corresponds to a single esti-
mated state, creating a landmark
formed as x

t
= o

t−1at−1ot

?=

(a) An observation on the middle rod with the smallest disk, corresponding
to four different states.

?=

(b) An observation on a rod with the disks except the smallest one,
corresponding to four different states.

left =

(c) The landmark generated by the transition between the observations via
left action, mapping to only one state.

left =

(d) An unnecessary landmark generated by staying in the same state via left
action, mapping to only one state.

1557International Journal of Machine Learning and Cybernetics (2023) 14:1543–1563

1 3

Fig. 7 Observation transition
graphs of the domains. The goal
states are labeled as G

(a) 6Rooms

(b) 4Rooms4Hallways

G

(c) ToH3

Table 2 Details of the estimated
state space with different state
estimation forms where � is the
aliasing ratio

State Estimate 6Rooms 4Rooms4Hallways ToH3

|X| |L| � |X| |L| � |X| |L| �

x
t
= o

t
43 7 14.09 12 1 34.66 31 5 6.87

x
t
= o

t−1ot 305 125 6.28 69 21 12.58 251 26 3.75
x
t
= o

t−1at−1ot 1010 418 6.23 244 76 12.85 442 190 2.64

1558 International Journal of Machine Learning and Cybernetics (2023) 14:1543–1563

1 3

of state estimation so that we can show the performance
of our proposed method with different forms of landmarks.

In Table 3, the identification performance of DDCF +
LBG is given when the agent used state estimates as xt = ot ,
xt = ot−1ot and xt = ot−1at−1ot for 6Rooms , 4Room-
s4Hallways and ToH3 respectively. As stated earlier,
DDCF was run for the first 2000 episodes to find the land-
marks in the task. In case of accuracy, DDCF is shown
to perform well on different levels of state estimation. It
resulted in noise free sets of landmarks in almost all the
problems. On the contrary, the table shows DDCF does not
cover all the landmarks. This behavior originates from the
focus of DDCF on the landmarks that are most useful for
success. Especially in ToH3, there are 179 landmarks in the
form xt = ot−1at−1ot (Table 2), yet only a few of them cause
the highest DD values and are enough for guiding the agent.

Figure 8 shows the learning performances in 6Rooms.
Learning a policy based on the pure observations (xt = ot)
seems to work in this domain. Although it is not optimal,
all the algorithms can find a good policy that can lead the
agent towards high rewards. It is clear from the figure that
LBG dramatically improves the learning performance
of both Q(�) and Sarsa(�) since it guides the agent to the
goal state from the beginning of the learning with the land-
mark set provided beforehand. Likewise, the agent’s per-
formance improves when the set of landmarks found by
DDCF is fed to LBG and the guidance starts. Around the
episode 2000, the number of steps to the goal state start to

decrease significantly. This shows that the landmark set is
unnecessary in advance, and it can be found online to gain
learning performance. Although DDCF does not discover
all the landmarks, the found ones suffice for improving the
learning speed of the baseline algorithms. Moreover, LBG
outperforms both A2C and ACKTR that show to be sample-
inefficient during learning.

For 4Rooms4Hallways domain, keeping a memory
may be required in order to observe some sort of learning.
In Fig. 9, it is shown that keeping the previous observation
in the estimated state form (xt = ot−1ot) can improve the
performance of the baseline algorithms, Q(�) and Sarsa(�).
In this level of state estimation, Fig. 10 shows a similar
result. Both baseline algorithms gives a slow learning sign
where Sarsa(�) performs better compared to Q(�). In con-
trast, LBG improves both of the underlying algorithms and
also outperforms A2C and ACKTR. The number of steps to
reach the goal state significantly drops when our guidance
method is employed with the agent being directed towards
it in the early stages of learning. Moreover, DDCF + LBG
has a similar immediate effect on the learning performance
after the landmarks are discovered and the guidance begins
around episode 2500. This shows that the overall algorithm
is also helpful when more complex landmarks are present.

Figure 11 shows that the baseline algorithms cannot
learn by using the single observations from the environment
(xt = ot), yet including the actions between the previous and
the current observations seems to make the agent solve the

Table 3 Landmark
identification performance of
DDCF under different learning
algorithms. Values are given
with their lower and upper
bound of confidence intervals

Problem Q(�) Sarsa(�)

Precision Recall Precision Recall

6Rooms 1.000 (1.000, 1.000) 0.631 (0.586, 0.674) 1.000 (1.000, 1.000) 0.703 (0.657, 0.743)
4Room-
s4Hall-
ways

1.000 (1.000, 1.000) 0.402 (0.383, 0.427) 1.000 (1.000, 1.000) 0.412 (0.388, 0.442)

ToH3 0.827 (0.798, 0.861) 0.056 (0.053, 0.060) 0.784 (0.754, 0.815) 0.051 (0.047, 0.055)

Fig. 8 Average number of steps
taken to reach the goal state
in 6Rooms domain where the
state estimation has the form
of x

t
= o

t
 . The dashed line

represents the best value from
the MDP version of the prob-
lem and shaded areas are the
95% bootstrapped confidence
intervals

1559International Journal of Machine Learning and Cybernetics (2023) 14:1543–1563

1 3

task in ToH3. It can be seen in Fig. 12, all of the algorithms
except A2C and ACKTR almost converge to the best value
taken from the MDP version of the problem when the state
estimation is formed as xt = ot−1at−1ot . A2C and ACKTR,
on the other hand, struggle to learn, similarly to the other
experiments. Again, landmark based guidance led the agent
towards the best policy much sooner. The agent with LBG
reached the goal state earlier, causing the episode to be much
shorter. Although DDCF’s coverage on the landmarks is low,
its improvement over the baseline algorithms is significant.
This proves that not all the landmarks are to be used to
achieve good guidance.

Additionally, we have run the final policies learned by dif-
ferent methods greedily on the domains, in order to test the
success of the learned policies, with no supporting mecha-
nism. The agent followed a final greedy policy for 50 trials
of 5000 steps, and each trial is considered successful if it
ends with a goal state. Figure 13 shows the average suc-
cess percentages of the final policies from 50 experiments
for each domain with their corresponding state estimation
levels. On one hand, LBG leads to better policies for all the
problems where the complete algorithm of DDCF + LBG
also improves the underlying learning algorithms. On the

other hand, in ToH3 domain, all the algorithms can find
successful policies.

4.4 Analysis on �

The strength of the baseline RL algorithms used in this study
comes from the eligibility trace mechanism they incorpo-
rate. Thus, the effect of eligibility traces over the learning
performance is an important aspect to analyze. � controls
the decay of the eligibility traces, as well as how far back in
past the guiding reward can propagate. In this section, the
experiments are carried out for Sarsa(�) and Sarsa(�) w/
LBG for several � values. 6Rooms domain is selected for
testing since it has distant landmarks so that the length of
the trace can provide more advantage on the learning speed.

Table 4 shows the results averaged over 50 experiments.
As expected, the learning performance of Sarsa(�) decreases
with the decrease of � . Leaving a trace over the past transi-
tions makes the agent converge to a good policy much faster.
Alternatively, we can see that additional guidance provided
by LBG can have a better effect when � is high. When the
agent reaches a landmark, LBG rewards the actions taken

Fig. 9 Average number of steps taken to reach the goal state in
4Rooms4Hallways domain with different state estimation forms.
Shaded areas are the 95% bootstrapped confidence intervals

Fig. 10 Average number of
steps taken to reach the goal
state in 4Rooms4Hallways
domain where the state estima-
tion has the form of x

t
= o

t−1ot .
The dashed line represents the
best value from the MDP ver-
sion of the problem and shaded
areas are the 95% bootstrapped
confidence intervals

Fig. 11 Average number of steps taken to reach the goal state in
ToH3 domain with different state estimation forms. Shaded areas are
the 95% bootstrapped confidence intervals

1560 International Journal of Machine Learning and Cybernetics (2023) 14:1543–1563

1 3

if the abstract transition lands in a landmark with a higher
value. When � is high, the set of past estimated states that
are affected by this guiding reward becomes larger. We can
conclude that LBG further strengthens the benefits of invok-
ing an eligibility trace mechanism.

4.5 Analysis on guidance with subsets of landmarks

We further analyzed the learning performance of Landmark
Based Guidance when only a random subset of the whole
landmark set is provided to the agent. This way, we can
demonstrate the effect of the landmark set on the guidance
method.

At the beginning of each experiment, we took a random
subset of landmarks and ran LBG with this subset. We
experimented on 6 different versions of Sarsa(�) algorithm
guided by 0% , 20% , 40% , 60% , 80% 100% of landmarks. In
the experiments, we used 4Rooms4Hallways domain
with the state estimation xt = ot−1ot where there are 21 land-
marks in this form (Table 2).

Figure 14 shows the number of steps taken to the goal
averaged over 50 experiments. As expected, knowing a

bigger subset of the landmarks leads to a better learning
performance since the agent can depend on more landmarks
and rewarded more frequently. Additionally, we compared
these results to the performance of DDCF + LBG where
the method scored 0.41 recall, which is nearly 40% of the
landmarks. It can be seen in Fig. 15 that the performance
of DDCF + LBG matches to having a random subset of
80% , even though it had a late start on guidance due to the
episode threshold. This supports our claim that DDCF is
more focused on landmarks that are useful for learning the
task at hand.

5 Conclusion

In this study, a landmark based guidance (LBG) approach is
applied to the partially observable problem setting, where
the states are hidden from the agent. The proposed method
makes use of landmarks to baseline a potential function
for introducing additional rewards. LBG approach argues
that a RL agent can achieve a better solution by means of
additional internal rewards upon completion of a transition

Fig. 12 Average number of
steps taken to reach the goal
state in ToH3 domain where the
state estimation has the form of
x
t
= o

t−1at−1ot . The dashed line
represents the best value from
the MDP version of the prob-
lem and shaded areas are the
95% bootstrapped confidence
intervals

Fig. 13 The success rate of the
final greedy policies to reach the
goal states in all of the domains

1561International Journal of Machine Learning and Cybernetics (2023) 14:1543–1563

1 3

among two landmarks at the abstract level. Experiments on
several problems show LBG can significantly improve the
learning performance of well known off-policy and on-pol-
icy learning algorithms, like Q(�) and Sarsa(�). LBG can be
further coupled with DDCF to discover the landmarks dur-
ing learning, removing the necessity to provide the landmark

set beforehand. DDCF+LBG not only outperformed the
literature baselines, but also showed similar performance
with the pre-defined landmarks setting, in terms of learning
speed.

The study shows that landmarks usually exist and can be
identified at different levels of state estimation forms. Their
natural presence can be utilized by guiding with additional
rewards. Both the landmarks and their potentials can be
found online, and DDCF+LBG is an algorithm that com-
bines discovery and usage of landmarks. On one hand, an
estimated state set without any landmarks may be considered
nondistinctive since having no landmarks shows that the
agent’s internal representations are still ambiguous, mapping
to multiple states with possibly different optimal actions.
Such a state estimation approach must be improved to clear
out ambiguity in order for DDCF+LBG to identify and uti-
lize them to guide the agent. On the other hand, in the case
where the state estimation successfully identifies each state
of the domain and each estimated state is a landmark, DDCF
will focus on key landmarks, acting as bottlenecks, and those
landmarks will guide the agent with LBG. Although find-
ing such state estimation methods is quite challenging, our
approach can still speed up the learning process.

As the space of estimated states expands, the number of
natural landmarks also increase. This allows DDCF+LBG
to scale up easily since DDCF will identify the most useful
landmarks and LBG will help the agent towards reaching a
goal state in a bigger estimated state space.

As a follow-up work to Landmark Based Guidance, one
can experiment with algorithms that devise their state esti-
mations during learning, rather than having a fixed form at
the beginning. Methods like USM extend the memory when-
ever necessary, causing a set of estimated states of different
sizes. The proposed framework of DDCF+LBG is still a fit
candidate to work under those circumstances. DDCF can
pick the landmarks among the set of estimated states, and
LBG can fuse them to provide guiding rewards.

Our study on tabular discrete Reinforcement Learning
with hidden states can be extended to continuous environ-
ments after a proper discretization process is applied to
clearly describe the estimated states. This way, DDCF+LBG
can be couple with state-of-the-art deep reinforcement learn-
ing methods, which we leave as a future work.

Acknowledgements Authors would like to thank Hüseyin Aydın for
his support.

References

 1. Asmuth J, Littman ML, Zinkov R (2008) Potential-based Shap-
ing in Model-based Reinforcement Learning. In: Proceedings of
the Twenty-Third AAAI Conference on Artificial Intelligence, pp
604–609

Table 4 The number of steps to reach the goal state averaged over
episodes for various � values in 6Rooms domain. Gain is calculated
as the ratio of the difference in the number of steps over the number
of steps taken by Sarsa(�)

� Sarsa(�) Sarsa(�) w/ LBG Gain

0 1969.03 1601.11 18.6%
0.1 1935.62 1458.96 24.6%
0.3 1727.27 1106.59 35.9%
0.5 1457.33 710.56 51.2%
0.7 1186.17 404.71 65.8%
0.9 804.95 202.86 74.7%

Fig. 14 Average number of steps to goal in 4Rooms4Hallways
when LBG is fed with the different subsets of the landmark set. The
percentage of the provided subsets to LBG are given in parentheses,
Sarsa(0.9) is given as a baseline without LBG and the confidence
intervals are omitted for better view

Fig. 15 Comparison of DDCF + LBG to LBG with the subsets of
landmarks in terms of average number of steps to goal in 4Room-
s4Hallways. The percentage of the provided subsets are given in
parentheses and shaded areas are the 95% bootstrapped confidence
intervals

1562 International Journal of Machine Learning and Cybernetics (2023) 14:1543–1563

1 3

 2. Astrom KJ (1965) Optimal control of Markov processes with
incomplete state information. J Math Anal Appl 10(1):174–205.
https:// doi. org/ 10. 1016/ 0022- 247X(65) 90154-X

 3. Aydın H, Çilden E, Polat F (2022) Using chains of bottleneck
transitions to decompose and solve reinforcement learning tasks
with hidden states. Future Generation Comput Syst 133:153–168.
https:// doi. org/ 10. 1016/j. future. 2022. 03. 016

 4. Babes M, De Cote EM, Littman ML (2008) Social reward shaping
in the prisoner’s dilemma. In: Proceedings of the 7th International
Joint Conference on Autonomous Agents and Multiagent Systems,
pp 1389–1392

 5. Bradtke SJ, Duff MO (1994) Reinforcement learning methods
for continuous-time Markov decision problems. Adv Neural Info
Process Syst 7:393–400

 6. Cassandra AR (1998) Exact and approximate algorithms for par-
tially observable markov decision processes. Dissertation, Brown
University

 7. Çilden E, Polat F (2015) Toward generalization of automated tem-
poral abstraction to partially observable reinforcement learning.
IEEE Trans Cybern 45(8):1414–1425. https:// doi. org/ 10. 1109/
TCYB. 2014. 23520 38

 8. Demir A, Çilden E, Polat F (2019) Automatic landmark discovery
for learning agents under partial observability. Knowl Eng Rev
34:E11. https:// doi. org/ 10. 1017/ S0269 88891 90000 2X

 9. Demir A, Çilden E, Polat F (2019b) Landmark based reward shap-
ing in reinforcement learning with hidden states. In: Proceedings
of the 18th International Conference on Autonomous Agents and
Multi Agent Systems, pp 1922–1924

 10. Devlin S, Kudenko D (2011) Theoretical considerations of poten-
tial-based reward shaping for multi-agent systems. In: The 10th
International Conference on Autonomous Agents and Multiagent
Systems-Volume 1, International Foundation for Autonomous
Agents and Multiagent Systems, pp 225–232

 11. Devlin S, Kudenko D (2016) Plan-based reward shaping for
multi-agent reinforcement learning. Knowl Eng Rev 31(1):44–58.
https:// doi. org/ 10. 1017/ S0269 88891 50001 81

 12. Devlin S, Kudenko D, Grześ M (2011) An empirical study of
potential-based reward shaping and advice in complex, multi-
agent systems. Adv Complex Syst 14(02):251–278. https:// doi.
org/ 10. 1142/ S0219 52591 10029 98

 13. Devlin SM, Kudenko D (2012) Dynamic potential-based reward
shaping. In: Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems-Volume 1, pp
433–440

 14. Dong Y, Tang X, Yuan Y (2020) Principled reward shaping for
reinforcement learning via Lyapunov stability theory. Neurocom-
puting 393:83–90. https:// doi. org/ 10. 1016/j. neucom. 2020. 02. 008

 15. Duff MO (2002) Optimal learning: Computational procedures for
Bayes-adaptive Markov decision processes. Dissertation, Univer-
sity of Massachusetts at Amherst

 16. Eck A, Soh LK, Devlin S et al (2016) Potential-based reward
shaping for finite horizon online POMDP planning. Auton
Agents Multi-Agent Syst 30(3):403–445. https:// doi. org/ 10. 1007/
s10458- 015- 9292-6

 17. Efthymiadis K, Devlin S, Kudenko D (2016) Overcoming incor-
rect knowledge in plan-based reward shaping. Knowl Eng Rev
31(1):31–43. https:// doi. org/ 10. 1017/ S0269 88891 50001 7X

 18. Gao Y, Toni F (2015) Potential based reward shapings for hier-
archical reinforcement learning. In: Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intelligence,
pp 3504–3510

 19. Grzes M (2010) Improving exploration in reinforcement learning
through domain knowledge and parameter analysis. Dissertation,
University of York

 20. Grzes M (2017) Reward shaping in episodic reinforcement learn-
ing. In: Proceedings of the 16th Conference on Autonomous
Agents and MultiAgent Systems, pp 565–573

 21. Grzes M, Kudenko D (2008) Plan-based reward shaping for rein-
forcement learning. In: 2008 4th International IEEE Conference
Intelligent Systems, IEEE, pp 10–22, https:// doi. org/ 10. 1109/ IS.
2008. 46704 92

 22. Grzes M, Kudenko D (2009) Theoretical and empirical analysis of
reward shaping in reinforcement learning. In: 2009 International
Conference on Machine Learning and Applications, pp 337–344,
https:// doi. org/ 10. 1109/ ICMLA. 2009. 33

 23. Grzes M, Kudenko D (2010) Online learning of shaping rewards
in reinforcement learning. Neural Netw 23(4):541–550. https://
doi. org/ 10. 1016/j. neunet. 2010. 01. 001

 24. Henderson P, Islam R, Bachman P, et al (2018) Deep reinforce-
ment learning that matters. In: Proceedings of the Thirty-Second
AAAI Conference on Artificial Intelligence, pp 3207–3214,
https:// doi. org/ 10. 1609/ aaai. v32i1. 11694

 25. Hill A, Raffin A, Ernestus M, et al (2018) Stable baselines. https://
github. com/ hill-a/ stable- basel ines

 26. Hinz AM (1989) The tower of Hanoi. L’Enseignement Mathéma-
tique 35:289–321. https:// doi. org/ 10. 5169/ seals- 57378

 27. Hochreiter S, Schmidhuber J (1997) Long short-term memory.
Neural Comput 9(8):1735–1780. https:// doi. org/ 10. 1162/ neco.
1997.9. 8. 1735

 28. Igl M, Zintgraf L, Le TA, et al (2018) Deep variational reinforce-
ment learning for pomdps. In: Proceedings of the 35th Interna-
tional Conference on Machine Learning, pp 2117–2126

 29. James MR, Singh SP (2009) Sarsalandmark: an algorithm for
learning in pomdps with landmarks. In: Proceedings of The
8th International Joint Conference on Autonomous Agents and
Multiagent Systems - vol 1, pp 585–591

 30. James MR, Wolfe B, Singh SP (2005) Combining memory and
landmarks with predictive state representations. In: Proceedings of
The 19th International Joint Conference on Artificial intelligence,
pp 734–739

 31. Jaulmes R, Pineau J, Precup D (2005) Active learning in partially
observable markov decision processes. In: 16th European Con-
ference on Machine Learning Proceedings, LNCS, vol 3720, pp
601–608, https:// doi. org/ 10. 1007/ 11564 096_ 59

 32. Kaelbling LP, Littman ML, Moore AP (1996) Reinforcement
learning: a survey. J Artif Intell Res 4:237–285. https:// doi. org/
10. 1613/ jair. 301

 33. Kaelbling LP, Littman ML, Cassandra AR (1998) Planning and
acting in partially observable stochastic domains. Artif Intell
101(1–2):99–134. https:// doi. org/ 10. 1016/ S0004- 3702(98)
00023-X

 34. Li R, Cai Z, Huang T et al (2021) Anchor: The achieved goal
to replace the subgoal for hierarchical reinforcement learning.
Knowl-Based Syst 225(107):128. https:// doi. org/ 10. 1016/j. kno-
sys. 2021. 107128

 35. Lin LJ, Mitchell TM (1992) Memory approaches to reinforcement
learning in non-markovian domains. Technical Report CMU-
CS-92-138, Carnegie Mellon University

 36. Littman ML (1994) Memoryless policies: theoretical limitations
and practical results. In: From Animals to Animats 3: Proceedings
of the third International Conference on Simulation of Adaptive
Behavior, pp 238–245

 37. Loch J, Singh SP (1998) Using eligibility traces to find the best
memoryless policy in partially observable markov decision pro-
cesses. In: Proceedings of the Fifteenth International Conference
on Machine Learning, pp 323–331

 38. Lu X, Schwartz HM, Givigi SN (2011) Policy invariance under
reward transformations for general-sum stochastic games. J Artif
Intell Res 41:397–406. https:// doi. org/ 10. 1613/ jair. 3384

https://doi.org/10.1016/0022-247X(65)90154-X
https://doi.org/10.1016/j.future.2022.03.016
https://doi.org/10.1109/TCYB.2014.2352038
https://doi.org/10.1109/TCYB.2014.2352038
https://doi.org/10.1017/S026988891900002X
https://doi.org/10.1017/S0269888915000181
https://doi.org/10.1142/S0219525911002998
https://doi.org/10.1142/S0219525911002998
https://doi.org/10.1016/j.neucom.2020.02.008
https://doi.org/10.1007/s10458-015-9292-6
https://doi.org/10.1007/s10458-015-9292-6
https://doi.org/10.1017/S026988891500017X
https://doi.org/10.1109/IS.2008.4670492
https://doi.org/10.1109/IS.2008.4670492
https://doi.org/10.1109/ICMLA.2009.33
https://doi.org/10.1016/j.neunet.2010.01.001
https://doi.org/10.1016/j.neunet.2010.01.001
https://doi.org/10.1609/aaai.v32i1.11694
https://github.com/hill-a/stable-baselines
https://github.com/hill-a/stable-baselines
https://doi.org/10.5169/seals-57378
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1007/11564096_59
https://doi.org/10.1613/jair.301
https://doi.org/10.1613/jair.301
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/S0004-3702(98)00023-X
https://doi.org/10.1016/j.knosys.2021.107128
https://doi.org/10.1016/j.knosys.2021.107128
https://doi.org/10.1613/jair.3384

1563International Journal of Machine Learning and Cybernetics (2023) 14:1543–1563

1 3

 39. Marom O, Rosman B (2018) Belief reward shaping in reinforce-
ment learning. In: Proceedings of The Thirty-Second AAAI Con-
ference on Artificial Intelligence, pp 3762–3769, https:// doi. org/
10. 1609/ aaai. v32i1. 11741

 40. Maron O, Lozano-Pérez T (1998) A framework for multiple-
instance learning. Adv Neural Info Process Syst 10:570–576

 41. Marthi B (2007) Automatic shaping and decomposition of reward
functions. In: Proceedings of the 24th International Conference on
Machine Learning, pp 601–608, https:// doi. org/ 10. 1145/ 12734 96.
12735 72

 42. Martinez C, Ramasso E, Perrin G et al (2020) Adaptive early clas-
sification of temporal sequences using deep reinforcement learn-
ing. Knowl-Based Syst 190(105):290. https:// doi. org/ 10. 1016/j.
knosys. 2019. 105290

 43. McCallum A (1996) Reinforcement learning with selective per-
ception and hidden state. Dissertation, University of Rochester

 44. McGovern A, Barto AG (2001) Automatic discovery of subgoals
in reinforcement learning using diverse density. In: Proceedings
of the Eighteenth International Conference on Machine Learning,
pp 361–368

 45. Menache I, Mannor S, Shimkin N (2002) Q-Cut—dynamic dis-
covery of sub -goals in reinforcement learning. In: 13th European
Conference on Machine Learning Proceedings, LNCS, vol 2430,
pp 295–306, https:// doi. org/ 10. 1007/3- 540- 36755-1_ 25

 46. Mnih V, Badia AP, Mirza M, et al (2016) Asynchronous meth-
ods for deep reinforcement learning. In: Proceedings of The 33rd
International Conference on Machine Learning, pp 1928–1937

 47. Ng AY, Harada D, Russell SJ (1999) Policy invariance under
reward transformations: Theory and application to reward shap-
ing. In: Proceedings of the Sixteenth International Conference on
Machine Learning, pp 278–287

 48. Ross S, Chaib-draa B, Pineau J (2007) Bayes-adaptive POMDPs.
Adv Neural Info Process Syst 20:1225–1232

 49. Ross S, Pineau J, Chaib-draa B et al (2011) A Bayesian approach
for learning and planning in partially observable Markov decision
processes. J Mach Learn Res 12(48):1729–1770

 50. Schulman J, Wolski F, Dhariwal P, et al (2017) Proximal policy
optimization algorithms. arXiv preprint arXiv: 1707. 06347

 51. Singh SP, Jaakkola T, Jordan MI (1994) Learning without state-
estimation in partially observable Markovian decision pro-
cesses. Mach Learn Proc 1994:284–292. https:// doi. org/ 10. 1016/
c2009-0- 27542-8

 52. Sutton RS (1988) Learning to predict by the methods of temporal
differences. Mach Learn 3:9–44. https:// doi. org/ 10. 1007/ BF001
15009

 53. Sutton RS, Barto AG (2018) Reinforcement learning: an introduc-
tion, 2nd edn. MIT Press

 54. Sutton RS, Precup D, Singh S (1999) Between MDPs and semi-
MDPs: a framework for temporal abstraction in reinforcement
learning. Artif Intell 112(1–2):181–211. https:// doi. org/ 10. 1016/
S0004- 3702(99) 00052-1

 55. Toro Icarte R, Waldie E, Klassen T et al (2019) Learning reward
machines for partially observable reinforcement learning. Adv
Neural Info Process Syst 32:15523–15534

 56. Vlassis N, Ghavamzadeh M, Mannor S, et al (2012) Bayesian
reinforcement learning. In: Reinforcement Learning: State-of-the-
Art. Springer Berlin Heidelberg, pp 359–386, https:// doi. org/ 10.
1007/ 978-3- 642- 27645-3_ 11

 57. Wang Y, He H, Tan X (2020) Truly proximal policy optimization.
In: Proceedings of The 35th Uncertainty in Artificial Intelligence
Conference, pp 113–122

 58. Watkins C (1989) Learning from delayed rewards. Dissertation,
Cambridge University

 59. Whitehead SD, Ballard DH (1991) Learning to perceive and act by
trial and error. Mach Learn 7(1):45–83. https:// doi. org/ 10. 1023/A:
10226 19109 594

 60. Wiewiora E (2003) Potential-based shaping and q-value initializa-
tion are equivalent. J Artif Intell Res 19:205–208. https:// doi. org/
10. 1613/ jair. 1190

 61. Wu Y, Mansimov E, Grosse RB et al (2017) Scalable trust-region
method for deep reinforcement learning using Kronecker-factored
approximation. Adv Neural Info Process Syst 30:5285–5294

 62. Zhang M, McCarthy Z, Finn C, et al (2016) Learning deep neural
network policies with continuous memory states. In: 2016 IEEE
International Conference on Robotics and Automation, pp 520–
527, https:// doi. org/ 10. 1109/ ICRA. 2016. 74871 74

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1609/aaai.v32i1.11741
https://doi.org/10.1609/aaai.v32i1.11741
https://doi.org/10.1145/1273496.1273572
https://doi.org/10.1145/1273496.1273572
https://doi.org/10.1016/j.knosys.2019.105290
https://doi.org/10.1016/j.knosys.2019.105290
https://doi.org/10.1007/3-540-36755-1_25
http://arxiv.org/abs/1707.06347
https://doi.org/10.1016/c2009-0-27542-8
https://doi.org/10.1016/c2009-0-27542-8
https://doi.org/10.1007/BF00115009
https://doi.org/10.1007/BF00115009
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1007/978-3-642-27645-3_11
https://doi.org/10.1007/978-3-642-27645-3_11
https://doi.org/10.1023/A:1022619109594
https://doi.org/10.1023/A:1022619109594
https://doi.org/10.1613/jair.1190
https://doi.org/10.1613/jair.1190
https://doi.org/10.1109/ICRA.2016.7487174

	Landmark based guidance for reinforcement learning agents under partial observability
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Problem models
	2.2 Reinforcement learning
	2.2.1 Eligibility traces

	2.3 Reinforcement learning with hidden states
	2.4 Diverse density
	2.5 Reward shaping

	3 Providing guiding rewards based on landmarks
	3.1 State estimation
	3.2 Landmarks
	3.3 Landmark based guidance
	3.4 Automatic landmark discovery
	3.5 Complexity analysis of the framework

	4 Experiments
	4.1 Problem domains
	4.2 Settings
	4.3 Learning performances
	4.4 Analysis on
	4.5 Analysis on guidance with subsets of landmarks

	5 Conclusion
	Acknowledgements
	References

