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ABSTRACT

MANUFACTURING & RE-MANUFACTURING INVENTORY MODELS WITH

IMPRECISE AMOUNT OF DEFECTIVE ITEMS

Yüce, Gizem

Ph.D. Program in Applied Mathematics and Statistics

Advisor: Prof. Dr. Gözde Yazgı TÜTÜNCÜ

May, 2023

In this thesis, we developed an integrated inventory model in supply chain

environment for a single product with complete backordering, partial backordering

or complete lost sales. The production process is not totally reliable. Therefore, the

system generates an imprecise number of defective items within the production cycle.

Moreover, only a random proportion of these are reworkable. To see their effect in

the model, four case combinations are studied, where both defective rate and rework

rate are deterministic and stochastic. As one of the main extensions, two investment

functions are considered to improve the supplier’s production process quality and

reworking power. Additionally, customer time sensitivity term is investigated for

partial backordering. The goal was to minimise the total combined annual costs of
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the integrated system. The model defines the optimal reorder point and order quantity

based on the expected total annual cost, and a solution algorithm was presented

for solving the model. With a numerical example, it was shown that the proposed

integrated model provides reduced cost in comparison to a model that considers

only buyer’s decision under stochastic demand with partial backordering. That is,

cooperation between buyer and supplier is beneficial when there is stochastic defective

and rework rate, time-sensitive customer behaviour, and investment in production

and rework. In addition, with further sensitivity analysis one can see that supplier

investment decreases the production rate of defective items and increases rework

power. Therefore, smaller lot sizes are produced.

Keywords: inventory optimisation, supply chain optimisation, reliability, optimisation

of inventory.
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ÖZET

KUSURLU ÜRÜN MİKTARININ BELİRSİZ OLDUĞU DURUMLAR ICIN

İMALAT VE YENİDEN İMALAT ENVANTER MODELLERİ

Yüce, Gizem

Uygulamalı Matematik ve İstatistik Doktora Programı

Tez Danışmanı: Prof. Dr. Gözde Yazgı TÜTÜNCÜ

May, 2023

Bu tezde, yok satma, gecikmiş üretim ve kısmi gecikmiş üretim ile tek bir

ürün için tedarik zinciri ortamında entegre envanter modeli geliştirilmistir. Üretim

süreci tamamen güvenilir olmadığından, döngü sırasında belirsiz sayıda hatalı ürün

üretilmektedir. Ayrıca, bunların sadece rastgele bir kısmı yeniden işlenebilir. Modelin

hassasiyetini görmek için, hem hatalı oranı hem de yeniden işleme oranı belirli ve

rastgele olan dört durum kombinasyonu incelenmiştir. Ana katkılardan biri olarak,

tedarikçinin üretim süreci kalitesini ve yeniden işleme gücünü iyileştirmek için iki

yatırım fonksiyonu dikkate alınmııştır. Ayrıca, kısmi gecikmiş üretim için müşteri

zaman hassasiyeti terimi incelenmiştir. Amaç, entegre sistem için toplam yıllık

maliyetlerini en aza indirmektir. Optimal sipariş miktarı ve yeniden sipariş noktası
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beklenen toplam yıllık maliyetten belirlenmiş ve model çözümü için bir çözüm

algoritması önerilmiştir. Bir sayısal örnek ile, önerilen yeni entegre modelin, stokastik

hatalı ve yeniden işleme oranı, zaman hassasiyetli müşteri davranışı ve üretim ve

yeniden işleme yatırımı durumlarında alıcı ve tedarikçi arasındaki işbirliğine fayda

sağladığı gösterilmiştir. Ek olarak, daha fazla hassasiyet analizi ile tedarikçinin yatırım

yapması, hatalı öğelerin üretim verimlilik oranını azalttıgı ve yeniden işleme gücünü

arttırdıgı gözlemlenmistir. Bu nedenle, daha küçük lotlar üretilmesi önerilir.

Anahtar Kelimeler: envanter optimizasyonu, tedarik zinciri optimizasyonu, güvenilir-

lik.

vii



This thesis work is dedicated to my family...

viii



ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my supervisor, Prof. G. Yazgı Tütüncü,

for her unwavering support, guidance, and patience throughout my research. Her

insightful feedback and constructive criticism have been invaluable in shaping the

direction of this thesis.

I would also like to thank my committee members, Prof.Dr.Serkan ERYILMAZ
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CHAPTER 1: INTRODUCTION

Inventory is one of the key factors that must be overseen in the supply chain. It

incorporates an immense range of materials that is being produced, sold, stored during

business. In general, planning, storing, and moving of inventory have its own financial

value. One of the main aims for each firm is to keep the level of inventory in the

supply chain at certain level such that it lowers significant costs yet protects a company

(customer) from stock-out. For the case of managing inventories, one needs to decide

how much it should be ordered for replenishment and when the inventory should be

replenished. The main goal is to acquire the lowest possible total cost.

Mathematically, inventory model is a tool for determining the optimum level

of inventories that business should provide in a production process, keep up with

frequency of ordering, make a decision on quantity of goods to be stored, tracking flow

of supply for continuous service to customers without any delay in delivery. There are

certain types of costs for inventory such as purchase cost, backorder cost, holding cost

and ordering cost. Ordering cost is total expenses of processing an order, no matter how

much the order quantity is. Holding cost defines the sum of the costs from insurance,

security, taxes, warehousing and other related expenses. Backorder cost emerges when

there is a stock-out case under the demand of an item and purchase cost is the actual

price for the items.

The traditional inventory models, including the economic order quantity (EOQ),

the economic production lot size, and EOQ with planned shortages, operate under the

assumption that demand and other variables are constant and predictable. In other

words, these models assume that the demand for a product is known with certainty and

does not vary over time, and other parameters such as setup costs, holding costs, and

production rates remain unchanged. The deterministic inventory model known as the

economic order quantity (EOQ) is considered one of the most fundamental models. In

this case, it is assumed that there is one product and the demand is known&constant

during the year. In general, there are two costs; the cost of ordering and receiving the

product, and holding cost as having the product in inventory for a year. Here, unit cost
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does not play a role, so price is same for any quantity. Also, shortages are not allowed.

The objective is minimising the total costs of inventory that is summation of annual

holding cost and annual ordering cost.

To create more accurate and practical inventory models, we can consider various

factors such as demand, lead time, products, capacity, and service level. For example,

we can model demand as constant and predictable, or as a random variable with a

probability distribution that reflects the uncertainty of future demand. We can also

consider lead time as either zero, fixed, or stochastic to account for the variability in

the time it takes to receive goods after placing an order. Moreover, we can model

inventory systems for single or multiple products, taking into account different lead

times, demand rates, and costs. Additionally, we can consider capacity constraints,

such as order or inventory limits, or assume no capacity constraints in the model.

Lastly, we can incorporate service levels into the inventory model, such as meeting

all demand (no shortages) or allowing for shortages to occur. These different factors

can create various inventory models that provide more accurate and practical solutions

to inventory management. Additionally, in real life, production process might have

imperfect quality of items, therefore it is unrealistic to assume that every item is

produced with good quality. In contrast to classical economic order/production

quantity (EOQ/EPQ) models, real-world situations may involve defective items due

to imperfections in the production process, spoilage during transit, or other factors. It

is essential to consider the impact of defective items on customer satisfaction levels

as their impact cannot be ignored. In addition, the presence of a random number of

defective items can reduce the original order size of the buyer (customer), leading to

the possibility of a stock-out situation. There are three possible responses for stock-

out case; (partial or complete) backordering, substitution, and (partial or complete)

lost sales. Backordering is a separate order which is requested by customer and is

prepared as soon as the product is available by supplier. Substitution happens when

there is another product that is acceptable instead of the one is not available and lost

sales occur when customer invalidates the order.

Defective items can be collected and remanufactured, then considered as perfect

items, or disposed as scrap, or priced and sold as lower quality products. It is possible
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to combine those steps or examine them individually with corresponding system costs.

Also, it is highly possible to repair only proportional amount of defective items, so

in general, the idea of working on defective items requires separate and attentive

consideration. It is important to decide when to switch the system from production

to remanufacturing since managing both at the same time may not be possible.

In production, it is inevitable to have defective items therefore process quality

becomes more of an issue. It can help to supplier for producing smaller batches

with perfect quality items. Investment in process quality can have significant effect on

reduction the number of defective items produced and its corresponding costs. Some

examples of investments could be purchasing new equipment, enhancing machine

maintenance, increasing repair frequency, and providing training to employees.

Additionally when there is reworking process, we can include investing on machinery

& workers to have higher efficiency. Since production and reworking are two separate

operations, handling them can require different qualities.

When shortage happens for various reasons, first problem is customer behaviour.

That is, if they are willing to wait before receiving their items so shortage will be

backordered or not. One of the main questions is about the length of waiting period,

because some customers may agree to wait for short period of time. Hence, backlogged

demand is strongly dependent to customer time-sensitivity.

In this work, we aim to decide which inventory model would be the best under

stochastic demand and imperfect production when shortage is allowed. It is essential

to find a possible expression for case such as lost sales, backorder or mixture

of them in the mathematical model with reasonable assumptions. How we can

manage the production phase when there is randomness in defective items and when

remanufacturing should be started are another step of this study. We will propose

the most favourable strategies under the fact that we can repair only proportional

amount of defective items and two different form of investments. Considering various

possible scenarios such as demand variability, defective production, reworking and

time-sensitive customers, optimal lot size and reorder point with total expected cost

will be examined in detail.

The rest of the thesis is organised as follows. The next section is devoted to the
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literature review. Independent model papers for EOQ and EPQ with integrated model

papers are discussed. In Chapter 2, general models and basic definitions are introduced.

Related to the study, continuous review models are discussed with different conditions.

The first contribution of this work is proposed in Chapter 3. Independent models

for buyer and supplier are built. Starting to build buyer’s models for deterministic

and stochastic demand, we also analyse lost-sales, partial backlogging and complete

backlogging. For supplier, two parameters are studied in the model. Their stochasticity

and its effect on the cost function is proposed. Second section is devoted to building

the integrated model and different distribution cases for two parameters. In Chapter 4,

a example is presented with sensitivity analysis for buyer’s model and case figures for

supplier’s model. Then real life scenarios is shown. Then overall analysis is done to

compare the optimal values.

1.1. Motivation and Objective

Modelling of an inventory system is one of the most important tasks in supplier-

buyer chain and more realistic models enable us to interpret future of the production

systems. While there are common models for certain scenarios, considering additional

assumptions can make them more realistic. Of course, for the beginning oversimplified

assumptions such as all products have perfect quality or no shortage make the model

easier to deal with mathematically but may not match up with the real life problems.

That is why modification of existing models -with random defective proportionality,

remanufacturing, shortage, or stochastic demand consideration- is fundamental. With

different review process, adding those creates more reasonable models. Here, the

essential point is to achieve sufficient tractability and acceptable realism in the

formulated models.

The purpose of this thesis is building an integrated inventory model for single buyer

single supplier chain with stochastic demand, defective items and reworking when

shortage at the buyer is completely lost/partially backordered/completely backordered.

Although supplier reworks the defective items, buyer may still receive imperfect

items (not necessarily defective) and sends those to the outlet shops. While the

parameter values and initial conditions determine the result for deterministic models,
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with stochasticity there is inherent randomness which have same parameter values and

initial conditions with different results. Therefore, assuming stochastic demand on

buyer’s side, can help modelling the supply-chain flow more pragmatically. Moreover,

due to the nature of stochastic demand, imperfect products or simply not handling

inventory effectively, shortage may occur. When it happens, sales can be completely or

partially backordered or lost. Among those cases, the most realistic one is considered

as partial backordering since some of the customers are time-sensitive. That is, part of

those are willing to wait during shortage while others are not. To model that behaviour,

it is necessary to include a parameter for length of shortage, lead-time demand, reorder

point and duration for customer waiting period. Linear function for the decline in

backordering may be good start however considering exponential structure makes it

more realistic. Also, having backorder parameter depends on reorder level gives a

robust insight for analysis of their relationship.

At the end, three real life scenarios will be studied for continuous review inventory

models with defective items. First scenario includes proportional defective items as

random variable with full reworking rate. After remanufacturing all imperfect items

are considered as brand new. Shortage is partially backordered. The second one is

about random defective items and not every defective item can be reworkable. This

time reworking process on them is also not perfect, that is, after remanufacturing

there will be brand new and lower quality items. Demand is random variable and

shortage is partially backordered. In the third scenario, defective rate is deterministic

with random reworking rate and after remanufacturing, items will be all in lower

quality. With all those scenarios, our goal is to minimise the total expected cost of

the system, therefore we will compare integrated model with vendor’s independent

cost and buyer’s independent cost.

In the existing literature, the metrics we just mentioned such as stochastic demand,

rework on defective items, investment and customer behaviour parameters are not

considered in one study simultaneously. Despite being neglected too often, customer

behaviour is specifically substantial since it is one of the core pieces for supply-

chain. Moreover, considerable efficiency on production and reworking requires

rational investment to the process. Besides its financial value, less scrap at the end
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of production/rework also means being more environmentally-kind. Therefore, in this

study we aimed to fill the gap in the existing literature and to extent it by examining

an integrated, single-supplier, single-buyer inventory model with stochastic demand,

investment for production and rework quality, and time-sensitive customer behaviour.

Overall, the goal is bridging all the existing models with addition of these components

and finding the most updated inventory model. Table 1 summarises a comparison

between the proposed model and several other relevant studies conducted in the past

ten years. It is clear that realistic case combinations of key parameters has not been

proposed.
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1.2. Literature Review

To understand the flow in supply chain management, there have been various mod-

els proposed in the literature with different perspective and requirements. Economic

Order Quantity (EOQ) has been one substantial tool so the buyer knows when to

order to keep the inventory at certain level for reduced overall cost. On the other

hand, in production, Economic Production Quantity (EPQ) models are used to regulate

production so supplier can meet the continuous demand. EOQ and EPQ models share

several assumptions, such as the nature of the demand, item quality and inspection.

When supplier and buyer are linked, joint optimisation of the production and inventory

can be more efficient in many ways.

1.2.1. Papers for EOQ models

EOQ models have been studied with numerous assumptions in the literature for

the last decade (Pentico and Drake (2011)). As a start point, one of the assumptions

that basic EOQ model has is receiving perfect quality items. However, production is

not always perfect, that is, reliability of the production process and quality of received

items are connected. As a result, it is possible that the manufacturing process will

degrade and produce defective or low-quality products. Porteus (1986) introduced a

simple EOQ model with defective items. He showed that there is a strong relationship

between quality and lot size, therefore investment in process was studied. With the

quality investment, it is possible to reduce the out-of-control probability and setup

cost. Another point in his paper is explicit optimal solutions could be derived thanks

to logarithmic form of investment cost function. Salameh and Jaber (2000) studied a

model with random proportion of imperfect quality items -not necessarily defective-

when EOQ/EPQ formulae is used. They considered the lower quality items to be

sold at the end of screening process as single batch and there is error-free complete

screening process. Their study showed that with increased amount of imperfect items,

lot size also increased. Among the works that modified or extended the paper of

Salameh and Jaber (2000), Rezaei (2005) considered shortage problem with complete

back-ordering due to defective items in the classical EOQ/EPQ model. Yu et al.
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(2005) extended their model with deterioration and partial back-ordering. Since not

all customers are willing to wait during shortage, they define lost sales with impatient

customers. Additionally, a lower bound on the back-ordered ratio is obtained for

concave profit function. Wee et al. (2007) examined the model in Salameh and Jaber

(2000) for the case of shortage with complete back-ordering in each cycle. Eroglu and

Ozdemir (2007) proposed an inventory model that considers a random defective rate

and allows for shortages, which are completely back-ordered.. They also assumed a

screening process to separate good and defective items. Cheikhrouhou et al. (2018)

presented an inventory model with sample inspection that detects defective lots. The

goal is to minimise the system costs with optimal sample size and optimal order

size. The defective items are assumed as random variable which may follow standard

uniform distribution. After receiving shipment, sampling process starts. Then a quality

inspection is applied to n items in each lot. The inspection is also imperfect so there

are Type-I and Type-II errors. The demand rate is assumed constant and uniform,

and shortage is not allowed. There are two cases discussed; any defective item

is promptly returned to the supplier and they are kept till next shipment. Finally,

they showed that first case was more profitable. Sharifi et al. (2015) examined a

model that expands upon previous literature on the economic order quantity (EOQ)

model with imperfect items and partial backordering, incorporating screening errors.

The aim of this model is to optimise profits by determining the optimal order size

and the maximum number of backordered units. The few assumptions are; there is

instantaneous replenishment, fixed proportion of defective items, and items of inferior

quality are offered at a discounted price and there are Type-I and Type-II errors

according to misclassification. The proposed model is solved analytically and they

showed that it is concave. Therefore there are unique values of optimal order size

and the maximum number of backorder units which maximise the expected profit.

Annadurai and Uthayakumar (2010) presented a continuous review inventory model

with defective items and partial backorders. The authors initially made the assumption

that lead time demand follows a normal distribution. However, they later relaxed this

assumption by utilising a minmax distribution-free approach. The decision variables

are order quantity, setup cost, reorder point and length of lead time for an inventory
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model. The main few assumptions are; the number of defective items follows a

binomial distribution, any defective items are identified and returned to the supplier

during the next shipment after complete and error-free inspection. The objective is

to analyse the effect of defective items with a mixture of backorders by reducing the

setup cost to minimise the order quantity, reorder point, and lead time. Skouri et al.

(2014) studied an economic order quantity model with backorders when a fraction of

all supply is imperfect. They considered "all or none" inspection policy, so if the batch

is below quality standards it is assumed as defective then rejected. Two-dimensional

constrained optimisation problem was presented and solved. Corresponding optimal

cost, optimal planned order quantity and backorder values are obtained in closed

form. Öztürk et al. (2015) investigated the EOQ model for defective items and rework

option. Here, demand, rework rate and inspection rate is constant and known with

both the rework rate and inspection rate are higher than the demand. Full inspection

is processed and defective items include scrap, imperfect quality and reworkable items

of proportions. Shortages are allowed and backordered. Reworking starts right after

the inspection process and results in scrap and good items. The model is solved

analytically and the optimum order quantity and the optimum backorder quantity.

Rezaei (2016) defined an inspection plans for imperfect items by using the economic

order quantity model with three different possible scenarios; full inspection, rejection,

and no inspection. These plans are determined by the outcome of sampling inspection

plans that is the imperfect rate may be either below the minimum limit, or between

upper and lower limit, or above a maximum limit. The goal is to formulate the total

revenue and EOQ model of those three cases. In this study, Hsu and Hsu (2013a)

proposed a model when there is inspection errors, sales returns, imperfect quality,

and shortage backordering. The aim is to maximise the total profit per cycle. The

main assumptions are; constant annual demand rate, imperfect production process,

imperfect screening process at buyer’s side, shortage. They studied on two models

as the one with if shortages are allowed and the one with no shortages. The closed

form solution is obtained for the optimal order size, the optimal order point and the

maximum backorder units.
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1.2.2. Papers for EPQ models

In production scheduling, EPQ model with defective items have been studied

with several different assumptions for the last decade Pentico and Drake (2011). In

a very early study, Rosenblatt and Lee (1986) examined an economic production

quantity model with imperfect production where defective rate is defined as linear,

exponential, and multi-state as a function of setup cost. When reworking is possible,

utilisation of production process can be more effective. Hayek and Salameh (2001)

studied an EPQ model with the effect of constant rework rate on random defective

proportion where shortage is allowed. Reworking process is assumed as perfect and

defective rate equals to rework rate. They obtained the optimal production quantity

and maximum backorder level allowed in a production cycle that minimise the total

cost. Chiu (2003)’s research highlighted the influence of reworking defective items

on the EPQ model with backordering. In this study, not all defective items are

restorable, therefore scrap items are considered with its cost. The renewal reward

theorem is utilised to examine cycle length when it is variable. Optimal lot size

and maximal backorder level are obtained to minimise the total cost under allowed

backordering. Tsai (2009) presented an economic production quantity model for

imperfect production process with addition of learning effect to determine the optimal

production quantity. This effect helps to produce a single item in n batches at an

increasing rate. A random variable is used to represent the percentage of defective

items and the optimal lot size is derived from solution procedure. Revisiting Chiu’s

paper, Taleizadeh et al. (2015) considered an EPQ inventory model with rework

process through multiple shipments policy with addition of pricing. The aim is to

determine the selling price, lot size, and number of shipments that will yield maximum

profit. The demand is assumed price-sensitive, and the production is imperfect so

there are defective items with certain ratio. The reworking process is also assumed

as imperfect that means there is scrapping rate. By showing that the average benefit

function is concave, they proved the existence of an replenishment lot size, an optimal

price, and number of shipments. Hsu and Hsu (2016) developed a model for optimal

production lot size and backorder quantity with defective items. Several scenarios such
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as randomness on defective rate and drawn time of defective items from inventory are

discussed. Al-Salamah (2019) examined economic production quantity models with

imperfect production process and flexible rework rate and two types of rework process

as asynchronous and synchronous. The synchronous rework provides immediate

reworking on defective items while asynchronous keeps them until the completion

of manufacturing of lot. With the flexible rework rate, there are two possible cases;

either the rework rate is higher than the demand rate, or the demand rate is higher

than the rework rate. The goal is to minimise the associated cost for each model

and obtain the optimal lot sizes and backorders for different assumptions for rework

rate and rework process. It is assumed that the demand rate and production rate are

constant and known, and the proportion of defective items is also known. There

is screening process which classifies items as either defective or nondefective, the

rework process is perfect, and backorders are allowed. Example analysis shows that

lot size and backorder are sensitive to different assumptions for rework rate and rework

process. Chiu et al. (2011), combined reworking process and multiple shipments for

an imperfect economic manufacturing quantity (EMQ) model. The classical EMQ

model assumes that all items produced are of perfect quality and there is continuous

issuing policy. On the other hand, in real vendor-supplier environment, production

of random defective items is inevitable. The integrated EMQ model here, includes

a random defective rate during production process, production setup cost, reworking

with scrap rate, fixed and variable transportation costs, and inventory holding cost

for manufacturer and customer. In addition, the reworking of defective items takes

place after the regular production process in each cycle. Once the quality of the entire

lot has been verified at the end of the rework process, the items can be shipped to

customers. With mathematical modelling of problem, they formulated cost functions

and optimal replenishment lot size. Moreover, due to success of repairing process,

specific cases are shown for cost functions. Chiu et al. (2008) studied on an expediting

decisive rule about either rework the repairable defective items or not in economic

production quantity model with proportional repairing success and no backlogging

as assumptions. EPQ model is used to conclude the optimal production size when

when the company produce the items internally instead of obtaining from a supplier.

12



According to the decision, reworking the defective items starts right after regular

process ends. It is possible that the rework process is imperfect, which can result in

some defective items failing to be reworked and becoming scrap items. The proposed

mathematical system is used for the exact critical point of repair cost and assistance

for determining whether it is beneficial to rework the imperfect items. Krishnamoorthi

and Panayappan (2012) presented an imperfect quality inventory model and defect

sales returns which determines an optimal production lot size by using the economic

production quantity model. The minimisation of the total cost derived with optimal

production lot size for a single type of product. The assumption is that any defective

items produced can be reworked, and the outcome of the reworking process is either a

good item or a scrap item. Shortages are backordered and met by the next possible

replenishment. In this study, inspection cost is ignored and sensitivity analysis is

observed for various system performance measures. As a different perspective, Ritha

and Priya (2016) examined the costs of transporting materials, the energy used in the

production process, and the cost of waste generated by defective items during the

rework process. They used the extended form of the EPQ model with defective items

that are reworkable. The model is created with assumptions such as no shortages are

allowed, only non-defective items are used to meet the demand during production,

and reworking of defective items occurs at a fixed rate. As a side note, screening

occurs after the production period has ended and after identifying the defective items

are reworked before they are returned to the inventory. Mathematical formulas for

calculating the ideal order quantities and overall profit per unit time are presented

Khanna et al. (2017) studied a finite production model that observes the imperfect

environment including the concept of inspection errors and imperfect rework process.

The definition of problem is finding the optimum production quantity by maximising

the difference between total revenues and costs per unit time. The cost components

are production cost, inspection cost, Type-I&II error costs, inventory holding cost,

rework cost, and disposal cost. Demand rate is assumed as constant, uniform and

deterministic and reworking starts after the end of production process. Additionally, a

portion of the defective items is sent for rework, while the remaining defective items

are disposed of at a lower cost. Unlike their most recent paper Khanna et al. (2017),
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AIP (2016) studied on the problem about finding the optimal production and backorder

quantity. In addition to the assumptions made in their previous study, this study allows

for shortages, which are entirely backlogged. Moreover, they considered a shortage

cost in their model this time.

Sarkar et al. (2014) developed inventory models based on three different distribu-

tion density functions: beta, triangular, and uniform, all of which incorporate a variable

defective production rate. Demand and production rate are assumed constant, no

shortage is allowed, there is full screening process with negligible cost, the proportion

of defective products is random variable and it follows three distribution density

functions. After rework process, all items are assumed to have perfect quality, as a

backorder cost linear and fixed backorder cost is considered. They derived closed-

form of solutions of the models. As a goal, it was shown that minimum cost was

obtained from triangular distribution. Mukhopadhyay and Goswami (2014) developed

an imperfect EPQ inventory model with rework and learning process. The goal is

to reduce the total production inventory cost. A constant demand rate is assumed,

and the production process is considered to be imperfect. With screening process

there are perfect, imperfect, and defective are obtained, and then defective items are

reworked, defective items are sold at a discounted price, while perfect items are sold

at full price. The fraction of non-reworkable imperfect items are uniformly distributed

random variables. There is learning process from experience that concludes less setup

time and cost, and no shortages are allowed. They specified the setup cost as a function

of production run length for the case of learning. Total cost is shown as convex function

so there is optimal value of production lot size.

1.2.3. Papers for integrated models

The supply-chain coordination for inventory management is one of the many

tasks in competitive markets. As one of the early studies, Goyal (1977) studied the

integrated optimisation problem for single buyer and single vendor where vendor’s

production rate is infinite. Later, Goyal and Nebebe (2000) examined the economic

production model and shipment policy for supplier-buyer chain to obtain minimum

total joint cost. Wu and Ouyang (2003) derived an algebraic approach to single vendor
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single buyer inventory system with shortage instead of using differential calculus.

they showed that optimal integrated cost is lower when there is shortage. Hsu and

Hsu (2013b) conducted research on a model that integrates production inventory

with imperfect quality items and planned backorders, involving a single vendor and

a single buyer. The aim was to minimise the total joint annual cost. The main

assumptions are; constant and known demand rate, percentage of defective items has a

probability density function, error-free screening process at buyer’s side, and complete

backordering. The integrated model for expected annual joint cost is derived and the

optimal solution is provided. Since there are independent models given, example

showed joint model has reduced cost compared to individual models. In this paper,

Sarkar et al. (2017) developed an integrated inventory model with defective items and

two-stage inspection. First-stage inspection is for detection of defective items and

second-stage is about ensuring reworked products have perfect quality. The goal is

to reduce the total system cost. There is single vendor and single buyer for single

item with production of defective items. The model follows make-to-order policy,

fixed setup cost is assumed in the model, and no shortage is allowed. The variable

transportation cost is used in a form of power function in the model and it is solved

analytically. Gutgutia and Jha (2018) studied an integrated inventory model with single

vendor single buyer supply chain using service level constraint (SLC) approach that

aims to model the stock-out case in an inventory system. Also, lead time reduction and

random defective items are also considered for minimising the total expected cost of

the system. They allowed partial backordering and lost sales for stock-out situation.

They derived closed form expressions for the optimal order quantity, safety factor,

and shipment frequency. Hsien-Jen (2013) studied an integrated single supplier-buyer

inventory system with stochastic defective items under continuous reviewing. The

study considers the lead time demand to be known only for the first two moments and

unknown distribution afterwards. Therefore, a minmax distribution-free approach is

employed to determine the optimal order quantity, reorder point, lead time, and number

of lots delivered. The primary objective of this approach is to minimise the expected

total system cost. They considered the possibility of crashing the components of lead

time one at a time at a certain cost. They also assumed that defective items are random
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variables that follow a binomial distribution, and that these items are returned to the

vendor upon delivery of the next lot. Furthermore, they allowed for shortages and

partial backorders in their model. Here, both vendor and buyer’s expected average

total cost per unit time are calculated individually then jointly. The parameters

that have effects on decision making process are also studied and as a conclusion,

integrated model was decided more beneficial for both sides. Kang et al. (2018)

studied an inventory model by including safety stock with imperfect production. The

mathematical model is optimised for lot size, planned backorder quantity, and a safety

stock for minimising the average cost of an imperfect production setup. The few main

assumptions are; it is a single stage manufacturing setup for a single item, production

is not perfect so there are imperfect items which are reworked, there are additional

units produced as safety stock with their associated cost, shortages are allowed and

backordered, demand and production rates are known and there is inspection process

but not for reworked products as they are considered good without inspection process.

In this study, Lopes (2018) constructed an integrated model for production system

with imperfect inspection that is fractional of items. Additionally, there are defective

items from inspection process which are reworked with a fixed cost. The goal is

to minimise the total expected cost per item. As one of decision variables, there is

buffer stock for a demand when preventive maintenance is completed. The few main

assumptions are; defective items are detected by inspection process, since inspection is

imperfect there are Type-I and Type-II errors. The model assumes that the probability

of defective items is lower when the system is in-control than when it is out-of-control.

Additionally, the producer offers a free minimal repair warranty. The holistic approach

to a joint optimisation model is given to see the relationship between different elements

and system productivity and decrease in cost. Moshrefi and Jokar (2012) developed an

integrated inventory model that has stock-dependent demand, shortages, and a function

for customer impatience about backorder. The objective is to minimise the overall cost

by finding the optimal inventory cycles that balance inventory, ordering, and shortage

costs for both the supplier and the customer in the supply chain. The main assumptions

in this paper are the function for the shortage period that shows fewer customers are

willing to wait until replenishment, and another function for none-shortage periods
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that shows the demand rate is dependent on inventory volume at the retailer’s shelf

area. It was shown that there is unique local minimum for the integrated model for a

given number of shipments. Yu and Hsu (2017) investigated an integrated model for

single-supplier and single-buyer with immediate return of imperfect items under the

unequal sized shipments. Here, the aim is to maximise the annual integrated profit by

optimal number of shipments and optimal sizes of the shipments in a cycle. The first

shipment is small size and the rest of them are equal sized. The demand rate is assumed

as constant and uniform, and for reduced holding cost the production quantities during

the time intervals between successive shipments is taken greater than the size of each

shipment. Lots have a proportional defective units and their percentage is uniformly

distributed. There is an inspection process with a fixed rate at buyer’s side and defective

items are sent to vendor immediately, and shortages are not allowed. They showed

the benefits of this model compared to the integrated model under equal sized policy.

Dey (2019) studied an integrated single vendor-buyer production inventory model with

fuzziness and randomness. Also, production process quality control is defined and

included in the model. The goal is to find the minimum of total cost of integrated

system by obtaining optimal values of the safety stock, number of deliveries, the

order quantity and the probability of ’out-of-control’ of the production system.The

study assumes that the annual demand is a discrete fuzzy random variable and that

the buyer follows a continuous review inventory policy. The lead time demand is also

considered a fuzzy random variable, and shortages are allowed and fully backlogged.

Furthermore, imperfect items have a warranty cost associated with them. The vendor

has made an investment in the production process quality, which is described as a

logarithmic function. The objective of this study is to determine the optimal inventory

policy that minimises costs while considering these various factors. The model has

both fuzziness and stochastic uncertainty, yet it demonstrates the same trends as in

deterministic and stochastic models that have similar assumptions. In his later study,

Taleizadeh (2018) conducted research on an economic production quantity model that

involves a single machine and multiple products, and incorporates a rework process

and preventive maintenance. The objective was to minimise the total cost of the

production system by determining the best time for preventive maintenance, optimal
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production and backordered quantities for each product, and cycle length. The model

is also including partial backordering and service level constraint.The developed model

considers preventive maintenance to occur when the inventory level is positive or

negative. To account for this, two separate models are formulated and solved. Then

with those results, the new model is solved by classical optimisation method.
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CHAPTER 2: PRELIMINARIES AND GENERAL MODELS

2.1. Elements of Inventory Models

To determine profitability, there are several factors that need to be considered,

including the cost of ordering or producing a product, the cost of holding inventory

such as storage space, insurance, protection, taxes, etc., and the cost of shortages

which includes delayed revenue and storage space. Additionally, revenue, discount

rates, salvage costs for selling a product at a lower price, and lead time, which is

the amount of time between placing an order and receiving it into inventory, are all

important factors.

There are two types of inventory models; deterministic and stochastic due to

randomness of demand. Deterministic models assume that demand is constant and

known over a specific time period, while stochastic models consider demand as a

random variable with a known probability distribution. Moreover, there is another type

of classification related with the inventory review; continuous and periodic. When the

stock level drops below the certain reorder point, continuous model requires to place

an order. On the other hand, in periodic review, discrete intervals are more important

to decide an order placement rather than reorder point.

2.2. Notation list for mathematical models in the literature

The parameters mentioned here are only for continuous review models in the

literature. For our study, new notation list will be given.

x = demand per unit time,

D = expected total demand per unit time,

P = production in units per unit time,

Q = order quantity per cycle,

T = order cycle,
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r = reorder point,

K = order setup cost,

c = unit ordering cost,

hB = unit holding cost per unit time,

S = level of inventory when Q units is added under planned shortage,

µx = mean demand per unit time,

L = lead time,

w = additional cost related with storage space,

P′ = finite replenishment rate per unit time,

M = maximum stock level,

k = total production time per cycle,

m = unit selling price of good items,

Z = proportion for satisfied demand,

N = net revenue,

g = scrap value of an unsold unit,

cd = unit direct cost,

csh = cost for shortage per unit short per unit of time short,

cro = reorder cost,

cvar = variable cost,

cS = unit disposal cost for scrap items,

cr = unit reworking cost,

ce = delivery cost per shipment,
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q = proportion of defective items in a lot,

θ3 = proportion of reworkable items in defective items,

2.3. Deterministic Continuous Review Inventory Models

Usually, inventory levels decrease as products are sold or consumed, and then they

are restocked or replenished by purchasing new batches of products. The basic model

showing this is economic order quantity (EOQ) model. It assumes known and constant

demand and lead time, instantaneous receipt of product without any quantity discounts,

order cost and holding cost only, and no stock-out. The goal is to decide when and

how much to order so the total of those costs is minimised. Continuous reviewing is

assumed, so when the inventory drops low enough then it can be replenished. Figure

1 shows the pattern for inventory levels for demand rate D, and order quantity Q to

replenish inventory, specifically for this model the inventory level falls to 0.

Figure 1. Inventory level in terms of time for EOQ model.

Another important term here is reorder point which shows the next order placement

is required. The time for consecutive replenishment of inventory is called cycle. Now,

the total cost per unit time TC can be formulated with follows:

The cost of ordering or producing per cycle = K + cQ.

The average inventory level during a cycle is (Q+0)
2 = Q

2 units with corresponding

holding cost hBQ
2 per unit time.
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The cycle length is Q
D , therefore holding cost per cycle is hBQ2

2D .

The total cost per cycle = K + cQ+ hBQ2

2D and the total cost per unit time is

TC =
K + cQ+ hBQ2

2D
Q
D

=
KD
Q

+Dc+
hBQ

2
(1)

Once we take the first derivative of TC with respect to Q to find Q∗ that minimises TC;

dTC
dQ

=−KD
Q2 +

hB

2
= 0 (2)

and

Q∗ =

√
2KD
hB

(3)

that is the EOQ formula. The cycle time, let t∗ is

T ∗ =
Q∗

D
=

√
2K

DhB
. (4)

From above, we can see how Q∗ and T ∗ change according to K, hB, and D.

2.3.1. The EOQ Model with Planned Shortages

This model deviates from the basic EOQ model by considering planned shortages

as an allowed occurrence. Customers are aware of the product unavailability and

are willing to wait for the product to become available again. Consequently, their

backorders are fulfilled as soon as the new order arrives in the inventory. In this case,

the pattern is shown in Figure 2.

As a difference from the previous figure, here we have negative values for the

number of units of the backordered product where S shows inventory level after batch

of Q units is added and (Q− S) is shortage in inventory before a batch of Q units is

added.

This time, the total cost per unit time is given as follows:

The cost of ordering or producing per cycle = K + cQ.
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Figure 2. Inventory level in terms of time for EOQ model with planned shortages

allowed.

For each cycle, the inventory level is positive only for S
D time. The average

inventory level during a cycle is (S+0)
2 = S

2 units with corresponding cost hBS
2 per

unit time where hB is holding cost.

The cycle length is S
D , therefore holding cost per cycle is hBS2

2D .

For shortage time, we have (Q−S)
D . The average amount of shortages during this

time is (0+Q−S)
2 = (Q−S)

2 units, and the cost is csh(Q−S)
2 per unit time. So, shortage

cost per cycle is
csh(Q−S)

2
Q−S

D
=

csh(Q−S)2

2D
(5)

The total cost per cycle = K + cQ+ hBS2

2D + csh(Q−S)2

2D and the total cost per unit

time is

K + cQ+ hBS2

2D + csh(Q−S)2

2D
Q
D

=
KD
Q

+Dc+
hBS2

2Q
+

csh(Q−S)2

2Q
(6)

Once more, we take the partial derivative of TC with respect to Q and S to find Q∗ and

S∗ then set them equal to zero for minimising TC;

∂TC
∂S

=
hBS
Q

− csh(Q−S)
Q

= 0. (7)
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and
∂TC
∂Q

=−KD
Q2 − hBS2

2Q2 +
csh(Q−S)

Q
− csh(Q−S)2

2Q2 = 0. (8)

Solutions to these equations give

S∗ =

√
2KD
hB

√
csh

csh +hB
, Q∗ =

√
2KD
hB

csh +hB

csh
. (9)

The optimal cycle time, T ∗ is

T ∗ =
Q∗

D
=

√
2K(csh +hB)

DhBcsh
. (10)

2.4. Stochastic Continuous Review Inventory Model

For the uncertainty about demand rate, stochastic inventory models are more

meaningful. With stochastic demand case shown in Figure 3, the inventory level is

controlled continuously so new order is placed immediately when inventory level falls

below the reorder point. This system is based on two fundamental components; reorder

point and order quantity. For this model, a single product is considered, inventory level

is always known because of the nature of continuous review, and choosing reorder

point and order quantity are the only goals. Another important assumption is, if there

is stock-out case, the demand is backlogged. Also for that case, there is certain shortage

cost (csh) for each unit backordered per unit time until the backorder is filled.

This model is pretty similar to the EOQ model with planned shortages, with only

one different assumption; instead of having unknown demand, that model assumes

known demand rate. Next thing to consider is deciding the order quantity (Q) and the

reorder point (r). Because of the close relationship with the EOQ model with planed

shortages, choosing Q is straightforward as follows;

Q∗ =

√
2KµL(csh +hB)

cshhB
, (11)

where µL denotes the average demand per unit time. This formula is an approximation

for the optimal order quantity since there is no formula for the exact value of it. To
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Figure 3. Stochastic demand with reorder point.

choose the reorder point (r), we need to know desired service level which can be

defined in several ways such as stock-out probability, number of stock-out, average

delay etc. Once the probability distribution is known, it is possible to find safety stock

that is the expected inventory level just before the order quantity is received.

2.5. Models for continuous review method

Various quantitative models have been developed for inventory control with the

goal of determining an order size that minimizes costs. In this section, we discuss

several models for continuous review method from Waters (2008) as shown with Table

2. We start with the basic model, Economic Order Quantity (EOQ) and then remove

its assumptions to develop new models.

To analyse all models, we can start with EOQ model. Its assumptions and cost

components are given here again just to have consistency in parameters notation set

from Waters (2008). The main assumptions for EOQ model is;

• known, continuous and constant demand,

• fixed and known costs,

• no shortages,
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Table 2. Models with continuous review system for known and uncertain demand from

Waters (2008).

Continuous Review Method
DEMAND

Known Uncertain
Economic Order Quantity (EOQ) Models for marginal analysis with

discrete demand
Models with finite lead time Models with discrete demand and

shortages
Models with variable cost Models with uncertain demand and

constant lead time
Models with finite replenishment rate Models with constant demand and

uncertain lead time
Models with backorders Models with uncertain demand and lead

time
Models with lost sales
Models with constraints on storage
space
Models with constraints on average
investment in stocks
Models with discrete, variable demand

• zero lead time,

• single item is considered,

• each order has single delivery,

• instantaneous replenishment.

Addition to these assumptions, there are four costs variables in the analysis; unit

cost (c), reorder cost (cro), holding cost (hB), and shortage cost (csh) with three other

variables; order quantity (Q), cycle time (T ), and demand (x).

To find total cost per unit time, we add these components and substitute Q = xT ,

since the amount of entering stock in cycle should be equal to the amount of leaving

stock in cycle. Therefore, we have the total cost as

TC = xc+
xcro

Q
+

hBQ
2

(12)
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To obtain the minimum cost for inventory control, the equation above is differenti-

ated with respect to Q as follows:

d(TC)

dQ
=−crox

Q2 +
hB

2
= 0 (13)

The optimal order size (economic order quantity), Q∗:

Q∗ =

√
2crox

hB
(14)

with optimal cycle length, T ∗:

T ∗ = Q∗/x =

√
2cro

xhB
(15)

Another important term is optimal cost per unit time, TC∗ for Q∗ which can be

obtained from last two terms of TC as variable cost (cvar):

cvar =
crox
Q

+
hBQ

2
(16)

Here, if we substitute Q∗ into the equation for optimal value, c∗var

c∗var =
√

2crohBx (17)

The optimal total cost per unit time in inventory control consists of both variable and

fixed costs, that is

TC∗ = cx+ c∗var (18)

2.5.1. Models with finite lead time

With EOQ model, we made the assumption that there is no lead time involved.

This means that as soon as an order is placed, the items are immediately available for

use and do not need to wait for any delivery or processing time. In order to make

the inventory models more realistic, a non-zero lead time can be considered, which

indicates that there is a finite amount of wait time for materials to become available for

use. To plan stock successfully, we need to place an order so that existing stock is at
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certain level and we need delivery. At this point, it is beneficial to define a reorder level

to show that it is necessary to place an order for inventory. Here, what we have already

as stock needs to be sufficient till next order arrives. In a situation where the demand

is known as well as the lead time, the required amount of inventory that is necessary

for the lead time is a known value obtained by multiplying the constant demand rate

with the constant lead time. Therefore, the reorder level is

reorder level = lead time×demand per unit time

r = LD (19)

This shows the level for stock to order a batch of size Q∗.

2.5.2. Models with variable costs

In previous two models, we assumed that costs are constant and known, but actually

cost may vary according to quantity ordered, such as lower prices for larger orders. In

general, there is more than one discounted price with larger orders so the bigger order

means the less cost for buyer. Our objective is to find the order quantity that minimises

the total cost per unit time, which will be the optimal value of Q. From Figure 4, it can

be seen that continuous line shows the valid total cost for each order quantity, that is, if

we place an order between 0 and Q1 the unit cost will be c1 and something between Q1

an Q2 gives lower cost as c2 and so on. The broken line shows invalid cost for given

order quantity.

In general, we have

Q∗ =

√
2crox

hB
(20)

The holding cost can be defined by proportion of the unit cost as I, and there is a

minimum point of the cost curve Q∗
i for each unit cost ci. That is, Q∗

1 shows the lowest

point on the total cost curve for c1, and so on. Hence, we can show Q∗
i as follows:

Q∗
i =

√
2crox

Ici
(21)

28



Figure 4. The valid cost curve for five unit costs.

The objective is to find the optimal order quantity that minimises the total cost per

unit time for each unit cost ci. There are two types of minimum values: valid and

invalid. A valid minimum is within the range of valid order quantities for a particular

unit cost, whereas an invalid minimum is not.

2.5.3. Models with finite replenishment rate

When the production rate for goods exceeds the demand rate, the inventory level

increases at a certain rate, and the goods begin to accumulate. At some point, there

should be decision made to stop production and switch facilities to making other items.

This model is concerned with finding the optimal batch size which determines the best

time for transferring goods between two different locations. The assumptions for EOQ

model are still valid for this model except instantaneous replenishment rate, this time

replenishment rate is P and demand rate is D, with inventory increasing as P−D. The

concept of finding the optimal batch size is similar to the EOQ model, but in this case,

the reorder cost may be associated with the cost of setting up production. Therefore

the total cost becomes
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TC = cD+
croD

Q
+

hBQ
2

(P−D)

P
(22)

From here, we differentiate TC with respect to Q and set it equal to zero to get an

optimal order size;

Q∗ =

√
2croD

hB

√
P

P−D
(23)

Also, we have cycle length as

T ∗ =

√
2cro

hBD

√
P

P−D
(24)

and variable cost

c∗var =
√

2crohBD

√
P−D

P
(25)

so that the total cost is

TC∗ = cD+ c∗var (26)

and finally the production time

k∗ = Q∗/P (27)

2.5.4. Models for planned shortages with backorders

The previous models are based on no shortages and all demand is met. This is

beneficial when shortages are expensive but under some conditions, planned shortages

are also reasonable. In general, if the cost of holding inventory (i.e. storing,

maintaining, and financing it) exceeds the profit, then a planned shortage may be a

better option. Additionally, when unit cost is high or holding the stocks is too expensive

or lead time from suppliers are reasonably short and customers are accepting to wait,

then back-ordering is another option.

Defining the shortage cost, denoted as csh, is a crucial first step. The shortage cost

is a time-dependent cost that represents the cost per unit time of not meeting demand.

Again, to find the optimal order size, we will follow the standard approach.

In the initial phase of the cycle, the entire demand is fulfilled using the available

30



inventory, which implies that the quantity received by the customer is Q− S. This is

equivalent to xt1. During the second phase of the cycle, all demand goes unfulfilled,

resulting in backorders. Hence, the shortage, denoted as S, is equal to the unmet

demand of xt2. Therefore, if we add these and substitute t1 and t2 and divide it by

t, we will have the total cost per unit time as

TC = cx+
crox
Q

+
hB(Q−S)

2Q
+

cshS2

2Q
(28)

In this equation, we have two variables, Q and S, so we differentiate with respect

to both and set the results to zero to get optimal order size and optimal amount to be

back-ordered;

Q∗ =

√
2crox(hB + csh)

hBcsh
(29)

T ∗ =

√
2crohBx

csh(hB + csh)
(30)

Also, we know

t1 =
(Q∗−S∗)

x
= time for fulfilled demand with available inventory (31)

t2 =
S∗

x
= time for backordered demand (32)

T = t1 + t2 = cycle time (33)

2.5.5. Models with lost sales

Lost sales occur when a customer refuses to wait for back-ordered items to become

available and its analysis for minimising the cost is not equal to maximising revenue

anymore. The goal of this model is to maximise the profit. There is new parameter for

this as selling price per unit, m. In this model, it is necessary to consider the cost of

lost sales as two parts: the loss of profit, which can be represented as a notional cost of

(m− c) per unit of sales lost, and the direct cost, cd .
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The profit N is

ctotal = cost for lost sales per unit (with loss of profits)

= cd +m− c (34)

and

Z = fulfilled demand proportion

=
Q

(xT )
(35)

Therefore, we have

N = Z
[

xctotal −
crox
Q

− hBQ
2

−dx
]

(36)

To get maximum profit, we differentiate the above equation:

Q∗ =

√
2crox

hB
(37)

The optimal value for N is

N∗ = Z
[
xctotal −

√
2crohBx

]
(38)

Since the goal is to maximise the revenue, NO, we use the following argument:

• If xctotal >
√

2xcrohB, then Z should be 1. It means there are no shortages.

• If xctotal <
√

2xcrohB, then Z should be the smallest possible, so Z = 0. It means

no inventory item.

• If xctotal =
√

2xcrohB, then the revenue is zero regardless of Z.

2.5.6. Models with constraints on storage space

When applying the EOQ model to all items in an inventory, it is possible for the

total stock to exceed the available capacity. Therefore, it is necessary to find a way to

decrease the inventory for allowable range. To reduce the inventory, we can introduce
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a new cost term for used space. The original holding cost, denoted as hB, and an new

cost for storage area, denoted as w. The total holding cost for each unit becomes:

Total holding cost = hB +wsi (39)

where si represents the space required by a single item. Now we have

Qi =

√
2croixi

hBi +wsi
(40)

Since it is possible to have different value for each item, there is subscripts for all

variables.

2.5.7. Models with constraints on average investment in stock

Consider an organisation that keeps n items. It also has total average investment

upper limit u′. The objective is to minimise the total variable cost subject to the

constraint that the average investment does not exceed the upper limit. That is:

Minimise : cvar =
n

∑
i=1

croixi

Qi
+

hBiQi

2
(41)

Subject to :
n

∑
i=1

ciQi

2
≥ u′

To solve this problem, we can include Lagrange multiplier, then differentiate the

objective. The optimal order size will be

Qi = Q∗
i

2u′hB

c∑
n
i=1V ∗

i
(42)

2.5.8. Models with discrete and variable demand

For the case of known and small size demands, it is possible to use deterministic

model to find an optimal ordering policy. If the order quantity is smaller than the ideal

number, it would result in frequent orders and a high reorder cost. Conversely, if the

order quantity is greater than the ideal number, it would result in high stock levels and
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a high holding cost. The aim is to determine the optimal period number for single

ordered demand. We set a single order that would suffice for the next N periods. For

discrete demand in period i is represented with xi. We have:

M =
N

∑
i=1

xi (43)

where M is highest actual stock level. The variable cost cvarN for inventory for N

periods is the total of reorder and holding cost is

cvarN =
cro

N
+

hB ∑
N
i=1 xi

2
(44)

To find the optimal value and minimal cost, we replace N +1 for N:

cvarN+1 =
cro

N +1
+

hB ∑
N+1
i=1 xi

2
(45)

And the idea is to get the point where VN+1 is larger than cvarN :

cro

N +1
+

hB ∑
N+1
i=1 xi

2
>

cro

N
+

hB ∑
N
i=1 xi

2
(46)

or

N(N +1)xN+1 >
2cro

hB
(47)

An effective application of this model requires foreknowledge of the demand

pattern, enabling the development of ordering policy that can be utilised in each

subsequent inventory cycle.

2.5.9. Models with uncertain demand

In this particular model, we are looking at an inventory item that follows a Normal

distribution, with an average demand of µx per unit of time and a standard deviation of

σx. Additionally, the item has a fixed lead time of L. The mean lead time demand is

calculated by multiplying the average demand by the lead time, resulting in Lµx. The

variance of the lead time demand is found by multiplying the variance of the demand

distribution by the lead time squared, giving σ2
x L. Finally, the standard deviation of the
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lead time demand can be obtained by multiplying the standard deviation of the demand

distribution by the lead time, resulting in σxL. The service level shows the possibility

for the reorder level is above the lead time demand, therefore the Normal distribution

can be used to have

safety stock = Z × standard deviation of lead time

= Zσx
√

L

Z defines standard deviation counts for specified service level. Because of safety stock,

reorder level is higher as:

reorder level = lead time demand+ safety stock

= Lµx +Zσx
√

L

2.5.10. Models with uncertain lead time

This model describes the model with constant demand and uncertain lead time

with normal distribution. Safety stock is added to the reorder level and service level

is defined in terms of the probability that lead time demand is greater than the reorder

level:

Service level = Pr(Lµx < r)

= Pr(L < r/µx)

2.5.11. Models with uncertain demand and uncertain lead time

Assuming that both the demand and lead time for an item are Normally distributed,

we can use standard calculations. The average demand for the item is denoted by µx,

while its standard deviation is denoted by σx. On the other hand, the lead time has

an average denoted by µLT and a standard deviation of σLT . The average lead time

demand is the product of the average lead time and the average demand, i.e., µLT µx.

The standard deviation of lead time demand can be calculated using the formula
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√
µLT σ2

x +µ2
x σ2

LT .
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CHAPTER 3: METHODOLOGY

3.1. The Inventory Models

In this section, we propose two new models namely, continuous review inventory

model for buyer and continuous review inventory model for supplier.

3.1.1. Notations and assumptions

The following notations and assumptions are used for these models. Some of

the notations are from the list previously defined for continuous models given in the

literature, and the rest is regulated accordingly.

Decision variables

QB = the order quantity for the buyer,

QV = the production lot size for the supplier,

r = reorder point for the buyer

Parameters

Stochastic parameters;

x = the demand during lead time at the buyer’s side,

q = the indicator of production reliability where 0 < q < 1 that shows the

proportion of defective items in produced order lot,

θ3 = the proportion of reworkable items in defective items,

Deterministic parameters;

D = the annual expected demand at the buyer’s side,

P = the production rate of the supplier,

p = the proportion of imperfect items in an order lot received by the buyer where

0 < p < 1,
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θ1 = the proportion of scrap items in defective items,

θ2 = the proportion of imperfect items in defective items,

θl = the proportion of lower quality items after reworking,

KB = the constant ordering cost per order for the buyer,

KV = the setup cost of production system for the supplier,

F = the transportation cost per delivery that includes the delivery from the

supplier to buyer,

hB = the holding cost per unit per year for the buyer,

hV = the holding cost per unit per year for the supplier,

hVl = the holding cost per lower quality unit per year for the supplier,

d = the fixed backordering cost per unit at the buyer,

cb = the backordering cost per unit per unit of time at the buyer,

cl = the lost sales cost per unit per unit of time at the buyer,

c = the unit variable cost,

cP = the cost of production and inspection per unit for the supplier,

cr = the rework cost of a defective item,

η = the fractional opportunity cost of capital per cycle,

α = backlogging intensity that denotes the maximum proportion of backlogged

demand, (0 ≤ α ≤ 1),

b = backlogging resistance for the shape of time-sensitive customer function,

(b > 0),

L = the length of lead time for the buyer,

τ = the expected waiting time for customer during shortage,
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T = time interval between successive shipments of Q units,

E(·) = mathematical expectation,

∗ = the superscript representing optimal value.

Assumptions:

• There is single supplier and single buyer for one product.

• The buyer follows continuous review inventory policy and places an order when

on-hand inventory reaches the reorder point r.

• The production rate is known, constant and continuous.

• Each lot QV , contains proportion of defective units q and QB contains proportion

of imperfect units p.

• For defective items, there is rework process. After reworking, items have perfect

quality. For the study, it is assumed that rework process is perfect. Moreover, for

the three cases, reworking results lower quality items.

• There is 100% and error-free inspection process at the supplier’s side with its

cost. After production, reworking starts for the defective items those can be

reworkable. At the end of the process, all items are considered as perfect items.

• At the buyer’s side, there is inspection process during packing in cycle. Then

at the end of cycle, the imperfect items (due to transportation, mishandling etc.)

are sent to outlet shops.

• For the shortage at buyer’s side, there is function defined to show that less

customers are waiting for next replenishment as time passes, Sicilia et al. (2012);

Bp(r) = αe
−b

(
τ

L− rL
µL

)
(1)

where 0≤α ≤ 1 and b> 0 and τ shows the expected waiting time when shortage

occurs, so that if it is longer it will decrease the proportion of backlogged

demand.
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• There are two types of investment in the production process quality such as new

equipment purchase, advanced maintenance etc to decrease defective items and

increase rework power. For these factors, the logarithmic investment functions

I(q) and I(θ3) from Dey (2019) is considered as follows:

I(q) =
1
δ1

ln
(

q0

q

)
(2)

I(θ3) =
1
δ2

ln
(

θ3

θ30

)
(3)

where δ1 is the percentage decrease in q per unit amount increase in investment

and q0 is the original percentage for defective state before any investment.

Additionally, δ2 is the percentage increase in θ3 per unit amount increase in

investment and θ30 is the original reworking proportion before the investment.

• The lead time is constant and known.

In the next two sections, we will see the independent costs for the buyer

and supplier. Buyer’s model has two cases; deterministic and stochastic demand.

According to those, two separate functions for expected total costs are defined. For

the supplier, two parameters, q and θ3, are the main figures for model and according

to their stochasticity, four models are characterised for the expected total cost. Since

the proofs are similar for each case, only one version of each total cost’s convexity has

shown in the Appendix.

3.1.2. Continuous Inventory Review Model for Buyer

When the buyer does not cooperate with the supplier for maximisation of their

mutual benefits, it means that the buyer decides independently and the behaviour of

inventory level over time changes accordingly. As the nature of continuous review, the

shipment will be processed when the inventory level drops to the reorder point r. Figure

5 shows the behaviour of the perfect item inventory level and reorder point for the

buyer. Here, p is the proportion of imperfect items in the lot (because of mishandling,

transportation etc.) which are sent to outlet shops later. The cost incurred by the buyer

for inventory in a single cycle includes various components such as order placement
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cost, transportation cost, inspection cost, and holding cost(since lead time demand is

known in the deterministic demand case there is no shortage cost).

Figure 5. Perfect item inventory level and reorder point for the buyer.

3.1.2.1 The demand is deterministic

The buyer places an order when the inventory level is r and the order arrives after

L time periods. Here, QB is the only decision variable since r can be calculated easily

because of deterministic demand rate D. Note that for the beginning of the each cycle,

inventory level has the order quantity QB, then as perfect items we have QB(1− p).

The maximum inventory level is QB(1− p), and as imperfect items we have QB p.

Moreover, T = QB(1−p)
D . Since we have deterministic demand rate and lead time for

this model, reorder point becomes r = LD. Hence, the buyer’s average inventory during

cycle becomes

Iaverage =

(
1
2

QB(1− p)T +QB pT
)

=

(
1
2
(QB(1− p))2

D
+

Q2
B p(1− p)

D

)
(4)

and the total cost for the buyer per cycle is
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TCB(QB) = KB +F + cQB +hB

(
1
2
(QB(1− p))2

D
+

Q2
B p(1− p)

D

)
. (5)

Since the replenishment cycle length is T = QB(1−p)
D , we have average annual cost

TCB(QB) =

(
KB +F + cQB +hB

(
1
2
(QB(1− p))2

D
+

Q2
B p(1− p)

D

))
D

QB(1− p)
(6)

Taking the first derivative of TCB(QB) with respect to QB, we have

d(TCB)

dQB
=

2D(F +KB)+hB(p2 −1)Q2
B

2(p−1)Q2
B

= 0 (7)

Taking the second derivative, we have

d2(TCB)

dQ2
B

=
2D(F +KB)

(1− p)Q3
B
. (8)

Since all parameters in the above derivative are positive, d2(TCB)

dQ2
B

> 0, which implies

that the total annual cost is a convex function and there exists a unique value of QB,

that is given as

Q∗
B =

√
2D(F +KB)

hB (1− p2)
. (9)

3.1.2.2 The demand is stochastic with lost-sales

With the previous model, we defined the cost function for the buyer under known

demand case. When the demand is stochastic, that is, we do not know if it is more or

less than reorder point during the lead time, shortage may occur. Lead time demand

is non-negative continuous random variable x with pdf as f (x) and cdf as F(x), and

mean= µL and standard deviation= σL. Moreover,

if x > r =⇒ shortage = x− r

if x < r =⇒ shortage = 0

At the end of each cycle, the expected shortage will be
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s̄(r) =
∫ r

0
0 f (x)dx+

∫
∞

r
(x− r) f (x)dx

=
∫

∞

r
(x− r) f (x)dx (10)

At this point, for holding cost we need to calculate the expected inventory level before

an order arrives differently:

n̄(r) =
∫ r

0
(r− x) f (x)dx

=
∫

∞

0
(r− x) f (x)dx+

∫
∞

r
(x− r) f (x)dx

= s̄(r)−µL + r (11)

where µL is the expected demand during lead time. The average inventory level during

cycle becomes

Iaverage =

(
1
2

QB(1− p)T +QB pT + n̄(r)T
)

=

(
1
2
(QB(1− p))2

D
+

Q2
B p(1− p)

D
+(r−µL + s̄(r))

QB(1− p)
D

)
(12)

The total average cost for the buyer per cycle is

TCB(QB,r) = KB +hB

(
1
2
(QB(1− p))2

D
+

Q2
B p(1− p)

D
+(r−µL + s̄(r))

QB(1− p)
D

)
+F + cQB + cl s̄(r) (13)

The expected total annual cost will be

ETCB(QB,r) =
KBD

QB(1− p)
+

FD
QB(1− p)

+
cD

(1− p)
+

cl s̄(r)D
QB(1− p)

+hB

(
1
2
(QB(1− p))+QB p+(r−µL + s̄(r))

)
(14)
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To minimise ETCB(QB,r) we first take its partial derivatives with respect to QB and r

as follows:

∂ (ETCB)

∂QB
=

2D(F +KB + cl s̄(r))+hB(p2 −1)Q2
B

2(p−1)Q2
B

= 0 (15)

∂ (ETCB)

∂ r
=

hB(1− p)QB (s̄′(r)+1)+ clDs̄′(r)
(1− p)QB

= 0 (16)

For a given r, we can obtain the optimal value of QB from Eq.15 and the complimentary

cumulative distribution of x at optimal r : F(r) from Eq.16 and the derivative of s̄(r).

That is

Q∗
B =

√
2D(KB +F + cl s̄(r))

hB(1− p2)
(17)

1−F(r∗) =
hB(1− p)QB

Dcl +(1− p)QBhB
(18)

The optimal value of r is

r∗ = F−1
(

1− hBQB(1− p)
Dcl +(1− p)QBhB

)
(19)

For the solution process, we will use iteration to pull QB and r from these equations.

Starting with QB0 value and iterative until the QB values converge (Figure 6).

Figure 6. Iteration for solution process
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3.1.2.3 The demand is stochastic with partial backlogging

When shortage happens, it may be an option to wait for customers. That is, as

soon as inventory arrives, their demand will be filled. However, not every customer is

willing to wait due to their urgency, timing, or simply they do not want to. Therefore

in this section, we analysed partially backordering case with time-sensitive customers.

We propose a parameter that represents the proportion Bp(r) of backlogged demand

defined as a negative exponential function of reorder point r. Here, τ shows the

expected waiting time when shortage occurs, so that if it is long it will decrease. The

proportion of backlogged demand:

Bp(r) = αe
−b

(
τ

L− rL
µL

)
(20)

where 0 ≤ α ≤ 1 and b > 0. With new parameter, the expected value of the amount of

backlogged demand will be

B̄(r) =
∫

∞

r
Bp(r)(x− r) f (x)dx (21)

Moreover, the expected lost-sales from shortage becomes

s̄(r) =
∫

∞

r
(1−Bp(r))(x− r) f (x)dx (22)

At the end of each cycle, on-hand inventory, n̄(r), is

n̄(r) =
∫ r

0
(r− x) f (x)dx

=
∫

∞

0
(r− x) f (x)dx+

∫
∞

r
(x− r) f (x)dx

=
∫

∞

0
(r− x) f (x)dx+

∫
∞

r
(1−Bp(r)+Bp(r))(x− r) f (x)dx

=
∫

∞

0
(r− x) f (x)dx+

∫
∞

r
(1−Bp(r))(x− r) f (x)dx+

∫
∞

r
Bp(r)(x− r) f (x)dx

= B̄(r)+ s̄(r)−µL + r (23)
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The total cycle cost for buyer becomes

TCB(QB,r) = KB +hB

(
1
2
(QB(1− p))2

D
+

Q2
B p(1− p)

D
+(r−µL + s̄(r))

QB(1− p)
D

)
+F + cQB +d + cbB̄(r)+ cl s̄(r) (24)

The expected total annual cost will be

ETCB(QB,r) =
KBD

QB(1− p)
+hB

(
1
2
(QB(1− p))+QB p+(r−µL + s̄(r))

)
+

FD
QB(1− p)

+
cD

(1− p)
+

dD
QB(1− p)

+
cbB̄(r)D

QB(1− p)
+

cl s̄(r)D
QB(1− p)

(25)

To minimise ETCB(QB,r) we first take its partial derivatives with respect to QB and r

as follows:

∂ (ETCB)

∂QB
=

2D(cbB̄(r)+d +F + cl s̄(r)+KB)+hB
(

p2 −1
)

Q2
B

2(p−1)Q2
B

= 0 (26)

∂ (ETCB)

∂ r
=

D(cbB̄′(r)+ cl s̄′(r))+hB(1− p)QB(1+ s̄′(r))
(1− p)QB

= 0 (27)

Proposition 1. ETCB(QB,r) expected annual total cost is convex in (QB,r) when the

following condition is satisfied:

2(cbB̄(r)+d +F + cl s̄(r)+KB)
(
s̄′′(r)(hB(1− p)Q+ clD)+ cbDB̄′′(r)

)
≥ D

(
cbB̄′(r)+ cl s̄′(r)

)2 (28)

The proof and condition is presented in Appendix.

For a given r, we can obtain the optimal value of QB from Eq. 26.

Q∗
B =

√
2D(cbB̄(r)+ cl s̄(r)+d +F +KB)

hB (1− p2)
(29)

For the optimal value of r from Eq. 27:

B̄′(r)
Dcb

(1− p)QB
+ s̄′(r)

(
Dcl

(1− p)QB
+hB

)
+hB = 0 (30)
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where

B̄′(r) =
∂

∂ r

∫
∞

r
Bp(r)(x− r) f (x)dx

= B′
p(r)

∫
∞

r
x f (x)dx−

(
B′

p(r)r+Bp(r)
)
(1−F(r)) (31)

Here for the integral part, expected value of truncated random variable is used. That

is, the expected value of a random variable with probability density function f (x) and

cumulative distribution function F(x) given that the random variable is greater than

some known value. Thus

E(x|x > r) =
∫

∞

r xg(x)dx
1−F(r)∫

∞

r
x f (x)dx = (1−F(r))E(x|x > r) (32)

where g(x) = f (x) for all x > r and g(x) = 0 otherwise.

As we mentioned above, the term E(x|x > r) is the expected value of x that is

greater than r, so it is shortage amount which in this case will be partially backordered.

Therefore it is equal to (B̄(r)+ s̄(r)). Therefore

B̄′(r) =
∂

∂ r

∫
∞

r
Bp(r)(x− r) f (x)dx

= B′
p(r)(1−F(r))(B̄(r)+ s̄(r))− (B′

p(r)r+Bp(r))(1−F(r))

= (1−F(r))
(

B′
p(r)(B̄(r)+ s̄(r)− r)−Bp(r)

)
(33)

and

s̄′(r) =
∂

∂ r

∫
∞

r
(1−Bp(r))(x− r) f (x)dx

=
∂

∂ r

(∫
∞

r
(x− r) f (x)dx−

∫
∞

r
Bp(r)(x− r) f (x)dx

)
= (1−F(r))

(
Bp(r)−B′

p(r)(B̄(r)+ s̄(r)− r)−1
)

(34)
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Hence, the optimal value of r is

F(r) =
(

1− hB(1− p)QB(
B′

p(r)(B̄(r)+ s̄(r)− r)−Bp(r)
)(

D(cl − cb)+hBQB(1− p)
)
+

(
clD+hBQB(1− p)

))

(35)

r∗ = F−1
(

1− hB(1− p)QB(
B′

p(r)(B̄(r)+ s̄(r)− r)−Bp(r)
)(

D(cl − cb)+hBQB(1− p)
)
+

(
clD+hBQB(1− p)

))

(36)

3.1.2.4 The demand is stochastic with backlogging

For this case, at the end of each cycle, all shortage will be backlogged. The

expected backorder amount becomes

B̄(r) =
∫

∞

r
(x− r) f (x)dx (37)

The expected on-hand inventory level will be

n̄(r) =
∫ r

0
(r− x) f (x)dx

=
∫

∞

0
(r− x) f (x)dx+

∫
∞

r
(x− r) f (x)dx

= B̄(r)−µL + r (38)

Total average cost for buyer per cycle is

TCB(QB,r) = KB +hB

(
1
2
(QB(1− p))2

D
+

Q2
B p(1− p)

D
+(r−µL)

QB(1− p)
D

)
+F + cQB +d + cbB̄(r) (39)

and the expected total annual cost is defined as follows:

ETCB(QB,r) =
KBD

QB(1− p)
+hB

(
1
2
(QB(1− p))+QB p+(r−µL)

)
+

FD
QB(1− p)

+
cD

(1− p)
+

dD
QB(1− p)

+
cbB̄(r)D

QB(1− p)
(40)
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To minimise ETCB(QB,r) we first take its partial derivatives with respect to QB and r

as follows:

∂ (ETCB)

∂QB
=

2DcbB̄(r)+2D(d +F +KB)+hB
(

p2 −1
)

Q2
B

2(p−1)Q2
B

= 0 (41)

∂ (ETCB)

∂ r
=

DcbB̄′(r)+hB(1− p)QB

(1− p)QB
= 0 (42)

For a given r, we can obtain the optimal value of QB from Eq. 41.

Q∗
B =

√
2D(cbB̄(r)+d +F +KB)

hB (1− p2)
(43)

For the optimal value of r from Eq. 42:

B̄′(r)
Dcb

(1− p)QB
+hB = 0 (44)

where

B̄′(r) =
∂

∂ r

∫
∞

r
(x− r) f (x)dx

=−(1−F(r)) (45)

Hence, the optimal value of r is

r∗ = F−1
(

1− hB(1− p)QB

Dcb

)
(46)

3.1.3. Continuous Review Inventory Model for Supplier

The main difference of supplier model from Buyer’s model is that there is a

grouping process of items according to their conditions. At the end of this process,

these items can be grouped as nondefective, defective or reworkable items. The

parameter for the proportion of defective items is given as q and reworkable items

is given as θ3. At the supplier side, to meet the demand, rate of production of non-

defective items is greater than or equal to demand, P(1−q)≥ D. Therefore, for some

time after the start of a new production run, the inventory level starts to increase with a
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rate (P−D) ((1−q)P−D for nondefective items). The length of each production run

is showed by t1 which is the time required to produce order quantity, QV . So,

t1 =
QV

P
(47)

After production, there is an inspection and reworking process on those defective items

that can be reworkable. For the reworking, we have qQV defective units, however only

certain amount of them (θ3) is reworkable. Therefore the time required to rework on

those items is

t2 =
qθ3QV

P
(48)

And t3 which is the time to build up the inventory, will be defined during non-defective

inventory calculations in the next section.

The supplier’s inventory cost per cycle has production setup, holding, reworking,

and cost of quality improvement (investment). Figure 7 and Figure 8 show the

behaviour of the inventory level of nondefective items and reworkable defective items

at the supplier respectively.

The reworking cost includes all defective items that can be reworkable, therefore it

is calculated as crQV qθ3.

In general, the supplier’s goal is to reduce the defective items produced and/or

rework on those as effective as possible. By investment in process quality control, it

is possible to have more non-defective items, smaller lot size, and less set-up cost etc.

There is close relationship between optimal policy and process quality, so we included

two terms for this case. Here, q0 is the probability of production process for original

defective case and investment is all about to lower that probability. Additionally,

q is given as defective probability so we have 0 ≤ q ≤ q0. With same logic, θ3

is the probability of reworking on defective items and θ30 is the original reworking

probability before investment with 0 ≤ θ30 ≤ θ3. For supplier’s independent cost, we

will examine four cases of q and θ3.
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Figure 7. Inventory behaviour of the nondefective items

3.1.3.1 Case 1: q and θ3 are both deterministic

The inventory function for nondefective items during t1 can be defined as

I1(t) = ((1−q)P−D)t (49)

therefore the total inventory will be

∆1 =
∫ t1

0
I1(t)dt =

∫ t1

0
((1−q)P−D)tdt

=
((1−q)P−D)t2

1
2

=
((1−q)P−D)Q2

V
2P2 (50)
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Here,

I2(0) = I1(t1) = ((1−q)P−D)t1 (51)

and

I2(t) = (P−D)t +((1−q)P−D)t1 (52)

Total inventory during rework process,

∆2 =
∫ t2

0
I2(t)dt =

1
2
(P−D)t2

2 +((1−q)P−D)t2t1

=
qQ2

V θ3(P(q(θ3 −2)+2)−D(qθ3 +2))
2P2 (53)

The inventory curve during t3 can be shown by

I3(t) = Dt (54)

with the terminal value

I3(t3) = I2(t2) = (P−D)t2 +((1−q)P−D)t1 (55)

It can be shown as:

t3 =
(P−D)t2 +((1−q)P−D)t1

D
(56)

Total inventory during t3 will be:

∆3 =
∫ t3

0
I3(t)dt =

1
2

Dt2
3

=
Q2

V (P(−qθ3 +q−1)+qθ3D+D)2

2P2D
. (57)

The inventory curve for defective items during the period t1 can be shown as (Fig. 8)

J1(t) = qθ3Pt (58)
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where J1(t1) = QV q, and the total inventory during t1 can be found as

Γ1 =
∫ t1=

QV
P

0
J1(t)dt

=
1
2

qθ3P
(

QV

P

)2

=
qθ3Q2

V
2P

(59)

Figure 8. Inventory behaviour of the reworkable defective items

The inventory curve of the defective items during t2 is J2(t) = Pt with total

inventory

Γ2 =
∫ t2

0
J2(t)dt

=
1
2

P
(

qQV θ3

P

)2

=
q2Q2

V θ 2
3

2P
(60)
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The supplier’s total cost per cycle becomes

TCV (QV ) = KV +hV (∆1 +∆2 +∆3 +Γ1 +Γ2)+ cPQV + crQV qθ3

+
QV η

δ1
ln
(

q0

q

)
+

QV η

δ2
ln
(

θ3

θ30

)
(61)

Then its average annual cost is

TCV (QV ) =

(
KV +hV

(
Q2

V (q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2PD

)
+

QV η

δ1
ln
(

q0

q

)
+

QV η

δ2
ln
(

θ3

θ30

)
+ cPQV + crqQV θ3

)
D

Q(1− p)
(62)

Proposition 2. TCV (QV ) annual total cost is strictly convex in QV .

The proof is presented in Appendix.

To minimise TCV (QV ), we take first derivative with respect to QV

d(TCV )

dQV
=

2PDKV −hV Q2
V (q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2(p−1)PQ2
V

(63)

Taking the second derivative, we have

d2(TCV )

dQ2
V

=
2KV D

(1− p)Q3
V

(64)

All parameters are positive, and d2(TCV )

dQ2
V

> 0. Therefore, there exists unique value for

Q∗
V given as

Q∗
V =

√
2PDKV

hV (q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)
(65)

with condition 0.5 ≤ θ3 ≤ 1.

3.1.3.2 Case 2: q is deterministic and θ3 is stochastic with standard uniform

distribution

With θ3 given as random variable, it has an upper (U2) and lower (L2) bounds with

the probability distribution function of g2. The expected value of the total inventory of
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nondefective items during t1 will be

E(∆1) =
∫ U2

L2

((1−q)P−D)Q2
V

2P2 g2dθ3

=
((1−q)P−D)Q2

V
2P2

∫ U2

L2

(
1

U2 −L2

)
dθ3

(
g2 =

1
U2 −L2

)
=

((1−q)P−D)Q2
V

2P2 (66)

And the inventory during t2 is

E(∆2) =
∫ U2

L2

(
(P−D)q2θ 2

3 Q2
V

2P2 +
((1−q)P−D)qθ3Q2

V
P2

)
g2dθ3

=
∫ U2

L2

(P−D)q2θ 2
3 Q2

V
2P2

(
1

U2 −L2

)
dθ3

+
∫ U2

L2

((1−q)P−D)qθ3Q2
V

P2

(
1

U2 −L2

)
dθ3

=
qQ2

V
(
L2

2q(P−D)+L2(P(q(U2 −3)+3)−D(qU2 +3))
)

6P2

+
qQ2

VU2(P(q(U2 −3)+3)−D(qU2 +3))
6P2 (67)

During t3, the inventory becomes

E(∆3) =
∫ U2

L2

1
2

D
(
(P−D)qθ3QV +((1−q)P−D)QV

PD

)2

g2dθ3

=
Q2

V
(
(P(−qU2 +q−1)+qU2D+D)3 − (P(−L2q+q−1)+L2qD+D)3)

6qP2D(U2 −L2)(D−P)

(68)

The expected value of the total inventory of defective items during t1 will be

E(Γ1) =
∫ U2

L2

qθ3Q2
V

2P
g2dθ3

=
qQ2

V (L2 +U2)

4P
(69)
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and during t2

E(Γ2) =
∫ U2

L2

q2Q2
V θ 2

3
2P

g2dθ3

=
q2Q2

V
2P

∫ U2

L2

θ
2
3

(
1

U2 −L2

)
dθ3

=
q2Q2

V
2P

(U2
2 +U2L2 +L2

2)

3
(70)

The expected annual cost is

ETCV (QV ) =
KV D

QV (1− p)
+

hV D
QV (1− p)

(E(∆1)+E(∆2)+E(∆3)+E(Γ1)+E(Γ2))

+
ηD ln

(
q0
q

)
δ1(1− p)

+

ηDE
[

ln
(

θ3
θ30

)]
δ2(1− p)

+
cPD

(1− p)
+

crqµθ3D
(1− p)

(71)

where µθ3 =
U2+L2

2 and E
[

ln
(

θ3
θ30

)] (
= µln(θ3/θ30)

)
is derived as follows:

E
[

ln
(

θ3

θ30

)]
= E

[
ln(θ3)− ln(θ30)

]
= E[ln(θ3)]−E[ln(θ30)] (72)

Here,

E[ln(θ30)] = ln(θ30) (73)

since θ30 is constant. However,

E[ln(θ3)] ̸= ln[E(θ3)] (74)
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Therefore, we need to find E(ln(θ3)) which is a function of θ3.

E(lnθ3) =
∫

∞

−∞

lnθ3 ·g2dθ3

=
∫ U2

L2

lnθ3

(
1

U2 −L2

)
dθ3

=

(
1

U2 −L2

)∫ U2

L2

lnθ3dθ3 (75)

With integration by part, the expected value becomes

E(lnθ3) =

(
1

U2 −L2

)[
ln(U2)U2 − ln(L2)L2 −U2 +L2

]
(76)

Finally,

E
[

ln
(

θ3

θ30

)]
=

(
1

U2 −L2

)[
ln(U2)U2 − ln(L2)L2 −U2 +L2

]
− ln(θ30) (77)

To minimise ETCV (QV ), we take first derivative with respect to QV

d(ETCV )

dQV
=

hV
(
−2P

(
q2 (L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+3q(L2 +U2 −2)+3

))
12(p−1)P

+
hV Q2

V (D(q(L2 +U2 −2)+2))+4KV PD
4(p−1)PQ2

V
(78)

Taking the second derivative, we have

d2(ETCV )

dQ2
V

=
2KV D

(1− p)Q3
V

(79)

All parameters are positive, and d2(ETCV )

dQ2
V

> 0. Therefore, there exists unique value for

Q∗
V given as

Q∗
V =

√
12KV PD

2hV P
(
q2
(
L2

2 +(L2 +U2)(U2 −3)+3
)
+3qA+3

)
−3hV D(qA+2)

(80)

where A = (L2 +U2 −2).

57



3.1.3.3 Case 3: q is stochastic with standard uniform distribution and θ3 is

deterministic

The expected value of the total inventory of nondefective items during t1 will be

E(∆1) =
∫ U1

L1

((1−q)P−D)Q2
V

2P2 g1dq
(

g1 =
1

U1 −L1

)
=−

Q2
V (P(L1 +U1 −2)+2D)

4P2 (81)

And during t2

E(∆2) =
∫ U1

L1

(
(P−D)q2θ 2

3 Q2
V

2P2 +
((1−q)P−D)qθ3Q2

V
P2

)
g1dq

=
Q2

V θ3
(
P
(
L2

1(θ3 −2)+(L1 +U1)((θ3 −2)U1 +3)
))

6P2

−
Q2

V θ3
(
D
(
L2

1θ3 +(L1 +U1)(θ3U1 +3)
))

6P2 (82)

And during t3

E(∆3) =
∫ U1

L1

1
2

D
(
(P−D)qθ3QV +((1−q)P−D)QV

PD

)2

g1dq

=
Q2

V
(
(P(−θ3U1 +U1 −1)+θ3U1D+D)3)
6P2D(U1 −L1)(−Pθ3 +P+θ3D)

−
Q2

V
(
−(P(−L1θ3 +L1 −1)+L1θ3D+D)3)
6P2D(U1 −L1)(−Pθ3 +P+θ3D)

(83)

The inventory curve for defective items during the period t1

E(Γ1) =
∫ U1

L1

qθ3Q2
V

2P
g1dq

=
Q2

V θ3

2P
1

U1 −L1

∫ U1

L1

qdq

=
Q2

V θ3

2P
U1 +L1

2
(84)
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and during t2, it will be

E(Γ2) =
∫ U1

L1

q2Q2
V θ 2

3
2P

g1dq

=
Q2

V θ 2
3

2P
1

U1 −L1

∫ U1

L1

q2dq

=
Q2

V θ 3
3

2P
(U2

1 +U1L1 +L2
1)

3
(85)

The supplier’s expected annual cost becomes

ETCV (QV ) =
KV D

QV (1− p)
+

hV D
QV (1− p)

(E(∆1)+E(∆2)+E(∆3)+E(Γ1)+E(Γ2))

+

ηDE
[

ln
(

q0
q

)]
δ1(1− p)

+
ηD ln

(
θ3
θ30

)
δ2(1− p)

+
cPD

(1− p)
+

crµqθ3D
(1− p)

(86)

where µq =
U1+L1

2 and E
[

ln
(

q0
q

)] (
= µln(q0/q)

)
is derived as follows:

E
[

ln
(

q0

q

)]
= E

[
ln(q0)− ln(q)

]
= E[lnq0]−E[lnq] (87)

Here,

E[lnq0] = ln(q0) (88)

since q0 is constant. However,

E[lnq] ̸= ln[E(q)] (89)
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Therefore, we need to find E(lnq) which is a function of q:

E(lnq) =
∫

∞

−∞

lnq ·g1dq

=
∫ U1

L1

lnq
(

1
U1 −L1

)
dq

=

(
1

U1 −L1

)∫ U1

L1

lnqdq (90)

With integration by part, the expected value becomes

E(lnq) =
(

1
U1 −L1

)[
ln(U1)U1 − ln(L1)L1 −U1 +L1

]
(91)

Finally,

E
[

ln
(

q0

q

)]
= ln(q0)−

(
1

U1 −L1

)[
ln(U1)U1 − ln(L1)L1 −U1 +L1

]
(92)

To minimise ETCV (QV ), we take first derivative with respect to QV

d(ETCV )

dQV
=

6KV D−hV Q2
V
(
(L2

1(θ3 −1)2 +(L1 +U1)(θ3 −1)((θ3 −1)U1 +3)+3)
)

6(p−1)Q2
V

+
hV D((θ3 −1)(L1 +U1)+2)

4(p−1)P
(93)

Taking the second derivative, we have

d2(ETCV )

dQ2
V

=
2KV D

(1− p)Q3
V

(94)

All parameters are positive, and d2(ETCV )

dQ2
V

> 0. Therefore, there exists unique value for

Q∗
V given as

Q∗
V =

√
12PDKV

2hV P
(
L2

1B2 +B(BU1 +3)(L1 +U1)+3
)
−3hV D(B(L1 +U1)+2)

(95)

where B = (θ3 −1).
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3.1.3.4 Case 4: qnd θ3re both stochastic with standard uniform distribution

The expected value of the total inventory of nondefective items during t1 will be

E(∆1) =
∫ U2

L2

∫ Uq

Lq

((1−q)P−D)Q2
V

2P2 g2g1dqdθ3

=−
Q2

V (P(Lq +Uq −2)+2D)

4P2 (96)

Then, the expected value of total inventory during rework process t2 is

E(∆2) =
∫ U2

L2

∫ Uq

Lq

(
(P−D)q2θ 2

3 Q2
V

2P2 +
((1−q)P−D)qθ3Q2

V
P2

)
g2g1dqdθ3

=−
Q2

VU3
q
(
P
(
L2

2 +L2(U2 −3)+(U2 −3)U2
)
−D

(
L2

2 +L2U2 +U2
2
))

18P2(Lq −Uq)

−
Q2

VU2
q (L2 +U2)(P−D)

4P2(Lq −Uq)
+

Q2
V L2

q(L2 +U2)(P−D)

4P2(Lq −Uq)

+
Q2

V L3
q
(
P
(
L2

2 +L2(U2 −3)+(U2 −3)U2
)
−D

(
L2

2 +L2U2 +U2
2
))

18P2(Lq −Uq)
(97)

During t3, the total inventory becomes

E(∆3) =
∫ U2

L2

∫ Uq

Lq

1
2

D
(
(P−D)qθ3QV +((1−q)P−D)QV

PD

)2

g2g1dqdθ3

=
−Q2

VU3
q
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)

18D(Lq −Uq)

−
Q2

VU3
q
(
P
(
−2L2

2 +L2(3−2U2)+U2(3−2U2)
)
+D

(
L2

2 +L2U2 +U2
2
))

18P2(Lq −Uq)

−
Q2

VUq
(
Uq(P−D)(P(L2 +U2 −2)−D(L2 +U2))+2(P−D)2)

4P2D(Lq −Uq)

+
Q2

V L3
q
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)

18D(Lq −Uq)

+
Q2

V L3
q
(
P
(
−2L2

2 +L2(3−2U2)+U2(3−2U2)
)
+D

(
L2

2 +L2U2 +U2
2
))

18P2(Lq −Uq)

+
Q2

V Lq
(
Lq(P−D)(P(L2 +U2 −2)−D(L2 +U2))+2(P−D)2)

4P2D(Lq −Uq)
(98)

61



The expected value of total inventory during t1 will be

E(Γ1) =
∫ U2

L2

∫ Uq

Lq

qθ3Q2
V

2P
g1g2dqdθ3

=
Q2

V
2P

(
Uq +Lq

2

)(
U2 +L2

2

)
(99)

and during t2

E(Γ2) =
∫ U2

L2

∫ Uq

Lq

q3Q2
V θ 3

3
2P

g1g2dqdθ3

=
Q2

V
2P

(
U2

q +UqLq +L2
q

3

)(
U2

2 +U2L2 +L2
2

3

)
(100)

The expected annual cost becomes

ETCV (QV ) =
KV D

QV (1− p)
+

hV D
QV (1− p)

(E(∆1)+E(∆2)+E(∆3)+E(Γ1)+E(Γ2))

+
ηDµln(q0/q)

δ1(1− p)
+

ηDµln(θ3/θ30)

δ2(1− p)
+

cPD
(1− p)

+
crµqµθ3D
(1− p)

(101)

To minimise ETCV (QV ), we take first derivative with respect to QV

d(ETCV )

dQV
=

18KV D−hV Q2
V
(
L2

q
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
))

18(p−1)Q2
V

−
hV
(
Lq
(
2Uq(L2

2 +(U2 −3)U2 +3)+L2(2Uq(U2 −3)+9)+9(U2 −2)
))

36(p−1)

−
hV
(
2U2

q
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+9Uq(L2 +U2 −2)+18

)
36(p−1)

+
hV
(
D(L2 +U2 −2)(Lq +Uq)+4D

)
8(p−1)P

(102)

Taking the second derivative, we have

d2(ETCV )

dQ2
V

=
2KV D

(1− p)Q3
V

(103)
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All parameters are positive, and d2(ETCV )

dQ2
V

> 0. Therefore, there exists unique value for

Q∗
V given as

Q∗
V =

√
72KV PD

hV
(
2P
(
2L2

qC+Lq (2UqC+9A)+2U2
q C+9UqA+18

)
−9DA(Lq +Uq)−36D

)
(104)

where C = (L2
2 +L2(U2 −3)+(U2 −3)U2 +3) and A = (L2 +U2 −2).

3.2. Integrated Continuous Review Inventory Models

3.2.1. Integrated Models with lost-sales case

For the integrated case, we will analyse the buyer’s cost under deterministic

demand case with four cases of the supplier and then buyer’s cost with stochastic

demand with those four cases. That is, we will have eight integrated models in total.

The supplier’s total cost in a cycle when q and θ3 are deterministic is

TCV (Q) = KV +hV

(
Q2(q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2PD

)
+

Qη

δ1
ln
(

q0

q

)
+

Qη

δ2
ln
(

θ3

θ30

)
+ cPQ+ crqQθ3 (105)

and the buyer’s total cost with deterministic demand in a supplier’s cycle is

TCB(Q) = KB +F + cQ+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

)
(106)

The total cost for integrated system is,

TC(Q) = TCV (Q)+TCB(Q)

TC(Q) = KV +KB +F +hV

(
Q2(q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2PD

)
+ cPQ

+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

)
+

Qη

δ1
ln
(

q0

q

)
+

Qη

δ2
ln
(

θ3

θ30

)
+ crQqθ3 + cQ (107)
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We have cycle time T = Q(1−p)
D , so the average total annual cost would be

TC(Q) =

(
KV +KB +F +hV

(
Q2(q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2PD

)
+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

)
+

Qη

δ1
ln
(

q0

q

)
+

Qη

δ2
ln
(

θ3

θ30

)
+ cPQ+ crQqθ3 + cQ

)
D

Q(1− p)
(108)

To minimise TC(Q), we take first derivative with respect to Q

d(TC)

dQ
=

2D(F +KB +KV )+hB
(

p2 −1
)

Q2

2(p−1)Q2

− hV (q(θ3 −1)+1)(Pq(θ3 −1)+P−D)

2(p−1)P
(109)

Taking the second derivative, we have

d2(TC)

dQ2 =
2D(F +KB +KV )

(1− p)Q3 (110)

All parameters are positive, and d2(TC)
dQ2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗ =

√
−2PD(F +KB +KV )

hB (p2 −1)P+hV (q(θ3 −1)+1)(P(q(1−θ3)−1)+D)
(111)

As the second model, the supplier’s expected total cost in a cycle when q is

deterministic and θ3 is stochastic with standard uniform distribution defined as

ETCV (Q) = KV +hV

(
Q2 (q2 (L2

2 +(L2 +U2)(U2 −3)+3
)
+3q(L2 +U2 −2)+3

)
6D

)
−hV

(
Q2(q(L2 +U2 −2)+2)

4P

)
+

ηQ
δ1

ln
(

q0

q

)
+

ηQ
δ2

µln(θ3/θ30)

+ cPQ+ crqQµθ3 (112)

and the buyer’s expected total cost with deterministic demand in a supplier’s cycle is

ETCB(Q) = KB +F + cQ+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

)
(113)
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The expected total cost for integrated system is,

ETC(Q) = ETCV (Q)+ETCB(Q)

ETC(Q) = KV +KB +F +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

)
+hV

(
Q2 (q2 (L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+3q(L2 +U2 −2)+3

)
6D

)
−hV

(
Q2(q(L2 +U2 −2)+2)

4P

)
+

ηQ
δ1

ln
(

q0

q

)
+

ηQ
δ2

µln(θ3/θ30)

+ cPQ+ cQ+ crqQµθ3 (114)

The expected total annual cost becomes

ETC(Q) =

(
KV +KB +F +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

)
+hV

(
Q2 (q2 (L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+3q(L2 +U2 −2)+3

)
6D

)
−hV

(
Q2(q(L2 +U2 −2)+2)

4P

)
+

ηQ
δ1

ln
(

q0

q

)
+

ηQ
δ2

µln(θ3/θ30)

+ cPQ+ cQ+ crqQµθ3

)
D

Q(1− p)
(115)

To minimise ETC(Q), we take first derivative with respect to Q

d(ETC)

dQ
=

D
(
4P(F +KB +KV )+hV Q2(q(Lθ3 +Uθ3 −2)+2)

)
4(p−1)PQ2 +

hB (p+1)
2

−
hV
(
q2 (L2

2 +(L2 +U2)(U2 −3)+3
)
+3q(L2 +U2 −2)+3

)
6(p−1)

(116)

Taking the second derivative, we have

d2(TC)

dQ2 =
2D(F +KB +KV )

(1− p)Q3 (117)

All parameters are positive, and d2(TC)
dQ2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗ =

√
−12PD(F +KB +KV )

2P(3hB (p2 −1)−hV (q2C+3qA+3))+3hV D(qA+2)
(118)
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where C = (L2
2 +L2(U2 −3)+(U2 −3)U2 +3) and A = (L2 +U2 −2).

For the model where q is stochastic with standard uniform distribution and θ3 is

deterministic, the supplier’s cost function per cycle will be

ETCV (Q) = KV +hV

(
Q2 (L2

1(θ3 −1)2 +(L1 +U1)(θ3 −1)((θ3 −1)U1 +3)+3
)

6D

)
+hV

(
Q2 (−3(θ3 −1)D(L1 +U1)−6D)

12PD

)
+ cPQ+ crQθ3µq

+
ηQ
δ1

µln(q0/q)+
ηQ
δ2

ln
(

θ3

θ30

)
(119)

and the buyer’s expected total cost with deterministic demand in a supplier’s cycle is

ETCB(Q) = KB +F + cQ+hB

(
(Q(1− p))2

2D
+

Q2 p(1− p)
D

)
(120)

The expected total cost for integrated system is,

ETC(Q) = ETCV (Q)+ETCB(Q)

ETC(Q) = KV +KB +F + cQ+hB

(
(Q(1− p))2

2D
+

Q2 p(1− p)
D

)
+hV

(
Q2 ((θ3 −1)(L2

1(θ3 −1)+(L1 +U1)((θ3 −1)U1 +3))+3
)

6D

)
+hV

(
Q2 ((1−θ3)(L1 +U1)−2)

4P

)
+ cPQ+ crQθ3µq

+
ηQ
δ1

µln(q0/q)+
ηQ
δ2

ln
(

θ3

θ30

)
(121)

With the buyer’s cycle length, the expected total annual cost is

ETC(Q) =

(
KV +KB +F + cQ+hB

(
(Q(1− p))2

2D
+

Q2 p(1− p)
D

)
+hV

(
Q2 ((θ3 −1)(L2

1(θ3 −1)+(L1 +U1)((θ3 −1)U1 +3))+3
)

6D

)
+hV

(
Q2 ((1−θ3)(L1 +U1)−2)

4P

)
+ cPQ+ crQθ3µq

+
ηQ
δ1

µln(q0/q)+
ηQ
δ2

ln
(

θ3

θ30

))
D

Q(1− p)
(122)
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To minimise ETC(Q), we take first derivative with respect to Q

d(ETC)

dQ
=

hV
(
2P
(
L2

1(θ3 −1)2 +(L1 +U1)(θ3 −1)((θ3 −1)U1 +3)+3
))

12(1− p)P

− hV (D((θ3 −1)(L1 +U1)+2))
4(1− p)P

+
2D(F +KB +KV )+hB

(
p2 −1

)
Q2

2(p−1)Q2

(123)

Taking the second derivative, we have

d2(ETC)

dQ2 =
2D(F +KB +KV )

(1− p)Q3 (124)

All parameters are positive, and d2(ETC)
dQ2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗ =

√
−12PD(F +KB +KV )

6hB (p2 −1)P−hV
(
2P
(
L2

1B2 +(L1 +U1)B(BU1 +3)+3
)
−3BD(L1 +U1)−6D

)
(125)

where B = (θ3 −1).

When q and θ3 are both stochastic with standard uniform distribution, the supplier’s

cost function per cycle becomes

ETCV (Q) = KV + cPQ+ crQµqµθ3 +
ηQ
δ1

µln(q0/q)+
ηQ
δ2

µln(θ3/θ30 )

+hV

(
Q2L2

q
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)

18D

)
+hV

(
Q2L1

(
2L2

2Uq +L2(2U1(U2 −3)+9)+2U1((U2 −3)U2 +3)+9(U2 −2)
)

36D

)
+hV

(
Q2
(
2U2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+9U1(L2 +U2 −2)+18

)
36D

)
−hV

(
Q2 ((L2 +U2 −2)(L1 +U1)+4)

8P

)
(126)

and the buyer’s expected total cost with deterministic demand in a supplier’s cycle is

ETCB(Q) = KB +F + cQ+hB

(
(Q(1− p))2

2D
+

Q2 p(1− p)
D

)
(127)
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The expected total cost for integrated system is,

ETC(Q) = ETCV (Q)+ETCB(Q)

ETC(Q) = KB +KV +F +hB

(
(Q(1− p))2

2D
+

Q2 p(1− p)
D

)
+hV

(
Q2L2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)

18D

)
+

ηQ
δ1

µln(q0/q)+
ηQ
δ2

µln(θ3/θ30 )

+hV

(
Q2L1

(
2L2

2U1 +L2(2U1(U2 −3)+9)+2U1((U2 −3)U2 +3)+9(U2 −2)
)

36D

)
+hV

(
Q2
(
2U2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+9U1(L2 +U2 −2)+18

)
36D

)
−hV

(
Q2 ((L2 +U2 −2)(L1 +U1)+4)

8P

)
+ cQ+ cPQ+ crQµqµθ3 (128)

The expected total annual cost is

ETC(Q) =

(
KB +KV +F +hB

(
(Q(1− p))2

2D
+

Q2 p(1− p)
D

)
+hV

(
Q2L2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)

18D

)
+hV

(
Q2L1

(
2L2

2U1 +L2(2U1(U2 −3)+9)+2U1((U2 −3)U2 +3)+9(U2 −2)
)

36D

)
+hV

(
Q2
(
2U2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+9U1(L2 +U2 −2)+18

)
36D

)
−hV

(
Q2 ((L2 +U2 −2)(L1 +U1)+4)

8P

)
+ cQ+ cPQ+ crQµqµθ3

+
ηQ
δ1

µln(q0/q)+
ηQ
δ2

µln(θ3/θ30 )

)
D

Q(1− p)
(129)

To minimise ETC(Q), we take first derivative with respect to Q

d(ETC)

dQ
=

−hV L2
q
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)

18(p−1)

−
hV L1

(
2L2

2U1 +L2(2U1(U2 −3)+9)+2U1((U2 −3)U2 +3)+9(U2 −2)
)

36(p−1)

−
hV
(
2U2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+9U1(L2 +U2 −2)+18

)
36(p−1)

+
hV Q2 (D(L2 +U2 −2)(L1 +U1)+4D)+8PD(F +KB +KV )+4hB

(
p2 −1

)
PQ2

8(p−1)PQ2

(130)
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Taking the second derivative, we have

d2(ETC)

dQ2 =
2D(F +KB +KV )

(1− p)Q3 (131)

All parameters are positive, and d2(ETC)
dQ2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗=

√
−72PD(F +KB +KV )

36hB (p2 −1)P−hV
(
2P
(
2C(L2

1 +U2
1 )+L1 (2U1C+9A)+9U1A+18

)
−9D(AB−4)

)
(132)

where C = (L2
2 +L2(U2 −3)+(U2 −3)U2 +3), B = L1 +U1 and A = (L2 +U2 −2).

After the models for deterministic demand at buyer’s, it is time to analyse for

stochastic demand with four cases for supplier.

The supplier’s total cost per cycle for deterministic q and θ3 is

TCV (Q) = KV +hV

(
Q2(q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2PD

)
+

Qη

δ1
ln
(

q0

q

)
+

Qη

δ2
ln
(

θ3

θ30

)
+ cPQ+ crqQθ3 (133)

and the buyer’s total average cost with stochastic demand in a supplier’s cycle is

TCB(Q,r) = KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+F + cQ+ cl s̄(r) (134)

The total cost for integrated system is,

TC(Q,r) = TCV (Q)+TCB(Q,r)

TC(Q,r) = KV +KB +F +hV

(
Q2(q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2PD

)
+ cPQ

+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+ cl s̄(r)

+
Qη

δ1
ln
(

q0

q

)
+

Qη

δ2
ln
(

θ3

θ30

)
+ crQqθ3 + cQ (135)
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We have cycle time T = Q(1−p)
D , so the expected total annual cost would be

ETC(Q,r) =
(

KV +KB +F +hV

(
Q2(q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2PD

)
+ cQ+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+

Qη

δ1
ln
(

q0

q

)
+

Qη

δ2
ln
(

θ3

θ30

)
+ cPQ+ crQqθ3 + cl s̄(r)

)
D

Q(1− p)

(136)

To minimise ETC(Q,r), we take first derivative with respect to Q and r,

∂ (ETC)

∂Q
=

2D(F +KB +KV )+2clDs̄(r)+hB
(

p2 −1
)

Q2

2(p−1)Q2

+
hV (q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2(1− p)P
(137)

Taking the second derivative, we have

∂ 2(ETC)

∂Q2 =
2D(F +KB +KV + cl s̄(r))

(1− p)Q3 (138)

All parameters are positive, and ∂ 2(ETC)
∂Q2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗ =

√
−2PD(F + cl s̄(r)+KB +KV )

(hB (p2 −1)P+hV (q(θ3 −1)+1)(P(q(1−θ3)−1)+D))
(139)

The derivative of ETC(Q,r) with respect to r is

∂ (ETC)

∂ r
=

s̄′(r)(hB(p−1)Q− clD)+hB(p−1)Q
(p−1)Q

(140)

Taking the second derivative, we have

∂ 2(ETC)

∂ r2 =
s̄′′(r)(hB(p−1)Q− clD)

(p−1)Q
(141)

All parameters are positive, and ∂ 2(ETC)
∂ r2 > 0. Therefore, there exists unique value for
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r∗ given as

1−F(r∗) =
hBQ(1− p)

clD+hBQ(1− p)

r∗ = F−1
(

1− hBQ(1− p)
clD+hBQ(1− p)

)
(142)

For the rest of the models, r∗ equation will be the same since the integrated cost

function is changing only by constant.

In the model where q is deterministic and θ3 is stochastic with standard uniform

distribution, the supplier’s cost function per cycle will be

ETCV (Q) = KV −hV

(
Q2(q(L2 +U2 −2)+2)

4P

)
+

ηQ
δ1

ln
(

q0

q

)
+

ηQ
δ2

µln(θ3/θ30)

+hV

(
Q2 (q2 (L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+3q(L2 +U2 −2)+3

)
6D

)
+ cPQ+ crqQµθ3 (143)

and the buyer’s total average cost with stochastic demand in a supplier’s cycle is

ETCB(Q,r) = KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+F + cQ+ cl s̄(r) (144)

The expected total cost for integrated system is,

ETC(Q,r) = ETCV (Q)+ETCB(Q,r)

ETC(Q,r) = KB +KV +F +hB

(
(1− p)Q(−2µL + pQ+Q+2s̄(r)+2r)

2D

)
+hV

(
Q2 (q2 (L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+3q(L2 +U2 −2)+3

)
6D

)
−hV

(
Q2(q(L2 +U2 −2)+2)

4P

)
+ cl s̄(r)+ cQ+ cPQ+ crqQµθ3

+
ηQ
δ1

ln
(

q0

q

)
+

ηQ
δ2

µln(θ3/θ30)
(145)
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The expected total annual cost is

ETC(Q,r) =
(

KB +KV +F +hB

(
(1− p)Q(−2µL + pQ+Q+2s̄(r)+2r)

2D

)
+hV

(
Q2 (q2 (L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+3q(L2 +U2 −2)+3

)
6D

)
−hV

(
Q2(q(L2 +U2 −2)+2)

4P

)
+ cl s̄(r)+ cQ+ cPQ+ crqQµθ3

+
ηQ
δ1

ln
(

q0

q

)
+

ηQ
δ2

µln(θ3/θ30)

)
D

Q(1− p)
(146)

To minimise ETC(Q), we take first derivative with respect to Q

∂ (ETC)

∂Q
=

D
(
4P(F +KB +KV )+hV Q2(q(L2 +U2 −2)+2)

)
+4clPDs̄(r)

4(p−1)PQ2

−
hV
(
q2 (L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+3q(L2 +U2 −2)+3

)
6(p−1)

+
hB (p+1)

2
(147)

Taking the second derivative, we have

∂ 2(ETC)

∂Q2 =
2D(F +KB +KV + cl s̄(r))

(1− p)Q3 (148)

All parameters are positive, and d2(ETC)
dQ2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗=

√
−12PD(F + cl s̄(r)+KB +KV )

6hB(p2 −1)P−2hV P
(
q2
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+3qA+3

)
+3hV D(2+qA)

(149)

where C = (L2
2 +L2(U2 −3)+(U2 −3)U2 +3), A = (U2 +L2 −2) and

r∗ = F−1
(

1− hBQ(1− p)
clD+hBQ(1− p)

)
(150)

For the next model, q is stochastic with standard uniform distribution and θ3 is
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deterministic. Therefore, supplier’s cost function per cycle is

ETCV (Q) = KV +hV

(
Q2 (L2

1(θ3 −1)2 +(L1 +U1)(θ3 −1)((θ3 −1)U1 +3)+3
)

6D

)
+hV

(
Q2 (−3(θ3 −1)D(L1 +U1)−6D)

12PD

)
+ cPQ+ crQθ3µq

+
ηQ
δ1

µln(q0/q)+
ηQ
δ2

ln
(

θ3

θ30

)
(151)

and the buyer’s expected total cost with stochastic demand in the supplier’s cycle is

ETCB(Q,r) = KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+F + cQ+ cl s̄(r) (152)

The expected total cost for integrated system is,

ETC(Q,r) = ETCV (Q)+ETCB(Q,r)

ETC(Q,r) = KV +KB +F + cQ+ cPQ+ crQθ3µq +
ηQ
δ1

µln(q0/q)+
ηQ
δ2

ln
(

θ3

θ30

)
+hV

(
Q2 (L2

1(θ3 −1)2 +(L1 +U1)(θ3 −1)((θ3 −1)U1 +3)+3
)

6D

)
+hV

(
Q2 (−3(θ3 −1)D(L1 +U1)−6D)

12PD

)
+ cl s̄(r)

+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
(153)

The expected total annual cost is

ETC(Q,r) =
(

KV +KB +F + cQ+ cPQ+ crQθ3µq +
ηQ
δ1

µln(q0/q)+
ηQ
δ2

ln
(

θ3

θ30

)
+hV

(
Q2 (L2

1(θ3 −1)2 +(L1 +U1)(θ3 −1)((θ3 −1)U1 +3)+3
)

6D

)
+hV

(
Q2 (−3(θ3 −1)D(L1 +U1)−6D)

12PD

)
+ cl s̄(r)

+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

))
D

Q(1− p)
(154)
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To minimise ETC(Q), we take first derivative with respect to Q

∂ (ETC)

∂Q
=

2D(F +KB +KV )+hB
(

p2 −1
)

Q2

2(p−1)Q2

−
hV
(
L2

1(θ3 −1)2 +(L1 +U1)(θ3 −1)((θ3 −1)U1 +3)+3
)

6(p−1)

+
hV Q2 ((θ3 −1)D(L1 +U1)+2D)+4clPDs̄(r)

4(p−1)PQ2 (155)

Taking the second derivative, we have

∂ 2(ETC)

∂Q2 =
2D(F +KB +KV + cl s̄(r))

(1− p)Q3 (156)

All parameters are positive, and ∂ 2(ETC)
∂Q2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗ =

√
−12PD(F + cl s̄(r)+KB +KV )

6hB(p2 −1)P−hV
(
2P
(
L2

1B2 +(L1 +U1)B(BU1 +3)+3
)
−3BD(L1 +U1)−6D

)
(157)

where B = (θ3 −1) and

r∗ = F−1
(

1− hBQ(1− p)
clD+hBQ(1− p)

)
(158)

In the final model, where q and θ3 are both stochastic with standard uniform

distribution, supplier’s cost function per cycle is

ETCV (Q) = KV + cPQ+ crQµqµθ3 +
ηQ
δ1

µln(q0/q)+
ηQ
δ2

µln(θ3/θ30 )

+hV

(
Q2L2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)

18D

)
+hV

(
Q2L1

(
2L2

2U1 +L2(2U1(U2 −3)+9)+2U1((U2 −3)U2 +3)+9(U2 −2)
)

36D

)
+hV

(
Q2
(
2U2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+9U1(L2 +U2 −2)+18

)
36D

)
−hV

(
Q2 ((L2 +U2 −2)(L1 +U1)+4)

8P

)
(159)
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and the buyer’s expected total cost with deterministic demand in a supplier’s cycle is

ETCB(Q,r) = KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+F + cQ+ cl s̄(r) (160)

The expected total cost for integrated system is,

ETC(Q,r) = ETCV (Q)+ETCB(Q,r)

ETC(Q,r) = KB +KV +F + cQ+ cPQ+ crQµqµθ3 +
ηQ
δ1

µln(q0/q)+
ηQ
δ2

µln(θ3/θ30 )

−hB

(
(p−1)Q(−2ML + pQ+Q+2s̄(r)+2r)

2D

)
+ cl s̄(r)

+hV

(
Q2L2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)

18D

)
+hV

(
Q2L1

(
2L2

2U1 +L2(2U1(U2 −3)+9)+2U1((U2 −3)U2 +3)+9(U2 −2)
)

36D

)
+hV

(
Q2
(
2U2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+9U1(L2 +U2 −2)+18

)
36D

)
−hV

(
Q2 ((L2 +U2 −2)(L1 +U1)+4)

8P

)
(161)

The expected total annual cost becomes

ETC(Q) =

(
KB +KV +F + cQ+ cPQ+ crQµqµθ3 +

ηQ
δ1

µln(q0/q)+
ηQ
δ2

µln(θ3/θ30 )

−hB

(
(p−1)Q(−2ML + pQ+Q+2s̄(r)+2r)

2D

)
+ cl s̄(r)

+hV

(
Q2L2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)

18D

)
+hV

(
Q2L1

(
2L2

2U1 +L2(2U1(U2 −3)+9)+2U1((U2 −3)U2 +3)+9(U2 −2)
)

36D

)
+hV

(
Q2
(
2U2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+9U1(L2 +U2 −2)+18

)
36D

)
−hV

(
Q2 ((L2 +U2 −2)(L1 +U1)+4)

8P

)
D

Q(1− p)
(162)
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To minimise ETC(Q), we take first derivative with respect to Q

∂ (ETC)

∂Q
=

−hV L2
1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)

18(p−1)
+

clDs̄(r)
(p−1)Q2

−
hV L1

(
2L2

2U1 +L2(2U1(U2 −3)+9)+2U1((U2 −3)U2 +3)+9(U2 −2)
)

36(p−1)

−
hV
(
2U2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+9U1(L2 +U2 −2)+18

)
36(p−1)

+
hV Q2 (D(L2 +U2 −2)(L1 +U1)+4D)+8PD(F +KB +KV )+4hB

(
p2 −1

)
PQ2

8(p−1)PQ2

(163)

Taking the second derivative, we have

∂ 2(ETC)

∂Q2 =
2D(F +KB +KV + cl s̄(r))

(1− p)Q3 (164)

All parameters are positive, and ∂ 2(ETC)
∂Q2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗=

√
−72PD(F + cl s̄(r)+KB +KV )

36hB(p2 −1)P−hV
(
2P
(
2C(L2

1 +U2
1 )+L1 (2U1C+9A)+9U1A+18

)
−9D(AB−4)

)
(165)

where C = (L2
2 +L2(U2 −3)+(U2 −3)U2 +3), B = (L1 +U1) and A = (U2 +L2 −2),

and

r∗ = F−1
(

1− hBQ(1− p)
clD+hBQ(1− p)

)
(166)

3.2.2. Integrated Models with partial backordering

When there is deterministic demand, there is no shortage occurring. Therefore

in this section we only examine the stochastic demand. This time, there is partial

backordering at buyer’s side. As the first model, supplier’s total cost per cycle for

deterministic q and θ3 is

TCV (Q) = KV +hV

(
Q2(q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2PD

)
+

Qη

δ1
ln
(

q0

q

)
+

Qη

δ2
ln
(

θ3

θ30

)
+ cPQ+ crQqθ3 (167)
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and the buyer’s total average cost with stochastic demand and partial backordering is

TCB(Q,r) = KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+F + cQ+d + cbB̄(r)+ cl s̄(r) (168)

The total cost for integrated system is,

TC(Q,r) = TCV (Q)+TCB(Q,r)

TC(Q,r) = KV +KB +F +hV

(
Q2(q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2PD

)
+ cPQ

+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+ crQqθ3

+ cQ+d + cbB̄(r)+ cl s̄(r)+
Qη

δ1
ln
(

q0

q

)
+

Qη

δ2
ln
(

θ3

θ30

)
(169)

We have cycle time T = Q(1−p)
D , so the expected total annual cost would be

ETC(Q,r) =
(

KV +KB +F +hV

(
Q2(q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2PD

)
+ cPQ

+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+ crQqθ3

+ cQ+d + cbB̄(r)+ cl s̄(r)+
Qη

δ1
ln
(

q0

q

)
+

Qη

δ2
ln
(

θ3

θ30

))
D

Q(1− p)

(170)

Proposition 3. ETC(Q,r) annual total cost is strictly convex in (Q,r).

The proof is presented in Appendix A.

To minimise ETC(Q,r), we take first derivative with respect to Q and r,

∂ (ETC)

∂Q
=

2D(cbB̄(r)+d +F + cl s̄(r)+KB +KV )+hB
(

p2 −1
)

Q2

2(p−1)Q2

− hV (q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2(p−1)P
(171)
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Taking the second derivative, we have

∂ 2(ETC)

∂Q2 =
2D(cbB̄(r)+KB +KV +d)

(1− p)Q3 (172)

All parameters are positive, and ∂ 2(ETC)
∂Q2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗ =

√
−2PD(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

hB (p2 −1)P+hV (q(θ3 −1)+1)(P(q(−θ3)+q−1)+D)
(173)

The derivative of ETC(Q,r) with respect to r is

∂ (ETC)

∂ r
=

DcbB̄′(r)+Dcl s̄′(r)+hB(1− p)Q(1+ s̄′(r))
(1− p)Q

(174)

Taking the second derivative, we have

∂ 2(ETC)

∂ r2 =
DcbB̄′′(r)+ s̄′′(r)(hB(1− p)Q+ clD)

(1− p)Q
(175)

All parameters are positive, and ∂ 2(ETC)
∂ r2 > 0. Therefore, there exists unique value for

r∗ given as

F(r) =
(

1− hB(1− p)Q(
B′

p(r)(B̄(r)+ s̄(r)− r)−Bp(r)
)(

D(cl − cb)+hBQ(1− p)
)
+

(
clD+hBQ(1− p)

))

r∗ = F−1
(

1− hB(1− p)Q(
B′

p(r)(B̄(r)+ s̄(r)− r)−Bp(r)
)(

D(cl − cb)+hBQ(1− p)
)
+

(
clD+hBQ(1− p)

))

(176)

Similar to the previous case, the rest of the models, r∗ equation will be the same since

the integrated cost function is changing only by constant. In the model where q is

deterministic and θ3 is stochastic with standard uniform distribution, the supplier’s
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cost function per cycle will be

ETCV (Q) = KV −hV

(
Q2(q(L2 +U2 −2)+2)

4P

)
+

ηQ
δ1

ln
(

q0

q

)
+

ηQ
δ2

µln(θ3/θ30)

+hV

(
Q2 (q2 (L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+3q(L2 +U2 −2)+3

)
6D

)
+ cPQ+ crqQµθ3 (177)

and the buyer’s total average cost with stochastic demand in a supplier’s cycle is

ETCB(Q,r) = KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+F + cQ+d + cbB̄(r)+ cl s̄(r) (178)

The expected total cost for integrated system is,

ETC(Q,r) = ETCV (Q)+ETCB(Q,r)

ETC(Q,r) = KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+hV

(
Q2(q2(L2

2 +L2(U2 −3)+(U2 −3)U2 +3)+3q(L2 +U2 −2)+3)
6D

)
−hV

(
Q2(q(L2 +U2 −2)+2)

4P

)
+KV +F + cQ+ cPQ+ crqQµθ3

+
ηQ
δ1

ln
(

q0

q

)
+

ηQ
δ2

µln(θ3/θ30)
+d + cbB̄(r)+ cl s̄(r) (179)

The expected total annual cost is

ETC(Q,r) =
(

KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+hV

(
Q2(q2(L2

2 +L2(U2 −3)+(U2 −3)U2 +3)+3q(L2 +U2 −2)+3)
6D

)
−hV

(
Q2(q(L2 +U2 −2)+2)

4P

)
+KV +F + cQ+ cPQ+ crqQµθ3

+
ηQ
δ1

ln
(

q0

q

)
+

ηQ
δ2

µln(θ3/θ30)
+d + cbB̄(r)+ cl s̄(r)

)
D

Q(1− p)
(180)
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To minimise ETC(Q), we take first derivative with respect to Q

∂ (ETC)

∂Q
=

D
(
4P(cbB̄(r)+d +F + cl s̄(r)+KB +KV )+hV Q2(q(L2 +U2 −2)+2)

)
4(p−1)PQ2

−
hV
(
q2 (L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+3q(L2 +U2 −2)+3

)
6(p−1)

+
hB (p+1)

2
(181)

Taking the second derivative, we have

∂ 2(ETC)

∂Q2 =
2D(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

(1− p)Q3 (182)

All parameters are positive, and d2(ETC)
dQ2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗ =

√
−12PD(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

6hB(p2 −1)P−2hV P(q2C+3qA+3)+3hV D(qA+2)
(183)

where C = (L2
2 +L2(U2 −3)+(U2 −3)U2 +3) and A = (U2 +L2 −2) and the unique

value for r∗ given as

r∗ = F−1
(

1− hB(1− p)Q(
B′

p(r)(B̄(r)+ s̄(r)− r)−Bp(r)
)(

D(cl − cb)+hBQ(1− p)
)
+

(
clD+hBQ(1− p)

))

(184)

For the next model, q is stochastic with standard uniform distribution and θ3 is

deterministic. Therefore, supplier’s cost function per cycle is

ETCV (Q) = KV +hV

(
Q2 (L2

1(θ3 −1)2 +(L1 +U1)(θ3 −1)((θ3 −1)U1 +3)+3
)

6D

)
+hV

(
Q2 ((1−θ3)(L1 +U1)−2)

4P

)
+ cPQ+ crQθ3µq

+
ηQ
δ1

µln(q0/q)+
ηQ
δ2

ln
(

θ3

θ30

)
(185)
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and the buyer’s expected total cost with stochastic demand in the supplier’s cycle is

ETCB(Q,r) = KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+F + cQ+d + cbB̄(r)+ cl s̄(r) (186)

The expected total cost for integrated system is,

ETC(Q,r) = ETCV (Q)+ETCB(Q,r)

ETC(Q,r) = KV +KB +F + cQ+ cPQ+ crQθ3µq +
ηQ
δ1

µln(q0/q)+
ηQ
δ2

ln
(

θ3

θ30

)
+hV

(
Q2 (L2

1(θ3 −1)2 +(L1 +U1)(θ3 −1)((θ3 −1)U1 +3)+3
)

6D

)
+hV

(
Q2 (−3(θ3 −1)D(L1 +U1)−6D)

12PD

)
+d + cbB̄(r)+ cl s̄(r)

+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
(187)

The expected total annual cost is

ETC(Q,r) =
(

KV +KB +F + cQ+ cPQ+ crQθ3µq +
ηQ
δ1

µln(q0/q)+
ηQ
δ2

ln
(

θ3

θ30

)
+hV

(
Q2 (L2

1(θ3 −1)2 +(L1 +U1)(θ3 −1)((θ3 −1)U1 +3)+3
)

6D

)
+hV

(
Q2 (−3(θ3 −1)D(L1 +U1)−6D)

12PD

)
+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+d + cbB̄(r)+ cl s̄(r)

)
D

Q(1− p)
(188)

To minimise ETC(Q), we take first derivative with respect to Q

∂ (ETC)

∂Q
=

2D(cbB̄(r)+d +F + cl s̄(r)+KB +KV )+hB
(

p2 −1
)

Q2

2(p−1)Q2

−
hV
(
L2

1(θ3 −1)2 +(L1 +U1)(θ3 −1)((θ3 −1)U1 +3)+3
)

6(p−1)

+
hV D((θ3 −1)(L1 +U1)+2)

4(p−1)P
(189)
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Taking the second derivative, we have

∂ 2(ETC)

∂Q2 =
2D(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

(1− p)Q3 (190)

All parameters are positive, and ∂ 2(ETC)
∂Q2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗ =

√
−12PD(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

6hB (p2 −1)P−hV
(
2P
(
L2

1B2 +(L1 +U1)B(BU1 +3)+3
)
−3BD(L1 +U1)−6D

)
(191)

where B = (θ3 −1) and the unique value for r∗ given as

r∗ = F−1
(

1− hB(1− p)Q(
B′

p(r)(B̄(r)+ s̄(r)− r)−Bp(r)
)(

D(cl − cb)+hBQ(1− p)
)
+

(
clD+hBQ(1− p)

))

(192)

As our final model, where q and θ3 are both stochastic with standard uniform

distribution, supplier’s cost function per cycle is

ETCV (Q) = KV + cPQ+ crQµqµθ3 +
ηQ
δ1

µln(q0/q)+
ηQ
δ2

µln(θ3/θ30 )

+hV

(
Q2L2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)

18D

)
+hV

(
Q2L1

(
2L2

2U1 +L2(2U1(U2 −3)+9)+2U1((U2 −3)U2 +3)+9(U2 −2)
)

36D

)
+hV

(
Q2
(
2U2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+9U1(L2 +U2 −2)+18

)
36D

)
−hV

(
Q2 ((L2 +U2 −2)(L1 +U1)+4)

8P

)
(193)

and the buyer’s expected total cost with deterministic demand in a supplier’s cycle is

ETCB(Q,r) = KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+F + cQ+d + cbB̄(r)+ cl s̄(r) (194)
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The expected total cost for integrated system is,

ETC(Q,r) = ETCV (Q)+ETCB(Q,r)

ETC(Q,r) = KB +KV +F + cQ+ cPQ+ crQµqµθ3 +
ηQ
δ1

µln(q0/q)+
ηQ
δ2

µln(θ3/θ30 )

+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+hV

(
Q2L2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)

18D

)
+d + cbB̄(r)+ cl s̄(r)

+hV

(
Q2L1

(
2L2

2U1 +L2(2U1(U2 −3)+9)+2U1((U2 −3)U2 +3)+9(U2 −2)
)

36D

)
+hV

(
Q2
(
2U2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+9U1(L2 +U2 −2)+18

)
36D

)
−hV

(
Q2 ((L2 +U2 −2)(L1 +U1)+4)

8P

)
(195)

The expected total annual cost becomes

ETC(Q) =

(
KB +KV +F + cQ+ cPQ+ crQµqµθ3 +

ηQ
δ1

µln(q0/q)+
ηQ
δ2

µln(θ3/θ30 )

+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+hV

(
Q2L2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)

18D

)
+d + cbB̄(r)+ cl s̄(r)

+hV

(
Q2L1

(
2L2

2U1 +L2(2U1(U2 −3)+9)+2U1((U2 −3)U2 +3)+9(U2 −2)
)

36D

)
+hV

(
Q2
(
2U2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+9U1(L2 +U2 −2)+18

)
36D

)
−hV

(
Q2 ((L2 +U2 −2)(L1 +U1)+4)

8P

))
D

Q(1− p)
(196)

To minimise ETC(Q), we take first derivative with respect to Q

∂ (ETC)

∂Q
=

D(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

(p−1)Q2

−
hV L1

(
2L2

2U1 +L2(2U1(U2 −3)+9)+2U1((U2 −3)U2 +3)+9(U2 −2)
)

36(p−1)

−
hV
(
2U2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
−9U1(L2 +U2 −2)−18

)
36(p−1)

+
hV (D(L2 +U2 −2)(L1 +U1)+4D)+4hB

(
p2 −1

)
P

8(p−1)P

−
hV L2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)

18(p−1)
(197)
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Taking the second derivative, we have

∂ 2(ETC)

∂Q2 =
2D(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

(1− p)Q3 (198)

All parameters are positive, and ∂ 2(ETC)
∂Q2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗ =

√
−72PD(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

36hB (p2 −1)P−hV
(
2P
(
2L2

1C+(L1 +U1)(2U1C+9A)+18
)
−9DAB−36D

)
(199)

where C = (L2
2 +L2(U2 −3)+(U2 −3)U2 +3), B = (L1 +U1) and A = (U2 +L2 −2)

and the unique value for r∗ given as

r∗ = F−1
(

1− hB(1− p)Q(
B′

p(r)(B̄(r)+ s̄(r)− r)−Bp(r)
)(

D(cl − cb)+hBQ(1− p)
)
+

(
clD+hBQ(1− p)

))

(200)

3.2.3. Integrated Models with partial backordering when q and θ3 follow beta

distribution

Different than standard uniform distribution, in this section we will examine the

four models when q and θ3 follows beta distribution. As the first model, supplier’s

total cost per cycle for deterministic q and θ3 is

TCV (Q) = KV +hV

(
Q2(q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2PD

)
+

Qη

δ1
ln
(

q0

q

)
+

Qη

δ2
ln
(

θ3

θ30

)
+ cPQ+ crQqθ3 (201)

and the buyer’s total average cost with stochastic demand and partial backordering is

TCB(Q,r) = KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+F + cQ+d + cbB̄(r)+ cl s̄(r) (202)
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The total cost for integrated system is,

TC(Q,r) = TCV (Q)+TCB(Q,r)

TC(Q,r) = KV +KB +F +hV

(
Q2(q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2PD

)
+ cPQ

+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+ crQqθ3

+d + cbB̄(r)+ cl s̄(r)+
Qη

δ1
ln
(

q0

q

)
+

Qη

δ2
ln
(

θ3

θ30

)
+ cQ (203)

We have cycle time T = Q(1−p)
D , so the expected total annual cost would be

ETC(Q,r) =
(

KV +KB +F +hV

(
Q2(q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2PD

)
+ cPQ

+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+ crQqθ3

+d + cbB̄(r)+ cl s̄(r)+
Qη

δ1
ln
(

q0

q

)
+

Qη

δ2
ln
(

θ3

θ30

)
+ cQ

)
D

Q(1− p)

(204)

To minimise ETC(Q,r), we take first derivative with respect to Q and r,

∂ (ETC)

∂Q
=

2D(cbB̄(r)+d +F + cl s̄(r)+KB +KV )+hB
(

p2 −1
)

Q2

2(p−1)Q2

− hV (q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2(p−1)P
(205)

Taking the second derivative, we have

∂ 2(ETC)

∂Q2 =
2D(cbB̄(r)+KB +KV +d)

(1− p)Q3 (206)

All parameters are positive, and ∂ 2(ETC)
∂Q2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗ =

√
−2PD(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

hB (p2 −1)P+hV (q(θ3 −1)+1)(P(q(−θ3)+q−1)+D)
(207)
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The derivative of ETC(Q,r) with respect to r is

∂ (ETC)

∂ r
=

DcbB̄′(r)+Dcl s̄′(r)+hB(1− p)Q(1+ s̄′(r))
(1− p)Q

(208)

Taking the second derivative, we have

∂ 2(ETC)

∂ r2 =
DcbB̄′′(r)+ s̄′′(r)(hB(1− p)Q+ clD)

(1− p)Q
(209)

All parameters are positive, and ∂ 2(ETC)
∂ r2 > 0. Therefore, there exists unique value for

r∗ given as

F(r) =
(

1− hB(1− p)Q(
B′

p(r)(B̄(r)+ s̄(r)− r)−Bp(r)
)(

D(cl − cb)+hBQ(1− p)
)
+

(
clD+hBQ(1− p)

))

r∗ = F−1
(

1− hB(1− p)Q(
B′

p(r)(B̄(r)+ s̄(r)− r)−Bp(r)
)(

D(cl − cb)+hBQ(1− p)
)
+

(
clD+hBQ(1− p)

))

(210)

Similar to the previous case, the rest of the models, r∗ equation will be the same since

the integrated cost function is changing only by constant.

For the model where q is deterministic and θ3 is stochastic with beta distribution,

first we will calculate supplier’s cost. With θ3 given as random variable, it has an

upper (U2) and lower (L2) bounds with the probability distribution function of g2 and

shape parameters are αθ3 = 3 and βθ3 = 1. The expected value of the total inventory

of nondefective items during t1 will be

E(∆1) =
∫ U2

L2

((1−q)P−D)Q2
V

2P2 g2dθ3

(
g2 =

(θ3 −L2)
αθ3−1(U2 −θ3)

βθ3−1

B(αθ3 ,βθ3)(U2 −L2)
αθ3+βθ3−1

)
=

((1−q)P−D)Q2
V

2P2

∫ U2

L2

(
(θ3 −L2)

2

B(3,1)(U2 −L2)3

)
dθ3

(
B(α,β ) =

(α −1)!(β −1)!
(α +β −1)!

)
=

((1−q)P−D)Q2
V

2P2 (211)
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And the inventory during t2 is

E(∆2) =
∫ U2

L2

(
(P−D)q2θ 2

3 Q2
V

2P2 +
((1−q)P−D)qθ3Q2

V
P2

)
g2dθ3

=
qQ2

V
(
(3U2 +L2)((L2 −5)q+5)+6qU2

2
)

20P

−
qQ2

V D
(
(3U2 +L2)(L2q+5)+6qU2

2
)

20P2 (212)

During t3, the inventory becomes

E(∆3) =
∫ U2

L2

1
2

D
(
(P−D)qθ3QV +((1−q)P−D)QV

PD

)2

g2dθ3

=
Q2

V

(
q2
(

L2
2 +3(L2 −5)U2 −5L2 +62

θ3
+10

)
+5q(L2 +3U2 −4)+10

)
20D

−
Q2 (q2 (2L2

2 +L2(6U2 −5)+3U2(4U2 −5)
)
+10q(L2 +3U2 −2)+20

)
20P

+
Q2D

(
q
(
3U2(L2q+5)+L2(L2q+5)+6qU2

2
)
+10

)
20P2 (213)

The expected value of the total inventory of defective items during t1 will be

E(Γ1) =
∫ U2

L2

qθ3Q2
V

2P
g2dθ3

=
qQ2

V (L2 +3U2)

8P
(214)

and during t2

E(Γ2) =
∫ U2

L2

q2Q2
V θ 2

3
2P

g2dθ3

=
q2Q2

V (L
2
2 +3L2U2 +6U2

2 )

20P
(215)

The expected annual cost is

ETCV (QV ) = KV +hV (E(∆1)+E(∆2)+E(∆3)+E(Γ1)+E(Γ2))

+
ηQ
δ1

ln
(

q0

q

)
+

ηQ
δ2

E
[

ln
(

θ3

θ30

)]
+ cPQ+ crqµθ3Q (216)
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where µtheta3 =
αθ3

αθ3+βθ3
= 3

4 and E
[

ln
(

θ3
θ30

)] (
= µln(θ3/θ30)

)
is derived as follows:

E
[

ln
(

θ3

θ30

)]
= E

[
ln(θ3)− ln(θ30)

]
= E[ln(θ3)]−E[ln(θ30)] (217)

Here,

E[ln(θ30)] = ln(θ30) (218)

since θ30 is constant. However,

E[ln(θ3)] ̸= ln[E(θ3)] (219)

Therefore, we need to find E(ln(θ3)) which is a function of θ3.

E(lnθ3) =
∫

∞

−∞

lnθ3 ·g2dθ3

=
∫ U2

L2

lnθ3
3(θ3 −L2)

2

(U2 −L2)3 dθ3

=
6L3

2 ln(L2)+(U2 −L2)
(
11L2

2 −7L2U2 +2U2
2
)

6(L2 −U2)3

−
U2
(
3L2

2 −3L2U2 +U2
2
)

ln(U2)

(L2 −U2)3 (220)

Finally,

E
[

ln
(

θ3

θ30

)]
=

6L3
2 ln(L2)+(U2 −L2)

(
11L2

2 −7L2U2 +2U2
2
)

6(L2 −U2)3

−
U2
(
3L2

2 −3L2U2 +U2
2
)

ln(U2)

(L2 −U2)3 − ln(θ30) (221)
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The supplier’s cost function per cycle will be

ETCV (Q) = KV +hV

(
Q2q2 (L2

2 +3(L2 −5)U2 −5L2 +6U2
2 +10

)
20D

)
+hV

(
Q2 (2P(5q(L2 +3U2 −4)+10)−5D(q(L2 +3U2 −4)+4))

40PD

)
+

ηQ
δ1

ln
(

q0

q

)
+

ηQ
δ2

µln(θ3/θ30)
+ cPQ+ crqQµθ3 (222)

and the buyer’s total average cost with stochastic demand in a supplier’s cycle is

ETCB(Q,r) = KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+F + cQ+d + cbB̄(r)+ cl s̄(r) (223)

The expected total cost for integrated system is,

ETC(Q,r) = ETCV (Q)+ETCB(Q,r)

ETC(Q,r) = KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+hV

(
Q2q2 (L2

2 +3(L2 −5)U2 −5L2 +6U2
2 +10

)
20D

)
+KV +F

+hV

(
Q2 (2P(5q(L2 +3U2 −4)+10)−5D(q(L2 +3U2 −4)+4))

40PD

)
+ cQ+ cPQ+ crqQµθ3 +

ηQ
δ1

ln
(

q0

q

)
+

ηQ
δ2

µln(θ3/θ30)

+d + cbB̄(r)+ cl s̄(r) (224)
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The expected total annual cost is

ETC(Q,r) =
(

KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+hV

(
Q2q2 (L2

2 +3(L2 −5)U2 −5L2 +6U2
2 +10

)
20D

)
+KV +F

+hV

(
Q2 (2P(5q(L2 +3U2 −4)+10)−5D(q(L2 +3U2 −4)+4))

40PD

)
+ cQ+ cPQ+ crqQµθ3 +

ηQ
δ1

ln
(

q0

q

)
+

ηQ
δ2

µln(θ3/θ30)

+d + cbB̄(r)+ cl s̄(r)
)

D
Q(1− p)

(225)

To minimise ETC(Q), we take first derivative with respect to Q

∂ (ETC)

∂Q
=

D
(
8P(cbB̄(r)+d +F + cl s̄(r)+KB +KV )+hV Q2(q(L2 +3U2 −4)+4)

)
8(p−1)PQ2

+
10hB

(
p2 −1

)
−hV

(
q2 (L2

2 +3(L2 −5)U2 −5L2 +6U2
2 +10

))
20(p−1)

− hV (q(L2 +3U2 −4)+2)
4(p−1)

(226)

Taking the second derivative, we have

∂ 2(ETC)

∂Q2 =
2D(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

(1− p)Q3 (227)

All parameters are positive, and d2(ETC)
dQ2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗ =

√
−40PD(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

20hB (p2 −1)P−2hV P(q2C+5A+10)+5hV D(A+4)
(228)

where C = (L2
2+3(L2−5)U2−5L2+6U2

2 +10) and A= (L2+3U2−4) and the unique

value for r∗ given as

r∗ = F−1
(

1− hB(1− p)Q(
B′

p(r)(B̄(r)+ s̄(r)− r)−Bp(r)
)(

D(cl − cb)+hBQ(1− p)
)
+

(
clD+hBQ(1− p)

))

(229)

For the next model, q is stochastic with standard uniform distribution and θ3 is
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deterministic. With q given as random variable, it has an upper (U1) and lower (L1)

bounds with the probability distribution function of g1 and shape parameters are αq = 1

and βq = 4. The expected value of the total inventory of nondefective items during t1

will be

E(∆1) =
∫ U1

L1

((1−q)P−D)Q2
V

2P2 g1dq
(

g1 =
(q−L1)

αq−1(U1 −q)βq−1

B(αq,βq)(U1 −L1)αq+βq−1

)
=

((1−q)P−D)Q2
V

2P2

∫ U1

L1

(
(U1 −q)3

B(1,4)(U1 −L1)4

)
dq

(
B(α,β ) =

(α −1)!(β −1)!
(α +β −1)!

)
=

Q2
V (P(5−4L1 −U1)−5D)

10P2 (230)

And the inventory during t2 is

E(∆2) =
∫ U1

L1

(
(P−D)q2θ 2

3 Q2
V

2P2 +
((1−q)P−D)qθ3Q2

V
P2

)
g1dq

=
Q2

V θ3
(
10L2

1(P(θ3 −2)−θ3D)+4L1(P((θ3 −2)U1 +6)−D(θ3U1 +6))
)

30P2

+
Q2

V θ3 (U1(P((θ3 −2)U1 +6)−D(θ3U1 +6)))
30P2 (231)

During t3, the inventory becomes

E(∆3) =
∫ U1

L1

1
2

D
(
(P−D)qθ3QV +((1−q)P−D)QV

PD

)2

g1dq

=
Q2

V
(
10L2

1(θ3 −1)2 +(4L1 +U1)(θ3 −1)((θ3 −1)U1 +6)+15
)

30D

−
Q2

V
(
10L2

1(θ3 −1)θ3 +(4L1 +U1)(θ3((θ3 −1)U1 +6)−3)+15
)

15P

+
Q2

V D
(
θ3
(
10L2

1θ3 +4L1(θ3U1 +6)+U1(θ3U1 +6)
)
+15

)
30P2 (232)

The expected value of the total inventory of defective items during t1 will be

E(Γ1) =
∫ U1

L1

qθ3Q2
V

2P
g1dq

=
2L1Q2

V θ3

5P
+

Q2
V θ3U1

10P
(233)
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and during t2

E(Γ2) =
∫ U2

L2

q2Q2
V θ 2

3
2P

g2dθ3

=
Q2

V θ 2
3
(
10L2

1 +4L1U1 +U2
1
)

30P
(234)

The expected annual cost is

ETCV (QV ) = KV +hV (E(∆1)+E(∆2)+E(∆3)+E(Γ1)+E(Γ2))

+
ηQ
δ1

E
[

ln
(

q0

q

)]
+

ηQ
δ2

ln
(

θ3

θ30

)
+ cPQ+ crµqθ3Q (235)

where µq =
αq

αq+βq
= 1

5 and E
[

ln
(

q0
q

)] (
= µln(q0/q)

)
is derived as follows:

E
[

ln
(

q0

q

)]
= E

[
ln(q0)− ln(q)

]
= E[ln(q0)]−E[ln(q)] (236)

Here,

E[ln(q0)] = ln(q0) (237)

since q0 is constant. However,

E[ln(q)] ̸= ln[E(q)] (238)

Therefore, we need to find E(ln(q)) which is a function of q.

E(lnq) =
∫

∞

−∞

lnq ·g1dq

=
∫ U1

L1

lnq
4(U1 −q)3

(U1 −L1)4 dq

=
L1(L1 −2U1)

(
L2

1 −2L1U1 +2U2
1
)

ln(L1)

(L1 −U1)4

−
(
3L3

1 −13L2
1U1 +23L1U2

1 −25U3
1
)

12(L1 −U1)3 +
U4

1 ln(U1)

(L1 −U1)4 (239)
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Finally,

E
[

ln
(

q0

q

)]
= ln(q0)−

L1(L1 −2U1)
(
L2

1 −2L1U1 +2U2
1
)

ln(L1)

(L1 −U1)4

−
(
3L3

1 −13L2
1U1 +23L1U2

1 −25U3
1
)

12(L1 −U1)3 +
U4

1 ln(U1)

(L1 −U1)4 (240)

Therefore, supplier’s cost function per cycle is

ETCV (Q) = KV +hV

(
Q2
(
10L2

1(θ3 −1)2 +4L1(θ3 −1)((θ3 −1)U1 +6)
)

30D

)
+hV

(
Q2 (P((θ3 −1)U1((θ3 −1)U1 +6)+15)−3(θ3 −1)D(4L1 +U1)−15D)

30PD

)
+ cPQ+ crQθ3µq +

ηQ
δ1

µln(q0/q)+
ηQ
δ2

ln
(

θ3

θ30

)
(241)

and the buyer’s expected total cost with stochastic demand in the supplier’s cycle is

ETCB(Q,r) = KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+F + cQ+d + cbB̄(r)+ cl s̄(r) (242)

The expected total cost for integrated system is,

ETC(Q,r) = ETCV (Q)+ETCB(Q,r)

ETC(Q,r) = KV +KB +F + cQ+ cPQ+ crQθ3µq +
ηQ
δ1

µln(q0/q)+
ηQ
δ2

ln
(

θ3

θ30

)
+hV

(
Q2
(
10L2

1(θ3 −1)2 +4L1(θ3 −1)((θ3 −1)U1 +6)
)

30D

)
+hV

(
Q2 (P((θ3 −1)U1((θ3 −1)U1 +6)+15)−3(θ3 −1)D(4L1 +U1)−15D)

30PD

)
+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+d + cbB̄(r)+ cl s̄(r) (243)

93



The expected total annual cost is

ETC(Q,r) =
(

KV +KB +F + cQ+ cPQ+ crQθ3µq +
ηQ
δ1

µln(q0/q)+
ηQ
δ2

ln
(

θ3

θ30

)
+hV

(
Q2
(
10L2

1(θ3 −1)2 +4L1(θ3 −1)((θ3 −1)U1 +6)
)

30D

)
+hV

(
Q2 (P((θ3 −1)U1((θ3 −1)U1 +6)+15)−3(θ3 −1)D(4L1 +U1)−15D)

30PD

)
+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+d + cbB̄(r)+ cl s̄(r)

)
D

Q(1− p)
(244)

To minimise ETC(Q), we take first derivative with respect to Q

∂ (ETC)

∂Q
=

30PD(cbB̄(r)+d +F + cl s̄(r)+KB +KV )+15hB
(

p2 −1
)

PQ2

30(p−1)PQ2

−
hV
(
10L2

1(θ3 −1)2 +(4L1 +U1)(θ3 −1)((θ3 −1)U1 +6)+15
)

30(p−1)

+
hV ((θ3 −1)D(4L1 +U1)+5D)

10(p−1)P
(245)

Taking the second derivative, we have

∂ 2(ETC)

∂Q2 =
2D(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

(1− p)Q3 (246)

All parameters are positive, and ∂ 2(ETC)
∂Q2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗=

√
−30PD(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

15hB(p2 −1)P−hV P(10L2
1B2 +(4L1 +U1)B(BU1 +6)+15)+3hV D(4BL1 +U1B+5)

(247)

where B = (θ3 −1) and the unique value for r∗ given as

r∗ = F−1
(

1− hB(1− p)Q(
B′

p(r)(B̄(r)+ s̄(r)− r)−Bp(r)
)(

D(cl − cb)+hBQ(1− p)
)
+

(
clD+hBQ(1− p)

))

(248)

Our final model is where q and θ3 are both stochastic with beta distribution. With

q and θ3 given as random variables, they have an upper (U1,U2) and lower (L1,L2)
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bounds with the probability distribution function of g1,g2 and shape parameters are

αq = 19,αθ3 = 1 and βq = 24,βθ3 = 9. The expected value of the total inventory of

nondefective items during t1 will be

E(∆1) =
∫ U2

L2

∫ U1

L1

((1−q)P−D)Q2
V

2P2 g1g2dqdθ3

=−
Q2

V (P(−5+4L1 +U1)+5D)

10P2 (249)

And the inventory during t2 is

E(∆2) =
∫ U2

L2

∫ U1

L1

(
(P−D)q2θ 2

3 Q2
V

2P2 +
((1−q)P−D)qθ3Q2

V
P2

)
g1g2dqdθ3

=
Q2

V
(
L2

2
(
10L2

1 +4L1U1 +U2
1
)
(P−D)

)
300P2

+
Q2

V L2
(
10L2

1(3U2 −5)+4L1(U1(3U2 −5)+15)+U1(U1(3U2 −5)+15)
)

300P

−
Q2

V
(
L2D

(
10L2

1U2 +4L1(U1U2 +5)+U1(U1U2 +5)
))

100P2

+
Q2

VU2
(
10L2

1(2U2 −5)+4L1(U1(2U2 −5)+15)+U1(U1(2U2 −5)+15)
)

100P

−
Q2

V
(
U2D

(
20L2

1U2 +L1(8U1U2 +60)+U1(2U1U2 +15)
))

100P2 (250)
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During t3, the inventory becomes

E(∆3) =
∫ U2

L2

∫ U1

L1

1
2

D
(
(P−D)qθ3QV +((1−q)P−D)QV

PD

)2

g1g2dqdθ3

=
Q2

V
(
L2

1
(
L2

2 +L2(3U2 −5)+6U2
2 −15U2 +10

))
30D

+
Q2

V
(
L1
(
L2

2U1 +L2(U1(3U2 −5)+15)+U1
(
6U2

2 −15U2 +10
)
+45U2 −60

))
75D

+
Q2

V
(
U2

1
(
L2

2 +L2(3U2 −5)+6U2
2 −15U2 +10

)
+15U1(L2 +3U2 −4)+150

)
300D

−
Q2

V D
(
L2

1
(
2L2

2 +L2(6U2 −5)+3U2(4U2 −5)
))

30PD

−
Q2

V D
(
L1
(
2L2

2U1 +L2(U1(6U2 −5)+30)+3
(
4U1U2

2 −5(U1 −6)U2 −20
)))

75PD

−
Q2

V D
(
U2

1
(
2L2

2 +L2(6U2 −5)+3U2(4U2 −5)
)
+30U1(L2 +3U2 −2)+300

)
300PD

+
Q2

V D
(
L2

2
(
10L2

1 +4L1U1 +U2
1
)
+3L2

(
10L2

1U2 +4L1(U1U2 +5)+U1(U1U2 +5)
))

300P2

+
Q2

V D
(
3
(
20L2

1U2
2 +4L1U2(2U1U2 +15)+2U2

1 U2
2 +15U1U2 +50

))
300P2 (251)

The expected value of the total inventory of defective items during t1 will be

E(Γ1) =
∫ U2

L2

∫ U1

L1

qθ3Q2
V

2P
g1g2dqdθ3

=
Q2

V (4L1 +U1)(L2 +3U2)

40P
(252)

and during t2

E(Γ2) =
∫ U2

L2

∫ U2

L2

q2Q2
V θ 2

3
2P

g1g2dqdθ3

=
Q2

V (10L2
1 +4L1U1 +U2

1 )(L
2
2 +3L2U2 +6U2

2 )

300P
(253)

The expected annual cost is

ETCV (Q) = KV +hV (E(∆1)+E(∆2)+E(∆3)+E(Γ1)+E(Γ2))

+
ηQ
δ1

E
[

ln
(

q0

q

)]
+

ηQ
δ2

E
[

ln
(

θ3

θ30

)]
+ cPQ+ crµqµθ3Q (254)

where µq =
αq

αq+βq
= 1

5 ,µθ3 =
αθ3

αθ3+βθ3
= 3

4 and E
[

ln
(

q0
q

)]
,E
[

ln
(

θ3
θ30

)]
are derived in

previous models.
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Supplier’s cost function per cycle is

ETCV (Q) = KV + cPQ+ crQµqµθ3 +
ηQ
δ1

µln(q0/q)+
ηQ
δ2

µln(θ3/θ30 )

+hV

(
Q2
(
L2

1
(
L2

2 +3(L2 −5)U2 −5L2 +6U2
2 +10

))
30D

)
+hV

(
Q2
(
U2

1
(
L2

2 +3(L2 −5)U2 −5L2 +6U2
2 +10

))
300D

)
+hV

(
Q2 (L1 (3(L2 −5)U1U2 +L2((L2 −5)U1 +15)))

75D

)
+hV

(
Q2
(
4L1
(
6U1U2

2 +5(2U1 +9U2 −12)
)
+15U1(L2 +3U2 −4)+150

)
300D

)
−hV

(
Q2 ((L2 +3U2 −4)(4L1 +U1)+20)

40P

)
(255)

and the buyer’s expected total cost with deterministic demand in a supplier’s cycle is

ETCB(Q,r) = KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+F + cQ+d + cbB̄(r)+ cl s̄(r) (256)

The expected total cost for integrated system is,

ETC(Q,r) = ETCV (Q)+ETCB(Q,r)

ETC(Q,r) = KB +KV +F + cQ+ cPQ+ crQµqµθ3 +
ηQ
δ1

µln(q0/q)+
ηQ
δ2

µln(θ3/θ30 )

+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+hV

(
Q2
(
4L1
(
6U1U2

2 +5(2U1 +9U2 −12)
)
+15U1(L2 +3U2 −4)+150

)
300D

)
+hV

(
Q2
(
L2

1
(
L2

2 +3(L2 −5)U2 −5L2 +6U2
2 +10

))
30D

)
+d + cbB̄(r)+ cl s̄(r)

+hV

(
Q2
(
U2

1
(
L2

2 +3(L2 −5)U2 −5L2 +6U2
2 +10

))
300D

)
+hV

(
Q2 (L1 (3(L2 −5)U1U2 +L2((L2 −5)U1 +15)))

75D

)
−hV

(
Q2 ((L2 +3U2 −4)(4L1 +U1)+20)

40P

)
(257)
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The expected total annual cost becomes

ETC(Q) =

(
KB +KV +F + cQ+ cPQ+ crQµqµθ3 +

ηQ
δ1

µln(q0/q)+
ηQ
δ2

µln(θ3/θ30 )

+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+hV

(
Q2
(
4L1
(
6U1U2

2 +5(2U1 +9U2 −12)
)
+15U1(L2 +3U2 −4)+150

)
300D

)
+hV

(
Q2
(
L2

1
(
L2

2 +3(L2 −5)U2 −5L2 +6U2
2 +10

))
30D

)
+d + cbB̄(r)+ cl s̄(r)

+hV

(
Q2
(
U2

1
(
L2

2 +3(L2 −5)U2 −5L2 +6U2
2 +10

))
300D

)
+hV

(
Q2 (L1 (3(L2 −5)U1U2 +L2((L2 −5)U1 +15)))

75D

)
−hV

(
Q2 ((L2 +3U2 −4)(4L1 +U1)+20)

40P

))
D

Q(1− p)
(258)

To minimise ETC(Q), we take first derivative with respect to Q

∂ (ETC)

∂Q
=

600PD(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

600(p−1)PQ2

+
hB
(

p2 −1
)

2(p−1)
−

hV
(
L2

1
(
L2

2 +3(L2 −5)U2 −5L2 +6U2
2 +10

))
30(p−1)

−
hV
(
U2

1
(
L2

2 +3(L2 −5)U2 −5L2 +6U2
2 +10

))
300(p−1)

−
hV
(
L1
(
3(L2 −5)U1U2 +L2((L2 −5)U1 +15)+6U1U2

2 +5(2U1 +9U2 −12)
))

75(p−1)

− hV (U1(L2 +3U2 −4)+10)+15D(L2 +3U2 −4)(4L1 +U1)+20D
20(p−1)

(259)

Taking the second derivative, we have

∂ 2(ETC)

∂Q2 =
2D(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

(1− p)Q3 (260)

All parameters are positive, and ∂ 2(ETC)
∂Q2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗ =

√
−600PD(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

300hB (p2 −1)P−hV (2P(C+E)−15D(L2 +3U2 −4)(4L1 +U1)−300D)
(261)

where C = (L2
2+3(L2−5)U2−5L2+6U2

2 +10)(10L2
1+U2

1 ) and E = (4L1(3(L2−5)U1U2+

L2((L2 − 5)U1 + 15) + 6U1U2
2 + 5(2U1 + 9U2 − 12)) + 15U1(L2 + 3U2 − 4) + 150) and the
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unique value for r∗ given as

r∗ = F−1
(

1− hB(1− p)Q(
B′

p(r)(B̄(r)+ s̄(r)− r)−Bp(r)
)(

D(cl − cb)+hBQ(1− p)
)
+

(
clD+hBQ(1− p)

))

(262)

3.2.4. Integrated Models with partial backordering when q and θ3 follow triangu-

lar distribution

After beta distribution, in this section we will examine the four models when q

and θ3 follow triangular distribution. Let [L1,m1,U1] are the parameters of triangular

distribution for defective rates and [L2,m2,U2] for reworking rates where [L1,L2] are

the lower limits and [U1,U2] are the upper limits, respectively. Additionally, [m1,m2]

are the mode of the triangular distribution. Since these parameters are proportions,

they satisfy the condition of 0 ≤ L1 ≤ m1 ≤U1 ≤ 1 and 0 ≤ L2 ≤ m2 ≤U2 ≤ 1. As the

first model, supplier’s total cost per cycle for deterministic q and θ3 is

TCV (Q) = KV +hV

(
Q2(q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2PD

)
+

Qη

δ1
ln
(

q0

q

)
+

Qη

δ2
ln
(

θ3

θ30

)
+ cPQ+ crQqθ3 (263)

and the buyer’s total average cost with stochastic demand and partial backordering is

TCB(Q,r) = KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+F + cQ+d + cbB̄(r)+ cl s̄(r) (264)

The total cost for integrated system,

TC(Q,r) = TCV (Q)+TCB(Q,r)

TC(Q,r) = KV +KB +F +hV

(
Q2(q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2PD

)
+ cPQ

+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+ crQqθ3

+d + cbB̄(r)+ cl s̄(r)+
Qη

δ1
ln
(

q0

q

)
+

Qη

δ2
ln
(

θ3

θ30

)
+ cQ (265)
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We have cycle time T = Q(1−p)
D , so the expected total annual cost would be

ETC(Q,r) =
(

KV +KB +F +hV

(
Q2(q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2PD

)
+ cPQ

+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+ crQqθ3

+d + cbB̄(r)+ cl s̄(r)+
Qη

δ1
ln
(

q0

q

)
+

Qη

δ2
ln
(

θ3

θ30

)
+ cQ

)
D

Q(1− p)

(266)

To minimise ETC(Q,r), we take first derivative with respect to Q and r,

∂ (ETC)

∂Q
=

2D(cbB̄(r)+d +F + cl s̄(r)+KB +KV )+hB
(

p2 −1
)

Q2

2(p−1)Q2

− hV (q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2(p−1)P
(267)

Taking the second derivative, we have

∂ 2(ETC)

∂Q2 =
2D(cbB̄(r)+KB +KV +d)

(1− p)Q3 (268)

All parameters are positive, and ∂ 2(ETC)
∂Q2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗ =

√
−2PD(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

hB (p2 −1)P+hV (q(θ3 −1)+1)(P(q(1−θ3)−1)+D)
(269)

The derivative of ETC(Q,r) with respect to r is

∂ (ETC)

∂ r
=

DcbB̄′(r)+Dcl s̄′(r)+hB(1− p)Q(1+ s̄′(r))
(1− p)Q

(270)

Taking the second derivative, we have

∂ 2(ETC)

∂ r2 =
DcbB̄′′(r)+ s̄′′(r)(hB(1− p)Q+ clD)

(1− p)Q
(271)
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All parameters are positive, and ∂ 2(ETC)
∂ r2 > 0. Therefore, there exists unique value for

r∗ given as

F(r) =
(

1− hB(1− p)Q(
B′

p(r)(B̄(r)+ s̄(r)− r)−Bp(r)
)(

D(cl − cb)+hBQ(1− p)
)
+

(
clD+hBQ(1− p)

))

r∗ = F−1
(

1− hB(1− p)Q(
B′

p(r)(B̄(r)+ s̄(r)− r)−Bp(r)
)(

D(cl − cb)+hBQ(1− p)
)
+

(
clD+hBQ(1− p)

))

(272)

Similar to the previous case, the rest of the models, r∗ equation will be the same since

the integrated cost function is changing only by constant.

For the model where q is deterministic and θ3 is stochastic with triangular

distribution, first we will calculate supplier’s cost. With θ3 given as random variable,

it has an upper (U2) and lower (L2) bounds with the probability distribution function of

g2 and mode is m2. That is,

g2 =


2(θ3−L2)

(U2−L2)(m2−L2)
L2 ≤ θ3 ≤ m2

2(U2−θ3)
(U2−L2)(U2−m2)

m2 ≤ θ3 ≤U2

The expected value of the total inventory of nondefective items during t1 will be

E(∆1) =
∫ U2

L2

((1−q)P−D)Q2
V

2P2 g2dθ3

=
((1−q)P−D)Q2

V

2P2

(∫ m2

L2

2(θ3 −L2)

(U2 −L2)(m2 −L2)
dθ3 +

∫ U2

m2

2(U2 −θ3)

(U2 −L2)(U2 −m2)
dθ3

)
=

((1−q)P−D)Q2
V

2P2 (273)

And the inventory during t2 is

E(∆2) =
∫ U2

L2

(
(P−D)q2θ 2

3 Q2
V

2P2 +
((1−q)P−D)qθ3Q2

V

P2

)
g2dθ3

=
qQ2

V
(
L2

2q+L2(q(m2 +U2 −4)+4)+q
(
m2

2 +(m2 +U2)(U2 −4)
)
+4(m2 +U2)

)
12P

−
qQ2

V D
(
L2

2q+L2(q(m2 +U2)+4)+q
(
m2

2 +m2U2 +U2
2
)
+4(m2 +U2)

)
12P2 (274)
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During t3, the inventory becomes

E(∆3) =
∫ U2

L2

1
2

D
(
(P−D)qθ3QV +((1−q)P−D)QV

PD

)2

g2dθ3

=
Q2

V q2
(
L2

2 +L2(m2 +U2 −4)+m2
2 +(m2 +U2)(U2 −4)+6

)
12D

−
Q2

V q2
(
L2

2 +L2(m2 +U2 −2)+(m2 −2)(U2 +m2)+U2
2
)

6P

+
Q2

V (2q(L2 +m2 +U2 −3)+3)
6D

− Q2
V (q(2L2 +2m2 +2U2 −3)+3)

3P

+
Q2

V D
(
q
(
L2

2q+L2(q(m2 +U2)+4)+q
(
m2

2 +m2U2 +U2
2
)
+4(m2 +U2)

)
+6
)

12P2

(275)

The expected value of the total inventory of defective items during t1 will be

E(Γ1) =
∫ U2

L2

qθ3Q2
V

2P
g2dθ3

=
qQ2

V (L2 +m2 +U2)

6P
(276)

and during t2

E(Γ2) =
∫ U2

L2

q2Q2
V θ 2

3
2P

g2dθ3

=
q2Q2

V
(
L2

2 +L2(m2 +U2)+m2
2 +m2U2 +U2

2
)

12P
(277)

The expected annual cost is

ETCV (QV ) = KV +hV (E(∆1)+E(∆2)+E(∆3)+E(Γ1)+E(Γ2))

+
ηQ
δ1

ln
(

q0

q

)
+

ηQ
δ2

E
[

ln
(

θ3

θ30

)]
+ cPQ+ crqµθ3Q (278)

where µθ3 =
L2+m2+U2

3 = 3
4 and E

[
ln
(

θ3
θ30

)] (
= µln(θ3/θ30)

)
is derived as follows:

E
[

ln
(

θ3

θ30

)]
= E

[
ln(θ3)− ln(θ30)

]
= E[ln(θ3)]−E[ln(θ30)] (279)
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Here,

E[ln(θ30)] = ln(θ30) (280)

since θ30 is constant. However,

E[ln(θ3)] ̸= ln[E(θ3)] (281)

Therefore, we need to find E(ln(θ3)) which is a function of θ3.

E(lnθ3) =
∫

∞

−∞

lnθ3 ·g2dθ3

=
∫ m2

L2

lnθ3
2(θ3 −L2)

(U2 −L2)(m2 −L2)
dθ3 +

∫ U2

m2

lnθ3
2(U2 −θ3)

(U2 −L2)(U2 −m2)
dθ3

=
L2

2 ln(L2)(m2 −U2)− (L2 −U2)
(
3(L2 −m2)(m2 −U2)+2m2

2 ln(m2)
)

(L2 −m2)(L2 −U2)(m2 −U2)

+
U2

2 ln(U2)

(L2 −U2)(m2 −U2)
(282)

Finally,

E
[

ln
(

θ3

θ30

)]
=

L2
2 ln(L2)(m2 −U2)− (L2 −U2)

(
3(L2 −m2)(m2 −U2)+2m2

2 ln(m2)
)

(L2 −m2)(L2 −U2)(m2 −U2)

+
U2

2 ln(U2)

(L2 −U2)(m2 −U2)
− ln(θ30) (283)

The supplier’s cost function per cycle will be

ETCV (Q) = KV +hV

(
Q2 (P(4q(L2 +m2 +U2 −3)+6)−2D(q(L2 +m2 +U2 −3)+3))

12PD

)
+hV

(
Q2q2

(
L2

2 +L2(m2 +U2 −4)+m2
2 +(m2 +U2)(U2 −4)+6

)
12D

)
+

ηQ
δ1

ln
(

q0

q

)
+

ηQ
δ2

µln(θ3/θ30 )
+ cPQ+ crqQµθ3 (284)

and the buyer’s total average cost with stochastic demand in a supplier’s cycle is

ETCB(Q,r) = KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+F + cQ+d + cbB̄(r)+ cl s̄(r) (285)

103



The expected total cost for integrated system is,

ETC(Q,r) = ETCV (Q)+ETCB(Q,r)

ETC(Q,r) = KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+hV

(
Q2 (P(4q(L2 +m2 +U2 −3)+6)−2D(q(L2 +m2 +U2 −3)+3))

12PD

)
+hV

(
Q2q2 (L2

2 +L2(m2 +U2 −4)+m2
2 +(m2 +U2)(U2 −4)+6

)
12D

)
+KV +F + cQ+ cPQ+ crqQµθ3 +

ηQ
δ1

ln
(

q0

q

)
+

ηQ
δ2

µln(θ3/θ30)

+d + cbB̄(r)+ cl s̄(r) (286)

The expected total annual cost is

ETC(Q,r) =
(

KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+hV

(
Q2 (P(4q(L2 +m2 +U2 −3)+6)−2D(q(L2 +m2 +U2 −3)+3))

12PD

)
+hV

(
Q2q2 (L2

2 +L2(m2 +U2 −4)+m2
2 +(m2 +U2)(U2 −4)+6

)
12D

)
+KV +F + cQ+ cPQ+ crqQµθ3 +

ηQ
δ1

ln
(

q0

q

)
+

ηQ
δ2

µln(θ3/θ30)

+d + cbB̄(r)+ cl s̄(r)
)

D
Q(1− p)

(287)

To minimise ETC(Q), we take first derivative with respect to Q

∂ (ETC)

∂Q
=

12PD(cbB̄+d +F + cl s̄+KB +KV )+6hB
(

p2 −1
)

PQ2

12(p−1)PQ2

− hV (2q(L2 +m2 +U2 −3)+3)−D(q(L2 +m2 +U2 −3)+3)
6(p−1)

−
hV q2 (L2

2 +L2(m2 +U2 −4)+m2
2 +(m2 +U2)(U2 −4)+6

)
12(p−1)

(288)

Taking the second derivative, we have

∂ 2(ETC)

∂Q2 =
2D(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

(1− p)Q3 (289)
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All parameters are positive, and d2(ETC)
dQ2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗ =

√
−12PD(cbB̄+d +F + cl s̄+KB +KV )

6hB (p2 −1)P−hV P(q2A+4qC+6)+2hV D(qC+3)
(290)

where A =
(
L2

2 +L2(m2 +U2 −4)+m2
2 +(U2 −4)(m2 +U2)+6

)
and

C = (L2 +m2 +U2 −3) and the unique value for r∗ given as

r∗ = F−1
(

1− hB(1− p)Q(
B′

p(r)(B̄(r)+ s̄(r)− r)−Bp(r)
)(

D(cl − cb)+hBQ(1− p)
)
+

(
clD+hBQ(1− p)

))

(291)

For the next model, q is stochastic with standard uniform distribution and θ3 is

deterministic. With q given as random variable, it has an upper (U1) and lower (L1)

bounds with the probability distribution function of g1 and mode m1. That is,

g1 =


2(q−L1)

(U1−L1)(m1−L1)
L1 ≤ q ≤ m1

2(U1−q)
(U1−L1)(U1−m1)

m1 ≤ q ≤U1

The expected value of the total inventory of nondefective items during t1 will be

E(∆1) =
∫ U1

L1

((1−q)P−D)Q2
V

2P2 g1dq

=
∫ m1

L1

((1−q)P−D)Q2
V

2P2 · 2(q−L1)

(U1 −L1)(m1 −L1)
dq

+
∫ U1

m1

((1−q)P−D)Q2
V

2P2 · 2(U1 −q)
(U1 −L1)(U1 −m1)

dq

=−Q2(P(L1 +m1 +U1 −3)+3D)

6P2 (292)
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And the inventory during t2 is

E(∆2) =
∫ U1

L1

(
(P−D)q2θ 2

3 Q2
V

2P2 +
((1−q)P−D)qθ3Q2

V

P2

)
g1dq

=
Q2

V θ3
(
L2

1(θ3 −2)+L1((m1 +U1)(θ3 −2)+4)+(θ3 −2)
(
m2

1 +m1U1 +U2
1
))

12P

−
Q2

V θ3D
(
L2

1θ3 +L1(θ3(m1 +U1)+4)+θ3
(
m2

1 +m1U1 +U2
1
)
+4(m1 +U1)

)
12P2

+
Q2

V θ3(m1 +U1)

3P
(293)

During t3, the inventory becomes

E(∆3) =
∫ U1

L1

1
2

D
(
(P−D)qθ3QV +((1−q)P−D)QV

PD

)2

g1dq

=
Q2

V
(
L2

1(θ3 −1)2 +L1(θ3 −1)(m1 +U1)(θ3 −1)+4)+m2
1(θ3 −1)2

)
12D

+
Q2

V (m1(θ3 −1)((θ3 −1)U1 +4)+(θ3 −1)U1((θ3 −1)U1 +4)+6)
12D

−
Q2

V
(
L2

1(θ3 −1)θ3 +L1
(
θ 2

3 (m1 +U1)−θ3(m1 +U1 −4)−2
))

6P

−
Q2

V
(
θ3
(
m2

1(θ3 −1)+(m1 +U1)((θ3 −1)U1 +4)
)
−2(m1 +U1 −3)

)
6P

+
Q2

V D
(
θ3
(
L2

1θ3 +L1(θ3(m1 +U1)+4)+θ3
(
m2

1 +m1U1 +U2
1
)
+4(m1 +U1)

)
+6
)

12P2

(294)

The expected value of the total inventory of defective items during t1 will be

E(Γ1) =
∫ U1

L1

qθ3Q2
V

2P
g1dq

=
Q2

V θ3(L1 +m1 +U1)

6P
(295)

and during t2

E(Γ2) =
∫ U2

L2

q2Q2
V θ 2

3
2P

g2dθ3

=
Q2

V θ 2
3
(
L2

1 +(L1 +m1)(m1 +U1)+U2
1
)

12P
(296)
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The expected annual cost is

ETCV (QV ) = KV +hV (E(∆1)+E(∆2)+E(∆3)+E(Γ1)+E(Γ2))

+
ηQ
δ1

E
[

ln
(

q0

q

)]
+

ηQ
δ2

ln
(

θ3

θ30

)
+ cPQ+ crµqθ3Q (297)

where µq =
L1+m1+U1

3 = 1
5 and E

[
ln
(

q0
q

)] (
= µln(q0/q)

)
is derived as follows:

E
[

ln
(

q0

q

)]
= E

[
ln(q0)− ln(q)

]
= E[ln(q0)]−E[ln(q)] (298)

Here,

E[ln(q0)] = ln(q0) (299)

since q0 is constant. However,

E[ln(q)] ̸= ln[E(q)] (300)

Therefore, we need to find E(ln(q)) which is a function of q.

E(lnq) =
∫

∞

−∞

lnq ·g1dq

=
∫ m1

L1

lnq · 2(q−L1)

(U1 −L1)(m1 −L1)
dq+

∫ U1

m1

lnq · 2(U1 −q)
(U1 −L1)(U1 −m1)

dq

=
2L2

1 ln(L1)(m1 −U1)− (L1 −U1)
(
3(L1 −m1)(m1 −U1)+2m2

1 ln(m1)
)

2(L1 −m1)(L1 −U1)(m1 −U1)

+
U2

1 ln(U1)

(L1 −U1)(m1 −U1)
(301)
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Finally,

E
[

ln
(

q0

q

)]
= ln(q0)+

U2
1 ln(U1)

(L1 −U1)(m1 −U1)

−
2L2

1 ln(L1)(m1 −U1)− (L1 −U1)
(
3(L1 −m1)(m1 −U1)+2m2

1 ln(m1)
)

2(L1 −m1)(L1 −U1)(m1 −U1)

(302)

Therefore, supplier’s cost function per cycle is

ETCV (Q) = KV +hV

(
Q2 (L2

1(θ3 −1)2 +L1(θ3 −1)((m1 +U1)(θ3 −1)+4)
)

12D

)
+hV

(
Q2 (m2

1(θ3 −1)2 +(m1 +U1)(θ3 −1)((θ3 −1)U1 +4)+6
)

12D

)
−hV

(
Q2 ((θ3 −1)(L1 +m1 +U1)+3)

6P

)
+ cPQ+ crQθ3µq +

ηQ
δ1

µln(q0/q)+
ηQ
δ2

ln
(

θ3

θ30

)
(303)

and the buyer’s expected total cost with stochastic demand in the supplier’s cycle is

ETCB(Q,r) = KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+F + cQ+d + cbB̄(r)+ cl s̄(r) (304)

The expected total cost for integrated system is,

ETC(Q,r) = ETCV (Q)+ETCB(Q,r)

ETC(Q,r) = KV +KB +F + cQ+ cPQ+ crQθ3µq +
ηQ
δ1

µln(q0/q)+
ηQ
δ2

ln
(

θ3

θ30

)
+hV

(
Q2 (L2

1(θ3 −1)2 +L1(θ3 −1)((m1 +U1)(θ3 −1)+4)
)

12D

)
+hV

(
Q2 (m2

1(θ3 −1)2 +(m1 +U1)(θ3 −1)((θ3 −1)U1 +4)+6
)

12D

)
−hV

(
Q2 ((θ3 −1)(L1 +m1 +U1)+3)

6P

)
+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+d + cbB̄(r)+ cl s̄(r) (305)
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The expected total annual cost is

ETC(Q,r) =
(

KV +KB +F + cQ+ cPQ+ crQθ3µq +
ηQ
δ1

µln(q0/q)+
ηQ
δ2

ln
(

θ3

θ30

)
+hV

(
Q2 (L2

1(θ3 −1)2 +L1(θ3 −1)((m1 +U1)(θ3 −1)+4)
)

12D

)
+hV

(
Q2 (m2

1(θ3 −1)2 +(m1 +U1)(θ3 −1)((θ3 −1)U1 +4)+6
)

12D

)
(306)

−hV

(
Q2 ((θ3 −1)(L1 +m1 +U1)+3)

6P

)
+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+d + cbB̄(r)+ cl s̄(r)

)
D

Q(1− p)
(307)

To minimise ETC(Q), we take first derivative with respect to Q

∂ (ETC)

∂Q
=

2D(cbB̄+d +F + cl s̄+KB +KV )+hB
(

p2 −1
)

Q2

2(p−1)Q2

−
hV
(
L2

1(θ3 −1)2 +L1(θ3 −1)((m1 +U1)(θ3 −1)+4)+m2
1(θ3 −1)2)

12(p−1)

− hV ((m1 +U1)(θ3 −1)((θ3 −1)U1 +4)+6))
12(p−1)

+
hV D((θ3 −1)(L1 +m1 +U1)+3)

6(p−1)P
(308)

Taking the second derivative, we have

∂ 2(ETC)

∂Q2 =
2D(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

(1− p)Q3 (309)

All parameters are positive, and ∂ 2(ETC)
∂Q2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗ =

√
12PD(cbB̄+d +F + cl s̄+KB +KV )

P(hV B−6hB (p2 −1))−hV (D(6−2(θ3 −1)(L1 +m1 +U1)))
(310)

where B =
(
L2

1(θ3 −1)2 +L1(θ3 −1)((θ3 −1)(m1 +U1 +4))+m2
1(θ3 −1)2)
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+(((θ3 −1)U1 +4)(m1(θ3 −1)(m1 +U1))+6) and the unique value for r∗ given as

r∗ = F−1
(

1− hB(1− p)Q(
B′

p(r)(B̄(r)+ s̄(r)− r)−Bp(r)
)(

D(cl − cb)+hBQ(1− p)
)
+

(
clD+hBQ(1− p)

))

(311)

Our final model is where q and θ3 are both stochastic with triangular distribution.

With q and θ3 given as random variables, they have an upper (U1,U2) and lower

(L1,L2) bounds with the probability distribution function of g1,g2 and modes are

m1 = 0.2,m2 = 0.75. The expected value of the total inventory of nondefective items

during t1 will be

E(∆1) =
∫ U2

L2

∫ U1

L1

((1−q)P−D)Q2
V

2P2 g1g2dqdθ3

=
Q2

V (L2 −m2)(m1 −L1)(P(L1 +2m1 −3)+3D)

6P2(L2 −U2)(L1 −U1)

+
Q2

V (U1 −m1)(m2 −U2)(P(2m1 +U1 −3)+3D)

6P2(L2 −U2)(L1 −U1)
(312)

And the inventory during t2 is

E(∆2) =
∫ U2

L2

∫ U1

L1

(
(P−D)q2θ 2

3 Q2
V

2P2 +
((1−q)P−D)qθ3Q2

V
P2

)
g1g2dqdθ3

=
Q2

V (L2 −m2)(L1 −m1)
(
L2

2
(
L2

1 +2L1m1 +3m2
1
)
(P−D)

)
72P2(L2 −U2)(L1 −U1)

+
Q2

V (L2 −m2)(L1 −m1)
(
2L2P

(
L2

1(m2 −2)+2L1(m1(m2 −2)+2)
))

72P2(L2 −U2)(L1 −U1)

+
Q2

V (L2 −m2)(L1 −m1)(2L2P(m1(3m1(m2 −2)+8)))
72P2(L2 −U2)(L1 −U1)

−
Q2

V (L2 −m2)(L1 −m1)
(
2L2D

(
L2

1m2 +2L1(m1m2 +2)+m1(3m1m2 +8)
))

72P2(L2 −U2)(L1 −U1)
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+
Q2

V (L2 −m2)(L1 −m1)
(
m2
(
L2

1(3m2 −8)+2L1(m1(3mθ3 −8)+8)
))

72P(L2 −U2)(L1 −U1)

+
Q2

V (L2 −m2)(L1 −m1)(m2 (m1(9m1m2 −24m1 +32)))
72P(L2 −U2)(L1 −U1)

−
Q2

V (L2 −m2)(L1 −m1)
(
m2D

(
3L2

1m2 +2L1(3m2m2 +8)+m1(9m1m2 +32)
))

72P2(L2 −U2)(L1 −U1)

+
Q2

V (m1 −U1)(m2 −U2)
(
m2

1
(
3m2

2 +2m2(U2 −4)+(U2 −4)U2
))

24P(L2 −U2)(L1 −U1)

+
Q2

V (m1 −U1)(m2 −U2)
(
2m1

(
3m2

2U1 +2m2((U1 +U2)(U2 −4)+8)
))

72P(L2 −U2)(L1 −U1)

+
Q2

V (m1 −U1)(m2 −U2)
(
P
(
U1
(
3m2

2U1 +(2m2 +U2)(U1(U2 −4)+8)
)))

72P2(L2 −U2)(L1 −U1)

−
Q2

V
(
(m1 −U1)(m2 −U2)

(
D
(
m2

1
(
3m2

2 +2m2U2 +U2
2
))))

24P2(L2 −U2)(L1 −U1)

−
Q2

V (m1 −U1)(m2 −U2)((D(2mq +U1)(3m2
2U1 +(2m2 +U2)(U1U2 +8)))

72P2(L2 −U2)(L1 −U1)
(313)

During t3, the inventory becomes

E(∆3) =
∫ U2

L2

∫ U1

L1

1
2

D
(
(P−D)qθ3QV +((1−q)P−D)QV

PD

)2

g1g2dqdθ3

=
Q2

V (L2 −m2)(L1 −m1)(L2
1 +3m2

1)
(
L2

2 +2L2(m2 −2)+m2(3m2 −8)+6
)

72D(L2 −U2)(L1 −U1)

+
Q2

V (L2 −m2)(L1 −m1)
(
L1
(
(L2 −4)m1(2mθ3 +L2)+4L2 +3m1m2

2
))

36D(L2 −U2)(L1 −U1)

+
Q2

V (L2 −m2)(L1 −m1)(L1 (6m1 +8m2 −12)+8m1(L2 +2m2 −3)+18)
36D(L2 −U2)(L1 −U1)

−
Q2

V (L2 −m2)(L1 −m1)
(
L2

1
(
L2

2 +2L2(m2 −1)+m2(3m2 −4)
))

36P(L2 −U2)(L1 −U1)

−
Q2

V (L2 −m2)(L1 −m1)
(
L1
(
(L2 −2)m1(2mθ3 +L2)+4L2

))
36P(L2 −U2)(L1 −U1)

−
Q2

V (L2 −m2)(L1 −m1)
(
L1
(
3m1m2

2 +8m2 −6
))

18P(L2 −U2)(L1 −U1)

−
Q2

V (L2 −m2)(L1 −m1)
(
m2

1
(
(L2 −2)(2mθ3 +L2)+3m2

2
))

12P(L2 −U2)(L1 −U1)
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−
Q2

V (L2 −m2)(L1 −m1)(2m1(2L2 +4m2 −3)+9)
9P(L2 −U2)(L1 −U1)

+
Q2

V (L2 −m2)(L1 −m1)
(
D
(
(2m2 +L2)

(
(L2L1 +8)(2m1 +L1)+3L2m2

1
)))

72P2(L2 −U2)(L1 −U1)

+
Q2

V (L2 −m2)(L1 −m1)
(
D
(
m2

2
(
L2

1 +2L1m1 +3m2
1
)
+12

))
24P2(L2 −U2)(L1 −U1)

+
Q2

V (m1 −U1)(m2 −U2)
(
m2

1
(
3m2

2 +(U2 −4)(2m2 +U2)+6
))

24D(L2 −U2)(L1 −U1)

+
Q2

V (m1 −U1)(m2 −U2)(m1(3m2
2U1 +2m2(U1(U2 −4)+8)+U1((U2 −4)U2 +6)))

36D(L2 −U2)(L1 −U1)

+
Q2

V (m1 −U1)(m2 −U2)
(
16m1(U2 −3)+U2

1
(
3m2

2 +(U2 −4)(2m2 +U2)+6
))

72D(L2 −U2)(L1 −U1)

+
Q2

V (m1 −U1)(m2 −U2)(2U1(2m2 +U2 −3)+9)
18D(L2 −U2)(L1 −U1)

−
Q2

V (m1 −U1)(m2 −U2)
(
m2

1
(
3m2

2 +(U2 −2)(2m2 +U2)
))

12P(L2 −U2)(L1 −U1)

−
Q2

V (m1 −U1)(m2 −U2)
(
(2m1 +U1)

(
3m2

2U1 +(U1(U2 −2)+8(2m2 +U2)−12
))

36P(L2 −U2)(L1 −U1)

−
12Q2

V (m1 −U1)(m2 −U2)+D2 (m2
1
(
3m2

2 +2m2U2 +U2
2
))

12P(L2 −U2)(L1 −U1)

+
Q2

V (m1 −U1)(m2 −U2)
(
Dm1

(
3m2

2U1 +(2m2 +U2)(U1U2 +8)
))

36P2(L2 −U2)(L1 −U1)

+
Q2

V (m1 −U1)(m2 −U2)
(
D
(
U1
(
3m2

2U1 +(2m2 +U2)(U1U2 +8)
)
+36

))
72P2(L2 −U2)(L1 −U1)

(314)

The expected value of the total inventory of defective items during t1 will be

E(Γ1) =
∫ U2

L2

∫ U1

L1

qθ3Q2
V

2P
g1g2dqdθ3

=
Q2

V ((L2 −m2)(L2 +2m2)(L1 −m1)(L1 +2m1))

18P(L2 −U2)(L1 −U1)

+
Q2

V ((m1 −U1)(2m1 +U1)(m2 −U2)(2m2 +U2))

18P(L2 −U2)(L1 −U1)
(315)
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and during t2

E(Γ2) =
∫ U2

L2

∫ U2

L2

q2Q2
V θ 2

3
2P

g1g2dqdθ3

=
Q2

V
(
(L2 −m2)

(
L2

2 +2L2m2 +3m2
2
)
(L1 −m1)

(
L2

1 +2L1m1 +3m2
1
))

72P(L2 −U2)(L1 −U1)

+
Q2

V (m1 −U1)
(
3m2

1 +2m1U1 +U2
1
)
(m2 −U2)

(
3m2

2 +2m2U2 +U2
2
)

72P(L2 −U2)(L1 −U1)
(316)

The expected annual cost is

ETCV (Q) = KV +hV (E(∆1)+E(∆2)+E(∆3)+E(Γ1)+E(Γ2))

+
ηQ
δ1

E
[

ln
(

q0

q

)]
+

ηQ
δ2

E
[

ln
(

θ3

θ30

)]
+ cPQ+ crµqµθ3Q (317)

where µq = L1+m1+U1
3 = 1

5 ,µθ3 = L2+m2+U2
3 = 3

4 and E
[

ln
(

q0
q

)]
,E
[

ln
(

θ3
θ30

)]
are

derived in previous models. Supplier’s cost function per cycle is

ETCV (Q) = KV + cPQ+ crQµqµθ3 +
ηQ
δ1

µln(q0/q)+
ηQ
δ2

µln(θ3/θ30 )

+hV

(
Q2
(
(L1 −m1)

(
L2

1 +2m1L1 +3m2
1
)

PL3
2

)
72P(L1 −U1)(L2 −U2)D

+
Q2
(
U1U2(9−m2

1m2 +2m1m2)
)

18(L1 −U1)(L2 −U2)D

)
+hV

(
Q2(L1 −m1)

(
(m2 −4)(L2

1 +2L1m13m2
q)+8(L1 +2mq)

)
72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2(L1 −m1)

(
(m2 −4)(m2L2

1 +8L1 +2mqL1m2)+6L1(L3
1 +2mq)

)
72P(L1 −U1)(L2 −U2)D

)
+hV

(
Q2(L1 −m1)

(
16m1(m2 −3)+3m2

1((m2 −4)m2 +6)+36
)

72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
4D(L1 −m1)((L1 +2m1)(3−m2)−9)L2 −m2

2PU3
1 (3mθ3 +8)

)
72P(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
U3

1 (U
3
2 −6m2)+m1U2

1 (U
3
2 −3m3

2)−m3
1U3

2 (3mq +U1)
)

72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
m2U2

1 (8m1m2 −16m2 −6m1 +24+U3
1 )
)

72(L1 −U1)(L2 −U2)D
− Q2(L1 −m1)(L1 +2m1)L2

2)

18P(L1 −U1)(L2 −U2)

)
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+hV

(
Q2
(
U2

2 (m1m2U2
1 −4U3

1 −4m1U2
1 2+8U2

1 +12m3
1 −16m2

1)
)

72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
m1(8U1U2

2 −3m2
1m2U2

2 −4m1U1U2
2 +m1m2U1U2

2 +18m2
1m3

2)
)

72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
m1m2(18−12m2

1m2 +16m1m2 +9m2
1 −24m1)

)
18(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
L3

1m2((8−3m2)m2 −6)−m1m2
2U1(3m1m2 +8m1 −16U1)

)
72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
m2U1(24m1 −6m2

1 −36+m2U2
1 U2 −4U2

1 U2)
)

72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
U2

1 U2(6U1 +m1m2
2 +6m1 −4m1m2 +8m2)

)
72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
U2(16m2

1 −8U2
1 −6m3

1 −m3
1m2

2 −12m1 +4m3
1m2)

)
24(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
U2mq(−16m1m2 +6m1U1 +m1m2

2U1 −24U1)
)

72(L1 −U1)(L2 −U2)D

)
−hV

(
Q2m2

1
(
4m2

2 − (U2 +6)m2 − (U2 −3)U2
)

9P(L1 −U1)(L2 −U2)D

)
−hV

(
Q2
(
(U1(U2 +3)+18)m2 −2U1m2

2 +(U1(U2 −3)−9)U2
)

m1

18P(L1 −U1)(L2 −U2)D

)
+hV

(
Q2 (U1(m2 −U2)(U1(2m2 +U2 −3)+9))

18P(L1 −U1)(L2 −U2)

)
+hV

(
Q2
(
L2

1m2((−16m2 +m1((8−3m2)m2 −6)+24)P+4(2m2 −3)D)
)

72P(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
L1m2

(
4(m1(2m2 −3)+9)D−

(
(m2(3m2 −8)+6)m2

1 +8(2m2 −3)m1 +36
)

P
))

72P(L1 −U1)(L2 −U2)D

)
(318)

and the buyer’s expected total cost with deterministic demand in a supplier’s cycle is

ETCB(Q,r) = KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+F + cQ+d + cbB̄(r)+ cl s̄(r) (319)
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The expected total cost for integrated system is,

ETC(Q,r) = ETCV (Q)+ETCB(Q,r)

ETC(Q,r) = KB +KV +F + cQ+ cPQ+ crQµqµθ3 +
ηQ
δ1

µln(q0/q)+
ηQ
δ2

µln(θ3/θ30 )

+ cl s̄(r)+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+hV

(
Q2((L1 −m1)(L2

1 +2m1L1 +3m2
1)PL3

2)

72P(L1 −U1)(L2 −U2)D
+

Q2(U1U2(9−m2
1m2 +2m1m2))

18(L1 −U1)(L2 −U2)D

)
+d + cbB̄(r)+hV

(
Q2(L1 −m1)

(
(m2 −4)(L2

1 +2L1m13m2
q)+8(L1 +2mq)

)
72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2(L1 −m1)

(
(m2 −4)(m2L2

1 +8L1 +2mqL1m2)+6L1(L3
1 +2mq)

)
72P(L1 −U1)(L2 −U2)D

)
+hV

(
Q2(L1 −m1)

(
16m1(m2 −3)+3m2

1((m2 −4)m2 +6)+36
)

72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
4D(L1 −m1)((L1 +2m1)(3−m2)−9)L2 −m2

2PU3
1 (3mθ3 +8)

)
72P(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
U3

1 (U
3
2 −6m2)+m1U2

1 (U
3
2 −3m3

2)−m3
1U3

2 (3mq +U1)
)

72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2(m2U2

1 (8m1m2 −16m2 −6m1 +24+U3
1 ))

72(L1 −U1)(L2 −U2)D

)
−hV

(
Q2(L1 −m1)(L1 +2m1)L2

2)

18P(L1 −U1)(L2 −U2)

)
+hV

(
Q2
(
U2

2 (m1m2U2
1 −4U3

1 −4m1U2
1 2+8U2

1 +12m3
1 −16m2

1)
)

72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
m1(8U1U2

2 −3m2
1m2U2

2 −4m1U1U2
2 +m1m2U1U2

2 +18m2
1m3

2)
)

72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
m1m2(18−12m2

1m2 +16m1m2 +9m2
1 −24m1)

)
18(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
L3

1m2((8−3m2)m2 −6)−m1m2
2U1(3m1m2 +8m1 −16U1)

)
72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
m2U1(24m1 −6m2

1 −36+m2U2
1 U2 −4U2

1 U2)
)

72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
U2

1 U2(6U1 +m1m2
2 +6m1 −4m1m2 +8m2)

)
72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
U2(16m2

1 −8U2
1 −6m3

1 −m3
1m2

2 −12m1 +4m3
1m2)

)
24(L1 −U1)(L2 −U2)D

)
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+hV

(
Q2
(
U2mq(−16m1m2 +6m1U1 +m1m2

2U1 −24U1)
)

72(L1 −U1)(L2 −U2)D

)
−hV

(
Q2m2

1
(
4m2

2 − (U2 +6)m2 − (U2 −3)U2
)

9P(L1 −U1)(L2 −U2)D

)
−hV

(
Q2
(
(U1(U2 +3)+18)m2 −2U1m2

2 +(U1(U2 −3)−9)U2
)

m1

18P(L1 −U1)(L2 −U2)D

)
+hV

(
Q2 (U1(m2 −U2)(U1(2m2 +U2 −3)+9))

18P(L1 −U1)(L2 −U2)

)
+hV

(
Q2
(
L2

1m2((−16m2 +m1((8−3m2)m2 −6)+24)P+4(2m2 −3)D)
)

72P(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
L1m2

(
4(m1(2m2 −3)+9)D−

(
(m2(3m2 −8)+6)m2

1 +8(2m2 −3)m1 +36
)

P
))

72P(L1 −U1)(L2 −U2)D

)
(320)

The expected total annual cost becomes

ETC(Q,r) =
(

KB +KV +F + cQ+ cPQ+ crQµqµθ3 +
ηQ
δ1

µln(q0/q)+
ηQ
δ2

µln(θ3/θ30 )

+ cl s̄(r)+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+hV

(
Q2((L1 −m1)(L2

1 +2m1L1 +3m2
1)PL3

2)

72P(L1 −U1)(L2 −U2)D
+

Q2(U1U2(9−m2
1m2 +2m1m2))

18(L1 −U1)(L2 −U2)D

)
+d + cbB̄(r)+hV

(
Q2(L1 −m1)

(
(m2 −4)(L2

1 +2L1m13m2
q)+8(L1 +2mq)

)
72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2(L1 −m1)

(
(m2 −4)(m2L2

1 +8L1 +2mqL1m2)+6L1(L3
1 +2mq)

)
72P(L1 −U1)(L2 −U2)D

)
+hV

(
Q2(L1 −m1)

(
16m1(m2 −3)+3m2

1((m2 −4)m2 +6)+36
)

72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
4D(L1 −m1)((L1 +2m1)(3−m2)−9)L2 −m2

2PU3
1 (3mθ3 +8)

)
72P(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
U3

1 (U
3
2 −6m2)+m1U2

1 (U
3
2 −3m3

2)−m3
1U3

2 (3mq +U1)
)

72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2(m2U2

1 (8m1m2 −16m2 −6m1 +24+U3
1 ))

72(L1 −U1)(L2 −U2)D

)
−hV

(
Q2(L1 −m1)(L1 +2m1)L2

2)

18P(L1 −U1)(L2 −U2)

)
+hV

(
Q2
(
U2

2 (m1m2U2
1 −4U3

1 −4m1U2
1 2+8U2

1 +12m3
1 −16m2

1)
)

72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
m1(8U1U2

2 −3m2
1m2U2

2 −4m1U1U2
2 +m1m2U1U2

2 +18m2
1m3

2)
)

72(L1 −U1)(L2 −U2)D

)
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+hV

(
Q2
(
m1m2(18−12m2

1m2 +16m1m2 +9m2
1 −24m1)

)
18(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
L3

1m2((8−3m2)m2 −6)−m1m2
2U1(3m1m2 +8m1 −16U1)

)
72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
m2U1(24m1 −6m2

1 −36+m2U2
1 U2 −4U2

1 U2)
)

72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
U2

1 U2(6U1 +m1m2
2 +6m1 −4m1m2 +8m2)

)
72(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
U2(16m2

1 −8U2
1 −6m3

1 −m3
1m2

2 −12m1 +4m3
1m2)

)
24(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
U2mq(−16m1m2 +6m1U1 +m1m2

2U1 −24U1)
)

72(L1 −U1)(L2 −U2)D

)
−hV

(
Q2m2

1
(
4m2

2 − (U2 +6)m2 − (U2 −3)U2
)

9P(L1 −U1)(L2 −U2)D

)
−hV

(
Q2
(
(U1(U2 +3)+18)m2 −2U1m2

2 +(U1(U2 −3)−9)U2
)

m1

18P(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
L2

1m2((−16m2 +m1((8−3m2)m2 −6)+24)P+4(2m2 −3)D)
)

72P(L1 −U1)(L2 −U2)D

)
+hV

(
Q2
(
L1m2

(
4(m1(2m2 −3)+9)D−

(
(m2(3m2 −8)+6)m2

1 +8(2m2 −3)m1 +36
)

P
))

72P(L1 −U1)(L2 −U2)D

)
+hV

(
Q2 (U1(m2 −U2)(U1(2m2 +U2 −3)+9))

18P(L1 −U1)(L2 −U2)

))
D

Q(1− p)
(321)

To minimise ETC(Q,r), we take first derivative with respect to Q

∂ (ETC)

∂Q
=

L2
(
72PD(L1 −U1)(cbB̄+d +F + cl s̄+KB +KV )+36hB

(
p2 −1

)
PQ2(L1 −U1)

)
72(p−1)PQ2(L2 −U2)(L1 −U1)

+
L2
(
−hV Q2(L1 −m1)

(
P
(
L2

1((m2 −4)m2 +6)
)))

72(p−1)PQ2(L2 −U2)(L1 −U1)

+
L2
(
−hV Q2(L1 −m1)(P(+2L1(m1((m2 −4)m2 +6)+4(m2 −3))))

)
72(p−1)PQ2(L2 −U2)(L1 −U1)

+
L2
(
−hV Q2(L1 −m1)(P(+m1(3m1((m2 −4)m2 +6)+16(m2 −3))+36))

)
72(p−1)PQ2(L2 −U2)(L1 −U1)

+
L2
(
−hV Q2(L1 −m1)(−4(m2 −3)D(L1 +2m1)−36D)

)
72(p−1)PQ2(L2 −U2)(L1 −U1)

−
36U2(L1 −U1)

(
2D(cbB̄+d +F + cl s̄+KB +KV )+hB

(
p2 −1

)
Q2
)

72(p−1)Q2(L2 −U2)(L1 −U1)
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−
L3

2hV (L1 −m1)
(
L2

1 +2L1m1 +3m2
1
)

72(p−1)(L2 −U2)(L1 −U1)
− hV (L1m2 (4D(2m1m2 −3m1 +9)))

72(p−1)P(L2 −U2)(L1 −U1)

−
L2

2hV (L1 −m1)
(
P
(
L2

1(m2 −4)+2L1(m1(m2 −4)+4)
))

72(p−1)P(L2 −U2)(L1 −U1)

− L2
2hV (L1 −m1)(P(+m1(3m1(m2 −4)+16))−4D(L1 +2m1))

72(p−1)P(L2 −U2)(L1 −U1)

+
hV
(
L3

1m2(m2(3m2 −8)+6)P+L2
1m2

(
P
(
3m1m2

2 −8(m1 −2)m2 +6(m1 −4)
)))

72(p−1)P(L2 −U2)(L1 −U1)

+
hV
(
L2

1m2 (4(3−2m2)D)+L1m2
(
P
(
m1
(
3m1m2

2 −8(m1 −2)m2 +6(m1 −4)
)
+36

)))
72(p−1)P(L2 −U2)(L1 −U1)

+
hV
(
3m3

1P
(
−6m3

2 +m2
2(U2 +16)+m2(U2 −6)(U2 +2)+U2((U2 −4)U2 +6)

))
72(p−1)P(L2 −U2)(L1 −U1)

+
hV
(
m2

1
(
8D
(
4m2

2 −m2(U2 +6)− (U2 −3)U2
)))

72(p−1)P(L2 −U2)(L1 −U1)

+
hV
(
m2

1
(
P
(
3m3

2U1 −m2
2(U1(U2 +8)+64)

)))
72(p−1)P(L2 −U2)(L1 −U1)

+
hV
(
m2

1 (P(m2(U1(6− (U2 −4)U2)+16(U2 +6))))
)

72(p−1)P(L2 −U2)(L1 −U1)

+
hV
(
m2

1
(
P
(
U2
(
−U1U2

2 +4(U1 +4)U2 −6(U1 +8)
))))

72(p−1)P(L2 −U2)(L1 −U1)

+
hV
(
4m1D

(
−2m2

2U1 +m2(U1(U2 +3)+18)+U2(U1(U2 −3)−9)
))

72(p−1)P(L2 −U2)(L1 −U1)

+
hV
(
m1P

(
3m3

2U2
1 −m2

2U1(U1(U2 +8)−16)
))

72(p−1)P(L2 −U2)(L1 −U1)

+
hV (m1P(−m2(U1(U1((U2 −4)U2 −6)+8(U2 +3))+72)))

72(p−1)P(L2 −U2)(L1 −U1)

+
hV (m1P(U2(36−U1(U1((U2 −4)U2 +6)+8(U2 −3)))))

72(p−1)P(L2 −U2)(L1 −U1)

+
hV
(
U1(m2 −U2)

(
P
(
U2

1
(
3m2

2 +2m2(U2 −4)+(U2 −4)U2 +6
))))

72(p−1)P(L2 −U2)(L1 −U1)

+
hV (U1(m2 −U2)(P(+8U1(2m2 +U2 −3)+36)−4D(U1(2m2 +U2 −3)+9)))

72(p−1)P(L2 −U2)(L1 −U1)
(322)

Taking the second derivative, we have

∂ 2(ETC)

∂Q2 =
2D(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

(1− p)Q3 (323)

All parameters are positive, and ∂ 2(ETC)
∂Q2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗ =

√
−576000PD(L2 −U2)(L1 −U1)(cbB̄+d +F + cl s̄+KB +KV )

288000hB (p2 −1)P(L2 −U2)(L1 −U1)−ChV
(324)
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where C = (P(12L2(−1+5L1)(5L1(95L1 −442)+3897)−45L1(5L1(45L1 −311)+4489))

+P
(
64L3

2(−1+5L1)(5L1(5L1 +2)+3)−16L2
2(−1+5L1)(5L1(65L1 −134)−281)

)
+P
(
125U3

1 (4U2 −3)(8U2(2U2 −5)+27)+25U2
1 (4U2 −3)(8U2(2U2 +75)−933)

)
+P
(
5U1(4U2 −3)(8U2(2U2 +75)+13467)−16U2

2 (12U2 +281)−46764U2 +75366
)

−160D
(
8L2

2(−1+5L1)(5L1 +2)−18L2(−1+5L1)(5L1 −18)
)
)

−160D
(
504+8(5U1 −1)(5U1 +2)U2

2 −18(5U1 −18)(5U1 −1)U2
)
)

−1440(5L1(5L1 −29)+5U1(5U1 −29)) and due to computational length, m2 = 0.75 and

m1 = 0.2. The unique value for r∗ given as

r∗ = F−1
(

1− hB(1− p)Q(
B′

p(r)(B̄(r)+ s̄(r)− r)−Bp(r)
)(

D(cl − cb)+hBQ(1− p)
)
+

(
clD+hBQ(1− p)

))

(325)

3.2.5. Integrated Models with partial backordering when demand has exponential

distribution

When there is partial backordering, demand can follow exponential distribution.

The difference comes from probability density function ( f (x)) in Eq.21 - 23 in 3.1.2.3.

Since there is no structural changes, this model will be run in R studio and shown in

Illustrative Example with Table 7.

3.2.6. Integrated Models with complete backorder

With stochastic demand, we will analyse the complete backordering case at buyer’s

side. As the first model, supplier’s total cost per cycle for deterministic q and θ3 is

TCV (Q) = KV +hV

(
Q2(q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2PD

)
+ cPQ+ crQqθ3

+
Qη

δ1
ln
(

q0

q

)
+

Qη

δ2
ln
(

θ3

θ30

)
(326)

and the buyer’s total average cost with stochastic demand and partial backordering is

TCB(Q,r) = KB +F + cQ+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL)
Q(1− p)

D

)
+d + cbB̄(r) (327)
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The total cost for integrated system is,

TC(Q,r) = TCV (Q)+TCB(Q,r)

TC(Q,r) = KV +KB +F +hV

(
Q2(q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2PD

)
+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL)
Q(1− p)

D

)
+d + cbB̄(r)

+ cPQ+ crQqθ3 + cQ+
Qη

δ1
ln
(

q0

q

)
+

Qη

δ2
ln
(

θ3

θ30

)
(328)

We have cycle time T = Q(1−p)
D , so the expected total annual cost would be

ETC(Q,r) =
(

KV +KB +F +hV

(
Q2(q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2PD

)
+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL)
Q(1− p)

D

)
+ crQqθ3

+ cPQ+ cQ+d + cbB̄(r)+
Qη

δ1
ln
(

q0

q

)
+

Qη

δ2
ln
(

θ3

θ30

))
D

Q(1− p)

(329)

To minimise ETC(Q,r), we take first derivative with respect to Q and r,

∂ (ETC)

∂Q
=

2cbDB̄(r)+2PD(d +F +KB +KV )+hB
(

p2 −1
)

Q2

2(p−1)Q2

− hV Q2(q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2(p−1)PQ2 (330)

Taking the second derivative, we have

∂ 2(ETC)

∂Q2 =
2D(d +F +KB +KV + cbB̄(r))

(1− p)Q3 (331)

All parameters are positive, and ∂ 2(ETC)
∂Q2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗ =

√
−2PD(cbB̄(r)+d +F +KB +KV )

hB (p2 −1)P−hV (q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)
. (332)
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The derivative of ETC(Q,r) with respect to r is

∂ (ETC)

∂ r
=

DcbB̄′(r)+hBQ(1− p)
(1− p)Q

(333)

Taking the second derivative, we have

∂ 2(ETC)

∂ r2 =
DcbB̄′′(r)
(1− p)Q

(334)

All parameters are positive, and ∂ 2(ETC)
∂ r2 > 0. Therefore, there exists unique value for

r∗ given as

F(r) =
(

1− hB(1− p)Q
Dcb

)
r∗ = F−1

(
1− hB(1− p)Q

Dcb

)
(335)

One more time for the rest of the models, r∗ equation will be the same since the

integrated cost function is changing only by constant. In the model where q is

deterministic and θ3 is stochastic with standard uniform distribution, the supplier’s

cost function per cycle will be

ETCV (Q) = KV −hV

(
Q2(q(L2 +U2 −2)+2)

4P

)
+

ηQ
δ1

ln
(

q0

q

)
+hV

(
Q2 (q2 (L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+3q(L2 +U2 −2)+3

)
6D

)
+

ηQ
δ2

µln(θ3/θ30)
+ cPQ+ crqQµθ3 (336)

and the buyer’s total average cost with stochastic demand in a supplier’s cycle is

ETCB(Q,r) = KB +F + cQ+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL)
Q(1− p)

D

)
+d + cbB̄(r) (337)
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The expected total cost for integrated system is,

ETC(Q,r) = ETCV (Q)+ETCB(Q,r)

ETC(Q,r) = KB +KV +F +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL)
Q(1− p)

D

)
+hV

(
Q2 (q2 (L2

2 +(L2 +U2)(U2 −3)+3
)
+3q(L2 +U2 −2)+3

)
6D

)
−hV

(
Q2(q(L2 +U2 −2)+2)

4P

)
+ cQ+ cPQ+ crqQµθ3 +

ηQ
δ1

ln
(

q0

q

)
+

ηQ
δ2

µln(θ3/θ30)
+d + cbB̄(r) (338)

The expected total annual cost is

ETC(Q,r) =
(

KB +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL)
Q(1− p)

D

)
+hV

(
Q2(q2(L2

2 +(L2 +U2)(U2 −3)+3)+3q(L2 +U2 −2)+3)
6D

)
−hV

(
Q2(q(L2 +U2 −2)+2)

4P

)
+ cQ+ cPQ+ crqQµθ3 +

ηQ
δ1

ln
(

q0

q

)
+KV +F +

ηQ
δ2

µln(θ3/θ30)
+d + cbB̄(r)

)
D

Q(1− p)
(339)

To minimise ETC(Q), we take first derivative with respect to Q

∂ (ETC)

∂Q
=

D
(
4P(cbB̄(r)+d +F +KB +KV )+hV Q2(q(L2 +U2 −2)+2)

)
4(p−1)PQ2

−
hV
(
q2 (L2

2 +(L2 +U2)(U2 −3)+3
)
+3q(L2 +U2 −2)+3

)
6(p−1)

+
hB (p+1)

2
(340)

Taking the second derivative, we have

∂ 2(ETC)

∂Q2 =
2D(cbB̄(r)+d +F +KB +KV )

(1− p)Q3 (341)
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All parameters are positive, and d2(ETC)
dQ2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗ =

√
−12PD(cbB̄(r)+d +F +KB +KV )

6hB (p2 −1)P−2hV P(q2C+3qA+3)+3hV D(qA+2)
(342)

where C = (L2
2 +L2(U2 −3)+(U2 −3)U2 +3) and A = (U2 +L2 −2) and the unique

value for r∗ given as

r∗ = F−1
(

1− hB(p−1)Q
Dcb

)
(343)

For the next model, q is stochastic with standard uniform distribution and θ3 is

deterministic. Therefore, supplier’s cost function per cycle is

ETCV (Q) = KV +hV

(
Q2 (L2

1(θ3 −1)2 +(L1 +U1)(θ3 −1)((θ3 −1)U1 +3)+3
)

6D

)
+hV

(
Q2 (−3(θ3 −1)D(L1 +U1)−6D)

12PD

)
+ cPQ+ crQθ3µq

+
ηQ
δ1

µln(q0/q)+
ηQ
δ2

ln
(

θ3

θ30

)
(344)

and the buyer’s expected total cost with stochastic demand in the supplier’s cycle is

ETCB(Q,r) = KB +F + cQ+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL)
Q(1− p)

D

)
+d + cbB̄(r) (345)
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The expected total cost for integrated system is,

ETC(Q,r) = ETCV (Q)+ETCB(Q,r)

ETC(Q,r) = KV +KB +F + cQ+ cPQ+ crQθ3µq

+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL)
Q(1− p)

D

)
+

ηQ
δ1

µln(q0/q)

+hV

(
Q2 (L2

1(θ3 −1)2 +(L1 +U1)(θ3 −1)((θ3 −1)U1 +3)+3
)

6D

)
+hV

(
Q2 (−3(θ3 −1)D(L1 +U1)−6D)

12PD

)
+d + cbB̄(r)+

ηQ
δ2

ln
(

θ3

θ30

)
(346)

The expected total annual cost is

ETC(Q,r) =
(

KV +KB +F + cQ+ cPQ+ crQθ3µq

+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL)
Q(1− p)

D

)
+

ηQ
δ1

µln(q0/q)

+hV

(
Q2 (L2

1(θ3 −1)2 +(L1 +U1)(θ3 −1)((θ3 −1)U1 +3)+3
)

6D

)
+hV

(
Q2 (−3(θ3 −1)D(L1 +U1)−6D)

12PD

)
+d + cbB̄(r)+

ηQ
δ2

ln
(

θ3

θ30

))
D

Q(1− p)
(347)

To minimise ETC(Q), we take first derivative with respect to Q

∂ (ETC)

∂Q
=

2D(cbB̄(r)+d +F +KB +KV )+hB
(

p2 −1
)

Q2

2(p−1)Q2

−
hV
(
L2

1(θ3 −1)2 +(L1 +U1)(θ3 −1)((θ3 −1)U1 +3)+3
)

6(p−1)

+
hV D((θ3 −1)(L1 +U1)+2)

4(p−1)P
(348)

Taking the second derivative, we have

∂ 2(ETC)

∂Q2 =
2D(cbB̄(r)+d +F +KB +KV )

(1− p)Q3 (349)
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All parameters are positive, and ∂ 2(ETC)
∂Q2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗ =

√
−12PD(cbB̄(r)+d +F +KB +KV )

6hB (p2 −1)P−hV
(
2P
(
L2

1B2 +(L1 +U1)B(BU1 +3)+3
)
−3BD(L1 +U1)−6D

)
(350)

where B = (θ3 −1) and the unique value for r∗ given as

r∗ = F−1
(

1− hB(p−1)Q
Dcb

)
(351)

As our final model, where q and θ3 are both stochastic with standard uniform

distribution, supplier’s cost function per cycle is

ETCV (Q) = KV + cPQ+ crQµqµθ3 +
ηQ
δ1

µln(q0/q)+
ηQ
δ2

µln(θ3/θ30 )

+hV

(
Q2L2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)

18D

)
+hV

(
Q2L1

(
2L2

2U1 +L2(2U1(U2 −3)+9)+2U1((U2 −3)U2 +3)+9(U2 −2)
)

36D

)
+hV

(
Q2
(
2U2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+9U1(L2 +U2 −2)+18

)
36D

)
−hV

(
Q2 ((L2 +U2 −2)(L1 +U1)+4)

8P

)
(352)

and the buyer’s expected total cost with deterministic demand in a supplier’s cycle is

ETCB(Q,r) = KB +F + cQ+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL)
Q(1− p)

D

)
+d + cbB̄(r) (353)
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The expected total cost for integrated system is,

ETC(Q,r) = ETCV (Q)+ETCB(Q,r)

ETC(Q,r) = KB +KV +F + cQ+ cPQ+ crQµqµθ3 +
ηQ
δ1

µln(q0/q)+
ηQ
δ2

µln(θ3/θ30 )

+d + cbB̄(r)+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL)
Q(1− p)

D

)
+hV

(
Q2L2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)

18D

)
+hV

(
Q2L1

(
2L2

2U1 +L2(2U1(U2 −3)+9)+2U1((U2 −3)U2 +3)+9(U2 −2)
)

36D

)
+hV

(
Q2
(
2U2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+9U1(L2 +U2 −2)+18

)
36D

)
−hV

(
Q2 ((L2 +U2 −2)(L1 +U1)+4)

8P

)
(354)

The expected total annual cost becomes

ETC(Q) =

(
KB +KV +F + cQ+ cPQ+ crQµqµθ3 +

ηQ
δ1

µln(q0/q)+
ηQ
δ2

µln(θ3/θ30 )

+d + cbB̄(r)+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL)
Q(1− p)

D

)
+hV

(
Q2L2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)

18D

)
+hV

(
Q2L1

(
2L2

2U1 +L2(2U1(U2 −3)+9)+2U1((U2 −3)U2 +3)+9(U2 −2)
)

36D

)
+hV

(
Q2
(
2U2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+9U1(L2 +U2 −2)+18

)
36D

)
−hV

(
Q2 ((L2 +U2 −2)(L1 +U1)+4)

8P

))
D

Q(1− p)
(355)

To minimise ETC(Q), we take first derivative with respect to Q

∂ (ETC)

∂Q
=

(D(cbB̄(r)+d +F +KB +KV ))

(p−1)Q2

−
hV L2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)

18(p−1)

−
hV L1

(
2L2

2U1 +L2(2U1(U2 −3)+9)+2U1((U2 −3)U2 +3)+9(U2 −2)
)

36(p−1)

−
hV
(
2U2

1
(
L2

2 +L2(U2 −3)+(U2 −3)U2 +3
)
+9U1(L2 +U2 −2)+18

)
36(p−1)

+
hV Q2 (D(L2 +U2 −2)(L1 +U1)+4D)+4hB

(
p2 −1

)
PQ2

8(p−1)PQ2 (356)
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Taking the second derivative, we have

∂ 2(ETC)

∂Q2 =
2D(cbB̄(r)+d +F +KB +KV )

(1− p)Q3 (357)

All parameters are positive, and ∂ 2(ETC)
∂Q2 > 0. Therefore, there exists unique value for

Q∗ given as

Q∗ =

√
−72PD(cbB̄(r)+d +F +KB +KV )

36hB (p2 −1)P−hV
(
2P
(
2L2

1C+(L1 +U1)(2U1C+9A)+18
)
−9D(AB−4)

)
(358)

where C = (L2
2 +L2(U2 −3)+(U2 −3)U2 +3), B = (L1 +U1) and A = (U2 +L2 −2)

and the unique value for r∗ given as

r∗ = F−1
(

1− hB(p−1)Q
Dcb

)
(359)
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CHAPTER 4: EXPERIMENTAL RESULTS

4.1. Illustrative Example, Sensitivity Analysis for the Buyer and Case Figures for

the Supplier

4.1.1. Illustrative Example

In this section, figures and tables show the change of cost according to different

cases. The numerical values for the calculations are as follows: expected demand

rate D = 50,000, deterministic defective rate q = 0.2005, deterministic reworkable

rate θ3 = 0.75, for stochastic q lower and upper bounds L1 = 0.001 and U1 = 0.4, for

stochastic θ3 lower and upper bounds L2 = 0.5 and U2 = 1. The rest of the parameter

values; q0 = 0.4, θ30 = 0.5 F = 25, KB = 100, hB = 5, c = 0.5, p = 0.006, KV = 300,

hV = 2, P = 160,000, η = 0.01, δ = 0.9, δ2 = 0.2, cP = 5, cr = 2, cl = 10, cb = 8,

d = 25, α = 0.7, b = 0.01, τ = 4, αq = 1, βq = 4, αθ3 = 3, βθ3 = 1,µL = 1300, and

σ = 80. When q = 0.2005 and θ3 = 0.75,it means with investment, the defective rate

decreased from 0.4 to 0.2005, and rework rate increased from 0.5 to 0.75. Other than

Table 7, all models follow normal distribution when demand is stochastic.

For deterministic demand case, Table 3 shows that supplier’s optimal lot size Q∗
V

and integrated Q∗ slightly decreased with different scenarios on q and θ3 compared to

their deterministic case (Case I). Here, q and θ3 follow uniform distribution, therefore

their expected values are µq = 0.2005 and µθ3 = 0.75. For the cost perspective,

supplier’s individual cost ETCV (Q∗
V ) is at its lowest when rework rate is stochastic

and defective rate is deterministic and at its highest when defective rate is stochastic

and rework rate is deterministic. Due to its convex nature, supplier has higher cost if

it produces buyer’s quantity (ETCV (Q∗
B) overall. Integrated cost has its highest value

when both parameters are stochastic. The last column shows which case is the most

profitable by percentage difference and it is clear that other than first three cases are

better than the last one.

In deterministic demand case buyer’s independent lot size is not changing due to

its cost function structure. Buyer’s reorder point on deterministic demand case with
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and without backordering is fixed and calculated with the formula L ∗ D. This is

making sense, since he knows exactly how much demand it will have. It is also true

for integrated model reorder point because it is still provided by buyer.

For stochastic demand case (normal distribution), Q∗
V is still decreasing slightly.

Buyer’s optimal order quantity (Q∗
B and r∗B) are higher than deterministic demand case.

Integrated order quantity and reorder point (Q∗ and r∗) are also higher than previous

demand case. Supplier’s biggest cost happens when both parameters are stochastic if

it decides to produce buyer’s order quantity. Integrated cost has the similar pattern and

is highest when q and θ3 are both stochastic. The first case, where both parameters are

deterministic gives the best savings when integrated policy is adopted.

When there is partial backordering (Table 4), -time-sensitive customers-, buyer’s

order quantity Q∗
B is more than lost sales case (Q∗

B = 1760), however reorder point

is smaller. Even though it looks like a contradiction, it might be the case that lower

reorder point helps to wait longer because now order quantity is higher. Buyer’s total

cost and integrated cost are higher than lost-sales case and it can be explained by the

higher order quantity and inclusion of backorder cost as well. Since rework rate is less

than 1, not all defective items are reworkable. Supplier’s individual cost (ETCV (Q∗
V )),

its cost when buyer’s order quantity is considered (ETCV (Q∗
B)) and integrated cost

show similar behaviour and have their highest value when defective rate is stochastic

and rework rate is deterministic. Moreover, their lowest value happens when defective

rate is deterministic and rework rate is stochastic. This shows the stochasticity for

defective rate has more impact than rework rate. The buyer’s lot size Q∗
B and reorder

point r∗B do not change since its individual equation does not depend on q and θ3.

Finally, if the supplier adopts integrated policy, it will produce smaller lot size overall.

Overall, it is clear that the integrated model is beneficial to both supplier and buyer,

according to the costs under stochastic demand case with partial backordering. Related

to these, the last column shows third case (q is deterministic and θ3 is stochastic) has

the highest savings on integrated approach.

To see the behaviour change with different distributions on q and θ3, Table 5 shows

optimal values with their cost under beta distribution. Here, shape parameters (αq, αθ3 ,

βq, βθ3) values are chosen specifically to have same expected values (E(q) = 0.2 and
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E(θ3) = 0.75) as in the standard uniform distribution (Table 4). The goal is to compare

both tables and see the effect of distributions. With this logic, integrated order quantity

Q∗ values are slightly lower in Table 5. First case is same for both distributions, so

there is no change. The main difference is when the rework rate is stochastic with same

lower and upper values and expected values, total cost is higher under beta distribution

even though Q∗ is lower. Same pattern can be seen for Q∗
V and other cost values as

well. Only when defective rate is stochastic, the cost values are lower than standard

uniform distribution. Therefore, it might be more cost effective to use standard uniform

distribution when defective rate is stochastic and rework rate is known and constant.

When we look at Table 5, the behaviours of Q∗
V and ETCV (Q∗

V ) are similar with Table

4. Comparison of second and forth case shows decrease on Q∗
V with increased total

cost ETCV (Q∗
V ). Two cases have same expected values on defective rates and rework

rate, however stochasticity on rework rate cause cost increase. On the other hand, first

and second case show slightly decreased cost on ETCV (Q∗
V ). This can be explained by

distribution effect on defective rate. Last column shows the difference between total

cost for integrated model and individual cost sums and unlike Table 4, first case has

the highest difference. So, when defective rate and rework rate both deterministic, the

integrated model results in greater savings.

As the third distribution example, Table 6 shows the changes of optimal values

when q and θ3 follows triangular distribution. While the behaviour of Q∗
V , Q∗ and

corresponding costs have the similar behaviour as previous ones, forth case (where q

and θ3 are both stochastic) has the highest value (among uniform, beta and triangular

distributions). Other than the first and second case, integrated costs (ETC(Q∗)) and

(ETCV (Q∗
V )) are lower than beta distribution. However, third and forth cases results

higher supplier cost than uniform with lower integrated cost. It shows the effect of

distribution even though we have same expected values. The last column shows the

forth case where both parameters are stochastic has the best savings for integrated

model.

In Table 7, we can see that when demand follows exponential distribution, buyer’s

order quantity and reorder point as well as integrated order quantity and reorder point

are higher than normal distribution (Table 4). Since demand is coming from buyer’s
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equation, supplier’s individual equations did not change. If supplier would follow

buyer’s order quantity, he would have lower cost because Q∗
B value is higher with

exponential distribution (instead of producing 1760 items, he would produce 3428).

Buyer has higher cost due to higher volume of order quantity in Table 7. However,

overall total cost is increased for every case therefore it is not helpful for business. The

last column shows that difference between integrated total cost and sum of individual

costs is really small and the best at third case where q is deterministic and θ3 is

stochastic. This is same behaviour as in Table 4.

Table 8 shows when all shortage is backordered. Compared to partial backordering,

supplier’s individual order quantity and cost stays the same while buyer’s individual

order quantity increases and reorder point and its cost decrease. Moreover, if supplier

produces buyer’s order quantity, the cost (ETCV (Q∗
B)) will be slightly lower. Integrated

optimal order quantity, reorder point and cost follow the same pattern as buyer’s . In

this scenario. the first case where both q and θ3 are deterministic has the highest

savings under integrated policy. Overall, it is clear that this model is pushing order

placement further when there is backordering (due to lower reorder point).

In Table 9, the optimal values for Q and r with their corresponding costs are

compared under different distributions for q and θ3. The optimal order quantity Q∗

follows different behaviour through different distributions denotes each distribution’s

impact. It is interesting to see that how close the first three cases between uniform and

triangular distributions. In triangular distribution, when both parameters are stochastic,

Q∗ is increasing more than it is in standard uniform distribution. Moreover, the optimal

reorder point r∗ drops more in triangular distribution at the last case. This may indicate

that triangular distribution has more advantageous when defective and rework rates are

stochastic. The last point of comparison between two is their integrated total cost

values. When q and θ3 follow triangular distribution, total cost is less than standard

uniform distribution and saving more money than both standard uniform distribution

for the second and forth cases. While beta distribution is also an option with its lower

optimal order quantity, it has higher costs than uniform and triangular distributions for

second and forth cases. Moreover, it is saving the least amount of money among three

distributions.
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For independent and integrated cost comparisons, we can see from Table 3 to

Figure 24 that integrated policy is more beneficial than policy is made solely from

the buyer’s perspective. Figures show that there is a decreasing trend till the optimal

value that is cost is decreasing while lot size is increasing.

Figure 9. Total cost for the supplier and buyer individually (left) and integrated (right)

for deterministic demand, q and θ3 with complete lost-sales

Figure 10. Total cost for the supplier and buyer individually (left) and integrated (right)

for deterministic demand and q, with stochastic θ3 with complete lost-sales

Figure 11. Total cost for the supplier and buyer individually (left) and integrated (right)

for deterministic demand and θ3, with stochastic q with complete lost-sales
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Figure 12. Total cost for the supplier and buyer individually (left) and integrated (right)

for deterministic demand and stochastic θ3 with stochastic q with complete lost-sales

Figure 13. Total cost for the supplier and buyer individually (left) and integrated (right)

for stochastic demand, and deterministic θ3 and q with complete lost-sales

Figure 14. Total cost for the supplier and buyer individually (left) and integrated (right)

for stochastic demand, and deterministic q and stochastic θ3 with complete lost-sales

Figure 15. Total cost for the supplier and buyer individually (left) and integrated (right)

for stochastic demand, and stochastic q and deterministic θ3 with complete lost-sales
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Figure 16. Total cost for the supplier and buyer individually (left) and integrated (right)

for stochastic demand, and stochastic q and θ3 with complete lost-sales

Figure 17. Total cost for the supplier and buyer individually (left) and integrated (right)

for stochastic demand, and deterministic q and θ3 with partial backordering

Figure 18. Total cost for the supplier and buyer individually (left) and integrated (right)

for stochastic demand, and deterministic q and stochastic θ3 with partial backordering

Figure 19. Total cost for the supplier and buyer individually (left) and integrated (right)

for stochastic demand, and stochastic q and deterministic θ3 with partial backordering

141



Figure 20. Total cost for the supplier and buyer individually (left) and integrated (right)

for stochastic demand, and stochastic q and θ3 with partial backordering

Figure 21. Total cost for the supplier and buyer individually (left) and integrated (right)

for stochastic demand, and deterministic q and θ3 with complete backordering

Figure 22. Total cost for the supplier and buyer individually (left) and integrated

(right) for stochastic demand, and deterministic q and stochastic θ3 with complete

backordering
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Figure 23. Total cost for the supplier and buyer individually (left) and integrated

(right) for stochastic demand, and stochastic q and deterministic θ3 with complete

backordering

Figure 24. Total cost for the supplier and buyer individually (left) and integrated (right)

for stochastic demand, and stochastic q and θ3 with complete backordering

4.1.2. Sensitivity Analysis for the Buyer’s model

We will start to examine the buyer’s sensitivity analysis under the stochastic

demand and continue with supplier’s. The values of parameters are given in Illustrative

Example. Table 10 shows that with increasing imperfect rate p, the optimal lot size

Q∗
B, reorder point r∗, and naturally expected cost ETCB(Q∗

B) are increasing. With

s̄(r) column, we can see that expected shortage that becomes lost-sales, is really small

and decreasing. This is impact of order quantity, such as we place more items due to

imperfection and that causes smaller shortage. Since p values are small, the change in

the values are small as well.
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Table 10. The change in Q∗
B, r∗ and ETCB(Q∗

B) according to change in p for complete

lost-sales case

p Q∗
B r∗ s̄(r) ETCB(Q∗

B)

0.000 1609.48 1471.87 0.45 $33,909

0.006 1609.33 1472.07 0.45 $34,108

0.016 1609.20 1472.39 0.44 $34,445

0.026 1609.23 1472.71 0.44 $34,788

0.036 1609.42 1473.02 0.43 $35,138

0.046 1609.78 1473.34 0.43 $35,493

0.056 1610.31 1473.66 0.42 $35,856

0.066 1611.00 1473.98 0.42 $36,225

0.076 1611.85 1474.30 0.42 $36,602

0.086 1612.88 1474.62 0.41 $36,985

0.096 1614.07 1474.94 0.41 $37,377
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Buyer’s analysis when there is time-sensitive customers for partial backordering

shows the similar behaviour with previous table (Table 11). Here, B̄(r) as expected

backorder amount is also decreasing with increasing imperfect rate. This can be

explained with higher order quantity leads to lower shortage therefore lower backorder

amount. Even though the behaviours are similar, it is interesting to see that order

quantity is much higher and reorder points are lower than previous case.

Table 11. The change in Q∗
B, r∗ and ETCB(Q∗

B) according to change in p for partial

backordering case

p Q∗
B r∗ B̄(r) s̄(r) ETCB(Q∗

B)

0.000 1760.84 1465.20 0.42 0.16 $34,631

0.006 1759.81 1465.39 0.41 0.16 $34,831

0.016 1760.01 1465.72 0.41 0.16 $35,177

0.026 1760.07 1466.04 0.40 0.16 $35,528

0.036 1760.32 1466.37 0.40 0.15 $35,885

0.046 1760.74 1466.69 0.40 0.15 $36,248

0.056 1761.06 1467.02 0.39 0.15 $36,617

0.066 1762.13 1467.34 0.39 0.15 $36,996

0.076 1763.10 1467.67 0.38 0.15 $37,381

0.086 1764.25 1467.99 0.38 0.15 $37,773

0.096 1765.59 1468.99 0.37 0.14 $38,173

For the complete backordering case (Table 12), increase in defective rates is

resulting the highest order quantity and lowest reorder points. Total cost is slightly

lower than partially backordering case. Additionally, we can see a small decrease is in

Q∗
B lasting longer than previous case (same behaviour as complete lost-sales case). As

a conclusion, it is clear that we can order more with smaller reorder point at lower cost

when there is no risk to lose the customer.
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Table 12. The change in Q∗
B, r∗ and ETCB(Q∗

B) according to change in p for complete

backordering case

p Q∗
B r∗ B̄(r) ETCB(Q∗

B)

0.000 1762.04 1461.09 0.65 $34,616

0.006 1761.87 1461.29 0.65 $34,820

0.016 1761.73 1461.63 0.64 $35,164

0.026 1761.77 1461.98 0.64 $35,515

0.036 1761.98 1462.32 0.63 $35,872

0.046 1762.38 1462.66 0.62 $36,236

0.056 1762.96 1463.00 0.61 $36,606

0.066 1763.72 1463.33 0.61 $36,984

0.076 1764.66 1463.67 0.60 $37,369

0.086 1765.78 1464.01 0.59 $37,761

0.096 1767.09 1464.35 0.59 $38,130

At the supplier’s side, when defective rate q and reworkable rate θ3 are both

increasing (Table 13), the optimal production lot size Q∗
V is increasing until q = 0.21,

then starts to decrease. This can be indicator that even though we have more defective

items (before or after investing), if we can rework on them mostly then there is no need

to produce more items. This values can be considered break even points as well. On the

other hand, cost is still increasing due to reworkable items increasing number. In Table

14, case shows that defective rate is increasing while reworking rate is decreasing.

Order quantity follows increasing trend completely, since we need to produce more

items to supply and TCV is increasing due to ordering more items and reworking on

them. Table 15 and 16 shows when one side is fixed what happens to Q∗
V and TCV .

When we have fixed reworkable rate (Table 15), greater defective rate means bigger

lot size. The cost is increasing since we have more items to rework on. On the other

hand, when q is fixed (Table 16), with higher reworking rates, the optimal lot size Q∗
V

decreases. Additionally, cost is slightly increasing because of increasing reworking
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rate on fixed amount of defective items. For Table 13- 16, θ30 to θ3 and q0 to q shows

the change in those parameters once we invest to improve the process.

Table 13. The change in the optimal production size Q∗
V and the cost TCV (Q∗

V ) when

q and θ3 are both increasing

q0 q θ30 θ3 Q∗
V TCV (Q∗

V )

0.00 0.00 0.50 0.55 4671 $258,215

0.02 0.02 0.46 0.57 4719 $260,078

0.04 0.04 0.47 0.59 4762 $261,185

0.06 0.06 0.49 0.61 4802 $262,375

0.08 0.08 0.50 0.63 4838 $263,647

0.10 0.10 0.52 0.65 4870 $265,002

0.12 0.11 0.54 0.67 4897 $266,439

0.14 0.13 0.55 0.69 4920 $267,959

0.16 0.15 0.57 0.71 4939 $269,562

0.18 0.17 0.58 0.73 4952 $271,246

0.20 0.19 0.60 0.75 4961 $273,014

0.22 0.21 0.62 0.77 4964 $274,863

0.24 0.23 0.63 0.79 4963 $276,796

0.26 0.25 0.65 0.81 4957 $278,811

0.28 0.27 0.66 0.83 4946 $280,908

0.30 0.29 0.68 0.85 4930 $283,088

0.32 0.30 0.70 0.87 4909 $285,350

0.34 0.32 0.71 0.89 4884 $287,695

0.36 0.34 0.73 0.91 4855 $290,122

0.38 0.36 0.74 0.93 4821 $292,632

0.40 0.38 0.76 0.95 4783 $295,224

0.42 0.40 0.78 0.97 4741 $297,899

0.44 0.42 0.79 0.99 4695 $300,656
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Table 14. The change in the optimal production size Q∗
V and the cost TCV (Q∗

V ) when

q is increasing and θ3 is decreasing

q0 q θ30 θ3 Q∗
V TCV (Q∗

V )

0.00 0.00 0.80 1.00 4671 $258,542

0.02 0.02 0.78 0.98 4673 $260,927

0.04 0.04 0.77 0.96 4680 $262,715

0.06 0.06 0.75 0.94 4691 $264,420

0.08 0.08 0.74 0.92 4706 $266,042

0.10 0.10 0.72 0.90 4726 $267,582

0.12 0.11 0.70 0.88 4751 $269,040

0.14 0.13 0.69 0.86 4780 $270,415

0.16 0.15 0.67 0.84 4815 $271,708

0.18 0.17 0.66 0.82 4855 $272,918

0.20 0.19 0.64 0.80 4900 $274,045

0.22 0.21 0.62 0.78 4951 $275,090

0.24 0.23 0.61 0.76 5008 $276,053

0.26 0.25 0.59 0.74 5071 $276,933

0.28 0.27 0.58 0.72 5142 $277,730

0.30 0.29 0.56 0.70 5220 $278,445

0.32 0.30 0.54 0.68 5306 $279,078

0.34 0.32 0.53 0.66 5401 $279,627

0.36 0.34 0.51 0.64 5506 $280,094

0.38 0.36 0.50 0.62 5621 $280,479

0.40 0.38 0.48 0.60 5748 $280,781

0.42 0.40 0.46 0.58 5888 $291,000

0.44 0.42 0.45 0.56 6042 $281,136
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Table 15. The change in the optimal production size Q∗
V and TCV (Q∗

V ) when q is

increasing and θ3 is fixed

q0 q θ30 θ3 Q∗
V TCV (Q∗

V )

0.00 0.00 0.5 0.7 4671 $258,824

0.02 0.02 0.5 0.7 4704 $260,632

0.04 0.04 0.5 0.7 4737 $261,925

0.06 0.06 0.5 0.7 4771 $263,218

0.08 0.08 0.5 0.7 4806 $264,510

0.10 0.10 0.5 0.7 4841 $265,803

0.12 0.11 0.5 0.7 4876 $267,096

0.14 0.13 0.5 0.7 4912 $268,389

0.16 0.15 0.5 0.7 4948 $269,681

0.18 0.17 0.5 0.7 4985 $270,974

0.20 0.19 0.5 0.7 5023 $272,267

0.22 0.21 0.5 0.7 5061 $273,560

0.24 0.23 0.5 0.7 5100 $274,852

0.26 0.25 0.5 0.7 5139 $276,145

0.28 0.27 0.5 0.7 5179 $277,438

0.30 0.29 0.5 0.7 5220 $278,730

0.32 0.30 0.5 0.7 5261 $280,023

0.34 0.32 0.5 0.7 5303 $281,315

0.36 0.34 0.5 0.7 5346 $282,608

0.38 0.36 0.5 0.7 5389 $283,901

0.40 0.38 0.5 0.7 5434 $285,193

0.42 0.40 0.5 0.7 5478 $286,486

0.44 0.42 0.5 0.7 5524 $287,778
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Table 16. The change in the optimal production size Q∗
V and TCV (Q∗

V ) when q is fixed

and θ3 is increasing

q0 q θ30 θ3 Q∗
V TCV (Q∗

V )

0.04 0.02 0.50 0.70 4706 $267,151

0.04 0.02 0.57 0.71 4704 $266,895

0.04 0.02 0.58 0.73 4703 $266,924

0.04 0.02 0.59 0.74 4701 $266,954

0.04 0.02 0.60 0.75 4699 $266,983

0.04 0.02 0.61 0.77 4698 $267,012

0.04 0.02 0.62 0.78 4696 $267,042

0.04 0.02 0.64 0.79 4695 $267,071

0.04 0.02 0.65 0.81 4693 $267,100

0.04 0.02 0.66 0.82 4692 $267,130

0.04 0.02 0.67 0.84 4690 $267,159

0.04 0.02 0.68 0.85 4688 $267,188

0.04 0.02 0.69 0.86 4687 $267,217

0.04 0.02 0.70 0.88 4685 $267,247

0.04 0.02 0.71 0.89 4684 $267,276

0.04 0.02 0.72 0.90 4682 $267,305

0.04 0.02 0.73 0.92 4681 $267,335

0.04 0.02 0.74 0.93 4679 $267,364

0.04 0.02 0.75 0.94 4678 $267,393

0.04 0.02 0.77 0.96 4676 $267,423

0.04 0.02 0.78 0.97 4674 $267,452

0.04 0.02 0.79 0.98 4673 $267,481

0.04 0.02 0.80 1.00 4671 $267,511
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4.1.3. Case Figures for the Supplier

As we analysed the four cases above, here we investigate the behaviour of Q∗

with respect to q and θ3. Figure 25 shows the case when q and θ3 are both

deterministic. For each value of fixed q, as θ3 increases, the optimal production size

Q∗ decreases. For higher value of q, optimal production size starts to decrease from

Q∗ value. Additionally, Figure 26 shows the change of q and θ3 and their effect on Q∗

simultaneously.

Figure 25. The change in the optimal production size Q∗ when q and θ3 is deterministic

Figure 26. The change in Q∗ for q and θ3

When q is deterministic and θ3 is stochastic with standard uniform distribution
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(Figure 27), we have clear convex behaviour for small U2 and L2. As those bounds are

increasing, Q∗ increases in almost linear trend. As their values are getting bigger with

increasing q values, Q∗ values are starting to decrease.

Figure 27. The change in the optimal production size Q∗ when q is deterministic and

θ3 is stochastic

For the stochastic q with standard uniform distribution and deterministic θ3, Figure

28 demonstrates the change of Q∗. It can be easily seen that when we fix the difference

between upper and lower bound for q and increase step by step, the optimal production

size starts from higher initial values and decreases.

152



Figure 28. The change in the optimal production size Q∗ when q is stochastic and θ3

is deterministic

In the last case, when we have both q and θ3 stochastic Figure 29 shows that Q∗

has higher values as U1 and L1 gets higher. As upper and lower bounds for q and θ3

are getting larger, Q∗ is increasing in almost linear trend.

Figure 29. The change in the optimal production size Q∗ when q and θ3 are stochastic
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4.2. Real life scenarios

In this section, we analysed three scenarios that were mentioned in the motivation.

For Scenario I, defective rate q is a random variable and we can rework all defective

items therefore θ3 = 1. Moreover, reworking is perfect, so all items are in perfect

condition after the process. In Scenario II, q is random variable and reworkable rate

θ3 = 0.75, that is, we can not rework on all defective units. In this case, at the end of

reworking, there will be lower quality items therefore process is not perfect. For the last

scenario, we have deterministic defective rate and stochastic reworkable proportion. At

the end of reworking, all items are lower quality. All three scenarios are considered in

partially backordered scenario since it is including backorder and lost-sales together.

Since the logic is still same, only total cost per cycle, optimal order quantity, and

reorder point formulas are given without detailed calculations. After the cases, values

are shown in the Table 17.

4.2.1. Scenario I

Starting with vendor’s total cost per cycle where q is random variable with standard

uniform distribution, and all defective items are reworkable (θ3 = 1), we have

ETCV (QV ) = KV +hV
Q2

V
2D

−hV
Q2

V
2P

+ cPQV + crQV µq

+
ηQV

δ1
µln(q0/q)+

ηQV

δ2
ln
(

1
θ30

)
(1)

and its optimal order quantity will be

Q∗
V =

√
2PDKV

hV (P−D)
(2)
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The expected total annual cost is

ETC(Q,r) =
(

KV +KB +F + cQ+ cPQ+ crQµq +
ηQ
δ1

ln
(

q0

µq

)
+

ηQ
δ2

µln(q0/q)

+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+hV

Q2

2D
−hV

Q2

2P
+d + cbB̄(r)+ cl s̄(r)

)
D

Q(1− p)
(3)

and the optimal order quantity for the system is

Q∗ =

√
−2PD(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

hB (p2 −1)P−hV (P−D)
(4)

and the unique value for r∗ given as

r∗ = F−1
(

1− hB(1− p)Q(
B′

p(r)(B̄(r)+ s̄(r)− r)−Bp(r)
)(

D(cl − cb)+hBQ(1− p)
)
+

(
clD+hBQ(1− p)

))

(5)

4.2.2. Scenario II

This time, q is random variable that follows standard uniform distribution, and all

defective items are not reworkable (θ3 = 0.75) and reworking is imperfect. There are

new parameters introduced θl = 0.4 as the proportion for lower quality items, and hVl

as holding cost for those items (hVl < hV ). The cost for vendor per cycle is

ETCV (QV ) = KV +hV

(
Q2

V
(
2θlL2

1θ 2
3 +(L1 +U1)(θ3(2θlθ3U1 +6θ3 −3)+3)−6

)
12P

)
+hV

(
Q2

V
(
L1((θl −1)θ3 +1)(θlθ3U1 −θ3U1 +U1 −3)+((θl −1)L1θ3 +L1)

2
)

6D

)
+hV

(
Q2

V (U1((θl −1)θ3 +1)(θlθ3U1 −θ3U1 +U1 −3)+3)
6D

)
+hVl QV θ3θlµq + cPQV + crQV θ3µq +

ηQV

δ1
µln(q0/q)+

ηQV

δ2
ln
(

θ3

θ30

)
(6)
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Due to time consumption in Wolfram Mathematica, the values for θ3 = 0.75 and θl =

0.4 are inserted for optimal order quantity formula,

Q∗
V =

√
2400KV PD

hV P
(
121L2

1 +A(11U1 −60)+1200
)
+30hV D

(
3L2

1 +A(3U1 +17)−40
) (7)

where A = (L1 +U1).

The expected total annual cost is

ETC(Q,r) =
(

KV +KB +F + cQ+ cPQ+ crQθ3µq +
ηQV

δ1
µln(q0/q)+

ηQV

δ2
ln
(

θ3

θ30

)
+hV

(
Q2
(
2θlL2

1θ 2
3 +(L1 +U1)(θ3(2θlθ3U1 +6θ3 −3)+3)−6

)
12P

)
+hV

(
Q2
(
L1((θl −1)θ3 +1)(θlθ3U1 −θ3U1 +U1 −3)+((θl −1)L1θ3 +L1)

2
)

6D

)
+hV

(
Q2 (U1((θl −1)θ3 +1)(θlθ3U1 −θ3U1 +U1 −3)+3)

6D

)
+hVl Qθ3θlµq +hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+d + cbB̄(r)+ cl s̄(r)

)
D

Q(1− p)
(8)

and the optimal order quantity

Q∗ =

√
−2400PD(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

1200hB (p2 −1)P−hV P
(
121L2

1 +AB+1200
)
−30hV D

(
3L2

1 +A(3U1 +17)−40
)
(9)

where A = (L1 +U1) and B = (11(11U1 −60)) with the unique r∗ given as

r∗ = F−1
(

1− hB(1− p)Q(
B′

p(r)(B̄(r)+ s̄(r)− r)−Bp(r)
)(

D(cl − cb)+hBQ(1− p)
)
+

(
clD+hBQ(1− p)

))

(10)

4.2.3. Scenario III

As the last case, we have q deterministic and θ3 as random variable that follow

standard uniform distribution and reworking completely results in lower quality items,
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that is θl = 1. Vendor’s total expected cost per cycle becomes

ETCV (QV ) = KV +hVl QV qµθ3 + cPQV + crQV qµθ3 +
ηQV

δ1
ln
(

q0

q

)
+

ηQV

δ2
µln(θ3/θ30 )

+hV

(
Q2

V (D(2q2(L2
2 +L2U2 +U2

2 )+3q(L2 +U2 +2)−6)+6P(q−1)2)

12PD

)
(11)

and the optimal quantity is given as

Q∗
V =

√
12KV PD

hV D
(
2q2
(
L2

2 +L2U2 +U2
2
)
+3q(L2 +U2 +2)−6

)
+6hV P(q−1)2 (12)

Accordingly, the expected total annual cost is

ETC(Q,r) =
(

KV +KB +F + cQ+ cPQ+ crQqµθ3 +hVl Qqµθ3 +d + cbB̄(r)+ cl s̄(r)

+hV

(
Q2
(
D
(
2q2
(
L2

2 +L2U2 +U2
2
)
+3q(L2 +U2 +2)−6

)
+6P(q−1)2

)
12PD

)
+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+

ηQ
δ1

ln
(

q0

q

)
+

ηQ
δ2

µln(θ3/θ30 )

)
D

Q(1− p)
(13)

and the optimal order quantity for integrated model is

Q∗ =

√
12PD(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

hV D(2q2(L2
2 +L2U2 +U2

2 )+3q(L2 +U2 +2)−6)−6hB(p2 −1)P+6hV P(q−1)2

(14)

and the unique r∗ given as

r∗ = F−1
(

1− hB(1− p)QB(
B′

p(r)(B̄(r)+ s̄(r)− r)−Bp(r)
)(

D(cl − cb)+hBQB(1− p)
)
+

(
clD+hBQB(1− p)

))

(15)

4.2.4. Analysis on scenarios

We used the same parameter values with two new ones (θl,hVl ) and calculated the

total costs, optimal quantities and reorder points. Table 17 shows that when we have

chance to rework on all defective items (Scenario I), the integrated optimal quantity

is the minimum among all cases. Due to same form of buyer equation, reorder points
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(r∗B,r
∗) and buyer’s optimal quantity (Q∗

B) has not changed. Ideally, Scenario I has

the lowest difference on individual and integrated costs (0.4802%), because of the

rework cost. In Scenario II, we have smaller reworkable rate with lower quality items.

Because of extra work, the optimal quantities for both integrated and vendor are higher

with total costs. Integrated cost is affected by holding cost for those lower quality items

along with higher quantity since demand is satisfied only from perfect items. Scenario

III shows q as deterministic and θ3 as stochastic (µθ3 = 0.75) with higher integrated

order quantity and total cost than previous cases. With known defective rate and

stochastic rework rate, we need to produce more especially when all reworked items

are considered as lower quality. Finally, this case has the highest difference between

sum of individual costs and integrated cost, that means cooperation of buyer and vendor

has the most advantage when there is lower defective rate. From the perspective of lot

size, it is the highest case, however if the goal is cost efficiency lower quality items is

not a problem since we are not reworking on them.
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CHAPTER 5: CONCLUSION

In this thesis, we proposed a new integrated model in a complex supply-chain

environment with imperfect production processes and defective items are present. The

considered model has investment both in the production process and reworking process

as separate functions. This point is fundamental in supply chain since process quality

can be better by investing in the production process such as maintenance and repair

of machines, and buying new machines for higher performance. Additionally, the

control on process quality provides more non-defective items, which means smaller

production lot size, less shipments from vendor to buyer and overall higher trust

and reliability in business. We also introduced a customer time-sensitivity term

for partial backordering, which is a significant extension to the existing literature.

By incorporating stochastic demand and other parameters, the our proposed model

provided a cost-efficient solution compared to independent decision-making by the

buyer. Moreover, our cost function is strictly convex and nonlinear which is the case in

some literature (such as Hsu and Hsu (2016) and Al-Salamah (2019)). All the additions

in this study fill the gaps that are not considered in the existing literature: for instance,

Hsu and Hsu (2016) and Al-Salamah (2019) for stochastic demand; Taleizadeh et al.

(2015) and Gutgutia and Jha (2018) for investment; Sarkar et al. (2017) and Al-

Salamah (2019) for stochastic defective rate; Hsu and Hsu (2016) and Gutgutia and

Jha (2018) for reworking; and Gutgutia and Jha (2018) and Al-Salamah (2019) for

time-sensitive customer behaviour.

One of the possible extensions to our study can be the inclusion of an inspection

rate and its cost. A future study can be carried out by addition of those terms to

avoid poor quality items in stock. Moreover, depending on the relationship with the

production rate, one can see whether the inspection rate is sufficient. Another extension

is to consider the integration of different quality levels for reworked items. There

can be cases where reworked items are not of perfect quality, but these can still be

sold at certain prices. This point is also connected to the concept of sustainability

and environment-friendly products. Finally, analysing various distribution models for
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demand is a good analysis to evaluate the behaviour on the costs, the reorder point, and

the optimal order quantity.
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Appendix A: Proofs for convexity

Proposition 1. The ETCB(QB,r) expected annual total cost is convex in (QB,r).

Proof. The total expected annual cost for buyer, Eq. 25, is:

ETCB(QB,r) =
(

hB

(
1
2
(QB(1− p))2

D
+

Q2
B p(1− p)

D
+(r−µL + s̄(r))

QB(1− p)
D

)
+KB +F + cQB +d + cbB̄(r)+ cl s̄(r)

)
D

QB(1− p)

Taking the first and second partial derivatives of ETCB(QB,r) with respect to QB and

r, we get

∂ (ETCB)

∂QB
=

2D(cbB̄(r)+d +F + cl s̄(r)+KB)+hB
(

p2 −1
)

Q2
B

2(p−1)Q2
B

, (A.1)

∂ (ETCB)

∂ r
=

D(cbB̄′(r)+ cl s̄′(r))+hB(1− p)QB(1+ s̄′(r))
(1− p)QB

, (A.2)

∂ 2(ETCB)

∂Q2
B

=
2D(cbB̄(r)+d +F + cl s̄(r)+KB)

(1− p)Q3
B

> 0, (A.3)

∂ 2(ETCB)

∂ r2 =
s̄′′(r)(hB(1− p)QB + clD)+ cbDB̄′′(r)

(1− p)QB
> 0, (A.4)

and
∂ 2(ETCB)

∂ r∂QB
=

∂ 2(ETCB)

∂QB∂ r
=

D(cbB̄′(r)+ cl s̄′(r))
(p−1)Q2

B
(A.5)

With those equations, we obtain the determinant∣∣∣∣∣∣
∂ 2(ETCB)

∂Q2
B

∂ 2(ETCB)
∂QB∂ r

∂ 2(ETCB)
∂ r∂QB

∂ 2(ETCB)
∂ r2

∣∣∣∣∣∣
=

D(2(cbB̄(r)+d +F + cl s̄(r)+KB)(s̄′′(r)(hB(1− p)Q+ clD)+ cbDB̄′′(r)))
(p−1)2Q4

− D2 (cbB̄′(r)+ cl s̄′(r))
2

(p−1)2Q4 (A.6)
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This term is non-negative when

2(cbB̄(r)+d +F + cl s̄(r)+KB)
(
s̄′′(r)(hB(1− p)Q+ clD)+ cbDB̄′′(r)

)
≥ D

(
cbB̄′(r)+ cl s̄′(r)

)2 (A.7)

with s̄(r)> 0, B̄(r)> 0, and all positive parameters. Therefore, ETCB(QB,r) is convex

function in (QB,r) when above condition is satisfied.

Proposition 2. TCV (QV ), annual total cost of supplier is strictly convex in QV .

Proof. The total annual cost for the supplier, Eq. 62, is:

TCV (QV ) =

(
KV +hV

(
Q2

V (q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2PD

)
+

QV η

δ1
ln
(

q0

q

)
+

QV η

δ2
ln
(

θ3

θ30

)
+ cPQV + crQV qθ3

)
D

QV (1− p)
(A.8)

Taking the first and second partial derivatives of TCV with respect to QV , we get

d(TCV )

dQV
=

2PDKV −hV Q2
V (q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2(p−1)PQ2
V

(A.9)

d2(TCV )

dQ2
V

=
2KV D

(1− p)Q3
V

(A.10)

since all parameters are positive, d2(TCV )

dQ2
V

> 0 . Therefore, TCV (QV ) is strictly convex

in QV . All other cases can be shown with similar calculation therefore they are skipped.

Proposition 3. ETC(Q,r) expected annual total cost is strictly convex in (Q,r).

Proof. The integrated total expected annual cost in Eq. 170 is:

ETC(Q,r) =
(

KV +KB +F +hV

(
Q2(q(θ3 −1)+1)(P(q(θ3 −1)+1)−D)

2PD

)
+ cPQ

+hB

(
1
2
(Q(1− p))2

D
+

Q2 p(1− p)
D

+(r−µL + s̄(r))
Q(1− p)

D

)
+ crQqθ3

+d + cbB̄(r)+ cl s̄(r)+
Qη

δ1
ln
(

q0

q

)
+

Qη

δ2
ln
(

θ3

θ30

)
+ cQ

)
D

Q(1− p)

(A.11)
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Taking the first and second partial derivatives of ETC(Q,r) with respect to Q and r,

we get

∂ (ETC)

∂Q
=

D(cbB̄(r)+d +F + cl s̄(r)+KB +KV )

(p−1)Q2 +
hB
(

p2 −1
)

2(p−1)

− hV (q(θ3 −1)+1)(Pq(θ3 −1)+P−D)

2(p−1)P
, (A.12)

∂ (ETC)

∂ r
=

DcbB̄′(r)+Dcl s̄′(r)+hB(1− p)Q(1+ s̄′(r))
(1− p)Q

, (A.13)

∂ 2(ETC)

∂Q2 =
2D(cbB̄(r)+KB +KV +d)

(1− p)Q3 > 0, (A.14)

∂ 2(ETC)

∂ r2 =
DcbB̄′′(r)+ s̄′′(r)(hB(1− p)Q+ clD)

(1− p)Q
> 0, (A.15)

and

∂ 2(ETC)

∂ r∂Q
=

∂ 2(ETC)

∂Q∂ r
=

hB (s̄′(r)+1)
Q

−
D
(

cbB̄′(r)+ cl s̄′(r)+
hB(1−p)Q(s̄′(r)+1)

D

)
(1− p)Q2

(A.16)

With those equations, we obtain the determinant∣∣∣∣∣∣
∂ 2(ETC)

∂Q2
∂ 2(ETC)

∂Q∂ r
∂ 2(ETC)

∂ r∂Q
∂ 2(ETC)

∂ r2

∣∣∣∣∣∣
=

2D(cbB̄(r)+d +F + cl s̄(r)+KB +KV )(cbDB̄′′(r)+ s̄′′(r)(clD−hB pQ+hBQ))

(p−1)2Q4

+
h2

B
Q2 +

s̄′(r)
(
2h2

B(p−1)Q− clD(hB +Q)
)
+hBs̄′(r)2(hB(p−1)Q− clD)

(p−1)Q3

+
cbDB̄′(r)(hBs̄′(r)+hB +Q)

(1− p)Q3 (A.17)

because s̄(r) > 0 and B̄(r) > 0 with all positive parameters. Therefore, ETC(Q,r) is

convex function in (Q,r).
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