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a b s t r a c t

We numerically study the thermal transport in the classical inertial nearest-neighbor XY ferromagnet
in d = 1, 2, 3, the total number of sites being given by N = Ld, where L is the linear size of
the system. For the thermal conductance σ , we obtain σ (T , L) Lδ(d)

= A(d) e−B(d) [Lγ (d)T ]
η(d)

q(d) (with ezq ≡

[1+(1−q)z]1/(1−q)
; ez1 = ez; A(d) > 0; B(d) > 0; q(d) > 1; η(d) > 2; δ ≥ 0; γ (d) > 0), for all values of

Lγ (d)T for d = 1, 2, 3. In the L → ∞ limit, we have σ ∝ 1/Lρσ (d) with ρσ (d) = δ(d)+γ (d)η(d)/[q(d)−1].
The material conductivity is given by κ = σ Ld ∝ 1/Lρκ (d) (L → ∞) with ρκ (d) = ρσ (d) − d. Our
numerical results are consistent with ’conspiratory’ d-dependences of (q, η, δ, γ ), which comply with
normal thermal conductivity (Fourier law) for all dimensions.

© 2023 Published by Elsevier B.V.
1. Introduction

Fourier’s law [1] describes the heat diffusion rate through
macroscopic material in the direction of the flow. It accu-

ately illustrates linear thermal transport at the macro-scale, and
elies on the fundamental assumption of local thermal equilib-
ium. At the nano-scale, the experimental and theoretical studies
n heat conduction revealed the emergence of new behaviors
ue to interactions and geometry, giving rise to novel material
eatures representing unforeseen technical possibilities in non-
quilibrium phenomena. The ability to regulate the behavior of
eat flux in such cases is crucial for predicting, thus, control-
ing these systems’ behavior to acquire the desired functionality
nd design new technologies. Therefore, a strong understanding
f the interaction and geometrical effects on fundamental and
redictive thermal transport properties is important for future
echnologies.

The reason for the unexpected heat flow behavior regards
he interactions and is known as the energy-carrying mecha-
isms of the systems. For instance, the Fourier’s law is invalid
here the energy dissipation is related to the collisions such
s fluidized granular media in classical systems [2] or where

∗ Corresponding author.
E-mail address: hslima94@cbpf.br (H.S. Lima).
https://doi.org/10.1016/j.physd.2023.133681
0167-2789/© 2023 Published by Elsevier B.V.
phonons are dominantly involved as heat carriers, such as di-
electric and semiconductor materials, because the definition of
thermal equilibrium is ill-posed for phonon–phonon scattering
in quantum systems [3–7]. The effect of system size on low-
dimensional systems is also theoretically studied [8–13], and
the thermal conductivity of low-dimensional momentum con-
serving systems showed a system-size-dependent abnormality in
the thermodynamic limit [14–17], meanwhile, finite-size [18,19]
and momentum preserving systems have no abnormality [20,21].
However, real materials have a finite system size and three-
dimensional geometry. Therefore, it is still an essential and open
question to numerically reveal the topology effect where the
system size is finite, and the interactions do not break Fourier’s
law.

A classical and pragmatic XY model (or planar-rotator model),
in d-dimensional hypercubic lattices, is selected to evaluate the
validity of Fourier’s law. The XY model was studied in the 1-
dimensional case for low temperatures, and the change in con-
ductivity concerning temperature was satisfactorily fitted with
q-Gaussian distributions [22]. In this article, we studied the XY
model for d = 1, 2 and 3 dimensional cases, which allowed us to
evaluate the validity of the Fourier’s law. Furthermore, we better
characterized the conductivity change for a more extended range
of temperatures, resulting in the q-stretched exponential instead

of the q-Gaussian distribution.

https://doi.org/10.1016/j.physd.2023.133681
https://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2023.133681&domain=pdf
mailto:hslima94@cbpf.br
https://doi.org/10.1016/j.physd.2023.133681
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. Model

The Hamiltonian of the d-dimensional inertial ferromagnetic
Y model is given by

=
1
2

Ld∑
ℓ=1

p2ℓ +
1
2

∑
⟨ℓ,ℓ′⟩

[1 − cos(θℓ − θℓ′ )] , (1)

here ⟨ℓ, ℓ′
⟩ denotes nearest-neighboring rotors in the d-

imensional lattice [22–24]. Because we assume that the parti-
les have the same mass and the same moment of inertia, we
ave considered unit momenta of inertia and unit first-neighbor
oupling constant without loss of generality, and (pℓ, θℓ) are
conjugate canonical pairs. We use periodic boundary conditions
along (d−1) directions, and leaving open for 1-dimensional ends.
One of the ends being at a low temperature heat bath Tl and the
other one at high temperature Th (see Fig. 1 for the illustration
for d = 1 and 2).

The equation of motion for the one-dimensional model is
given as,

θ̇i = pi (i = 1, . . . , L)

ṗ1 = −γhp1 + F1 +

√
2γhThηh(t)

ṗi = Fi (i = 2, . . . , L − 1)

ṗL = −γlpL + FL +

√
2γlTlηl(t) ,

(2)

the force components being given by

F1 = − sin(θ1 − θ2) − sin(θ1)
Fi = − sin(θi − θi+1) − sin(θi − θi−1)
FL = − sin(θL) − sin(θL − θL−1),

(3)

where i = 2, . . . , L − 1, the friction coefficients are chosen
γl = γh = 1 (for numerical convenience), and ηl and ηh
represent the Gaussian white noise with zero mean value and
unit variance. Note that, in a relativistic context, these equations
must be modified.

2.1. Equations of motion for d > 1 lattices

2.1.1. 2-Dimensional lattice
The equations of motion for d = 2 are written as follows

θ̇i,j = pi,j ((i, j) = 1, . . . , L)

ṗ1,j = −γhp1,j + F1,j +
√
2γhThηj,h(t)

ṗi,j = Fi,j (i = 2, . . . , L − 1)

ṗL,j = −γlpL,j + FL,j +
√
2γlTlηj,l(t) ,

(4)

the force components being given by

F1,j = − sin(θ1,j − θ2,j) − sin(θ1,j)
− sin(θ1,j − θ1,j+1) − sin(θ1,j − θ1,j−1)

Fi,j = − sin(θi,j − θi+1,j) − sin(θi,j − θi−1,j)
− sin(θi,j − θi,j+1) − sin(θi,j − θi,j−1)

FL,j = − sin(θL,j) − sin(θL,j − θL−1,j)
− sin(θL,j − θL,j+1) − sin(θL,j − θL,j−1)

(5)

here θi,1 = θi,L+1 and θi,0 = θi,L. The friction coefficients γl and
h have been chosen γl = γh = 1, and all components of the
ectors ηj,l and ηj,h are random Gaussian distributions with zero
ean value and unit variance.
2

Fig. 1. The lattice structure of the present (A) d = 1 model (L sites) and (B)
= 2 model (L2 sites). Red shaded areas represent hot heat bath, Th , and blue
reas are cold heat bath, Tl . The heat flux direction is from the hot heat bath
o the cold one. To sensitively compute the heat flux and conductance, the bulk
elected from the 3rd component to L − 2 one in the flux direction to avoid
irect random noise from the heat baths. The bulk is illustrated for 1D-model
n (A), which is straightforwardly generalized for dimensions d = 2 and 3.

2.1.2. 3-Dimensional lattice
For d = 3, we have similarly :

θ̇i,j,k = pi,j,k ((i, j, k) = 1, . . . , L)

ṗ1,j,k = −γhp1,j,k + F1,j,k +

√
2γhThηj,k,h(t)

ṗi,j,k = Fi,j,k (i = 2, . . . , L − 1)

ṗL,j,k = −γlpL,j,k + FL,j,k +

√
2γlTlηj,k,l(t) ,

(6)

the force components being given by

F1,j,k = − sin(θ1,j,k − θ2,j,k) − sin(θ1,j,k)

− sin(θ1,j,k − θ1,j+1,k) − sin(θ1,j,k − θ1,j−1,k)

− sin(θ1,j,k − θ1,j,k+1) − sin(θ1,j,k − θ1,j,k−1)

Fi,j,k = − sin(θi,j,k − θi+1,j,k) − sin(θi,j,k − θi−1,j,k)

− sin(θi,j,k − θi,j+1,k) − sin(θi,j,k − θi,j−1,k)

− sin(θi,j,k − θi,j,k+1) − sin(θi,j,k − θi,j,k−1)

FL,j,k = − sin(θL,j,k) − sin(θL,j,k − θL−1,j,k)

− sin(θL,j,k − θL,j+1,k) − sin(θL,j,k − θL,j−1,k)

− sin(θL,j,k − θL,j,k+1) − sin(θL,j,k − θL,j,k−1)

(7)

where θi,1,k = θi,L+1,k, θi,0,k = θi,L,k, θi,j,1 = θi,j,L+1 and θi,j,0 = θi,j,L.
The friction coefficients γl and γh have been chosen γl = γh = 1,
and all components of the matrices ηj,k,l and ηj,k,h are random
Gaussian distributions with zero mean value and unit variance.

2.2. Arbitrary interaction topology

The equations of the motion of N interacting rotors for any
interaction topology can also be written in a compact form as
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θ̇i = pi

˙ i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−γhpi − sin(θi) −

N∑
j=1

Aij sin(θi − θj) +

√
2γhThηi(t) : i ∈ Rh

−

N∑
j=1

Aij sin(θi − θj) : i ∈ Rb

−γlpi − sin(θi) −

N∑
j=1

Aij sin(θi − θj) +

√
2γlTlµi(t) : i ∈ Rl

(8)

where A = [Aij] is the topological interaction matrix, and Rh, Rb
nd Rl are the sets of rotors in the high-temperature heat bath
h, the bulk and the low-temperature heat bath Tl, respectively.
he associated lattice topology matrices, A, we use in the current
ork for d = 1, 2, 3 can be rewritten as follows:

.2.1. 1d-model: Chain topology
The connectivity matrix, Achain is L × L matrix representing a

-dimensional chain system, defined as follows:

chain =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1

1 0 1 0
1 0

. . .

. . .
. . . 1

0 1 0 1
1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(9)

.2.2. 2d-model: Cylinder topology
The connectivity matrix, Acylinder, is L2×L2 matrix representing

2-dimensional lattice system with periodic boundary conditions
hrough one axis (cylinder shape), which is defined as follows:

cylinder =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aring I

I Aring I 0
I Aring

. . .

. . .
. . . I

0 I Aring I
I Aring

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(10)

here I is L×L identity matrix and Aring is L×L matrix as follows:

ring =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1

1 0 1 0
1 0

. . .

. . .
. . . 1

0 1 0 1
1 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

.2.3. 3d-model: Coupled-Tori topology
The connectivity matrix, Acoupled-tori, is L3 × L3 matrix repre-
enting 3-dimensional coupled tori system, which is defined as c

3

follows:

Acoupled-tori =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Atorus I2

I2 Atorus I2 0
I2 Atorus

. . .

. . .
. . . I2

0 I2 Atorus I2
I2 Atorus

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(12)

where I2 is L2 × L2 identity matrix and Atorus is L2 × L2 matrix as
follows:

Atorus =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Aring I I

I Aring I 0
I Aring

. . .

. . .
. . . I

0 I Aring I
I I Aring

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (13)

3. Methods

The dynamical evolution was conducted using the Velocity-
Verlet algorithm [25,26] with step size dt = 0.01; after discarding
a transient time, the average of the heat flux is computed for
4 × 108 time steps and 80 randomly initialized realizations. The
transient time is carefully selected for different system sizes
by considering the development of the conductivity curve for
varying temperature values. The system is assumed to be sta-
tionary when the conductivity curve reaches a steady state. For
simplicity, we set Th = T (1 + ∆) and Tl = T (1 − ∆) with
∆ = 0.125, where T is the average temperature . The macroscopic
conductivity κ is given by

κ =
J

(Th − Tl)/L
=

J
2∆T/L

(14)

here J = ⟨Jl⟩bulk is the time and space average of heat flux along
he bulk of the lattice in the stationary state, which connects the
icroscopic level (the equations of motion) with the macroscopic
ne (the average of the heat flux and thermal conductivity) via
he continuity equation. The bulk is defined as the entire system
xcluding the sides in high and low temperature heat baths
nd their first neighbors to avoid the direct effect of stochas-
ic dynamics on the flux calculation (see Fig. 1). Therefore, the
ossible minimum system length for any lattice topology Ld is

L = 5 to compute the flow as desired. Furthermore, to reduce the
direct effect of noise on the flux, one can ignore more than two
nearest neighbors to the heat baths from the calculation for large
systems. The time derivative of the Hamiltonian equation (1) can
be written as

dH
dt

= −
1
2

Ld∑
ℓ=1

(Jℓ − Jℓ′ ) (15)

where Jℓ = (pℓ + pℓ′ ) sin(θℓ − θℓ′ ) is the Lagrangian flux [19],
∈ {1, . . . , Ld} is a unique label for each site and ℓ′ is the

earest-neighbor of site-ℓ towards to hot reservoir. Therefore, Jℓ
s defined as the energy transfer per unit time, per transverse
d − 1)-dimensional ‘‘area’’ Ld−1. Note that the calculation of Jℓ
s independent of the lattice dimension d since the flow direction
s always in one direction from the high temperature end to the
old one. The statement for the flux direction is straightforward
or d = 1; however, the model for d > 1 has periodic boundary
onditions for interacting sides on (d − 1) dimensions. Then the
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Fig. 2. Thermal conductance as a function of temperature for d-dimensional lattice structures (d = 1, 2 and 3). Top: Conductance σ plotted for (a) dimension d = 1
or sizes L = 35, 50 and 100, (c) d = 2 with L × L = 10 × 10, 14 × 14 and 18 × 18 and (e) d = 3 with L × L × L = 6 × 6 × 6, 7 × 7 × 7 and 8 × 8 × 8. Bottom:
ollapse of σ values for all available system sizes in dimensions (b) d = 1, (d) d = 2 and (f) d = 3 using the relations for temperature T → TLγ and σ → σ Lδ ,

scaling parameters, δ and γ , are given on the associated sub-figures. Collapsed σ values are accurately fitted with σ (T , L) = A(1 − (1 − q)B(TLγ )η)1/(1−q) using the
optimal parameters in the legend for the fitting curves (dashed gray lines). The number of time steps used for all d case is 4× 108 and an average is taken over 80
experiments. The number of transients thrown away for the system to attain the stationary state is at least 2.6× 1011 for d = 1, 8.0× 1010 for d = 2 and 5.6× 1010

for d = 3.
2

t

d

4

flux is defined only through the axis where the boundaries are
ended with the heat baths in any lattice dimension d ∈ Z+.
The macroscopic conductivity κ only depends on the specific
material and its temperature. This is essentially the content of
Fourier’s 1822 law, where only the macroscopic phenomenon was
considered [1].

The (dimensionless) conductivity κ and the (dimensionless)
‘‘conductance’’ σ are, by definition, related through

κ ≡ σ Ld . (16)

As we shall later on verify, this specific definition of σ [22] does
not depend, for d = 1, on L in the T → 0 limit (see Fig. 2).

The asymptotic power-law relation between T and σ (or κ)
was numerically explored for the one-dimensional first-neighbor
planar-rotator model [23]. Furthermore, a collapse of the power-
law distributions was discovered through the following q-
Gaussian [22]

σ (T , L) = σ (0, L) e−Bq(L1/3T )2
q , (17)

where, for d = 1, σ (0, L) is independent from L, and (q, Bq) ≃

(1.55, 0.40), the q-exponential function being defined as ezq ≡

[1 + (1 − q)z]1/(1−q) (ez1 = ez). The q-Gaussian form (17) was
proposed in [22] because, under appropriate simple constraints,
it extremizes the nonadditive entropy

Sq ≡ k
1 −

∑
i p

q
i

q − 1
= k

∑
i

pi lnq
1
pi

= −k
∑

pqi lnq pi = −k
∑

pi ln2−q pi (18)

i i

4

where k is a positive constant such that for q = 1, k = kB (kB is
the Boltzmann constant), and lnq z ≡

z1−q
−1

1−q (ln1 z = ln z) [27–
9]. We straightforwardly verify that S1 = SBG ≡ −k

∑
i pi ln pi,

where BG stands for Boltzmann–Gibbs. We also verify that, for
two statistically independent systems X and Y (i.e., pX+Y

ij = pXi p
Y
j ),

Sq(X + Y )
k

=
Sq(X)
k

+
Sq(Y )
k

+ (1 − q)
Sq(X)
k

Sq(Y )
k

. (19)

This property exhibits the nonadditivity of the entropic func-
ional Sq for q ̸= 1. For q = 1 we recover the well known BG
additivity SBG(X + Y ) = SBG(X) + SBG(Y ), which follows Penrose’s
efinition of entropic additivity [30].

. Results

We revisit here the d = 1 results of [22] by exploring higher
values of T . It turns out that, while the q-Gaussian Ansatz was
good enough for the conductivity σ at the relatively low tem-
peratures considered in [22], the present numerics at a wider
range of T require a more general Ansatz, namely the stretched
q-exponential

y(x) = e−B|x|η
q (20)

with q ≥ 1, η > 0 and B > 0. The q-Gaussian form equation (17)
is recovered as the η = 2 particular limit of this more general
form. The form equation (20) introduces one more parameter,
namely η, which fits our numerical data very satisfactorily. Note
that we used the standard least squares method to find the best-
fitting curve for our numerical data. By so doing, we follow the
successful Ansatz proposed in [31] for neutron experiments with
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Fig. 3. σ ∝ 1/Lρσ (d) (L → ∞) and κ = σ Ld ∝ Ld−ρσ (d) . The dots correspond to
the present numerical results. The dashed line indicates the validity of Fourier’s
law, i.e., limL→∞ κ(T , L) is a finite T -dependent quantity. These results strongly
suggest that ρσ = d, hence ρκ = 0, for all values of d, possibly including
oninteger values as well.

tandard spin glasses. This is specifically shown in what follows
ere below.
All our results for d = 1, 2 and 3 collapse in the following

niversal form:

(T , L) Lδ(d)
= A(d) e−B(d)[T Lγ (d)

]
η(d)

q(d) , (21)

here (A, B, q, η, γ , δ) are fitting parameters (Fig. 2). Let us em-
phasize here that Fourier’s law corresponds to the L → ∞ limit
f this equation, hence, both σ and κ decay with power laws,
amely σ ∼ 1/Lρσ and κ ∼ 1/Lρκ , where ρσ ≡ δ + γ

η

q−1 and

κ ≡ ρσ − d as exhibited in Fig. 3. The validation of Fourier’s
aw is confirmed if ρκ = 0 or, equivalently, ρσ = d, making the
hermal conductivity independent of the lattice size.

. Conclusions

The specific statistical mechanics correctly describing a given
hysical many-body problem depends on various aspects, includ-
ng the range of the interactions and the boundary conditions.
he classical model that is being focused on here concerns short-
ange interactions. Therefore, it constitutes a typical situation
hat, at thermal equilibrium, is correctly approached within the
elebrated the BG theory (i.e., q = 1). This would naturally
e the case if we had Th = Tl. However, the present non-
quilibrium phenomenon relevantly modifies the thermostatis-
ics to be used. Indeed, the present numerical results strongly
ndicate q ̸= 1, thus suggesting that, for its proper discussion,
he use of nonadditive entropies becomes a must.

Consistently with the above, at the L → ∞ limit, a sort
f remarkable numerical ‘conspiracy’ of the values of (q, η, γ , δ)
hich, in the realm of first-principle Newtonian calculations,
ventually implies the validity (i.e., ρκ = 0), at all dimensions d
see Fig. 3), of the centennial Fourier macroscopic law for thermal
ransport. Interestingly enough, an important ingredient of this
umerical ‘conspiracy’ is the fact that seemingly δ = d− 1 for all
imensions d.
In view of the present results in the collapsed form, namely

d−1σ (T , L) ∝ e−B(d)[Lγ (d)T ]
η(d)

q(d) (B > 0, q > 1, η > 0, γ > 0), q-
aussians are replaced by q-stretched-exponentials [22,31] due
5

o the fact that a wider range of values of T is presently focused
n. We also intend to have in the future a closer look onto the
nfluence of long-range interactions [24], and check whether the
-stretched-exponential form is preserved.
Last but not least, we can emphasize here that there is no such

thing as physical systems which are q = 1 or q ̸= 1 ones, or
ven something else. We should always bear in mind that the sta-
istical mechanics which satisfactorily describes a given system
epends not only on the nature itself of the system but also on its
ircumstances. More precisely, the time scale which is focused on,
he size-scale which is appropriate, the precision degree which
as been adopted, the class of initial conditions which is applied,
nd finally the boundary conditions under which the system
s placed. Suppose the system is in thermal equilibrium (more
pecifically, as mentioned, with Th = Tl, i.e., d-dimensionally
eriodic boundary conditions, instead of the (d−1)-dimensionally
eriodic ones that have been used here). In that case, mild spatial
nd time energy fluctuations are compatible with ergodicity,
nd therefore the BG theory applies for the present short-range
nteracting classical system. The same system in a stationary-state
hich is permanently forced out of equilibrium, seemingly has
pace–time energy fluctuations whose nature is turbulent-like,
herefore driving the system out of usual ergodicity and out of
he BG theory, into q-statistics.
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