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A B S T R A C T   

NdFeB magnets are widely used in various applications including electric and hybrid vehicles, wind turbines, and 
computer hard drives. They contain approximately 31–32 wt% Rare Earth Elements (REEs), mainly neodymium 
(Nd) and praseodymium (Pr), and are produced by molten salt electrolysis using fluoride electrolytes. However, 
anode passivation or anode effect may occur, generating greenhouse gases if insufficient amounts of metal oxides 
are available in the system. Therefore, in this study, a dynamic model of the electrochemical process was 
developed to estimate the system variables and predict the anode effect using several system identification 
methods. The Transfer Function (TF) estimation, Auto-Regressive with Extra inputs (ARX), Hammerstein-Weiner 
(HW), and Artificial Neural Network (ANN) models were used, and their results were compared based on the 
occurrence of the anode effect. The best model achieved an average accuracy of 96% in predicting the process 
output.   

1. Introduction 

Over the past few years, high-tech NdFeB magnets have gained 
increasing popularity in electric and hybrid vehicles, wind turbines, and 
computer hard drives [1,2]. These magnets typically contain approxi
mately 31–32 wt% Rare Earth Elements (REEs), mainly neodymium 
(Nd) and praseodymium (Pr), depending on their application. Nd and Pr 
are produced through molten-salt electrolysis, an energy-intensive 
production method in which metal oxides are added to the molten 
salt. These oxides split into oxygen and metal ions, which then react at 
the electrodes to form gases and metals via the addition of electrical 
energy. The molten salt, which is electrically conductive, served as an 
electrolyte. Chloride-, fluoride-, alkali oxide-, and alkaline earth metal- 
based electrolytes have been previously investigated for this purpose 
[3–5]. Among these, fluoride electrolytes are the most suitable for Nd/Pr 
deposition because they offer high conductivity, low hygroscopy, and 
high current efficiency compared to chloride electrolytes [6,7]. 
Commonly used fluoride electrolytes include LiF (NaF or KF) and CaF2, 
with LiF being used alongside neodymium fluoride (NdF3) and praseo
dymium fluoride (PrF3) in most studies because of its positive influence 

on the electrical conductivity, fluidity, and oxide solubility of the elec
trolyte [4–12]. 

This technology operates as a semi-continuous process, with the 
input material periodically charged during operation. If insufficient 
metal oxides are available in the system, the fluorides of the electrolyte 
participate in the electrochemical reaction at the anode, leading to the 
formation of CxFy gases instead of COx. Perfluorocarbon (PFC) gases 
have a CO2 equivalent of 7000–12000, raising environmental concerns 
[13]. Such conditions are usually referred to as anode passivation or 
anode effect. Thus, feeding the system with sufficient oxides during 
Molten Salt Electrolysis is critical for preventing system instability and 
the generation of greenhouse gases. 

For this purpose, appropriate models related to the output behaviour 
of the process are required to estimate the system variables. Even if the 
system has a chaotic response caused by uncertainty or nonlinearity, the 
most straightforward modelling approaches, such as linear models, 
provide information regarding system order, number of phases, and 
frequency differences. As these linear models consist of simple dynamic 
relations, they can be useful in terms of easy implementation once 
satisfactory models are obtained. In this method, to define the system 
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order, response analysis methods such as impulse or step response can be 
executed analytically using a dynamic dataset. In [14], the groundwater 
system was examined using its step response to identify the properties 
that determine the dynamics of a groundwater system. The orders of the 
Molten Salt Electrolysis process, such as those of the Impulse Response 
(IR), can be computed using step-response analysis. In this case, the use 
of ratio response analysis orders facilitates the determination of the 
Transfer Function (TF) coefficients. Generally, TF models are exten
sively used to demonstrate models of systems that exhibit linear 
dynamical behaviour [15]. In [16–17], the TF model was used to 
identify the behaviour of real-world processes. Furthermore, the TF 
model is used to characterise a process that exhibits highly unstable 
dynamical behaviour [18]. However, in many cases, TF models may be 
insufficient if a high accuracy is required. 

When a linear model is used, an autoregressive model with extra 
inputs (ARX) can be used to increase the accuracy of the linear model 
[19]. In this approach, additional inputs are included in the linear model 
to minimise the estimation error by performing a numerical analysis 
with least-squares estimation (LSE). In [20–21], different approaches 
were proposed for identifying hybrid and unforeseen dynamic processes 
using ARX. Although the ARX model has been successfully applied in the 
literature, in practice, it can be relatively inefficient or result in low 
accuracy in nonlinear systems. Therefore, for processes that exhibit high 
nonlinearity, linearisation or nonlinear models may be required to 
achieve accurate system behaviour. In contrast, the Hammerstein- 
Wiener (HW) models are commonly used to model highly nonlinear 
systems [22]. These models are extensively used to represent the 
mathematical models of systems, using one or two static nonlinear 
models in series with a linear model. In [23–24], HW models were 
suggested to achieve high fitting performance for processes with 
nonlinear behaviour. Nevertheless, nonlinear system models are com
plex solutions that may not fulfil the requirements to overcome real-time 
implementations [25]. 

Artificial Neural Networks (ANN) are another approach frequently 
used for modelling and process identification [26,27]. Moreover, an 
ANN functions as an artificial process model based on the black box 
approach [28]. In [29,30], an ANN was not only implemented to 
enhance the response of the dynamic model of a standard chemical 
process, but was also used for identifying chemical reactions. Further
more, ANN can be used to improve the process efficiency [31] or predict 
undesirable events during operation [32]. 

In the Molten Salt Electrolysis, passivation of the anode or the anode 
effect corresponds to an undesired event in the extractive method. Once 
the Anode effect occurs in the cell, the dynamic parameters of the pro
cess vary over time. Some of these parameters include the feeding of the 
materials, off-gas composition, temperature, voltage, and current. These 
measured variables can be used to generate models using different 
methods such as TF, ARX, HW, and ANN. In practice, normal process 
behaviour without an anode effect corresponds to a low-frequency and 
stable process. However, it can suddenly change to a high-frequency 
response once the Anode Effect occurs. 

In this study, different system identification models (TF, ARX, HW, 
and ANN) were used based on the recorded process variables to evaluate 
their performance and identify the occurrence of the anode effect during 
Nd and Pr production. In addition, the general process description of 
Molten Salt Electrolysis, data acquisition strategy, data preparation, and 
modelling strategy are addressed in detail. 

2. Material and methods 

2.1. Molten salt electrolysis process 

The used electrolyte consists of 61.3 wt% neodymium fluoride 
(NdF3, Treibacher, Althofen, Austria, ≥ 99.5 %), 26,2 wt% 

praseodymium fluoride (PrF3, Treibacher, Althofen, Austria, ≥ 99.5 %) 
and 12.5 wt% lithium fluoride (LiF, Treibacher, Althofen, Austria, ≥
99.5 %). This composition was selected on the basis of previous tests 
[33,34]. 

The electrolyte was melted at approximately 1100 ◦C in advance to 
prepare it for Molten Salt Electrolysis. The components were predried at 
200 ◦C for 24 h, mixed, and placed in a graphite crucible. They were then 
heated in an induction furnace until they reached the desired temper
ature (1100 ◦C) and the mixture became a liquid. The atmosphere for 
this material preparation was a 2 bar Ar overpressure. The conditions 
listed above were used to prevent evaporation of the component with 
the lowest vapour pressure, such as lithium fluoride. When the powder 
was molten, the liquid electrolyte was cast into a high-purity graphite 
mould and allowed to solidify. 

The premolten electrolyte was homogenised using the method 
described above. Consequently, the produced material had a much 
higher density than the initial powders; otherwise, the materials would 
not fit inside the crucible during the electrolysis. Next to the electrolyte, 
the oxides used for electrolysis, neodymium oxide (Nd2O3, Treibacher, 
Althofen, Austria, ≥ 99 %) and praseodymium oxide (Pr6O11, Trei
bacher, Althofen, Austria, ≥ 99 %), were dried at 200 ◦C for 24 h. These 
oxides were then mixed in a composition of 70 % Nd2O3 and 30 % 
Pr6O11, and pressed into pellets at 100 N. Finally, the pellets were 
crushed to obtain grain sizes between 60 and 200 μm. This step is 
necessary to ensure the feeding properties of the powder, which would 
otherwise clump and cause clogging. 

The Molten Salt Electrolysis was conducted in a gas-tight steel cell 
with a water-cooled lid (Fig. 1). This part must be cooled, as rubber seals 
are used to ensure the tightness of the system. The electrodes used for 
electrolysis were a high-purity graphite ring anode to provide the 
maximum active surface and a molybdenum cathode. Both were inser
ted into the cell using the Swagelok system. This has the advantage that 
the immersion depth can be varied without gas escaping. Next to the 
electrodes, the lid had holes for the thermocouple and gas measurement 
system (Fourier transform infrared spectroscopy, FTIR-Gasmet DX4000, 
Germany). Finally, the crucible, filled with electrolyte, was placed in a 
steel cylinder, as shown in Fig. 1, before the lid was attached and the 
reactor was sealed. 

The prepared oxides were stored in a feeding system cylinder that 
could also be sealed. At the feeding command, the screw in the feeding 
device rotated, carrying oxide grains from the cylinder into the cell. The 
feeding system was placed on a high-precision balance to record the 
amount of oxide fed into a crucible. The aim is to feed the oxides at 2 wt 
% of the electrolyte to avoid exceeding the maximum solubility, which is 
between 3 and 4 wt% [35–37]. 

After preparation, the cell was placed in a resistance-heated furnace 
that heated the system to 1050 ◦C. When the electrolyte was molten, the 
electrodes were immersed and the wires were connected to a Munk 
rectifier (maximum 30 V, 200 A). Under normal conditions, the target 
current is set to 30 mA. 

The off-gas analysis system extracted the gas directly from the cell at 
a constant rate of 3 l/min. The gas was sampled for 5 s and analysed 
during this interval. The cell voltage and supplied current, which were 
continuously recorded throughout the process, were monitored. 

When Nd2O3 and Pr6O11 were fed into the system, they melted and 
dissolved. They form complexes with fluoride electrolytes called oxy
fluorides, which then react electrochemically at the electrode surfaces 
(anode and cathode). 

For neodymium, the complex formation [40] is shown in Eq. (1). 

Nd2O3 + [NdF6]
3-
+ 9F- = 3[NdOF5]

4- (1) 

When the decomposition potential is reached, these oxyfluorides 
[40] react further, as shown in Eq. (2): 
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3[NdOF5]
4 - - 6e - →3Nd3 + + 3/2O2 + 15F - (2) 

The Nd ions were then electrochemically reduced to metallic Nd(0) 
at the cathode [40] in two steps, using Eq. (3) and (4): 

Step 1 : Nd3 + + e - → Nd2 + (3)  

Step2 : Nd2 + + 2e - → Nd(0) (4) 

As praseodymium and neodymium are chemically similar, it is 
assumed that the complex formation of praseodymium ions proceeds 
similarly. However, studies have revealed [39] that praseodymium is 
not deposited on the cathode in two steps, but in only one step, using Eq. 
(5). 

Step 1 : Pr3 + + 3e - → Pr(0) (5) 

Neodymium and praseodymium are deposited on the cathode. The 
metal collected in the liquid form on the electrode surface drops owing 
to its high melting temperature and density difference. The metal pro
duced was then collected in a molybdenum crucible located directly 
under the cathode at the end of the process. In addition, the Mo crucible 
was removed after the experiment to determine the metal yield and 
product quality. 

While metal ions are deposited at the cathode, oxygen is formed at 
the anode from its ions and reacts with the carbon of the electrode to 
form CO or CO2 gas. These gas bubbles easily detach from the anode and 
rise, which leads to the natural convection of the electrolyte and 
transports new ions to the electrons. Under certain conditions, the lack 
of oxides results in insufficient ions at the electrodes. Thus, the cell 
potential increased, leading to different electrochemical reactions [40]. 

Most probably, intermediate products, such as COF and COF2, are 
also formed during electrolysis, but these are not stable and react further 
with PFCs [38]. Consequently, research was conducted to investigate the 
effect of the potential on off-gas production to evaluate the process 
conditions. These results agree with the assertion that CO and CO2 are 
typically formed during the process and that CF4 and C2F6 might be 
generated only at higher cell potentials, as shown in Fig. 2. 

Compared with CO/CO2, PFC gases have a much higher wettability 
to the electrodes [37], which means that the formed PFC bubbles adhere 
to the electrode. Under these conditions, each bubble on the surface of 
the electrodes inactivates the surface by a fraction that prevents the 

current from flowing through the cell. Consequently, the surface 
passivated by the PFC gas bubble θ was subtracted from the active 
surface of electrode A. In addition, the cell current was kept constant, 
and the current density, j, increased with each bubble that adhered to 
the electrode surface, as shown in Eq. (6). 

j =
I

A (1 − θ)
(6) 

The formation of a gaseous film on the electrode depends on the 
wettability of the melt or gas on the surface of the electrode, which in 
turn depends on different parameters such as the electrolyte tempera
ture, metal oxide content, electrode shape, and surface texture [37]. 

If the current density increases, the reaction rate also increases, 
resulting in the formation of more PFC gases that adhere to the surface. 
This effect rises exponentially until the electrode is completely covered 
by bubbles. The current flow stops at this moment and the currency 
value is nearly zero, whereas the cell potential increases significantly. In 
this state, the process is stopped and no metal can be produced until 
fresh oxides are fed into the system. Even then, it takes some time for 
PFC gases to leave the system. In addition to environmental issues, this 
represents a significant energy cost because the system must remain 

Fig. 1. The experimental setup of the Molten Salt Electrolysis includes a feeding system, Connection FTIR, Cathode, Anode, and Crucible.  

Fig. 2. Gas formation over the cell potential in neodymium electrolysis [41].  
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molten at ~ 1200 ◦C when no metal is produced. Therefore, identifying, 
predicting, and avoiding node effects is essential for maintaining the 
stability and efficiency of the system. 

2.2. Experimental data 

Several conditions on the boundaries of the inputs were applied to 
create a proper model and examine the relationship between the input 
and output parameters. The temperature was set to 1200 ◦C for each 
experiment and the current was set stepwise at different levels in each 
experiment. Notably, the current dropped to zero when the anode effect 
occurred and the feeding material was supplied at a rate of 20 g each 
time the anode effect occurred in the cell. The general stepwise strategy 
(input data) for data collection is illustrated in Fig. 3. 

As a result of the experiments, the gathered output data were divided 
into training and evaluation data to develop and validate both the dy
namic models and the artificial neural network model of the Molten Salt 
Electrolysis process. Finally, all evaluated models considered in this 
study were compared. 

3. Theory and calculation 

3.1. System identification models 

After collecting the output datasets (CO, CF4, CO2, and Voltage), the 
model identification methods were used to characterise the system 
response. Step response is used to define the frequency, system order, 
and number of phases. In this study, the complexity of the identification 
methods was derived from a simple linear method to a nonlinear 
method. First, the TF model is applied as a linear model. Subsequently, a 
linear ARX model was developed. Finally, the HW method was built as a 
nonlinear model owing to the nonlinearity of the Molten Salt 
Electrolysis. 

3.1.1. Transfer function estimation model 
Transfer Function (TF) estimation as a linear model of the Molten 

Salt Electrolysis process is utilised because it is easily implemented to 
estimate the future output of the system. For this purpose, a step- 
response analysis was conducted to investigate the relationships be
tween system inputs and outputs. A graphical structure of the step- 
response analysis is shown in Fig. 4. 

As a result, all orders of the TFs were defined. The highest order of 
TFs was set to 2. The generalised TF is given by Eq. (7). 

TF = Gij = e((d1*s))*
a1s2 + a2s+ a3

b1s2 + b2s+ b3
(7)  

where i represents the number of control inputs, j is the number of 
outputs, d1 is the time delay between the input and outputs, ak(k = 1, 2,
3) is the coefficient of the zero polynomial of TF, and bk(k = 1,2, 3) is 
the coefficient of the pole polynomial of TF. Using Eq. (7), the output 
relations for each parameter are generated, as shown in Eq. (8). 

yj =
∑2

i=1
(Ui*Gij) (8)  

where y represents the output parameters and U is a control parameter. 
All coefficients of the TFs were defined using a Sequential Quadratic 

Programming (SQP) optimiser utilising the training dataset. The ob
tained transfer functions corresponding to the outputs, including the 
Voltage, CO, CO2, and CF4, to the current input and feeding input, are 
given in Eq. 9-12 and Eq. 13-16, respectively. 

GCO,Current =
CO

Current
=

573.5s2 + 60.33s − 0.00617
s2 + 0.0338s+ (8.55 × 10− 6)

(9)  

GCO2 ,Current =
CO2

Current
= e(− 8s)− 0.01374s2 + 3.09 × 10− 6s − 9.005 × 10− 7

s2 + 0.001134s+ 0.000113
(10)  

GCF4 ,Current =
CF4

Current
= e(− 3s)− 0.00691s2 − 0.00954s+ 3.552 × 10− 6

s2 + 0.03801s+ 3.728 × 10− 5 (11)  

GVoltage,Current =
Voltage
Current

= e(− 10s)− 0.174s2 + 0.002299s+ 4.584 × 10− 7

s2 + 0.03799s+ (3.536 × 10− 5)

(12)  

GCO,Feeding =
CO

Feeding
= e(− 12s) 17.43s+ 0.02682

s2 + 0.0002227s+ (1.656 × 10− 7)
(13)  

GCO2 ,Feeding =
CO2

Feeding
= e(− 2s) 0.006607s+ 4.621 × 10− 6

s2 + 0.007624s+ 1.341 × 10− 6 (14)  

GCF4 ,Feeding =
CF4

Feeding
= e(− s) 0.02063s − 8.216 × 10− 5

s2 + 0.009264s+ 1.329 × 10− 6 (15)  

GVoltage,Feeding =
Voltage
Feeding

= e(− s)0.1475s2 − 0.04194s+ 0.005095
s2 + 0.04253s+ 0.002336

(16) 

As seen in Eq. 9-16, the order of the transfer functions, including 
GCO,Feeding, GCO2 ,Feeding and GCF4 ,Feeding, is equal to 1. The order of the rest of 
the transfer functions (GCO,Current, GCO2 ,Current, GCF4 ,Current and GVoltage,Feeding) 
was 2. The order of volume/feeding (TF) was 2. The highest time delay 
was computed as 12 s for CO, and the feeding relationship (Eq. (13), and 
10 s for the voltage and current relationship (Eq.12). Due to Eqs. 9–16, 
the value of the coefficient b3 is zero or represents a small value in some 
cases. This implies that the poles related to the TFs (GCO,Current, GCF4 ,Current, 
GVoltage,Current, GCO,Feeding, GCO2 ,Feeding, and GCF4 ,Feeding) can be assigned to zero. 
However, the other TFs (GCO2 ,Current and GVoltage,Feeding) have complex poles 
that cause oscillations in the outputs. The model for each output was 
obtained using these transfer function models. 

3.1.2. Auto-Regressive with Extra inputs (ARX) model 
The Auto-Regressive with Extra inputs (ARX) model can be repre

sented by two vectors, referred to as the input regression vector u(t) and 

Fig. 3. Input data set including current and feeding for the Molten Salt Electrolysis process along with the representation of the regions where the anode ef
fect occurs. 
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the output regression vector y(t). The structure of the ARX model is 
illustrated in Fig. 5. 

where white Gaussian noise is represented by e(t) and A(q) and B(q)
are the output and input of the polynomial matrices, respectively. 

The ARX model [19] can be formalised as Eq. (17). 

A(q)y(t) = B(q)u(t − nk)+ e(t) (17)  

where nk denotes the system delay. The input–output polynomial 
matrices (A(q) and B(q)) [19] can be represented by Eqs. (18). 
{

A(z) = 1 + a1z1 + ⋯ + ana z
− na

B(z) = b1 + b2z− 1 + ⋯ + anb z
− nb (18)  

where anb and nb represent the orders of the output and input poly
nomials, respectively. The [a1…ana b1…anb] are unknown coefficients of 
the ARX model that must be identified using the LSE method. A suitable 
ARX model was developed using prior knowledge and trial-and-error 
approach. Finally, the orders of na, nb, and nk were chosen, as repre
sented in Eq. (19): 

na =

⎡

⎢
⎢
⎣

2 1 7 11
2 0 2 2
1 0 3 0
6 1 1 1

⎤

⎥
⎥
⎦, nb =

⎡

⎢
⎢
⎣

4 1
7 9
1 1
1 1

⎤

⎥
⎥
⎦, nk =

⎡

⎢
⎢
⎣

0 12
3 1
8 2
10 1

⎤

⎥
⎥
⎦ (19) 

The developed discrete-time ARX model for multi-input multi-output 
(MIMO) systems [20] is represented by Eq. (20). 

y(t)+ a1y(t − 1)+⋯ + anay(t − na) = b1u(t − nk)+⋯ + bnbu(t − nb − nk+ 1)
+ e(t)

(20) 

The coefficients identified in the ARX model are listed in Table 1. 

3.1.3. Hammerstein-Weiner (HW) model 
Because the linear model is only sufficient to obtain simple linear 

relations, it becomes insufficient for systems with nonlinear behaviours. 
On the other hand, the Hammerstein-Weiner model makes it possible to 
recognise the nonlinearities of both the inputs and outputs. The HW 
model has been applied in several areas such as modelling electrome
chanical systems and controlling chemical processes. These processes 
have nonlinear relationships between output and input. The HW models 
contain both linear and nonlinear blocks. The blocks of the HW model 
for each variable are connected in series. The structure of the HW model 
is illustrated in Fig. 6. 

Fig. 4. The step response of the outputs (CO, CF4, CO2, and Voltage) related to inputs (Current, Temperature, and Feeding).  

Fig. 5. ARX model structure with input (u(t)), output (y(t)) and error (e 
(t)) [19]. 

Table 1 
Identified coefficients of the ARX model.  

Output Polynomial The Identified Coefficients 

CO A(q) 
A2(q) 
A3(q) 
A4(q) 

[1–1.818 0.833] 
[− 3.581] 
[− 3832 4235–426.7–336.2 243.6–32.8 56.4] 
[3.5–7.6 5.0–0.2–4.1 30.8–26.7 7.1–9.5 7.4 3.468]  

B1(q) 
B2(q) 

[25.8–12.39 3.398 3.723] 
[0 0 0 0 0 0 0 0 0 0 0 19.54] 

CO2 A(q) 
A1(q) 

[1–1.839 1.301–0.4526] 
[2.152e-06]  

B1(q) 
B2(q) 

[0 0 0 0 0 0 0 0.003] 
[0–0.0004] 

CF4 A1(q) 
A3(q) 
A4(q) 

[0.0001–0.0001] 
[0.8–2.5] 
[0.025–0.07]  

B1(q) 
B2(q) 

[0 0–0.06 0.02 0.001 0.06–0.03–0.006 0.03] 
[0.2 0.06 0.2 0.08 0.2 0.1 0.2 0.0015 0.1] 

Voltage (V) A(q) 
A1(q) 
A2(q) 
A3(q) 

[1–0.7] 
[− 0.003 0.005–0.001–8.8e-05–0.001 8.3e-05] 
[− 0.1867] 
[− 0.195]  

B1(q) 
B2(q) 

[0 0 0 0 0 0 0 0 0–0.004] 
[0.0381]  

Fig. 6. Structure of the Hammerstein-Wiener (HW) model with input (U(k)) 
and output (y(k)) [22]. 
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where U(k) is the input variable and f is a nonlinear function that 
transforms the input data U(k) into v(k). v(k) is an internal variable of 
the linear function. H(z) is a linear TF model that transforms v(k) into X 
(k). X(k) is another internal variable for the nonlinear output block. H(z) 
can be described in a manner similar to a linear dynamic model (TF). 
Recognising the nonlinearity of the inputs, the Hammerstein model is 
applied according to Eq. (21). 

v(k) = f (U(k)) (21) 

Then, Eq. (22) was used to obtain the dynamic responses of the 
variables. 

X(k) = H(z)v(k) (22) 

The approximate response was computed with the nonlinearities of 
the output using the Weiner model according to Eq. (23). 

y(k) = g(X(k)) (23) 

Input nonlinearity can be computed using a static (memoryless) 
function, where the output value depends only on the input value. The 
input nonlinearity function can be configured as a wavelet network. 
Here, the output nonlinearity is also a static function, similar to input 
nonlinearity. Moreover, the output nonlinearity can be configured 
similarly to the input nonlinearity. 

3.2. Artificial Neural network 

In this study, an Artificial Neural Network (ANN) was used to obtain 
a time-variant model of the Molten Salt Electrolysis process. There are 
three general steps for modelling the process. First, the process vari
ables, which include the measurement and control variables, must be 
described as either input or output. The outgases (CO, CO2, and CF4) and 

voltage values were defined as the outputs of the model, whereas the 
feeding material, current value, time, and previous output data were 
used as the model inputs. It is noteworthy that the data were divided into 
training, evaluation, and test data, representing 70 %, 10 %, and 20 %, 
respectively. Another significant issue is that the parameters of the ANN 
model, which are the number of neurones, hidden layer, type of acti
vation function, and optimiser, were obtained for the best model. The 
structure of the proposed ANN model is illustrated in Fig. 7. 

Several neural structures were compared in terms of their fitting 
accuracy to create a proper model. All parameters and their effects on 
the ANN performance are listed in Table 2. 

The best model is obtained for our process with eight inputs, 16 
neurones, seven hidden layers, a rectified linear unit (ReLU) in the 
output layer, and Adam as the optimiser. The average Mean Square 
Error values (MSE) for the training and validation were computed as 
0.00865 and 0.0932, respectively. 

4. Results and discussion 

System identification models and Artificial Neural Network models 
for the Molten Salt Electrolysis process were examined to compare their 
performances on outgas models such as CO, CO2, CF4, and voltage 
values. Satisfactory results were obtained based on the output pattern. 
Furthermore, dynamic and deep neural network (DNN) models were 
implemented for CO gas emission modelling, which is a relevant output 
parameter for evaluating the Molten Salt Electrolysis process. The re
sults of the behaviour of the models for CO gas emissions are shown in 
Fig. 8. 

As illustrated in Fig. 8, all models were able to track the pattern of CO 
gas emissions to some extent. However, the DNN model outperformed 
the other models, achieving the most accurate results overall. Although 

Fig. 7. Structure of the proposed ANN model for the Molten Salt Electrolysis process.  
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the ARX model was able to produce satisfactory results, the TF and 
Hammerstein-Weiner (HW) models showed limitations in terms of 
accurately predicting the CO gas levels. Furthermore, when anode ef
fects occurred during the process, all models exhibited unpredictable 
behavior, indicating a need for further investigation and refinement in 
future studies. 

For the integrity of the process, CO2 is another important gas that 
represents the current state of the Molten Salt Electrolysis process. The 
measured data and the model results for CO2 gas emissions are shown in 
Fig. 9. 

Similar to the CO gas results, all the models succeeded in following 
the basic pattern of CO2 gas emissions. However, the DNN and the 
estimated ARX models override the TF and HW models in terms of their 
exact values. 

In the case of insufficient metal oxides, the system becomes unstable 
owing to the anode effect. This results in gas bubbles around the anode 
electrode, the formation of CF4, and abnormal voltage behaviour 

applied to the electrolytic cell. Therefore, the prediction of the anode 
effect can be addressed by modelling the formation of CF4 and voltage. 
The results obtained for the CF4 gas model are shown in Fig. 10. 

Fig. 10 shows that the modelled CF4 gas values partially matched the 
real experimental data. Specifically, the DNN and ARX models exhibited 
fewer errors in predicting the exact values of the CF4 gas. It is worth 
noting that the CF4 gas was generated simultaneously with the occur
rence of anode effects in the cell, which was typically accompanied by 
abnormal changes in the voltage values. Therefore, tracking the changes 
in voltage values may provide additional support for detecting the anode 
effect. Fig. 11 illustrates the corresponding voltage measurements and 
modelled results, demonstrating the correlation between voltage 
changes and CF4 gas emissions. 

In Fig. 11, there are two different behaviours of the voltage value. 
These are described as cases with and without the anode effects. Without 
the Anode effect, the voltage exhibited an almost stable behaviour. The 
proposed model could fit the actual voltage values. The fitting ratio was 

Table 2 
ANN configurations for the best model of the Molten salt electrolysis process that shows how the hyperparameters affect the performance.        

MSE  

NN Model Inputs Neurons Hidden layers Act Fcn Training methods Train Val Time per epoch 
(s) 

Models 8 4–28 1–15 Sigmoid, tanh, relu, leakyrelu Rmsprop, adam, sgd, adadelta 0.00865–0.7665 0.0932–0.9876 13–175 
Best Model 8 16 7 relu adam 0.00865 0.0932 17  

Fig. 8. measured and modelled CO gas emissions as an output of the Molten Salt Electrolysis.  

Fig. 9. measured and modelled CO2 gas emissions as one of the outputs of the Molten Salt Electrolysis.  
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higher than that of the anode effect. To display the anode effect on the 
proposed models, the errors of the DNN and ARX models with the 
highest accuracy are shown in Fig. 12. 

As shown in Fig. 12, the model accuracy decreased because of the 
anode effect. When the Anode effect occurs in the cell, its initial effects 
can be recognised using the previous changes in the voltage value. 
However, the suggested models fail to estimate the exact value of the 
anode effect. The latter can affect the average error of the model. The 

obtained Mean Square Error (MSE) error values for each output param
eter and the corresponding standard deviation (σ) are given in Tables 3 
and 4 according to the existence of the anode effect in the process. 

As shown in Tables 3 and 4, the performance of the proposed model 
was better when the anode effect did not occur in the cell. Nonetheless, 
all models allow the basic pattern of outputs to be followed. The results 
showed that the DNN model had the highest accuracy and least devia
tion for each output parameter regardless of the anode effect. 

Fig. 10. measured and modelled CF4 gas emissions as one of the outputs of the Molten Salt Electrolysis.  

Fig. 11. The proposed “models’ result in estimating the voltage value as one of the outputs of the Molten Salt Electrolysis.  
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5. Conclusion 

In this study, system identification and artificial intelligence (AI) 
models were developed for Molten Salt Electrolysis. The Molten Salt 
Electrolysis Process can be described as a nonlinear electrochemical 
process that experiences anode passivation owing to the lack of oxides in 
the electrolyte, leading to the formation of toxic and undesired gases and 
inhibition of current flow. This passivation state is known as the anode 
effect. The following methods were used to model the Molten Salt 
Electrolysis process with and without the anode effect. System identi
fication methods, including linear, nonlinear, and data-based models, 
were used to obtain the entire process behaviour. For this purpose, a TF 
estimation method is first implemented. Using this method, linear re
lationships between the inputs and outputs were obtained. The results 
indicated that the TF model was insufficient for interpreting nonlinear 
changes such as the physical parameters of the anode effect. However, it 
provides approximate results and can be implemented easily. Second, 
the Hammerstein-Wiener (HW) model was implemented for the 
nonlinearity of the process. The model used wavelet transformations for 
the nonlinear parts of the inputs and outputs as well as dynamic linear 
relations. The HW model can be used as a gray-box model after deter
mining the dynamic relationship of the Molten Salt Electrolysis process. 
Similar to TF, it can be implemented more easily than black-box models 
such as deep neural networks (DNN). Third, the ARX model, which is a 
data-based method, was utilised as another system identification 

method. This demonstrates a relatively good fitting performance, which 
is better than that of the TF and HW models, but lower than that of the 
DNN method. Fourth, a deep neural network was developed to model 
the Molten Salt Electrolysis process. The DNN models succeeded in 
predicting the nonlinear processes. The good fitting performance applies 
to scenarios with and without the anode effect, overcoming the sudden 
changes in the dynamic parameters of the process. However, its imple
mentation is not as easy as other identification methods such as the TF 
and HW models. Devices compatible with an NN library are required for 
the implementation of DNN models. It should also be noted that the DNN 
may not be as successful as the presented results when real-time data or 
a new dataset are used. Finally, the results of each model were 
compared. The DNN model exhibited the highest accuracy. This was 
achieved by utilising eight neurones, seven hidden layers, and Adam as 
the optimiser. Given this information, it is recommended that these 
models be run as parallel tools to estimate the performance of the model 
process for real-time implementations. 
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Table 3 
Results of the Mean Square Error (MSE) and standard deviation for the models with the anode effect.  

Output TF Model HW Model ARX Model DNN Model 

MSE σ MSE σ MSE σ MSE σ 

CO  0.0889 ±0.19  0.0468 ±0.059  0.0442 ±0.051  0.0441 ±0.0216 
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CF4  0.0918 ±0.163  0.0916 ±0.088  0.0666 ±0.0817  0.0601 ±0.0413 
Voltage  0.1077 ±0.201  0.1143 ±0.1002  0.1124 ±0.0992  0.0741 ±0.0392  

Table 4 
Results of the Mean Square Error (MSE) and standard deviation for models without the anode effect.  

Output TF Model HW Model ARX Model DNN Model 

MSE σ MSE σ MSE σ MSE σ 
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CF4  0.0907 ±0.107  0.0910 ±0.0810  0.0582 ±0.0900  0.0731 ±0.0209 
Voltage  0.1045 ±0.168  0.1091 ±0.0600  0.1098 ±0.0869  0.0775 ±0.0199  

O. Kaya et al.                                                                                                                                                                                                                                    



Computational Materials Science 230 (2023) 112527

10
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