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Abstract

Objectives: Inflammation can be endogenously modulated
by the cholinergic anti-inflammatory pathway via calcium
(Ca*")-permeable alpha-7 nicotinic acetylcholine receptor
(a7nAChR) ion channel expressed in immune cells. a7nAChR
agonist choline and tryptophan metabolite kynurenic acid
(KYNA) produces immunomodulatory effects. This study
aimed to determine the effects of the choline and KYNA on
the lipopolysaccharide (LPS)-induced cyclooxygenase (COX)-
2 pathway.

Methods: In vitro inflammation model was produced via
LPS administration in macrophage cells. To determine the
effective concentrations, choline and KYNA were applied
with increasing concentrations and LPS-induced inflamma-
tory parameters investigated. The involvement of nAChR
mediated effects was investigated with the use of non-
selective nAChR and selective a7nAChR antagonists. The ef-
fects of choline and KYNA on COX-2 enzyme, PGE,, TNFa, NF-
kB and intracellular Ca** levels were analyzed.

Results: LPS-induced COX-2 expression, PGE, TNFa and
NF-kB levels were decreased with choline treatment while
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intracellular calcium levels via a7nAChRs increased. KYNA
also showed an anti-inflammatory effect on the same
parameters. Additionally, KYNA administration increased
the effectiveness of choline on these inflammatory
mediators.

Conclusions: Our data suggest a possible interaction
between the kynurenine pathway and the cholinergic sys-
tem on the modulation of LPS-induced inflammatory
response in macrophages.

Keywords: a7nAChR; choline; COX-2; intracellular calcium;
kynurenic acid; prostaglandin E,.

Introduction

Bacterial endotoxin lipopolysaccharide (LPS) initiates an
inflammatory response that produces pro-inflammatory
cytokines by activating a member of toll-like receptors,
TLR4, among “pathogen-associated molecular pattern
(PAMP) recognition receptors” expressed in immune cells
[1]. Although acting against infections, the uncontrolled
release of cytokines causes widespread inflammatory
response (as in the case of cytokine storm).

The cholinergic anti-inflammatory pathway (CAP)
can control inflammatory response endogenously. Alpha-7
nicotinic acetylcholine receptors (a7nAChRs) expressed on
immune cells, including macrophages, are highly permeable
to calcium (Ca*") and, upon activation, the increased intra-
cellular Ca®* levels trigger a variety of downstream signal-
ling cascades which provides interactions between
parasympathetic and the immune systems leading to activa-
tion of CAP [2, 3]. Evidence suggests that a7nAChR-activating
agents modulate LPS-induced cytokine release in different
in-vivo and in-vitro experimental models [4] and produce
anti-inflammatory effects [5, 6]. Choline, a precursor of
ACh, enhances cholinergic activity by directly interacting
with cholinergic receptors at high concentrations [7].
Several studies showed that activation of CAP by choline via
a7nAChRs reduces the levels of pro-inflammatory factors
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from endotoxin-induced mononuclear cells via nuclear
factor kappa B (NF-kB) pathway [8].

The majority of tryptophan, a precursor of serotonin
and kynurenic acid (KYNA), is metabolized via the kynur-
enine pathway while the remaining 5 % participates in the
serotonin/melatonin pathway [9]. Kynurenic acid produces
prophylactic effects in different neurodegenerative disor-
ders [10]. Moreover, KYNA has been shown to activate
G-protein-coupled receptor 35 (GPR35) to produce anti-
inflammatory and antioxidant actions [11, 12]. Regarding
the interaction with the cholinergic system, there is con-
troversy about the action of KYNA on a7nAChRs as KYNA
was reportedly defined as an a7nAChR antagonist earlier
[13]. However, its antagonistic property has never been
confirmed [14].

Prostaglandins (PGs) are produced from arachidonic
acid by two cyclooxygenase (COX) enzymes. The COX-1
enzyme is mainly associated with homeostasis, whereas
COX-2, the inducible isoform, is stimulated by cytokines in
inflamed tissues, eventually contributing PG synthesis in
inflammation [15]. We previously showed that choline
downregulates LPS-induced COX pathway along with PG
levels in central and peripheral tissues of endotoxemic rats
[16]. However, the interaction between endogenous choline
and KYNA on inflammatory pathways is unclear. Thus, this
study aimed to examine the role of choline and KYNA in the
LPS-induced COX-2 pathway via a7nAChR along with
changes in intracellular Ca** levels, pro-inflammatory
mediator TNFa and NF-kB.

Materials and methods
Cell culture

RAW 264.7 murine macrophage cells (ATCC TIB-71, Manassas, VA, USA)
at passage #5 were obtained and produced in DMEM (Sigma Aldrich
D6429) with FBS (10 %, Sigma Aldrich F7524) and penicillin/streptomycin
(Gibco, Carlsbad, 15140122) at 37 °C in 5 % CO,. Macrophages were seeded
in culture plates (48-well, 500,000 cells/well) and maintained in serum-
free culture media for 24 h before the drug administration.

Choline and KYNA treatments and cell viability assay

The effects of drug treatments on cell viability were examined by
applying increasing concentrations of choline and KYNA by MTT assay
(n=5, A015, ABP Biosciences, China). Firstly, increasing concentrations of
LPS (Escherichia coli, Sigma Aldrich L4130 0111: B4; in ug/mL 1-3 and 10)
were applied, and COX-2 expression and PGE, levels were analyzed to
establish the effective concentration [8]. Secondly, pretreatment of
increasing concentrations of choline chloride (Sigma-Aldrich C7017)
(in pM: 1-3-10-30) 30 min before LPS administration applied to estab-
lish the effective concentration of choline on LPS-induced parameters.
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Thirdly; a non-selective nAChR antagonist mecamylamine hydrochlo-
ride (MEC, 50 uM, Sigma Aldrich M9020) and a selective a7nAChR
antagonist methyllycaconitine citrate (MLA, 1 pM, Sigma Aldrich M168)
were applied 30min before choline and LPS to investigate the
involvement of nAChRs [17]. After that, cells were pretreated with
increasing concentrations of kynurenic acid (KYNA, Sigma-Aldrich
K3375, in uM: 1-3-10-30) 30 min before LPS administration to deter-
mine its effective concentration. Finally, in the fifth group, cells were
pretreated with increasing concentrations of KYNA (in pM: 1-3-10-30)
30 min before choline (10 pM) and LPS (1 ug/mL) administration to
analyze the effects of KYNA and choline treatment.

Reverse transcription polymerase chain reaction
(RT-PCR) analyses

Cells were harvested 24 h after the LPS administration. RNA was isolated
by an extraction kit (K0731, Thermo Scientific) and each sample was
converted into complementary DNA (cDNA) using a standardized kit
(K1622, Thermo Scientific). Samples of cDNA samples were amplified by
using RT-PCR device (Biorad CFX Connect) with forward and reverse
primers of COX-2 gene (n=5). Thermal cycle conditions were 95 °C for
10 min for polymerase activation/denaturation and 40 cycles (95 °C for
15, and 60 °C for 60 s for COX) for amplification, followed by a dena-
turation stage (65 °C for 5 s, then rising the temperature from 65 to 95 °C
with 0.5 °Cincrements-each for 5 s). Housekeeping gene S-actin was used
as an internal control for normalization (Supplementary Table 1), 272
method was employed for the relative quantification of mRNA expres-
sion [18].

Enzyme-linked immunosorbent assay (ELISA)

Levels of COX-2 product PGE, (EM1503, Wuhan Fine Biotech, China,
range: 31.25-2,000 pg/mL, sensitivity:<18.75 pg/mL, Intra-Assay: CV<8 %,
Inter-Assay: CV<10 %) and TNFa (BMS607-3 Invitrogen, Carlshad, CA,
range: 31.3-2,000 pg/mL, sensitivity: 3.7 pg/mL, Intra-Assay: CV<5.7 %,
Inter-Assay: CV<6.5%) released into media were determined by
Enzyme-Linked Immunosorbent Assay (ELISA) according to the stan-
dardized instructions (n=>5).

Western blot

To evaluate the effects of choline and KYNA on COX-2, cell lysates were
prepared with a lysis buffer and run on sodium dodecyl sulfate—poly-
acrylamide gel electrophoresis (SDS-PAGE). Proteins were then transferred
onto polyvinylidene fluoride (PVDF) membranes and immunoblotted with
primary antibodies of COX-2, NF-xB p65 and B-actin (Bioss, bs-0732R, Cell
Signaling 8242S and Bioss, bs-0061R, respectively). Goat anti-rabbit IgG
antibody-HRP conjugate (111-035-045, Jackson ImmunoResearch Labora-
tories) was used as a secondary antibody. Protein bands were visualized
(n=3) by using enhanced chemiluminescence (ECL) reagent (R-03025,
Advansta, USA).

Intracellular calcium (Ca*") analysis

Changes in intracellular Ca’* concentration (F340/380) Were monitored
via spectrofluorometric fura-2 chemistry (n=4, abl176766, Abcam,
Cambridge, UK) as described by the manufacturer.
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Statistical analysis

One-way analysis of variance analysis (ANOVA) with Tukey-Kramer
tests and Student’s t-test (GraphPad Prism 5, La Jolla, CA) were employed
for analyses. Data were expressed as mean + standard error of the mean
(S.E.M). Significance was accepted at p<0.05.

Results
Effects of choline and KYNA on cell viability

RAW 264.7 cells were incubated with increasing choline
and KYNA (1-3-10-30-100 uM) for 24 h, and results were
normalized against the control (n=5). The lack of cytotoxicity
confirmed the suitability of the concentration range for the
following experiments (Figure 1).

Effects of choline and KYNA on LPS-induced
COX-2 levels

COX-2 mRNA expressions concentration-dependently
increased in LPS-treated groups (p<0.001, n=5) comparable
to control (Figure 2A). The minimally effective LPS concen-
tration, which induced COX-2-mediated response (both
COX-2 and PGE,) was determined as 1 ug/mL (n=3, Figure 3).

Choline decreased LPS-induced COX-2 mRNA (p<0.001,
n=5, Figure 2B) and COX-2 protein concentration-
dependently (at 10 uM or higher concentration) compara-
ble to LPS control group (n=3, Figure 3). COX-2 mRNA and
protein expressions increased in MEC and MLA-treated
groups (p<0.05 and 0.01, respectively) comparable to choline-
treated group (n=5, Figure 2C and n=3, Figure 3). KYNA
decreased LPS-induced COX-2 mRNA in a concentration-
dependent manner (p<0.001, n=5, Figure 2D) which were also
confirmed by WB data (n=3, Figure 3). COX-2 mRNA
expression levels decreased significantly in KYNA- and
choline treated groups (p<0.01 in each, n=5) comparable to
choline-only treatment (Figure 2E). Equieffective concen-
trations of KYNA- and choline (10 uM) treatment decreased
COX-2 protein levels comparable to choline- and LPS-treated
groups (n=3, Figure 3).

Effects of choline and KYNA on LPS-induced
PGE, levels

PGE, levels concentration-dependently increased in LPS
treated groups (p<0.01, n=6, Supplementary Figure 1A)
which decreased significantly in choline-treated groups
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Figure 1: Effects of choline and KYNA on viability of RAW264.7 cells.
Shown are the effects of choline (A), KYNA (B) on cell viability assessed by
MTT assay, n=5. KYNA, kynurenic acid.

(p<0.001, n=6, Supplementary Figure 1B). LPS-induced PGE,
levels increased significantly in MEC- and MLA-treated
groups (p<0.001, n=6) comparable to choline-treated group
(Supplementary Figure 1C). LPS-induced PGE, levels
decreased significantly in the presence of KYNA (p<0.001,
n=6, Supplementary Figure 1D). KYNA appeared to be
maximally effective at 1uM concentration. PGE, levels
decreased significantly in KYNA and choline-treated groups
(p<0.001, n=6) comparable to choline- and LPS-treated
groups (Supplementary Figure 1E).
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Figure 2: Effects of choline and KYNA on LPS-induced COX-2 mRNA expressions. Shown are the effects of LPS (A), choline (B), nicotinic receptor
antagonists (C), KYNA (D), choline + KYNA (E) on COX-2 expressions. ***p<0.001, vs. control; 'p<0.01, "p<0.001 vs. LPS group; ¥p<0.05, #p<0.01 vs.
LPS + choline, one-way ANOVA with post-hoc Tukey-Kramer multiple comparison test or Student’s t-test, n=5. MEC, mecamylamine; MLA, methyl-
lycaconitine; KYNA, kynurenic acid.
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Figure 3: Effects of choline and KYNA on LPS-induced COX-2 protein
expressions. Shown are the effects of LPS, choline, nAChR antagonists,
MEC and MLA, KYNA, choline + KYNA on COX-2 protein expressions.
*#p<0.01, vs. control; 'p<0.05 vs. LPS group, one-way ANOVA with post-
hoc Tukey-Kramer multiple comparison test or Student’s t-test, n=3. MEC,
mecamylamine; MLA, methyllycaconitine; KYNA, kynurenic acid; CH,
choline.

Modulation of intracellular Ca** levels by
choline and KYNA

Intracellular Ca** levels increased significantly upon choline
treatment (p<0.01, n=4, Supplementary Figure 2B), decreased
in the presence of either MEC or MLA (p<0.05, n=4, Supple-
mentary Figure 2C) and by >3 uM KYNA (p<0.05 and 0.01, n=4,
Supplementary Figure 2E). Ca** levels were not altered
significantly by LPS or KYNA per se (n=4, Supplementary
Figures 2A and 5D).

Effects of choline and KYNA on LPS-elevated
TNFa and NF-kB protein levels

Choline (10 uM) treatment suppressed the LPS (1 ug/mL)-
elevated TNFa (p<0.001; n=5, Supplementary Figure 3) and
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NF-xB protein levels (n=3, Supplementary Figure 4) compa-
rable to LPS group. Selective nAChR antagonist MLA antag-
onized the choline’s inhibitory effect while the non-selective
antagonist (MEC) increased LPS-induced TNFa levels even
further (p<0.01 and 0.001, respectively, n=5) comparable to
choline and LPS treatment (Supplementary Figure 3). KYNA
(10 uyM) treatment showed a trend for decreased TNFa
without reaching statistical significance (Supplementary
Figure 3) and NF-xB levels (n=3, Supplementary Figure 4)
comparable to LPS group.

Treatment of KYNA- and choline (10 uM) additively
decreased the LPS-elevated levels of TNFa (p<0.001, n=5,
Supplementary Figure 3) and NF-kB (n=3, Supplementary
Figure 4) comparable to choline or KYNA treatment per se.

Discussion

The present study shows that choline significantly inhibited
LPS-induced COX-2 and PGE, levels by modulating the
cholinergic anti-inflammatory pathway (CAP) via a7nAChR
activation. Additionally, the effects of choline were potenti-
ated in the presence of a tryptophan metabolite, KYNA,
suggesting its possible interaction with cholinergic control of
LPS-induced response in macrophages.

The anti-inflammatory effects a7nAChR agonists have
been widely investigated in LPS-stimulated RAW264.7
cells in vitro [5, 8]. Earlier, significant decrease in pro-
inflammatory cytokine levels including TNF-q, interleukins
(IL-1B, -6, -18) and HMGB1 by a7nAChR-mediated activation of
CAP in LPS-activated macrophages suggested that a7nAChRs
would be identified as target receptors in the treatment of
inflammatory conditions [6]. Furthermore, COX-2 expression
in macrophages has been shown to be increased in response
to LPS [16, 19] besides elevated pro-inflammatory cytokine,
TNF-a, which also induces PLA, (phospholipase A2) and COX-2
activities [20, 21].

Earlier studies showed conflicting results regarding the
role of cholinergic agonists and COX-2 pathway in several
cell types. In one study, tacrine, an ACh esterase inhibitor,
has been shown to decrease LPS-induced COX-2 and PGE,
levels in RAW 264.7 cells [22], while in the other, nicotine, an
a7nAChR agonist, increased the same parameters in micro-
glial cells [23]. Choline and a non-selective COX inhibitor,
acetylsalicylic acid, showed potentiated anti-inflammatory
effects by decreasing PG and cytokine levels via a7nAChR
activation in an acute inflammation model in mice [24]. Our
previous study showed that intraperitoneal administrations
of CAP-acting agents, choline and CDP-choline, decreased
LPS-stimulated COX-2, PGE,, PGI,, TXA, along with the TNF-a
levels in the endotoxemic rats [16]. In the present study,



316 —— Baris et al.: Anti-inflammatory effects of choline and kynurenic acid

choline administration significantly reduced COX-2
expression and the PGE, levels via a7nAChR activation in
LPS-activated murine macrophage cells indicating that
a7nAChR-mediated activation of CAP has a major role in
choline’ effectiveness on COX pathway under inflammatory
conditions.

Changes in cytosolic Ca’*" levels may affect different
cellular sensors including Ca’**/calmodulin-dependent pro-
tein kinase II, protein kinase C (PKCs), and the p21ras/phos-
phatidylinositol 3-kinase (PI3K)/Akt pathways, which are
involved in NF-kB activity [25]. Activation of Caz*-permeable
a7nAChRs and the changes in downstream signalling path-
ways alters inflammatory response. Studies showed that
a7nAChR activation elevates intracellular Ca** concentra-
tion, which leads to secondary Ca®* release from intracel-
lular stores (Ca**-induced Ca** release, CICR) and activates
ERK/MAPK cascade in neurons and astrocytes [26]. Addi-
tionally, a7nAChR activation with AChEI donepezil mediated
elevation of the phosphorylation of Akt, effector of PI3K, has
been demonstrated under inflammatory conditions [27]. On
the other hand, Ca**-dependent protein phosphatase, calci-
neurin, dephosphorylates calcium-dependent transcription
factor, nuclear factor of activated T cells (NFAT)c1, then,
NFAT and the NFAT:calcineurin complex is rapidly imported
to the nucleus where it is transcriptionally active [28].
The level of activated NFAT can be altered by oscillating
concentrations of intracellular Ca** [29]. Dual roles of
a7nAChRs proposed by recent studies suggest that G pro-
teins might also be involved in inositol-triphosphate(IP3)-
induced Ca** release and metabotropic actions of this re-
ceptor in immune system cells; which may also account for
their immunomodulatory actions [30-32]. In addition, Ca**
elevation by a7nAChRs may be categorized to couple Ca** to
downregulation of NF-kB by activating Ca**-dependent
phosphatases within these restricted subsarcolemmal
areas similar to that we proposed earlier for vascular
smooth muscle cells [33]. Choline treatment downregulated
NF-«B and cytokine levels via a7nAChR [8]. Consistent with
previous data, our results showed that intracellular Ca**
concentration was significantly elevated by choline (>3 pM)
via a7nAChR which downregulated LPS-induced NF-kB and
COX-2 expressions along with that of PGE, and TNFa.

KYNA has been shown to activate G-protein-coupled
receptor 35 (GPR35) to produce anti-inflammatory actions
[11, 34]. Studies demonstrated that under inflammatory
conditions, KYNA decreases the levels of cytokines, including
TNF, interleukins and HMGBI in different inflammatory
cells [11, 35]. GPR35-mediated action of KYNA has been shown
to reduce LPS-induced TNF-a levels in mononuclear cells
obtained from human peripheral blood samples [11]. The
present study shows that KYNA decreased LPS-induced TNF-
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a levels leading to decreased COX-2 expression and PGE,
levels. However, co-administration of equieffective concen-
trations (10 uM) of KYNA showed only an additive interac-
tion on COX-2 inhibition as this combination did not yield
any further downregulation. Induction of PLA, and COX-2
activities by pro-inflammatory cytokines produced by mac-
rophages in response to an inflammatory stimulus may
counteract the inhibitory effects of choline and KYNA [20, 21].
Therefore, a possible involvement of GPR35 in the anti-
inflammatory effects of KYNA on COX pathway should also
be investigated further as a decrease in TNF-a levels might
mediate interaction between KYNA and choline on COX-2
pathway based on our current observations.

a7nAChR antagonistic property of KYNA has been
extensively debated as the data was not reproduced [13, 14].
In another study, KYNA did not antagonize ACh on nicotinic
receptors [14]; however, it upregulated central nAChR
expression [13]. Consistent with previous findings, our data
showed that elevated intracellular Ca** followed by choline-
induced a7nAChRs activation decreased partly in the pres-
ence of KYNA (>10 uM), suggesting an interaction between
KYNA and choline on a7nAChR only at higher concentra-
tions. The reversal of the antagonistic effect of KYNA on
choline-induced Ca**-elevation at the highest KYNA con-
centration (100 uM) might be due to the mobilization of Ca**
from internal Ca®* stores or to an additional Ca** influx from
extracellular space.

Limitations

This study suggests a possible interaction between two
endogenous molecules, KYNA and choline, on the
LPS-induced COX pathway via a7nAChRs. However, the na-
ture of the interaction for KYNA and choline on inflammatory
response and the role of GPR35 in the anti-inflammatory ef-
fects of KYNA was not investigated in the present study.

Conclusions

Inflammation comprises complex reactions which require
treatment strategies that produce comprehensive effects. This
study demonstrates that choline exerts its anti-inflammatory
effect on COX pathway via activating a7nAChRs and down-
regulating NF-xB signaling pathway in LPS-induced inflam-
mation model in murine macrophage cell lines. Additionally,
KYNA affects choline’s actions on COX pathway, suggesting a
possible interaction of kynurenine and cholinergic pathways
under inflammatory conditions. In addition to choline’s
effects on different systems affected by inflammatory
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response via nicotinic receptors, its downregulating effects on
COX-2 pathway also increase its potential value as a treatment
option. Moreover, this study demonstrated for the first time
that the choline supplements may enhance anti-inflammatory
effects of endogenous KYNA, possibly affecting neuro-
inflammatory disorders. Further studies investigating the
possible interaction between choline and KYNA are required
for the development of novel anti-inflammatory strategies.
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