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Abstract— Hyperspectral image (HSI) classification is an important task in many applica-
tions, such as environmental monitoring, medical imaging, and land use/land cover (LULC)
classification. Due to the significant amount of spectral information from recent HSI sensors,
analyzing the acquired images is challenging using traditional Machine Learning (ML) methods.
As the number of frequency bands increases, the required number of training samples increases
exponentially to achieve a reasonable classification accuracy, also known as the curse of dimen-
sionality. Therefore, separate band selection or dimensionality reduction techniques are often
applied before performing any classification task over HSI data. In this study, we investigate
recently proposed subspace learning methods for one-class classification (OCC). These methods
map high-dimensional data to a lower-dimensional feature space that is optimized for one-class
classification. In this way, there is no separate dimensionality reduction or feature selection pro-
cedure needed in the proposed classification framework. Moreover, one-class classifiers have the
ability to learn a data description from the category of a single class only. Considering the imbal-
anced labels of the LULC classification problem and rich spectral information (high number of
dimensions), the proposed classification approach is well-suited for HSI data. Overall, this is a pi-
oneer study focusing on subspace learning-based one-class classification for HSI data. We analyze
the performance of the proposed subspace learning one-class classifiers in the proposed pipeline.
Our experiments validate that the proposed approach helps tackle the curse of dimensionality
along with the imbalanced nature of HSI data.

1. INTRODUCTION

Hyperspectral imaging has become an essential tool in various fields, such as remote sensing, ge-
ology, and agriculture [1, 2]. Due to the high-dimensional nature of hyperspectral data, which
can have hundreds of frequency bands, traditional machine learning algorithms face challenges in
efficiently and effectively classifying this data. The curse of dimensionality is a challenge in which
the required number of training samples increases exponentially as the number of frequency bands
increases, making it difficult to achieve reasonable classification accuracies. Furthermore, in the
case of HSI data, the labels can be highly imbalanced, which means that there can be a large
number of samples from one class and a much smaller number from other classes. This can again
make traditional ML methods ineffective in generalization as they may overfit the majority class
and perform poorly on the minority classes. One-class classifiers (OCC), on the other hand, are
very useful in cases where the training data available is from a single class only. Such classifiers
can be used to train a model with features that are characteristic of the target class only.

Spectral bands in hyperspectral images are often highly correlated. Therefore, band selec-
tion/reduction methods [3, 4, 5] are often employed as a preprocessing step for hyperspectral image
analysis to improve classification accuracy and reduce computational costs. Two common tech-
niques used for this task are feature extraction and feature selection. Feature extraction transforms
the original high-dimensional space of raw hyperspectral images to a lower-dimensional feature
space using algorithms like PCA [6], or ICA [7]. However, a drawback of feature extraction meth-
ods is that the transformed feature space may no longer contain spectral information and can lead
to the loss of interpretability in hyperspectral data. The other approach is called feature or band
selection, and it aims to identify the most informative bands for classification. Different methods
have been proposed for band selection, and they can be categorized into supervised [8], unsupervised
[9] [10], and semi-supervised [11] approaches. While band selection can improve the performance
of hyperspectral image analysis, there are also some potential drawbacks to consider. First of all,
the selected subset of bands may not be optimal for all classification tasks and could result in
reduced accuracy for certain applications. Moreover, the computational complexity and potential
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bias introduced by the band selection techniques may limit their applications as a preprocessing
step in classification. For example, supervised band selection methods can be biased toward the
classes that are overrepresented in the training data. In contrast, unsupervised methods may miss
important information that is not apparent in the data distribution. Finally, there is a risk of over-
fitting when using dimensionality reduction techniques, where the model may fit the existing noise
instead of the underlying patterns in the data. This can lead to poor generalization performance
on new data.

To mitigate these challenges, in this study, we leverage Subspace Support Vector Data Descrip-
tion (S-SVDD) for the one-class classification of hyperspectral images. The S-SVDD method is
a hybrid technique that combines the advantages of subspace learning and support vector data
description (SVDD) [12]. S-SVDD employs a subspace learning technique to project the data onto
a lower-dimensional feature space that optimizes the one-class classification task; hence there is no
need for separate dimensionality reduction or feature selection procedure in the proposed classifica-
tion framework. It aims to learn the boundary of the target data distribution in the subspace by a
hyper-sphere that encloses the positive samples and maximizes the margin between the sphere and
the negative samples. This boundary defines the one-class region in the low-dimensional feature
space, which can be used to classify new data points. The S-SVDD method has been shown to be
effective in handling the curse of dimensionality and imbalanced data while also avoiding the risk
of overfitting [13], and this research can be considered a pioneer study on subspace learning-based
one-class classification for HSI data. The inference pipeline for S-SVDD approach with linear map-
ping is illustrated in Figure 1. The performance of the subspace learning-based one-class classifier
is analyzed in the proposed pipeline on two benchmark HSI datasets: Salinas-A [14] and Indian
Pines [15]. Our experiments demonstrate the usage of different regularization terms proposed in
the S-SVDD method [13], and validate the usage of the proposed approach to tackle the curse of
dimensionality along with the imbalanced nature of HSI data.

Figure 1: One-class Classification of HSI Images using S-SVDD Approach

2. METHODOLOGY

One-class classification focuses on creating a representative model for a specific class of interest,
commonly referred to as the target or positive class [16]. This model is developed using data
exclusively from the target class. When making predictions, the model is used to determine whether
new or unseen samples are part of the target class or if they are outliers. While traditional one-class
classifiers are capable of generating successful class models using only a limited number of samples,
the computational complexity associated with the training phase makes it infeasible for large or
high-dimensional datasets.

In one-class learning, we have samples from positive class only, and the task is to find a bound-
ary that can detect outliers lying outside of the converged boundary. In SVDD, in particular, the
algorithm tries to find minimal circumscribing hyperball that comprises only the positive observa-
tions in high-dimensional space. Given the positive data representations in the high-dimensional
feature space RD, we need to determine the center of the class a ∈ RD and the radius R of the
hypersphere, by minimizing the following:

F (R,a) = R2 + C

N∑
i=1

ξi, (1)



3

such that the following conditions are fulfilled, i.e.:

‖xi − a‖22 ≤ R2 + ξi, i = 1, . . . , N (2)

ξi ≥ 0, i = 1, . . . , N. (3)

where the parameter C > 0 is a regularization parameter that controls the trade-off between the
volume of the hypersphere and the training error caused by allowing outliers in the class description,
and ξi is the set of slack variables. When C is increased, we have a tighter hypersphere, and training
error is decreased. However, C should be chosen very carefully because one may end up overfitting
the training data if C is very large. Slack variables are introduced in these equations as they allow
us to handle the possibility of outliers in the training data.

The S-SVDD method, on the other hand, attempts to identify a d-dimensional feature space
(d < D), that can optimally represent the class. In the case of linear projection, the aim is to find
a matrix Q ∈ Rd×D such that:

yi = Qxi, i = 1, . . . , N, (4)

Now, one can rewrite the constraints for S-SVDD similar to SVDD as:

‖Qxi − a‖22 ≤ R2 + ξi, i = 1, . . . , N (5)

ξi ≥ 0, i = 1, . . . , N. (6)

As previously mentioned, the objective is to find a minimal circumscribing hypersphere that com-
prises the positive observations, but this time in low-dimensional space d; thus, the same objective
function in Equation 1 can be used for S-SVDD. The only addition to the original SVDD problem
is the matrix Q. To find the optimal parameters, we can follow Lagrange-based optimization steps.
We can build the Lagrangian which has both primal (R,a,Q, ξi) and dual (αi ≥ 0, γi ≥ 0) variables
as:

L(R,a, αi, ξi, γi,Q) = R2 + C

N∑
i=1

ξi −
N∑
i=1

γiξi −
N∑
i=1

αi ( R2 + ξi − xᵀ
iQ

ᵀQxi + 2aᵀQxi − aᵀa).

(7)

Now, we should minimize the Lagrangian with respect to primal variables radius R, center a,
slack variables ξi, and projection matrix Q. Differentiating the Lagrangian with respect to primal
variables and setting the partial derivatives equal to zero gives:

∂L

∂R
= 0⇒

N∑
i=1

αi = 1, (8)

∂L

∂a
= 0⇒ a =

N∑
i=1

αiQxi, (9)

∂L

∂ξi
= 0⇒ C − αi − γi = 0, (10)

∂L

∂Q
= 0⇒ Q =

(
N∑
i=1

αixix
ᵀ
i

)−1( N∑
i=1

αixia
ᵀ

)
. (11)

It is evident from Equations (8) to (11) that the optimization parameters αi and Q are intercon-
nected; hence they cannot be optimized together. By inserting the optimal values for the primal
variables into Equation 7, we can write the Wolfe dual as:

L =

N∑
i=1

αiy
ᵀ
i yi −

N∑
i=1

N∑
j=1

αiy
ᵀ
i yjαj . (12)
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Wolfe dual needs to be maximized with respect to dual variables αi. The support vectors that
define the class description are represented by samples yi = Qxi, where αi > 0. Samples with
0 < αi < C have corresponding yi values on the boundary of the hypersphere, while samples
outside the boundary have αi = C. For samples inside the boundary, their corresponding αi values
are equal to zero. It is worth noting that whether a sample is a support vector or not is impacted
by the selection of the data projection matrix Q. Therefore, in the optimization process, we start
with a random Q, which is orthogonalized using QR decomposition and row normalized using l2
norm. Then, at each iteration, we first project the data to a lower dimensional space d using (4)
and calculate αi by maximizing (12). After finding the set of αi, an augmented version of the
Lagrangian function is used in the optimization process.

L =

N∑
i=1

αix
ᵀ
iQ

ᵀQxi −
N∑
i=1

N∑
j=1

αix
ᵀ
iQ

ᵀQxjαj + βψ, (13)

where β is a regularization parameter controlling the importance of the regularization term ψ in
the update and ψ enforces variance in the low-dimensional space which is defined as,

ψ = tr(QXλλᵀXᵀQᵀ). (14)

where tr(·) is the trace operator.
Depending on the values of λ, the regularization term ψ can take different forms. When λ is

set to zero for all samples, the regularization term becomes obsolete. This is referred to as ψ0. If
λ is set to one for all samples, all training samples contribute equally to the regularization term
ψ. This means that all samples are used to describe the variance of the class, and this is referred
to as ψ1. If λ is set to αi for each sample i, the samples on the class boundary as well as the
outliers, are used to describe the class variance and regularize the update of the projection matrix.
This is referred to as ψ2. Finally, when λ is set to αi for instances corresponding only to the class
boundary and zero for non-support vectors, this is referred to as ψ3. We can finally update Q by
using the gradient of L in (13) as,

Q = Q− η4L, (15)

where η is the learning rate. In this study, we use different regularization terms of S-SVDD and
compare their performance for HSI classification tasks. When making predictions on test data, the
test sample is mapped to the low-dimensional space y∗ ∈ Rd, and the distance from the hypersphere
center is computed from the following:

‖y∗ − a‖22 = yᵀ
∗y∗ − 2

N∑
i=1

αiy
ᵀ
∗yi +

N∑
i=1

N∑
j=1

αiαjy
ᵀ
i yj , (16)

where y∗ is labelled as the target class if ‖y∗ − a‖22 ≤ R2, otherwise, as outlier.
In this study, we conducted a comparison between linear and non-linear S-SVDD. To enable

non-linear S-SVDD, we leveraged the Non-Linear Projection Trick (NPT) [17] technique. NPT
transforms the data at the beginning of the process and allows the subsequent optimization to
be performed using the linear method. To achieve this, the kernel matrix is first computed using
a kernel function, such as the Radial Basis Function (RBF) kernel, and then centralized. The
resulting centralized kernel matrix is then decomposed through eigendecomposition to obtain the
reduced dimensional kernel space [18]. This reduced dimensional kernel space is utilized instead of
the training data matrix within the original linear method, leading to a non-linear transformation.
This approach offers an alternative to the kernel trick.

3. EXPERIMENTAL EVALUATION

3.1. Experimental Setup

We conducted experiments on two widely used hyperspectral image (HSI) datasets, Salinas-A [14]
and Indian Pines [15]. The Indian Pines dataset was collected by the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) sensor over an agricultural area in Indiana, USA. It consists of
145 × 145 pixels and 224 spectral bands, covering a spectral range of 0.4-2.5 µm. The number
of bands was reduced to 200 by removing the bands covering the region of water absorption, and



5

Table 1: Number of samples for each class in Salinas-A and Indian Pines dataset are given in (a) and (b),
respectively.

(a)

Class Samples

1 Brocoli Green Weeds 391
2 Corn Senesced Green Weeds 1343
3 Lettuce Romaine 4 wk. 616
4 Lettuce Romaine 5 wk. 1525
5 Lettuce Romaine 6 wk. 674
6 Lettuce Romaine 7 wk. 799

(b)

Class Samples

1 Alfalfa 46
2 Corn (notill) 1428
3 Corn (mintill) 830
4 Corn 237
5 Grass (pasture) 483
6 Grass (trees) 730
7 Grass Pasture Mowed 28
8 Hay (windrowed) 478
9 Oats 20
10 Soybean (notill) 972
11 Soybean (mintill) 2455
12 Soybean (clean) 593
13 Wheat 205
14 Woods 1265
15 Buildings Grass Trees Drives 386
16 Stone Steel Towers 93

the number of classes in this dataset is 16. The Indian Pines dataset exhibits a significant class
imbalance, with the number of samples per class ranging from 20 to 2455. Due to this imbalance,
it is suitable for developing one-class classifiers.

The Salinas dataset was also collected by AVIRIS sensor over an agricultural area in Salinas
Valley, California, USA. It consists of 512×217 pixels and 224 spectral bands. Similar to the Indian
Pines data, 20 water absorption bands are discarded. On the other hand, Salinas-A data, which
consists of 86× 83 pixels, is a small subscene of the Salinas image, and it includes 6 classes.

To evaluate the performance of the proposed method on these datasets, we followed the following
experimental setup. Both scenes are vectorized since the proposed approach is evaluated pixel-wise.
For each dataset, we select 30% and 70% percent for training and testing, respectively. These sets
are formed by keeping the proportions of samples among different classes equal to the original
dataset before splitting. As it is presented in Table 1, the datasets are highly imbalanced and for
some classes, available annotated data is very limited. The data is then normalized by subtracting
the mean and dividing it by the standard deviation which are both computed using only the
target class samples from the training set. During the training of the proposed approach, only
target class samples from the training set are used. We developed various S-SVDD classifiers with
different regularizations ψ0−3 and mappings, each dedicated to a particular target class, by training
separate models on feature vectors extracted from the training HSI images of the respective target
class. In addition, both linear and nonlinear variants of the proposed approach are utilized in our
experiments. For the non-linear approach, we specifically employed the NPT with RBF kernel; i.e.

Kij = exp
(
−‖xi−xj‖22

2σ2

)
, where σ is an additional hyper-parameter to scale the Euclidean distance

between two feature vectors xi and xj , and Kij is the so-called kernel matrix [13].
The hyperparameters of the S-SVDD models are fine-tuned using the validation set and we

subsequently evaluated their performance on the test sets, where all samples that did not belong
to the target class were treated as outliers. We choose the values of the hyperparameters from the
following ranges by performing 5-fold cross-validation over the training set:

• β ∈ {10−2, 10−1, 100, 101, 102},

• C ∈ {0.1, 0.2, 0.3, 0.4, 0.5},

• σ ∈ {10−1, 100, 101, 102, 103},

• d ∈ {1, 2, 3, 4, 5, 10, 20},

• η ∈ {10−1, 100, 101, 102, 103},
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where the maximum number of iterations is fixed to 10 for all variants of S-SVDD.
We used geometric mean (GM) as our performance metric for finding the best-performing hyper-

parameters. The GM is calculated by taking the square root of the product of the true positive
rate (TPR) and the true negative rate (TNR). The TPR represents the proportion of correctly
classified positive samples, while the TNR represents the proportion of correctly classified negative
samples.

The advantage of using the GM metric is that it takes into account both the TPR and TNR,
and thus it reflects the model’s ability to detect both positive and negative samples accurately.
Additionally, it is less sensitive to changes in the dataset’s class distribution than other performance
metrics, such as accuracy or F1 score. Therefore, it is a reliable choice as a performance metric
when the goal is to balance the detection of both positive and negative samples since the datasets
are significantly imbalanced.

3.2. Results

Tables 2 and 3 present the obtained results over Salinas-A and Indian Pines datasets, respectively.
The performance of S-SVDD classifiers with different regularizations ψ0−3 and mappings are evalu-
ated for two datasets. The performance of different variants of S-SVDD is measured by considering
each class separately as a target class and the rest all together as an outliers class. The evaluation
metric is in the range of 0 to 1, with higher values indicating better performance. Accordingly,
the results show that different regularization terms have consistent results in the linear case, while
more varying results are noticed in the non-linear case for different regularization terms. Overall,
the results suggest that the choice of regularization should be tailored to the specific target class
in S-SVDD, especially while using the non-linear data description.

Table 2: GM results over Salinas-A dataset using Subspace Support Vector Data Description (S-SVDD)
with different regularizations ψ0−3 and mappings.

Method
Target Class

1 2 3 4 5 6

L
in

ea
r S-SVDD ψ0 0.996 0.736 0.862 0.996 0.999 0.952

S-SVDD ψ1 0.996 0.731 0.863 0.995 0.999 0.953

S-SVDD ψ2 0.996 0.730 0.863 0.996 0.999 0.952

S-SVDD ψ3 0.996 0.732 0.863 0.995 0.999 0.952

N
o
n
-l
in

ea
r S-SVDD ψ0 0.894 0.746 0.865 0.994 0.999 0.937

S-SVDD ψ1 0.644 0.764 0.865 0.994 0.999 0.952

S-SVDD ψ2 0.792 0.626 0.824 0.994 0.999 0.913

S-SVDD ψ3 0.984 0.574 0.866 0.992 0.999 0.907

Table 3: GM results over Indian Pines dataset using Subspace Support Vector Data Description (S-SVDD)
with different regularizations ψ0−3 and mappings.

Method
Target Class

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

L
in

ea
r S-SVDD ψ0 0.982 0.576 0.584 0.529 0.833 0.962 0.986 0.986 0.964 0.701 0.566 0.571 0.987 0.944 0.903 0.770

S-SVDD ψ1 0.978 0.577 0.585 0.527 0.833 0.962 0.971 0.985 0.892 0.702 0.571 0.569 0.989 0.941 0.904 0.783

S-SVDD ψ2 0.982 0.612 0.585 0.530 0.834 0.962 0.977 0.985 0.892 0.701 0.569 0.569 0.988 0.940 0.903 0.798

S-SVDD ψ3 0.968 0.576 0.582 0.529 0.833 0.962 0.979 0.987 0.892 0.70 0.566 0.571 0.988 0.944 0.903 0.757

N
o
n
-l
in

ea
r S-SVDD ψ0 0.944 0.611 0.637 0.678 0.827 0.966 0.827 0.985 0.852 0.676 0.597 0.481 0.975 0.907 0.888 0.736

S-SVDD ψ1 0.982 0.661 0.604 0.541 0.825 0.962 0.868 0.985 0.562 0.620 0.565 0.331 0.975 0.939 0.893 0.873

S-SVDD ψ2 0.950 0.612 0.641 0.670 0.830 0.966 0.867 0.985 0.738 0.686 0.432 0.589 0.973 0.943 0.882 0.862

S-SVDD ψ3 0.952 0.605 0.643 0.711 0.829 0.966 0.763 0.985 0.843 0.676 0.224 0.608 0.976 0.907 0.881 0.873

4. CONCLUSION

In conclusion, the high-dimensional nature and imbalanced classes of hyperspectral images pose
challenges for traditional machine learning algorithms. One-class classifiers are useful in cases
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where the training data is from a single class only, but they still face challenges in handling the
curse of dimensionality. To address these challenges, we leverage S-SVDD for one-class classification
of hyperspectral images. Our experiments on two benchmark HSI datasets show that the proposed
approach can effectively tackle the curse of dimensionality and the imbalanced nature of HSI data.
In the future, we first aim to focus on embedding the graph information [16] in the optimization
process of the proposed approach. We also consider utilizing neighbouring pixels’ spectral features
for a future study, since they are usually correlated and give better scattering information, allowing
enhanced performance.

ACKNOWLEDGMENT

This work was supported by the NSF-Business Finland project AMALIA. Foundation for Economic
Education (Grant number: 220363) funded the work of Fahad Sohrab at Haltian.

REFERENCES

1. Shuangjiang Li and Hairong Qi. Sparse representation based band selection for hyperspectral
images. In IEEE International Conference on Image Processing (ICIP), pages 2693–2696.
IEEE, 2011.

2. Kang Sun, Xiurui Geng, and Luyan Ji. A new sparsity-based band selection method for target
detection of hyperspectral image. IEEE Geoscience and Remote Sensing Letters, 12(2):329–
333, 2015.

3. Mete Ahishali, Serkan Kiranyaz, Iftikhar Ahmad, and Moncef Gabbouj. Srl-soa: self-
representation learning with sparse 1d-operational autoencoder for hyperspectral image band
selection. In IEEE International Conference on Image Processing (ICIP), pages 2296–2300.
IEEE, 2022.

4. Y. Yuan, G. Zhu, and Q. Wang. Hyperspectral band selection by multitask sparsity pursuit.
IEEE Transactions on Geoscience and Remote Sensing, 53(2):631–644, 2015.

5. W Sun, L. Zhang, B. Du, W. Li, and Y. M. Lai. Band selection using improved sparse subspace
clustering for hyperspectral imagery classification. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 8(6):2784–2797, 2015.

6. Abhishek Agarwal, Tarek El-Ghazawi, Hesham El-Askary, and Jacquline Le-Moigne. Effi-
cient hierarchical-pca dimension reduction for hyperspectral imagery. In IEEE International
Symposium on Signal Processing and Information Technology, pages 353–356. IEEE, 2007.

7. Qian Du and He Yang. Similarity-based unsupervised band selection for hyperspectral image
analysis. IEEE Geoscience and Remote Sensing Letters, 5(4):564–568, 2008.

8. He Yang, Qian Du, Hongjun Su, and Yehua Sheng. An efficient method for supervised hyper-
spectral band selection. IEEE Geoscience and Remote Sensing Letters, 8(1):138–142, 2010.

9. Baofeng Guo, Steve R Gunn, Robert I Damper, and James DB Nelson. Band selection for
hyperspectral image classification using mutual information. IEEE Geoscience and Remote
Sensing Letters, 3(4):522–526, 2006.

10. Xiurui Geng, Kang Sun, Luyan Ji, and Yongchao Zhao. A fast volume-gradient-based band
selection method for hyperspectral image. IEEE Transactions on Geoscience and Remote
Sensing, 52(11):7111–7119, 2014.

11. Xiao Bai, Zhouxiao Guo, Yanyang Wang, Zhihong Zhang, and Jun Zhou. Semisupervised
hyperspectral band selection via spectral–spatial hypergraph model. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, 8(6):2774–2783, 2015.

12. David MJ Tax and Robert PW Duin. Support vector data description. Machine learning,
54:45–66, 2004.

13. Fahad Sohrab, Jenni Raitoharju, Moncef Gabbouj, and Alexandros Iosifidis. Subspace support
vector data description. In International Conference on Pattern Recognition (ICPR), pages
722–727. IEEE, 2018.

14. Manual Grana, Miguel A. Veganzons, and Borja Ayerdi. Hyperspectral remote sensing scenes.
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes. [On-
line; accessed January 20, 2022].

15. Marion F. Baumgardner, Larry L. Biehl, and David A. Landgrebe. 220 band aviris hyper-
spectral image data set: June 12, 1992 indian pine test site 3. https://purr.purdue.edu/
publications/1947/1, Sep 2015. [Online; accessed January 20, 2022].

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
https://purr.purdue.edu/publications/1947/1
https://purr.purdue.edu/publications/1947/1


8

16. Fahad Sohrab, Alexandros Iosifidis, Moncef Gabbouj, and Jenni Raitoharju. Graph-embedded
subspace support vector data description. Pattern Recognition, 133:108999, 2023.

17. Nojun Kwak. Nonlinear projection trick in kernel methods: An alternative to the kernel trick.
IEEE Transactions on Neural Networks and Learning Systems, 24(12):2113–2119, 2013.

18. Fahad Sohrab, Jenni Raitoharju, Alexandros Iosifidis, and Moncef Gabbouj. Ellipsoidal sub-
space support vector data description. IEEE Access, 8:122013–122025, 2020.


	1 Introduction
	2 Methodology
	3 Experimental Evaluation
	3.1 Experimental Setup
	3.2 Results
	4 Conclusion

