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ABSTRACT

MANUFACTURING & RE-MANUFACTURING INVENTORY MODELS WITH
IMPRECISE AMOUNT OF DEFECTIVE ITEMS

Yiice, Gizem

Ph.D. Program in Applied Mathematics and Statistics

Advisor: Prof. Dr. Gozde Yazgi TUTUNCU

May, 2023

In this thesis, we developed an integrated inventory model in supply chain
environment for a single product with complete backordering, partial backordering
or complete lost sales. The production process is not totally reliable. Therefore, the
system generates an imprecise number of defective items within the production cycle.
Moreover, only a random proportion of these are reworkable. To see their effect in
the model, four case combinations are studied, where both defective rate and rework
rate are deterministic and stochastic. As one of the main extensions, two investment
functions are considered to improve the supplier’s production process quality and
reworking power. Additionally, customer time sensitivity term is investigated for

partial backordering. The goal was to minimise the total combined annual costs of
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the integrated system. The model defines the optimal reorder point and order quantity
based on the expected total annual cost, and a solution algorithm was presented
for solving the model. With a numerical example, it was shown that the proposed
integrated model provides reduced cost in comparison to a model that considers
only buyer’s decision under stochastic demand with partial backordering. That is,
cooperation between buyer and supplier is beneficial when there is stochastic defective
and rework rate, time-sensitive customer behaviour, and investment in production
and rework. In addition, with further sensitivity analysis one can see that supplier
investment decreases the production rate of defective items and increases rework

power. Therefore, smaller lot sizes are produced.

Keywords: inventory optimisation, supply chain optimisation, reliability, optimisation

of inventory.



OZET

KUSURLU URUN MIKTARININ BELIRSIZ OLDUGU DURUMLAR ICIN
IMALAT VE YENIDEN IMALAT ENVANTER MODELLERI

Yiice, Gizem

Uygulamali Matematik ve Istatistik Doktora Programi

Tez Danigmant: Prof. Dr. Gozde Yazgi TUTUNCU

May, 2023

Bu tezde, yok satma, gecikmis iiretim ve kismi gecikmis iiretim ile tek bir
iiriin igin tedarik zinciri ortaminda entegre envanter modeli gelistirilmistir. Uretim
stireci tamamen giivenilir olmadigindan, dongii sirasinda belirsiz sayida hatali {iriin
tretilmektedir. Ayrica, bunlarin sadece rastgele bir kismi yeniden iglenebilir. Modelin
hassasiyetini gormek ic¢in, hem hatali oranm1 hem de yeniden isleme orani belirli ve
rastgele olan dort durum kombinasyonu incelenmistir. Ana katkilardan biri olarak,
tedarikcinin iiretim siireci kalitesini ve yeniden isleme giiclinii iyilestirmek icin iki
yatirrm fonksiyonu dikkate alinmustir. Ayrica, kismi gecikmis liretim i¢in miisteri
zaman hassasiyeti terimi incelenmistir. Amag, entegre sistem i¢in toplam yillik

maliyetlerini en aza indirmektir. Optimal siparis miktar1 ve yeniden siparis noktasi
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beklenen toplam yillik maliyetten belirlenmis ve model ¢oziimii i¢in bir ¢oziim
algoritmasi 6nerilmigtir. Bir sayisal 6rnek ile, 6nerilen yeni entegre modelin, stokastik
hatali ve yeniden isleme orani, zaman hassasiyetli miisteri davranig1 ve iiretim ve
yeniden isleme yatirimi durumlarinda alici ve tedarik¢i arasindaki isbirligine fayda
sagladig1 gosterilmistir. Ek olarak, daha fazla hassasiyet analizi ile tedarikcinin yatirim
yapmasl, hatali 6gelerin tiretim verimlilik oranini azalttigi ve yeniden isleme giiciinii

arttirdigi gozlemlenmistir. Bu nedenle, daha kiigiik lotlar tiretilmesi Onerilir.

Anahtar Kelimeler: envanter optimizasyonu, tedarik zinciri optimizasyonu, giivenilir-

lik.
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CHAPTER 1: INTRODUCTION

Inventory is one of the key factors that must be overseen in the supply chain. It
incorporates an immense range of materials that is being produced, sold, stored during
business. In general, planning, storing, and moving of inventory have its own financial
value. One of the main aims for each firm is to keep the level of inventory in the
supply chain at certain level such that it lowers significant costs yet protects a company
(customer) from stock-out. For the case of managing inventories, one needs to decide
how much it should be ordered for replenishment and when the inventory should be
replenished. The main goal is to acquire the lowest possible total cost.

Mathematically, inventory model is a tool for determining the optimum level
of inventories that business should provide in a production process, keep up with
frequency of ordering, make a decision on quantity of goods to be stored, tracking flow
of supply for continuous service to customers without any delay in delivery. There are
certain types of costs for inventory such as purchase cost, backorder cost, holding cost
and ordering cost. Ordering cost is total expenses of processing an order, no matter how
much the order quantity is. Holding cost defines the sum of the costs from insurance,
security, taxes, warehousing and other related expenses. Backorder cost emerges when
there is a stock-out case under the demand of an item and purchase cost is the actual
price for the items.

The traditional inventory models, including the economic order quantity (EOQ),
the economic production lot size, and EOQ with planned shortages, operate under the
assumption that demand and other variables are constant and predictable. In other
words, these models assume that the demand for a product is known with certainty and
does not vary over time, and other parameters such as setup costs, holding costs, and
production rates remain unchanged. The deterministic inventory model known as the
economic order quantity (EOQ) is considered one of the most fundamental models. In
this case, it is assumed that there is one product and the demand is knowné&constant
during the year. In general, there are two costs; the cost of ordering and receiving the

product, and holding cost as having the product in inventory for a year. Here, unit cost



does not play a role, so price is same for any quantity. Also, shortages are not allowed.
The objective is minimising the total costs of inventory that is summation of annual
holding cost and annual ordering cost.

To create more accurate and practical inventory models, we can consider various
factors such as demand, lead time, products, capacity, and service level. For example,
we can model demand as constant and predictable, or as a random variable with a
probability distribution that reflects the uncertainty of future demand. We can also
consider lead time as either zero, fixed, or stochastic to account for the variability in
the time it takes to receive goods after placing an order. Moreover, we can model
inventory systems for single or multiple products, taking into account different lead
times, demand rates, and costs. Additionally, we can consider capacity constraints,
such as order or inventory limits, or assume no capacity constraints in the model.
Lastly, we can incorporate service levels into the inventory model, such as meeting
all demand (no shortages) or allowing for shortages to occur. These different factors
can create various inventory models that provide more accurate and practical solutions
to inventory management. Additionally, in real life, production process might have
imperfect quality of items, therefore it is unrealistic to assume that every item is
produced with good quality. In contrast to classical economic order/production
quantity (EOQ/EPQ) models, real-world situations may involve defective items due
to imperfections in the production process, spoilage during transit, or other factors. It
is essential to consider the impact of defective items on customer satisfaction levels
as their impact cannot be ignored. In addition, the presence of a random number of
defective items can reduce the original order size of the buyer (customer), leading to
the possibility of a stock-out situation. There are three possible responses for stock-
out case; (partial or complete) backordering, substitution, and (partial or complete)
lost sales. Backordering is a separate order which is requested by customer and is
prepared as soon as the product is available by supplier. Substitution happens when
there is another product that is acceptable instead of the one is not available and lost
sales occur when customer invalidates the order.

Defective items can be collected and remanufactured, then considered as perfect

items, or disposed as scrap, or priced and sold as lower quality products. It is possible



to combine those steps or examine them individually with corresponding system costs.
Also, it is highly possible to repair only proportional amount of defective items, so
in general, the idea of working on defective items requires separate and attentive
consideration. It is important to decide when to switch the system from production
to remanufacturing since managing both at the same time may not be possible.

In production, it is inevitable to have defective items therefore process quality
becomes more of an issue. It can help to supplier for producing smaller batches
with perfect quality items. Investment in process quality can have significant effect on
reduction the number of defective items produced and its corresponding costs. Some
examples of investments could be purchasing new equipment, enhancing machine
maintenance, increasing repair frequency, and providing training to employees.
Additionally when there is reworking process, we can include investing on machinery
& workers to have higher efficiency. Since production and reworking are two separate
operations, handling them can require different qualities.

When shortage happens for various reasons, first problem is customer behaviour.
That 1is, if they are willing to wait before receiving their items so shortage will be
backordered or not. One of the main questions is about the length of waiting period,
because some customers may agree to wait for short period of time. Hence, backlogged
demand is strongly dependent to customer time-sensitivity.

In this work, we aim to decide which inventory model would be the best under
stochastic demand and imperfect production when shortage is allowed. It is essential
to find a possible expression for case such as lost sales, backorder or mixture
of them in the mathematical model with reasonable assumptions. How we can
manage the production phase when there is randomness in defective items and when
remanufacturing should be started are another step of this study. We will propose
the most favourable strategies under the fact that we can repair only proportional
amount of defective items and two different form of investments. Considering various
possible scenarios such as demand variability, defective production, reworking and
time-sensitive customers, optimal lot size and reorder point with total expected cost
will be examined in detail.

The rest of the thesis is organised as follows. The next section is devoted to the



literature review. Independent model papers for EOQ and EPQ with integrated model
papers are discussed. In Chapter 2, general models and basic definitions are introduced.
Related to the study, continuous review models are discussed with different conditions.
The first contribution of this work is proposed in Chapter 3. Independent models
for buyer and supplier are built. Starting to build buyer’s models for deterministic
and stochastic demand, we also analyse lost-sales, partial backlogging and complete
backlogging. For supplier, two parameters are studied in the model. Their stochasticity
and its effect on the cost function is proposed. Second section is devoted to building
the integrated model and different distribution cases for two parameters. In Chapter 4,
a example is presented with sensitivity analysis for buyer’s model and case figures for
supplier’s model. Then real life scenarios is shown. Then overall analysis is done to

compare the optimal values.

1.1. Motivation and Objective

Modelling of an inventory system is one of the most important tasks in supplier-
buyer chain and more realistic models enable us to interpret future of the production
systems. While there are common models for certain scenarios, considering additional
assumptions can make them more realistic. Of course, for the beginning oversimplified
assumptions such as all products have perfect quality or no shortage make the model
easier to deal with mathematically but may not match up with the real life problems.
That is why modification of existing models -with random defective proportionality,
remanufacturing, shortage, or stochastic demand consideration- is fundamental. With
different review process, adding those creates more reasonable models. Here, the
essential point is to achieve sufficient tractability and acceptable realism in the
formulated models.

The purpose of this thesis is building an integrated inventory model for single buyer
single supplier chain with stochastic demand, defective items and reworking when
shortage at the buyer is completely lost/partially backordered/completely backordered.
Although supplier reworks the defective items, buyer may still receive imperfect
items (not necessarily defective) and sends those to the outlet shops. While the

parameter values and initial conditions determine the result for deterministic models,
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with stochasticity there is inherent randomness which have same parameter values and
initial conditions with different results. Therefore, assuming stochastic demand on
buyer’s side, can help modelling the supply-chain flow more pragmatically. Moreover,
due to the nature of stochastic demand, imperfect products or simply not handling
inventory effectively, shortage may occur. When it happens, sales can be completely or
partially backordered or lost. Among those cases, the most realistic one is considered
as partial backordering since some of the customers are time-sensitive. That is, part of
those are willing to wait during shortage while others are not. To model that behaviour,
it is necessary to include a parameter for length of shortage, lead-time demand, reorder
point and duration for customer waiting period. Linear function for the decline in
backordering may be good start however considering exponential structure makes it
more realistic. Also, having backorder parameter depends on reorder level gives a
robust insight for analysis of their relationship.

At the end, three real life scenarios will be studied for continuous review inventory
models with defective items. First scenario includes proportional defective items as
random variable with full reworking rate. After remanufacturing all imperfect items
are considered as brand new. Shortage is partially backordered. The second one is
about random defective items and not every defective item can be reworkable. This
time reworking process on them is also not perfect, that is, after remanufacturing
there will be brand new and lower quality items. Demand is random variable and
shortage is partially backordered. In the third scenario, defective rate is deterministic
with random reworking rate and after remanufacturing, items will be all in lower
quality. With all those scenarios, our goal is to minimise the total expected cost of
the system, therefore we will compare integrated model with vendor’s independent
cost and buyer’s independent cost.

In the existing literature, the metrics we just mentioned such as stochastic demand,
rework on defective items, investment and customer behaviour parameters are not
considered in one study simultaneously. Despite being neglected too often, customer
behaviour is specifically substantial since it is one of the core pieces for supply-
chain. Moreover, considerable efficiency on production and reworking requires

rational investment to the process. Besides its financial value, less scrap at the end



of production/rework also means being more environmentally-kind. Therefore, in this
study we aimed to fill the gap in the existing literature and to extent it by examining
an integrated, single-supplier, single-buyer inventory model with stochastic demand,
investment for production and rework quality, and time-sensitive customer behaviour.
Overall, the goal is bridging all the existing models with addition of these components
and finding the most updated inventory model. Table 1 summarises a comparison
between the proposed model and several other relevant studies conducted in the past
ten years. It is clear that realistic case combinations of key parameters has not been

proposed.
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1.2. Literature Review

To understand the flow in supply chain management, there have been various mod-
els proposed in the literature with different perspective and requirements. Economic
Order Quantity (EOQ) has been one substantial tool so the buyer knows when to
order to keep the inventory at certain level for reduced overall cost. On the other
hand, in production, Economic Production Quantity (EPQ) models are used to regulate
production so supplier can meet the continuous demand. EOQ and EPQ models share
several assumptions, such as the nature of the demand, item quality and inspection.
When supplier and buyer are linked, joint optimisation of the production and inventory

can be more efficient in many ways.

1.2.1. Papers for EOQ models

EOQ models have been studied with numerous assumptions in the literature for
the last decade (Pentico and Drake (2011)). As a start point, one of the assumptions
that basic EOQ model has is receiving perfect quality items. However, production is
not always perfect, that is, reliability of the production process and quality of received
items are connected. As a result, it is possible that the manufacturing process will
degrade and produce defective or low-quality products. Porteus (1986) introduced a
simple EOQ model with defective items. He showed that there is a strong relationship
between quality and lot size, therefore investment in process was studied. With the
quality investment, it is possible to reduce the out-of-control probability and setup
cost. Another point in his paper is explicit optimal solutions could be derived thanks
to logarithmic form of investment cost function. Salameh and Jaber (2000) studied a
model with random proportion of imperfect quality items -not necessarily defective-
when EOQ/EPQ formulae is used. They considered the lower quality items to be
sold at the end of screening process as single batch and there is error-free complete
screening process. Their study showed that with increased amount of imperfect items,
lot size also increased. Among the works that modified or extended the paper of
Salameh and Jaber (2000), Rezaei (2005) considered shortage problem with complete

back-ordering due to defective items in the classical EOQ/EPQ model. Yu et al.



(2005) extended their model with deterioration and partial back-ordering. Since not
all customers are willing to wait during shortage, they define lost sales with impatient
customers. Additionally, a lower bound on the back-ordered ratio is obtained for
concave profit function. Wee et al. (2007) examined the model in Salameh and Jaber
(2000) for the case of shortage with complete back-ordering in each cycle. Eroglu and
Ozdemir (2007) proposed an inventory model that considers a random defective rate
and allows for shortages, which are completely back-ordered.. They also assumed a
screening process to separate good and defective items. Cheikhrouhou et al. (2018)
presented an inventory model with sample inspection that detects defective lots. The
goal is to minimise the system costs with optimal sample size and optimal order
size. The defective items are assumed as random variable which may follow standard
uniform distribution. After receiving shipment, sampling process starts. Then a quality
inspection is applied to n items in each lot. The inspection is also imperfect so there
are Type-I and Type-II errors. The demand rate is assumed constant and uniform,
and shortage is not allowed. There are two cases discussed; any defective item
is promptly returned to the supplier and they are kept till next shipment. Finally,
they showed that first case was more profitable. Sharifi et al. (2015) examined a
model that expands upon previous literature on the economic order quantity (EOQ)
model with imperfect items and partial backordering, incorporating screening errors.
The aim of this model is to optimise profits by determining the optimal order size
and the maximum number of backordered units. The few assumptions are; there is
instantaneous replenishment, fixed proportion of defective items, and items of inferior
quality are offered at a discounted price and there are Type-I and Type-II errors
according to misclassification. The proposed model is solved analytically and they
showed that it is concave. Therefore there are unique values of optimal order size
and the maximum number of backorder units which maximise the expected profit.
Annadurai and Uthayakumar (2010) presented a continuous review inventory model
with defective items and partial backorders. The authors initially made the assumption
that lead time demand follows a normal distribution. However, they later relaxed this
assumption by utilising a minmax distribution-free approach. The decision variables

are order quantity, setup cost, reorder point and length of lead time for an inventory



model. The main few assumptions are; the number of defective items follows a
binomial distribution, any defective items are identified and returned to the supplier
during the next shipment after complete and error-free inspection. The objective is
to analyse the effect of defective items with a mixture of backorders by reducing the
setup cost to minimise the order quantity, reorder point, and lead time. Skouri et al.
(2014) studied an economic order quantity model with backorders when a fraction of
all supply is imperfect. They considered "all or none" inspection policy, so if the batch
is below quality standards it is assumed as defective then rejected. Two-dimensional
constrained optimisation problem was presented and solved. Corresponding optimal
cost, optimal planned order quantity and backorder values are obtained in closed
form. Oztiirk et al. (2015) investigated the EOQ model for defective items and rework
option. Here, demand, rework rate and inspection rate is constant and known with
both the rework rate and inspection rate are higher than the demand. Full inspection
is processed and defective items include scrap, imperfect quality and reworkable items
of proportions. Shortages are allowed and backordered. Reworking starts right after
the inspection process and results in scrap and good items. The model is solved
analytically and the optimum order quantity and the optimum backorder quantity.
Rezaei (2016) defined an inspection plans for imperfect items by using the economic
order quantity model with three different possible scenarios; full inspection, rejection,
and no inspection. These plans are determined by the outcome of sampling inspection
plans that is the imperfect rate may be either below the minimum limit, or between
upper and lower limit, or above a maximum limit. The goal is to formulate the total
revenue and EOQ model of those three cases. In this study, Hsu and Hsu (2013a)
proposed a model when there is inspection errors, sales returns, imperfect quality,
and shortage backordering. The aim is to maximise the total profit per cycle. The
main assumptions are; constant annual demand rate, imperfect production process,
imperfect screening process at buyer’s side, shortage. They studied on two models
as the one with if shortages are allowed and the one with no shortages. The closed
form solution is obtained for the optimal order size, the optimal order point and the

maximum backorder units.
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1.2.2.  Papers for EPQ models

In production scheduling, EPQ model with defective items have been studied
with several different assumptions for the last decade Pentico and Drake (2011). In
a very early study, Rosenblatt and Lee (1986) examined an economic production
quantity model with imperfect production where defective rate is defined as linear,
exponential, and multi-state as a function of setup cost. When reworking is possible,
utilisation of production process can be more effective. Hayek and Salameh (2001)
studied an EPQ model with the effect of constant rework rate on random defective
proportion where shortage is allowed. Reworking process is assumed as perfect and
defective rate equals to rework rate. They obtained the optimal production quantity
and maximum backorder level allowed in a production cycle that minimise the total
cost. Chiu (2003)’s research highlighted the influence of reworking defective items
on the EPQ model with backordering. In this study, not all defective items are
restorable, therefore scrap items are considered with its cost. The renewal reward
theorem is utilised to examine cycle length when it is variable. Optimal lot size
and maximal backorder level are obtained to minimise the total cost under allowed
backordering. Tsai (2009) presented an economic production quantity model for
imperfect production process with addition of learning effect to determine the optimal
production quantity. This effect helps to produce a single item in n batches at an
increasing rate. A random variable is used to represent the percentage of defective
items and the optimal lot size is derived from solution procedure. Revisiting Chiu’s
paper, Taleizadeh et al. (2015) considered an EPQ inventory model with rework
process through multiple shipments policy with addition of pricing. The aim is to
determine the selling price, lot size, and number of shipments that will yield maximum
profit. The demand is assumed price-sensitive, and the production is imperfect so
there are defective items with certain ratio. The reworking process is also assumed
as imperfect that means there is scrapping rate. By showing that the average benefit
function is concave, they proved the existence of an replenishment lot size, an optimal
price, and number of shipments. Hsu and Hsu (2016) developed a model for optimal

production lot size and backorder quantity with defective items. Several scenarios such
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as randomness on defective rate and drawn time of defective items from inventory are
discussed. Al-Salamah (2019) examined economic production quantity models with
imperfect production process and flexible rework rate and two types of rework process
as asynchronous and synchronous. The synchronous rework provides immediate
reworking on defective items while asynchronous keeps them until the completion
of manufacturing of lot. With the flexible rework rate, there are two possible cases;
either the rework rate is higher than the demand rate, or the demand rate is higher
than the rework rate. The goal is to minimise the associated cost for each model
and obtain the optimal lot sizes and backorders for different assumptions for rework
rate and rework process. It is assumed that the demand rate and production rate are
constant and known, and the proportion of defective items is also known. There
is screening process which classifies items as either defective or nondefective, the
rework process is perfect, and backorders are allowed. Example analysis shows that
lot size and backorder are sensitive to different assumptions for rework rate and rework
process. Chiu et al. (2011), combined reworking process and multiple shipments for
an imperfect economic manufacturing quantity (EMQ) model. The classical EMQ
model assumes that all items produced are of perfect quality and there is continuous
issuing policy. On the other hand, in real vendor-supplier environment, production
of random defective items is inevitable. The integrated EMQ model here, includes
a random defective rate during production process, production setup cost, reworking
with scrap rate, fixed and variable transportation costs, and inventory holding cost
for manufacturer and customer. In addition, the reworking of defective items takes
place after the regular production process in each cycle. Once the quality of the entire
lot has been verified at the end of the rework process, the items can be shipped to
customers. With mathematical modelling of problem, they formulated cost functions
and optimal replenishment lot size. Moreover, due to success of repairing process,
specific cases are shown for cost functions. Chiu et al. (2008) studied on an expediting
decisive rule about either rework the repairable defective items or not in economic
production quantity model with proportional repairing success and no backlogging
as assumptions. EPQ model is used to conclude the optimal production size when

when the company produce the items internally instead of obtaining from a supplier.
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According to the decision, reworking the defective items starts right after regular
process ends. It is possible that the rework process is imperfect, which can result in
some defective items failing to be reworked and becoming scrap items. The proposed
mathematical system is used for the exact critical point of repair cost and assistance
for determining whether it is beneficial to rework the imperfect items. Krishnamoorthi
and Panayappan (2012) presented an imperfect quality inventory model and defect
sales returns which determines an optimal production lot size by using the economic
production quantity model. The minimisation of the total cost derived with optimal
production lot size for a single type of product. The assumption is that any defective
items produced can be reworked, and the outcome of the reworking process is either a
good item or a scrap item. Shortages are backordered and met by the next possible
replenishment. In this study, inspection cost is ignored and sensitivity analysis is
observed for various system performance measures. As a different perspective, Ritha
and Priya (2016) examined the costs of transporting materials, the energy used in the
production process, and the cost of waste generated by defective items during the
rework process. They used the extended form of the EPQ model with defective items
that are reworkable. The model is created with assumptions such as no shortages are
allowed, only non-defective items are used to meet the demand during production,
and reworking of defective items occurs at a fixed rate. As a side note, screening
occurs after the production period has ended and after identifying the defective items
are reworked before they are returned to the inventory. Mathematical formulas for
calculating the ideal order quantities and overall profit per unit time are presented
Khanna et al. (2017) studied a finite production model that observes the imperfect
environment including the concept of inspection errors and imperfect rework process.
The definition of problem is finding the optimum production quantity by maximising
the difference between total revenues and costs per unit time. The cost components
are production cost, inspection cost, Type-1&II error costs, inventory holding cost,
rework cost, and disposal cost. Demand rate is assumed as constant, uniform and
deterministic and reworking starts after the end of production process. Additionally, a
portion of the defective items is sent for rework, while the remaining defective items

are disposed of at a lower cost. Unlike their most recent paper Khanna et al. (2017),

13



AIP (2016) studied on the problem about finding the optimal production and backorder
quantity. In addition to the assumptions made in their previous study, this study allows
for shortages, which are entirely backlogged. Moreover, they considered a shortage
cost in their model this time.

Sarkar et al. (2014) developed inventory models based on three different distribu-
tion density functions: beta, triangular, and uniform, all of which incorporate a variable
defective production rate. Demand and production rate are assumed constant, no
shortage is allowed, there is full screening process with negligible cost, the proportion
of defective products is random variable and it follows three distribution density
functions. After rework process, all items are assumed to have perfect quality, as a
backorder cost linear and fixed backorder cost is considered. They derived closed-
form of solutions of the models. As a goal, it was shown that minimum cost was
obtained from triangular distribution. Mukhopadhyay and Goswami (2014) developed
an imperfect EPQ inventory model with rework and learning process. The goal is
to reduce the total production inventory cost. A constant demand rate is assumed,
and the production process is considered to be imperfect. With screening process
there are perfect, imperfect, and defective are obtained, and then defective items are
reworked, defective items are sold at a discounted price, while perfect items are sold
at full price. The fraction of non-reworkable imperfect items are uniformly distributed
random variables. There is learning process from experience that concludes less setup
time and cost, and no shortages are allowed. They specified the setup cost as a function
of production run length for the case of learning. Total cost is shown as convex function

so there is optimal value of production lot size.

1.2.3.  Papers for integrated models

The supply-chain coordination for inventory management is one of the many
tasks in competitive markets. As one of the early studies, Goyal (1977) studied the
integrated optimisation problem for single buyer and single vendor where vendor’s
production rate is infinite. Later, Goyal and Nebebe (2000) examined the economic
production model and shipment policy for supplier-buyer chain to obtain minimum

total joint cost. Wu and Ouyang (2003) derived an algebraic approach to single vendor
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single buyer inventory system with shortage instead of using differential calculus.
they showed that optimal integrated cost is lower when there is shortage. Hsu and
Hsu (2013b) conducted research on a model that integrates production inventory
with imperfect quality items and planned backorders, involving a single vendor and
a single buyer. The aim was to minimise the total joint annual cost. The main
assumptions are; constant and known demand rate, percentage of defective items has a
probability density function, error-free screening process at buyer’s side, and complete
backordering. The integrated model for expected annual joint cost is derived and the
optimal solution is provided. Since there are independent models given, example
showed joint model has reduced cost compared to individual models. In this paper,
Sarkar et al. (2017) developed an integrated inventory model with defective items and
two-stage inspection. First-stage inspection is for detection of defective items and
second-stage is about ensuring reworked products have perfect quality. The goal is
to reduce the total system cost. There is single vendor and single buyer for single
item with production of defective items. The model follows make-to-order policy,
fixed setup cost is assumed in the model, and no shortage is allowed. The variable
transportation cost is used in a form of power function in the model and it is solved
analytically. Gutgutia and Jha (2018) studied an integrated inventory model with single
vendor single buyer supply chain using service level constraint (SLC) approach that
aims to model the stock-out case in an inventory system. Also, lead time reduction and
random defective items are also considered for minimising the total expected cost of
the system. They allowed partial backordering and lost sales for stock-out situation.
They derived closed form expressions for the optimal order quantity, safety factor,
and shipment frequency. Hsien-Jen (2013) studied an integrated single supplier-buyer
inventory system with stochastic defective items under continuous reviewing. The
study considers the lead time demand to be known only for the first two moments and
unknown distribution afterwards. Therefore, a minmax distribution-free approach is
employed to determine the optimal order quantity, reorder point, lead time, and number
of lots delivered. The primary objective of this approach is to minimise the expected
total system cost. They considered the possibility of crashing the components of lead

time one at a time at a certain cost. They also assumed that defective items are random
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variables that follow a binomial distribution, and that these items are returned to the
vendor upon delivery of the next lot. Furthermore, they allowed for shortages and
partial backorders in their model. Here, both vendor and buyer’s expected average
total cost per unit time are calculated individually then jointly. The parameters
that have effects on decision making process are also studied and as a conclusion,
integrated model was decided more beneficial for both sides. Kang et al. (2018)
studied an inventory model by including safety stock with imperfect production. The
mathematical model is optimised for lot size, planned backorder quantity, and a safety
stock for minimising the average cost of an imperfect production setup. The few main
assumptions are; it is a single stage manufacturing setup for a single item, production
is not perfect so there are imperfect items which are reworked, there are additional
units produced as safety stock with their associated cost, shortages are allowed and
backordered, demand and production rates are known and there is inspection process
but not for reworked products as they are considered good without inspection process.
In this study, Lopes (2018) constructed an integrated model for production system
with imperfect inspection that is fractional of items. Additionally, there are defective
items from inspection process which are reworked with a fixed cost. The goal is
to minimise the total expected cost per item. As one of decision variables, there is
buffer stock for a demand when preventive maintenance is completed. The few main
assumptions are; defective items are detected by inspection process, since inspection is
imperfect there are Type-I and Type-II errors. The model assumes that the probability
of defective items is lower when the system is in-control than when it is out-of-control.
Additionally, the producer offers a free minimal repair warranty. The holistic approach
to a joint optimisation model is given to see the relationship between different elements
and system productivity and decrease in cost. Moshrefi and Jokar (2012) developed an
integrated inventory model that has stock-dependent demand, shortages, and a function
for customer impatience about backorder. The objective is to minimise the overall cost
by finding the optimal inventory cycles that balance inventory, ordering, and shortage
costs for both the supplier and the customer in the supply chain. The main assumptions
in this paper are the function for the shortage period that shows fewer customers are

willing to wait until replenishment, and another function for none-shortage periods
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that shows the demand rate is dependent on inventory volume at the retailer’s shelf
area. It was shown that there is unique local minimum for the integrated model for a
given number of shipments. Yu and Hsu (2017) investigated an integrated model for
single-supplier and single-buyer with immediate return of imperfect items under the
unequal sized shipments. Here, the aim is to maximise the annual integrated profit by
optimal number of shipments and optimal sizes of the shipments in a cycle. The first
shipment is small size and the rest of them are equal sized. The demand rate is assumed
as constant and uniform, and for reduced holding cost the production quantities during
the time intervals between successive shipments is taken greater than the size of each
shipment. Lots have a proportional defective units and their percentage is uniformly
distributed. There is an inspection process with a fixed rate at buyer’s side and defective
items are sent to vendor immediately, and shortages are not allowed. They showed
the benefits of this model compared to the integrated model under equal sized policy.
Dey (2019) studied an integrated single vendor-buyer production inventory model with
fuzziness and randomness. Also, production process quality control is defined and
included in the model. The goal is to find the minimum of total cost of integrated
system by obtaining optimal values of the safety stock, number of deliveries, the
order quantity and the probability of ’out-of-control’ of the production system.The
study assumes that the annual demand is a discrete fuzzy random variable and that
the buyer follows a continuous review inventory policy. The lead time demand is also
considered a fuzzy random variable, and shortages are allowed and fully backlogged.
Furthermore, imperfect items have a warranty cost associated with them. The vendor
has made an investment in the production process quality, which is described as a
logarithmic function. The objective of this study is to determine the optimal inventory
policy that minimises costs while considering these various factors. The model has
both fuzziness and stochastic uncertainty, yet it demonstrates the same trends as in
deterministic and stochastic models that have similar assumptions. In his later study,
Taleizadeh (2018) conducted research on an economic production quantity model that
involves a single machine and multiple products, and incorporates a rework process
and preventive maintenance. The objective was to minimise the total cost of the

production system by determining the best time for preventive maintenance, optimal
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production and backordered quantities for each product, and cycle length. The model
is also including partial backordering and service level constraint. The developed model
considers preventive maintenance to occur when the inventory level is positive or
negative. To account for this, two separate models are formulated and solved. Then

with those results, the new model is solved by classical optimisation method.
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CHAPTER 2: PRELIMINARIES AND GENERAL MODELS

2.1. Elements of Inventory Models

To determine profitability, there are several factors that need to be considered,
including the cost of ordering or producing a product, the cost of holding inventory
such as storage space, insurance, protection, taxes, etc., and the cost of shortages
which includes delayed revenue and storage space. Additionally, revenue, discount
rates, salvage costs for selling a product at a lower price, and lead time, which is
the amount of time between placing an order and receiving it into inventory, are all
important factors.

There are two types of inventory models; deterministic and stochastic due to
randomness of demand. Deterministic models assume that demand is constant and
known over a specific time period, while stochastic models consider demand as a
random variable with a known probability distribution. Moreover, there is another type
of classification related with the inventory review; continuous and periodic. When the
stock level drops below the certain reorder point, continuous model requires to place
an order. On the other hand, in periodic review, discrete intervals are more important

to decide an order placement rather than reorder point.

2.2. Notation list for mathematical models in the literature

The parameters mentioned here are only for continuous review models in the

literature. For our study, new notation list will be given.

x = demand per unit time,

D = expected total demand per unit time,
P = production in units per unit time,

Q = order quantity per cycle,

T = order cycle,

19



r = reorder point,

K = order setup cost,

¢ = unit ordering cost,

hp = unit holding cost per unit time,

S = level of inventory when Q units is added under planned shortage,
W, = mean demand per unit time,

L =lead time,

w = additional cost related with storage space,
P’ = finite replenishment rate per unit time,

M = maximum stock level,

k = total production time per cycle,

m = unit selling price of good items,

Z = proportion for satisfied demand,

N = net revenue,

g = scrap value of an unsold unit,

¢4 = unit direct cost,

csn, = cost for shortage per unit short per unit of time short,
¢y, = reorder cost,

Cyqr = Variable cost,

c¢s = unit disposal cost for scrap items,

¢, = unit reworking cost,

c. = delivery cost per shipment,
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q = proportion of defective items in a lot,

65 = proportion of reworkable items in defective items,
2.3.  Deterministic Continuous Review Inventory Models

Usually, inventory levels decrease as products are sold or consumed, and then they
are restocked or replenished by purchasing new batches of products. The basic model
showing this is economic order quantity (EOQ) model. It assumes known and constant
demand and lead time, instantaneous receipt of product without any quantity discounts,
order cost and holding cost only, and no stock-out. The goal is to decide when and
how much to order so the total of those costs is minimised. Continuous reviewing is
assumed, so when the inventory drops low enough then it can be replenished. Figure
1 shows the pattern for inventory levels for demand rate D, and order quantity Q to

replenish inventory, specifically for this model the inventory level falls to 0.

Inventory Level
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Figure 1. Inventory level in terms of time for EOQ model.

Another important term here is reorder point which shows the next order placement
is required. The time for consecutive replenishment of inventory is called cycle. Now,

the total cost per unit time 7C can be formulated with follows:

The cost of ordering or producing per cycle = K + cQ.

(0+0) _ 0
2 2

The average inventory level during a cycle is units with corresponding

holding cost % per unit time.
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The cycle length is %, therefore holding cost per cycle is hgg.

2
The total cost per cycle = K+ cQ + hg—g and the total cost per unit time is

2
K+cQ+™8 KD h
TC:#:——FDC—FB—Q (1)
D Q 2

Once we take the first derivative of TC with respect to Q to find Q* that minimises 7C;

dTC KD hg

90 Q2+2 0 ()
and
._ [%D
Q" = s (3)

that is the EOQ formula. The cycle time, let t* is

2 2K
==\ @)

From above, we can see how Q* and T* change according to K, hp, and D.
2.3.1. The EOQ Model with Planned Shortages

This model deviates from the basic EOQ model by considering planned shortages
as an allowed occurrence. Customers are aware of the product unavailability and
are willing to wait for the product to become available again. Consequently, their
backorders are fulfilled as soon as the new order arrives in the inventory. In this case,
the pattern is shown in Figure 2.

As a difference from the previous figure, here we have negative values for the
number of units of the backordered product where S shows inventory level after batch
of Q units is added and (Q — S) is shortage in inventory before a batch of Q units is
added.

This time, the total cost per unit time is given as follows:

The cost of ordering or producing per cycle = K + cQ.
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Figure 2. Inventory level in terms of time for EOQ model with planned shortages

allowed.

For each cycle, the inventory level is positive only for time. The average

inventory level during a cycle is (SJZFO) == % units with corresponding cost %S per

unit time where /p is holding cost.

hpS?
The cycle length is 3 S therefore holding cost per cycle is Tk

For shortage time, we have (QD S)

(0+0-5) _ (0-5)
2 2

. The average amount of shortages during this
csh(Q—S)
2

time is units, and the cost is per unit time. So, shortage

cost per cycle is
csn(Q=8) Q-5 _cn(Q-S5)’

2 D 2D )

The total cost per cycle = K +cQ + =2 hBS + ”’(Q 5)° and the total cost per unit

time is
K+CQ+ hBS +Cs11(Q S) KD+D +hBSZ +Csh(Q_S)2 (6)
% - Q 2Q 2Q

Once more, we take the partial derivative of 7C with respect to Q and S to find Q* and

S* then set them equal to zero for minimising 7'C;

dTC _ hgS cu(Q—S)
s 0o 0

=0. (7)
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and

OTC KD hg$*  cu(Q—S) ca(Q—95)* = 0. 8)

90 @ 227 ¢ 202

Solutions to these equations give

o — 2KD Csh 7 0" = 2KD cg, + hp . )
hg '\ csn+hp hg ¢

The optimal cycle time, T* is

T* — Q_ _ 2K(csh+h3). (10)
D Dhpcyy,

2.4. Stochastic Continuous Review Inventory Model

For the uncertainty about demand rate, stochastic inventory models are more
meaningful. With stochastic demand case shown in Figure 3, the inventory level is
controlled continuously so new order is placed immediately when inventory level falls
below the reorder point. This system is based on two fundamental components; reorder
point and order quantity. For this model, a single product is considered, inventory level
is always known because of the nature of continuous review, and choosing reorder
point and order quantity are the only goals. Another important assumption is, if there
is stock-out case, the demand is backlogged. Also for that case, there is certain shortage
cost (cyp,) for each unit backordered per unit time until the backorder is filled.

This model is pretty similar to the EOQ model with planned shortages, with only
one different assumption; instead of having unknown demand, that model assumes
known demand rate. Next thing to consider is deciding the order quantity (Q) and the
reorder point (7). Because of the close relationship with the EOQ model with planed

shortages, choosing Q is straightforward as follows;

0=

\/ZKHL(Csh+hB) an

Csth
where L denotes the average demand per unit time. This formula is an approximation

for the optimal order quantity since there is no formula for the exact value of it. To
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Figure 3. Stochastic demand with reorder point.

choose the reorder point (r), we need to know desired service level which can be
defined in several ways such as stock-out probability, number of stock-out, average
delay etc. Once the probability distribution is known, it is possible to find safety stock

that is the expected inventory level just before the order quantity is received.

2.5. Models for continuous review method

Various quantitative models have been developed for inventory control with the
goal of determining an order size that minimizes costs. In this section, we discuss
several models for continuous review method from Waters (2008) as shown with Table
2. We start with the basic model, Economic Order Quantity (EOQ) and then remove
its assumptions to develop new models.

To analyse all models, we can start with EOQ model. Its assumptions and cost
components are given here again just to have consistency in parameters notation set

from Waters (2008). The main assumptions for EOQ model is;
e known, continuous and constant demand,
¢ fixed and known costs,

* no shortages,
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Table 2. Models with continuous review system for known and uncertain demand from

Waters (2008).

Continuous Review Method

DEMAND

Known Uncertain

Economic Order Quantity (EOQ) Models for marginal analysis with
discrete demand

Models with finite lead time Models with discrete demand and
shortages

Models with variable cost Models with uncertain demand and
constant lead time

Models with finite replenishment rate Models with constant demand and
uncertain lead time

Models with backorders Models with uncertain demand and lead
time

Models with lost sales

Models with constraints on storage

space

Models with constraints on average

investment in stocks

Models with discrete, variable demand

e zero lead time,

* single item is considered,

* each order has single delivery,

* instantaneous replenishment.

Addition to these assumptions, there are four costs variables in the analysis; unit
cost (¢), reorder cost (c,,), holding cost (hp), and shortage cost (cy,) with three other
variables; order quantity (Q), cycle time (7"), and demand (x).

To find total cost per unit time, we add these components and substitute Q = xT,
since the amount of entering stock in cycle should be equal to the amount of leaving

stock in cycle. Therefore, we have the total cost as

o h
Xoro | 150 (12)

TC = xc+ 0 >
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To obtain the minimum cost for inventory control, the equation above is differenti-

ated with respect to Q as follows:

d(TC) CroX hp

= 0 13
0 2 T2 (13)

The optimal order size (economic order quantity), Q*:

2
0" = Zrox (14)
B
with optimal cycle length, 7*:

2cro
T =Q"/x= 15
Q' /x=1[ 10 (15)

Another important term is optimal cost per unit time, 7C* for Q* which can be

obtained from last two terms of 7'C as variable cost (¢,q;):

CroX  hpQ

Cvar = ? ) (16)

Here, if we substitute Q" into the equation for optimal value, c;,,,

Coar =/ 2Crohpx 17)

The optimal total cost per unit time in inventory control consists of both variable and
fixed costs, that is

TC* =cx+c,, (18)
2.5.1. Models with finite lead time

With EOQ model, we made the assumption that there is no lead time involved.
This means that as soon as an order is placed, the items are immediately available for
use and do not need to wait for any delivery or processing time. In order to make
the inventory models more realistic, a non-zero lead time can be considered, which
indicates that there is a finite amount of wait time for materials to become available for

use. To plan stock successfully, we need to place an order so that existing stock is at
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certain level and we need delivery. At this point, it is beneficial to define a reorder level
to show that it is necessary to place an order for inventory. Here, what we have already
as stock needs to be sufficient till next order arrives. In a situation where the demand
is known as well as the lead time, the required amount of inventory that is necessary
for the lead time is a known value obtained by multiplying the constant demand rate

with the constant lead time. Therefore, the reorder level is

reorder level = lead time x demand per unit time

r=LD (19)

This shows the level for stock to order a batch of size Q*.

2.5.2.  Models with variable costs

In previous two models, we assumed that costs are constant and known, but actually
cost may vary according to quantity ordered, such as lower prices for larger orders. In
general, there is more than one discounted price with larger orders so the bigger order
means the less cost for buyer. Our objective is to find the order quantity that minimises
the total cost per unit time, which will be the optimal value of Q. From Figure 4, it can
be seen that continuous line shows the valid total cost for each order quantity, that is, if
we place an order between 0 and Q; the unit cost will be ¢y and something between Q;
an O, gives lower cost as ¢, and so on. The broken line shows invalid cost for given
order quantity.

In general, we have

2Cr0X

Q" = s (20)

The holding cost can be defined by proportion of the unit cost as /, and there is a
minimum point of the cost curve Q7 for each unit cost ¢;. That is, Q] shows the lowest

point on the total cost curve for ¢y, and so on. Hence, we can show Q7 as follows:

N 2Cr0X
Of =4/ 21
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Total cost

F 3

»

0 Q1 Q2 Q3 Q4 Order quantity
Figure 4. The valid cost curve for five unit costs.

The objective is to find the optimal order quantity that minimises the total cost per
unit time for each unit cost ¢;. There are two types of minimum values: valid and
invalid. A valid minimum is within the range of valid order quantities for a particular

unit cost, whereas an invalid minimum is not.
2.5.3. Models with finite replenishment rate

When the production rate for goods exceeds the demand rate, the inventory level
increases at a certain rate, and the goods begin to accumulate. At some point, there
should be decision made to stop production and switch facilities to making other items.
This model is concerned with finding the optimal batch size which determines the best
time for transferring goods between two different locations. The assumptions for EOQ
model are still valid for this model except instantaneous replenishment rate, this time
replenishment rate is P and demand rate is D, with inventory increasing as P — D. The
concept of finding the optimal batch size is similar to the EOQ model, but in this case,
the reorder cost may be associated with the cost of setting up production. Therefore

the total cost becomes
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CmD hBQ (P —D)
0 2 P

TC=cD+ (22)

From here, we differentiate 7C with respect to Q and set it equal to zero to get an

N 2¢,0D P
— - 2
0 \/ s \VP_D (23)

optimal order size;

Also, we have cycle length as

2¢0 P
T" =/ \/ —— 24
hgD\V P—D @4

and variable cost

) P—D
Char =V 2erhsD\ | —5= (25)

so that the total cost is

TC* =cD+c},, (26)

and finally the production time

k" =Q*/P (27)
2.5.4. Models for planned shortages with backorders

The previous models are based on no shortages and all demand is met. This is
beneficial when shortages are expensive but under some conditions, planned shortages
are also reasonable. In general, if the cost of holding inventory (i.e. storing,
maintaining, and financing it) exceeds the profit, then a planned shortage may be a
better option. Additionally, when unit cost is high or holding the stocks is too expensive
or lead time from suppliers are reasonably short and customers are accepting to wait,
then back-ordering is another option.

Defining the shortage cost, denoted as cyy,, is a crucial first step. The shortage cost
is a time-dependent cost that represents the cost per unit time of not meeting demand.
Again, to find the optimal order size, we will follow the standard approach.

In the initial phase of the cycle, the entire demand is fulfilled using the available
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inventory, which implies that the quantity received by the customer is Q — S. This is
equivalent to xt;. During the second phase of the cycle, all demand goes unfulfilled,
resulting in backorders. Hence, the shortage, denoted as S, is equal to the unmet
demand of xt;. Therefore, if we add these and substitute #; and #, and divide it by

t, we will have the total cost per unit time as

Cr0x+ hB(Q_S) CshS2
0 20 20

In this equation, we have two variables, Q and S, so we differentiate with respect

TC =cx+

(28)

to both and set the results to zero to get optimal order size and optimal amount to be

back-ordered;

% h
0" = \/ 5 29)
BCsh
. 2¢,0hpx
T = —— 30)
csi(hB + csn)
Also, we know
x S*
= u = time for fulfilled demand with available inventory (31)
X

S*
tp = — = time for backordered demand 32)

X
T =1t +1t, =cycle time (33)

2.5.5. Models with lost sales

Lost sales occur when a customer refuses to wait for back-ordered items to become
available and its analysis for minimising the cost is not equal to maximising revenue
anymore. The goal of this model is to maximise the profit. There is new parameter for
this as selling price per unit, m. In this model, it is necessary to consider the cost of
lost sales as two parts: the loss of profit, which can be represented as a notional cost of

(m — ¢) per unit of sales lost, and the direct cost, c,.
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The profit N is

Crotal = cost for lost sales per unit (with loss of profits)

=cqg+m—c (34)

and

Z = fulfilled demand proportion

0
= 35
T (35
Therefore, we have
N=2Z o haly (36)
=Z |XCotq] — —— — —— —dx
total Q )
To get maximum profit, we differentiate the above equation:
2
0" = Zrox (37)
B

The optimal value for N is

N =Z [xcml . 2cmh3x] (38)

Since the goal is to maximise the revenue, Np, we use the following argument:
o If xciota1 > /2xcrohp, then Z should be 1. It means there are no shortages.

o If xCrorar < /2xCrohp, then Z should be the smallest possible, so Z = 0. It means

no inventory item.

o If xCora1 = V/2xCrohp, then the revenue is zero regardless of Z.
2.5.6. Models with constraints on storage space

When applying the EOQ model to all items in an inventory, it is possible for the
total stock to exceed the available capacity. Therefore, it is necessary to find a way to

decrease the inventory for allowable range. To reduce the inventory, we can introduce
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a new cost term for used space. The original holding cost, denoted as /g, and an new

cost for storage area, denoted as w. The total holding cost for each unit becomes:
Total holding cost = hp + ws; 39)

where s; represents the space required by a single item. Now we have

2Cr0,Xi
p= | — 2 40
0= [ (40)

Since it is possible to have different value for each item, there is subscripts for all

variables.
2.5.7. Models with constraints on average investment in stock

Consider an organisation that keeps n items. It also has total average investment
upper limit u’. The objective is to minimise the total variable cost subject to the

constraint that the average investment does not exceed the upper limit. That is:

n

c .. Cro;Xi hBiQi

Minimise : ¢y = Z _— 4 )=
i=1 Qi 2

Ci

2Qi 2M/

(41)

n
Subject to : Z
i=1

To solve this problem, we can include Lagrange multiplier, then differentiate the
objective. The optimal order size will be

. 2u'h
Q=0 5

——— 42
lCZ?:lVi* (2

2.5.8. Models with discrete and variable demand

For the case of known and small size demands, it is possible to use deterministic
model to find an optimal ordering policy. If the order quantity is smaller than the ideal
number, it would result in frequent orders and a high reorder cost. Conversely, if the

order quantity is greater than the ideal number, it would result in high stock levels and

33



a high holding cost. The aim is to determine the optimal period number for single
ordered demand. We set a single order that would suffice for the next N periods. For

discrete demand in period i is represented with x;. We have:

N
M=Yx (43)
i=1

where M is highest actual stock level. The variable cost ¢, for inventory for N

periods is the total of reorder and holding cost is

N
Cro  hp Zi:l Xi

Cvary = W 3 (44)
To find the optimal value and minimal cost, we replace N + 1 for N:
Cro hB ZN:il Xi
Cvaryy) = N+1 + 12 (45)
And the idea is to get the point where Vyy 1 is larger than ¢,/ :
N+1
Cro_ hp Y xi S G h YN | x; 46)
N+1 2 N 2
or
2cro
N(N+ 1xyi1 > - “47)
B

An effective application of this model requires foreknowledge of the demand
pattern, enabling the development of ordering policy that can be utilised in each

subsequent inventory cycle.
2.5.9. Models with uncertain demand

In this particular model, we are looking at an inventory item that follows a Normal
distribution, with an average demand of u, per unit of time and a standard deviation of
Ox. Additionally, the item has a fixed lead time of L. The mean lead time demand is
calculated by multiplying the average demand by the lead time, resulting in Lu,. The
variance of the lead time demand is found by multiplying the variance of the demand

distribution by the lead time squared, giving 6>L. Finally, the standard deviation of the
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lead time demand can be obtained by multiplying the standard deviation of the demand
distribution by the lead time, resulting in o,L. The service level shows the possibility
for the reorder level is above the lead time demand, therefore the Normal distribution

can be used to have

safety stock = Z x standard deviation of lead time

=Zo/L

Z defines standard deviation counts for specified service level. Because of safety stock,

reorder level is higher as:

reorder level = lead time demand + safety stock

=Lu,+ ZoV/L

2.5.10. Models with uncertain lead time

This model describes the model with constant demand and uncertain lead time
with normal distribution. Safety stock is added to the reorder level and service level
is defined in terms of the probability that lead time demand is greater than the reorder

level:

Service level = Pr(Lu, <r)

=Pr(L<r/u)

2.5.11. Models with uncertain demand and uncertain lead time

Assuming that both the demand and lead time for an item are Normally distributed,
we can use standard calculations. The average demand for the item is denoted by p,,
while its standard deviation is denoted by o,. On the other hand, the lead time has
an average denoted by ;7 and a standard deviation of o7r. The average lead time
demand is the product of the average lead time and the average demand, i.e., UrT Uy.

The standard deviation of lead time demand can be calculated using the formula
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CHAPTER 3: METHODOLOGY

3.1. The Inventory Models

In this section, we propose two new models namely, continuous review inventory

model for buyer and continuous review inventory model for supplier.

3.1.1. Notations and assumptions

The following notations and assumptions are used for these models. Some of
the notations are from the list previously defined for continuous models given in the
literature, and the rest is regulated accordingly.

Decision variables
QOp = the order quantity for the buyer,
Qv = the production lot size for the supplier,
r = reorder point for the buyer

Parameters

Stochastic parameters;
x = the demand during lead time at the buyer’s side,

g = the indicator of production reliability where 0 < g < 1 that shows the

proportion of defective items in produced order lot,

65 = the proportion of reworkable items in defective items,
Deterministic parameters;

D = the annual expected demand at the buyer’s side,

P = the production rate of the supplier,

p = the proportion of imperfect items in an order lot received by the buyer where

O<p<l,
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0, = the proportion of scrap items in defective items,

6, = the proportion of imperfect items in defective items,
0, = the proportion of lower quality items after reworking,
Kp = the constant ordering cost per order for the buyer,
Ky = the setup cost of production system for the supplier,

F = the transportation cost per delivery that includes the delivery from the

supplier to buyer,

hp = the holding cost per unit per year for the buyer,

hy = the holding cost per unit per year for the supplier,

hy, = the holding cost per lower quality unit per year for the supplier,
d = the fixed backordering cost per unit at the buyer,

¢p = the backordering cost per unit per unit of time at the buyer,

c; = the lost sales cost per unit per unit of time at the buyer,

¢ = the unit variable cost,

cp = the cost of production and inspection per unit for the supplier,
¢, = the rework cost of a defective item,

N = the fractional opportunity cost of capital per cycle,

o = backlogging intensity that denotes the maximum proportion of backlogged

demand, (0 < a < 1),

b = backlogging resistance for the shape of time-sensitive customer function,

(b>0),
L = the length of lead time for the buyer,

T = the expected waiting time for customer during shortage,
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T = time interval between successive shipments of Q units,
E(-) = mathematical expectation,

* = the superscript representing optimal value.

Assumptions:

There is single supplier and single buyer for one product.

The buyer follows continuous review inventory policy and places an order when

on-hand inventory reaches the reorder point r.
The production rate is known, constant and continuous.

Each lot Qy, contains proportion of defective units g and Qp contains proportion

of imperfect units p.

For defective items, there is rework process. After reworking, items have perfect
quality. For the study, it is assumed that rework process is perfect. Moreover, for

the three cases, reworking results lower quality items.

There is 100% and error-free inspection process at the supplier’s side with its
cost. After production, reworking starts for the defective items those can be

reworkable. At the end of the process, all items are considered as perfect items.

At the buyer’s side, there is inspection process during packing in cycle. Then
at the end of cycle, the imperfect items (due to transportation, mishandling etc.)

are sent to outlet shops.

For the shortage at buyer’s side, there is function defined to show that less

customers are waiting for next replenishment as time passes, Sicilia et al. (2012);

—b 1:rL
B,(r) = ae <L_“L) (1)

where 0 < o < 1 and b > 0 and 7 shows the expected waiting time when shortage
occurs, so that if it is longer it will decrease the proportion of backlogged

demand.
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* There are two types of investment in the production process quality such as new
equipment purchase, advanced maintenance etc to decrease defective items and
increase rework power. For these factors, the logarithmic investment functions

I(g) and 1(63) from Dey (2019) is considered as follows:

1
0)=4-1n (@) @)

q
1 0
1) = .in (f) 3)

where 8, is the percentage decrease in ¢ per unit amount increase in investment
and ¢go is the original percentage for defective state before any investment.
Additionally, 6, is the percentage increase in 63 per unit amount increase in

investment and 65, is the original reworking proportion before the investment.

e The lead time is constant and known.

In the next two sections, we will see the independent costs for the buyer
and supplier. Buyer’s model has two cases; deterministic and stochastic demand.
According to those, two separate functions for expected total costs are defined. For
the supplier, two parameters, g and 6, are the main figures for model and according
to their stochasticity, four models are characterised for the expected total cost. Since
the proofs are similar for each case, only one version of each total cost’s convexity has

shown in the Appendix.

3.1.2. Continuous Inventory Review Model for Buyer

When the buyer does not cooperate with the supplier for maximisation of their
mutual benefits, it means that the buyer decides independently and the behaviour of
inventory level over time changes accordingly. As the nature of continuous review, the
shipment will be processed when the inventory level drops to the reorder point r. Figure
5 shows the behaviour of the perfect item inventory level and reorder point for the
buyer. Here, p is the proportion of imperfect items in the lot (because of mishandling,
transportation etc.) which are sent to outlet shops later. The cost incurred by the buyer

for inventory in a single cycle includes various components such as order placement
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cost, transportation cost, inspection cost, and holding cost(since lead time demand is

known in the deterministic demand case there is no shortage cost).

Inventory Level

Qe(1—p)

0 ™ L\ Time
L \ Qp(1—p) 2Qp(1 —p)
D D

Order Order
Placed Received

Figure 5. Perfect item inventory level and reorder point for the buyer.

3.1.2.1 The demand is deterministic

The buyer places an order when the inventory level is r and the order arrives after
L time periods. Here, Qp is the only decision variable since r can be calculated easily
because of deterministic demand rate D. Note that for the beginning of the each cycle,
inventory level has the order quantity Qp, then as perfect items we have Qp(1 — p).
The maximum inventory level is Qp(1 — p), and as imperfect items we have Qgp.
Moreover, T = M. Since we have deterministic demand rate and lead time for

this model, reorder point becomes r = LD. Hence, the buyer’s average inventory during

cycle becomes

1
Iaverage = <§QB(1 —p)T + QBPT)

1(05(1-p))*  Qpp(1—p)
:(E Dp n BPD p)

“4)

and the total cost for the buyer per cycle is
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—p))2 2 —
TCp(Qp) =Kp+F +cQp+hp (l (@5(1p)) + %l p)) : &)

2 D D

Qp(1—p)
D

Since the replenishment cycle length is T = , we have average annual cost

TCp(QB) = (KB +F+cQp+hp (% (QB(lD_ ) T Q%P%_p))) QB(ID— p) ©

Taking the first derivative of TCg(Qp) with respect to Qp, we have

d(TCg) _ 2D(F +Kg)+hs(p* —1)0F _

aos 2 1&g ’ 7
Taking the second derivative, we have
d*(TCg) 2D(F +Kp)
a0y~ (1-p)0} ®
d*(TCp)

Since all parameters in the above derivative are positive, > 0, which implies

doz
that the total annual cost is a convex function and there exists a unique value of Qp,

that is given as

+ _ [2D(F+Kp)
(T )

3.1.2.2 The demand is stochastic with lost-sales

With the previous model, we defined the cost function for the buyer under known
demand case. When the demand is stochastic, that is, we do not know if it is more or
less than reorder point during the lead time, shortage may occur. Lead time demand
is non-negative continuous random variable x with pdf as f(x) and cdf as F(x), and

mean= Uz, and standard deviation= o7. Moreover,

if x>r = shortage=x—r

if x<r = shortage =0

At the end of each cycle, the expected shortage will be
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5(r) = /O "0 (x)dx+ / (=) f(x)dx
— [ x=nrwa (10)

At this point, for holding cost we need to calculate the expected inventory level before

an order arrives differently:

=§(r)—pur+r (11)

where (i is the expected demand during lead time. The average inventory level during

cycle becomes

1
Iaverage - (EQB(I —p)T—|— QBpT+ﬁ(r)T)

_ (1 (Q5(1-p))*  Qpp(1-p)
2 D D

o-ms) 20 )

The total average cost for the buyer per cycle is

1 1-p))?  O%p(1— 1-
TCp(Qp,r) = Kp+hg <§(QB( D P) + QBp(D 2) +(V—#L+§(V))w>
+F +cOp+ci5(r) (13)
The expected total annual cost will be
KD FD cD ¢;5(r)D
ETC, =
R I R IR (R ¥ (s
1
+ hp <§(Q3(1 —p))+QBp+(r—uL+§(r))> (14)
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To minimise ETCg(Qp,r) we first take its partial derivatives with respect to Qp and r

as follows:

J(ETC) _ 2D(F +Kp+cis(r) +hs(p* —1)03 _

_ 0 15
905 2(p—1)0} w

(ETCs) _ hs(1-p)Qs(F(r) + 1) +aDS(r) _ (16)
ar (1-p)0s

For a given r, we can obtain the optimal value of Op from Eq.15 and the complimentary

cumulative distribution of x at optimal » : F(r) from Eq.16 and the derivative of 5(r).

That is
. [2D(Kg+F+cis
() =1 =P)0s (18)

- Dc;+ (1 _p)QBhB

The optimal value of r is

« o1 (,_ heQs(1—p)
y . (1 DCl+(1—P)QBhB> (1)

For the solution process, we will use iteration to pull Qp and r from these equations.

Starting with Qp, value and iterative until the Qg values converge (Figure 6).

Figure 6. Iteration for solution process
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3.1.2.3 The demand is stochastic with partial backlogging

When shortage happens, it may be an option to wait for customers. That is, as
soon as inventory arrives, their demand will be filled. However, not every customer is
willing to wait due to their urgency, timing, or simply they do not want to. Therefore
in this section, we analysed partially backordering case with time-sensitive customers.
We propose a parameter that represents the proportion B,(r) of backlogged demand
defined as a negative exponential function of reorder point r. Here, T shows the
expected waiting time when shortage occurs, so that if it is long it will decrease. The

proportion of backlogged demand:

—b TrL
B,(r) = ae <L“L> (20)

where 0 < a < 1 and b > 0. With new parameter, the expected value of the amount of

backlogged demand will be

B(r) = / By () (xr— ) f(x)dx 1)

Moreover, the expected lost-sales from shortage becomes

) = [ (=B, () (x =) f (@) @2)

At the end of each cycle, on-hand inventory, 7i(r), is

(r—x)f(x)dx

(r=x)fWdx+ [ (r=r) s

(r = (W)= [ (1=By(r)+By(r) (x =) ()

(r=0)f(Wdx+ [ (1=B, () =S dx+ [ By(r)(x=)f ()

B(r)+5(r)—ur+r (23)
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The total cycle cost for buyer becomes

— 2 — —
TCp(Qp,r) = Kp+hp (2(QB(1D P) +QBp(D1 P) +(r—,uL+§(r))—QB(1D p))
+F +cQp+d+cpB(r) +¢;5(r) (24)

The expected total annual cost will be

ETCy(Qs,7) = % +hy (%(QB(I —p)+0sp+ (r—uL+f<r)>>
FD cD dD ch( )D c;5(r)D

+QB(1_P)+(1—P)+QB(1— p) Os(l—p )+QB(1—P) )

To minimise ETCg(Qp,r) we first take its partial derivatives with respect to Qp and r

as follows:

J(ETCg) _ 2D(cpB(r)+d+F +¢;5(r) +Kp) + hp (p*—1) 03

_ —0 26
908 2(p—1)03 -

A(ETCy) _ D(cyB'(r) + ¥ (r) +hs(1 —p)Qs(1 +5(r) _, 27)
or (1 _p)QB

Proposition 1. ETCp(Qp,r) expected annual total cost is convex in (Qp,r) when the

following condition is satisfied:

2(cpB(r) +d +F +¢;5(r) + Kp) (5" (r) (hg(1 — p)Q+ ;D) +c,DB" (r))

> D (cpB(r)+ s (r) (28)

The proof and condition is presented in Appendix.

For a given r, we can obtain the optimal value of Qp from Eq. 26.

. 2D(cpB(r) +¢;5(r)+d +F +Kg)
= 29
s \/ hp (1—p?) )
For the optimal value of r from Eq. 27:
_ ch DC]
B'r—+§'r(——|—h)—|—h =0 (30)
i I 0, )
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where

Bir=2 | Bolna— s
=B,(r) /rooxf(x)dx— (B;,(r)r—l—Bp(r)> (1-F(r)) (31)

Here for the integral part, expected value of truncated random variable is used. That
is, the expected value of a random variable with probability density function f(x) and
cumulative distribution function F(x) given that the random variable is greater than

some known value. Thus

E(x|x>r)= f,lig—I(?x()rC)lx
/r T xf(0)dx = (1 — F(r))E(xx > r) (32)

where g(x) = f(x) for all x > r and g(x) = 0 otherwise.
As we mentioned above, the term E(x|x > r) is the expected value of x that is
greater than r, so it is shortage amount which in this case will be partially backordered.

Therefore it is equal to (B(r) +5(r)). Therefore

Bir=2 | Bona= s
=B, (r)(1=F(r))(B(r) +5(r)) = (B, (r)r+ By(r))(1 = F(r))

—(1-F(r) (B;,m(B(r) L5 - —Bp<r>) 33)

and

= (1—F(r))(3p(r)—B}(r)(g(r)Jrf(r)—r)— 1) (34)
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Hence, the optimal value of r is

ne (1o h(1 - p)Q
T <1 (B;(r)(é(r) +5(r)—7) —Bp(r)) (D(j —C:—F:BQB(l —p)) + <ch+hBQB(1 —p)> )
(e a1~ p)Q " )

(B;,(r)(é(r) +5(r) — 1) _B,,(r)> (D(c, —¢p) +hpQp(1— p)) + (c,D+hBQB(1 —p))
(36)

3.1.2.4 The demand is stochastic with backlogging

For this case, at the end of each cycle, all shortage will be backlogged. The

expected backorder amount becomes

B(r) = /rm(x— r)f(x)dx (37)

=B(r)—pur+r (38)

Total average cost for buyer per cycle is

1(Qs(1—-p))*  Opp(1—p) Qs(1—p)
T =Kp+hp| = —Up)———=
Cp(QB,7) = Kp+ 3(2 D + ) +(r—pur) D
+F +cQp+d+cpB(r) (39)
and the expected total annual cost is defined as follows:
KgD 1
ET =———+hp| = 1— —
Cp(Qp, 1) 05(1=p) + B(Z(QB( p))+QOpp+(r .UL))
FD cD dD cyB(r)D

+QB(1_p>+(1_P)+QB(1_P)+QB(1_17) 0
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To minimise ETCg(Qp,r) we first take its partial derivatives with respect to Qp and r

as follows:

J(ETCp)  2DcyB(r)+2D(d+F +Kp)+hp (p*—1) 05

0 41)
I0p 2(p-1)03
ET DcpB' 1—
I(ETCp) _ DeypB(r) +hp(1-p)Qp _ 42)
ar (1—p)0p
For a given r, we can obtain the optimal value of Qp from Eq. 41.
. 2D(cpB(r) +d +F + Kp)
- (43)
s \/ hg (1—p?)
For the optimal value of r from Eq. 42:
_ Dcy,
B (r +hp=0 (44)
where
B =2 [ " n
r) == —r)f(x
ar Jr
=—(1—-F(r)) (45)
Hence, the optimal value of r is
1—
r*:F—1(1——hB( p)QB) (46)
Dcy,

3.1.3. Continuous Review Inventory Model for Supplier

The main difference of supplier model from Buyer’s model is that there is a
grouping process of items according to their conditions. At the end of this process,
these items can be grouped as nondefective, defective or reworkable items. The
parameter for the proportion of defective items is given as g and reworkable items
is given as 603. At the supplier side, to meet the demand, rate of production of non-
defective items is greater than or equal to demand, P(1 — g) > D. Therefore, for some

time after the start of a new production run, the inventory level starts to increase with a

49



rate (P — D) ((1 — g)P — D for nondefective items). The length of each production run

is showed by #; which is the time required to produce order quantity, Qy. So,
= — (47)

After production, there is an inspection and reworking process on those defective items
that can be reworkable. For the reworking, we have gQy defective units, however only
certain amount of them (63) is reworkable. Therefore the time required to rework on

those items is
_q630y
1) =
P

(48)

And 73 which is the time to build up the inventory, will be defined during non-defective
inventory calculations in the next section.

The supplier’s inventory cost per cycle has production setup, holding, reworking,
and cost of quality improvement (investment). Figure 7 and Figure 8 show the
behaviour of the inventory level of nondefective items and reworkable defective items
at the supplier respectively.

The reworking cost includes all defective items that can be reworkable, therefore it
is calculated as ¢,Qy ¢0s.

In general, the supplier’s goal is to reduce the defective items produced and/or
rework on those as effective as possible. By investment in process quality control, it
is possible to have more non-defective items, smaller lot size, and less set-up cost etc.
There is close relationship between optimal policy and process quality, so we included
two terms for this case. Here, qq is the probability of production process for original
defective case and investment is all about to lower that probability. Additionally,
q is given as defective probability so we have 0 < g < go. With same logic, 63
is the probability of reworking on defective items and 65, is the original reworking
probability before investment with 0 < 63, < 65. For supplier’s independent cost, we

will examine four cases of ¢ and 65.
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Figure 7. Inventory behaviour of the nondefective items
3.1.3.1 Case 1: g and 65 are both deterministic
The inventory function for nondefective items during #; can be defined as
L(t)=((1—q)P—D)t 49)
therefore the total inventory will be
151 11
A= | L(t)dt= | ((1—q)P—D)dt
0 0
_((1-q)P-D)}
2
1—q)P—D)Q}
2P2
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Here,

L(0)=1(h)=(1-g)P—D)

L(t)=P-D)t+((1-q)P—D)t

Total inventory during rework process,

Ay = /Ot2 L(t)dt = %(P—D)t% +((1—q)P —D)taty

_ q0763(P(q(63—2)+2)—D(q63+2))
N 2pP2

The inventory curve during 73 can be shown by

I3(t) = Dt

with the terminal value

I(t3) = () = (P=D)r+((1-¢q)P—D)n

It can be shown as:

(P—D)a +((1-¢q)P - D)t

13 =

D
Total inventory during #3 will be:
13 1
As= [ Li(t)dt ==Ds3
0 2
_ 0)(P(=485+q—1)+¢63:D+D)?
2P2D '

61y

(52)

(53)

(54)

(55)

(56)

(57)

The inventory curve for defective items during the period #; can be shown as (Fig. 8)

Jl(t) =q0;Pt
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where J| (f1) = Qyq, and the total inventory during ¢, can be found as

l]ZQTV
r = / Ji(t)dt
0
1 ov\’ _a6:0%
—5q93f’(7) = o o9
Inventory Level
QQV __________ 0
|
q03Qy F——————— %
|
R |
\N %3 | -
&
|
|
t t, ts Time
T

Figure 8. Inventory behaviour of the reworkable defective items

The inventory curve of the defective items during #, is J(¢) = Pt with total

inventory

15}
I = / Jo(t)dt
0

_1L, (qu93)2: 70763

= 60
2 P 2P (60)
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The supplier’s total cost per cycle becomes

TCy(Qv) =Ky +hy(A1+A2+ A3 +T'1 +172) +cpQy + ¢,Qvqb3

ovn q0 ovn s
() + 5 (5 o

Then its average annual cost is

Oha(er- 1 TPt -1 +1)-D)) | Orm, (an)

TCv(Qv) = (KV +hy ( 2PD S q

Ovn ( 63 ) D
+=——In{ = | +cpQy +cqQv03 | —— (62)
5 "\oy e Q(1-p)
Proposition 2. TCy(Qy ) annual total cost is strictly convex in Qy.
The proof is presented in Appendix.
To minimise TCy (Qy ), we take first derivative with respect to Qy
d(TCy) _ 2PDKy — hyQ%(q(6:—1)+1)(P(q(63—1) + 1) — D) 63)
dQy 2(p—1)PQy
Taking the second derivative, we have
d*(TC 2KyD
( ZV) =V (64)
dQy (1—p)Oy
All parameters are positive, and % > 0. Therefore, there exists unique value for
\4
Oy given as
2PDKy
Oy = (65)
"\ hv(q(8s = 1)+ 1)(P(q(65 — 1) +1) = D)

with condition 0.5 < 63 < 1.

3.1.3.2 Case 2: g is deterministic and 65 is stochastic with standard uniform

distribution

With 65 given as random variable, it has an upper (U,) and lower (L;) bounds with

the probability distribution function of g>. The expected value of the total inventory of
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nondefective items during #; will be

U2 ((1-¢q)P—D)Qy
E(Al):/L2 P2 Vg2 63
_(U-qP-D)Qj [2( 1 o
- 2pP? /Lz (Uz—Lz)d93 (gz— U2—L2)
_((1-q)P-D)Qy
o P2 (66)
And the inventory during #, is
b = [ (D000 (0P DG
2) — L 7 p2 P2 82a03
_ [ (P=D)g630y (1
B Ly 2P2 U2—L2 4
U2 ((1—q)P—D)q650? 1
+ Ly P2 (Uz—L2>d93
_ q0% (L3q(P— D)+ Ly(P(q(Us — 3) +3) — D(qU> +3)))
B 6P2
2U>(P(q(Uy —3) +3) —D(qUs + 3
+61Qv 2(P(q(U2 6)PJZr ) —D(qU>+3)) .

During #3, the inventory becomes

U 1 ((P—D)Cl93Qv+((1_Q)P_D)Qv)zgzd%

Eds) :/Lz 2P PD
0y ((P(=qUa+q—1) +qUsD+D)* — (P(~Lag +q— 1) + LogD + D)?)
B 6qP2D(Us — Ly)(D — P)

(68)
The expected value of the total inventory of defective items during #; will be
U, o
E(T) / a 3QV 2265
Ly
Y (LZ +Us)
N 4P (©9)
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and during £,

v 405 6
L, 2P

212 U, 1
_IY / 62 ( )d93
p L, P\v-1n

_ 40y (U3 + Uala +13)
2P 3

E(Fz) = g2d 063

(70)

The expected annual cost is

KyD n hyD
Qv(l—p) Qv(l—p)

nDln<%°> e [m(g’—;o)] cPD . crqie,D

ETCy(Qv) =

(E(A1)+E(A2) +E(A3) +E(I't) +E(I))

S(-p) | &(1-p) (-p) (1-p 7o
where g, = 242 and E[ (99—30)] (: Hin(o, /930)> is derived as follows:
()] e
= E[In(63)] — E[In(63,)] (72)
Here,
E[ln(930)] = ln(930) (73)
since s, is constant. However,
E[In(63)] # In[E(63)] (74)
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Therefore, we need to find E(In(63)) which is a function of 65.

E(In63) = / In6s3-2,d 63

U2 1
= In 93 < ) d 93
L, U,—L,

< ! ) / Y 16246 (75)
= n
Up—Ly) Ji, M

With integration by part, the expected value becomes

E(In63) = ( ) {ln(Uz)Uz —1In(Ly)Ly — Uy +L2] (76)

U,— L,

Finally,

E[ln(g—;o)} = (U;Lz) lln(Uz)Uz—ln(Lz)Lz—Uz +L2} —In(63,)  (77)

To minimise ETCy (Qy ), we take first derivative with respect to Qy

d(ETCy)  hy (=2P(q* (L34 Ly(Uy —3) + (Ur = 3)Ur + 3) +3¢(Lr + U —2) +3))

dQv 12(p—1)P
N hy Q% (D(q(Ly + Uy —2) 4 2)) + 4Ky PD 8
4(p—1)PQ;
Taking the second derivative, we have
d*(ETC 2KyD
( v) = . (79)

dQ? (1-p)0;

2(ETCy)

All parameters are positive, and d o 0. Therefore, there exists unique value for
Vv

Qy given as

ot — 12Ky PD
VN 2y P (@ (L3 + (Lo + Us) (Uy — 3) +3) +3gA+3) — 3hyD(gA + 2)

(80)

where A = (L, + Uy —2).
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3.1.3.3 Case 3: g is stochastic with standard uniform distribution and 65 is

deterministic

The expected value of the total inventory of nondefective items during #; will be

Ui (1—q)P—D)Q3 1
E(AI):/L ( Q)zpz )Qvgwlq (gl:Ul_ld)
_ Oy(P(Li+U;—2)+2D)
T 4p2 1)
And during 1,
Ur ((P—D)q*0203 1—g)P—D)q6:0?
E(Az)Z/L <( 2);12 % | (U9 57 )4 3Qv>gld61
_0v65 (P(L7(63—2) + (L1 +U1)((63 —2)U; +3)))
N 6P2

6.2

And during 13

Ui1 _((P—D)q6 1—q)P—D 2
0} ((P(—65U1 +U; — 1)+ 65UD+D)?)

~ 6P2D(U; —L1)(—P8;+P+6D)

B 0y (—(P(—L163+ Ly — 1)+ L16:D + D)?) )

6P>D(U; —L)(—P63+ P+ 63D)

The inventory curve for defective items during the period

Ui g0 Q2
qu3
E(Fl):/L zpvgldq

1

0260; 1 Uy
= / qdq
2P Uy —Ly Ji,

_ 036U +1L,
2P 2

(84)
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and during #,, it will be

Ui 202 62
q" Qv
E(Ty) = [ g1dg
L 2P
2 02
0 1 Ui
_ 9v0; / dq
2P Ui—Li Ji,
_ 0965 (U7 +UIL; +L7)
2P 3

(85)

The supplier’s expected annual cost becomes

KyD hyD
ETC = E(A))+E(A)+E(A3)+E(T)+E(T
v(Qv) ovi—p) +Qv(1—P)( (A1) +E(A2) +E(A3) +E(T) + E(I2))
DE |In (L 63
+n P%q)}+anGE)+ g | ally"D (86)
61 (1-p) &O(1-p) (1-=p) (-p)
where 1, = % and E [ln (C{;‘))] (: Hin(go /q)) is derived as follows:
E [m (%)} —E {ln(qo) - ln(q)}
= E[ingo] — E[Ing] (87)
Here,
E[Ingo] = In(qo) (88)
since qq is constant. However,
Ellng] # In[E(q)] (89)
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Therefore, we need to find E(Ing) which is a function of g:

E(Ing) =/ Ing-g1dq

“1( ! )d
= n
Ly 7 U —L, 1

1 Uy
_ (Ul_h)/h Ingdg (90)

With integration by part, the expected value becomes

E(lng) = ( ) {1H(U1)U1 —In(Ly)L; - U, +L1] On

Uy — L

Finally,

E {m(%)} = In(qo) — <U1 iLl) [ln(Ul)Ul —In(Ly)L, — U, +L1] (92)

To minimise ETCy (Qy ), we take first derivative with respect to Qy

d(ETCy) _ 6KyD—hyQy ((L}(85 — 1)+ (L1 +U1)(63 — 1)((63 = 1)U1 +3) +3))

dQy 6(p—1)0%
th((93—1>(L1—|-U1)—|—2) 93)
4(p—1)P
Taking the second derivative, we have
d*(ETC 2KyD
(ETCy) _ 2K (94)

dQ? (1-p)0;

d*(ETCy)

All parameters are positive, and —> 0
Vv

> 0. Therefore, there exists unique value for

Qy given as

oF 12PDKy
"\ 2hy P (L2B? + B(BU; +3)(Ly +Uy) +3) — 3hyD(B(L; + Uy ) +2)

(95)

where B= (6; —1).
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3.1.3.4 Case 4: gnd 6sre both stochastic with standard uniform distribution

The expected value of the total inventory of nondefective items during #; will be

U2 (Us ((1—q)P—D)Q?
E(A)) dqd6
1) /LZ/ 2P2 8281dqd0;

Ly+Uy—2)+2D
_ v e )+2D) (96)

Then, the expected value of total inventory during rework process 7; is

_ [V (Y [(P=D)g*6505 ((1—q)P—D)q6:05
Elto)= /Lz / ( T P
Oy U (P (L3 +Lo(Uy —3) + (Up —3)Ua) — D (L3 + LoUs + U3) )
% 18P2(L, — U,)
b QvUZ (La+Up)(P—D)  QyLi(Ly+Us)(P—D)
4P2(L,—U,) 4P2(L, —Uy)
N Oy L} (P (L5 +La(Uy —3) + (U2 —3)Us) — D (L5 + LyUr + U3))
18P2(L, — U,)

)gzgldqd93

7)

During #3, the total inventory becomes

PD
QWU (L3 + Lo (U2 =3) + (Ur = 3)Up + 3)
B 18D(L, — Uy)
00U (P(-2L3 +12(3 —2Us) + Uh(3 —2Us)) + D (L3 + LoU2 + Uj) )
18P%(L, — U,)
 Q3U, (Uy(P=D)(P(Ly +U> —2) = D(Ly + U2)) +2(P— D)*)
4P2D(L, - U,)
QVL3 (L3 + Lo (U, — 3) + (U, — 3)U> +3)
18D(L, — Uy)
. OV L} (P (=213 + Lr(3 —2Us) + U (3 —2U3)) + D (L3 + LoU, + U3) )
18P%(L, —U,)
N Oy Ly (Ly(P—D)(P(Ly+ U, —2) — D(L, + Uz)) +2(P — D)?)
4P2D(L, —U,)

Uql P D)g6 1—g)P—D
E(As) /L /L ( )60y + ((1—q) )Qv) 281dqd 6

(98)
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The expected value of total inventory during #; will be

Us g0
E(I'y) /L/Lq3QV81g2dqd93

U—I—L U+ L,
5 () (%) <99>

and during 7,

v quQ
E(T3) /L/ V g1gqud93
2

e U§+Uqu+L%, U} +UpLy + L}
2P 3 3

(100)

The expected annual cost becomes

KyD th
Qv(1-p) Qv(l— p)
NDlin(gy/q)  MPMin(03/65)  cpD  crligto,D

ETCV(Qv) —

(E(A1) +E(A2) +E(A3) +E(T'y) + E(T2))

+ + (101)
61(1—p) O(1-p) (1-p) (1-p)
To minimise ETCy (Qy ), we take first derivative with respect to Qy
d(ETCy) _ 18KyD— hy Oy (L7 (L3 4 Lo (Us — 3) + (U, = 3)Uz +3) )
dQy 18(p—1)02
 hy (Lg (2U4 (L5 + (U2 = 3)Us +3) + Lo (2Uy (U2 = 3) +9) +9(U2 - 2)))
36(p—1)
hy (2U7 (L3 + Ly (Us —3) + (U2 —3)Ur +3) 49U, (Ly + U —2) + 18)
36(p—1)
hy (D(L,+U, —2)(L,+U,)+4D
n v (D(Ly + Uz —2)(Ly +Uy) +4D) (102)
8(p—1)P
Taking the second derivative, we have
d*(ETC 2KyD
(ETCy) _ 2Ky (103)

oy  (1-p)03
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d*(ETCy)

All parameters are positive, and —> 0
Vv

> 0. Therefore, there exists unique value for

Qy given as

on = \/ 72Ky PD

hy (2P (2L2C + L, (2U,C +9A) +2U2C +9U,A + 18) —9DA(L, +U,) — 36D)
(104)

where C = (L5 + Ly(Uy — 3) + (Uy —3)Us +3) and A = (L, + U, — 2).
3.2. Integrated Continuous Review Inventory Models
3.2.1. Integrated Models with lost-sales case

For the integrated case, we will analyse the buyer’s cost under deterministic
demand case with four cases of the supplier and then buyer’s cost with stochastic
demand with those four cases. That is, we will have eight integrated models in total.

The supplier’s total cost in a cycle when g and 03 are deterministic is

2 - J—
TCV(Q>=Kv+hV(Q (CI(93 1)—|-1)(2PP(lq)(93 1)—|—1) )) Qa? (_)

+%1 (930) +cpQ +¢rqQ05 (105)

and the buyer’s total cost with deterministic demand in a supplier’s cycle is

o (1
TCB(Q):KB+F+CQ+hB(%(Q(1Dp)) +Qp% p)> (106)

The total cost for integrated system is,

TC(Q) =TCy(Q)+TCs(Q)

TC(Q)=Kv+KB+F+hv(Q2<q(93—1)+1)( (q(65—1)+1)— )

2PD

oy (JQUPE  EHID)) 0, () 00, ()

+¢,0q03 4 cQ (107)
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We have cycle time T = Q(lgp ), so the average total annual cost would be

TC(Q) = (Kv +KB+F+hV(Q2(‘1(93 —D+ 1)(21;(1?(93— 1)+1) —D))

+h3(1(Q(1_p))2+Q2p(l_p))+Q6—?1n(@)+Q_”1n(ﬁ)

2 D D q 0 630
D
+cpQ+ Qg3 +CQ> YR (108)
o(1 - p)
To minimise 7C(Q), we take first derivative with respect to Q
d(TC) 2D(F+Kp+Ky)+hg(p*—1) 0
dQ 2(p—1)Q?
h 6:—1)+1)(Pg(63—1)+P—D
_hv(g(65—1)+1)(Pg(65—1)+ ) (109)
2(p—1)P
Taking the second derivative, we have
d*(TC) _2D(F +Kp+Ky) (110)
dQ? (1-p)Q°
All parameters are positive, and dzd(gzc ) Therefore, there exists unique value for
Q™ given as
. —2PD(F +Kg +Ky) i
hg (p* — 1) P+hy(q(6; — 1)+ 1)(P(q(1 — 63) — 1) + D)

As the second model, the supplier’s expected total cost in a cycle when q is

deterministic and 05 is stochastic with standard uniform distribution defined as

ETCy(Q) =Ky +hy (QZ (¢* (L3 + (L2 4+ Ua) (U —631))+ 3)+3q(La+ U, —2) +3))

Q*(q(La+U=2)+2)\ 12 (0 , 12
_hv( 2 4P2 )+ ( 0)4—5#111(93/930)

+¢pQ + g Qe (112)

and the buyer’s expected total cost with deterministic demand in a supplier’s cycle is

N O%p(]—
ETCB(Q):KB+F+CQ+h3<%(Q(1Dp)) +Qp% p>> (113)
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The expected total cost for integrated system is,

ETC(Q) = ETCy(Q) +ETCp(Q)

ETC(Q) =Ky +Kg+F +hg (l (e —p))?  0%p(1 —P)>

2 D D
(Q2 (* (L3 + La(Us —3) + (U2 —3)Ur+3) +3q(Ly + Ur — 2) +3))
+ hy
6D
Q*(q(La+U2=2)+2)\ nQ. (q)  nQ
_hv( 4P T ! o) s, Hines/ex)
+cpQ+cQ+crqQUp, (114)

The expected total annual cost becomes

2 D D
- (Q2(q2(L%+L2(Uz—3)+(Uz—3)Uz+3)+3q(L2+U2_2)+3))
Vv

ETC(Q) = (Kv Kyt F+hg (1 (Q(1—p))? 4 0*p(1 —p)>

6D
0 (¢(La+U>-2)+2)\ nQ (g0 K N2
(O (o)
D
+CPQ+CQ+CrQQN63)m (115)

To minimise ETC(Q), we take first derivative with respect to Q

d(ETC) D (4P(F+Kp+Ky)+hyQ*(q(Le, +Up, —2) +2)) e (p+1)

do 4(p—1)PQ? 2

B hy (q2 (L%—{— (L2+U2)(U2—3) +3) +3Q(L2+U2_2)+3) (116)
6(p—1)

Taking the second derivative, we have

d*(TC) 2D(F+Kp+Ky)
= 117
402 (1-p)0° a1

(1C)

All parameters are positive, and d a0 0. Therefore, there exists unique value for

Q™ given as

Q* . —12PD(F—|—KB—|—Kv)
[ 2P(3hp (p2 —1) — hy (¢*C +3gA +3)) + 3hyD(gA +2)

(118)
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where C = (L5 + Ly(Uy —3) + (Uy —3)Us +3) and A = (L, + U, — 2).
For the model where q is stochastic with standard uniform distribution and 63 is

deterministic, the supplier’s cost function per cycle will be

0% (L3 (65 — 1)+ (L1 + U1) (65 — 1)((65 — 1)Uy +3) +3))

ETCy(Q) :Kv—i-hv( D

h Q% (—3(63 — 1)D(L, +U;) — 6D)
v 12PD

) +cpQ+ 0031,

no no 0;

and the buyer’s expected total cost with deterministic demand in a supplier’s cycle is

o0 0%p(i—
ETCB(Q):KB+F+CQ+hB((Q<1 p)”  2pl p)) (120)

2D D

The expected total cost for integrated system is,

ETC(Q) = ETCy(Q) +ETCp(Q)

NS S N
ETC(Q):Kv+KB+F+cQ+hB<(Q(12Dp)> +Qp(ll) p))

o (Q2 ((63 —1)(L7(6:— 1)+ <1&)+U1><(93 — 1)U +3)) +3))

+hv(Q2((1 —63)(L1 +U)) —2)

1P ) +cpQ+c, 0031y

no no, (6
* 5, Hinlao/a) T g ln(930) (121)

With the buyer’s cycle length, the expected total annual cost is

ETC(Q) = (Kv +Kp+F +cQ+hg <(Q(12;P))2 N sz(j;—zﬂ)

hy (Q2 ((65—1)(L7(63—1)+ (1;;)+U1)((93 —1)U; +3)) +3))

+hV(Q2((1 — eg)illzl +U;)—-2)

> +cpQ+ CrQGS.uq

no no 0s D
a5 (60) Vg 122
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To minimise ETC(Q), we take first derivative with respect to Q

d(ETC) _ hy (2P (L3(63 — 1)+ (L1 + U1) (63— 1)((63 — 1)U1 +3) +3))

aQ 12(1—p)P
v (D((8s = )L +U) +2)) 2D(F +Kp+Ky)+hp (p* —1) 0°
4(1—p)P 2(p— 1)@
(123)
Taking the second derivative, we have
d*(ETC) 2D(F+Kg+K
( 2): ( +B+3 V) (124)
dQ (1-p)Q
. d*(ETC) . .
All parameters are positive, and —; e 0. Therefore, there exists unique value for
Q* given as
0 — —12PD(F 4+ K3 +Ky)
~\/ 6hp (p2 = 1) P—hy (2P (L}B2 + (Ly + Uy)B(BU; +3) +3) —3BD(L, +U;) — 6D)

(125)
where B= (63 — 1).
When q and 65 are both stochastic with standard uniform distribution, the supplier’s

cost function per cycle becomes

no
ETCy(Q) = Ky +cpQ+c,QuUyle, + "o, Hn( (qo/a) T 62 I~L1n (65/63,)

. QL2 (L3 + Ly (Ur = 3) + (U — 3)U> +3)
* 18D

+hy

<Q2L1 (213U, +L2(2U1(U2—3)+9)+2U1((U2—3)U2—i—3)+9(U2—2))>
36D
o <Q2 2U? L2+L2(U2—3)+(U2—3)Uz+3)+9U1(L2+U2—2)+18)>
\%

36D

o Q*(Ly+ Uy — )(L1+U1)+4)>
|4

(126)

and the buyer’s expected total cost with deterministic demand in a supplier’s cycle is

—p))2 2 —
ETCa(Q) =Ko+ F e +hn (P ELEZPN)

2D D
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The expected total cost for integrated system is,

ETC(Q) =ETCy(Q) +ETCs(Q)

1—p))? 2n(1 —
ETC(0) = Ky + Ky + F + g Q0P €20 p>>

212 (12
+hv<Q L (L2 + Lo (U 183D)+ (U> 3)U2+3)> +1f“ln(qo/q)+1§ul“(e3/e30)
o <Q2L1 (2L3U1 + Lo (2U1 (U2 = 3) +9) +2U1 (U2 = 3)U2 4 3) +9(Us —2)))
36D
+hV<Q2 (2u? (L§+L2(U2—3)+(Uz—3)Uz+3)+9U1(L2+U2_2)+18)>

36D

—h <Q2((L2+U2—2)(L1 +U;)+4)
Y 8P

) +cQ+cpQ+ ¢, Qg (128)

The expected total annual cost is

o2 0%p(1—
ETC(Q)=<K3+KV+F—|—hB<(Q(12Dp)) +Qp% P)>
+hv<Q2L%(L%+L2(U2—3)+(U2—3)U2+3))
18D

Y. <Q2L1 (2L3U, + L, (2U, (U2 — 3) +9) + 22U (U, — 3)U> +3) +9(U, —2))>

36D

0% (2UF (L3 + La(Us =3) 4 (U2 —3)Us + 3) +9U; (L + U, — 2) + 18)

o

s <Q2((L2+U2—2)(L1 +U))+4)
4

P > +cQ+cpQ+c Oy o,

no no D
s, Hintao/a) T 52“1n<93/930)> oli—p) (129)

To minimise ETC(Q), we take first derivative with respect to Q

d(ETC)  —hyL} (L3 +Ly(Uy—3) + (U —3)Us +3)

dQ 18(p—1)
hyLy (2L3U, + Ly (2U; (Uz — 3) +9) + 22U, (U2 — 3)U> +3) + 9(U> — 2))
36(p—1)
hy (2U% (L3 + Ly (U — 3) + (U — 3)Uz + 3) +9U; (L + U — 2) + 18)
36(p—1)
hy Q* (D(Ly + Uy —2)(Ly + Uy) +4D) + 8PD(F + Kg + Ky) +4hg (p* — 1) PQ?
N 8(p—1)PQ?

(130)
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Taking the second derivative, we have

d*(ETC) 2D(F +Kp+Kv)

= (131)
dQ? (1-p)Q°
All parameters are positive, and EZEQTZC) > 0. Therefore, there exists unique value for
Q™ given as
0 — —72PD (F + Kz +Ky)
—\ 36k (p2 — 1) P —hy (2P (2C(L2 + U}) + L1 (2U,C +9A) +9U,A + 18) —9D(AB — 4))

(132)
where C = (L3 +Ly(Us —3) + (Us = 3)Ur +3),B= L1 + Uy and A = (L, + U, — 2).
After the models for deterministic demand at buyer’s, it is time to analyse for
stochastic demand with four cases for supplier.

The supplier’s total cost per cycle for deterministic g and 05 is

TCy(Q) =Ky +hy (

Qﬂ
52

Q*(q(6:— 1)+ 1)(P(q(85—1) +1) - )> on, ( )
2PD 5

(6 ) +cpQ+crq00; (133)
30

and the buyer’s total average cost with stochastic demand in a supplier’s cycle is

TCs(Q,r) = Kg+hs (%(QO;’)))Z + sz(;_p) + g +50) 28 —p))

D
+F +cQ+c35(r) (134)

The total cost for integrated system is,

TC(Q,r) = TCy(Q)+TCx(Q,r)

TC(Q,r) :Kv+KB+F+hV(Q2(Q(03_ 1)+ 1)(P(q(65 — 1)+1)—D)) ten0

2PD
. 2 2 _ _
+hB<%(Q(1Dp)) L9 p(; p) +(r—uL+s‘(r))Q(1D p)> ()
Qn Qn
+ 5 ( ) + E (930) +¢0q63 + cQ (135)
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o(1-p)

We have cycle time T = =

, so the expected total annual cost would be

ETC(Q,r) = (Kv +Kg+F +hy <Q2<4(93 —1)+1)(P(q(63—1)+1) —D))

2PD
L(Q(1-p)*  @*p(1-p) o 2(1-p)
—I—cQ+h3(5 D + D +(r—,LLL~|—s(r))T
San(3) 5 (a) e
+= +cpO+c,0903+¢/5(r) | =
(136)
To minimise ETC(Q, r), we take first derivative with respect to Q and r,
J(ETC)  2D(F 4 Kp+Ky)+2¢,D5(r) +hg (p* — 1) 0°
20 2(p—1)Q?
—1)+1)(P —1)+1)—D
L v (q(8— 1)+ 1)(P(g(6=1)+1)=D) -
2(1—p)P
Taking the second derivative, we have
9*(ETC) 2D (F +Kg+ Ky +¢;5(r)) (138)
00> (1-p)Q°
o 9*(ETC) . .
All parameters are positive, and — o 0. Therefore, there exists unique value for
Q* given as
0 = —2PD(F+CIS_(F)—|—KB+K‘/) (139)
(hg (p* = 1) P+hy(q(85 — 1)+ 1)(P(¢q(1 - 63) — 1) + D))

The derivative of ETC(Q, r) with respect to r is

I(ETC) _ §(r)(hg(p—1)Q—ciD) +hs(p—1)Q

= 140
or (p—1)Q o
Taking the second derivative, we have
2 U _ _
AETC) _ §"(r)(hs(p—1)0— D) ()
ar? (p—1)Q
d?(ETC)

All parameters are positive, and —z>— > 0. Therefore, there exists unique value for
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r* given as

l—F(}"*): hBQ(l_p)
cD+hpQ(1 —p)
« _p—1{q_ hgQ(1 —p) )
r=r (1 D+ hs0(1 - p) (142

For the rest of the models, r* equation will be the same since the integrated cost
function is changing only by constant.
In the model where q is deterministic and 65 is stochastic with standard uniform

distribution, the supplier’s cost function per cycle will be

QZ(CI(L2+U2—2)+2)> ulY (qo) no

ETCy(Q) ZKv—hv( P +5—1111 - "‘E.uln(%/éko)

0’ (qz (L% +Ly(Uy—3)+ (U, —3)Ur+ 3) +3q(Ly+Uy —2) + 3)
+ hy =

+ cpQ + ¢,qQO e, (143)

and the buyer’s total average cost with stochastic demand in a supplier’s cycle is

ETCs(Q,r) = Kz + hp (% (Q(I;p))z + sz(;_p) + (r—,uL—l—s_(r))—Q(lD_p))
+F+cQ+c5(r) (144)

The expected total cost for integrated system is,

ETC(Q,r) = ETCy(Q)+ETCg(Q,r)

ETC(Q,r) :KB+KV+F+hB((1 —p)Q(—2uL+§g+Q+2§(r) +2r))

+hV(QZ (4% (L3 + Lao(Up = 3) + (Us = 3)Up +3) + 3q(La + Un — 2) +3))

6D

2 —_
by (Q (q(Lo+U2—2)+ 2)) +ci5(r) +cQ+ cpQ+ c,qQg,

4p
no. (q\  ne
+ 5, In ( g ) + 5, Hin(6s/63,) (145)
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The expected total annual cost is

ETC(Q,r) = <KB+KV+F+hB((1 —p)Q(—ZuL+§§+Q+2§(r) +2r))

o (L@ B+ L2 =3) + (U2 =3 +3) +3q(La +Ur ~2) +3)
' 6D

2 _
C (Q (q(La+Ur ~2) +2)) +ciS(r) + 0+ cpQ -+ crgOtto,

4P

no q0 no D
Mem(20) 0% _Z 146
s n<61>+ 52“1“(63/930)) O(1—p) (146

To minimise ETC(Q), we take first derivative with respect to Q

J(ETC) D (4P(F+Kp+Ky)+hyQ*(q(Lr+U, —2)+2)) +4¢,PD3(r)

90 4(p—1)PQ>
v (¢ (L +La(U2 = 3) + (U2 = 3)Ua +3) +3¢(La + Uz —2) +3)
6(p—1)
1
AR (147)
2
Taking the second derivative, we have
9*(ETC) 2D (F +Kg+ Ky +¢;3(r)) (148)
90? (1-p)Q°
e d*(ETC) . .
All parameters are positive, and —; e 0. Therefore, there exists unique value for
Q™ given as
Q*— —12PD<F—|—C[S_<F)—|-KB—|—K\/)
-\ 6hg(p?2—1)P —2hyP (¢ (L3 + Lo(Us — 3) + (Us — 3)U> +3) +3gA +3) + 3hyD(2 + gA)

(149)
where C = (L5 + Ly (U — 3) + (Us —3)U2 +3),A = (U + L, — 2) and

x _ p—1 hBQ(l_p)
r=r (1_czD+hBQ<1—p>) (150

For the next model, g is stochastic with standard uniform distribution and 63 is
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deterministic. Therefore, supplier’s cost function per cycle is

Q% (L3(63 —1)*+ (L1 +U1) (63 — 1)((65 — 1)U +3) +3))

ETCy(Q) :Kv+/’lv( D

i 0 (—3(63 — 1)D(L, +U,) — 6D)
v 12PD

> +cpQ+c,Q0u,

no no, (6
+ 51 nuln(qo/q)+ 52 111(930) (151)

and the buyer’s expected total cost with stochastic demand in the supplier’s cycle is

ETCp(Q,r) =Kp+hg (% (Q(I;p))2 i QZP(IID—P) L (F—HLJrs'(r))Q(lD_ p))
+F +cQ+ci3(r) (152)

The expected total cost for integrated system is,

ETC(Q,r) =ETCy(Q)+ETCp(Q,r)
ETC(Q,r) =Ky +Kp+F +cQ+cpQ+c, 0031, + %uln(qo/q) 3 %ln (6%3)
(Q2 (L%<93—1)2+<L1+U1><63—1>((93—1>U1+3>+3))
+hy &
2(=3(6: — 1)D(Ly +U;,) — 6D
+hv<Q (=3(65 1)213(01 ) ))+cl§(r)

N2 2 1 _
+h3(%(Q(1Dp)) +Qp(ll) p)+(r_“L+s_(r))Q(lD p)) (153)

The expected total annual cost is

0
ETC(Q,r) = (Kv +Kp+F +cQ+cpQ+c, 0030, + %MIH(QO/Q) + % In (é)
0

+hV(Q2 (L3(63— 1)+ (L1 +Uy) (65— 1)((63 — 1)U; +3) +3))

6D
2( _ _
Jrhv(Q (—3(6s 11)2DP(£1+U1) 6D))+c,s‘(r)
. 2 2 _ _
g (%(QUDP)) L2 p(ll) p) +(r—uL+s‘(r))Q(1D p)))
D
O(1—p) (59
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To minimise ETC(Q), we take first derivative with respect to Q

J(ETC) 2D(F +Kp+Ky)+hg(p? —1) 02

0 2(p— 1)@
*hy (L3(85— 1)2 4 (L +Up) (65— 1)((6s — DUy +3) +3)
6(p—1)
hyQ?((63 —1)D(L 2D) +4¢,PD§
@ (8 — )D(Ly +Uy) +2D) +4¢,PDS(r) (155)
4(p—1)PQ?
Taking the second derivative, we have
0*(ETC) 2D (F +Kg+ Ky +¢;5(r)) (156)
00> (1-p)Q°
o 9*(ETC) . .
All parameters are positive, and —3 o7 > 0. Therefore, there exists unique value for
Q" given as
0" = —12PD (F 4 ¢;5(r) + K+ Ky)
—\/ 6hg(p2 = 1)P —hy (2P (L3B2 + (L + Uy )B(BU; +3) +3) —3BD(L, + U;) — 6D)

(157)
where B = (63 — 1) and

1[4 hpQ(1—p)
r=r (1 czD+hBQ(1—p>) (159

In the final model, where g and 6; are both stochastic with standard uniform

distribution, supplier’s cost function per cycle is

no
ETCV(Q) =Ky +CpQ—|—CrQl.lq,l.l93 5 < Hin( qo/q 62 .uln (63/65)

n Q°L} (L3 + Ly(Ur —3) + (U —3)U, 4 3)
v 18D

+hy

<Q2L1 2L2U1+L2(2U1(U2—3)+9)+2U1((U2—3)U2+3)—|—9(U2—2))>
36D
T <Q2 20?7 L2+L2(U2—3)+(U2—3)U2+3)+9U1(L2+U2—2)+18)>
4

36D

i, 0* (L + Uy — )(L1+Ul)+4)>
\%

(159)
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and the buyer’s expected total cost with deterministic demand in a supplier’s cycle is

ETCy(Q,r) = K+ hg (% (Q(l;p))z + sz%_p) + (r—,LlL—l-s_(r))—Q(lD_p))
+F+cQ+eis(r) (160)

The expected total cost for integrated system is,

ETC(Q,r) = ETCy(Q)+ETCg(Q,r)

0 Q
ETC(Q,r) =K+ Ky +F +cQ+cpQ+c,Quglig, + 775 Hin(qo/q) %Hln(e3/e30)

<Q2L% (L§+L2(Uz—3>+(Uz—3>U2+3))
+hy
18D

O’Ly (213U + Ly (2U, (U, — 3) +9) +2U, (U — 3)U» 4+ 3) + 9(U> — 2))
b 36D >

<Q2 (U7 (L34 Lo (U, —3) + (U2 —3)U> +3) +9U1(L2—|—U2—2)+18)>
+ hy

36D
2 _

—hv<Q (L, + U, 82;(L1 +U1)+4)> (161)

The expected total annual cost becomes

ETC(Q) = (KB +Ky +F +CQ+CPQ+CrQ,uq:u93 + nle.uln(qo/q) + ngQluln(Gg/Bgo)

—h3<(p—1>Q(_2ML+§§+Q+2§(r)+2r)>+Cl§(r)
o Q’L3 (L3 + Ly (U> —3) + (U, —3)U, +3)
v 18D
o O’Ly (23U + Ly (2U, (U2 —3) +9) +2U (U = 3) U2 4+ 3) +9(U> - 2))
v 36D
Y 0? (2U} (L3 + Lo (U — 3) + (Ur — 3)U> +3) + 99U (Lo + U, — 2) + 18)
v 36D
Q2 L2+U2— )(L]+U])+4)> D
—h 162
V( o(1-p) (162
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To minimise ETC(Q), we take first derivative with respect to Q

A(ETC) —hyL3 (L3 +Ly(U>—3)+ (U, —3)U, +3) N c1D5(r)

20 18(p—1) (p—1)Q°
_ hvLy (2L3U1 + Lo (201 (U2 = 3) +9) +2U1 (U2 = 3)Uz + 3) +9(U> - 2))
36(p—1)
v (2UF (L3 + Lo (U2 = 3) + (U2 = 3)Ur +3) + U1 (L + U> — 2) +18)
36(p—1)
hy Q* (D(Ly + U> —2)(Ly + U, ) +4D) + 8PD(F + Kg + Ky ) +4hp (p* — 1) PQ?
+
8(p—1)pPQ?
(163)
Taking the second derivative, we have
9*(ETC) 2D (F +Kg+ Ky +¢;5(r)) (164)
00> (1-p)Q°
o 9*(ETC) . .
All parameters are positive, and —3 e 0. Therefore, there exists unique value for
Q* given as
Q* . —72PD(F—|—C1§(I’) +KB+Kv)
\ 36hp(p2 — 1)P —hy (2P (2C(L2 + U?) + Ly (2U,C +9A) +9U A + 18) —9D(AB — 4))

(165)
where C = (L3 4+ Ly(Uy —3) + (U2 — 3)Uy +3), B= (L1 +U;) and A = (U + L, — 2),

and

1 o hBQ<1_p)
Tt O qD+MQO—W) (oo

3.2.2. Integrated Models with partial backordering

When there is deterministic demand, there is no shortage occurring. Therefore
in this section we only examine the stochastic demand. This time, there is partial
backordering at buyer’s side. As the first model, supplier’s total cost per cycle for

deterministic g and 65 is

TCV(Q) =Ky +hv (

on,
&

@mer»me«&—w+w—m)+ggm(%)

2PD 5 \q

n ($> +cpQ+cQq63 (167)

+
03,
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and the buyer’s total average cost with stochastic demand and partial backordering is

N2 21 B
TCy(Q,r) = Ky + hs (%(QUDP)) PEPU=D) |y 2L p))
+F +cQ+d+cpB(r) +eis(r) (168)

The total cost for integrated system is,

TC(Q,r) =TCy(Q)+TCp(Q,r)
Q*(g(63— 1)+ 1)(P(g(63— 1)+ 1) ) g

TC(Q,I’) :Kv+KB+F+hv<

2PD
g (% (Q(l;p))2 .\ sz(ll)—l’) N (r—uLH(r))W) 0465
+cQ+d +cpB(r) + cis(r) + %? ( ) + %’7 (9_30) (169)
We have cycle time T = Q(lD_p ), so the expected total annual cost would be

ETC(Q,r) = <Kv +Kp+F +hy (QZ(Q(% —D+ 1)(21;(5(93 —1)+1) —D)) o0

L(Q(1—p))* , @°p(1-p) S 2(1-p)
+hB(2 D + D + (r—puL+35(r)) D +¢0q03
a5 ()5 (6,) o
+cQ+d+cpB(r)+c¢i§ + = — | |
0 b () l () 51 q 52 930 Q(l—p)
(170)
Proposition 3. ETC(Q,r) annual total cost is strictly convex in (Q,r).
The proof is presented in Appendix A.
To minimise ETC(Q, r), we take first derivative with respect to Q and r,
I(ETC)  2D(cpB(r)+d+F +¢;5(r)+Kp+Ky) +hp (p* —1) 0°
20 2(p—1)Q?
(g8 = 1)+ D)(P(g(6:— 1) +1) D) a7
2(p—1)P
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Taking the second derivative, we have

J%(ETC) 2D(cpB(r) +Kp+Ky +d)

= (172)
00> (1-p)Q°
o 9*(ETC) . .
All parameters are positive, and o0 > 0. Therefore, there exists unique value for
Q™ given as
. —2PD(cpB(r) +d+F +¢;5(r) + Kg + Ky ) (173)
hg (p* = 1) P+hy(q(63 — 1)+ 1)(P(¢(—63) +q—1) +D)
The derivative of ETC(Q, r) with respect to r is
d(ETC)  DcypB'(r)+Dci5 (r) +hg(1—p)Q(1+35(r))
= (174)
dar (1-p)Q
Taking the second derivative, we have
9*(ETC) _ DcpB"(r)+35"(r)(hg(1 — p)Q+¢/D) (175)
ot (1-p)Q
o 9(ETC) . .
All parameters are positive, and —z>— > 0. Therefore, there exists unique value for
r* given as
Fo— (1_ h(1-p)Q )
(B;,(r)(l?(r) +5(r)—r) —Bp(r)) (D(cl —cp)+hpO(1 —p)) + (c;D+hBQ(1 —p))
V*:F7] (1_ hB(]_p)Q )
(850018050011~ 8,0) ) (DCcr =)+ 101 = ) ) + D+ (1 =)

(176)

Similar to the previous case, the rest of the models, r* equation will be the same since
the integrated cost function is changing only by constant. In the model where q is

deterministic and 63 is stochastic with standard uniform distribution, the supplier’s
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cost function per cycle will be

ETCy(Q) ZKv—hv( Ap 5 5 Hin(65/6)

+hV<Q2 (42 (L3 + Lo(Uz = 3) + (U2 = 3)U2 +3) +3q(La + Uz — 2) +3))

Q*(q(La+ Uy —2)+ )) no, ( )+TIQ

6D

+cpQ+crqQUe, a7

and the buyer’s total average cost with stochastic demand in a supplier’s cycle is

ETCs(Q,r) = K+ hs (% (Q(lgp))z + sz%_p) + (I’—HL-i-S_(r))Q(lD_p))

+F+cQ+d+cpB(r)+c;5(r) (178)
The expected total cost for integrated system is,

ETC(Q,r) = ETCy Q)+ETCB(Q, )

2 _
ETC(Q,) = Ky + hs <1 L (D P) (r—,uL—i—s_(r))Q(lD p>>

e ( 0*(4( L2+L2(U2—3)+(U2—3)U2+3)+3Q(L2+U2—2)+3)>
v
6D

_hy <Q2(61(L2 +U,—-2)+2)

1P )+Kv+F+CQ+CPQ+CrCIQH93

+%1 ( ) 1752Q“1n(93/93)+d+cbg(r)+czs_(r) (179)

The expected total annual cost is

Freten = (KB e (1 oz * Cr(r) + (r—pr+35(r)) ol _p))

2 D D D
o <Q2(q2(L§ +Lo(Uy —3) + (Us —3)Up +3) +3q(Lr +Up —2) +3))
\%

6D

o Q*(q(La+U2—2)+2)
v 4P

) + Ky +F +cQ+cpQ+crqOUp,

+%1( ) nQ“ln(Ga/%)+d+c‘b3(r)+cls‘(r)> (180)

Db
) o(1—p)
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To minimise ETC(Q), we take first derivative with respect to Q

J(ETC) D (4P(cpB(r)+d+F +¢;5(r) + Kg+Ky) + hyQ*(q(Lr + Uy —2) 4 2))

90 4(p—1)PQ>
v (¢ (L3 +Lo(U2 = 3) + (U2 =3)Uz +3) +3¢(La +Ur —2) +3)
6(p—1)
h 1
I B(p+1) (181)
2
Taking the second derivative, we have
0%(ETC)  2D(cpB(r)+d+F +¢;5(r) + K+ Ky) (182)
202 (1-p)Q?
All s d*(ETC) - -
parameters are positive, and i > 0. Therefore, there exists unique value for
Q™ given as
0" — —IZPD(C},B(I’)+d+F+Cl§(l’)+KB+Kv) (183)
~\/ 6hp(p? —1)P —2hy P (q2C +3gA +3) +3hyD(qA +2)

where C = (L3 + Ly(Uy — 3) + (U, — 3)Uy + 3) and A = (U, + L, — 2) and the unique

value for r* given as

(o hs(1—p)Q
d 1(1 (B;,(r)(E(r) +5(r)—r) —Bp(r)> (D(l; —c:; +hpQ(1 —P)) + (01D+hBQ(1 —P)> )

(184)

For the next model, g is stochastic with standard uniform distribution and 65 is

deterministic. Therefore, supplier’s cost function per cycle is

Q0 (L7 (63 — 1)>+ (L1 +U1)(83 — 1)((65 — )U; +3) +3))

ETCV(Q) ZKv+hv< 6D

+hV<Q2((1 — 93)4%)1 +U1)—2)

) +cpQ+c,0631y

no no, (&
5, Hinao/a) g ln(930) (185)
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and the buyer’s expected total cost with stochastic demand in the supplier’s cycle is

W2 21 -
ETCy(0,r) = K + hp (% (Q(IDP)) Y p(; p) +(r_.uL+S_(7’))Q(1D p))
+F+cQ+d+cpB(r)+ci3(r) (186)

The expected total cost for integrated system is,

ETC(Q,r) = ETCy(Q)+ETCs(Q,r)

ETC(Q,r) =Ky +Kp+F +cQ+cpQ+c, Q03114 + n5Q/~11n(qo/q) 1332Q (a)
0

ey <Q2 (L1(63—1)*+ (L1 +U1)(63 — 1)((63 — 1)U; +3) +3))

6D

20 _ _
<Q( 365 11)5;51+U1) 6D))+d+cb1§(r)+cls_(r)

g (1(Q(1—p))2+Q2p(1—p)+(F_HL+S_(},))Q(1D—1?)) (187)

+ hy

P2 D D

The expected total annual cost is

Freen = (KV+KB+F +eQ+crQ+cQ834y + 5Qu1n<qo/q> 1332Q (93 )
0

+hV(QZ(L%ws—l) +<L1+Ul>6<g3—1><(63—1>U1+3>+3))

hy (Q2 (—3(65 — 11)2DP(g1 +U))— 6D))

2 2 1 _
o (%(Q(IDP)) +Qp(; p)+(r_uL+s_(r))Q(lD p))

D
o(1-p)

+d +cpB(r) +cl§(r)) (188)

To minimise ETC(Q), we take first derivative with respect to Q

I(ETC)  2D(cpB(r)+d+F +¢;5(r)+Kp+Ky) +hp (p* — 1) 0°
0 2(p—1)Q?
hy (L3(65 — 1)+ (L + Uy )(6; — 1)((63 — 1)U; +3) +3)
6(p—1)
n th((93 - l)(L] +U1) +2)
4(p—1)P

(189)
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Taking the second derivative, we have

J*(ETC) _ 2D(cpB(r) +d +F +¢;5(r) + Kp + Kv)
J0? (1-p)0°

(190)

P*(ETC)

All parameters are positive, and 907

> 0. Therefore, there exists unique value for

Q™ given as

0 — —12PD(cpB(r) +d +F +¢;5(r) + Kg + Ky)
6hg (p> — 1) P —hy (2P (L3B*>+ (L1 4+ U, )B(BU, +3) +3) —3BD(L, + U;) — 6D)

(191)
where B = (63 — 1) and the unique value for r* given as
r*:Fl(l_ hB(l—p)Q )
(BB 51 =)= By(0) ) (Dler -+ a0t~ ) ) + (D401~ )
(192)

As our final model, where ¢ and 65 are both stochastic with standard uniform

distribution, supplier’s cost function per cycle is

0 0
ETCV(Q) =Ky +cpO+ CrQ.uq.u93 + %uln(qo/q) + %“ln(%/%o)
hy (QZL% (L3 +Lo(Us —3) + (U2 — 3)U> +3) )

18D
T Q°Ly (2L3U, + Ly (U (U — 3) 49) +2U1 (U2 — 3)U» 4 3) +9(U, — 2))
v 36D
n Q? (2U} (L3 + Lo(Uz — 3) + (Ur — 3)U> +3) + 9U (L, + U, — 2) + 18)
v 36D
2((L —2)(L 4
hv<Q 2+ U IZ( 1+U)+ )) (193)

and the buyer’s expected total cost with deterministic demand in a supplier’s cycle is

SN2 201 B
ETCB(Qar):KB‘i‘hB(%(Q(le)) +Qp(; p)+("—uL+s'(r))Q(1D p))
+F +cQ+d+cpB(r) +as(r) (194)
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The expected total cost for integrated system is,

ETC(Q,r) = ETCy(Q) +ETCg(Q,r)

0 0
ETC(Q,r) = Kp+Ky +F +cQ+cpQ+c Qg o, + %:uln(qo/q) + %.uln(ﬂz/(ho)

e (; (Q(ll;p))2 N sz(ll)—p) N (r_“LH_(r))Q(ll)—p))
272 2 _ _
+hv (Q L1 (Lz +L2(U2 183D)+ (UZ 3)U2 +3>
<Q2L1 (2L3U, + Ly (2U, (U2 — 3) +9) 42U, (U2 — 3)U» + 3) + 9(U> —2)))
36D

0? (2U} (L34 Lo(U> — 3) + (Ur — 3)Ur 4 3) + 9U (L, + U, — 2) + 18)
< 36D )
_hv<Q2((L2+U2 —8213(L1+U1)+4)>

) +d+ ch(r) -+ le(r)

+ hy

+ hy

(195)

The expected total annual cost becomes

0 0
ETC(Q) = <KB +Ky +F +cQ+cpQ+c,Quglle, + %Nln(qo/q) + %."Lln(63/930)

+h3<1(Q(1—)) L@p=p) Q(l—P))

— S s B

Q’L2 (L3 + Ly (U> —3) + (U, — 3)U, + 3)
( 18D
<Q2L1 (2L3U, + L, (2U; (U2—3)+9)+2U1((Ug—3)U2+3)+9(U2—2))>

+hy )+d+cb1§(r) +¢15(r)

+ hy

36D
0% (2UF (L3 + Lay(Us —3) 4+ (U2 —=3) U + 3) + U1 (Ly + Ur — 2) + 18))
36D

Q*(Ly +Us —2)(L1 +Uy) +4) D
—hv< 2 2 < 1 1 )>Q(1_p)

+hy

(196)

To minimise ETC(Q), we take first derivative with respect to Q

Jd(ETC)  D(cpB(r)+d+F +c;5(r)+Kg+Ky)
20 (p—1)Q°
hyLy (2L3U, + Ly (2U (Us — 3) +9) + 22U, (U2 — 3)U> +3) +9(U» — 2))
a 36(p—1)
hy (2UE (L34 Lo(Uy — 3) + (Us = 3)U2 4+ 3) — U (Lo + U, — 2) — 18)
36(p—1)
hy (D(Ly + U, —2)(Ly +Uy) +4D) +4hg (p* — 1) P
+ 8(p—1)P
hy L3 (L3 + Ly (U — 3) + (U2 —3)U> +3)
B 18(p—1)

(197)
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Taking the second derivative, we have

OXETC) _ 2D(cpB(r) +d+F +cis(r) + Kp+Ky) (198)
00?2 (1-p)Q3

d%(ETC)

All parameters are positive, and o0 > 0. Therefore, there exists unique value for

Q™ given as

36hs (p> — 1) P—hy (2P (2L3C + (L1 + U, ) (2U,C +9A) + 18) —9DAB — 36D)
(199)

0 — \/ —T72PD (cpB(r)+d+F +¢;5(r) + Kg + Ky)

where C = (L3 + Ly(Uy —3) + (U, = 3)Uy +3), B= (L1 + U;) and A = (Up + L, — 2)

and the unique value for r* given as

(g hs(1-p)Q
(0 (B0)(B0) 50 —r) 8,0 (D(cz—c:;+hBQ(1—P))+(01D+hBQ(1—P)>)

(200)

3.2.3. Integrated Models with partial backordering when g and 65 follow beta

distribution

Different than standard uniform distribution, in this section we will examine the
four models when g and 65 follows beta distribution. As the first model, supplier’s

total cost per cycle for deterministic g and 65 is

2 _ _ _
TCV(Q):KV+hV(Q (18~ )+ D(Pla(®s ~ )+ 1) D>>+%_?m(%)
+ %ln (:—;) +cpQ +¢,0q6; 20D

and the buyer’s total average cost with stochastic demand and partial backordering is

SN2 2001 B
TCB(Qar>:KB+hB(%(Q(1Dp)) +Qp% p)+(r—uL+s-(r))Q(1D p))
+F +cQ+d+cpB(r) +¢3(r) (202)
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The total cost for integrated system is,

TC(Q,r) =TCv(Q)+TCs(Q,r)

0*(q(65—1)+1)(P(q(65—1)+1)—D)
o ZPg : )+CPQ

TC(Q,F) :Kv+KB+F+hv(

L(Q(1-p))*  @*p(1-p) L w21 -p)
(3 QI CPOZP) oy 450 202 ) 4 040
+d+cpB(r) +c;5(r) + QTI ( ) +@ <—) +cQ (203)
51 82 93()
We have cycle time T = Q(lgp ) , so the expected total annual cost would be

ETC(Q,r) = <Kv —I—KB+F+hV(Q2(q(93 —D+ 1)<21;(g(93 —1+1) —D)) o0

+hp (% (Q(l;p))z + sz(ll)_p) +(r— uﬁﬂﬂ)@) +¢r0q6s
+d + cpB(r) +c13(r) + Q(S? ( ) +% <9—30> +CQ> ﬁ
(204)
To minimise ETC(Q, r), we take first derivative with respect to Q and r,
Q(ETC) _ 2D(cyB(r) +d+F +cii(r) + Kp+ Ky) +hg (0> — 1) 0>
90 2(p—1)Q?
_hv<q<es—1>+;21<DP_(ql<)e;—1>+1>—D> (205)
Taking the second derivative, we have
92(ETC)  2D(cy,B(r)+Kp+ Ky +d) (206)

002 (1-p)0?

2
All parameters are positive, and 9 gEgﬁc) > 0. Therefore, there exists unique value for

Q™ given as

0= \/h( —2PD(cyB(r) +d + F +ci5(r) + K+ Kv) 07
B

p*—1)P+hy(q(63—1)+1)(P(q(—63) +¢—1)+D)
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The derivative of ETC(Q, r) with respect to r is

Jd(ETC) _ DcpB'(r) +Dc;s' (r) +hg(1— p)O(1+35(r))

208
or (=)0 2o
Taking the second derivative, we have
PETC) _ DeyB(r) +5'(r) (hs(1 — )0 +ciD) 09)
ot (1-p)Q
All . 9?(ETC) . .
parameters are positive, and —5>— > 0. Therefore, there exists unique value for
r* given as
Fo) - (1_ h(1-p)Q )
<B§7(r) (B(r)+5(r)—r) B,,(r)) <D(c1 —cp)+hg0O(1— p)> + <CZD+hBQ(1 — p))
P =F1 (1 - hg(1—p)Q )
(B;,(r) (B(r)+35(r)—r) — B,,(r)) (D(cl —cp) +hp0(1— p)) + (CID—i-hBQ(l —p))

(210)

Similar to the previous case, the rest of the models, * equation will be the same since
the integrated cost function is changing only by constant.

For the model where ¢ is deterministic and 63 is stochastic with beta distribution,
first we will calculate supplier’s cost. With 63 given as random variable, it has an
upper (U;) and lower (L;) bounds with the probability distribution function of g, and
shape parameters are 0tg, = 3 and g, = 1. The expected value of the total inventory

of nondefective items during #; will be

2 ((1-¢)P—D)Qy (65— Ly) ™~ (U, — 63)Pos !
E(Al) = /Lz ZPZ Vg de}} ( = B(OC93,[393)(U2 _Lz)(193+,3931>

_ (1-q)P-D)Qy /LU2<B( (6 — Lo)? >d93 (B(a,ﬁ)z (a_l)!(ﬁ_l)!>

2P2 3,1)(Us — L)} (a+p—1)!
_ (1—q)P-D)Qy
- 5 211)
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And the inventory during 1, is

U
E(Ay) =

_q0y (BUy+Lo)((Ly—5)g+5) +64qU3)
N 20P

q0%D ((3Uz + L) (Lag +5) + 6qU3)
a 20P2

_ 202002 _ . 2
(P—D)q030}  ((1-9)P D)q93Qv>g2d93

212)

During 3, the inventory becomes

U ID((P—D)CI93QV +((1 _Q)P_D)Qv)zgzd(%

E(A3) = /L2 3 7D
02 (q2 (L% +3(Ly —5)Us — Ly + 63, + 10) 4 5q(La+3U, —4) + 10)
B 20D
07 (¢* (2L3 + Lo (6U> — 5) 43U, (4U, — 5)) + 10g(Ly + 3U> — 2) +20)
20P
0°D (q (3U>(Lag+5) + Lao(Lag +5) + 6qU3) + 10)
* 20P2

(213)

The expected value of the total inventory of defective items during #; will be

qo3y
E(I) = do
(') /Lz op 82483

_ 40y (L2 +3Us)
8P

(214)

and during 7,

Uy 2Q292
E(Ty) = /L 4 23 02dy
2
PO (L3 +3LUs + 6U3)
- 20P

(215)
The expected annual cost is

ETCv(Qv) =Ky +hy(E(A1) +E(A2) + E(A3) + E(I') + E(I2))

L ne, ne
20 () 12T (0] o rcamme cto
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where Uspera; = % = ?T and £ {ln (51—30)1 <: Hin(o; /930)> is derived as follows:

E [m (:—;ﬂ _E [ln(93) - 1n(930)}

— E[In(65)] — E[In(65,)] 217)
Here,
E[In(63,)] = In(63,) (218)
since s, is constant. However,
E[In(63)] # In[E(63)] (219)

Therefore, we need to find E(In(63)) which is a function of 65.

E(In63) :/ In6s- 9d65

= ” 1n93—3(63 _L2)2
Ly (U2~ Lp)?
6L3In(Ly) + (Us — L) (1113 — TLyUs +2U3)
B 6(L, — U,)?
U (313 —3L,U> 4+ U3) In(U>)

_ 220
(Lh— ) (220)

dos

Finally,

el 8] — 6L31n(Ly) + (Ur — L) (1113 — TL,U> +2U3)
1 N 6(L, — U2)3
U, (313 —3L,U, + U3) In(U>)

_ TR=TAE —1In(63,) (221)
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The supplier’s cost function per cycle will be

2% (L2 +3(Ly — 5)U> — 5L, + 6U2 + 10
ETCV(Q):KV+hV<Qq Lz +3(Le 2)01; 2T ))

2 _ _ —
hy (Q (ZP (5q(L2+3U2 4) —|—410(2D 5D(q(L2—|—3U2 4) +4)))

7751Q ( ) 1152QH1n(e3/93 +cpQ +crqQOUp, (222)

and the buyer’s total average cost with stochastic demand in a supplier’s cycle is

ETCp(Q,r) = Kp +hg (% (Q(I;p))z + sz(ll)_p) + (I’—IJL—i—s_(r))—Q(lD_p))

+F +cQ+d+cpB(r) +¢;5(r) (223)
The expected total cost for integrated system is,

ETC(Q,r) = ETCy Q)+ETCB(Q7 )

1( 2n(1 — 1—
2 2 2
q +3(L2—5)U2—5L2+6U2 +10)
+hv( 50D )+KV+F
o Q% (2P (5q(Ly +3Uy —4) +10) —5D(q(Ly + 3U, — 4) +4))
v 40PD
+cQ+cpQ+crqQue;, + %an ( p ) + 1332Q“1H(93/930)
+d+cpB(r) +c15(r) (224)
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The expected total annual cost is

2a2 (L2 +3(Ly — 5)Uy — 5L, + 6U2 + 10
+hv(Qq (13 +3( ;0; 27 22 ))+Kv+F

Ty (Q2 (2P (5q(Ly +3Uy —4) +10) —5D(q(L, +3U> — 4) +4)))

r— +s‘(r)>—Q(1D_ p)>

40PD

no. (qo no
+cQ+cpQ+crqQUe, + 5 In (;) + Euln(93/930)

D

225
O(1-p) (22>

+d+cb1§(r) —|—Cl§(r))

To minimise ETC(Q), we take first derivative with respect to Q

J(ETC) D (8P(cpB(r)+d+F +c¢;5(r) + Kg+Ky) +hyQ*(q(Lr +3U, — 4) +4))

°Le, 8(p—1)PQ?
10k (p?—1) —hy (¢* (L3 +3(L, — 5)U, — 5L, + 6U3 + 10))
20(p—1)
h Lr+3U,—4)+2
v (q(La 43U, —4) +2) (226)
4(p—1)
Taking the second derivative, we have
0*(ETC)  2D(cpB(r)+d+F +c;5(r)+Kp+Ky) 27
0Q? (1-p)Q°
. d*(ETC) . .
All parameters are positive, and —aor 0. Therefore, there exists unique value for
Q™ given as
0 = —40PD(cpB(r)+d +F +¢;5(r) + Kg + Ky) (228)
~ \[ 20hp (p? — 1) P —2hy P (q*C + 5A+10) + 5hyD(A +4)

where C = (L3 +3(L, — 5)Us — 5L, +6U3 +10) and A = (L, +3U, — 4) and the unique

value for r* given as

(o hs(1—p)Q
' 1(1 (B;(w(é(r) +5(r)—7) —Bp<r)> (D(i —c:; +hpQ(1 —p)) + (czD+hBQ<1 —P>> )

(229)

For the next model, g is stochastic with standard uniform distribution and 63 is
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deterministic. With g given as random variable, it has an upper (U;) and lower (L)
bounds with the probability distribution function of g; and shape parameters are of; = 1

and B, = 4. The expected value of the total inventory of nondefective items during #,

will be
Ui ((1—¢q)P—D)Q? — L)% (U, — )P
Ea) = /L1 q2P2 Faidq <g1 - zi(qaq,ﬁlq))(Ul (—il)i)Jrﬁq—‘ >
_(=¢g)P=D)Qy [V (U1 —q)° _(e=DYB-1!
- [ Grmny e (e =)
_ Oy (P(5—4L1—U;)—5D)
- 10P2 (230)

And the inventory during 1, is

, /Lul ((P—D)q2932Q‘2, .\ ((1—q)P—D)q93Q‘2,)gldq

2P2 P2
0763 (10L7(P(6; —2) — 63D) +4L1 (P((63 —2)U; +6) — D(6:U; +6)))
B 30P2
Q‘2/93 (U1 (P((93 —2)U1 —|-6) —D(93U1 +6)))
+ 30P2 (231)

During #3, the inventory becomes

Uil ((P—D)g6:0v +((1—g)P—D)Qv’
E(A3) = =D
(A3) /Ll > ( 7D g1dq
_ 07 (10L}(65 — 1)° + (4L, + Up)(65 — 1)((65 — 1)Uy +6) +15)
30D
07 (10L5(63 — 1)65+ (4L1 +U1)(65((65 — )U; +6) —3) +15)
15P
07D (65 (10L165 +4L; (63U +6) + Uy (63U, +6)) + 15)
+ (232)
30P2
The expected value of the total inventory of defective items during #; will be
U
E(T'y) / 1q93QV gi1dq
L
21,076 2 0:U
_ 1QV 3+Qv 3U1 (233)

5P 10P
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and during £,

"2 405 63

E() = de
(I2) 2P 82d6;
0767 (10L7 +4L,U, + U})
N 30P

The expected annual cost is

ETCv(Qv) =Ky +hy(E(A1) +E(A2) + E(A3) +E(I') +E(T2))

no no
+6—1E{ (q )] +El (930) +cpQ+cr 630

where U, = ﬁ = % and E {ln (q(]—‘))} (z Hin(g, /q)) is derived as follows:

E[in (£2)] - 1(an) - (o)

= E|In(q0)] — E[In(q)]

Here,

E[In(go)] = In(qo)

since qq is constant. However,

E[ln(g)] # In[E(q)]

Therefore, we need to find E(In(g)) which is a function of g.

E(Ing) =/ Ing-g1dq

U 4(U;—q)
Ing ( 1 6])4d
L (Ur—Ly)
_ Li(L—20y) (L3 —2L,Uy +2U7) In(Ly)

(L —Un)*
 (3L] — 130301 +23L,UF =25U7) | UfIn(U))
12(L1—U1)3 (LI_U1)4
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(235)

(236)

(237)

(238)

(239)



Finally,

E|n(%)] =ntan) - (L1 —201) (13 — 2L U1 +207) (L)

(L1 —Uy)*
(3L3 — 13L3U, +23L,U —25U5) U In(Uy)
— (240)
12(L; —Uy)3 (L —Uyp)*
Therefore, supplier’s cost function per cycle is
0% (10L3(65 — 1) +4L (65— 1)((63 — 1)U; 4 6))
ETCV(Q) =Ky +hy
30D
<Q2 (P((6; — 1)U ((63 — 1)Uy +6) +15) —3(6; — 1)D(4L, + Uy ) — 15D)>
+ hy
30PD
no no
+cpQ+c, 0031, + 5 < Min(go/q) T < 5 In (630> (241)

and the buyer’s expected total cost with stochastic demand in the supplier’s cycle is

ETCg(Q,r) = Kp+hp (% (Q<1;p))2 + QZ‘D%_p) + (r—,llLJrE(r))—Q(ll)_p))

+F +cQ+d+cpB(r) +¢;5(r) (242)
The expected total cost for integrated system is,

ETC(Q,r) = ETCy(Q) +ETCp(Q,1)

ETC(Q,r) = Ky + Kp+F +¢Q +cpQ+ ¢, 00311 + 5Q“1n (a0/0) T:S;Q (93 )
N Q? (10LF (63 — 1)* +4L, (65 — 1)((63 — 1)U, +6))
" V< 30D >
m Q> (P((6; = 1)U1((63 — 1)U; +6) +15) —3(6; — 1)D(4L, +U;) — 15D)
Y 30PD
1(Q(1—p))? 2n(1 — 1—
g <2(Q( Dp)) L2 p(D p)+(r—uL+§(r))Q(D p)>
+d+cpB(r) +ci5(r) (243)
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The expected total annual cost is

)
ETC(Q,r) = (Kv +Kg+F +cQ+cpQ+c,0031,+ %‘?ulrl(qo/q) + ngzQ In <933)
0

h <Q2 (10L3(85 — 1)? + 4Ly (6: — 1)((65 — 1)U, +6)) )

30D
m (Q2 (P((8; — 1)U ((8; — 1)Uy +6) +15) —3(6; — 1)D(4L; + Uy) — 151)))
Y 30PD

h <1 (U =p)* &P =P) | (i 5

2 D D

Q(lD—P)>

D

= 244
O(1-p) (249

+d+ CbB(I’) + le(r))

To minimise ETC(Q), we take first derivative with respect to Q

J(ETC)  30PD(cpB(r)+d+F +¢;5(r) + Kp+Ky) + 15hp (p* — 1) PQ?

a0 30(p—1)PQ?
_ hy (10L7(63 — 1)* + (4L1 + U1)(65 — 1)((6; — U1 +6) +15)
30(p—1)
hy ((6; —1)D(4L, +U;) + 5D) (245)
10(p—1)P
Taking the second derivative, we have
0*(ETC)  2D(cpB(r)+d+F +c;5(r)+Kp+Ky) (246)
00> (1-p)Q’
. 9?(ETC) . .
All parameters are positive, and — oz 0. Therefore, there exists unique value for
Q™ given as
0 = —30PD(cpB(r) +d+F +¢;5(r) + Kg + Ky)
~ \ 15hg(p? — 1)P — hy P(10L2 B2 4 (4L, + U})B(BU; + 6) + 15) 4 3hy D(4BL; + U, B +5)
(247)
where B = (63 — 1) and the unique value for r* given as
P :F1(1_ hg(1—p)Q )
(B;,(r) (B(r)+35(r)—r)— B,,(r)) (D(cl —cp) +hp0(1— p)) + (CID—i-hBQ(l —p))
(248)

Our final model is where g and 63 are both stochastic with beta distribution. With

g and 63 given as random variables, they have an upper (U;,U;) and lower (L;,L,)
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bounds with the probability distribution function of g;,g> and shape parameters are
0y = 19,09, = 1 and B, = 24, B, = 9. The expected value of the total inventory of

nondefective items during #; will be

U q)P—D)0?
E(A;)
1) /L/ 2P2 8182dqd6;

(P(—5+4L, +U;) +5D)
10P2

(249)

And the inventory during 7, is

Uz 292Q 1—q)P—D)q6:0?
E(A2) /L / ( V+(( 9 I )46:0y 8182dqd6;

0} (L3 (10LF +4L U, +U}) (P—D))
9 300P2

0y Ly (10L3(3U, — 5) + 4Ly (U1 (3U> — 5) + 15) + Uy (U, (3U» — 5) + 15))
* 300P

03 (LoD (10L3U, 4+ 4Ly (U U> +5) + Uy (U U2 +5)) )
y 100P2

03U, (10L3(2U, — 5) +4L1 (U, (2U, — 5) + 15) + Uy (U, (2U, — 5) 4 15))
* 100P

03 (U»D (20L3U, + L1 (8U 1 U, + 60) + Uy (2U U, + 15)) )

100P2

(250)
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During 3, the inventory becomes

U (U1 ((P—D) P-D 2
E(A3)=/L/ < )a8:Qv + (1~ ) )Qv) 8182dqd 63

PD
_ 0 (L3 (L3 +La(3U2 —5) +6U3 — 1505 + 10))
30D
0% (L1 (L3Uy + Ly (Ui (3U> — 5) + 15) + Uy (6U3 — 15U, + 10) 4 45U, — 60))
* 75D
07 (UE (L3 + Ly (3U, — 5) + 6U3 — 15U, + 10) + 15U (L, + 3U, — 4) + 150)
M 300D
07D (L3 (2L3 + Ly (6U> — 5) + 3U,(4U, — 5)))
B 30PD
07D (Ly (2L3U, + Ly (U, (6U, — 5) +30) + 3 (4U, U7 — 5(U; — 6)U, — 20) ) )
B 75PD
07D (Ut (2L3 4 Lo (6U> — 5) 43U, (4U — 5)) + 30U, (Lo + 3U» — 2) +300)
B 300PD
QVD (L3 (10L3 +4L,Uy + U}) 4 3Ly (10L3U, + 4Ly (U1 U + 5) + Uy (U U, + 5)) )
300P2
. 07D (3 (20L3U3 + 4L, U, (2U U, + 15) 4+ 2URU3 + 15U, U, 4 50))
300P2

(251)

The expected value of the total inventory of defective items during #; will be

U, Uy 93
E(T') /L/q Y ¢182dqd 65

_ QV(4L1 + Ul)(L2 + 3U2)
40P

(252)

and during 7,

U, rU, q
E(Ib) = L / glgqud93

_ op(1org +4L1U1 +UR) (L3 +3LU, +6U3)

253
300P (253)

The expected annual cost is

ETCy(Q) = Ky +hy (E(A)) +E(A2) + +E(T'1)+E(T2))

RO RN ——

(04 . .
where 1, = ﬁ = %,,u93 ﬁ = % and E [ln (%)1 JE [ln <96—330>] are derived in

previous models.
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Supplier’s cost function per cycle is

0 Y
ETCy(Q) = Kv +cpQ +c,QHqHe, + naTwao/q) + %“lnwg/eso)
h <Q2 (L3 (L3 +3(L2 = 5)Uz — 5L, + 6U3 + 10)) )
Vv

30D
+hv<Q2 (U3 (L3 +3(Ly — 5)Us — 5L, + 6U3 + 10))>

300D
Y hy (Q2 (L1 B3(Ly = 5)U1 Uz + Lo (L — 5)Uy + 15))))

75D
hy (Q2 (4Ly (6U1U3 +5(2Uy +9Us — 12)) + 15U (Ly +3Us — 4) 4 150) )
300D

Chy (Qz (L, +3U, 44;);4& +Uy) +20)> 055)

and the buyer’s expected total cost with deterministic demand in a supplier’s cycle is

ETCy(Q,r) = K +hs (% (Q(l;p))z + sz(ll)_p) + (r—uﬁs‘(ﬂ)@)
+F+cQ+d+cpB(r)+c;5(r) (256)

The expected total cost for integrated system is,

ETC(Q,r) = ETCy(Q) +ETC3(Q,r)

ETC(Q,r) = Kg+Ky +F 4 cQ+cpQ +c,Qpq Mo, + Tng:uln(qo/q) + Tzslevlm(ege%)

2
\hg <I(Q(1D p))* Q (D p) (r—uLH(r))Q(lD p))
<Q2 (4L1 (6U,\U3 +5(2U; 49U, — 12)) + 15U, (Lp + 33U, — )+150)>
300D
+hv<Q2 L2 L2+3 LZ—S)U2—5L2+6U2+10 )+d+ch )+ ()
30D
+hv<Q2 U (L3 +3(Ly — 5)U> — 5L, + 6U3 + 10)) >
300D
+hv<Q2 3(Ly—5)U Uy + Lo((Ly — 5)U; +15) ))
75D
2
hv(Q L2+3U2—44(-))}()4L1+U1)+20)> (257)
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The expected total annual cost becomes

ETC(Q) = (KB + Ky +F +cQ+cpQ+c,Qlgle, + nalQum(qo/q) + 1132Q.u1n(93/930)
1(Q(1=p))*  @*p(1-p) o(1-p)
+h3< 5 + 5 +( D
Q2 (4L, 6U1U2+5(2U1+9U2—12))+15U1(L2+3U2—4)+150)>
300D

r— e +5(r))

0% (L3 (L3 +3(Ly — 5)U> — 5L, + 6U3 + 10))
30D
<Q2 U? (L3 +3(Ly — 5)U> — 5L, + 6U3 + 10) )

+ hy +d+cpB(r) +¢;5(r)

h

_|_
<

300D
Q% (Ly (3(Ly — 5)U Us + Lo ((Ly — 5)Uy + 15) )>

h
+hy 75D

((Ly+3U, — )(4L1+U1)+20)>> D

(258)

40P o(1—-p)

To minimise ETC(Q), we take first derivative with respect to Q

Jd(ETC)  600PD(cpB(r)+d+F +c;5(r) +Kp+Ky)
P 600(p — 1)PQ?
hg (PP —1)  hy (L3 (L3 +3(La— 5)Us — 5Ly +6U3 + 10))
2(p—1) 30(p—1)
hy (U} (L3 +3(Ly — 5)U; — 5L, + 6U3 + 10))
B 300(p—1)
hy (L1 (3(Lo — 5)U1Us + Lo ((Ly — 5)Uy + 15) + 6U U3 + 52U, +9U, — 12)))
75(p—1)
hy (Uy(Ly 43Uy — 4) +10) + 15D(Ly +3U — 4) (4L + Uy ) + 20D

— 200p—1) (259)

+

Taking the second derivative, we have

d*(ETC) _ 2D(cpB(r) +d +F +¢;5(r) + Kp + Kv)
20? (1-p)Q°

(260)

J*(ETC)

All parameters are positive, and —3 o2

> 0. Therefore, there exists unique value for

Q* given as

261)

0 — —600PD(cpB(r) +d +F +¢;5(r) + Kg+ Ky)
~ \[ 300hp (p2 — 1) P —hy (2P (C+E) — 15D(Ly + 3U, — 4) (4L + Uy ) — 300D)

where C = (L5 +3(Ly — 5)Us — 5Ly +6U3 +10)(10L2 + U?) and E = (4L, (3(L, — 5)U U +
Ly((Ly — 5)Uy + 15) + 6U U2 + 5(2U; +9U, — 12)) + 15U, (L, + 3U, — 4) +150) and the
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unique value for r* given as

o, hs(1—p)Q
' 1(1 (B;(rxé(r) +5(r)—7) —Bp<r)> (D(iz —c; +hpQ(1 —p)) + (czD+hBQ(1 —P>> )

(262)

rf=

3.2.4. Integrated Models with partial backordering when g and 6; follow triangu-

lar distribution

After beta distribution, in this section we will examine the four models when ¢
and 6 follow triangular distribution. Let [Ly,m,U,] are the parameters of triangular
distribution for defective rates and [L,,my,Us] for reworking rates where [L,L;] are
the lower limits and [U;,U,| are the upper limits, respectively. Additionally, [m},m;]
are the mode of the triangular distribution. Since these parameters are proportions,
they satisfy the condition of 0 < L; <m <U; <1land 0 <Ly <my <Up < 1. As the

first model, supplier’s total cost per cycle for deterministic g and 63 is

0*(g(63— 1)+ D)(Plg(6s ~ )+ 1) D)) 21, ()

TCV(Q) =Ky +hy ( 2PD 5, p

0
+ %ln (6_330> +cpQ +¢,0965 (263)

and the buyer’s total average cost with stochastic demand and partial backordering is

1(Q(1—=p))? O*p(1— 1—
TC(0.r) = K + hs (E(Q( Dp)) L9 p(D P\t 50 - p))
+F+cQ+d+cpB(r)+c3(r) (264)
The total cost for integrated system,
TC(Q,r) =TCy(Q)+TCp(Q,7)
2 - — _
TC(Q>7’):KV+[(B+F+hV(Q (q(65 1)+1)(Zl;(g(93 1)+1) D))+CPQ

2 D D

+hB<1 (0(1—p))? 4 Q’p(1-p) _|_(r—/,LL+s'(r))Q(1 —p)) +¢,0q0;

D
_ 0
+d+cpB(r) +¢;5(r) + Qb,—?ln (%) + % In <9—330) +cQ (265)
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o(1-p)
D

We have cycle time T = , so the expected total annual cost would be

0*(q(65—1)+1)(P(q(65— 1)+ 1) —D)
o ZPg : )+CPQ

ETC(Q,r) = <KV +KB—|—F+hv(

L(Q(1-p))* , @°p(1-p) oy 2(1-p)
+hp (5 D + 5 +(r—pur+3(r)) D +¢,0q63
vt + () + 50 (5, ) <)o
+d+cpB(r)+ci§ +—=In{—|+cO )
B +ast) g, 5 "\oy,) ) o)
(266)
To minimise ETC(Q, r), we take first derivative with respect to Q and r,
I(ETC)  2D(cpB(r)+d+F +¢;5(r)+Kp+Ky) +hp (p* — 1) 0°
90 2(p—1)Q?
—1)+1)(P —1)4+1)—-D
_ hy(g(8s =)+ D(P(g(6:— 1) +1) D) 67
2(p—1)P
Taking the second derivative, we have
d%(ETC)  2D(cpB(r) +Kp+Ky +d)
> = 3 (268)
20 (1-p)Q
o 9*(ETC) . .
All parameters are positive, and — o 0. Therefore, there exists unique value for
Q* given as
. —2PD(cpB(r) +d+F +¢;5(r) + Kg + Ky ) (269)
hg (p* = 1)P+hy(q(63 — 1)+ 1)(P(q(1 - 63) = 1) + D)
The derivative of ETC(Q, r) with respect to r is
d(ETC) DcypB'(r)+Dc;5 (r)+hg(1—p)Q(1+5(r))
= (270)
Jor (1-p)Q
Taking the second derivative, we have
9*(ETC) _ DcpB"(r)+35"(r)(hg(1 — p)Q+¢/D) 271)

arr (1-p)Q

100



2
All parameters are positive, and 9 g’ifc) > 0. Therefore, there exists unique value for

r* given as
o a1 - p)0
= (! (BB +50) 1)~ By(0) (D(l; c;szQ(l p)+ (an et -p) )
r*:F1<1— hg(1—p)O )
(850180151 = )=, ) (Dler ) + (1 =) ) + (D4 (1 - )
(272)

Similar to the previous case, the rest of the models, * equation will be the same since
the integrated cost function is changing only by constant.

For the model where q is deterministic and 65 is stochastic with triangular
distribution, first we will calculate supplier’s cost. With 63 given as random variable,
it has an upper (U) and lower (L;) bounds with the probability distribution function of

g> and mode is m,. That is,

2(63—1y)
Trbm-Ty S8 <m
82 =
2Up ~6;) my < 03 <U,

(U2—Lo)(Ur—m3)
The expected value of the total inventory of nondefective items during #; will be

Uz ]_ _ 2
E(Al):/L (( CI)Q’PPZ D)Qvg2d93

_<(1—q)P—D)Q%</’"2 2(6; — Lo) d93+/’f2 2(U>— 63) )d93>
L

2P? » (U2 —Ly)(my — Ly) my (Uz = La)(Uy — my
_a- q);; D)0y 273)
And the inventory during 1, is
E(dy) = / ((P—%%Q% (@ —q)PP—2D>q93Q%>g2d93
_ 99y (L3g+La(q(ma+ Us —4) +4) +q (m3 + (my + U2) (U2 —4)) +4(m2 + U2))
B C]Q‘Z/D (L%q + Lo (q(my +Us) + 4)1;;12(:;12%};- myUy + U22) +4(my + Uz)) (274)
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During 13, the inventory becomes

U» _ _ _ 2
E(As) :/L2 ;D<(P D)q65Qv J;(D(l q)P D)Qv> 0265

OV (L3 +Lo(my+Us—4) +m5 + (my+ Us) (U —4) +6)

N 12D

07q* (L34 Lo(my + Us — 2) + (my — 2) (U + mp) 4+ U3)
B 6P
n 0V (2q(Lo+ma+Us—3)+3) 0 (q(2La +2my +2U> —3) 4 3)
6D 3P
N 03D (q (L3q+Lo(q(ma +Us) +4) + g (m3 +maUs +U3) +4(ma +Us)) +6)
12P2

(275)

The expected value of the total inventory of defective items during #; will be

U-
E(T)) /2q93QV ,d0s
Ly

_ q0% (Ly +my +Us)
6P

(276)

and during 7,

U
q*07 6
E(2) :/L 2P g a6
2
0y (L34 La(ma+ Up) +m3 + myUs + U3)

277
12P @77

The expected annual cost is

ETCy(Qv) = Kv+hv(E(A1)+E(A2) +E(A3) +E(I'1) +E(IR))
0

ULZ no 3

where g, = M = % and E [ln <%)] (: Hin(o; /93O)> is derived as follows:

E [m (:33())} _E {111(93) —1n(e30)}

— E[In(63)] — E[In(85,)] (279)
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Here,

E[In(63,)] = In(63,) (280)

since 6, is constant. However,

E[In(63)] # In[E(65) (281)

Therefore, we need to find E (In(63)) which is a function of 6.

E(In63) = / In6s3-2,d6s

m _ U _
Y TP RIC el ) d63+/21n93 202-6) o

L (Uz = Ly)(my — Lp) m (Uz— L) (U —my)
_ L3In(Ly)(ma— Un) = (L2 — U2) (3(La — ma) (mz — Ua) + 2m3 In(my))
B (Lo —mp) (L2 — Uz)(my — U2)

U22 ln(Uz)

" (L — Up)(my — 1) (282)

Finally,

E {m <§)} _ LZIn(Ly)(my — Uz) — (Lp — U2) (3(La — m2) (ma — Up) + 2m3 In(my))
E (Lo —ma)(Ly — Ua)(m2 — Un)
Uzzln(Uz) Cn
= Us)(m—15)  M(6x) (283)

The supplier’s cost function per cycle will be

: - - —
ETCy(0) = Ky + hv<Q (P(4q(Ly+my+U, —3) +162)PDZD(CI(L2+m2+U2 3)+3))>

o <Q2q2(L§+Lz(m2+Uz—4)+m§+(mz+Uz)(Uz—4)+6)>
%4

12D

+ ’QIQ In @) + 'ZszQulnwa o) +CPQ+ c:gQHe, (284)

and the buyer’s total average cost with stochastic demand in a supplier’s cycle is

ETC3(Q,r) = Kp + hg (% (Q(I;p))z - sz(ll)_p) + (I’—IJL—i—S_(r))—Q(lD_p))

+F+cQ+d+cpB(r)+ci5(r) (285)
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The expected total cost for integrated system is,

ETC(Q,r) =ETCy Q)+ETCB(Q7 )

2 D
T (4q(L2+m2+U2—3)+6)—2D(q(L2—|—m2+U2—3)+3))
v 12PD
o 0%q* (L3 + Lo(my+ Uy — 4) +m3 + (my + Us) (U, — 4) +6)
v 12D

ETC(Q,7) = Ky + hy (1 ), 2ol (r—,LLL+§(r))—Q(1_p))
P

+ Ky +F +cQ+cpQ+crqQug, + %lQ (g) 1152Q“1n<93/"*o>

+d+cpB(r) +c15(r) (286)

The expected total annual cost is

ETC(Q,r) = <KB+hB<l(Q(l_p))2+sz(l_p)_’_(r_uL+§(r))Q(1—p)>

2 D D D
w Q% (P(4q(Ly+my +Us —3) +6) —2D(q(Ly +my + Uy —3) +3))
4 12PD
o 0*¢* (L3 + Lo(my +Us — 4) +m3 + (ma + Up) (U2 — 4) +-6)
v 12D

+Ky +F +cQ+cpQ+crqQUg, + %—Q (;) + ngfﬂln(es/eso)

D

- 287
O(1—p) (87

+d+cpB(r)+ cls'(r))

To minimise ETC(Q), we take first derivative with respect to Q

J(ETC)  12PD(cpB+d+F +c;5+Kp+ Ky) +6hg (p* — 1) PQ?
00 12(p —1)PQ?
hy (2q(Ly +mp+Us —3)+3) —D(q(Ly + mp + Uy — 3) +3)
6(p—1)
hyq? (L3 + La(my + Uy — 4) +m3 + (my + Ua) (Uy — 4) +6)
B 12(p—1)

(288)

Taking the second derivative, we have

J*(ETC) _ 2D(cpB(r) +d +F +c;5(r) + Kp+ Ky)
002 (1-p)0°

(289)
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d*(ETC)

All parameters are positive, and > 0. Therefore, there exists unique value for

dQ?

Q* given as

0 — —12PD(cpB+d +F +c;5+ K+ Ky) (290)

~ \/ 6hp(p? —1)P —hyP(q?A+4¢C +6) +2hyD(qC +3)
where A = (L% —{—Lz(ﬂ’lz + U, — 4) + m% + (U2 — 4)(1’)12 + Uz) + 6) and
C = (L +my + U, — 3) and the unique value for r* given as
r*:F'(l— hg(1—p)Q )
(850018015001~ - 8,0) ) (DCcr =)+ 101 = ) ) + (cD-+ (1 )
(291)

For the next model, g is stochastic with standard uniform distribution and 63 is
deterministic. With g given as random variable, it has an upper (U;) and lower (L)

bounds with the probability distribution function of g; and mode m;. That is,

2(g—Ly)
Tom -y L<asm
g1 =
2(U1—q)
WFmﬁ:mjﬂnéqﬁw

The expected value of the total inventory of nondefective items during #; will be

Ui ((1—q)P—D)Q3
E(AI):/L ( q)2P2 )Qvgldq
_ M(=gP-D)0y  20¢-L)
- Ly 2P2 (UI_LI)(ml_Ll) 1
U((1-gP-D)Qy  2(Ui—gq)
+/ml 2P2 (U1 —L1)(U1 —ml)dq
2 _
_ _Q (P(Ly +m16—|P—2U1 3)+3D) (292)

105



And the inventory during 1, is

B [
(42) L 2p? P2
_ 0965 (L7(85—2) + Ly ((m1 +U1)(63 —2) +4) + (8: —2) (mi +m U1 + U}))
12P
076D (L7605 +Li(63(m1 +U) +4) + 65 (mf +m Uy + U}) +4(m; +Uy))
12P2
0363(m + Uy )
eACN s Mia A 293
3P (293)

1 _ 20202 _ _ 2
v <<P D630} | ((1-g)P D>q93QV>gldq

During t3, the inventory becomes

E(A3) = /Lm 1D<(P—D)q93Qv +((1- q)P_D)QV>2g1dq

o2 PD
_ 00 (L3(0s —1)*+ Ly (05— 1)(my + Uy )(63 — 1) +4) +mi(6;—1)%)
12D
L Q0 (m (6= 1)((85 = U1 +4) + (6 — DU (65 = U1 +4) +6)
12D
_Q%/ (L%(93—1)93+L1 (932(m1—|—U1)—93(m1—|—U1—4)—2))
6P
B 07 (65 (mf (63— 1)+ (m + Uy)((65 — 1)Uy +4)) —2(m; + Uy —3))
6P
+Q‘2/D(93 (L3163 +L1(63(my +Uy) +4) + 63 (mf +miUy + UP) +4(m; +Uy)) +6)
12P2
(294)
The expected value of the total inventory of defective items during #; will be
E(F)‘/Ul 9%
1) — L P 8149
_ Q%/93(L1 +m; +Uy) (295)
6P
and during 7,
Uy 202 02
90y 9;
E(Ih) = do
(I2) L Tap %24
202 (72 2
07 (L7 + (L1 + Uy))+U
:QV 3 (L7 + (Ly 1”21;)(”11"' 1) +U7) (296)
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The expected annual cost is

ETCV(Qv) =Ky —|—hv(E(A1) —|—E(A2) —|—E(A3) +E(F1) —I—E(Fz))
0
+ %E {ln <%>} + %ln (6_330) +cpO+crly6:0 297)

where 1, = W = % and E [ln (%’ﬂ (: ,uln(qo/q)) is derived as follows:

E [m (%)] =E [IH(QO) - 1n(€1)]

= E(In(q0)] — E[In(q)] (298)
Here,
E(In(qo)] = In(qo) (299)
since gq is constant. However,
E[In(q)] # In[E(q)] (300)

Therefore, we need to find E(In(g)) which is a function of g.

E(lnq)z/ilnq'gldq
_ M. 2a—Li) Mg 2U1—a)
/2 Ing (U1—L1)(m1—L1)dCI+/ml Ing (U1—L1)(U1—m1)dq
_ 2L3In(Ly)(my — Uy) = (L = Uy) (3(Ly —my) (my — Ut) +2m7 In(m,))
- 2(L1—m1)(L1—U1)(m1—U1)

Ulzln(Ul)
(L = Ur)(mi = Uy)

(301)
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Finally,

E {m (%)} =In(qo) + 7. _Ujll)n((mUll)_ Uy)

_ 2LFIn(Ly)(m = Ut) = (L1 = Uy) (3(Ly —my) (mi = Uy) +2mi In(my))
2(L1 —ml)(Ll —Ul)(ml —Ul)

(302)

Therefore, supplier’s cost function per cycle is

ETC/(0) :KVHW(QZ (£~ D+ 1185 i HU)6=0+9))

+hv<Q2 (m}(63 — 1)+ (m1 +Uy) (63— 1)((65 — 1)U +4)+6))

12D
b <Q2((93 —1)(Ly +my +Uy) +3))
—hy
6P
no no 03
+cpQ+c, Q0 U, + 6—1,U1n(q0/q) + Eln <9—30) (303)

and the buyer’s expected total cost with stochastic demand in the supplier’s cycle is

1(0(1—p))? 2n(1 — 1—
ETCs(Qr) = Kp+hs (E(Q( Dp)) +2 p(p Py st & ) p))
+F +cQ+d+cpB(r)+c¢5(r) (304)
The expected total cost for integrated system is,
ETC(Q,r) = ETCV(Q) —l—ETCB(Q,r)
ETC(Q,r) =Ky +Kp+F +cQ+cpQ+c,00u,+ %“m(qo/q) + %ln (%)
(Q2 (L%(93—1)2+L1(93—1)((m1+U1)(63—1)—|—4))>
+ hy
12D
<Q2 (m%(93 — 1)2+ (ml +U1)(93 — 1)((93 — 1)U1 _|_4) _|_6))
+ hy
12D
o (LB = 1)(Ly +m +Uy) +3)
Y 6P
1(0(1—p))? 2n(1 — 1—
oy (E(Q( Dp)) L9 p(D p) +(r_uL+S_(r))Q( - p))
+d+ Cbg(}’) + Cls_(r) (305)
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The expected total annual cost is

0
ETC(Q,r) = (Kv +Kp+F +cQ+cpQ+c,0031,+ %“In(%/@ + % In (—3)

65,
0% (L3 (65— 1)?+ L1 (65— 1)((m1 + Uy) (65 — 1) +4))
+hV( l 12D )

0% (m}(03—1)*+ (m1 +Uy) (63— 1)((65 — 1)Uy +4) +6)
+hv( 1 12D )

(306)

6P
hy (1 (0(1-p))? N 0%p(1-p)

_hv(Qz((93— D(Li+m +U1)+3)>

2 D D

= st 2

D
D

" 307
O(1-p) GoD

+d+ ch(r) + cls'(r)>

To minimise ETC(Q), we take first derivative with respect to Q

J(ETC) 2D(cpB+d+F +ci5+Kp+Ky)+hp (p*—1) 0°
00 2(p—-1)0?
hy (L%(Qg — 1)2+L1(93 = 1)((1’1’!1 +U1)(93 = 1) +4) +m%(93 — 1)2)
12(p—1)
hy ((m1+U1) (65 —1)((6: — 1)U +4) +6))
12(p—1)
n th((93 — 1)(L1 —+mq +U1) —|—3)
6(p—1)P

(308)

Taking the second derivative, we have

0%(ETC) _ 2D(cpB(r)+d+F +¢;5(r)+ K+ Kv)
007 01— )0 G0

d2(ETC)

All parameters are positive, and —3 o

> 0. Therefore, there exists unique value for

Q* given as

0 — 12PD(cyB+d+F +¢;5+ K+ Ky)
P(/’lvB—6h3 (p2 — 1)) —hv(D(6—2(93 — 1)(L1 —+my —i—U])))

(310)

where B = (L3(65 — 1)>+ L1 (63— 1)((63 — 1) (m1 + Uy +4)) + m3(6; — 1)?)
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+(((63 — 1)Uy +4)(m1(63 — 1)(m; + Uy )) +6) and the unique value for r* given as

r= (1 — hs(1—p)Q )
(8301305001~ - 8,0) ) (DCcr =)+ 101 = ) ) + (cD-+ (1 =)
(311)

Our final model is where g and 03 are both stochastic with triangular distribution.
With ¢ and 63 given as random variables, they have an upper (U;,U;) and lower
(L1,L) bounds with the probability distribution function of gi,g, and modes are
my = 0.2,my = 0.75. The expected value of the total inventory of nondefective items

during #; will be

%) 2
Ea)=J, / 2P2 DI g g2dqas
:QV(LZ_mZ)(ml L)(P (L1+2m1 3)+3D)
6P2(L, — Us) (L1 — U
QW= m)m—Us)(Pem +0 -3 +3D)
i 6P2(L, —Us)(Ly — Uy) (312)

And the inventory during 1, is

U (P—D) 202 P—D)g6303
AZ /l: / ( 3QV (( q) )q 3Qv)g1g2dqd93

P2
03 (L, —my)(Ly —my) (L3 (L} +2Lymy +3m}) (P — D))
72P2(L2 —U,) (L —Uy)
+ Q‘Z/(Lz —mZ>(L1 — ml) <2L2P (L%(WZZ — 2) +2L (ml(mz — 2) +2))>
72P2(L2 —U) (L —Uy)
Qv(Lz—mz)(Ll my) (2L P (my (3my(my —2) +8)))
72P2(L2 — Uz)(L1 U])

Q‘z/(Lz — mz)(L1 — 1) (2L2D (leZ +2L,4 (m1m2 —+ 2) —+my (3m1m2 —+ 8)))

B 72P2(Ly — Us)(Ly — Uy)
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Q%/(Lz — mz)(Ll — m1) (m2 (L%(3m2 — 8) + 2L, (m1 (31’)193 — 8) + 8)))
72P(L2 — Uz)(Ll — Ul)
QV (L2 mz)(Ll ) (MQ (m1 (9m1m2 —24my + 32)))
72P(L, — Uy)(Ly — Uy)
B QV (L2 — mz)(Ll ml) (sz (SL%mz + 2L, (3m2m2 + 8) +mq (9m1m2 + 32)))
72P2 (L, —Uy)(Ly —Uy)
i Q‘z,(ml —Up)(my —Uy) (m% (31’1’1% +2my (U, —4) + (U, —4)U2))
24P(L2 — Uz)(Ll — Ul)
n Q‘z,(ml — Ul)(mz — Uz) (21’1’11 (3m%U1 +2m2((U1 + U2)(U2 — 4) + 8)))
72P(L2 — Uz)(Ll — Ul)
" Q‘z,(ml — Ul)(mz — U2) (P (U] (3m%U1 + (2m2 + Uz)(Ul (Uz —4) + 8))))
72P2(L2 — U2)(L1 — U])
00 ((m = U1)(ma2 = V) (D (m] (3m3 4 2m2U> + U3) )))
24P2(L2 —Uy) (L —Uy)
_ Q‘Z/(ml = Ul)(mz — Uz)((D(qu -+ U1)(3WL%U1 I (2m2 + Uz)(Ule + 8)))
72P2(L2 — U2)(L1 — U])

+

(313)

During #3, the inventory becomes

2
A3 /szz /LUI 1 ( P D q93QV +P(l§1 —q)P—D)Qv) 212,dqd6;
Q (Ly —my)(Ly — m1)<L% + 3m%) (L% +2Ly(my —2) +mp(3my —8) + 6)
N 72D(L, — Us)(Ly — Uy)
n Q‘Z/ (Lz — mz)(Ll — ml) (Ll ((L2 — 4)m1 (21’1’193 —|—L2) +4L, + Smlm%))
36D(L, — U)(Ly — Uy)
Q%/(Lz —my)(Ly —my) (Ly (6my +8my —12) + 8my (Ly +2my — 3) + 18)
36D (L, — U)(Ly — Uy)
Q‘Z/(Lz — mz)(Ll — ml) (L% (L% +2L2(m2 - 1) +I’l’lz(3m2 — 4)))
36P(L, —U,)(L; —Uy)
 Qy(Ly —m)(Li —m) (Li (L2 —2)mi (2mg, + Lo) +4L))
36P(L, —U,)(Ly — Uy)
Q‘Z/ (L2 — mz)(Ll — ml) (L1 (3m1m% + 8my — 6))
18P(L, — Up)(Ly — Uy)
0V (Ly —ma)(Ly —my) (m] (L —2)(2me, + Lo) +3m3))
12P(L2 - U2)(L1 — Ul)

+

111



B Q%/(Lz —mp)(Ly —my) (2my(2Ly +4my —3) +9)
9P(Ly — Ua) (L1 — Un)
n Oy (Ly —my)(Ly —my) (D ((2my + La) ((LoLy +8)(2my + L1) +3Lym7)))
T2P(Ls — Un) (L1 —U))

+Q v (Lo —m)(Ly —my) (D (m3 (L +2Lymy +3mi) +12))
24P2(L2—U)( —0)
| Q= Un)(ma ~ Us) (1} (303 + (Us — 4) (2m2 + 1) +6))

24D(L,— U) (L1 — U)
Q‘Z/(ml — )(m2 — Uz)(ml (3m2U1 + 2m2(U1(U2 4) + 8) + U1((U2 — 4)U2 —|—6)))
36D(L, —U,)(Ly — Ul)
N 03 (my — Uy) (my — Uz) (16my (Uz —3) + U} (3m3 + (U2 — 4)(2my + Uz) 46))
72D(L, — U) (L) — Uy)
Q%,(ml - Ul)(m2 - Uz) (2U1(2m2 +U; — 3) +9)
18D(L2 — Uz)(Ll — U])
Q‘Z/(ml — U])(I’HZ — Uz) (m% (3m% + (Uz — 2) (ZM2 + Uz)))
12P(L2 = Uz)(Ll = U])
B Q%,(ml = U])(mz = Ug) ((2m1 —|—U1) (3m%U1 -+ (Ul (Uz — 2) + 8(2m2 +U2) - 12))
36P(L, —U,) (L) —Uy)
120 (m1 — Ut )(ma — U) + D* (m (3m3 + 2maUs + U3))
12P(L2 —U) (L —Uy)
N 03 (my — Uy ) (my — Us) (Dmy (3m3Us + (2my + Us) (U1 U + 8)))
36P%(Ly, — Us)(L — Uy)
n Q‘Z/(ml —Uy)(mp —Uy) (D (Ul (3m%U1 + (2my + U2)(U1U2+8)) +36))

_|_

+

314
T2P (L, — Un)(Ly — Uh) ©14)
The expected value of the total inventory of defective items during #; will be
U, 9 Q
q
ET) = / dgd®
(1) ) P Y 2182dqd 63
_ OV ((Ly —ma)(Lp +2m) (Ly — my ) (L1 +2m1))
18P(L2— 2)( U1)
+Q%,((m1 —Ul)(2m1+U1)(m2—U2)(2m2—|—U2)) (315)
18P(Ly — Uz)(L1 — Uy)
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and during £,

U2 q
E(Ib) = / glgqud93
L Ji,

Q2 ((Lz —mz) (L2 +2Lymy + 3m2) (Ly —my) ( +2Lymy +3m1))
72P(L, — Uz)(Ll —U))
N 03 (my —Uy) (3m} +2m Uy + U) (my — Us) (3m3 +2myUs + U3
T2P(L, — Us) (L — Uy)

(316)
The expected annual cost is

ETCy(Q) =Ky +hy(E(A) +E(A2) + E(A3) + E(T'y) + E(T2))

Ao () e ()] s o

derived in previous models. Supplier’s cost function per cycle is

0 o
ETCy(Q) = Ky +cpQ+ Qg o, + %.uln(qo/q) + %Hln(eﬁ%)

<Q2 ((L] — ml) (L% +2m1L1 + 3]’)1%) PL%) Q2 (U] U2(9 - m%mz + 2]’}1]}112)) >

+h
v 72P(L1 U1)(Ly—U,)D 18(L; —Uy) (Lo — Uy)D

((my —4) (LT +2Lymy3m3) 4 8(L, +2m4))>
72(Li —U)(La — Up)D

Q*(L ((my — 4)(moL? + 8Ly + 2myLymy) + 6Ly (L3 +2my))
72P(Li —Uy)(Ly — Up)D

Q*(L ) (16my (my —3) +3m3 ((ma — 4)my —|—6)+36)>

(S
(==
( 72(Ly —Uy)(Ly —Up)D
(<
(<
(

Q% (4D(Ly —my) ((Ly +2my) (3 — ma) — 9) Ly — m3PU; (3me, +8))
72P(Ly —Uy)(Ly — Up)D )
0 (U} (U3 — 6my) + miUE (U3 —3m3) —miU3 (3my + Uy))
72(Ly — Uy)(Lp — U)D >
0% (MU (8mymy — 16my — 6my +244U;))  Q*(Ly —my)(Ly +2my)L3)
72(L; — Uy)(Ly — U2)D © 18P(Li—U))(Ly —Us) )
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Ty 0? (U3 (mimyU} — 4Uf—4m1U122+8U12+12m§—16m%))>

72(L1 U1)(L2 — Uz)

—+

hy

Q2 m1 8U1U2 3m1m2U2 —4m1U1U2 —|—m1m2U1U2 + 18m1m2))>
72(L1 Ul)(Lz — Uz)

_l_

hy

Q2 mlmz 18—12m1m2+16m1m2 —|—9m1—24m1))>
18(L1 )(L2—U2)

+

hy

Q2 L%mz 8 — 3m2)m2—6)—mlm%U1(3m1m2+8m1—16U1)))
72(L1 Ul)(Lz—Uz)D

+

hy

Q2 m2U1 24m1 6m%—36+I712U12U2—4U]2U2))>
72(Ly —Uy)(Ly — U2)D

Q2 Ul Us( 6U1+m]m2—|—6m1 4m1m2+8mz))
72(Ly —Uy)(Ly — Up)D

(

(

(

(<

(

( 2 3 3,2 3
(Q (Ux(16m? —8U? — 6m1—m1m2—12m1+4m1mz))>
(

(

o

(

(<

(

+

hy

+

hy 24(Ly — Uy)(Lr — Uz)D

Q? (Uamg(—16mymy + 6m Uy +mym3U, — 24U,))
72(Ly — Uy)(Ly — Us)D )

sz 4m2 (U +6)my — (U — 3)U2)

9P(L; —U,)(L, —U,)D )
0% (U1 (Ua+3) + 18)my — 2U1m3 + (Uy (U, — 3) = 9)Us ) m,

18P(Ly — U;)(Ly — Us)D )

0* (U, mz—Uz)(U1(2m2+U2—3)+9))>

18P L1 Ul)(Lz—Uz)
0? (L3my((—16my 4+ my ((8 — 3my)my — 6) +24)P +4(2m; — 3)D))

72P(Ly — U,)(Ly — Uy)D >
Q2 L]I?’lz m1(2m2 —3) +9)D— ((m2(3m2 — 8) +6)m%+8(2m2 — 3)1711 +36) P))
72P(L; — Uy) (L, — Uy)D >

_l_

hy

—hy

E‘

14

+

hy

+

hy

+ hy

(318)

and the buyer’s expected total cost with deterministic demand in a supplier’s cycle is

— )2 2 1 B
ETCp(Q,r) =Kp+hp (% (Q(ID p)) X Q p(ll) p) n (r—HL+§(r))Q(1D p))
+F+CQ+d+CbB(I’)+Cli(r) (319)
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The expected total cost for integrated system is,

ETC(Q,r) = ETCy(Q) + ETCy(Q,r)

0 0
ETC(Q,r) = Kp+ Ky +F +cQ+cpQ+c, Oyl + %.uln(qo/q) + %Mn(@/%)

SN2 2001 — B
ras(r)-+hn (5 LU SPOZP) oy s 220
o (CU I Iy P | QRO s i)
) 72P(L1 = Un)(L2 —Uh)D 18(L1 —U1)(Ly = Uz)D

Q*(Li —my) ((my —4)(LT +2Lym3m) +8(Ly +2mq))>
72(L; —U,)(L, —Uy)D
(QZ(L1 —my) ((my —4)(myL3 + 8Ly +2myLymy) + 6Ly (L} —|—2mq))>
72P(Ly — Uy)(Ly — Uy)D

+d+cpB(r) + hy (

+ hy

) (16my (my —3) 4 3m3((mz — 4)my + 6) + 36) )
72(L, —Uy) (L, — U2)D

Q? (4D(Ly —my) ((Ly +2m1) (3 — mz) —9) L, — m3PU; (3me, + 8)))
T2P(Ly — Uy) (L, — Us)D

0 (U} (U3 — 6my) + miUE (U3 — 3m§)—me23(3mq+U1))>
72(L1 Ul)(Lz—Uz)

Q2 m2U1 8m1m2 — 16m2 —6m1 +24+U3)))
72 LlfUl)(szUz)

ml L1 +2m1)L2)>
P( (Lz —Uz)
Uzz(mlsz1 4U13—4m1U122+8U12+12m{’— 16m%)))

(=
(=
(
(
( 2
o (€ 7201~ Ur) (L~ U)D
(
(
(=
(
(
(

p—
—~ OO

+
=
<

07 (m1(8U U3 — 3mimyU3 — 4m Uy U3 + mimyUy U3 + 18mims3))
72(Ly —Uy)(La — U2)D )
Q? (mymy (18 — 12mimy + 16mmy +9m7 — 24m;))
18(Ly —Uy) (L, — U2)D )
Q2 L3m2 8 — 3m2)m2—6)—mlm%U1(3m1m2+8m1—16U1))
72(Ly — Uy) (L — U2)D )
Q? (maUy (24my — 6m7 — 36+ myUiU, — 4UEU,))
72(L1 —Uy) (L — U2)D >
Q2 U1U2 6U1+m1m2+6m1 4m1m2+8m2))
72(L1 — Uy) (L — U2)D )
Q? (U>(16m3 — 8U}E — 6m3 — mim3 — 12my +4mjm;))
24(L1 Ul)(Lz—Uz)D )

+
=
<

+
Iy
<

_|_
Iyl
<
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i h <Q2 Upmy( 16m1m2—|—6m1U1—|—m1m%U1 24U1))>
v 72(Ly — U)) (L, — Uy)D
hv<Q2m 4m2 U2+6)m2—(U2—3)U2)>
9P(L; —U,)(L, —U)D
hV(Q2 (Ui (Uy +3) 4+ 18)my — 2Uym3 + (Ul(U2—3)—9)U2)m1)
18P(Ly —Uy)(L, —Up)D
<Q2 Uy (my — Uy (U1(2m2+U2—3)+9))>
+ hy
18P(L; — Uy)(Ly — Uy)
o 0% (Limy((—16my 4+ my (8 — 3ma)my — 6) +24)P +4(2my — 3)D))
v ( 72P(Ly — Uy)(Ly — Us)D >
ik Q? (Limy (4(my (2my —3 )+9)D—((m2(3m2—8)+6)m%+8(2m2—3)m1+36)P)))
v ( 72P(Li — Uy)(L> — U>)D
(320)
The expected total annual cost becomes
ETC(Q,r) = (KB+KV +F +cQ+cpQ+c,OUgle, + nQﬂln /o)t @Mln(e /65,)
5 (90/9 52 3/ 03,
2 2
+ci5(r)+hp (; (Q(ll;p)) + Q p(ll)— ) +(V—IJL+§(r))Q(1D_p)>
W <Q2((L1—ml)(L%+2m1L1+3m%)PLg) Q* (U Ua(9 — mim, —|—2m1m2))>
72P(Ly — Uy)(Ly — Us)D 18(Ly —Uy)(Lo — Up)D

_ Q*(Ly —my) ((m2 —4)(L2—|—2L1m13m )+ 8(Ly +2m ))
—I—d—i—ch(r)—HzV( D AETAT AT I )
\ Q*(Ly —my) ((my — 4)(maL3 + 8Ly + 2myLymy) + 6Ly (L3 —|—2mq)))

+ V( 72P(Ly — Uy)(Ly — Us)D

72(Ly — Uy) (Lo — U2)D
0% (m1(8U U3 — 3mimyU3 — 4m U, U3 +mymaUy U3 + 18mim )))

+h
v 72(Li — Uy )(L> — U3)D

+hv( ) (16my (my —3) 4 3m3((my —4)my + 6) —|—36))
72(L1 —Uy)(La—Us)D
+hv(Q2 (4D(Ly — my) ((Ly +2my) (3 — ma) — 9) L, — m3PU; (3me, +8))>
72P(Ly — Uy)(Ly — U2)D
+hv(Q2 (U3 (U3 — 6my) + mUR(U5 — 3m3)—m§U§(3mq+U1)))
72(Ly — Uy)(La — U2)D
+hv(Q2 myU? (8mymy — 16my — 6my +24+U3)))
72 Ll Ul)(Lz—Uz)
hV(QZ( —my)(Ly +2m1)L2)>
18P(L; —Uy)(Ly — Uy)
+hV<Q (Uzz(mlmgUl 4U§—4m1U122+8U12+12m§—16m§))>
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hy <Q2 mymy (18 — 12m?3 1Mo + 16mymy —|—9ml 24m1)) >

18 L1 U1)(L2 — Uz)
Ty <Q2 L3m2 8 —3my)m, —6) —mlm%U1(3m1m2 4 8m; — 16U1))>

72(L; —U;)(L, —Uy)D

Ty (Q2 maUy (24my — 6m? — 36 +myUE U, —4U12U2))>

72(L; —U;)(L, —Uy)D
Ty (Q2 U1 U, (6U, +m1m2+6m1 4mimy —|—8m2))>

72(Ly —U;)(L, —Uy)D
Ty <Q2 U, 16m1 8U] 6m? —m?m% —12my +4m?m2)))
24(Ly —Uy) (L, — Uy)D

—l—hV<Q2 Uzmq 16m1m2—|—6m1U1+m1m 1—24U1))>

72(Ly —Uy)(Ly — Up)D

i <Q2m (4m3 — (Ur+6)m — (Us —3)U2)>
9P(L; —Uy)(Ly — Up)D
hV<Q2 (U1 (U2 +3) +18)m2—2U1m2+(Ul(U2—3)—9)U2)m1>
18P(Ly —Uy) (L, —Up)D
iy <Q2 (L3my((—16my +my (8 — 3ma)my — 6) +24)P+4(2my — 3)D)) )
72P(Ly —U;)(L, —Uy)D
St hy <Q2 L1m2 ml 2m2 — 3) —I—9)D — ((m2(3m2 — 8) aF 6)1’}1% + 8(2m2 — 3)m1 + 36) P)) >
72P(Ly —U;)(L, —Uy)D

Q? (Uy(my — Up) (Uy(2ma + Uy —3) +9)) D
on Do

18P(Ly —U1) (L2 — Ua) 1—-p)
To minimise ETC(Q, r), we take first derivative with respect to Q

I(ETC) _ Ly (72PD(Ly —Uy)(cyB+d +F + 15+ Kp + Ky) +36hg (p* — 1) PO* (L1 — Uy))
20 72(p — 1)PQ?(Ly — Us)(L1 — Un)
L (- hVQ2 (Ly —my) (P (L} ((m2—4)my +6))))
72(p—1)PQ*(Ly — U2)(L1 — Uh)
Ly (—hy Q*(Li —my) (P (+2L1 (m1((m2 — 4)ma + 6) +4(m2 —3)))))
72(p — 1)PQ?(Ly — Ua) (L1 — Un)
—my) (P (+mi(3mi ((my — 4)my 4 6) + 16(my — 3)) + 36)))
72(p — 1)PQ*(Lx — U2)(L1 — Un)
Ly (—hv Q*(Li —my) (—4(my —3)D(L; +2m;) — 36D))
72(p — 1)PQ?(Ly — Ua) (L1 — Un)
36U, (Ly —Uy) (2D(cpB+d+F + 5+ Kp+Ky) +hg (p* — 1) Q)
N 72(p— 1)Q*(Ly — Us) (L1 — Un)

Ly (—hy Q* (L,
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 L3hy(Ly —my) (L +2Lymy +3m3) by (Lymy (4D(2mymy —3m; +9)))
72(p = 1)(Ly = U2)(L1 — Uy) 72(p — 1)P(Ly — Uz)(Ly — Uy)
_ L%hv(L] — ml) (P (L%(mz - 4) + 2L1 (m1 (mz - 4) +4)))
72(p— 1)P(Ly — Us)(Ly — Uy)
 L3hy (Ly —my) (P (+m1 (3my (my —4) +16)) —4D(Ly +2m)))
72(p — 1)P(Ly — Uz)(Ly — Uy)
N hy (Lymy(mz(3my — 8) + 6)P+ Limy (P (3mym3 — 8(my — 2)my +6(m; —4))))
72(p— 1)P(Ly — Us)(Ly — Uy)
N hy (L%mg (4(3—2my)D) + Limy (P (ml (3m1m% —8(my —2)my +6(m; — 4)) + 36)))
72(p — 1)P(Ly — Ur)(Ly — Uy)
N hy (3m3P (—6m3 +m3(Us + 16) + my(Us — 6) (Us +2) 4+ Us ((U» —4)U> 4 6)) )
72(p— 1)P(Ly — Us)(Ly — Uy)
hy (m} (8D (4m3 — my (U, +6) — (U> —3)Us)))
72(p— 1)P(Ly = U2)(Ly — Uy)
hy (m3 (P (3m3Uy —m3 (U, (U, + 8) +64))))
72(p— 1)P(Ly — Us)(Ly — Uy)
hy (m (P (ma (U1 (6 — (Ur —4)U2) 4 16(U2 +6)))))
72(p— 1)P(Ly — Uz)(Ly — Uy)
hy (1} (P (Us (~UrU2 +4(Us +4)Us — 6(U3 +8)))))
72(p —1)P(Ly — Uz) (L1 — Uy)
N hy (4mD (=2m3U) +my(Uy (Ua +3) + 18) + U (U, (U2 — 3) —9)))
72(p — 1)P(Ly — Uz)(Ly — Uy)
hy (miP (3m3Uf — m3U, (U, (U2 +8) — 16)))
72(p = 1)P(Ly — U2) (L1 — Uy)
n hy (miP (—ma (U1 (U (U2 —4)Us —6) +8(Ux +3)) +72)))
72(p—1)P(L, — Uz) (L1 — Un)
n hy (miP (U2(36 — U, (Ui (Uy —4)U, +6) +8(Ux — 3)))))
72(p = 1)P(Ly — U2) (L1 — Uy)
L (Ui (ma — Us) (P (U (3m3 +2my (U, — 4) + (U —4)U> +6) ) ))
72(p — 1)P(Ly — Ur)(Ly — Uy)
n hy (Uy(ma —Uy) (P (48U (2my + Uy —3) +36) —4D(U,(2my+ U, —3) +9)))

322
72(p— 1)P(Ly — U2)(Ly — Uy) (322
Taking the second derivative, we have
0*(ETC)  2D(cpB(r)+d+F +¢;5(r) +Kg+Ky) (323)
902 (1-p)Q°
. 9*(ETC) . .
All parameters are positive, and —0r 0. Therefore, there exists unique value for

Q™ given as

—576000PD(Ly — Us)(Ly — Uy ) (B +d + F +ci5+ K + K
Q*:\/ ST6000PD(Lo — Un) (L ~U)(@B+d + F+as+ Ky +Ky) 10

288000h5 (p2 — 1) P(Ly — Us) (L — Uy) — Chy
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where C = (P (12Ly(—1+45L1)(5L1(95L; —442) +3897) — 45L; (5L, (45L; —311) 4-4489))
+P (64L3(—1+ 5Ly )(5L1 (5L +2) +3) — 16L3(—1+4 5L ) (5L1 (65L; — 134) — 281))

+P (125U} (4U, — 3)(8U»(2U> — 5) +27) + 25U (4U, — 3)(8U,(2U, + 75) — 933))

+P (5U,(4U, — 3)(8U,(2U> + 75) 4 13467) — 16U3 (12U, + 281) — 46764U, + 75366)
—160D (8L3(—1+45L;)(5L; +2) — 18Ly(—1+ 5L )(5L; — 18)))

—160D (504 +8(5U; — 1)(5U; +2)U3 — 18(5U; — 18)(5U; — 1)U))

—1440(5L;(5L; —29) +5U,(5U; —29)) and due to computational length, my = 0.75 and

= 0.2. The unique value for r* given as

7= F71

(- (1~ p)0 )
(830013015011 ~8,0) ) (DCe1 =)+ 1001~ ) ) + (cD-+ (1 )

(325)

3.2.5. Integrated Models with partial backordering when demand has exponential

distribution

When there is partial backordering, demand can follow exponential distribution.
The difference comes from probability density function (f(x)) in Eq.21 - 23 in 3.1.2.3.
Since there is no structural changes, this model will be run in R studio and shown in

[llustrative Example with Table 7.
3.2.6. Integrated Models with complete backorder

With stochastic demand, we will analyse the complete backordering case at buyer’s

side. As the first model, supplier’s total cost per cycle for deterministic ¢ and 03 is

OV (O)— Ky 4y (Q2<q<e3 DDA EDDN) o0

Q” Q”
51 ( ) 52 <E30) ( 6)

and the buyer’s total average cost with stochastic demand and partial backordering is

_ 2 2 o
TCB(er) :KB+F+CQ—|—hB (%(Q(le)) + Q p(; P)

+d +cpB(r) (327)
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The total cost for integrated system is,

TC(Q,r) =TCv(Q)+TCs(Q,r)

Q*(q(6:— 1)+ 1)(P(q(6:— 1) + 1) —D)>
2PD

TC(Q,F) =Ky +KB—|—F+hv(

L(Q(1-p))*  Q°p(1-p) o(1-p) ;
+h3(§ n T p T T o | +d+aB(r)
tepQ+ 6,005 +c0+ 2 ( ) L an, (—) (328)
01 q oy 03,
We have cycle time T = Q(lgp ) , so the expected total annual cost would be

ETC(Q,r) = (KV+KB+F+hV(Q2(Q(93— D)+ 1)(Pq(6s — 1)+1)—D)>

2PD

1(e(1=p))*  0*p(1-p) o(1-p)
+h8<5 D 2l D +(F—ML)T +¢,0q63
05 (§) 5 (o)
+ +cQ+d+cpB +=——In|—| | ———
CPQ CQ Ch ( ) 61 62 930 Q(l—p)
(329)
To minimise ETC(Q, r), we take first derivative with respect to Q and r,
J(ETC)  2¢yDB(r)+2PD(d+F + K+ Ky)+hp (p*—1) 0°
20 2(p—1)Q?
hyQ*(q(63 — 1)+ 1)(P(q(63 — 1) +1) — D)
_ (330
2(p—1)PQ?
Taking the second derivative, we have
J*(ETC) 2D(d+F +Kp+Ky +c,B(r))
5 — 3 (331)
90 (I-p)Q
d2(ETC)

All parameters are positive, and > 0. Therefore, there exists unique value for

00?2
Q™ given as

. —2PD (c,B(r)+d+F + Kg+Ky)
= 332
\/hB (p*—1) (332

P—hy(q(63—1)+1)(P(q(6; —1)+1)—D)’
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The derivative of ETC(Q, r) with respect to r is

JI(ETC) _ DeyB'(r)+hpQ(1 - p)

(333)
ar (1-p)Q
Taking the second derivative, we have
0*(ETC)  DcpB"
dar (1-p)Q
. 9?(ETC) . .
All parameters are positive, and —z>— > 0. Therefore, there exists unique value for
r* given as
hp(1—
F(r) = (1 ~ hi( P)Q)
Dcy,
hp(1—
r*:F_l(l——B< p)Q) (335)
Dcy,

One more time for the rest of the models, r* equation will be the same since the
integrated cost function is changing only by constant. In the model where g is
deterministic and 63 is stochastic with standard uniform distribution, the supplier’s

cost function per cycle will be

ETCV(Q):KV_hV( P 5 o,

0% (¢* (L3 + Lo (U —3) + (Up = 3)Ur +3) +3q(Lr + U, —2) + 3)
+hv< 6D )

Q*(q(La+Up —2) +2)> e (6]0)

0
+ %uln(93/930) +cpQ +crqQUg, (336)

and the buyer’s total average cost with stochastic demand in a supplier’s cycle is

SN O] -
ETCB(Q,r):KB+F+cQ+hBG(Q(IDP)) +Qp(ll) P =)

+d+cpB(r) (337)
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The expected total cost for integrated system is,

ETC(Q,r) = ETCy(Q) +ETCg(Q,r)

ETC(Q,r) :KB+Kv—I—F+hB(% (Q(l;p))z +Q2p(ll)—p) +(r_‘uL)Q(1—P))

+hV(QZ (¢* (L3 + (Lo + Un)(Us — 3) + 3) +3q(L2+U2—2)+3))
q

6D

—hy (QZ(CI(Lz +U,-2)+2)

no 0
1P ) +cQ+cpQ+crqQUe, + 6—1111 (;)

(0] _
g Hin(oy /oy -+ B (338)

The expected total annual cost is

2 D D

thy <Q2(q2<L% +(Ly + U2)(Us —2>D+ 3)+3¢(Ly + U, —2) +3>)
_hV<Q2(4(L2+U2—2)+2)) no <610>

ip +CQ+CPQ+Cr(]Q.u63+5_11n

" (KB+hB(1(Q<1_p))2 + L) +(r—uL)Q(1D_p))

D

. 339
O(1-p) 539

0 _
+Kv+F+ %Nln(%/%) +d+CbB(r))

To minimise ETC(Q), we take first derivative with respect to Q

J(ETC) D (4P(cpB(r)+d+F+Kp+Ky)+hyQ*(q(Lr+ Uy —2)+2))

90 4(p—1)PQ>
B hy <q2 (L% + (Lz + Uz)(Uz — 3) + 3) + 3q(L2 +U, — 2) + 3)
6(p—1)
h 1

+ B(p+1) (340)

2
Taking the second derivative, we have

0%(ETC) 2D (c,B(r)+d+F +Kp+Ky) (341)

00? (1-p)Q?
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2
All parameters are positive, and " (ETC)

> 0. Therefore, there exists unique value for

dQ?
Q* given as
. —12PD (¢pB(r) +d +F + K +Ky)
o = 2 D) (342)
6hp (p?> —1)P —2hyP(¢*C+3gqA+3) +3hyD(qA+2)

where C = (L3 + Ly(Uy — 3) + (U, — 3)U> + 3) and A = (U, + L — 2) and the unique

value for r* given as

r :Fl(l——hB(%;bl)Q) (343)

For the next model, ¢ is stochastic with standard uniform distribution and 63 is

deterministic. Therefore, supplier’s cost function per cycle is

Q% (L3(65 — 1)+ (Ly + Uy )(63 — 1)((63 — 1)U} +3) +3))
6D

ETCy(Q) = Kv+hv(

W Q?(-3(6; — 1)D(L; +U;) — 6D)
4 12PD

no no 03
+ 5, Hin(go/q) T 5 In (930) (344)

> +cpQ+c, 0051y

and the buyer’s expected total cost with stochastic demand in the supplier’s cycle is

_ 2 2 _
ETCH(0.r) = Ky +F +cO+hp (%(Q(ID P)” 2 p(; P) =)

M)

D
+d+cpB(r) (345)
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The expected total cost for integrated system is,

ETC(Q,r) = ETCy(Q) +ETCg(Q,r)

ETC(Q,r) =Ky +Kp+F +cQ+cpQ+c,00:1,

L(Q(1-p))*  @*p(1-p) o(1-p)\ , nQ
+hs (5 vt p  tUmm)T t 5, Hintao/a)
(QZ(L%(93—1)2+(L1+U1)(93—1)((93—1)U1+3)+3))
+hy D
Q* (=3(65 — 1)D(L; +Uy) — 6D) 2 19, (63
-l-hv( 12PD )-I—d-l—ch(r)—l-Eln(e—%)
(346)
The expected total annual cost is
ETC(Q,r) = <Kv +Kp+F +cQ+cpQ+c,0031,
1(Q(1-p))*  @*p(1-p) o(1-p)\ , nQ
+hg <§ b T p  TUm)T 5 )
(Q2(L%(93—1)2+(L1+U1)(93—1)((93—1)U1+3)+3))
+ hy D
h Q*(—3(6; — 1)D(L; +U1) —6D)
v 12PD
5 no 93)) D
d B —~—In{— || =——— 347
+d+cpB(r) + 5, n<930 o= (347)
To minimise ETC(Q), we take first derivative with respect to Q
J(ETC) 2D(cpB(r)+d+F +Kp+Ky)+hp(p*—1)0?
20 2(p-1)Q?
hy (L3(63 —1)* + (L1 + U1)(65 — 1)((85 = 1)U1 +3) +3)
6(p—1)
hyD ((63 —1)(Li1 +Up) +2)
Ap—1)P (348)
Taking the second derivative, we have
) _
d (ETC) _ 2D(CbB(7‘)+d+F+KB+Kv) (349)

002 (1-p)Q°
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J*(ETC)
20?2

All parameters are positive, and > 0. Therefore, there exists unique value for

Q™ given as

0 = —12PD (cpB(r)+d+F + K+ Ky)
~\/ 6hg (p2 = 1)P—hy (2P (L3B2 + (L, + Uy )B(BU; +3) +3) —3BD(L, +U;) — 6D)

(350)
where B = (63 — 1) and the unique value for r* given as
hp(p—1
o el (1 B B(p )Q) (351)
DCb

As our final model, where g and 63 are both stochastic with standard uniform

distribution, supplier’s cost function per cycle is

Q Q
ETCv(Q) = Ky +cpQ + ¢, Qlqlle, + %Tﬂmwo/q) y %ﬂuln(&/(%o)
Ty <Q2L% (L3 + Lo(Ur —3) + (Up = 3)U> +3) >

18D
o Q°Ly (2L3U; + Ly (2U, (Us — 3) +9) +2U; (U2 — 3)U> +3) +9(U> — 2))
v 36D
. Q2 (2U} (L3 + Lo (Uz — 3) + (Ur — 3)U> +3) + 9U1 (Lo + U> — 2) + 18)
v 36D
2 _
hv<Q L2+U2 }2(L1+U1)+4)> (352)

and the buyer’s expected total cost with deterministic demand in a supplier’s cycle is

ETCy(Q,r) = Kz +F +cQ + hg (1<Q(1_p)>2 () +(r— )

2 D D

+d+epB(r) (353)
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The expected total cost for integrated system is,

ETC(Q.r) = ETCy(Q) + ETCp(Q,r)

0 0
ETC(Q,r) = Kp+Ky +F +cQ+cpQ+c Qg o, + %:uln(qo/q) + %Hln(%/%)

_ 1(Q(1-p)?  ©@*p(1— 1—
e B(r) + hp (2(Q( Dp)) L9 p(D p) +(r—uL)Q( - p))
<Q2L% (L§+L2(U23)+(U23)U2+3)>
+hy
18D
Q’Ly (2L3U, + Ly (22U (U2 — 3) 4 9) +2U; (U2 — 3)U» 4 3) +9(U, — 2))
+hy 36D
<Q2 (2U? (L§+L2(U2—3)+(U2—3)U2+3)+9U1(L2+U2—2)+18)>
+hy
36D
2
_hv<Q ((L2+U2—2)(L1+U1)+4)> (354)
8P
The expected total annual cost becomes
ETC(Q) = no ne
(Q) = | Kp+Ky +F +cQ+cpQ+c,Quglo, +871”ln(qo/q) + 5, Hin(6s/65,)
_ 1(Q(1-p))? O*p(1— 1—
(QZL% (L§+L2(U2—3)+(U2—3)U2+3)>
+hy
18D
O’Ly (2L3U + Ly (2U (U — 3) +9) +2U, (U2 — 3)U> +3) + 9(U» — 2))
hy 36D
<Q2 (2U? (L§+L2(U2—3)+(U2—3)U2+3)+9U1(L2+U2—2)+18))
+hy
36D
QZ((L2+U2—2)(L1+U1)+4)>> D
—h 355
g 8P 01— ) (35
To minimise ETC(Q), we take first derivative with respect to Q
8(ETC) _ (D(ch(r)+d+F+KB+Kv))
Q0 (p—1)0?
WL (L34 Lo (U2 = 3) + (U2 = 3)Uz +3)
18(p—1)
 hvLy (2L3U, + Ly 2U (U, — 3) +9) +2U1 (U2 = 3)U2 + 3) + 9(U» — 2))
36(p—1)
hy (2U} (L3 + Lo (U — 3) + (Up = 3)U> +3) + U, (Ly + U, — 2) + 18)
36(p—1)
hy Q% (D(Ly + U, —2)(Ly + Uy ) +4D) + 4hg (p* — 1) PQ?
+ (356)
8(p—1)PQ?
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Taking the second derivative, we have

0*(ETC) 2D(cpB(r)+d+F +Kpg+Ky) 3
00> (1-p)0? G37

d2(ETC)

All parameters are positive, and — o

> 0. Therefore, there exists unique value for

Q* given as

0" — —72PD (cpB(r)+d+F + K+ Ky)
~ \/ 36hg (p> — 1) P —hy (2P (2L3C + (L1 +U;) (2U1C +9A) + 18) —9D(AB — 4))
(358)

where C = (L3 + Ly(Uy —3) + (U, —3)Uy +3), B= (L1 + U;) and A = (Up + L, — 2)

and the unique value for r* given as

r*:F‘l(l——hB(%;bl)Q) (359)
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CHAPTER 4: EXPERIMENTAL RESULTS

4.1. Illustrative Example, Sensitivity Analysis for the Buyer and Case Figures for

the Supplier
4.1.1. Ilustrative Example

In this section, figures and tables show the change of cost according to different
cases. The numerical values for the calculations are as follows: expected demand
rate D = 50,000, deterministic defective rate ¢ = 0.2005, deterministic reworkable
rate 83 = (.75, for stochastic g lower and upper bounds L; = 0.001 and U; = 0.4, for
stochastic 63 lower and upper bounds L, = 0.5 and U = 1. The rest of the parameter
values; go = 0.4, 63, = 0.5 F = 25, Kg = 100, hg = 5, ¢ = 0.5, p = 0.006, Ky = 300,
hy =2, P=160,000, 1 =0.01,6 =0.9, % =0.2,cp =5, ¢, =2, ¢; =10, ¢, = 8§,
d=250=07,0=001,7=4, 0 =1, B, =4, 0tp, = 3, Bg, = 1,ur = 1300, and
o = 80. When ¢ = 0.2005 and 6; = 0.75,it means with investment, the defective rate
decreased from 0.4 to 0.2005, and rework rate increased from 0.5 to 0.75. Other than
Table 7, all models follow normal distribution when demand is stochastic.

For deterministic demand case, Table 3 shows that supplier’s optimal lot size Oy,
and integrated Q* slightly decreased with different scenarios on ¢ and 63 compared to
their deterministic case (Case I). Here, g and 63 follow uniform distribution, therefore
their expected values are u, = 0.2005 and g, = 0.75. For the cost perspective,
supplier’s individual cost ETCy (Qy,) is at its lowest when rework rate is stochastic
and defective rate is deterministic and at its highest when defective rate is stochastic
and rework rate is deterministic. Due to its convex nature, supplier has higher cost if
it produces buyer’s quantity (ETCy(Qp) overall. Integrated cost has its highest value
when both parameters are stochastic. The last column shows which case is the most
profitable by percentage difference and it is clear that other than first three cases are
better than the last one.

In deterministic demand case buyer’s independent lot size is not changing due to

its cost function structure. Buyer’s reorder point on deterministic demand case with
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and without backordering is fixed and calculated with the formula L D. This is
making sense, since he knows exactly how much demand it will have. It is also true
for integrated model reorder point because it is still provided by buyer.

For stochastic demand case (normal distribution), Qy, is still decreasing slightly.
Buyer’s optimal order quantity (O and r3) are higher than deterministic demand case.
Integrated order quantity and reorder point (Q* and r*) are also higher than previous
demand case. Supplier’s biggest cost happens when both parameters are stochastic if
it decides to produce buyer’s order quantity. Integrated cost has the similar pattern and
is highest when ¢ and 05 are both stochastic. The first case, where both parameters are
deterministic gives the best savings when integrated policy is adopted.

When there is partial backordering (Table 4), -time-sensitive customers-, buyer’s
order quantity Qjp is more than lost sales case (Qp = 1760), however reorder point
is smaller. Even though it looks like a contradiction, it might be the case that lower
reorder point helps to wait longer because now order quantity is higher. Buyer’s total
cost and integrated cost are higher than lost-sales case and it can be explained by the
higher order quantity and inclusion of backorder cost as well. Since rework rate is less
than 1, not all defective items are reworkable. Supplier’s individual cost (ETCy (Qy)),
its cost when buyer’s order quantity is considered (ETCy(Qj)) and integrated cost
show similar behaviour and have their highest value when defective rate is stochastic
and rework rate is deterministic. Moreover, their lowest value happens when defective
rate is deterministic and rework rate is stochastic. This shows the stochasticity for
defective rate has more impact than rework rate. The buyer’s lot size Qj and reorder
point r do not change since its individual equation does not depend on g and 6.
Finally, if the supplier adopts integrated policy, it will produce smaller lot size overall.
Overall, it is clear that the integrated model is beneficial to both supplier and buyer,
according to the costs under stochastic demand case with partial backordering. Related
to these, the last column shows third case (g is deterministic and 03 is stochastic) has
the highest savings on integrated approach.

To see the behaviour change with different distributions on ¢ and 68, Table 5 shows
optimal values with their cost under beta distribution. Here, shape parameters (o, Og,,

By Be,) values are chosen specifically to have same expected values (E(q) = 0.2 and
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E(63) =0.75) as in the standard uniform distribution (Table 4). The goal is to compare
both tables and see the effect of distributions. With this logic, integrated order quantity
Q* values are slightly lower in Table 5. First case is same for both distributions, so
there is no change. The main difference is when the rework rate is stochastic with same
lower and upper values and expected values, total cost is higher under beta distribution
even though Q* is lower. Same pattern can be seen for Qy, and other cost values as
well. Only when defective rate is stochastic, the cost values are lower than standard
uniform distribution. Therefore, it might be more cost effective to use standard uniform
distribution when defective rate is stochastic and rework rate is known and constant.
When we look at Table 5, the behaviours of O}, and ETCy(Qy) are similar with Table
4. Comparison of second and forth case shows decrease on Qy, with increased total
cost ETCy(Qy). Two cases have same expected values on defective rates and rework
rate, however stochasticity on rework rate cause cost increase. On the other hand, first
and second case show slightly decreased cost on ETCy (Qy,). This can be explained by
distribution effect on defective rate. Last column shows the difference between total
cost for integrated model and individual cost sums and unlike Table 4, first case has
the highest difference. So, when defective rate and rework rate both deterministic, the
integrated model results in greater savings.

As the third distribution example, Table 6 shows the changes of optimal values
when g and 65 follows triangular distribution. While the behaviour of Qy,, O and
corresponding costs have the similar behaviour as previous ones, forth case (where ¢
and 63 are both stochastic) has the highest value (among uniform, beta and triangular
distributions). Other than the first and second case, integrated costs (ETC(Q*)) and
(ETCy(Qy)) are lower than beta distribution. However, third and forth cases results
higher supplier cost than uniform with lower integrated cost. It shows the effect of
distribution even though we have same expected values. The last column shows the
forth case where both parameters are stochastic has the best savings for integrated
model.

In Table 7, we can see that when demand follows exponential distribution, buyer’s
order quantity and reorder point as well as integrated order quantity and reorder point

are higher than normal distribution (Table 4). Since demand is coming from buyer’s
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equation, supplier’s individual equations did not change. If supplier would follow
buyer’s order quantity, he would have lower cost because Qj value is higher with
exponential distribution (instead of producing 1760 items, he would produce 3428).
Buyer has higher cost due to higher volume of order quantity in Table 7. However,
overall total cost is increased for every case therefore it is not helpful for business. The
last column shows that difference between integrated total cost and sum of individual
costs is really small and the best at third case where g is deterministic and 63 is
stochastic. This is same behaviour as in Table 4.

Table 8 shows when all shortage is backordered. Compared to partial backordering,
supplier’s individual order quantity and cost stays the same while buyer’s individual
order quantity increases and reorder point and its cost decrease. Moreover, if supplier
produces buyer’s order quantity, the cost (ET Cy (Qj)) will be slightly lower. Integrated
optimal order quantity, reorder point and cost follow the same pattern as buyer’s . In
this scenario. the first case where both ¢ and 63 are deterministic has the highest
savings under integrated policy. Overall, it is clear that this model is pushing order
placement further when there is backordering (due to lower reorder point).

In Table 9, the optimal values for Q and r with their corresponding costs are
compared under different distributions for ¢ and 6. The optimal order quantity Q*
follows different behaviour through different distributions denotes each distribution’s
impact. It is interesting to see that how close the first three cases between uniform and
triangular distributions. In triangular distribution, when both parameters are stochastic,
Q™ is increasing more than it is in standard uniform distribution. Moreover, the optimal
reorder point r* drops more in triangular distribution at the last case. This may indicate
that triangular distribution has more advantageous when defective and rework rates are
stochastic. The last point of comparison between two is their integrated total cost
values. When ¢ and 65 follow triangular distribution, total cost is less than standard
uniform distribution and saving more money than both standard uniform distribution
for the second and forth cases. While beta distribution is also an option with its lower
optimal order quantity, it has higher costs than uniform and triangular distributions for
second and forth cases. Moreover, it is saving the least amount of money among three

distributions.

134



% LLTS0 | 080°01€ $ STLTIES 1€8VE$ | ¥689LTS | S9ETLTS | 6bP1 | LSST | SOVI | 09LT | 9869 Mowuomv v wmﬁwm 0
— : "
% 6€1S°0 | 168°01€ $ L6V'TIE$ 1€8FE$ | 999°LLT$ | SSOVLTS | ISPI | SILT | SO¥T | 09LI | 9L6V Awowmv mmwMo g
=
: — 2
% GEIS0 | 1#6°01€ $ 9P TIE $ 1€8v€$ | SILLLTS | PEI'PLTS | ISP | STLT | SO¥T | 09L1 | 9L6¥ mwao v whﬁwm 0 £

. . . - . . SLO S00T°0
% 6€1S°0 | ¥16°01€ $ 0TSTIE$ IE8VES | 689'LLTS | LOI'PLTS | ISPL | SILT | SOPT | 09LT | 8LGY | o5 o
014% | (0)ouxa | (0)aa+@o)0ra | (0)9aa | (10)0ra | (10)%oad | 4 .0 L D | 10 ) b puewaq

$1500 pajeIdaiul pue Juapuadopur Iy} pue z1s Jopio Tewndo oy YPim uonnqrnsip renguerny uimol[o) €9 ‘b ‘puewiop d1seyYd0IS I0J Jqe], *9 J[qeL

Sur33opoeq rented yum

135



renaed s $3s00 pajea3aur pue judpuadapur Iy pue azis Ipio [ewndo oy YPIm €9 ‘b ‘puewdp pAanguysip A[enuauodxa 10j J[qe], ‘L 9qeL

% 8SH0'0 | LESTEE $ 689°T€E $ €€0°LS$ | 9S9VLTS | €ETYLTS | SYO¥ | SO6E | TITY | STVE | OL6Y Mowuomv v wmﬁmm 0
. . . . . . (1-6°0) | S00T0 %
% T9¥0°0 | 89€°1EE $ 1S IEE$ CE0'LSS | S8Y'PLTS | €90'PLTS | SKOY | 906E | TITH | 8TVE | PLOY | o0 o g
=
. . . . . . SLo | #0-100°0) 2
% 19%0°0 | 18S°TEE $ PELTEE $ €E0'LSS | 10L'VLTS | SLTPLTS | SYOY | 906€ | TITH | 8TYE | pL6Y | o oI £
. . . ) . . SLO S00T°0
% 19¥0°0 | €IV TEE $ 99G°T€€ $ €E0'LSS | EESPLTS | LOI'VLTS | SYOV | LOGE | TITY | 8TVE | 8L6Y | oo o
014% | (,0)oaa | (0)9ia+ (0)0ra | (10)9aa | (0)%0ra | (40)D1a | .0 L D | 10 ‘0 b puewaq
3ur33opoeq

136



For independent and integrated cost comparisons, we can see from Table 3 to

Figure 24 that integrated policy is more beneficial than policy is made solely from

the buyer’s perspective. Figures show that there is a decreasing trend till the optimal

value that is cost is decreasing while lot size is increasing.
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Figure 9. Total cost for the supplier and buyer individually (left) and integrated (right)

for deterministic demand, ¢ and 83 with complete lost-sales
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Figure 10. Total cost for the supplier and buyer individually (left) and integrated (right)

for deterministic demand and ¢, with stochastic 63 with complete lost-sales
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for deterministic demand and 63, with stochastic ¢ with complete lost-sales
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Figure 12. Total cost for the supplier and buyer individually (left) and integrated (right)

for deterministic demand and stochastic 63 with stochastic ¢ with complete lost-sales
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Figure 13. Total cost for the supplier and buyer individually (left) and integrated (right)

for stochastic demand, and deterministic 83 and g with complete lost-sales
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Figure 14. Total cost for the supplier and buyer individually (left) and integrated (right)

for stochastic demand, and deterministic g and stochastic 63 with complete lost-sales
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for stochastic demand, and stochastic ¢ and deterministic 63 with complete lost-sales
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Figure 16. Total cost for the supplier and buyer individually (left) and integrated (right)

for stochastic demand, and stochastic ¢ and 83 with complete lost-sales
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Figure 17. Total cost for the supplier and buyer individually (left) and integrated (right)

for stochastic demand, and deterministic g and 63 with partial backordering
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Figure 18. Total cost for the supplier and buyer individually (left) and integrated (right)

for stochastic demand, and deterministic g and stochastic 63 with partial backordering
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Figure 19. Total cost for the supplier and buyer individually (left) and integrated (right)

for stochastic demand, and stochastic ¢ and deterministic 63 with partial backordering
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Figure 20. Total cost for the supplier and buyer individually (left) and integrated (right)

for stochastic demand, and stochastic g and 03 with partial backordering
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Figure 21. Total cost for the supplier and buyer individually (left) and integrated (right)

for stochastic demand, and deterministic ¢ and 63 with complete backordering
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Figure 22. Total cost for the supplier and buyer individually (left) and integrated

(right) for stochastic demand, and deterministic ¢ and stochastic 63 with complete

backordering
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Figure 23. Total cost for the supplier and buyer individually (left) and integrated

(right) for stochastic demand, and stochastic g and deterministic 63 with complete

backordering
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Figure 24. Total cost for the supplier and buyer individually (left) and integrated (right)

for stochastic demand, and stochastic g and 83 with complete backordering

4.1.2. Sensitivity Analysis for the Buyer’s model

We will start to examine the buyer’s sensitivity analysis under the stochastic
demand and continue with supplier’s. The values of parameters are given in Illustrative
Example. Table 10 shows that with increasing imperfect rate p, the optimal lot size
Qjp. reorder point r*, and naturally expected cost ETCg(Q}) are increasing. With
§5(r) column, we can see that expected shortage that becomes lost-sales, is really small
and decreasing. This is impact of order quantity, such as we place more items due to
imperfection and that causes smaller shortage. Since p values are small, the change in

the values are small as well.
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Table 10. The change in Qj, r* and ETCp(Q};) according to change in p for complete

lost-sales case

p O r S(r) | ETCp(Q3)
0.000 | 1609.48 | 1471.87 | 045 | $33,909

0.006 1609.33 | 1472.07 0.45 $34,108
0.016 1609.20 | 1472.39 0.44 $34,445
0.026 1609.23 | 1472.71 0.44 $34,788
0.036 1609.42 | 1473.02 0.43 $35,138
0.046 1609.78 | 1473.34 0.43 $35,493
0.056 1610.31 | 1473.66 0.42 $35,856
0.066 1611.00 | 1473.98 0.42 $36,225
0.076 1611.85 | 1474.30 0.42 $36,602
0.086 1612.88 | 1474.62 0.41 $36,985
0.096 1614.07 | 1474.94 0.41 $37,377
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Buyer’s analysis when there is time-sensitive customers for partial backordering
shows the similar behaviour with previous table (Table 11). Here, B(r) as expected
backorder amount is also decreasing with increasing imperfect rate. This can be
explained with higher order quantity leads to lower shortage therefore lower backorder
amount. Even though the behaviours are similar, it is interesting to see that order

quantity is much higher and reorder points are lower than previous case.

Table 11. The change in Qf, r* and ETCg(Q}) according to change in p for partial

backordering case

p 0; F | B | s | ETCs(o))
0.000 1760.84 | 1465.20 0.42 0.16 $34,631
0.006 1759.81 | 1465.39 0.41 0.16 $34,831
0.016 1760.01 | 1465.72 0.41 0.16 $35,177
0.026 1760.07 | 1466.04 0.40 0.16 $35,528
0.036 1760.32 | 1466.37 0.40 0.15 $35,885
0.046 1760.74 | 1466.69 0.40 0.15 $36,248
0.056 1761.06 | 1467.02 0.39 0.15 $36,617
0.066 1762.13 | 1467.34 0.39 0.15 $36,996
0.076 1763.10 | 1467.67 0.38 0.15 $37,381
0.086 1764.25 | 1467.99 0.38 0.15 $37,773
0.096 1765.59 | 1468.99 0.37 0.14 $38,173

For the complete backordering case (Table 12), increase in defective rates is
resulting the highest order quantity and lowest reorder points. Total cost is slightly
lower than partially backordering case. Additionally, we can see a small decrease is in
Qp, lasting longer than previous case (same behaviour as complete lost-sales case). As
a conclusion, it is clear that we can order more with smaller reorder point at lower cost

when there is no risk to lose the customer.
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Table 12. The change in Qj, r* and ETCp(Q};) according to change in p for complete

backordering case

p Op r* B(r) ETCp(Q3)
0.000 1762.04 | 1461.09 0.65 $34.616

0.006 1761.87 | 1461.29 0.65 $34,820
0.016 1761.73 | 1461.63 0.64 $35,164
0.026 1761.77 | 1461.98 0.64 $35,515
0.036 1761.98 | 1462.32 0.63 $35,872
0.046 1762.38 | 1462.66 0.62 $36,236
0.056 1762.96 | 1463.00 0.61 $36,606
0.066 1763.72 | 1463.33 0.61 $36,984
0.076 1764.66 | 1463.67 0.60 $37,369
0.086 1765.78 | 1464.01 0.59 $37,761
0.096 1767.09 | 1464.35 0.59 $38,130

At the supplier’s side, when defective rate ¢ and reworkable rate 63 are both
increasing (Table 13), the optimal production lot size Qy; is increasing until ¢ = 0.21,
then starts to decrease. This can be indicator that even though we have more defective
items (before or after investing), if we can rework on them mostly then there is no need
to produce more items. This values can be considered break even points as well. On the
other hand, cost is still increasing due to reworkable items increasing number. In Table
14, case shows that defective rate is increasing while reworking rate is decreasing.
Order quantity follows increasing trend completely, since we need to produce more
items to supply and TCy is increasing due to ordering more items and reworking on
them. Table 15 and 16 shows when one side is fixed what happens to Qy, and TCy.
When we have fixed reworkable rate (Table 15), greater defective rate means bigger
lot size. The cost is increasing since we have more items to rework on. On the other
hand, when ¢ is fixed (Table 16), with higher reworking rates, the optimal lot size O,

decreases. Additionally, cost is slightly increasing because of increasing reworking
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rate on fixed amount of defective items. For Table 13- 16, 85, to 65 and g to g shows

the change in those parameters once we invest to improve the process.

Table 13. The change in the optimal production size Qy, and the cost TCy (Qj,) when

q and 63 are both increasing

q0 q 03, 03 oy | TCv(Qy)
0.00 0.00 0.50 0.55 4671 $258.215
0.02 0.02 0.46 0.57 4719 $260,078

0.04 0.04 0.47 0.59 4762 | $261,185
0.06 0.06 0.49 0.61 4802 | $262,375
0.08 0.08 0.50 0.63 4838 | $263,647
0.10 0.10 0.52 0.65 4870 | $265,002
0.12 0.11 0.54 0.67 4897 | $266,439
0.14 0.13 0.55 0.69 4920 | $267,959
0.16 0.15 0.57 0.71 4939 | $269,562
0.18 0.17 0.58 0.73 4952 | $271,246
0.20 0.19 0.60 0.75 4961 | $273,014
0.22 0.21 0.62 0.77 4964 | $274,863
0.24 0.23 0.63 0.79 4963 | $276,796
0.26 0.25 0.65 0.81 4957 | $278,811
0.28 0.27 0.66 0.83 4946 | $280,908
0.30 0.29 0.68 0.85 4930 | $283,088
0.32 0.30 0.70 0.87 4909 | $285,350
0.34 0.32 0.71 0.89 4884 | $287,695
0.36 0.34 0.73 0.91 4855 | $290,122
0.38 0.36 0.74 0.93 4821 | $292,632
0.40 0.38 0.76 0.95 4783 | $295,224
0.42 0.40 0.78 0.97 4741 | $297,899
0.44 0.42 0.79 0.99 4695 | $300,656
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Table 14. The change in the optimal production size Qj and the cost TCy (Q},) when

q is increasing and 65 is decreasing

q0 q 63, 63 oy | TCv(Qy)
0.00 0.00 0.80 1.00 4671 $258,542

0.02 0.02 0.78 0.98 4673 | $260,927
0.04 0.04 0.77 0.96 4680 | $262,715
0.06 0.06 0.75 0.94 4691 | $264,420
0.08 0.08 0.74 0.92 4706 | $266,042
0.10 0.10 0.72 0.90 4726 | $267,582
0.12 0.11 0.70 0.88 4751 | $269,040
0.14 0.13 0.69 0.86 4780 | $270,415
0.16 0.15 0.67 0.84 4815 | $271,708
0.18 0.17 0.66 0.82 4855 | $272,918
0.20 0.19 0.64 0.80 4900 | $274,045
0.22 0.21 0.62 0.78 4951 | $275,090
0.24 0.23 0.61 0.76 5008 | $276,053
0.26 0.25 0.59 0.74 5071 | $276,933
0.28 0.27 0.58 0.72 5142 | $277,730
0.30 0.29 0.56 0.70 5220 | $278,445
0.32 0.30 0.54 0.68 5306 | $279,078
0.34 0.32 0.53 0.66 5401 | $279,627
0.36 0.34 0.51 0.64 5506 | $280,094
0.38 0.36 0.50 0.62 5621 | $280,479
0.40 0.38 0.48 0.60 5748 | $280,781
0.42 0.40 0.46 0.58 5888 | $291,000
0.44 0.42 0.45 0.56 6042 | $281,136
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Table 15. The change in the optimal production size Qj, and TCy(Qj,) when g is

increasing and 65 is fixed

q0 q 63, 63 oy | TCv(Qy)
0.00 0.00 0.5 0.7 4671 $258,824

0.02 0.02 0.5 0.7 4704 | $260,632
0.04 0.04 0.5 0.7 4737 | $261,925
0.06 0.06 0.5 0.7 4771 | $263,218
0.08 0.08 0.5 0.7 4806 | $264,510
0.10 0.10 0.5 0.7 4841 | $265,803
0.12 0.11 0.5 0.7 4876 | $267,096
0.14 0.13 0.5 0.7 4912 | $268,389
0.16 0.15 0.5 0.7 4948 | $269,681
0.18 0.17 0.5 0.7 4985 | $270,974
0.20 0.19 0.5 0.7 5023 | $272,267
0.22 0.21 0.5 0.7 5061 | $273,560
0.24 0.23 0.5 0.7 5100 | $274,852
0.26 0.25 0.5 0.7 5139 | $276,145
0.28 0.27 0.5 0.7 5179 | $277,438
0.30 0.29 0.5 0.7 5220 | $278,730
0.32 0.30 0.5 0.7 5261 | $280,023
0.34 0.32 0.5 0.7 5303 | $281,315
0.36 0.34 0.5 0.7 5346 | $282,608
0.38 0.36 0.5 0.7 5389 | $283,901
0.40 0.38 0.5 0.7 5434 | $285,193
0.42 0.40 0.5 0.7 5478 | $286,486
0.44 0.42 0.5 0.7 5524 | $287,778
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Table 16. The change in the optimal production size Qj, and TCy (Qj,) when ¢ is fixed

and 63 is increasing

q0 q 63, 63 oy | TCv(Oy)
0.04 0.02 0.50 0.70 4706 | $267,151

0.04 0.02 0.57 0.71 4704 | $266,895
0.04 0.02 0.58 0.73 4703 | $266,924
0.04 0.02 0.59 0.74 4701 | $266,954
0.04 0.02 0.60 0.75 4699 | $266,983
0.04 0.02 0.61 0.77 4698 | $267,012
0.04 0.02 0.62 0.78 4696 | $267,042
0.04 0.02 0.64 0.79 4695 | $267,071
0.04 0.02 0.65 0.81 4693 | $267,100
0.04 0.02 0.66 0.82 4692 | $267,130
0.04 0.02 0.67 0.84 4690 | $267,159
0.04 0.02 0.68 0.85 4688 | $267,188
0.04 0.02 0.69 0.86 4687 | $267,217
0.04 0.02 0.70 0.88 4685 | $267,247
0.04 0.02 0.71 0.89 4684 | $267,276
0.04 0.02 0.72 0.90 4682 | $267,305
0.04 0.02 0.73 0.92 4681 | $267,335
0.04 0.02 0.74 0.93 4679 | $267,364
0.04 0.02 0.75 0.94 4678 | $267,393
0.04 0.02 0.77 0.96 4676 | $267,423
0.04 0.02 0.78 0.97 4674 | $267,452
0.04 0.02 0.79 0.98 4673 | $267,481
0.04 0.02 0.80 1.00 4671 | $267,511
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4.1.3. Case Figures for the Supplier

As we analysed the four cases above, here we investigate the behaviour of Q*
with respect to ¢ and 63. Figure 25 shows the case when g and 63 are both
deterministic. For each value of fixed ¢, as 63 increases, the optimal production size
Q* decreases. For higher value of ¢, optimal production size starts to decrease from

Q™ value. Additionally, Figure 26 shows the change of ¢ and 65 and their effect on Q*

simultaneously.
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Figure 25. The change in the optimal production size Q* when ¢ and 65 is deterministic
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Figure 26. The change in Q* for ¢ and 63

When ¢ is deterministic and 03 is stochastic with standard uniform distribution
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(Figure 27), we have clear convex behaviour for small U, and L,. As those bounds are
increasing, Q" increases in almost linear trend. As their values are getting bigger with

increasing ¢ values, Q* values are starting to decrease.
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Figure 27. The change in the optimal production size Q* when ¢ is deterministic and

05 is stochastic

For the stochastic ¢ with standard uniform distribution and deterministic 03, Figure
28 demonstrates the change of Q*. It can be easily seen that when we fix the difference
between upper and lower bound for g and increase step by step, the optimal production

size starts from higher initial values and decreases.
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Figure 28. The change in the optimal production size Q* when g is stochastic and 63

is deterministic

In the last case, when we have both ¢ and 63 stochastic Figure 29 shows that Q*
has higher values as U; and L; gets higher. As upper and lower bounds for ¢ and 63

are getting larger, Q* is increasing in almost linear trend.

Figure 29. The change in the optimal production size Q* when ¢ and 65 are stochastic
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4.2. Real life scenarios

In this section, we analysed three scenarios that were mentioned in the motivation.
For Scenario I, defective rate g is a random variable and we can rework all defective
items therefore 63 = 1. Moreover, reworking is perfect, so all items are in perfect
condition after the process. In Scenario II, g is random variable and reworkable rate
65 = 0.75, that is, we can not rework on all defective units. In this case, at the end of
reworking, there will be lower quality items therefore process is not perfect. For the last
scenario, we have deterministic defective rate and stochastic reworkable proportion. At
the end of reworking, all items are lower quality. All three scenarios are considered in
partially backordered scenario since it is including backorder and lost-sales together.
Since the logic is still same, only total cost per cycle, optimal order quantity, and
reorder point formulas are given without detailed calculations. After the cases, values

are shown in the Table 17.

4.2.1. Scenariol

Starting with vendor’s total cost per cycle where ¢ is random variable with standard

uniform distribution, and all defective items are reworkable (63 = 1), we have

2 2

ETCy(Qv) =Ky +hv§—g — hv% +cpQv +¢,Qv gy
nQy nQy 1
+ S Hin(qo/q) + 5 In (9_30) (0

and its optimal order quantity will be

. | 2PDKy
0=\ mP=D) @)
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The expected total annual cost is

ETC(Q,r) = (Kv +Kp+F +cQ+cpQ+c,Ouy+ @ In (@) + @Mn(%/g)

o1 Uq (o)
2 2
INOCIET I 20 p)

2 D D D

2 2
-I-hVQ— —th— +d+CbB(I”) +Cl§(r))

D)1 (r— py +5())

D

_Z 3
Q(1—-p) ©)

2D 2P

and the optimal order quantity for the system is

o - \/ —2PD(cyB(r) +d +F +ci5(r) + Kp +Ky) @

hs (2= 1) P—hy (P—D)

and the unique value for r* given as

(g hg(1—p)O
(0 (80280 50 =)~ 3,0 (D(Cz—c:;+hBQ(1—P))+(CID+hBQ(1—P)>)
(&)

4.2.2. Scenario Il

This time, g is random variable that follows standard uniform distribution, and all
defective items are not reworkable (83 = 0.75) and reworking is imperfect. There are
new parameters introduced 6, = 0.4 as the proportion for lower quality items, and Ay,

as holding cost for those items (hy, < hy). The cost for vendor per cycle is

2 (20,1367 + (L, +U1)(65(26,6:U; +663 —3) +3) —6
ETCV(QV)ZKV—HW(QV( L7065 + (L1 + Uy )( i(zpz LU + 605 )+3) ))

iy (Q‘Z, (Li((6,—1)6541)(6,63U; — 63U + U, —3) + ((6;, — 1)L, 63 +L1)2)>

6D
02 (U1((6,— 1)05+ 1)(8,63U; — 63Uy + Uy —3) +3)
+ hy
6D
0
+hy, Qv 63011, + cpQv + ¢ Qv B3y + néQlV:uln(qo/fI) + TstV tn (9;> (6)
0
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Due to time consumption in Wolfram Mathematica, the values for 63 = 0.75 and 6; =

0.4 are inserted for optimal order quantity formula,

of — 2400Ky PD o
Y\ hwP (12122 + A(11U; — 60) + 1200) + 30y D (3L2 +A(3U; + 17) — 40)
where A = (L +U)).
The expected total annual cost is
0
ETC(Q,r) = (Kv +Kp+F+cQ+cpQ+c00:u,+ T'5Q1V.uln(q0/q) + T]52QV1H (933>
0
<Q2 (26,L165 + (L1 + Uy )(65(26,63U; + 665 — 3) +3) —6)>
+ hy
12P
Q2 (Ll((el — 1)93 + 1)(9193U1 —6U+ U, — 3) + ((91 — 1)L193 +L1)2)
+ hy
6D
<Q2 (U]((Q[ = 1)93 + 1)(9193U1 — 63U + Uy —3) —|—3))
+ hy
6D
1(Q(1-p))? , @p(1—p Q1 -p
+hy, Q036,114 + hp (2 D + (D )+(r—l~lL+S(r)) (D )
_ D
+d+cpB(r)+c;5(r > 8
and the optimal order quantity
Q* . —24OOPD(C;,E(}’) —}—d—}—F—i—clf(r) + Kp —|—Kv)
 \/ 1200 (p2 — 1) P — hy P (12112 + AB+1200) — 30hy D (3L2 + A(3U; + 17) — 40)
©)

where A = (L) +U;) and B = (11(11U; — 60)) with the unique r* given as

a1~ p)0 )
OB +50) 1)~ 8,0) ) (Dler—co) +haQ(1 =) ) + (D + a1 =)

(10)

4.2.3. Scenario II1

As the last case, we have ¢ deterministic and 03 as random variable that follow

standard uniform distribution and reworking completely results in lower quality items,
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that is 6; = 1. Vendor’s total expected cost per cycle becomes

ETCy(Qv) = Ky + hv,Qvque, +cpQy +c,Qvqlig, + nSQlV In (qqo) + %“ln(%/%&

02 (D(2q*(L3 + LoUs + U3) +3q(Ly + U> +2) — 6) + 6P(q — 1)?)
+ hy 12PD (11)

and the optimal quantity is given as

oh— 12Ky PD
"\ D (242 (L3 + LaUs + U3) +3q(Ly + Uy +2) — 6) +6hyP(q — 1)2

(12)

Accordingly, the expected total annual cost is

ETC(Q.r) = (Kv +Kp+ F +cQ+cpQ+c,Qque, + hy, Oqiie, +d + cypB(r) +c15(r)

0* (D (2¢* (L3 + LaUs + U3) 4+ 3q(Ly 4+ Uz 4+2) — 6) +6P(q — 1)?)
hv 12PD

1(0(1—p))? 2p(1— 1—
no. (q\  nQ D
+ o In (q) + 52,uln(93/930)> m (13)

and the optimal order quantity for integrated model is

0 = 12PD(cpB(r) +d +F +¢;5(r) + Kg + Ky)
hyD(2¢*(L3 + LoUy + U3) +3q(Ly + Uz + 2) — 6) — 6hg(p* — 1)P + 6hy P(q — 1)?

(14)

and the unique r* given as

(o hs(1—p)Q
' 1(1 (B;(r)(l?(r)ﬂ‘(r)—r)—Bp(r)> (D(j—c;+:BQB(1—p)) + (CID+hBQB(1—P))>

5)

4.2.4. Analysis on scenarios

We used the same parameter values with two new ones (6;,hy,) and calculated the
total costs, optimal quantities and reorder points. Table 17 shows that when we have
chance to rework on all defective items (Scenario I), the integrated optimal quantity

is the minimum among all cases. Due to same form of buyer equation, reorder points
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(rg,r") and buyer’s optimal quantity (Qp) has not changed. Ideally, Scenario I has
the lowest difference on individual and integrated costs (0.4802%), because of the
rework cost. In Scenario II, we have smaller reworkable rate with lower quality items.
Because of extra work, the optimal quantities for both integrated and vendor are higher
with total costs. Integrated cost is affected by holding cost for those lower quality items
along with higher quantity since demand is satisfied only from perfect items. Scenario
III shows g as deterministic and 65 as stochastic (U, = 0.75) with higher integrated
order quantity and total cost than previous cases. With known defective rate and
stochastic rework rate, we need to produce more especially when all reworked items
are considered as lower quality. Finally, this case has the highest difference between
sum of individual costs and integrated cost, that means cooperation of buyer and vendor
has the most advantage when there is lower defective rate. From the perspective of lot
size, it is the highest case, however if the goal is cost efficiency lower quality items is

not a problem since we are not reworking on them.
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CHAPTER 5: CONCLUSION

In this thesis, we proposed a new integrated model in a complex supply-chain
environment with imperfect production processes and defective items are present. The
considered model has investment both in the production process and reworking process
as separate functions. This point is fundamental in supply chain since process quality
can be better by investing in the production process such as maintenance and repair
of machines, and buying new machines for higher performance. Additionally, the
control on process quality provides more non-defective items, which means smaller
production lot size, less shipments from vendor to buyer and overall higher trust
and reliability in business. We also introduced a customer time-sensitivity term
for partial backordering, which is a significant extension to the existing literature.
By incorporating stochastic demand and other parameters, the our proposed model
provided a cost-efficient solution compared to independent decision-making by the
buyer. Moreover, our cost function is strictly convex and nonlinear which is the case in
some literature (such as Hsu and Hsu (2016) and Al-Salamah (2019)). All the additions
in this study fill the gaps that are not considered in the existing literature: for instance,
Hsu and Hsu (2016) and Al-Salamah (2019) for stochastic demand; Taleizadeh et al.
(2015) and Gutgutia and Jha (2018) for investment; Sarkar et al. (2017) and Al-
Salamah (2019) for stochastic defective rate; Hsu and Hsu (2016) and Gutgutia and
Jha (2018) for reworking; and Gutgutia and Jha (2018) and Al-Salamah (2019) for
time-sensitive customer behaviour.

One of the possible extensions to our study can be the inclusion of an inspection
rate and its cost. A future study can be carried out by addition of those terms to
avoid poor quality items in stock. Moreover, depending on the relationship with the
production rate, one can see whether the inspection rate is sufficient. Another extension
is to consider the integration of different quality levels for reworked items. There
can be cases where reworked items are not of perfect quality, but these can still be
sold at certain prices. This point is also connected to the concept of sustainability

and environment-friendly products. Finally, analysing various distribution models for
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demand is a good analysis to evaluate the behaviour on the costs, the reorder point, and

the optimal order quantity.
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Appendix A: Proofs for convexity

Proposition 1. The ETCg(Qp,r) expected annual total cost is convex in (Qp,r).

Proof. The total expected annual cost for buyer, Eq. 25, is:

FrCrenn = (hB (% (QB(ID_ 2 Q%p(;_p) + U—ums‘(ﬂ)@)
+Kp+F +cQp+d+cpB(r) + cls‘(r)) ﬁ

Taking the first and second partial derivatives of ETCg(Qp,r) with respect to Qp and

r, we get

J(ETCp) 2D(cpB(r)+d+F +¢;5(r)+Kg)+hg (p*— 1) O

= A.l
J0p 2(p—1)03 4D
JI(ETC) _ D(cpB'(r) + 8 (r)) +hp(1 — p)Qs(1+3(r)) (A2)
or (1-p)QOs ’ .
; . _
0 (ETZCB> _ 2D(CbB<r)+d+F+3ClS(r)+KB) >0, (A.3)
8QB (1 - p)QB
9*(ETCp) _ §'(r)(hs(1—p)Qp+ciD) +c,DB" ()
P (1-p)Qs =0 AD
and
9> (ETCp) _ 9*(ETCp) _ D(cpB'(r) +ci5'(r)) (A.5)
9rd0s  0Qsdr (P—1)03 |
With those equations, we obtain the determinant
J?(ETCp) 9J*(ETCp)
aQ% dQpadr
J2(ETCg) 9*(ETCp)
drdQOp or?
_ D(2(cyB(r) +d+F +ci5(r) + Kp) (5"(r) (hs(1 — p)Q + e,D) + c,DB"(r)))
(p—1)20*
DX (eB (1) + (1) (A6)

(p—1)20*
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This term is non-negative when

2(cyB(r)+d +F +ci5(r) + Kp) (5(r) (hs(1 — p)Q+ciD) + c,DB" (r))

> D (cpB'(r)+ clfl(r))z (A7)

with §(r) >0, B(r) > 0, and all positive parameters. Therefore, ETCg(Qp,r) is convex
function in (Qp,r) when above condition is satisfied.
Proposition 2. TCy(Qy ), annual total cost of supplier is strictly convex in Qy.

Proof. The total annual cost for the supplier, Eq. 62, is:

TCy(Qy) = (Kv+hv<Q%<q(93 - 1)+1)<2;(1;](93 ) +1) _D)>

Qvn ovn D
51 =—1In < . ) + 71 (030> +cpQy +Cer6193) ovi—p) (A.8)

Taking the first and second partial derivatives of TCy with respect to Qy, we get

d(TCy) 2PDKy —hy Q3 (q(65—1)+1)(P(q(63—1)+1) — D)

— A9
dQy 2(p— 1)PQ} (A2

d*(TCy)  2KyD

— A.10
oy — (1-p)0; (A10)

since all parameters are positive, d ((1 02 Y. Therefore, TCy (Qy) is strictly convex
\4

in Qy. All other cases can be shown with similar calculation therefore they are skipped.

Proposition 3. ETC(Q,r) expected annual total cost is strictly convex in (Q,r).

Proof. The integrated total expected annual cost in Eq. 170 is:

0*(q(65—1)+1)(P(q(63—1)+1)—D)
o 2PDq : )+CPQ

ETC(Q,I”) = <KV +KB+F+hv(

N2 201 _ _

.\ hB(% (Q(ID P, 0 p(ll) P ”(r))w) +¢,0q65
_ (. 9N, on, D

+d+epB(r) +as(r) + 5= ( ) TS ! (9_30) +CQ> o(1-p)

(A.11)
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Taking the first and second partial derivatives of ETC(Q,r) with respect to Q and r,

we get
Jd(ETC) _ D(cpB(r)+d+F +c¢;5(r)+Kg+Ky)  hp (p2 —1)
20 (p—1)Q? 2(p—1)
hy(q(63—1)+1)(Pq(63 —1)+P—D)
— 1P , (A.12)
J(ETC) _ DcypB'(r)+Dc;§ (r)+hg(1—p)O(1+5(r))
— , (A.13)
dar (1-p)Q
0*(ETC)  2D(cpB(r)+Kp+ Ky +d)
T 0= p)0° >0, (A.14)
0*(ETC) _ DcpB"(r)+35"(r)(hg(1 — p)Q+¢,D)
S = =)0 >0, (A.15)
and

OX(ETC) 9*(ETC) hp(5(r)+1) D (CbE"(r)-i—cls"(r) + hB(l—p)QD(s (r)+1)>

ordQ  2Qdr 0 (1-p)0?

With those equations, we obtain the determinant

J2(ETC) J*(ETC)

00? d0dr
J2(ETC) J*(ETC)
drdQ or?

_ ZD(CbB(r) +d+F +¢;5(r) +Kp+Ky) (CbDB//( )—|— "(r )(c;D —hppQ+hpQ))
(p—1)20*
+h_3+ §(r) (2hg(p —1)Q — e;D(hg + Q)) +hps' (r)* (hs(p —1)Q — ¢;D)
Q2 (p—1)0°
cpyDB'(r) (hgs' (r) + hg + Q)
(1-p)0?

(A.17)

because 5(r) > 0 and B(r) > 0 with all positive parameters. Therefore, ETC(Q,r) is

convex function in (Q, r).
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