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Abstract— As a consequence of global warming and climate change, the risk and extent of
wildfires have been increasing in many areas worldwide. Warmer temperatures and drier condi-
tions can cause quickly spreading fires and make them harder to control; therefore, early detection
and accurate locating of active fires are crucial in environmental monitoring. Using satellite im-
agery to monitor and detect active fires has been critical for managing forests and public land.
Many traditional statistical-based methods and more recent deep-learning techniques have been
proposed for active fire detection. In this study, we propose a novel approach called Operational
U-Nets for the improved early detection of active fires. The proposed approach utilizes Self-
Organized Operational Neural Network (Self-ONN) layers in a compact U-Net architecture. The
preliminary experimental results demonstrate that Operational U-Nets not only achieve superior
detection performance but can also significantly reduce computational complexity.

1. INTRODUCTION

Wildfires may occur due to many reasons, including fires started by lightning, unauthorized hu-
man activity, and global warming. Forest fires negatively affect ecosystems over the long run by
disrupting vegetation dynamics, emitting greenhouse gases, changing the habits of wildlife, and
removing the land cover. Because of climate change and land-use change, wildfires are expected
to become increasingly frequent and intense, with a global rise in extreme fires of up to 14% by
2030, 30% by the end of 2050, and 50% by the end of the century1. Therefore, early detection and
management of wildfires are critical. Determining the precise location of an active fire is one of the
most effective ways of managing and monitoring, which makes it crucial for firefighting activities.
Modern Remote Sensing (RS) technologies have been commonly used to monitor and examine the
earth’s surface and land cover on a wide range of scales in recent years. Many applications of forest
monitoring, including the mapping of burned areas, are made possible by the availability of high
spatiotemporal resolution data and multispectral imagery from the RS systems.

Avgerinakis et al. [1], evaluated the smoke candidate blocks by using the histograms of oriented
gradients (HOGs) and histograms of optical flow (HOFs), accounting for both appearance and
motion data. A support vector machine (SVM) classifier is employed to determine fire regions.
Barmpoutis et al. [2] introduced a new feature with the intention of estimating the spatiotemporal
consistency energy of videos. Their proposed feature classifier improved the robustness of the fire
detection system. Gunay et al., [3] used hidden Markov models to separate flame flicker from the
motion of moving objects that were fire-colored in movies (HMMs). To detect active fire in Landsat-
8 datasets at the pixel level, Rostami et al. [4] introduced a deep convolutional neural network
(CNN) “MultiScale-Net”. They used dilated convolutions and convolutional kernels with multiple
sizes. SWIR2, SWIR1, and Blue bands were also used as input to achieve the F1-score and IoU of
91.62% and 84.54%, respectively. Kang et al. [5], proposed an ensemble learning method using both
Random Forest Classifier and CNNs. They obtained overall accuracy, precision, recall, and F1-
score as 0.98, 0.91, 0.63, and 0.74, respectively. Cheng et al. [6], proposed a smoke detection system
using both Deeplabv3+ and Generative Adversarial Network (GAN). They used Deeplabv3+ to
identify the smoke pixels, and GAN was utilized to produce segmentation maps of these regions.

Most of the above-mentioned methods in the literature either used hand-crafted features with
relatively traditional learning models or directly processed raw image data using computationally
complex deep learning models. In practice, the usage of such deep networks is unfeasible in near
real-time with a low-power computational environment. The latter approach with deep network
models is known to suffer from low generalization performance. To address these limitations, we
employed novel Self-Operational Neural Networks (Self-ONNs) [7–10] as a heterogeneous network
model containing non-linear neurons. In our earlier works, Self-ONNs [11–14], have been utilized to
achieve superior performance for challenging real-world problems. As a consequence, in this study,
we propose compactly optimized Operational U-Nets containing Self-ONNs in internal layers of

1https://www.unep.org/ https://www.grida.no/
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both encoder and decoder architectures for active fire detection in satellite images and evaluate
their performance extensively over the benchmark Landsat-8 [15] dataset.

2. METHODS

2.1. Self-Operational Neural Networks
In this section, we briefly review the Self-ONNs and some of their key characteristics. Different
from the convolution operator of CNNs, the nodal operator of each generative neuron of a Self-ONN
can perform any nonlinear transformation which can be expressed based on Taylor approximation
around the near origin:

ψ(x) =
∞∑

n=0

ψn0
n!

xn (1)

which can approximate any arbitrary function ψ well near 0. When the activation function bounds
the neuron’s input feature maps in the vicinity of 0, e.g., hyperbolic tangent (tanh) function, the
formulation of (1) can be exploited to form a composite nodal operator. If we denote ψn0

n! as wn:

ψ(w, y) = w0 + w1y
1 + w2y

2 + . . . + wQyQ (2)

where w0 is the bias, and w1 − wQ are the Mclauren coefficients, which will be computed through
the backpropagation. Further information regarding Self-ONNs’ theory and forward propagation
formulations can be found in [7].

2.2. Active Fire Detection Using Operational U-nets
The general framework of our proposed active fire detection scheme is shown in Figure 1. Similar
to [15], we form an RGB image by selecting the same three channels (c7, c6, and c2) from the
multispectral data consisting of 10 frequency bands. Then, each channel of the input image X is
resized to 256× 256 and linearly scaled to a range of [−1, 1] as follows,

XN (i, j) = 2
X (i, j)−Xmin

Xmax −Xmin
− 1 (3)

The overall framework of the proposed method is given in Figure 1. The proposed Operational
U-Net network consists of three main parts: encoder, decoder, and skip connections. The encoder
network aims to learn useful features. The decoder network is connected to the encoder with skip
connections, and it generates the output semantic segmentation mask using learned features. Skip
connections are shortcut connections helping the indirect flow of gradients from the early layers of
the encoder to the decoder. In this way, we aim to improve the overall quality of the produced
segmentation masks. In the proposed approach, convolutional layers are replaced with operational
layers in order to further improve the mapping capability of the proposed framework.

Figure 1. The general framework of improved active fire detection using operational U-Nets.

The Operational U-Net architecture contains 5 operational layers as well as 5 transposed oper-
ational layers with skip connections, as shown in Figure 1. The kernel sizes are set to 5, with the
exception of the last transposed layer, which has a kernel size of 6. For both operational and trans-
posed operational layers, the stride is set to 2. The nonlinear activation function tanh is utilized.
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For all layers, Q is set to 3. We use a training scheme with a batch size of 8 and a maximum of
1000 epochs for all runs. Adam’s optimizer [16] is utilized in the training with a learning rate of
1e-5.

3. LANDSAT-8 DATASET

The Landsat-8 satellite, launched in 2013 by NASA, is equipped with the Operational Land Imager
(OLI) and Thermal Infrared Sensor (TIRS) instruments that capture high-resolution multispectral
imagery of the Earth’s surface. Land cover, vegetation health, water resources, and natural disasters
are just a few of the topics covered in depth by the Landsat-8 collection. A long-term record of
changes in the Earth’s surface through time is provided by the satellite’s orbit, which enables global
coverage every 16 days.

For training and testing of our proposed model, the processed version of the benchmark Landsat-
8 dataset is used for all experiments [15]. As preprocessing, Landsat-8 images are first split to image
patches with 256× 256 pixels. After normalization, the dataset is split into a train set, validation
set, and test set with proportions of 40%, 10%, and 50%, respectively.

4. RESULTS

The results of the proposed method and benchmark models in terms of precision, recall, IoU, and
F1-score are reported in Table 4. Figure 2 displays the corresponding input images, along with the
segmented outputs produced by the Operational U-Net model.

To evaluate the effectiveness of the proposed model, we compared it with several benchmark
models. These included compact U-Net and deep U-Net models with both 10-channel and 3-channel
input data. To further improve the performance of the deep U-Net models, we also applied transfer
learning by replacing their encoder parts with pre-trained DenseNet121, ResNet50, Inception-v3,
and MobileNet models on mageNet [17]. Fine-tuning was then applied using the same training
procedure as that used for the proposed approach. The results of our experiments are shown in
Table 4, where we report the F1 score along with other performance metrics. We found that the
Operational U-Net outperformed all the benchmark models with an F1 score of 90.2%. This result
indicates the superior performance of our proposed model in the task of image segmentation.

When considering the scarcity of positive situations in the dataset, the proposed method in-
creased the generalization and decreased the false positive rate against the deep network, achieving
the highest f1 score with higher precision. The proposed model outperforms deep transfer learning
models by 12–14% in terms of F1-Score. Our compact network decreases the false positive rate.
The Operational U-Net achieves a performance gap of approximately 3% in the F1 score over both
deep and light Convolutional U-Net models from [15]. Additionally, it can achieve even 1% better
than deep Convolutional U-Net when they use 10 channels of input data. Note that the proposed
approach is computationally efficient with the smallest number of trainable parameters compared
to other approaches.

Table 1. Performance of the proposed (Op-UNet) method and benchmark models.

Method Channels
Precision

(%)
Recall
(%)

IoU
(%)

F1-score
(%)

Parameters
(M)

U-Net [9] 10 84.6 94.1 80.3 89.1 34.5
U-Net [9] 3 84.2 90.6 77.4 87.3 34.5

U-Net-Light [9] 3 76.8 93.2 72.7 84.2 2.2
DenseNet121 3 86.6 68.1 61.6 76.2 12.0

ResNet50 3 84.2 69.2 61.3 76.0 32.5
Inception-v3 3 84.2 68.7 60.9 75.7 29.8
MobileNet-v2 3 82.0 73.6 63.4 77.6 8.0
Op-UNet 3 98.7 83.1 82.1 90.2 4.3
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Figure 2. Corresponding operational U-Net segmented maps and their input landsat-8 images.
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5. CONCLUSION

In this study, we propose a new method based on the Operational U-Nets to detect active fire
regions in Landsat-8 imagery. Experimental results using a collection of large labeled images show
that the proposed approach achieves superior accuracy compared to the deeper models. Moreover,
the proposed model has significantly less computational complexity than the competing methods,
making it feasible for near real-time implementations (such as on-board processing of satellite data).

As a potential alternative to our current approach, we aim to explore one-class classification
techniques [18, 19] in the future for active fire detection. These approaches can effectively handle
the data scarcity issue in detecting positive class samples, and they have the potential to enhance
the performance of our proposed method further. By investigating these techniques, we hope to
make significant contributions to the field of active fire detection.
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