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Abstract

Inorganic pyrophosphatase 1 (PPA1) is pivotal to cellular metabolism as it

facilitates the hydrolysis of PPi—a by‐product of various metabolic processes

that influence cell growth and differentiation. Overexpression of PPA1 enzyme

has been linked to diminished patient survival and was shown to influence

tumor cell dynamics, thereby positioning it as a potential therapy target for a

variety of cancers including colorectal cancer, diffuse large B‐cell lymphoma,

and lung adenocarcinoma. Despite this therapeutic promise, there are no

known inhibitors of PPA1 as of today. In this study, we searched for potential

PPA1 inhibitors using a molecular docking screen of 30 470 compounds with a

history of clinical trials and/or US Food and Drug Administration approval.

We specifically targeted the active pocket that coincides with the established

catalytic domain. Our screen identified promising hits, which we further

subjected to ADMET (absorption, distribution, metabolism, excretion, and

toxicity) filtering. Subsequent molecular dynamics (MD) analyses were

conducted on devazepide, quinotolast, and tarazepide—the three substances

that successfully navigated all filters. MD analyses reinforced the stability of

the protein‐ligand complexes and confirmed ligand binding, as substantiated

by our root mean square deviation, radius of gyration and secondary structures

of proteins analyses. Furthermore, Molecular Mechanics Poisson‐Boltzmann

Surface Area calculations post‐MD identified devazepide and quinotolast as

showing higher binding affinities; being supported by principal component

analysis, free energy landscape, and dynamic cross‐correlation matrix results.

Overall, our study reveals devazepide and quinotolast as potential candidates
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for PPA1 inhibition which could be considered for repurposing studies that

need further experimental validation. These results not only reveal a potential

for clinical repurposing for PPA1 inhibition but they also offer valuable

insights into the development of future compounds for targeting the crucial

PPA1 enzyme.
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1 | INTRODUCTION

Phosphate is one of the most prevalent elements in the
human body, accounting for approximately 1% of total body
mass.1 Phosphate plays multiple roles in the regulation of
cellular processes, including membrane formation and
energy conversion, signal transduction, as well as gene
expression.2,3 The maintenance of phosphate is highly
important for the body and the dysregulation of phosphate
metabolism can result in the pathogenesis of various
diseases4 including cancer.5 In cells, pyrophosphatases play
a significant role in converting inorganic PPi, which is
generated as a by‐product of many metabolic reactions,6 to
inorganic phosphate (Pi) through hydrolysis (Figure 1, lower
middle panel).7 Two types of family I pyrophosphatases are

found in humans: inorganic pyrophosphatase 1 (PPA1; 289
aa) and −2 (PPA2; 305 aa).8 PPA1 is present in all human
tissues and plays a more prominent role than PPA2.9

PPA1 exerts a wide range of functions including lipid
metabolism, bone formation, collagen synthesis,10 DNA
synthesis, and neurite growth.11 It indirectly regulates
pathways involving key cancer‐related proteins such as
p53, β‐catenin, Bcl−2, and caspase‐3 through directly
dephosphorylating c‐Jun N‐terminal kinase 1 (JNK),
thereby controlling cell proliferation and apoptosis
(Figure 1).12 PPA1 also indirectly activates the PI3K
pathway13 which is heavily emphasized in cancer. In line
with these, PPA1 expression has been notably reported to
be upregulated in various types of cancer, such as
colorectal cancer,12,14,15 diffuse large B‐cell lymphoma,16

FIGURE 1 An overview of PPA1 function in intracellular pathways. PPA1, inorganic pyrophosphatase 1.
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lung adenocarcinoma,17,18 prostate cancer,19 hepato-
cellular carcinoma,20 breast cancer,21 gastric cancer,22,23

intrahepatic cholangiocarcinoma,24 and ovarian can-
cer.18,25 Remarkably, survival analyses revealed a nega-
tive impact of PPA1 levels on patient survival in
nonsmall cell lung cancer,26 colon adenocarcinoma,12

and ovarian cancer.27

The intriguing relationship between PPA1, cancer
and survival prompted scientists to investigate the
tantalizing possibility of a potential therapeutic outcome
of PPA1 inhibition. As no such inhibitors are known yet,
scientists were able to demonstrate its potential use by
employing RNA interference mediated knockdown
experiments, which resulted in reduced cell proliferation
and increased apoptosis in lung and breast cancer cells.28

Similar outcomes were also seen in diffuse large B‐cell
lymphoma, with an emphasis on the emerging relation-
ship between PPA1 and p53.16 There were also promising
attempts to inhibit PPA1‐related pathways and hence
several potentially therapeutic agents such as the JNK
inhibitor JNK‐IN‐8,29 PI3K inhibitor BKM120,30 and
AKT inhibitor capivasertib31 were introduced.

Despite the significant biological and patho‐physiological
implications, there are still no known inhibitors for this
pivotal enzyme as of today. In line with the emerging need of
PPA1 inhibitors in experimental cancer medicine, the aim
of this study was to identify potential competitive inhibitors
of PPA1 from a pool of currently available small molecules.
For potential repurposing, we focused on named molecules
available for sale, which either are of biogenic origin or

reached clinical trials and/or US Food and Drug Adminis-
tration (FDA) approval. We followed a computational
pipeline as given in Figure 2. Initially, we performed a drug
pocket analysis with DogSiteScorer32 and identified only one
potential druggable pocket (not shown) that aligns well with
the enzyme's catalytical site as reported by Niu et al. in 2021.
Targeting this catalytical site, we employed PyRx molecular
docking screen system33 using 30 470 molecules, as obtained
from ZINC15 compund library.34 Small molecules that
displayed relatively higher affinity (binding free energy≤
−9.5 kcal/mol) through this process were subjected to
absorption, distribution, metabolism, excretion, and toxicity
(ADMET) filters, to determine the inhibitor candidates that
could reach clinics as fast as possible within a potential
repurposing scheme. Successful candidates were then
subjected to molecular dynamics (MD) simulations against
the catalytical site of PPA1, followed by detailed calculations
(principal component analysis [PCA], free energy landscape
[FEL], Dynamic Cross‐Correlation Matrix [DCCM], define
secondary structures of proteins [DSSP] and MM‐PBSA
analyses).

2 | MATERIALS AND METHODS

2.1 | Collection of the molecular
structures of small molecules

We downloaded 30 470 compounds from the ZINC15
database.34 To effectively manage the extensive libraries

FIGURE 2 Computational workflow of the
study.
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within this database, we implemented a focused
approach by narrowing the investigation to “named”
and “commercially available” compounds that are
readily accessible in the market and have biogenic
origins, currently in clinical trials, historically used in
clinical trials and/or approved by FDA; with the purpose
of finding hits that could proceed to clinical repurposing
as soon as possible. The molecules that we selected were
saved in the *.mol2 file format and imported into the
workspace of PyRx docking screen tool.33 Following this,
10 000 steps of energy minimization with the GAFF and
conjugate gradient method were used to optimize the
atomic positions of the ligands, ensuring their precision
for reliable compound screening.

2.2 | Preparation and validation of PPA1
structure

To create a viable PPA1 protein structure, the X‐ray
diffraction crystal structure of PPA1 (Protein Data Bank
[PDB]: 6C45) was obtained from PDB35 at a resolution of
2.39Å.36 To complete the missing residues, we performed
homology modeling with the MODELLER software37

making use of other human PPA1 structures found in the
PDB database (7CMO, 7BTN). Created models were verified
using the Discrete Optimised Protein Energy [DOPE]
algorithm implemented in MODELLER.38 The best model
determined by the DOPE score was selected for further
assessment to comprehensively evaluate its structural
integrity and accuracy with the help of advanced tools such
as ProSA‐web39 and PROCHECK.40

2.3 | Molecular docking screen and
ADMET analysis

To determine targetable pockets in the protein structure,
we employed DogSiteScorer, a powerful tool for identify-
ing potential binding sites.32 This revealed only one
suitable ligand pocket, which perfectly aligned with the
catalytic domain of PPA1 as Niu et al. previously
published (2021). The center of mass of the gridbox for
this target site was calculated as 19.55, 60.46, and 37.41
on X, Y, and Z‐axes, respectively. To ensure that the
docking gridbox encompases all essential atoms of the
catalytical pocket, box dimensions were set to 20 Å × 20
Å × 20 Å. Molecular docking was serially performed
using PyRx, which utilizes AutoDock Vina.33,41 Follow-
ing the docking process, binding energies were obtained
for each candidate molecule. Molecules with a binding
free energy ≤−9.5 kcal/mol were projected into ADMET
analysis.

ADMET analysis was conducted using two software
tools, SwissADME42 and AdmetSar.43,44 The SMILES
format of each molecule was extracted from the
ZINC15 database. SwissADME, a platform featuring
rule‐based filters from major pharmaceutical compa-
nies, was employed for Lipinski (Pfizer)45 and Muegge
(Bayer)46 filters. Candidates with one or less filter
violation and bioavailability scores ≥ 0.55 were
included for further consideration as suggested by
previous literature.47,48 AdmetSar was utilized for
further analysis, human intestinal absorption was
classified using the HIA data set and framework to
establish its viability.49 Acute oral toxicity was deter-
mined based on a model considering toxicity measure-
ments, with lower toxicities (<2.5) indicating promis-
ing candidates.50

2.4 | Molecular dynamics simulations
of PPA1‐ligand complexes

Promising small molecule candidates underwent MD
simulations to gain a better insight into their mode of
binding in dynamic motion. Here, we employed
GROMACS 2021.3 software51 using the
AMBER99SB‐ILDN all‐atom force field,52 which is
specifically compatible for our downstream analyses
(including Molecular Mechanics Poisson‐Boltzmann
Surface Area [MMPBSA]) to calculate the outcome of
our MD simulations. Our MD simulations were
initiated with *.pdb files obtained as a result of
molecular docking. To generate ligand topologies and
force field parameters, Acpype (AnteChamber PYthon
Parser interfacE) was employed.53 Protein‐ligand
complexes were solvated in a cubic box
(20 × 20 × 20 Å) using TIP3P water molecules. To
maintain system neutrality, solvent molecules were
replaced with either Cl− or Na+ ions. Long‐range
electrostatic interactions were treated using the
Particle Mesh Ewald (PME) method. Throughout the
simulations, a constant temperature of 300°K was
maintained, while the pressure was controlled iso-
topically at 1 bar using Parrinello‐Rahman coupling.54

The LINCS algorithm55 was applied to constrain bond
lengths, employing a time step of 2 fs. Before the MD
run, structures were relaxed through energy mini-
misation using the steepest descent algorithm for
50 000 steps, followed by 1 ns of equilibration at NVT
(constant number of particles, system volume, and
temperature) and NPT (constant number of particles,
system pressure, and temperature). Subsequently,
independent MD simulations were performed, with
atomic coordinates saved every 10 ps. The resulting
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trajectories were collected for further analysis and
characterization.

2.5 | Analysis of molecular dynamics
trajectories

We performed post MD analyses using the useful tools in
the GROMACS kit that includes root mean square
deviation (RMSD), root mean square fluctuation (RMSF),
hydrogen bond count, FEL, and the radius of gyration
(Rg). The estimation of secondary structure mobility was
calculated using the dictionary of protein secondary
structure method (do_dssp).56,57 Results of these analyses
were visually represented with Xmgrace. To assess
dynamic cross‐correlations, the MD‐TASK suite58 was
employed. Principal components were calculated using
the MODE‐TASK PCA script.59 Molecular Mechanics
Poisson‐Boltzmann Surface Area (MM‐PBSA) approach,
which has been utilized as a useful tool in recent
publications60,61 was adopted to approximate the free
energy of binding (ΔG) for each candidate molecule
using the gmx_MMPBSA tool.62,63 Per‐residue decompo-
sition analyses during MM‐PBSA calculations were
performed for all residues located within the proximity
of 20 Å from the ligands.

3 | RESULTS

3.1 | Preparation and validation of PPA1
structure

PPA1 is predominantly found in a homodimeric or ‐
tetrameric form.36 We extracted its homodimeric form
from 6C45 PDB structure and performed homology
modeling with MODELLER37 using other human PPA1
structures (PDB:7CMO, 7BTN) to fill the missing
aminoacid residues. To generate the best model, we used
the Z‐dope method, which approximates a protein
model's score depending on its composition and size.38

Among 25 structures produced by MODELLER, the one
with lowest normalized Z‐dope score (−1.36785) was
selected for downstream processing and analysis. Once
the complete structure of PPA1 dimer was obtained, it
was superimposed with 6C45, which resulted in an
RMSD of 0.295 Å (Figure 3A). To further verify the
validity of our model, we employed ProSA39 and
PROCHECK40 web‐tools. ProSA evaluated the quality
of our model by comparing the Cα atom positions with
similar structures found in the PDB database revealing a
Z‐score of −8.36 (Figure 3B). We compared our structure
with other human PPA1 structures found in the PDB

database, including 6C45, 7CMO, and 7BTN, which
produced Z‐scores of −7.82, −7.02, and −7.66, respec-
tively. We also checked if the catalytical pocket could fit
into an appropriate docking gridbox (Figure 3C). For
further structural evaluation, we generated a Ramachan-
dran plot with PROCHECK. The majority of residues
(91.9%) were found in most favored regions, 7.3% in
additional allowed regions, 0.8% in generously allowed
regions, and none in disallowed regions (Figure 3D).
Taken together, these results indicated a well‐modeled
structure of PPA1, which was ready for further processes
and analyses in this study.

3.2 | In silico compound screen and
ADMET analysis

Molecular docking can be iteratively used to screen a vast
number of compounds,64 thereby enabling the discovery
of molecules with potentially high binding affinities
against a target protein. In this study, a total of 30 470
compounds sourced from the ZINC15 database34 were
subjected to docking onto the active site of the Chain‐A
of PPA1.36 Chain‐A was selected as the better‐scored
chain in the original crystallized structure. Docking was
performed using a suitable gridbox configuration, as
illustrated in Figure 3C. We employed PyRx virtual
screening software,33 which employs Autodock Vina.41

The interaction between the ligand and the protein was
determined by evaluating the binding free energy
(Supporting Information: Table 1). Our virtual screening
process was concluded by establishing a threshold of
≤−9.50 kcal/mol. This allowed reducing the number of
molecules, selecting only the significant compounds as
demonstrated in Table 1.

Following the identification of 12 promising small
molecules through molecular docking, their absorption,
distribution, metabolism, elimination, and toxicity
(ADMET) properties were evaluated using the widely
recognized in silico ADMET profiling tools, Swis-
sADME42 and AdmetSar,43,44 as presented in Table 2.
In SwissADME, the Lipinski,45 and Muegge46 filters were
applied. These filters are well‐established indicators that
provide valuable insights into a molecule's features,
including molecular weight, lipophilicity and rotatable
bonds.47 Additionally, only the molecules that had good
Abbott bioavailability scores (≥0.55) were selected as
suggested previously.47,48 AdmetSar was utilized to assess
crucial factors such as human oral bioavailability,
intestinal absorption characteristics and acute oral
toxicity scores; where a threshold of ≤2.5 was applied
as described before.50 We focused on candidate hits that
could reach clinics easily with fewer potential side effects

1650 | MENTEŞ ET AL.
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and the aforementioned factors served as eliminative
parameters to screen and prioritize candidate mole-
cules.65 Consequently; three ligands—devazepide, qui-
notolast and tarazepide—successfully met all the applied
filters (given in bold characters in Table 2). To better
understand the relationship between the promising
ligands and PPA1, we visualized their binding modes
using LigPlot+,66 which allows one to observe the
hydrogen bonds and the interacting amino acids
(Figure 4). Next, the dynamics of these potential
interactions between the selected ligands and PPA1 were
analyzed using MD simulations.

3.3 | Molecular dynamics simulations

Stability and dynamics of the most promising small
molecule ligands; devazepide, quinotolast and tarazepide,

and their interaction with PPA1 were analyzed with a MD
simulation using GROMACS.51 Upon molecular docking,
all three ligands were separately subjected to a 40 ns MD
simulation with the PPA1 homodimer at 300°K. The
stability of each complex was demonstrated using RMSD
of backbone‐to‐backbone trajectories to see possible back-
bone shifts. The backbone RMSD values for devazepide,
quinotolast and tarazepide complexes reached stability at
20 ns and remained stable for the rest of MD simulation.
The RMSD values for Devazepide‐PPA1 complex averaged
at 0.250 nm, with a standard deviation of 0.031. Similarly,
tarazepide‐PPA1 complex exhibited an average RMSD of
0.222 nm with a standard deviation of 0.036, while
quinotolast‐PPA1 complex displayed an average RMSD
of 0.306 nm with a standard deviation of 0.045. The
results pointed out similar RMSD characteristics for all
three compounds in a dynamic relationship with PPA1
(Figure 5A).

FIGURE 3 Evaluation of the quality of modeled PPA1 structure. (A) Structural alignment of the current model with the original PDB
structure (6C45). (B) The Z‐score plot of the model indicating the model's quality in relation to other structures within its range. (C) The
placement of the grid box for molecular docking. (D) Ramachandran plot of the processed model. PPA1, inorganic pyrophosphatase 1.

MENTEŞ ET AL. | 1651

 10974644, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcb.30475 by Izm

ir E
konom

i U
niversitesi, W

iley O
nline L

ibrary on [02/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



TABLE 1 The outcome of the
docking screen as identified molecules
and their corresponding binding
affinities.

Zinc ID Compound name Structure

Binding
free energy
(kcal/mol)

zinc000002015955 Tarazepide −10

zinc000085548251 A‐77003 −9.9

zinc000100378061 Naldemedine −9.8

zinc000014806830 Purmorphamine −9.7

zinc000001847292 Devazepide −9.6

zinc000072266997 Semapimod −9.6

zinc000000002018 Quinotolast −9.5

zinc000003936474 Palinavir −9.5

1652 | MENTEŞ ET AL.
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The Rg was then evaluated as a measure of
compactness and protein structure size.67 This value is
calculated by the distribution of atoms around the
protein axis, facilitating the estimation of pressure
exerted on a specific location and showing the strength
of bonds between two cross‐sections. In all inhibitor‐
protein complexes, we observed similarly stable results
(Figure 5B). The Rg for devazepide‐PPA1 complex
averaged 2.746 nm with 0.015 standard deviation, the
Rg for tarazepide‐PPA1 complex averaged 2.749 nm with
0.012 standard deviation and the Rg for quinotolast‐PPA1
complex averaged 2.750 nm with 0.014. To determine
whether PPA1 protein undergoes structural fluctuations,
we calculated RMSF. Overall, all protein‐ligand com-
plexes exhibited similar behavior with this analysis. The
Devazepide‐PPA1 complex demonstrated an average
RMSF of 0.137 nm, accompanied by a standard deviation
of 0.066. In the case of the tarazepide‐PPA1 complex, the
RMSF averaged at 0.134 nm, with a standard deviation of
0.085. Similarly, the quinotolast‐PPA1 complex exhibited
an average RMSF of 0.148 nm, with a standard deviation

of 0.066. Peak fluctuation was observed between residues
100 and 120 for all ligands, but tarazepide exhibited a
notable increase in fluctuation in this interval
(Figure 5C). In contrast to PPA1 protein per se, the
ligands inside the pocket exhibited a more dynamic
behavior. Devazepide and tarazepide underwent a
significant change in binding mode at the beginning of
the simulation, culminating in a stable state later on.
Quinotolast, on the other hand, underwent a considera-
ble change in its binding mode at the 8 ns mark, which
was sustained until 28 ns before changing again and
remaining at this final state until the end of simulation
(Figure 5D). The devazepide complex exhibited an
average RMSD of 0.782 nm, with a standard deviation
of 0.082. For tarazepide, the average RMSD was
0.504 nm, accompanied by a standard deviation of
0.058. Additionally, the quinotolast complex displayed
an average RMSD of 0.435 nm, with a standard deviation
of 0.122. The behavior of all ligands were also reflected in
hydrogen bond analysis (Figure 5E). Devazepide and
tarazepide formed stable hydrogen bonds throughout the

Zinc ID Compound name Structure

Binding
free energy
(kcal/mol)

zinc000006716957 Nilotinib −9.5

zinc000029042407 Sequoiaflavone −9.5

zinc000030726809 Usambarensine −9.5

zinc000085537149 Sovaprevir −9.5

Note: (Molecule structures were taken from the PubChem database).

MENTEŞ ET AL. | 1653
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simulation, whereas quinotolast drifted in hydrogen
bond formation at around 8 and 25 ns marks. Among
the compounds examined, quinotolast demonstrated the
highest count of hydrogen bonds averaging 1.160
throughout the simulation, while devazepide exhibited
a relatively lower average of 0.334, and tarazepide
achieved the lowest number of H‐bonds averaging
at 0.011.

3.4 | Principal motion and cross
correlation analyses on PPA1 upon ligand
binding

To further reveal the dynamic response of PPA1
structure upon ligand binding, we utilized PCA, a
mathematical method that reduces multidimensional
sets of variables to smaller dimensions based on
covariance matrices. PCA determines the diffusive
characteristics of proteins during various folding
phases and calculates atomic displacements in each
conformation comprising the trajectory.68 Here, deva-
zepide was associated with a relatively stable PPA1
structure throughout the simulation, whereas quino-
tolast exerted some changes on PPA1 structure after
the initial quarter of the simulation (Figure 6A).
Tarazepide, on the other hand, causes an obvious
change in the protein's conformation at later phases of
the simulation. The thermodynamics and kinetics of

molecular processes in solution could be inferred by
FEL calculations.69 When FEL calculations were
projected onto the PCA graph we obtained earlier,
devazepide and quinotolast exhibited their lowest
energy states towards the end of the simulation
(Figure 6B). However, tarazepide began with the
lowest energy state and transitioned to a higher energy
state by the end. To further characterize the conforma-
tional dynamics of PPA1, we conducted DCCM
analysis to see the correlated motions among all amino
acids of PPA1 upon ligand binding. DCCM calculates
cooperative atomic motions by analyzing the
covariance and time correlation of positional fluctua-
tions of atoms within a protein‐ligand complex.70 Upon
analyzing the dimer structure, it was observed that
PPA1‐devazepide complex exhibited the lowest level of
correlation, while PPA1‐quinotolast complex displayed
a less degree of correlation. Conversely, PPA1‐
tarazepide complex exhibited the highest level of
correlation within the structure among all the ligand
molecules studied here (Figure 6C). We also analyzed
the mobility of secondary structures using the DSSP
analysis and we curated structural snapshots from
diverse time intervals throughout our MD simulations
(0−20−40 ns) and superimposed them onto the origi-
nal 6C45 structure (Supporting Information: Figure 1).
These analyses aimed to understand structural dynam-
ics linked to the interaction between the ligands
and PPA1. The results indicated that the presence

TABLE 2 Evaluation of the ADMET properties of the molecules identified through molecular docking.

ZINC ID Compound name

ADMET analysis

Lipinski
filter
(Pfizer)

Muegge
filter
(Bayer)

Bioavailability
score

Human oral
bioavailability

Acute
oral
toxicity

Human
intestinal
absorption

zinc000002015955 Tarazepide 0 violation 0 violation 0.55 + 2.49 +

zinc000085548251 A‐77003 3 violations 4 violations 0.17 + 2.16 −

zinc000100378061 Naldemedine 1 violation 1 violation 0.55 − 3.72 +

zinc000014806830 Purmorphamine 1 violation 1 violation 0.55 + 1.77 +

zinc000001847292 Devazepide 0 violation 0 violation 0.55 + 1.92 +

zinc000072266997 Semapimod 3 violations 4 violations 0.17 − 2.81 +

zinc000000002018 Quinotolast 0 violation 0 violation 0.56 + 2.50 +

zinc000003936474 Palinavir 2 violations 3 violations 0.17 − 2.41 +

zinc000006716957 Nilotinib 1 violation 0 violation 0.55 − 2.68 +

zinc000029042407 Sequoiaflavone 1 violation 2 violations 0.55 − 1.81 +

zinc000030726809 Usambarensine 0 violation 1 violation 0.55 − 3.54 +

zinc000085537149 Sovaprevir 2 violations 4 violations 0.17 + 2.78 +

Note: (Substances indicated in bold characters are those that passed all filters).
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of any molecule did not result in significant
conformational changes in PPA1's secondary structure.
This could potentially be linked to the compounds'
competitive binding behavior, which hinders substrate
binding, rather than being solely attributed to inhibi-
tion through conformational changes (Supporting
Information: Figure 2).

3.5 | Binding free energy analyses with
MM‐PBSA and per‐residue decomposition

To determine the average binding affinities of stabilized
PPA1 protein‐ligand complexes, relatively stable final
parts of all trajectories covering the last 10 ns of MD
simulations were analyzed (Table 3). This analysis was

FIGURE 4 Candidate small molecule inhibitors against PPA1. Docking poses of (A) devazepide, (B) quinotolast, (C) tarazepide
(left panel) and 2D illustration of the binding with LigPlot + (right panel). Ligand molecules are shown in contact with the amino acid
residues through hydrogen bonds (yellow) and Van der Waals interactions (red). PPA1, inorganic pyrophosphatase 1.
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conducted using the MMPBSA calculations.62,63 Devaze-
pide exhibited the highest binding affinity among all
tested compounds, indicating a strong interaction with
the target protein. Quinotolast also displayed a similarly
high binding affinity, implicating another strong

interaction with PPA1. In contrast, tarazepide displayed
a lower binding affinity, suggesting a relatively weaker
interaction with PPA1 in dynamic motion.

We also conducted decomposition analyses to
determine the contribution of individual amino acid

FIGURE 5 Molecular dynamics analyses to examine the behavior of potential inhibitors of PPA1. (A) Calculation of RMSD values for
backbone Cα atoms of PPA1 with different ligands over time. (B) Measurement of the radius of gyration (Rg) for all three ligands. (C)
Calculation of RMSF values for all ligands along the aminoacid residues of PPA1. (D) Calculation of the RMSD values of ligands over time.
(E) Intramolecular hydrogen bond formation between PPA1 and; devazepide (black), quinotolast (red), tarazepide (green). PPA1, inorganic
pyrophosphatase 1; RMSD, root mean square deviation; RMSF, root mean square fluctuation.

1656 | MENTEŞ ET AL.

 10974644, 2023, 10, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/jcb.30475 by Izm

ir E
konom

i U
niversitesi, W

iley O
nline L

ibrary on [02/05/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



residues to ligand binding during the MD simulation.
Per‐residue analysis revealed many interacting resi-
dues among which 8 residues exhibited a notable
change in free energy (ΔG < −0.5 kcal/mol) for deva-
zepide whereas 7 residues appeared for quinotolast and
tarazepide (Figure 7). Although a large number of
residues were affected, the decomposition results for
significant residues (ΔG < −0.5 kcal/mol) for all candi-
dates generally agreed well with the corresponding
residues in the molecular docking poses presented in
Figure 4 earlier. Among all the ligands, two residues,
LYS153 and TRP187, were found to be shared. These
residues have varying degrees of impact on different

ligands, with some showing a more significant effect.
Devazepide exhibited the highest number of residues
that positively influenced the binding, indicating a
strong and favorable interaction with PPA1. Compared
to devazepide, there were fewer notable residues for
quinotolast and tarazepide in this analysis; though
with significantly higher binding affinities for certain
amino acids such as ASP70 for quinotolast and LYS153
for tarazepide. Moreover, ligand binding to the
catalytical domain of PPA1 seems to have minor
effects on the stability of this protein when the
trajectories are compared to that of ligand‐free MD
simulations (Supporting Information: Figure 3).

FIGURE 6 Principal motion and cross‐correlation analyses of MD trajectories. (A) Principal component analysis (PCA) where the first
frame was highlighted in purple and the last frame was highlighted in yellow. (B) FEL (Free energy landscape) analysis, the function of PC1
and PC2 illustrated by FEL, with the lowest energy state denoted by the blue color and highest with red. (C) DCCM (Dynamic cross‐
correlation matrix) plots showing dynamic cross‐correlation of PPA1 aminoacids. Complete correlation is represented with red color, while
complete anti‐correlation is represented with blue. MD, molecular dynamics; PPA1, inorganic pyrophosphatase 1.
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4 | DISCUSSION

Given the critical involvement of the PPA1 enzyme in
cancer and the absence of its known inhibitors, our
objective was to explore small molecule compounds with
the potential to interfere with PPA1 activity. We
particularly focused our screen on existing compounds

that at least reached clinical trials, with a potential for
repurposing strategy that could reach clinics more easily.
Our in silico investigation revealed three potential
repurposing ligands: devazepide, quinotolast, and tar-
azepide. Devazapide and tarazepide were successful in
preclinical analyses and reached clinical stage,71,72 while
quinotolast progressed to regulatory approval for clinical

TABLE 3 Binding free energies and
important attributes of the ligands as
calculated from MD trajecories by
employing the MMPBSA method.

Devazepide Quinotolast Tarazepide

Avg SEM Avg SEM Avg SEM

VDWAALS −45.74 0.07 −40.67 0.08 −40.65 0.11

EEL −2.50 0.09 −306.08 0.66 −9.09 0.08

EPB 22.56 0.10 325.12 0.78 42.07 0.21

ENPOLAR −4.23 0.00 −4.04 0.00 −4.70 0.01

EDISPER 0.00 0.00 0.00 0.00 0.00 0.00

ΔG gas −48.24 0.11 −346.75 0.68 −49.75 0.14

ΔG solv 18.32 0.09 321.08 0.78 37.36 0.21

ΔG bind −29.91 0.11 −25.67 0.24 −12.39 0.18

Abbreviations: Avg, average; MD, molecular dynamics; MMPBSA, Molecular Mechanics Poisson‐Boltzmann
Surface Area; SEM, standard error of the mean.

FIGURE 7 The decomposition analysis of PPA1 residues. (Only the residues with ΔG<−0.5 kcal/mol were shown). PPA1, inorganic
pyrophosphatase 1.
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use in some countries.73,74 Our MD analyses revealed
that the PPA1‐ligand complexes exhibited stable behav-
ior with these ligands, as indicated by consistent RMSD
backbone and Rg values. The RMSF results exhibited
similar fluctuations for all ligands, with the exception of
tarazepide displaying greater fluctuation between resi-
dues 100−120. These results were in line with PCA and
FEL evaluations as well as with MMPBSA calculations
followed by decomposition (per‐residue) analyses. In
particular, devazepide and quinotolast demonstrated
greater stability throughout MD and ultimately reached
the minimum energy state at the end of MD simulations.
Tarazepide, on the other hand, achieved a minimum
energy state at the beginning of the simulation followed
by a continuous decline as specifically noted in PCA and
FEL graphs. DCCM analysis revealed slight differences in
the motion of protein‐ligand complexes with a notable
difference for tarazepide in line with our other results.
These observations suggest a compromised binding for
tarazepide towards PPA1 in a dynamic simulation as
opposed to the earlier docking result. This was also
consequently observed in MMPBSA calculations. Deva-
zepide and quinotolast consistently progressed towards
the minimum energy complex, maintaining their stabil-
ity in PPA1‐bound form and thereby preserving their
high binding affinities.

Despite having similar docking poses, interacting
amino acids, and molecular structures, devazepide and
tarazepide exhibited a substantial difference in their
binding to PPA1 during MD simulations. To gain deeper
insight into the underlying causation, an intricate
analysis of the pharmacophore attributes of these small
molecules was conducted75 as presented in Supporting
Information: Figures 4−6. These attributes offer valuable
information about the spatial arrangement of functional
groups within the molecules, thereby influencing their
biological activities.76 Furthermore, a comprehensive
pharmacophore model was generated to illustrate the
conserved features among these ligands, as depicted in
Supporting Information: Figure 7.

The pharmacophore features of devazepide and
tarazepide were generally similar, agreeing well with
our molecular docking results. However, the difference
between the binding stabilities of these ligands could be
attributed to the presence of an extra H‐bond donor in
devazepide. This observation aligns well with our other
findings, particularly in terms of hydrogen bond forma-
tion during MD simulations. Given that hydrogen bonds
are regarded as the primary factors contributing to
stronger protein‐ligand interaction,77 the presence of the
extra H‐bond donor in devazepide likely contributes to its
favorable stability within PPA1's target binding pocket,
thereby enabling it to have a relatively stable affinity.

Similar to devazepide, quinotolast also exhibited this H‐
bond donor around the same position and overall
exhibiting better H‐Bond formation capabilities com-
pared to other ligands (Figure 5E). Intriguingly, quino-
tolast, which is the most active ligand within the binding
pocket (Figure 5B), seems to contradict with the
hydrogen bond formation. However, the introduction of
hydrogen bond donors or acceptors to bolster protein‐
ligand interactions may not invariably yield heightened
binding affinity,77 and might not necessarily augment the
stability of the ligand. Thus, devazepide and quinotolast
stand out as inhibitor candidates against PPA1. Devaze-
pide is a cholecystokinin antagonist that targets the
neuroactive ligand‐receptor interaction, Insulin secretion
and pancreatic secretion pathways.78 It is also worth
mentioning that devazepide has primarily been tried as
an anti‐anxiety medication. Quinotolast is an orally
administered mast cell stabilizer and exerts a cytopro-
tective influence on the gastric mucosa, serving as an
agent with antiallergic and antiulcer properties.79 Con-
sidering all, it becomes crucial to seek further clarifica-
tion in laboratory experiments to ascertain the safety of
these drugs in the context of cancer treatment since
computations inherently involve certain approximations
and simplifications. Ensuring that these calculations
correctly reflected the real life applications and, the
anticipated and common side effects, including physio-
logical depression or suppression in the case of quino-
tolast80 and gallstone toxicity associated with devaze-
pide,81 should be effectively addressed before attempting
to use them for repurposing.

In conclusion, our study aimed to identify potential
competitive inhibitors for PPA1, a pivotal protein
involved in phosphate metabolism and cancer cell
proliferation. Our primary objective was to identify
candidate repurposing molecules that have the potential
to bypass the lengthy process of de novo drug develop-
ment. However, the compounds identified here need
further experimental validation. Following our initial
analyses, three ligands; namely devazepide, quinotolast,
and tarazepide, emerged as promising candidates. Each
of these compounds did not cause a significant change in
the structural conformation of PPA1. Upon conducting a
more comprehensive evaluation, tarazepide did not a
demonstrate satisfactory performance. Therefore, pre-
clinical testing is especially warranted for devazepide and
quinotolast. To overcome the limitations of our study,
further preclinical toxicity/drug interaction analysis
would also be invaluable before considering these
candidates for PPA1 inhibition. Our MD simulations
formed stable complexes within the 40 ns time‐frame
presented in this study. Still, there is no consensus in the
literature on drug discovery in terms of MD simulation
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times82–85 and simulations covering longer time periods
would provide deeper insights into the structural
dynamics of PPA1 bound by drug candidates.
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