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ABSTRACT 

 

UNRELATED PARALLEL MACHINE SCHEDULING WITH SEQUENCE 

DEPENDENT SETUP TIMES BY ANT COLONY OPTIMIZATION IN TEXTILE 

INDUSTRY 

 

ÖNEM, Ebru 

 

M.Sc. in Industrial Engineering 

Graduate School of Natural and Applied Sciences 

 

Supervisor: Asst. Prof. Dr. Kamil Erkan KABAK 

September 2018, 89 pages 

 

This study involves a real production problem of minimizing total weighted 

tardiness in knitted fabric stage of a textile company. The knitted fabric production 

has a number of unrelated parallel machines. Also, setup times are sequence 

dependent in the knitted fabric production system. In addition, different and varied 

types of release dates for customer orders are defined in the system. To solve the 

problem, a mixed-integer mathematical model is proposed and it is justifed as NP-

hard through experimental results. After, a new heuristic algorithm based on ant 

colony optimization (ACO) approach is generated to solve the problem with varying 

problem instances tested with the experimental design. The results show that ACO is 

an practicable application that can give sufficiently quick solutions. 

 

Keywords: unrelated parallel machine scheduling, sequence dependent setups, 

weighted tardinesss, ant colony optimization, textile industry 
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ÖZ 

 

TEKSTĠL SEKTÖRÜNDE SIRALAMA BAĞIMLI KURULUM SÜRESĠ KISITLI 

ĠLĠġKĠSĠZ PARALEL MAKĠNE ÇĠZELGELEMESĠNĠN KARINCA KOLONĠSĠ 

ĠLE OPTĠMĠZASYONU 

 

Önem, Ebru 

 

Endüstri Mühendisliği Yüksek Lisans Programı 

Fen Bilimleri Enstitüsü 

 

Tez DanıĢmanı: Yard. Doç. Dr. Kamil Erkan KABAK 

Eylül 2018, 89 sayfa 

 

Bu çalıĢma bir tekstil firmasının örgü kumaĢ aĢamasındaki toplam 

ağırlıklandırılmıĢ gecikmeyi en aza indirgeyen gerçek bir üretim problemini 

içermektedir. Örgü kumaĢ üretiminde belirli sayıda iliĢkisiz paralel makine vardır. 

Ayrıca, örgü kumaĢ üretim sisteminde kurulum zamanları sıralamaya bağlıdır. Buna 

ek olarak, sistemde farklı ve değiĢen çeĢitte müĢteri sipariĢlerinin üretimine 

baĢlayabileceği zamanlar da tanımlanmıĢtır. Problemi çözmek için, bir karıĢık 

tamsayılı matematiksel model önerilmiĢtir ve problemin zor bir problem olduğu 

deneysel sonuçlarla gösterilmiĢtir. Sonra, deneysel tasarımla test edilen değiĢen 

problem durumlarıyla çözülerek test edilen karınca kolonisi eniyilemesi yaklaĢımı 

tabanlı yeni bir sezgisel algoritma geliĢtirilmiĢtir. Sonuçlar, algoritmanın yeterince 

hızlı çözümler üreten pratik bir uygulama olduğunu göstermektedir. 

 

Anahtar kelimeler: iliĢkisiz parallel makine çizelgelemesi, sıralama bağımlı 

kurulumlar, ağırlıklandırılmıĢ gecikme, karınca kolonisi optimizasyonu, tekstil 

endüstrisi
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CHAPTER 1 

 

1.1 Introduction 

 

This chapter starts with the research motivation of this thesis in Section 1.2. 

Then, definition of unrelated parallel machine scheduling and knitted fabric 

production system scheduling are highlighted in Section 1.3. Also, main 

characteristics and challenges of this scheduling problem including sequence 

dependent setup times are explained in Section 1.4. In Sections 1.5 and 1.6, problem 

definition and research methodology are presented, respectively. Finally, thesis 

chapters are summarized in Section 1.7. 

 

1.2  Research Motivation 

 

According to the sectoral evaluation report of the first quarter of 2018 of the 

Aegeans Exporters’ Associations (AEA, 2018), exportation in textile and raw 

materials such as cotton, yarn, knitted and woven fabric presents a continuously  

increasing trend. This trend is also pointed out by Ngai et al. (2014, p. 87). They 

mention increased number of research and applications of decision support and 

intelligent technologies in the textile industry. 

Knitted fabric production has several complexities (see Section 1.4). The 

knitting machines might be unrelated and parallel. The machines that have similar 

properties could show differences due to their ages or brands. This results in increase 

the complexities of the problem (Kerkhove et al., 2014; p. 2630). Furthermore, setup 

times among products have high varieties, and these product varieties are 

significantly high in the textile industry. Anderson (1995) mentions this complexity 

and investigates the impact of product mix heterogeneity (PMH) on manufacturing 

overhead cost in three different fabric production companies. She highlights 

variations in sequence dependent setup times that are causes of product varieties in 

the textile industry. 
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The main motivation of this study is based on low scheduling performance of 

knitted fabric production of the selected company for this thesis study. This low 

scheduling performance is explained by total penalty costs attributed for delayed 

customer orders. The penalty cost of the company consists of the cost of quality, cost 

of tardiness and the other conflicts that are faced with the customers. Forty 

percentage of the penalty costs of the interested company is arised from high 

tardiness. This tardiness depends on the weights of customers that are defined 

according to priorities of customers. For this reason, minimizing total weighted 

tardiness in the knitted fabric production is significant for this company. Another 

motivation of this study is that only few studies exist on scheduling of knitted fabric 

stage in the textile production literature, and systematic scheduling policies are not 

widely applied in this area (Koulamas et al., 1996, Pimentel et al., 2006 and 

Kerkhove et al., 2014) (see Chapter 4).  

Next section introduces unrelated machine scheduling and defines scheduling 

in knitted fabric production systems briefly. 

 

1.3 Scheduling in Knitted Fabric Production Systems 

 

Unrelated parallel machine scheduling (  ) is the generalization of the 

identical parallel machine scheduling (  ) and uniform parallel machines 

scheduling    ) (see Pinedo, 1995; p. 14). Arnout et al. (2009) mention that    is 

generalization of   . In the identical parallel machines      environment, there are 

  identical parallel machines. A job   needs only one production operation and this 

operation can be performed by any of these identical parallel machines (  ) with the 

same speed     where   is in machine and     , so the processing time of job j on 

machine k is               (Pinedo, 1995; p. 14). When speeds of these 

machines are different and they do not depend on the job types, then the problem is 

identified as parallel machines with different speeds    ), and the notation of 

speeds of the machines is shown as   . However,    is not equal for the machines 

(Pinedo, 1995; p. 14). If machines are unrelated and parallel, then the speeds of the 

machines may be different for the different jobs (Pinedo, 1995; p. 14). While the 

speed of a job is shown by the notation,    in the identical and uniform parallel 
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machine scheduling, it is shown in the unrelated parallel machine scheduling by the 

notation    , which is identified by the speed of job   on machine   (Pinedo, 1995; p. 

14). The processing time of each machine is calculated by the formula of        

       (Pinedo, 1995; p. 14). For both identical, uniform and unrelated parallel 

machine scheduling, if there is a machine eligibility (  ) constraint, then the jobs can 

be assigned only to machines in the eligibile machine set (Pinedo, 1995; p. 17). 

In the production systems, sequence dependent setup times (   ) are incurred 

when a time is needed for preparing the machine if the job   precedes the job   for the 

next job that is processed on that station or machine (Pinedo, 1995; p. 70). Sequence-

dependent setup times affect performance of the schedule (Pinedo, 1995; p. 84). 

Hamzadayi et al. (2017) and Kerkhove et al. (2014) are the studies that use the 

sqeuence-dependent setup time constraints. 

In the knitted fabric production facilities, machines are unrelated and parallel 

    . In other words, processing times are different for different products for the 

same machine, and sequence dependent setup times (   ) affect the performance of 

the production schedule. Furthermore, products cannot be assigned to all machines 

available in the machine set. They can be assigned to the machine that is in the 

eligibile machine set      of this product. 

Next section presents the challenges in knitted fabric production systems 

briefly. 

 

1.4 Challanges in Knitted Fabric Production 

 

The main challenges of knitted fabric production are listed in the following. 

Each challenge is then discussed shortly.  

1. High product variety (Sen, 2008 and Ngai, 2014) 

2. Long sequence-dependent setup times (Kerkhove et al., 2014) 

3. Unrelated parallel machines (Kerkhove et al., 2014) 

4. Short lead times and product life cycles (Sen, 2008 and Ngai, 2014) 

5. Unpredictable global fashion market demand (Sen, 2008 and Ngai, 2014).  
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The textile industry has high product variety, short life cycles, unbalanced 

and unpredictable global market demand that makes all processes from production to 

delivery hard to manage (Sen, 2008 and Ngai, 2014). In the production system of 

interest, the product variety varies from 1 to 380 (see Chapter 5). The market demand 

for the products is collected from a real system and they are analysed in Chapter 5. 

Accordingly, it does not represent a unique pattern (see Chapter 5). Besides all of the 

complexities of market characteristics, long sqeuence-dependent setup times and 

different machine types with different processing times also cause the complexities 

in the production part of the knitted fabric (Kerkhove et al., 2014; p. 2630). In this 

study, the data for the sequence dependent setup times varies from 1 hours to 10 

hours (see Chapter 5).  

 

1.5 Problem Definition 

 

In this thesis, a scheduling problem in a knitted fabric production facility is 

studied. The sequence dependent setup times, machine eligibility and order release 

dates are defined as processes restrictions and constraints for this problem. Setup 

times are sequence dependent since knitted machines require additional gauges and 

preparations for each product. Each product may need different needle permutation 

to give the requested effect to the fabric produced. Furthermore, additional time is 

also required to clean the machine for the next product. Therefore, durations of the 

setups may change from product to product in general in knitted fabric production. 

Furthermore, the processing time of each product is different according to the 

machine that the product is produced, and products cannot be assigned to any 

machine in the production facility. Each product has an eligible machine set for 

production. 

Tardiness is defined as the number of tardy days of an order, and tardiness 

function is one of due date related penalty cost function (Pinedo, 1995; p. 18). The 

late delivery causes a penalty cost that is the combination of customer dissatisfaction 

and financial cost of tardiness (Pinedo, 1995; p. 2). Total weighted tardiness, which 

is the generalization of total tardiness function (Pinedo, 1995; p. 57), is computed as 

the performance measure of this problem since each order has a weight that could be 

more critical for some clients. For this reason, due date performance becomes an 
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important measure under some challenges like unpredictable fashion market demand, 

short lead times and short product life cycles (see Section 1.2). 

In the interested company, the weighted tardiness cost is one of the major 

penalty cost that is targeted to minimize (see Section 1.2). Therefore, studies that 

minimize penalty costs carry a vital importance for the company of interest. By 

increasing the scheduling performance, rapid changes in the demand and the other 

challenges in the processes restrictions and constraints can be managed more 

efficiently. That is, decreasing delays and increasing customer satifaction can be 

reduced implicitly. 

The aim of this study is to minimize the total weighted tardiness while 

scheduling the given orders on the predefined number of unrelated parallel machines 

(  ) under complexities like sequence dependent setup times (   ), release date of 

orders (rj) and machine eligibility (  ). In the scheduling environment, these types of 

problems are denoted by the following notation,    |           | ∑     (Pinedo, 

1995) (see Chapter 3). 

 

1.6 Research Methodology 

 

In this section, the methodology approach followed in this thesis is explained 

briefly.  

The research methodology of this thesis can be defined under the category of 

quantitative-model based Operations Management (OM) research. Bertrand and 

Fransoo (2002) distinguished the quantitative-model based OM research by two 

subcategories. These subcategories are axiomatic and empirical research. In 

particular, axiomatic quantitative research is applied as the research methodology of 

this thesis. Furthermore, this thesis consists of four operational research phases, 

which are conceptualization, modelling, model solving and implementation 

(Bertrand and Fransoo, 2002; p .253). The Chapter 2 and Chapter 3 cover the 

conceptualization parts of this thesis. Additionaly, data collection, data analyses and 

data structure of the study are given in Sections 5.2 and 5.3 of Chapter 5 as the 

quantitative analyses of the system. Modelling and model solving phases are covered 

in Chapter 6 and 7 which include model development and heuristic application, 

respectively.   
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Final phase, implementation phase, experimental design and analysis of 

variance (ANOVA) are given, respectively in Chapter 8. 

 

 

Figure 1 Research Procedure 

 

 

According to Figure 1, data collection and analysis are the starting points of 

this study. The relevant literature is discussed and it provides feedbacks on research 

questions and problem statement of this study. Before developing the mathematical 

model of the problem, conceptual model of the problem is given. Then, the 

mathematical model is developed with the collected data. With regard to the 

experimental results of the mathematical model, it is proven that a heuristic 

algorithm is necessary to solve the real problem. For this reason, a heuristic 

algorithm based on ant colony approach is developed and applied using real dataset. 

An application on total weighted tardiness minimization is created to be used in 

textile industry. The study is ended with concluding remarks and discussions.  
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1.7 Summary 

 

This section summarizes the steps of this study briefly. In Chapter 2, main 

production stages of the textile industry are briefly explained and the knitted fabric 

production steps are clarified. In Chapter 3, problem statement is presented. The 

literature research on scheduling and textile industry is covered in Chapter 4. 

Literature survey and discussion on the relevent papers are presented in this chapter. 

Chapter 5 describes the proposed methodology for this thesis. Also, the steps of 

methodology, data collection and data structure in the system are presented in this 

chapter. Furthermore, the mathematical model of the problem and the experimental 

results are defined in Chapter 5. After justification of the heuristic algorithm, the 

proposed ACO heuristic algortihm is presented in Chaper 6. Chapter 7 shows 

computational results of the proposed heuristic based on the experimental design. 

Finally, Chapter 8 covers concluding remarks and presents future research. 
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CHAPTER 2: PRODUCTION SYSTEM OF KNITTED FABRIC  

 

2.1 Introduction 

 

In this chapter, main production stages of the textile industry and relations of 

among these stages are introduced in Section 2.2. Then, knitted fabric production 

processes that are observed from a real production facility are explained in Section 

2.2. In Section 2.3, the production planning in the knitted fabric facility is explained 

briefly. 

 

2.2 Main Production Stages of the Textile Industry 

 

Three major processes exist in the textile industry. First major process is yarn 

production. Second one is knitted fabric production, and the third one is garment 

production or in the other words the apparel industry. These classifications of the 

processes are shown in Figure 2. These major processes and their subprocesses are 

explained briefly in the rest of this section. 

First, cotton is collected and then it goes through some production processes 

to obtain fibers. Then, fibers are used to produce yarns, and it is ended by the yarn 

production.  

In the second major process, the yarn is processed on the knitted machine (see 

Figure 3), and knitted fabric is produced. After this process, knitted fabrics are 

received from knitted machine transfered to the dyeing or printing facility. In dyeing 

process, the knitted fabrics are encolored with chemicals and dyes according to the 

recipes that are predefined by the laboratorians. In the shop floor, recipes are used to 

define the proportions of the dyes and the chemicals used in dyeing machines.  

The knitted fabrics enter into the printing process after dying if the order 

request is printed fabric. After the production of dyed fabric, fixing and quality 

control processes are performed.



   
 

9 
 

In the third major process, the fabrics, outputs of the second major process, 

are used for garment production. In the garment production, first, fabrics are 

prepared for the cutting process. The fabrics are cut up in order to obtain the 

minimum waste. After that, fabric pieces which are cuts of body sizes of garments 

enter into the printing, emroidery or embelishment processes if any of them is 

neccessary. Then, sewing process is started. Finally, quality control and ironing 

process is completed. 

 

 

Figure 2 General production flow chart of textile industry. 

 

The next section describes the fabric production in the textile production of interest.  

 

 



   
 

10 
 

2.3 Description of Knitted Fabric Production System 

 

Two different shapes for knitted fabric machines exist in the facility, open 

end and tube. Open-end fabric machines are used to produce single-layer fabric. The 

knitted machines have round shapes as shown in Figure 3. If the fabric is not cut 

before wraping to the cyclinder during the process in the machine, it is called tube 

fabric. Otherwise, it is cut with an additional equipment in the machine and named as 

an open-end fabric. 

 

 

Figure 3 An example of an open end knitting machine view (TTM Machine 

Company, 2018). 

 

The production process of knitted fabric has just one production stage as 

shown in the Figure 4. The yarns are aligned on the knitting machine and production 

starts. Almost 20-22 kg knitted fabric is received in the roll-shape. 

 

 

Figure 4 Production stage of knitted fabric. 
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New yarns are aligned on the machine again before finishing yarns on the 

machine, and by this way, the machine is not interrupted and does not wait for the 

yarns until the quantity of the order on that machine finishes.  The sequence 

dependent set-up times exist between the orders and it is differentiated according to 

the product types of orders. 

The interested company focuses on the second major process of the textile 

industry. That is, it procures the yarns from the suppliers and produces the knitted 

fabric. Dyeing and printing processes are performed after knitted fabric production. 

Then, fixing and quality control processes are also performed in this facility. 

However, this thesis only covers the knitted fabric production step of second major 

process (See Figure 2). 

 

2.4 Production Planning in Knitted Fabric System 

 

Production planning in the knitted fabric system first starts with entering the 

the customer orders into the ERP system by the customer representatives (see Figure 

5). If there is sufficient knitted fabric in the inventory that is left over from previous 

orders or canceled orders, the required knitted fabric quantity is supplied from the 

stock. Otherwise, the dyeing house planning gives an order to the knitted fabric 

plant. After that, the procedure begins with checking the inventory level of the yarn. 

If there is not enough yarn in the stock, then the production planners receive the due 

date information from the procurement department, then they build the production 

plan according to critical production constraints. General work flow of the planning 

process until knitted fabric production planning is shown in the Figure 5. 
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Figure 5 General work flow of the process until planning. 

 

2.5 Concluding Remarks 

 

In this chapter, main production stages of the textile industry and knitted 

fabric production system in the interested company are described briefly. 

Furthermore, production-planning procedure in the knitted fabric production system 

is explained shortly. Next chapter describes main issues in the fabric production and 

introduces the problem statement of this thesis.  



   
 

13 
 

CHAPTER 3: PROBLEM STATEMENT 

 

3.1 Introduction 

 

In this chapter, main issues in the textile industry are briefly descrined in 

Section 3.2. Then, weighted tardiness minimization is explained by means of 

references from the scheduling literature in Section 3.3. Finally, the problem 

statement is given and discussed in Section 3.4.  

 

3.2 Issues in the Knitted Fabric Production 

 

In the knitted fabric production area, production planners assign an 

production order to the machines according to the machine types, machine 

availability, order release date, due dates and sequence dependent setup times. As 

mentioned previously in Section 1.3, one of the sectoral challenges is high product 

variety (Sen, 2008 and Ngai, 2014). High product variety affects the scheduling 

performance directly in the case of sequence dependent setup times (Anderson, 1995; 

p. 366).  

The other challenge is existence of variation in the quantities of demands 

(Chen et al., 2007; p.182). High production flexibility to be able supply wider ranges 

of quantities is a competitive advantage for a company in stiff competing 

environments (Chen et al., 2007; p. 182). Furthermore, in the knitted fabric 

production systems, the machines are unrelated and parallel (Kerkhove et al., 2014; 

p. 2630). This type of machine environment is defined as NP-hard class in the 

complexities hierarchy of deterministic scheduling problems (Pinedo, 1995; p. 51). 

Under these complexities, the companies in this sector should be able to produce 

efficient production schedule and maximize the customer satisfaction to be able to 

stay ahead of competitors (Chen et al., 2007; p. 182). For this purpose, scheduling 

the machines is studied to decrease the total weighted tardiness according to the 

customer orders in this thesis. 
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3.3 Weighted Tardiness Minimization in Knitted Fabric Production 

 

Total weighted tardiness (TWT) (∑    ) can be defined as the sum of the 

weighted tardiness of each job in the problem and it is defined as a due date related 

objective function (Pinedo, 1995; p. 57). Furthermore, total weighted tardiness 

funtion is the generalization of the total tardiness (Pinedo, 1995; p. 57).  Weigths 

(  ) are used as an importance factor like holding cost. In this study, it represents the 

priority of the customers.  

Minimizing total weighted tardness is one of the ways to minimize the 

penalty costs of the company of interest (see Section 1.2), and a due date related 

objective function is necessary to decrease this penalty cost of scheduling of the 

company. The total tardiness fuction is also a due date related objective function, 

however, the weigths of customers are significant parameters for the company of 

interest. This is the reason that total weighted tardiness function is used as the 

objective function in this study. Karp et al. (1972) and Ho and Chang et al. (1995) 

showed that parallel machine scheduling are NP-Hard problems. Nevertheless, they 

have just two parallel machine in their problem. It is also an another reason to 

consider the problem as NP-hard in this thesis. 

 

3.4 Problem Statement 

 

This section introduces the problem statement of this thesis. The problem 

statement is defined according to the planning performance. That is, it is the tardiness 

minimization for all jobs for the knitted fabric production. After introducing the 

production challenges in previous section, the problem statement is given in the 

following. 

Problem Statement: the aim of this study is to minimize the total weighted 

tardiness under sequence dependent setup times with unrelated parallel machines in 

the knitted production of textile production environment.
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In the company of interest, the machines are unrelated and parallel (see 

Section 1.4). Total weighted tardiness, which is a due date related function, tends to 

be hard even for single machine scheduling (1||∑    ) (Pinedo, 1995; p. 137). 

Therefore, parallel machine scheduling with the objective of total weigted tardiness 

is not as easy as the single machine scheduling with the objective of total weigted 

tardiness (Pinedo, 1995; p. 137). 

Yarns are the primary raw material for the production. Procurement due date 

of yarns is defined as the release date of an order. Release date means the earliest 

time that is the starting time of a job on a machine or a station to its processing 

(Pinedo, 1995; p. 14). Therefore, it is concluded that procurement due date of yarns 

forces the starting time of an order on a machine that is more than or equal to due 

date of yarns in this problem. 

The other significant parameter that is considered in knitted fabric production 

and scheduling is sequence dependent setup times. In manufacturing environment, 

setup times means the required time to prepare a machine or station for a new item 

that is processed on the same machine or a station (Pinedo, 1995; pp. 70). It is 

possible to classify setup times as sequence-dependent and sequence-independent 

(Pinedo, 1995, p. 16; Allahverdi, Aldowaisan, & Gupta, 1999). In the sequence 

independent types, the setup times are added to processing times of the jobs (Pinedo, 

1995; p. 16; Hamzadayi et al., 2017; p. 287). However, in the sequence dependent 

setup, setup time does not only depend on the job that is currently scheduled, but also 

it depends on the previous scheduled job (Hamzadayi et al., 2017; p. 287). In the 

knitted fabric production, setup times can have a range approximately from 15 

minutes to more than 480 minutes (Kerkhove et al., 2014; p. 2630). In the interested 

company, this range is between approximately 60 minutes and 24 hours for the 

complex setups. Therefore, it is concluded that setup times have significant effect on 

finish times of the jobs (Kerkhove et al., 2014; p. 2630). In the company of interest, 

there are almost 380 different types of products. These products are grouped 

according to their technical specifications like “knitting types”, “pus” and “fein”. 

Therefore, eligibile machine set of products directly depends on the groups of 

products in the company of interest.   
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The demands of products are deterministic, the production is not a make to 

stock type production, and the range of order sizes is between 20 and 10000 kg. The 

annual production volume of the interested company is almost 800 tones according 

to the last year data, and it is assumed that 66 tones knitted fabric are produced 

monthly. Therefore, order volume variety is quite high. 

In the production facility, in total 97 knitting machines and 46 different types 

of machines exist. These types are classified according to the “knitting types”, “pus” 

and “fein” like the specifications of the products. The terms “pus” and “fein” are 

used to indicate the diameter of the knitting machine and the number of the needle in 

one inch, respectively. The orders are assigned to the machines according to their 

knitting types, pus and also fein. The machines knitting type Id, pus and fein values 

are given in Appendix C, machine knitting type definitions are shown in Appendix 

B, and a list of pus and fein values are given in Appendix A. 

In this thesis, real knitted fabric production facility is observed and the 

sample data is gathered from this facility. The interested company does not control 

and schedule the knitted fabric production system using with an optimization tool, 

and majority of the textile companies is still lack of an application using an 

optimization tool for their production facilities (The Textile Hub, 2013). To 

illustrate, a recent study by Kerkhove et al. (2014) develops a meta-heuristic 

algorithm for a knitted fabric production scheduling which is a combination of a 

genetic algortihm and a simulated annealing to minimize total weigted tardiness. In 

their paper, they show an algorithm that population-based meta-heuristics show 

better results for real scale problems, and ant-colony optimization is the other most 

commonly used population-based heuristic algorithm (Kerkhove et al. 2014).  

However, there are not any existing applications for the ACO algortihm in 

these types of scheduling problems in the textile industry when the literature research 

is surveyed. For this reason, this study represents a methodology to decrease the total 

weigted tardiness in the textile industry with a rarely used heuristic algorithm, ant 

colony optimization (see Chapter 4.3). The survey of relevant literature is given in 

the following section. 
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CHAPTER 4: LITERATURE REVIEW 

 

4.1 Introduction 

 

This section presents the relevant literature review on knitted machine 

scheduling, weigted tardiness minimization and scheduling, and also meta-heuristic 

applications in Section 4.2. Then, a summary table of the literature is presented in 

Section 4.3. Finally, concluding remarks about the literature review of this study are 

given in Section 4.4. 

 

4.2 Literature Review 

 

The optimal solution for single machine scheduling problems are known as 

NP-hard (Pinedo, 1995; p. 50). For this reason, unrelated parallel machine scheduling 

problems with sequence dependent setup times can be characterized as NP-hard too. 

The compexity for these types of scheduling problems in most of the papers are 

discussed first in the literature (Behnamian et al. 2013, Joo et al. 2015, Kayvanfar et 

al. 2014, Hamzadayi et al. 2017). Therefore, simple heuristics, local search and 

population-based heuristics or meta-heuristics are used to evaluate better solutions 

with large intances from more realistic and real life scenarios.   

Pimentel et al. (2006) solve a knitted fabric-scheduling problem with the aim 

of minimizing the lateness. They generate an integer programing model, however, 

because of the NP-hardness, the model does not give a solution in a proper time. 

Therefore, they develop a simple heuristic method for this problem.  

However, their study excludes the setup times and the machines are identical 

in parallel. Kerkhove et al. (2014) also solve a knitted fabric-scheduling problem 

with the aim of minimizing total weighted tardiness with unrelated parallel machines. 

Their problem includes the sequence dependent setup times, order relase dates and 

due dates. 
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Additionally, this paper includes the changeover interference problem that 

occurs when required number of changeover exceeds the number of technicians. 

They solve this problem into two different phases. In the first phase, a mathematical 

model is improved and solved for small instances. Then, a hybrid meta-heuristic 

algorithm is generated with a combination of genetic algorithm and simulated 

annealing.  

They construct the initial solution by simple heuristics like earliest due date, 

shortest and longest processing time. After that, they apply some machine selection 

rules such as machine load balancing and minimal production time. Local simple 

heuristics are also applied to improve the initial solution. Then, the initial solution is 

used in the hybrid metaheuristic. In the second phase, changeover interference 

problem is solved with simple heuristic dispatching rules. Chen et al. (2007) use 

genetic algorithm for knitted fabric production scheduling with wide ranges of 

quantities of demanded. They prove that the makespan increases by the rise in the 

range of the quantities. However, in this paper, the machines are identical in parallel 

and the setup times just depend on the machines.  

Koulamas et al. (1997) generate a decomposition and hybrid simulated 

annealing heuristic to minimize total tardiness under identical parallel machines. 

Bilge et al. (2004) apply the tabu search algorithm to minimize the total tardiness. In 

their problem, the machines are uniform in parallel and the jobs have different due 

dates and release times. They conclude that their algorithm gives better solution 

when it is compared to the other applications in the literature. Tavakkoli et al. (2009) 

generate a genetic algorithm to solve bi-objective scheduling problem. In their 

problem, the unrelated parallel machines exist and the orders have non-identical due 

dates and release dates. Furthermore, the setup times are sequence dependent. Their 

study shows effective results for small and large size instances. Lin and Hsieh (2013) 

generate a mixed integer programing model to find the minimum value of total 

weighted tardiness. Machines are unrelated in parallel and setup times are sequence 

and machine dependent. Jobs have non-identical due dates and release dates in their 

problem. Also, they provide a heuristic and iterated hybrid meta-heuristic algorithm 

that can find nearly optimal solution for the same problem. Then, they compare their 

iterated hybrid meta-heuristic algorithm with tabu search and ant colony 

optimization. Their results present that their suggested algorithm shows better results 

than TS and ACO for all size of instances in the terms of total weighted tardiness.  
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Lin et al. (2013) apply the ACO to solve unrelated parallel machine 

scheduling to minimize total weigted tardiness. The jobs have non-identical due 

dates, and all of them are ready to be produced at time zero. Additionally, their 

problem does not include the setup times. Vallada et al. (2011) generate a genetic 

algorithm that includes fast local search and local search developed crossover 

operator. In their conclusion, they prove that their suggested algorithm performs 

better than the existing applications by comparing with using the benchmark sets of 

instances. 

  

4.3 Discussion of the Literature 

 

This section discusses the studies that are mentioned in previous sections. 

Comparison of literature review section is analysed under the following 

specifications. These specifications are properties of problem, machine types, 

solution methodology and objective of the problem in addition to the specifications 

given by Kerkhove et al. (2014). The summary table organised under these 

specifications is given in Table 1. 

Table 1 proves that exact optimization solution methodology is not used alone 

to solve parallel machine scheduling problems. Additional heuristic algorithms are 

necessary to solve these types of scheduling problems. Furthermore, it is also 

concluded that the second solution methodology, simple heuristics, are not generally 

used without additional local search or population based algorithm. These types of 

heuristics are applied to solve small problems. Furthermore, these types of heuristics 

are applied as a part of the algorithm of local search and population based heuristics 

(Kerkhove et al. 2014).  

The third solution methodology is local search based meta-heuristics. 

Simulated annealing (Koulamas (1997), Kim et al (2002), Radhakrishnan et al. 

(2010), Lin et al. (2011), Lin et al. (2013)) and tabu search algorithms (Mendes et al 

(2002), Bilge et al. (2004) and Lee et al. (2013)) are observed as the most popular of 

them. Besides of these known algorithms, Lin et al. (2013) generate an iterated 

hybrid meta-heuristic that can find nearly optimal solutions for unrelated parallel 

machine scheduling problem with machine and sequence dependent setup times, 

different job releases dates and due dates.  
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Table 1 Summary Table for the Literature of PMS 

Properties of Problems Machine Types Solution Methodology 
Objectives of 

Problem 

DD RD ST PC I UNF UNR EO SH LSM PBM MS L T ET S 

Behnamian et al. (2009) - - SD - x - - - - x x x - - - - 

Bilge et L. (2004) x x - - - x - - - x - - - x - 

Joo, Kim (2015) - x 
MS
D 

- - - x x - - x x - - - - 

Kerkhove, Vanhoucke 

(2014) 
x x SD - - - x - x x x - - x - - 

Koulamas (1997) x - - - x - - - x x - - - x - - 

Lin, Lee, Ying, Lu (2011) x x SD - x - - - x - - - x - - - 

Mendes et al. (2002) - - SD - x - - - - x x x - - - - 

Kayvanfar et al. (2014) x - 
MS

D 
- - - x x - - x x - - x - 

Hamzadayi, Yildiz (2017) - - SD - x - - x - x x x - - - - 

Radhakrishnan, Ventura 
(2010) 

x - SD - x - - - - x - - - - x - 

Tavakkoli-Moghaddam et 

al. (2009) 
x x 

MS

D 
x - x - - - - x x - x - - 

Arnaout, Rabadi, Musa 

(2009) 
- - 

MS

D 
- - - x - - - x x - - - - 

Lin, Lin, Hsieh (2013) x - - - - - x - - x x - - x - - 

Vallada, Ruiz (2011) x - 
MS
D 

- - - x - - - x x x x x - 

Lee et al. (2013) x - 
MS

D 
- - - x - x x - - - x - - 

Lin, Hsieh al. (2013) x x 
MS

D 
- - - x x x x - - - x - - 

Pimentel et al. (2006) x - - - x - - x x - - - x - - - 

Chen, Hung, Wu (2007) x - MD - x - - - - - x - - - - x 

* DD: Due date of jobs, RD: Release date of jobs, ST: Setup Time (Sequence Dependent Setup(SD), Sequence

Independent Setup(SI), Machine and Sequende Dependent Setup(MSD), PC: Precedence constraint of jobs, I: 

Identical Machines, UNF: Uniform Machines, UNR: Unrelated Machines 

** EO: Optimization, SH: Simple Heuristic, LSM: Local Search Based Heuristic, PBM: Population Based 

Heuristic, MS: Makespan, L: Lateness, T: Tardiness, ET: Earliness and Tardiness, S: Setup Time 

The population based meta-heuristic algorithms show better performance 

when comparing with local search based meta-heuristics because of their ability to 

find better solutions by combining good solutions in wider search area (Kerkhove et 

al. 2014). Genetic algorithm and ant-colony optimization are the best-known 

population based meta-heuristic algorithms used in parallel machine scheduling area. 

Kerkhove et al. (2014), Joo et al. (2015), Kayvanfar et al. (2014), Arnout et al. 

(2009) and Lin et al. (2013), Vallada et al. (2011) apply population-based meta-

heuristic algorithms in their studies, and both of them solve unrelated parallel 

machine scheduling problems. Table 1 shows most of the studies on unraleted 

parallel machine scheduling that use the population-based meta-heuristic algortihms 

stand-alone or together with the other solution methodologies. 
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4.4 Concluding Remarks 

 

The literature review in knitted fabric production scheduling and unrelated 

parallel machine scheduling with total weighted tardiness minimization is given in 

Section 4.1. Furthermore, the discussion table is given, and the methologies used 

generally in parallel machine scheduling are mentioned in Section 4.2. The next 

chapter describes the steps of the methodology applied in this thesis.



   
 

22 
 

CHAPTER 5: METHODOLOGY 

 

5.1 Introduction 

 

In this chapter, the methodology followed in this thesis is described briefly. 

Accordingly, first the proposed methodology and its steps are explained in Section 

5.1. Then, the data collection and data types are mentioned in Section 5.2. 

 

5.2 Proposed Methodology 

 

In this thesis, the system is analyzed to determine the problem statement in a 

knitted fabric production facility. High product variety, number of different unrelated 

parallel machines, high setup times between the orders and variety of order amounts 

complicate the assignment and scheduling the orders on the machines. First, 

objectives and constraints, data types, parameters and performance measures are 

explained in Section 5.3 briefly. They are determined according to the problem 

definition by observing the real system. Data assumptions are specified in order to 

determine the boundaries of the problem. Furthermore, an improved mathematical 

model is defined and applied with small intances to represent its complexity in 

Section 5.4.  

 

5.3 Conceptual Model 

 

This section includes the objective and constraints, data types and the 

assumptions of the thesis problem under the following subsections.
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5.3.1 Objective and Constraints 

 

The conceptual model for the problem together with its objective function, 

and its constraints are given in the following. 

 

Minimize Total Weighted Tardiness 

Subject to 

Constraint 1: A position of a machine can process at most one order at the same time 

Constraint 2: Each order can be assigned to one position of any machines at the same 

time 

Constraint 3: An order can be assigned to the first empty position on a machine 

Constraint 4: Completion time of an order must be greater than or equal to the 

summation of processing time of that order on that machine, sequence dependent 

processing time between this order, the previous order and completion time of the 

previous order 

Constraint 5: Completion time must be greater than or equal to the summation of 

processing time of this order on that machine and the release date of that order 

Constraint 6: Completion time of jobs which are assigned to position 1 of any 

machines must be greater than or equal to total processing time of that order on that 

machine 

Constraint 7: Completion time of an order must be greater than or equal to the 

summation of release time of that order and processing time of that order on that 

machine 

Constraint 8: Number of tardy days of an order must be greater than or equal to 

substracting of due date of that order from the completion day of that order 

The identical parallel machines scheduling problem with the aim of 

minimizing      is considered as NP-hard even when number of machine is equal 

to 2 (Karp 1972; Garey and Johnson1979). Therefore, it is possible to say that    | 

          | ∑     is also NP-hard. Additionally, the NP-hardness of the problem is 

also proven by the computation time of the mathematical model that is discussed in 

the Section 5.4. 
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5.3.2 Data Analysis and Types 

 

The data used in this problem is deterministic and defined in Table 1 briefly 

in the following. 

 

Table 2 Data Used in This Problem 

Data Name Explanation 

Unit Processing Time        Time is needed to produce 1 kg of order i 

on machine m (in minutes) 

Release Time of Order      Ready time to produce order i (in hours) 

Due Date of Order       Customer due date of order i (in days) 

Quantity of Order       Demand quantity of order i (in kg) 

Sequence Dependent Setup time       Time is needed to produce order j after 

order i (in hours) 

Machine Eligibility Matrix       Eligible machines of order i can be 

assigned 

Weight      Customer associated weight for order i 

Number of Machines (M) Total number of machines 

Number of Orders (N) Total number of orders 

Number of Positions (K) Number of position on each machine 

(this value is equal to number of orders 

because of the possibility to assign the all 

orders on only one machine) 

 

Unit processing time is the time needed to produce 1 kg of an order on a 

specific machine. Release time of an order is defined as ready time to produce an 

order on any machine. Due dates (  ) and quantities (  ) of orders are gathered from 

the ERP system of the facility. Sequence dependent setup times are gathered by the 

time study in the shop floor. Machine eligibility matrix is prepared by analyzing of 

                and      values of the orders and machines (see Sections 3.4).   
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These parameters were not available in the database of the company. 

Therefore, it was necessary to analyze these parameters from the given information 

like machines’      ,        and        that was avaliable in the database 

separately. An order has the same type of specifications with the machines. These 

specifications are              and       . Each triplet of      ,        and        

corresponds to one type of machine and order. To be able to assign an order onto a 

machine is constrained by these triplets (             ) (see Sections 3.4). 

Weights of orders (    represent the priorities of the orders according to the 

customers. These priorities are defined according to groups of the customers which 

are A, B and C. The major customers are group A customers, and the customers that 

have less priorities than others are group C customers. Group B customers have 

intermediate priorities in the facility. In the problem, these groups are enumerated as 

1, 2 and 3 for groups C, B and A, respectively. 

 

5.3.3 Assumptions 

 

The assumptions that are considered in this study are summarized as follows. 

 No pre-emption is allowed 

 The mean time between failures and mean time to failure of the machines are 

ignored 

 Orders to be scheduled are known at the beginning of the scheduling 

 Setup operators’ availability constraint is ignored. That is, machines do not 

wait for available setup operators 

 Variable tardiness cost of the orders are weighted between the values {1,2,3} 

according to the priorities of customers 

 There is no lot sizing 

 

5.4 Model Development 

 

In Section 5.4.1, the generated mathematical model and its formulation is 

given. Then, a simple application of the mathematical and experimental results are 

shown in Section 5.4.2. 
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5.4.1 Mathematical Model 

 

There are m different parallel machines in the system and setup times are 

dependent to the sequence of orders. Furthermore, Mj stands for the set of machines 

that can process order j. The objective function minimizes total weighted tardiness 

cost. This mathematical model is the modified version of the model that is used by 

Kerkhove et al. (2014). According to the characteristics of the problem, some 

addditional variables are determined in this version. One of the additional parameters 

is        which is used to determine the eligible machine set of each order. The 

other parameters are      and  .      is necessary to convert the completion time 

to completion day. The processing time unit is in minutes. Then, it is needed to 

convert the completion times to completion days to calculate tardy days of orders. 

The facility has three shifts, therefore the production works 24 hours. Therefore, the 

     of an order is calculated by the division of the completion time of that order 

into 24 hours. For instance, if completion time of an order I (Ci) is 60 hours, the 

Cday is calculated by 60 hours divided by 24 hour/day. Then, Cdayi is found as 3 

days, when Ci is rounded up. It is necessary to calculate the number of tardy days 

(Tday) in a day since the due date of each order is given in days in the problem set. 

Finally,   is added to define the order amounts, and   is redefined as the unit 

processing time of an order on a machine. The different location part property of the 

previous version of the model, that is generated by Kerhove et al. (2009), was not 

applied in this model though it is not required for this problem. 

 

Indices 

                                                 

                                                   

                                                 

Parameters 
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Variables 

                                                               

                                                         

                                                            

                                                                                    

 

According to the notation given in Section 1.5 and conceptual model defined 

in Section 5.3, the mathematical model that includes the objective function and 

constraints determined for the problem are given as follows. 

 

Objective Function: 

         ∑       
 
                                                                                                (1)   

   

Subject to: 

 

[
  

  
]                                                                                                                                 

∑ ∑     

 

   

 

   

                                                                                                     

∑    

 

   

                                                                                                                   

∑      ∑                                                                          
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     (               )  
      

  
                           

                                                                                                                  

        ∑ ∑
      

  
     

 

   

                                                                                

 

   

 

         ∑ ∑        

 

   

                                                                                      

 

   

 

                                                                                                                           

                                                                                                      

(10) 

 

Constraint (1) minimizes the total weighted tardiness cost. Constraint (2) 

calculates the completion day of each order. Constraint (3) guarantees that the orders 

can be assigned to only one machine in its eligible machine set. Constraint (4) 

ensures that only one order can be processed on a position of a machine. Constraint 

(5) forces as a full position among all positions over a machine. To be clear, it forces 

to assign jobs to positions respectively to avoid having an empty position. To 

illustrate, position 2 is empty while position 3 is busy. Completion times of the 

orders that are assigned to positions except position 1 are calculated in Constraint 

(6). Constraint (7) guarantees that orders cannot start to be processed before their 

release dates. Constraint (8) calculates the number of tardy days for each order. 

Finally, constraint (9) and constraint (10) define binary variables and nonnegative 

variables, respectively. 

 

5.4.2 Experimental Design 

 

The mathematical model given in the previous section is run for different data 

sets. The results together with statistics of mathematical model in OPL are given in 

Table 3. The model is run for 12, 16 number of orders for five machines respectively. 

Then, the number of machines is increased to 6 machines, and the model is run for 

16, 20, 22 orders respectively. The objective function values and the machines 

sequences for each iteration are also given in Table 3. It appears that computation 

time increases by increasing the number of intances. According to this situation, it is 
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concluded that the problem is NP-hard. Therefore, a heuristic algorithm is required to 

solve the problem with large problem instances. 

Table 3 Results of the Computational Experiments for the Mathematical model 

M N 

Comp

. Time 

(min.) 

Obj. 

Func. 
Machine Sequences Tardy Orders 

      

5 12 0.07 12 M1= {8,10,12} 

M2= {6,3} 

M3= {2,1} 

M4= {4,9} 

M5= {5,7,11} 

           1,2,4,9,11 

      

 16 4.5 19 M1= {2,6} 

M2= {8,10,12,14,1} 

M3= {16,3} 

M4= {4,13,15} 

11,1,15,9,6,4,3,2 

    M5= {5,7,9,11} 

 

 

6 16 0.26 16 M1= {2,1} 

M2= {8,16,12} 

M3= {10} 

M4= {5,7,4} 

M5= {11,9,13,15} 

M6= {6,3,14} 

     1,2,4,9,15 

      

 20 9 26 M1= {2,20} 

M2= {16,1} 

M3= {8,10,12,19,18} 

M4= {5,11,13,4} 

M5= {9,7,17,15} 

M6={6,3,14} 

         4,17,15,2,1 

 

      

 22 51 29 M1= {2,20,21} 

M2= {8,10,1} 

M3= {16,12,18,19} 

M4= {5,11,13,22,4} 

M5= {9,7,17,15} 

M6= {6,3,14} 

   4,17,15,2,1 

 

Apart from the results of computational experiments of mathematical model 

given in Table 3, the input data of the developed mathematical model are explained 

in Tables 3, 4, 5, 6 an 7 in the following. 
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Table 4 Order Numbers, Product Types and Qantities for the Mathematical Model 

Order No 

(i) 

Product 

Type of 

Order i 

Quantity of 

Order i (Qi) 

(kg) 

Order 

No (i) 

Product 

Type of 

Order i 

Quantity of 

Order i (Qi) 

(kg) 

1 Type 1 500 12 Type 1 400 

2 Type 1 391 13 Type 2 250 

3 Type 1 350 14 Type 1 250 

4 Type 2 1000 15 Type 2 700 

5 Type 2 500 16 Type 1 650 

6 Type 1 450 17 Type 2 800 

7 Type 2 300 18 Type 1 450 

8 Type 1 275 19 Type 1 500 

9 Type 2 300 20 Type 1 600 

10 Type 1 500 21 Type 1 500 

11 Type 2 500 22 Type 2 350 

 

The order set has two types of products, each order stands for a particular 

product type. The orders (product) types and order quantities used in this 

experimental design are shown in the Table 4. 

The unit processing times of orders on their eligible machine set are shown in 

Table 5. In matrix Pim, processing times are equal to zero if the order cannot be 

produced on the machine m. Uim is equal to 1 if order i can be produced on machine 

i. 

Table 6 represents the sequence dependent setup times between the orders. 

The sequence dependent setup times (Sij) are equal to zero if the order i and j cannot 

be assigned to same machines because of their eligible machine sets.     

Table 7 represents the release time and due date of each order that are used in 

the experimental design of the mathematical model. 
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Table 5 Processing Times (Pim) and (Uim) 

  
Processing Times (Pim) in 

Minutes 
Uim 

Order 

No (i) 

Product Type 

of Order i 
M1 M2 M3 M4 M5 M6 M1 M2 M3 M4 M5 M6 

1 Type 1 3.4 3 3.2 0 0 3.1 1 1 1 0 0 1 

2 Type 1 3.6 3.2 3.4 0 0 3.5 1 1 1 0 0 1 

3 Type 1 3.5 3.2 3.1 0 0 3.3 1 1 1 0 0 1 

4 Type 2 0 0 0 3.25 3.7 0 0 0 0 1 1 0 

5 Type 2 0 0 0 3.5 3.8 0 0 0 0 1 1 0 

6 Type 1 3.6 3 4 0 0 3.2 1 1 1 0 0 1 

7 Type 2 0 0 0 3.4 3.6 0 0 0 0 1 1 0 

8 Type 1 3 2.5 2.9 0 0 3.5 1 1 1 0 0 1 

9 Type 2 0 0 0 3.5 3.8 0 0 0 0 1 1 0 

10 Type 1 3 2.5 3.2 0 0 3.4 1 1 1 0 0 1 

11 Type 2 0 0 0 3.5 3.8 0 0 0 0 1 1 0 

12 Type 1 3 2.5 3.4 0 0 3.2 1 1 1 0 0 1 

13 Type 2 0 0 0 3.5 3.8 0 0 0 0 1 1 0 

14 Type 1 3 2.5 3.3 0 0 3.2 1 1 1 0 0 1 

15 Type 2 0 0 0 3.5 3.8 0 0 0 0 1 1 0 

16 Type 1 3 2.5 3 0 0 3.1 1 1 1 0 0 1 

17 Type 2 0 0 0 3.5 3.8 0 0 0 0 1 1 0 

18 Type 1 3 2.5 2.9 0 0 3.1 1 1 1 0 0 1 

19 Type 1 3 3.4 3 0 0 3.2 1 1 1 0 0 1 

20 Type 1 3 3.5 2.9 0 0 3.5 1 1 1 0 0 1 

21 Type 1 3 3.5 3 0 0 3.3 1 1 1 0 0 1 

22 Type 2 0 0 0 3.5 3.8 0 0 0 0 1 1 0 
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Table 6 Setup Times (Sij) in hours 

SİJ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1 0 5 3 0 0 2.5 0 6 0 2 0 1 0 1 0 1 0 1 5 1 10 0 

2 5 0 2 0 0 3 0 2 0 4 0 3 0 3 0 3 0 3 6 4 3 0 

3 3 2 0 0 0 2.5 0 3.5 0 2.5 0 6 0 6 0 6 0 6 6 6 7 0 

4 0 0 0 0 2 0 2.5 0 4 0 5 0 5 0 5 0 5 0 0 0 0 5 

5 0 0 0 2 0 0 4 0 10 0 2.5 0 2.5 0 2.5 0 2.5 0 0 0 0 2.5 

6 2.5 3 2.5 0 0 0 0 2.5 0 3 0 2 0 2 0 2 0 2 2 2 2 0 

7 0 0 0 2.5 4 0 0 0 4 0 2 0 2 0 2 0 2 0 0 0 0 2 

8 6 2 3.5 0 0 2.5 0 0 0 2 0 1 0 1 0 1 0 1 4 1 5 0 

9 0 0 0 4 10 0 4 0 0 0 2 0 2 0 2 0 2 0 0 0 0 2 

10 2 4 2.5 0 0 3 0 2 0 0 0 1 0 1 0 1 0 1 1 1 1 0 

11 0 0 0 5 2.5 0 2 0 2 0 0 0 3 0 3 0 3 0 0 0 0 3 

12 1 3 6 0 0 2 0 1 0 1 0 0 0 2 0 2 0 2 2 5 10 0 

13 0 0 0 5 2.5 0 2 0 2 0 3 0 0 0 4 0 4 0 0 0 0 4 

14 1 3 6 0 0 2 0 1 0 1 0 2 0 0 0 5 0 5 5 5 5 0 

15 0 0 0 5 2.5 0 2 0 2 0 3 0 4 0 0 0 9 0 0 0 0 5 

16 1 3 6 0 0 2 0 1 0 1 0 2 0 5 0 0 0 5 6 3 2 0 

17 0 0 0 5 2.5 0 2 0 2 0 3 0 4 0 9 0 0 0 0 0 0 3 

18 1 2.5 6 0 0 2 0 1 0 1 0 2 0 5 0 5 0 0 1 1 3 0 

19 5 6 6 0 0 2 0 4 0 1 0 2 0 5 0 9 0 7 0 4 2 0 

20 1 4 6 0 0 2 0 1 0 1 0 2 0 5 0 3 0 1 4 0 1 0 

21 5 3 7 0 0 2 0 5 0 1 0 5 0 5 0 2 0 3 2 1 0 0 

22 0 0 0 5 2.5 0 2 0 2 0 3 0 4 0 5 0 3 0 0 0 0 0 

 

 

Table 7 Release Time (Ri) and Due Date (Di) of Order i 

 

Order 

No (i) 

Release 

Time in 

Hours 

 

Order 

No (i) 

Release 

Time in 

Hours 

 

Order 

No (i) 

Due 

Date in 

Days 

 

Order 

No (i) 

Due 

Date in 

Days 

1 10 12 24 1 2 12 3 

2 12 13 32 2 1 13 4 

3 12 14 24 3 2 14 3 

4 12 15 12 4 2 15 5 

5 8 16 12 5 3 16 2 

6 0 17 24 6 2 17 3 

7 24 18 48 7 3 18 5 

8 5 19 48 8 1 19 6 

9 24 20 24 9 3 20 3 

10 18 21 24 10 2 21 4 

11 24 22 24 11 3 22 5 
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CHAPTER 6: AN ACO APPLICATION DEVELOPMENT 

 

6.1 Introduction 

 

In this chapter, an application of ant colony optimization (ACO) is explained. 

Steps of the proposed ACO heuristic algorithm are shown with a flow chart in Figure 

6, and they are explained in Section 6.2. Then, the pseudo-code of the proposed ACO 

heuristic algorithm is given in Section 6.3. Steps and pseudo-code of local search 

algorithm are explained step-by-step in Section 6.4. Finally, the complexity of the 

proposed ACO heuristic algorithm and concluding remarks about this chapter are 

given in Sections 6.4 and 6.5, respectively. 

 

6.2 Ant Colony Optimization (ACO) 

 

Ant colony optimizations are first mentioned by the studies of Dorigo (see 

Dorigo et al. 1999) as an approach to solve combinatorial optimization problems. 

Ant algorithms are generated by using observations of real ant colonies. Ants are 

social insects. That is, they work for the benefit of colony for which they belong to, 

they do not work for individual benefits. For this reason, the behavior of social 

insects gain much attention of the scientists (Dorigo et al. 1999; p. 1). The most 

attractive behavior of ant colonies is their ability to find the shortest path from their 

nest to the food source and this behavior is named as foraging behavior (Dorigo et al. 

1999; p.1). The ants deposit pheromone trail. That is, a chemical substance that they 

deposit while they move between nest and food source. This behavior is known as 

stigmergy (Dorigo et al. 1999; p. 3). Stigmergy enables ants to perform their foraging 

behavior (Dorigo et al. 1999; p. 3). Ants smell the pheromone and they find their 

way by selecting the way that has strong pheromone concentrations (Dorigo et al. 

1999; p. 1). Even a single ant can find a way from nest to food source, a colony of 

ant can find the shortest path from nest to food source. 
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Another significant property of real ants is autocatalytic mechanism (positive 

feedback) that works with implicit evaluation of solutions (Dorigo et al. 1999; p. 4). 

In the shorter paths, ants complete the path earlier than the ants on the longer paths. 

That is, pheromones are deposited by the ants sooner in the shorter path, and it 

results that more ants choose the shorter path. In addition, pheromones are 

evaporated over the time, and by this way the ant colony forgets the past history and 

work on the search space without being over-restriction by past decisions (Dorigo et 

al. 1999; p. 6). 

In the ant colony optimization, artificial ants are used instead of real ants, and 

artificial ant colonies are used to find good solutions for difficult discrete 

optimization problems (Dorigo et al. 1999; p. 5). Both real and artificial ants have the 

same purpose, finding the shortest path. However, artificial ants have more abilities 

than the real ants (Dorigo et al. 1999; p.5). The artificial ants have the all 

characteristic of real ants and as addition of these characteristic, they can deposit 

pheromone with respect to the quality of the solution that they find. Moreover, the 

time to deposit pheromone can be arranged according to the problem. The other most 

significant additional characteristic of an artificial ant is deamon actions which are 

used to improve efficiencies of the artificial ants and give them extra capabilities 

(Dorigo et al. 1999; p. 6). These deamon actions are lookahead, local optimization 

and backtracking (Dorigo et al. 1999; p. 6). Local optimization is commonly used for 

them when it is compared to lookahead and backtracking (Dorigo et al. 1999; p. 6).   

In the ACO meta-heuristic, incremental constructive approach is used to find 

feasible solution. In other words, the algorithm generates a solution by adding 

individual components of the problem. For instance, in TSP, the solution is 

constructed by adding or selecting a node and finally a feasible solution is generated 

at the end with the all predefined nodes. The main procedure of the ACO is 

composed of three main functions: ant generation and activity, pheromone 

evaporation, deamon actions (Dorigo et al. 1999). Deamon actions are optional and 

they depend on the construction of the algorithm and the problem. The first ACO 

algorithm in the literature was Ant System (AS) and it was built to solve Traveling 

Salesman Problem (TSP) (Dorigo et al. 1999). The algorithm executes a number of 

iterations. In each iteration, each ant finds a solution for the problem. That means, 
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after an iteration, number of ant solutions are generated. To illustrate, a solution is a 

tour which includes all nodes and arcs once without any sub-tours in a TSP.  

An ant visits the nodes (cities) step by step, and finally, it constructs a tour. 

Ant-decision table (   ) is used to decide which node is added to the tour. This table 

is obtained by the pheromone trail values and the heuristic values. In this problem, 

pheromone trail value is defined for an arc (i,j) and heuristic value is calculated by 

using the distance between node i and node j. With this table, the probability of an 

ant selects to go from node i to node j in an iteration (   ).   and   are used for the 

favorability between pheromone trail and heuristic value. After all ants complete 

their tour, the pheromone update on all arcs is occured. The pheromone update 

includes an addition (increase) and evaporation (decrease). Addition means that each 

ant deposits an amount of pheromone on each arc that it is visited. The amount is 

proportional with performance of the solution of this ant. In the evaporation part, the 

pheromone amount on each arc is decreased with using evaporation rate. This rate is 

also defined as a parameter like   and   (Dorigo et al. 1999). 

In this section, the summary of developed ACO algorithm is given briefly. In 

next section, steps of the ACO algorithm applied in this study are presented and 

explained briefly. 

6.3 Steps of Proposed ACO Algorithm 

 

Proposed ACO heuristic algorithm is composed of four main parts. In the Part 

1, the vector S1 that represents machine assignment of each order, is found. S1 is a 

vector that has N (Number of Orders) components. The components in this vector 

should be populated with the machine numbers. For instance, if the problem set has 8 

orders and 3 machines S1 can be like S1= [1 1 2 3 1 2 3 1]. It means, orders 1,2,5 

and 8 are assigned to machine 1, orders 3 and 6 are assigned to machine 2, and orders 

4 and 7 are assigned to machine 3. In the flow chart, the steps between 4 and 6 are 

used to find S1. Part 2 includes steps 7 and 8. In this part, S2 matrix that has M 

(number of machines) number of rows and N (number of orders) number of columns 

(positions) is found. S2 matrix presents a machine sequence. More clearly, each row 

represents sequence of orders on a machine.    [
   
   
   

    
   
   
   

    
  
  
  

] is 
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can be given as an example for the same example above. For instance, machine 1 has 

a sequence as 1-8-5-2, machine 2 has a sequence as 6-3, and machine 3 has a 

sequence as 4-7 on this example.  

In the Part 3, TWTk (Total Weighted Tardiness), where k   NbANT 

(Maximum Number of Ants), is calculated according to S2, and BESTSOL (best 

solution of the algorithm) is updated if an ant can find a better solution than current 

BESTSOL. Part 3 includes the steps 10, 11, 12 and 13. In the Part 4, the local search 

algorithm runs for each S2 that is found by an ant, and TWTk and BESTSOL are 

updated if the local search algorithm can find better solution. After that, the 

pheromone is updated with pheromone deposit and evaporation. Part 4 contains the 

steps 14, 15, 16, 17, 18 and 19. These steps are represented in detail in Figure 6. 

In this algorithm, two different pheromone trails are used,    
  for machine 

selection and     
    for order sequence, where i,j   N and m   M. In equation 1, the 

probability of assigning an order to a machine (Prob1) is calculated.     
  suggests a 

machine which has the processing time for that order. It is used as heuristic 

information and calculated by equation 2. Equations 3 and 4 give the formula to 

calculate the probability of order i that precedes order j (Prob2) and heuristic 

information (    
  ) that is proportional to setup times between orders i and j, 

respectively.   ,    and   ,    are used to determine the importance of pheromone 

amount over the heuristic value while Prob1 and Prob2 are calculated, respectively. 

After all ants find a solution, the pheromones evaporate for each    
  and     

  .  

Evaporation formula is given in equation 5. 

 

      
    

           
    

∑     
           

     
 

                                                                                    (1) 

    
  

 

             
                                                                                                                                            (2) 

      
    

            
    

∑     
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                                                                                                                                                                 (4) 

   
           

                    
            

  
                                                               (5)   
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After finding S1 and S2, TWT is calculated for each solution. In this problem, 

the constraints are the same with the mathematical model applied in Chapter 5. The 

orders can be assigned only to the machine in their eligible machine set, and orders 

can not be processed before their release dates. Therefore, the completion time of 

each order is computed with respect to release date of that order, or the completion 

time of the order which precedes that order. The completion time is not enough to 

calculate TWT since due dates are in days, therefore it is necessary to convert them 

into days. After finding the completion day of each order, the TWT is calculated by 

subtracting the completion day of an order from the due date of an order if the value 

is negative.  
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Figure 6 Flow Chart of ACO Algorithm  
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The explanations of steps of the ACO algorithm are presented in rest of this 

section. 

 

Step 1: The algorithm initializes the ACO parameters and assings BESTSOL as 

infinitive. Since this is a minimizing problem, heuristic tries to find a smaller 

solution than the best solution.  

Step 2: The first loop of the algorirthm starts by setting the it=1. 

 

Step 3: The second loop, which is for ant generation, starts setting k=1. 

 

Step 4: By using the parameters    
 ,     

  , α1, β1 and the equation 1 and 2 in Section 

6.3, transition probabilities of assigning the order i to the machine m are calculated. 

 

Step 5: By roulette wheel selection method, a machine is selected to assign for each 

order and vector S1 is found. 

 

Step 6: By using the parameters,     
  

,     
  

, α2, β2 and equation 3 and 4 in section 6.2, 

the probality to process the order i before order j is calculted. 

 

Step 7: S2 matix is found by using the probability matrix that is calculated in step 6. 

 

Step 8: Evaluate Total Weighted Tardiness (TWTk) according to S2 matrix. This 

calculation is shown in the pseudo code of the ACO algorithm in Procedure 

Evaluate_TWT (k,i) in Figure 7. 

 

Step 9: The algorithm checks for the solution if it is better than the best solution of 

the algorithm (TWTk < BESTSOL). If it is better, the algorithm continues with step 

10, otherwise continues with Step 11. 

 

Step 10: Update BESTSOL with TWTk and go Step 11.  
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Step 11: The algorithm checks for the ant number. If Ant > NbAnts (maximum 

number of ants), then algorithms continues with step 12; otherwise the algorithms go 

to step 3 by updating the ant number as (k=k + 1). 

 

Step 12: After all ants find indiviualt solutions, these solutions enter to the local 

search algorithm described in Section 6.4. 

 

Step 13: The algorithm checks for the solution that is found in the local search, is 

better than the solution of the ant that is tried to be improved. If the local search finds 

a better solution than the solution of that ant (TWTk), the algorithm updates the ant’s 

solution with the value TWT_Localk in step 14. If the solution is also better than the 

best solution (BESTSOL) of the algorithm, then the best solution is also updated in 

step 14. If local search cannot find better solution, the algorithm continues with the 

step 15. 

 

Step 14: Update BESTSOL or TWTk, then go Step 15 

 

Step 15: The algorithm updates the pheromone trails     
  ,    

   as shown in the 

pseudo code of ACO in the procedure Pheromone_Deposit in Figıre 7. 

 

Step 16: The algorithm updates the pheromone trails by the evaporation of them with 

the parameter ρ as shown in the procedure Pheromone_Evaporation() in Figure 7. 

 

Step 17: The algorithm checks for the iteration number is smaller than the MaxIt 

(maximum number of iterations). If it is greater than the MaxIt, the algorithm stops. 

Otherwise, the iteration number it is updated by the formula it (it= it+ 1) and the 

algorithm goes back to the step 2. 

 

The Steps for the ACO Algorthm is listed below. 

 

Step 1: Parameter Intialization    
 

 ,    
   , ρ, α1, β1, α2, β2,    

 
,    

  
, φ, BESTSOL=inf 

Step 2: Initiate Iteration it  
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Step 3: Initiate Ant k 

Step 4: Calculate Transition_Probabilities_for_Machine_Selection()with    
 ,     

  

, α1, β1 

Step 5: Find S1 vector using Roulette Wheel Selection 

Step 6: Calculate Transition_Probabilities_for_Sequencing() with    
  

,     
  

, α2, β2 

Step 7: Find S2 Matrix with Transition_Probabilities_for_Sequencing() 

Step 8: Evaluate Total Weighted Tardiness (TWTk) according to S1 and S2 

Step 9: If TWTk < BESTSOL, go Step 12; otherwise go Step 13 

Step 10: Update BESTSOL and go Step 13 

Step 11: If Ant > NbAnts (maximum number of ants), then go to Step 14; otherwise 

update Ant number (k=k + 1) and go to Step 3 

Step 12: Execute the local search algorithm described below 

Step 13: If TWT_Localk < TWTk  & TWTk < BESTSOL, go Step 16; otherwise go  

Step 14: Update BESTSOL and TWTk, then go Step 17 

Step 15: Update     
  ,    

   for each ant (deposit pheromone) 

Step 16 : Pheromone Evaporation with the parameter ρ 

Step 17 : If i > MaxIt (maximum number of iterations), STOP; Otherwise update it 

(it= it+ 1) and go to Step 2 

 

6.4 Pseudo-Code of Proposed ACO Algorithm 

 

This section represents the pseudo-code for the proposed ACO heuristic 

algorithm explained in the previous section. Figure 7 represents the pseudo-code of 

proposed ACO heuristic algorithm.  

In the algorithm, three main activities of ACO algorithm exist. In the first 

activity, ants are generated and each ant find a solution that includes machine 

assignment and machine sequencing. The second activity is Local search Procedure. 

Local search activity is placed in the algorithm to improve the solution of each ant in 

each iteration.The third one is applied for pheromone deposit and the last one is for 

pheromone evaporation.  
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Procedure ACO_Meta_Heuristic() 

 While (it   MaxIteration) 

  Ant_Generation_and_solution finding(); 

Local_Search_Procedure(); 

Pheromone Deposit(); 

  Pheromone_Evaporation(); 

end while 

end procedure 

 

procedure Ant_Generation_and_solution finding() 

generate new ant; 

While (k   NbANT) 

 While (i   NbOrders)  

Prob1= calculate_machine_selection_probabilities_with_ eq2; 

S1= RouletteWheelSelection(); 

Prob2=calculate_sequencing_probabilities_for_all_orders_ 

assigned_same_machine_with_eq4;  

S2=apply_ant_decision_policy_sequencing(); 

Evaluate_TWT(k,i); 

Update_Best_Solution; 

end while 

end while 

End procedure 

 

Procedure Evaluate_TWT(k,i) 

While (m   NbMachines) 

If i is the first order on a machine 

CompTime(k,S[m,i])=Release_time(S[m,i])+ProcessingTime(S[m,i],

m) 

ElseIf  CompTime(k, S[m,i])< Release_time(S[m,i]) 

CompTime(k, S[m,i])= Release_time(S[m,i]) + 

ProcessingTime(S[m,i],m) 

Else 

CompTime(k, S[m,i])= CompTime(k, S[m,i-1]) + 

ProcessingTime(S[m,i],m) 

End If 

 

                          TWT(k,i)= CompTime(k, S[m,i]) – d(S[m,i]) 

 

End procedure 

 

Procedure Pheromone Deposit() 

While (k   NbANT) 

While (    NbOrders) 

While (    NbMachines) 

If S1[i]=m 

   
 =   

 +φ / TWTk 

End if 

 

end while 

While (    NbMachines) 

While (   NumberOfAssignedOrderOnMachine m-1) 

                   
  

=                   
  

 + φ / TWTk 

end while 



   
 

43 
 

end while 

end while 

end while 

end procedures 

 

procedure Pheromone_Evaporation() 

  =(1- ρ)    

   =(1- ρ)     

end procedures 

 

procedure Roulette_Wheel_Selection() 

generate a random number between[0,1]; 

C=CumulativeSum(Prob1); 

            Selected_Machine=find(r<=C); 

end procedures 

 

Figure 7 Pseudo-code for ACO Meta-heuristic 

 

6.5 Steps and Pseudo Code of Local Search Algorithm 

  

 In this section, local search algorithm applied in the ant colony optimization 

algorithm is represented and explained step-by-step. The flow chart of local search 

algorithm is presented in Figure 8.  Then, pseudo code of the local search is shown in 

Figure 9.   

Local search algorithms are one of deamon actions that can be used in ant 

colony optimizations to improve efficiency of the algorithm (Dorigo et al. 1999; p. 

6). Ant colony optimization algortihms generally provide good solution when it is 

applied with a local search algortihms (Arnout et al. 2009; p. 696).  

The local search algorithm is performed in each iteration for each ant 

solution. Therefore, the first loop of the algorithm repeats as the number of ants. 

Then, the second loop repeats with the number of MaxItLoc (maximum number of 

local iteration). In each iteration, a machine is randomly selected, and two orders 

assigned on the selected machine are chosen. Then, the algorithm swaps these two 

orders and calculates the TWT_Local(Ant), where it is the objective function value 

of the local search, with new sequence (S2). If the local search algorithm improves 

the solution of the ant, then it updates the S2 matrix and objective function value of 

the ant. If the solution of the local search is also better than the best solution of the 

algorithm (BESTSOL), then it is also updated by the solution found in local search.   
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Figure 8 Flow Chart of Local Search Algorithm  
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The Steps for the Local Search Algorthm is listed below. 

Step 1: Set Ant=1 

Step 2: Set Local_Iteration=1 

Step 3: Randomly select a machine 

Step 4: Randomly select two orders on the selected machine 

Step 5: Swap the positions of  selected orders 

Step 6: Calculate TWT_Local(Ant) with new sequence(S2) /* where TWT_Local is 

the objective function value found in local search algortihm */ 

Step 7: If TWT_Loc(Ant)≤TWT(Ant), then go Step 8; Otherwise go step 9 

Step 8: Replace S2 with the ones found in local search and update TWT(Ant) and 

BESTSOL 

Step 9: If Local_Iteration > MaxItLoc, go step 10; Otherwise, LocalIteration = 

LocalIteration  + 1 and go back to step 2 

Step 10: If Ant > NbANT, End the local search; Otherwise, Ant=Ant +1 and go back 

to step 1 

  

Procedure Local_Search_Procedure()  

While (ant   Max_Number_of_Ant) 

While (Current State2   Max_Iteration_Number_of_Local_Search) 

 Randomly_select_a_machine; 

 Randomly_select_two_orders; 

 Swap_the_positions_of_selected_orders_on_selected_machine

s; 

 Evaluate_ TWT_Local(ant); 

If TWT_Local(ant)<TWT(ant) 

Update_S2(Ant); 

Update_TWT(Ant); 

Update_best_solution(it); 

end if 

end while 

end while 

end procedures 

Figure 9 Pseudo-code of Local Search Algorithm 
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6.6 Complexity of ACO Algorithm 

 

The complexity of the developed ACO algorithm is explained in two parts in 

this section. First, the complexity of the thesis problem on which the ACO algorithm 

is applied is discussed with the scheduling literature. Then, the complexity of the 

ACO algorithm is discussed by considering the parameters of the algorithm, loops in 

the algorithm and the computation times from the experimental design of 

mathematical model and the algorithm under optimized parameters. 

With regard to the complexity of the thesis problem, it is regarded as NP-hard 

by Pinedo (1995; pp. 51), and the other studies in scheduling literature such as Karp 

et al. (1972) and Ho and Chang et al. (1995). Pinedo (1995; pp. 51) points out that 

the problem with the objective of tardiness is NP-hard, therefore the weighted 

tardiness is also considered as NP-hard given in its complexity classes in scheduling. 

With regard to the complexity of the developed ACO algorithm, 

ACO_Meta_Heuristic() that is given in Figure 6 encapculates an outer while loop 

that is defined by the NbANT parameter. Inside of this loop, there is an another while 

loop that is defined by the NbOrders parameter, and then this procedure calls the 

Evaluate_TWT(k,i) procedure has a loop defined by the parameter of NbMachines. 

Therefore, the complexity of the ACO algorithm can be represented by O(NbANT* 

NbOrders* NbMachines). In this complexity representation, it is noted that the 

complexity is linearly proportional to by the change in the number of orders 

(NbOrders) or number of machines (NbMachines). In addition, computation times 

oin Table 3 in Section 5 show significant increases under certain number of machines 

when the number of orders is increased.  

 

6.7 Concluding Remarks 

 

In this chapter, the ant colony optimization algorithm and reasons to apply it 

for optimization problems are explained briefly in Section 6.2. Then, the proposed 

ACO algorithm is explained step-by-step with using the flow chart and the pseudo 

code (see Figures 6 and 7). The local search algorithm integrated with the ACO is 

explained together with the flow chart and the pseudo code (see Figure 8 and 9).
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CHAPTER 7: RESULTS 

7.1 Introduction 

In this chapter, results of ACO algorithm and experimental design for the 

problem are given. The ACO parameters which are used in experimental design is 

given in Section 7.2. Experimental design and the parameters that are used as the 

factors of experimental design are explained in Section 7.3.  

7.2 Optimization of ACO Parameters 

Taguchi method is applied to determine the proper values of the ACO 

parameters which minimize the total weighted tardiness (TWT). Taguchi method is a 

statistical method which is developed for improving the quality of goods in 

manufacturing (Atherya et al., 2012; p.13). It is used to determine proper values of 

control factors to optimize the results of the process. Orthogonal Arrays (OA) are 

used to define set of experiments in this method. 

 In this study, the factors and their levels that are considered in the 

experimental design are shown in Table 8. In the application of Taguchi method for 

this problem, smaller objective function values represent better types, and the 

objective function of the analysis is based on S/N         
 
∑   

  
   , where 

n=Sample Size and   
 = Objective Function Value of the ACO Heuristic Algorithm 

in the run i. Standart L27 orthogonal array is used in Table 9. 
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Table 8 Selected Factors and Their Levels 

Factors 
Levels 

0 1 2 

NbANT 40 60 80 

ρ 0.01 0.1 0.5 

φ 0.01 0.5 1 

Table 9 Orthogonal Array (OA) L27 

Experiment 
No ρ φ NbANT 

1 0 0 0 

2 0 1 1 

3 0 2 2 

4 1 0 0 

5 1 1 1 

6 1 2 2 

7 2 0 0 

8 2 1 1 

9 2 2 2 

10 0 0 1 

11 0 1 2 

12 0 2 0 

13 1 0 1 

14 1 1 2 

15 1 2 0 

16 2 0 1 

17 2 1 2 

18 2 2 0 

19 0 0 2 

20 0 1 0 

21 0 2 1 

22 1 0 2 

23 1 1 0 

24 1 2 1 

25 2 0 2 

26 2 1 0 

27 2 2 1 
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After applying 10 iterations for each experiment, the values used in 

experiment 11 give a better S/N ratio as shown in Table 10. Therefore, ρ: 0.01, φ: 0.5 

and NbANT: 80 are chosen as the best ACO parameters.  

Table 10 OA with Control Factors and Results of the Experiments 

Experiment No ρ φ NbANT 1 2 3 4 5 6 7 8 9 10 Mean S/N 

1 0.01 0.01 40 35 34 33 33 35 34 33 33 36 34 34 -30.6333 

2 0.01 0.5 60 36 35 34 34 36 34 33 33 35 34 34.4 -30.735 

3 0.01 1 80 33 34 35 32 34 32 34 34 33 34 33.5 -30.5042 

4 0.1 0.01 40 36 33 38 35 35 34 36 34 34 35 35 -30.8877 

5 0.1 0.5 60 35 36 36 34 35 32 36 33 36 34 34.7 -30.8131 

6 0.1 1 80 35 33 35 34 34 32 34 34 34 34 33.9 -30.6066 

7 0.5 0.01 40 36 35 34 35 34 35 35 35 34 32 34.5 -30.7602 

8 0.5 0.5 60 33 33 33 35 35 36 33 34 33 34 33.9 -30.6081 

9 0.5 1 80 34 35 35 34 35 34 33 36 35 36 34.7 -30.8095 

10 0.01 0.01 60 34 34 35 33 33 35 34 32 36 34 34 -30.6341 

11 0.01 0.5 80 32 31 31 33 34 33 33 33 32 34 32.6 -30.2686 

12 0.01 1 40 36 32 34 35 32 35 34 35 36 36 34.5 -30.7639 

13 0.1 0.01 60 34 34 33 35 33 36 33 35 34 35 34.2 -30.6841 

14 0.1 0.5 80 32 35 33 35 33 34 34 33 34 34 33.7 -30.5557 

15 0.1 1 40 35 35 34 36 34 35 37 35 36 36 35.3 -30.9583 

16 0.5 0.01 60 34 35 34 32 35 34 34 33 33 36 34 -30.6341 

17 0.5 0.5 80 34 33 33 35 35 34 35 32 34 34 33.9 -30.6074 

18 0.5 1 40 35 36 35 34 35 36 34 35 34 35 34.9 -30.8583 

19 0.01 0.01 80 31 34 34 34 36 34 34 35 34 33 33.9 -30.6096 

20 0.01 0.5 40 35 35 34 34 35 36 36 36 35 34 35 -30.8835 

21 0.01 1 60 34 34 35 35 34 34 34 34 34 35 34.3 -30.7067 

22 0.1 0.01 80 34 34 33 35 34 33 35 35 34 34 34.1 -30.6569 

23 0.1 0.5 40 36 35 35 33 35 35 35 36 34 34 34.8 -30.8343 

24 0.1 1 60 36 35 34 35 31 34 33 35 33 34 34 -30.6363 

25 0.5 0.01 80 34 34 34 32 33 34 34 36 34 33 33.8 -30.582 

26 0.5 0.5 40 37 35 34 35 35 35 34 34 35 36 35 -30.8842 

27 0.5 1 60 34 36 34 34 33 34 35 33 36 32 34.1 -30.6606 
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7.3 Comparison of ACO Algorithm to Mathematical Model 

 

 In this section, results of the mathematical model (see Section 5.4.2), and the 

results of the ACO algorithm are compared. The ACO algorithm is run by 5 

machines with 12 orders and 6 machines with 22 orders, which are the smallest and 

the biggest parameter sets in the mathematical model (see Section 5.4.2).  

Accordingly, the ACO algorithm can find the optimal solution with the smallest 

parameter set, and it can find near optimal solution with the biggest parameter set.  

This disparity is represented in Table 8. Furthermore, when the mathematical model 

can find the optimal solution in 51 minutes with the biggest parameter set, the 

proposed ACO algorithm can find near optimal solution in 1.5 minutes. The 

sequence of the machines, objective function values and the computation times in 

minutes are given in Table 8. These results represent that the proposed algorithm 

performs better than mathematical model when the problem size gets bigger. 

 

Table 11 Comparison of Mathematical Model and ACO Algorithm 

M-

N 

TWT 

of 

Math. 

Model 

TWT 

of 

ACO 

Sequences of Math. 

Model 
Sequences of ACO 

Computation 

Time of Math. 

Model (in min.) 

Computation 

Time of ACO 

(in min) 

5-12 12 12 M1= {8,10,12} M1= {8,10} 0.07 0.1 

   

M2= {6,3} M2= {6,3,12} 

  

   

M3= {2,1} M3= {2,1} 

  

   

M4= {4,9} M4= {4,9} 

  

   

M5= {5,7,11} M5= {5,7,11} 

  

       6-22 29 31 M1= {2,20,21} M1={10,3,19} 51 1,5 

   

M2= {8,10,1} M2={8,2,12,14,18} 

  

   

M3={16,12,18,19} M3={1,20,21} 

  

   

M4={5,11,13,22,4} M4={5,11,13,17,15} 

  

   

M5={9,7,17,15} M5={9,7,22,4} 

  

   

M6={6,3,14} M6={16,6} 
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7.4 Experimental Design 

 

This section explains the experimental design for the ACO algorithm 

developed. It employes three factors and two levels. Therefore, 2
2
*3

1
 general 

multilevel experimental design is performed. Accordingly, this section first defines 

the factors in Subsection 7.4.1. Then, the results of experimental design are given in 

Subsection 7.4.2. 

 

7.4.1 Definition of Factors 

 

The proposed ACO heuristic algortihm is implemented by Matlab R2018a 

running on Windows 8.1 with a Intel Core i5 processor with 4 GB of RAM. The 

Matlab code is given in Appendix F. The algorithm is run by different combinations 

of the factors of the experimental design by using the best ACO parameters which 

are obtained in the Section 7.2. These factors are number of orders, number of 

machines and number of order (product) type. Each order has one type of product, 

this why an order type defines a product type.  

Number of orders is one of the factors for this experimental design. It impacts 

the performance of the algorithm. When the number of order is increased, the 

complexity of the problem is also increased. This characteristic is shown in the 

mathematical model results for this problem in Section 5.4.2. 

Number of machines is an another factor of the experimental design. 

According to the results of the mathematical model given in Section 5.4.2, the 

number of machines affects the performance of the scheduling. For this reason, it is 

selected to see the impact of this parameter. 

Number of product types is also a significant factor for both the scheduling 

problems and the industry. As it is discussed in Section 1.4, it is one of the 

challenges of the scheduling. For this reason, the impact of this parameter is inquired 

using the experimental design.  
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7.4.2 Results of Experimental Design 

 

The proposed ACO algorithm is run with the experiments as shown in Table 

9. According to the 2
2
*3

1
 general multilevel factorial experimental design, 12 

number of different combinations are observed by the ACO algorithm in the 

experimental design and results of them are shown in Appendix G. 

The ACO algorithm is also run with a real factory data and this experiment 

was added to Table 12 as experiment 13. In this experiment the number of machines 

is 42 and the number of orders is 218. This is the real number of machines that is 

capable to produce the product type focused in this thesis in the company. 218 is 

chosed as the number of orders because it is the average number of orders for the 

product type focused in this thesis in the company.  

The deviation ratio between the experiments are calculated by the equation 

below. The deviation ratio of the experiments are shown in the Table 12. It is 

obvious that, when the production capacity increases, total weigted tardiness 

decreases and therefore, deviation ratio also decreases.  

     
       = The minimum total weighted tardiness cost in experiment c obtained 

from ACO  

           = The minimum total weighted tardiness cost in among all 

combinations obtained from ACO  

                (
     

                

          )

   
⁄
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Table 12 Deviation Ratio and Average Computation Times of Experiments  

Experiment 

No 

Number of 

Machine 

Number of 

Order 

(Product) 

Type 

Number 

of Orders 

Deviation 

Ratio 

Average 

Computation 

Time (in minutes) 

 

1 6 4 60 0.0275 1.40  

2 6 4 80 0.115 1.93  

3 6 4 100 0.0725 2.42  

4 6 7 60 0.1 1.78  

5 6 7 80 0.125 2.06  

6 6 7 100 0.12 2.61  

7 8 4 60 0 1.85  

8 8 4 80 0.075 2.10  

9 8 4 100 0.095 2.50  

10 8 7 60 0.0275 1.7  

11 8 7 80 0.0725 2.00  

12 8 7 100 0.0875 2.23  

13 42 22 218 0.7575 16.5  

 

Figure 10 and 11 represent the average computation time of experimental design in 

minutes and minimum total weighted tardiness of the experiments, respectively. 

 

 

 

Figure 10 Average Computation Time of Experimental Design in Minutes  
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Figure 11 Minimum Total Weighted Tardiness of the Experiments 

 

7.4.2.1 Results of Experimental Design by Minimum Objective Function 

 

Experimental design is employed first by using the minimum objective 

function value. Accordingly, the results of experimental design are examined first by 

the main effects plot that is given in Figure 12. According to the results, as number 

of machines is increased from 6 to 8, the weighted tardiness drops significantly 

below 30. With regard to number of product types, as number of product varieties is 

increased from 4 to 7, the weighted tardiness increases significantly beyond 40. 

These increases are linearly proportional as in the cases of number of machines and 

number of product types. However, the changes in the weighted tardiness when the 

number of orders is increased from 60 to 100, it presents a non-linear behavior, it 

increases from 60 to 80, however at this point, it starts to decrease until 100. It is 

noted that the weighted tardiness is still beyond 40 when the number of orders is 100. 

Also, it shows the minimum objective value, that is 20, when the number of orders is 

60.   
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Figure 12 Main Effects Plot for Minimum Objective Function 
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Figure 13 Interactions Plot for Minimum Objective Function  
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Second, the interactions plot is given in Figure 13. According to the results in 

Figure 11, in the case of interaction of number of machines and number product 

types, the increase is substantial when the number of machines is 6 and when the 

number of product types is increased from 4 to 7. 

However, in the case of 8 machines, the increase in the weighted tardiness 

when the number of product types is increased is very little, and not substantial. The 

interaction between the number of machines and number of orders represents 

significant changes as number of orders is increased. The weighted tardiness 

increases significantly as number of orders is increased from 60 to 80 and it drops 

from 80 to 100. This behavior is similar to the main effects of number or orders 

given in Figure 10. The changes are similar when the number of machines is 8, 

however the weighted tardiness values are smaller. When the increaction is between 

number of product types and number of orders, the increase impact in the increase of 

number of orders under both product types are similar. It represents similar increase 

in the weighted tardiness until the number of orders is 80, then it represents decrease 

until the number of orders is 100. 

 

7.4.2.2 Results of Experimental Design by Average Computation Time 

 

Experimental design is employed first by using the average computation time 

value. Accordingly, the results of experimental design are examined first by the main 

effects plot that is given in Figure 14. According to the results, as number of 

machines is increased from 6 to 8, the average computation time increases 

significantly to above 1.95 minutes. With regard to number of product types, as 

number of product varieties is increased from 4 to 7, the average computation time 

increases significantly to above 1.95 minutes. With regard to number of orders, as 

number of orders increases from 60 to 100, the average computation time increases 

too from 1.55 minutes to almost 2 minutes. These increases are linearly proportional 

as in the cases of number of machines, number of product types and number of 

orders. 
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Second, the interactions plot is given in Figure 15. According to the results in 

Figure 15, in the case of interaction of number of machines and number product 

types, the increase when the number of machines is 6 and when the number of 

product types is increased from 4 to 7, is substantial. Then, in case of 8 machines, 

almost same amount of incease is observed when the number of product types is 

increased. The interaction between the number of machines and number of orders 

represents significant changes as number of orders is increased. The average 

computation time increases significantly as number of orders is increased from 60 to 

100. The changes are similar when the number of machines is 8, however the 

average computation time values are smaller. When the interaction is between 

number of product types and number of orders, the increase impact in the increase of 

number of orders under both number of product types are similar for the number of 

orders between 60 to 80. However, after 80 number of orders, the average 

computation time decreases when the number of product types is 4 and the average 

computation time continue to increase when the number of product types is 7. 
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Figure 14 Main Effects Plot for Average Computation Time  
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Figure 15 Interactions Plot for Average Computation Time 

 

7.4.2.3 Regression Model by Average Computation Time 

 

Based on the multilevel experimental design, the regression model of the 

design is computed to show the main effects. The regression model is calculated as in 

the following. 

 

Min Obj Func = 17,2 - 6,42 Number of Machines + 3,39 Number of Product 

Types  + 0,550 Number of Orders 

 

The normal probability and residual plots for the regression model is also 

presented in Figure 14. However, it is noted that R square value is calculated less 

then 90%, that represents the fitting on the regression could be better with the 

increased number of problem instances (see Appendix L).  
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Figure 16 Residual Plots for Minimum Weighted Tardiness 

 

7.5 Concluding Remarks 

 

In this Chapter, the appropriate ACO parameters are found. Then, the 

mathematical model is compared with ACO algorithm and discussed. After that, the 

experimental design is performed with the appropriate ACO parameters. 

Furthermore, the developed ACO algorithm is also run for the real data of the 

company. The average computation time is found as 16.5 minutes for 42 number of 

machines, 22 number of product types and 218 number of orders. In this experiment, 

the objective function minimum objective function value is found as 307 and 35 

number of tardy orders are observed. Finally, the results are represented in Section 

7.4.2. 
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CHAPTER 8: CONCLUSIONS AND FUTURE WORK 

 

 In this chapter, the conclusions are given in section 8.1 and the future 

research is discussed in Section 8.2. 

 

8.1 Conclusions and Discussions 

 

This thesis considers a real life problem in a textile company that produces 

knitted fabric. The problem is to minimize the total weighted tardiness on the knitted 

fabric production. In this study, a mathematical model is improved which minimizes 

total weighted tardiness based on recent literature. The model considers machine 

eligibility constraints and sequence-dependent setup times. The mathematical model 

is run for a number of machines and orders. The weighted total tardiness values are 

recorded for different scenarios under the mathematical model developed. It is 

observed that the unrelated parallel machine problem with weighted tardiness 

objective is an NP-hard problem and it takes significantly long time to find a solution 

using the optimization software. 

An ant colony optimization algorithm is developed to solve the problem with 

real size dataset extracted from a real textile company and it shows acceptable 

computation times. To show the effectiveness of the developed ACO algorithm, the 

algorithm is first compared with the mathematical model and it is proven that the 

ACO algorithm performs better than the mathematical model. However, this results 

should be examined with more problem instances and data. 

Furthermore, the best ACO parameters are found by several experiments. 

Then, design of experiments is performed for the proposed ACO algorithm and their 

results are analyzed by ANOVA, with the factors as follows: number of orders, 

number of machines and number of product types. 
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The interactions between these factors are shown by using ANOVA. It is 

shown that the best weighted tardiness values are obtained when the number of 

orders is 60, number of machines is 6 and the number of product types is 4. This is 

also verified by the average computational results. In additon to the main effects 

representation of these factors, a regression model is computed using statistical 

software and normality of results with residuals are verified. According to the 

regression model, number of machines has negative reducing impact on tardiness. An 

increase on the number of machines causes to decrease the total weigted tardiness. 

While the number of order number has low impact on the objective function, the 

number od product types has higher impact on the total weighted tardiness.  

In short, this thesis contributes to the literature under the following points. 

 It applies a real scheduling problem using real data in the textile 

industry as it lacks of such optimization studies.  

 With a detailed literature, it is verified only a few population based 

heuristics are applies on scheduling of textile production systems, and 

this thesis adds a problem categories on a recent literature. 

 The mathematical model applied incorporates machine eligibility 

constraints that adds additional complexity on running the model. 

 The results of developed ACO algorithm are compared to the results 

of the mathematical model. Significant savings on computational 

times are observed. 

 The ACO algorithm is validated on a large scale problem with real 

industry data and its efficiency is verified by obtaining an acceptable 

solution. 

 

8.2 Future Research  

 

This study can be further improved using a mix of further methods. Such 

methods could be hybrid heuristics that could improve the solution quality especially 

under larger size of real datasets. In addition, ant colony approach can be further 

combined specifically under daemon actions, local search. Further, lookahead and 

backtracking on the solutions could be added on obtaining better results. Moreover, 
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the developed ACO algorithm should be examined with bigger data sets under real 

production environment. In addition, the algorithm can be improved by adding the 

lot sizing property so that the algorithm can schedule the orders by splitting them. 

Apart from improvements regarding with the ACO algorithm, there can be 

further analyses with different sets of customer priorities and tardiness weights. The 

overall penalty costs can be correlated with weighted tardiness values. Further, 

experiments on product types can be improved. 

 

 

 

 



63 

REFERENCES 

AEA, Sectorial Information Center, Aegean Textile and Raw Materials First Quarter 

Report of 2018, address: http://upload.eib.org.tr/20150512/00000000005036.pdf 

Allahverdi, A., Aldowaisan, T., & Gupta, J. N. D. 1999. “A review of scheduling 

research involving setup considerations.” Omega, Vol. 27, No. 2, pp. 219–239. 

Anderson S.W. 1995. “Measuring the Impact of Product Mix Heterogeneity on 

Manufacturing Overhead Cost.” The Accounting Review, Vol. 70, No. 3, pp. 363-

387 

Arnaout, J.-P., G. Rabadi, and R. Musa. 2009. “A Two-stage Ant Colony 

Optimization Algorithm to Minimize the Makespan on Unrelated Parallel Machines 

with Sequence-dependent Setup Times.” Journal of Intelligent Manufacturing, Vol. 

21, No. 6, pp. 693–701 

Athreya, S., and Venkatesh, DR. Y. D. 2012. “Application Of Taguchi Method For 

Optimization Of Process Parameters In Improving The Surface Roughness Of Lathe 

Facing Operation.” International Refereed Journal of Engineering and Science, Vol. 

1, No. 3, pp. 13- 19 

Behnamian, J., M. Zandieh, and S. Fatemi Ghomi. 2009. “Parallel-machine 

Scheduling Problems with Sequence-dependent Setup Times Using an ACO, SA and 

VNS Hybrid Algorithm.” Expert Systems withApplications, Vol. 36 No. 6, pp. 

9637–9644.

http://upload.eib.org.tr/20150512/00000000005036.pdf


   
 

64 
 

Bertrand, J. and Fransoo, J. 2002. Operations Management Research Methodologies 

Using Quantitative Modeling. International Journal of Operations & Production 

Management, Vol. 22, pp. 241-264. 

 

Bilge, U., F. Kiraç, M. Kurtulan, and P. Pekgün. 2004. “ATabu Search Algorithm for 

Parallel MachineTotal Tardiness Problem.” Computers & Operations Research, Vol. 

31, pp. 397–414. 

 

Chen R.-C., P.-H. Hung, M.-C. Wu. 2007. “Scheduling Production Using Genetic 

Algortihm for Elastic Knitted Fabrics with Wide Ranges of Quantities Demanded.” 

Proceedings of the 7
th

 WSEAS International Conference on Simulation, Modelling 

and Optimization, Beijing, China, September 15-17, pp. 182-187. 

 

Dorigo, M., Di Caro, G. and Gambardella, LM. 1999. “Ant algorithms for distributed 

discrete optimization.” Artificial Life Vol. 5 No. 2, pp. 137–172 

 

Garey, M. R., and Johnson, D. S. 1979. “Computers and Intractability: A Guide to 

the Theory of NP-Completeness.” San Francisco: W. H. Freeman and Company, 

Vol.5 No.1B, 

 

Hamzadayi, A. and G. Yildiz. 2017. “Modeling and Solving Static m Identical 

Parallel Machines Scheduling Problem with a Common Server and Sequence-

dependent Setup Times.” Computers & Industrial Engineering, Vol. 106, pp. 287–

298 

 

Joo, C.M. and B.S. Kim. 2015. “Hybrid Genetic Algorithms with Dispatching Rules 

for Unrelated Parallel Machine scheduling with Setup Time and Production 

Availability.” Computers & Industrial Engineering, Vol. 85, pp. 102–109 

 

Karp, R. M. 1972. Reducibility among combinatorial problems. In R. E. Miller & 

J.W. Tatcher (Eds.), Complexity of computer computations. New York: Plenum 

Press, pp. 85–103. 

 

http://www.scirp.org/(S(lz5mqp453edsnp55rrgjct55))/journal/Home.aspx?IssueID=3923


   
 

65 
 

Kayvanfar, V. and GH.M Komaki., A. Aalaei, M. Zandieh. 2014. “Minimizing Total 

Tardiness and Earliness on Unrelated Parallel Machines with Controllable Processing 

Times.”  Computers & Operations Research, Vol. 41, pp. 31–43. 

 

Kerkhove, L.P. and M. Vanhoucke. 2014. “Scheduling of Unrelated Parallel 

Machines with Limited Server Availability on Multiple Production Locations: A 

Case Study in Knitted Fabrics.” International Journal of Production Research, Vol. 

52, No. 9, pp. 2630–2653 

 

Koulamas, C. 1997. “Decomposition and Hybrid Simulated Annealing Heuristics for 

the Parallel-Machine Total Tardiness Problem.” Naval Research Logistics, Vol. 44, 

pp. 109-125 

 

Lee J.-H, J.-M. Yu and D.-H. Lee. 2013.“A Tabu Search Algorithm for Unrelated 

Parallel Machine Scheduling with Sequence- and Machine-dependent Setups: 

Minimizing Total Tardiness” International Journal of Advanced Manufacturing 

Technology, Vol. 69, No. 9–12, pp. 2081–2089 

 

Lin, S.-W., Z.-J. Lee, K.-C.Ying, and C.-C. Lu. 2011. “Minimization of Maximum 

Lateness on Parallel Machines with Sequence-dependent Setup Times and Job 

Release Dates.” Computers & Operations Research, Vol. 38, No. 5, pp. 809–815. 

 

Lin C.-W., Y.-K. Lin and H.-T. Hsieh. 2013. “Ant Colony Optimization for 

Unrelated Parallel Machine Scheduling” International Journal of Advanced 

Manufacturing Technology, Vol. 67, pp. 35–45 

 

Lin Y.-K and F.-Y. Hsieh. 2013. “Unrelated Parallel Machine Scheduling with Setup 

Times and Ready Times.” International Journal of Production Research, Vol. 52, No. 

4, pp. 1200–1214, 

 

Mendes, A., and F. Muller. 2002. “Comparing Metaheuristic Approaches for Parallel 

Machine Scheduling Problems with Sequence-dependent Setup Times.” Production 

Planning & Control, 2002, Vol. 13, No. 2, pp. 143-154. 

https://link.springer.com/journal/170/69/9/page/1


   
 

66 
 

 

Ngai E.W.T., S. Peng, P. Alexander, K.K.L. Moon, 2014.“Decision Support and 

Intelligent Systems in The Textile and Apparel Supply Chain: An academic Review 

of Research Articles.” Expert Systems with Applications Vol. 41, pp. 81–91 

 

Pimentel C., F. Alveos, A. Duarte and J.M.V. Carvalho. 2006. “A Scheduling Model 

for a Knitted Planning Problem.” Manufacturing Fundamentals: Necessity and 

Sufficiency, Ch. 16 

 

Pinedo, M. L. 2008. “Scheduling Theory, Algorithms and Systems.” (3
rd

 ed.) 

 

Radhakrishnan, S. and Ventura, J. 2000. “Simulated Annealing for Parallel Machine 

Scheduling with Earliness-Tardiness Penalties and Sequence-dependent Set-up 

Times.” International Journal of Production Research, Vol.  38, pp. 2233–2252 

 

Tavakkoli-Moghaddam, R., F.Taheri, M. Bazzazi,M. Izadi, and F. Sassani. 2009. 

“Design of a Genetic Algorithm for Bi-objective Unrelated Parallel Machines 

Scheduling with Sequence-dependent Setup Times and Precedence Constraints.” 

Computers & Operations Research Vol. 36 No. 12, pp. 3224–3230 

 

The Textile Hub. 2013. “Production Planning and Scheduling Software for the 

Textile Industry”. Accessed on 

https://textlnfo.wordpress.com/2013/01/23/production-planning-and scheduling-

software-for-the-textile-industry/ [January 23, 2015] 

 

TTM Machine, 2018. Online catalog for products. Accessed on 

https://www.ttmmakine.com/eng/products 

 

Sen, A. 2014.“The US fashion industry: A supply chain review.” International 

Journal of Production Economics, Vol. 114, pp. 571-593  

 

https://www.journals.elsevier.com/international-journal-of-production-economics
https://www.journals.elsevier.com/international-journal-of-production-economics


   
 

67 
 

Vallada, E., and R. Ruiz. 2011. “A Genetic Algorithm for the Unrelated Parallel 

Machine Scheduling Problem with Sequence Dependent Setup Times.” European 

Journal of Operational Research Vol. 211, pp. 612–622 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

68 
 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDICES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



   
 

69 
 

Appendix A 

 

 List of Pus and Fein Values 

Pus Fein 

10 12 

11 15 

12 16 

13 18 

14 20 

15 22 

16 28 

17 36 

18 44 

19 
 20 
 22 
 26 
 30 
 32 
 34 
 38 
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Appendix B 

 

 Id Definitions of Machine Types According to the Knitting Types 

TYPE_ID TYPE 

1 SINGLE JERSEY 

3 VANIZE SINGLE JERSEY 

4 PIQUE                                     

5 2 THREAD 

6 TOWEL                     

7 POLAR       

8 3 THREAD 

9 RIBB 

10 TRICOT 

11 INTERLOCK 
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Appendix C 

 

Machine Type Id, Pus and Fein Values  

Machine Type Pus Fein Type 

1 10 16 9 

2 11 16 9 

3 12 16 9 

4 12 28 6 

5 13 16 9 

6 13 28 1 

7 14 16 9 

8 14 28 1 

9 15 16 9 

10 15 16 9 

11 15 28 1 

12 16 15 9 

13 16 18 9 

14 16 28 1 

15 16 18 9 

16 17 15 9 

17 17 16 9 

18 17 28 1 

19 17 16 9 

20 18 18 9 

21 18 18 9 

22 19 18 9 

23 19 16 9 

24 20 18 9 

25 22 18 9 

26 30 22 1-4-5 

27 30 28 1-4-5 

28 30 18 9-11 

29 30 28 1-3-4-5 

30 30 28 9-11 

31 30-34 18-20 9-11 

32 32 28 1-4-5 

33 32 28 1-3-4-5 

34 32 28 1-3 
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35 32 28-36 1-3 

36 32 28 1 

37 32 22 1-3-4-5 

38 32 20 1-3-8 

39 32 22 1-4-5 

40 34-38 18-20 9-11 

41 34 16 9 

42 34 28 1-4-5 

43 34-38 18-20-28 9-11 

44 34 28 11 

45 34 18 9-11 

46 34 22-28 1-3 
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Appendix D 

 

 Mathematical Model in OPL 

int nborders=22; 

range order=1..nborders; 

 

int nbmachines=6; 

range machine=1..nbmachines; 

 

int MPozitions=22; 

range position=1..MPozitions; 

  

int w[1..nborders]=...; // Weight of order j 

int R[1..nborders]=...; //Release time of job j in day 

int D[1..nborders]=...; //due date of oder in day 

int Q[1..nborders]=...; // quantity of order 

float P[i in 1..nborders,k in machine]=...; //machine dependent processing times of 

order in day 

float S[1..nborders,1..nborders]=...;// Time needed to switch from job j to job i in 

hour 

int M=100000; // big M 

int U[1..nborders,1..nbmachines]=...; // machine eligibility set 

 

dvar float+ C[1..nborders]; //Completion time of job j in hour 

dvar int+ Cday[1..nborders]; // Completion time of job j in day 

dvar int+ T[1..nborders]; // Number of days job j is late 

dvar int+ X[order,position,machine] in 0..1; // 1 if job j is planned on position k of 

machine m, otherwise 0 

 

 

 

minimize sum(j in order)(w[j]*T[j]); 

 subject to { 

  

  forall(j in order){ 

   cnst1:C[j]/24<=Cday[j];   

  }  

  

     

  forall(j in order){ 

    cnst2:(sum(m in machine:U[j,m]>0)(sum(k in position) 

X[j,k,m]))==1;  

   }    



   
 

74 
 

   forall(j in order){ 

    cnst3:(sum(m in machine)(sum(k in position) X[j,k,m]))==1;

   

   } 

   

  forall(k in position, m in machine ){ 

   cnst4:sum(j in order) X[j,k,m]<=1;   

  } 

   

  forall(k in position,m in machine:k>1){ 

   cnst5:(sum(j in order) X[j,k,m])-(sum(j in order)X[j,k-

1,m])<=0;   

  } 

     

  forall(j in order,i in order, k in position, m in machine:k>1){ 

   cnst6:C[i]+M*(2-X[i,k,m]-X[j,k-

1,m])>=((P[i,m]*Q[i])/60)+S[j,i]+C[j];  

  } 

  forall(j in order){ 

   cnst7:C[j]>=R[j]+(sum(m in machine)(sum(k in 

position)((P[j,m]*Q[j]/60)*X[j,k,m])));   

  } 

   

  forall(j in order){ 

   cnst8:T[j]>=Cday[j]-(sum(k in position)(sum(m in 

machine)(X[j,k,m]*D[j])));  

  } 

 

} 
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Appendix E 

 

Statistics of Mathematical Models in OPL 

5 Machines and 12 Orders: 

 

 

6 Machines and 22 Orders: 
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6 Machines and 20 orders: 

 

 

6 Machines and 16 Orders: 
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Appendix F 

 

 ACO Matlab Code with Local Search Algorithm 

%% ACO Main Loop  

  
for it=1:MaxIt 
%% Ant generation     
    for k=1:NbANT 
%% Finding S1          
      for i=1:NbOrders  

          
         Prob1=tau1(i,:).^alfa.*eta1(i,:).^beta; 
         NonzeroProb1=find(Prob1~=0); 
         EligibleProb1=Prob1(NonzeroProb1); 
         EligibleProb1=EligibleProb1/sum(EligibleProb1); 
         x=RWSLocal(EligibleProb1); 
         %x=find(Prob1 == max(Prob1(:))); 
         %endd=x(end); 
         S1(k,i,it)=NonzeroProb1(x); 
      end 
%% Finding S2      
      for j=1:NbMachines 
          Prob2=zeros(NbOrders,NbOrders); 
          DummyS1=S1(k,:,it); 
          NotAssignedOrders=find(DummyS1~=j); 
          AssignedOrders=find(DummyS1==j); 
          sizeofarray1=size(NotAssignedOrders,2); 
          sizeofarray2=size(AssignedOrders,2); 
          if isempty(AssignedOrders) 
          else 
          if sizeofarray2==1 
          S2(j,1,k,it)=AssignedOrders; 
          else 

                         
          for t=1:NbOrders 

             
            for g=1:sizeofarray2 
                if t==AssignedOrders(g) 
                    Prob2(t,:)=tau2(t,:).^alfa2.*eta2(t,:).^beta2; 
                    Prob2(t,:)=Prob2(t,:)/sum(Prob2(t,:)); 
                    Prob2(t,t)=0; 
                    for r=1:sizeofarray1 
                        index1=NotAssignedOrders(r); 
                        Prob2(t,index1)=0;                         
                    end 
                else                   
                end 
            end 
          end 
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          [M,N]=find(Prob2==max(Prob2(:))); 
          S2(j,1,k,it)=M(1); 
          S2(j,2,k,it)=N(1); 
           for h=3:sizeofarray2 

   
               indx=S2(j,h-1,k,it); 
               DummyArray=Prob2(indx,:); 
               for z=1:NbOrders 
                   if S2(j,z,k,it)~=0 
                   DummyArray(S2(j,z,k,it))=0; 
                   end 
               end 

                
               seq=find(DummyArray==max(DummyArray(:))); 

                
               S2(j,h,k,it)=seq(end); 
           end 
          end         
          end 
      end 
%% TWT Calculation       
      for l=1:NbMachines 
          if S2(l,1,k,it)==0 
          else 
          

C(k,S2(l,1,k,it),it)=RT(S2(l,1,k,it))+((ProcessTime(S2(l,1,k,it),l)*

Quantity(S2(l,1,k,it)))/60); 
          Cday(k,S2(l,1,k,it),it)=ceil(C(k,S2(l,1,k,it),it)/24); 
          Tday(k,S2(l,1,k,it),it)=d(S2(l,1,k,it))- 

Cday(k,S2(l,1,k,it),it); 
             if Tday(k,S2(l,1,k,it),it)<0 
                  

Tday(k,S2(l,1,k,it),it)=abs(Tday(k,S2(l,1,k,it),it)); 
             else 
                  Tday(k,S2(l,1,k,it),it)=0; 
             end 
          for f=2:NbOrders 
              if S2(l,f,k,it)==0 
              else 
                  if (C(k,S2(l,f-1,k,it),it)+Setup(S2(l,f-

1,k,it),S2(l,f,k,it)))<RT(S2(l,f,k,it)) 
                        

C(k,S2(l,f,k,it),it)=((ProcessTime(S2(l,f,k,it),l)*Quantity(S2(l,f,k

,it)))/60)+RT(S2(l,f,k,it)); 
                  else 
                        C(k,S2(l,f,k,it),it)=(C(k,S2(l,f-

1,k,it),it)+(((ProcessTime(S2(l,f,k,it),l)*Quantity(S2(l,f,k,it))))/

60)+Setup(S2(l,f-1,k,it),S2(l,f,k,it))); 
                  end 
                        

Cday(k,S2(l,f,k,it),it)=ceil((C(k,S2(l,f,k,it),it)/24)); 
                        Tday(k,S2(l,f,k,it),it)=d(S2(l,f,k,it))-

Cday(k,S2(l,f,k,it),it); 
              if Tday(k,S2(l,f,k,it),it)<0 
                  

Tday(k,S2(l,f,k,it),it)=abs(Tday(k,S2(l,f,k,it),it)); 
              else 
                  Tday(k,S2(l,f,k,it),it)=0; 
              end 
              end 
          end  
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          end   
      end 

       
      CostFunction(k,it)=0;       
      for s=1:NbOrders    
      CostFunction(k,it)=CostFunction(k,it)+(Tday(k,s,it)*w(s)); 
      end 

       
      if CostFunction(k,it)<BestSol 
          BestSol=CostFunction(k,it); 
          BestAnt=k; 
          BestS1=S1(k,:,it); 
          BestS2=S2(:,:,k,it); 
          BestIt=it; 
      end             
    end  

  
%% Local Search Algortihm     
     for n=1:NbANT 
        for ga=1:MaxItLoc 
         CdayLocal=zeros(1,NbOrders); 
         CLocal=zeros(1,NbOrders); 
         TdayLocal=zeros(1,NbOrders); 
         addlist=[]; 
         for yx=1:NbMachines 
             S2Dummy=S2(yx,:,n,it); 
             NonZeroS2Dummy=find(S2Dummy~=0); 
             if size(NonZeroS2Dummy,2)>1 
                 addlist=[addlist yx]; 
             else 
             end 
         end 
         randomno=randi([1 size(addlist,2)]); 
         ha=addlist(randomno); 
         DummyS2Loc(:,:)=S2(:,:,n,it);                 
            indx1=size(find(DummyS2Loc(ha,:)~=0),2);              
            RandNo1=randi([1 indx1]); 
            RandNo2=randi([1 indx1]); 
            dum=DummyS2Loc(ha,RandNo1); 
            DummyS2Loc(ha,RandNo1)=DummyS2Loc(ha,RandNo2); 
            DummyS2Loc(ha,RandNo2)=dum; 
            for la=1:NbMachines 
                if DummyS2Loc(la,1)==0 
                else 
                    

CLocal(DummyS2Loc(la,1))=RT(DummyS2Loc(la,1))+((ProcessTime(DummyS2L

oc(la,1),la)*Quantity(DummyS2Loc(la,1)))/60); 
                    

CdayLocal(DummyS2Loc(la,1))=ceil((CLocal(DummyS2Loc(la,1))/24)); 
                    TdayLocal(DummyS2Loc(la,1))=d(DummyS2Loc(la,1))- 

CdayLocal(DummyS2Loc(la,1)); 
                         if TdayLocal(DummyS2Loc(la,1))<0 
                            

TdayLocal(DummyS2Loc(la,1))=abs(TdayLocal(DummyS2Loc(la,1))); 
                         else 
                            TdayLocal(DummyS2Loc(la,1))=0; 
                         end 

                 

                 
                    for fa=2:NbOrders  
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                         if DummyS2Loc(la,fa)==0 
                         else 

                              
                            if (CLocal(DummyS2Loc(la,fa-

1))+Setup(DummyS2Loc(la,fa-

1),DummyS2Loc(la,fa)))<RT(DummyS2Loc(la,fa)) 
                                 

CLocal(DummyS2Loc(la,fa))=((ProcessTime(DummyS2Loc(la,fa),la)*Quanti

ty(DummyS2Loc(la,fa))/60)+RT(DummyS2Loc(la,fa))); 
                            else 
                                 

CLocal(DummyS2Loc(la,fa))=(CLocal(DummyS2Loc(la,fa-

1))+(((ProcessTime(DummyS2Loc(la,fa),la)*Quantity(DummyS2Loc(la,fa))

))/60)+Setup(DummyS2Loc(la,fa-1),DummyS2Loc(la,fa))); 
                            end 
                            

CdayLocal(DummyS2Loc(la,fa))=ceil((CLocal(DummyS2Loc(la,fa))/24)); 
                            

TdayLocal(DummyS2Loc(la,fa))=d(DummyS2Loc(la,fa))-

CdayLocal(DummyS2Loc(la,fa)); 
                            if TdayLocal(DummyS2Loc(la,fa))<0 
                                  

TdayLocal(DummyS2Loc(la,fa))=abs(TdayLocal(DummyS2Loc(la,fa))); 
                            else 
                                  TdayLocal(DummyS2Loc(la,fa))=0; 
                            end 
                         end 
                     end 
                end 
            end          

            

            
             for sa=1:NbOrders    
             

CostFunctionLocal(n,ga,it)=CostFunctionLocal(n,ga,it)+(TdayLocal(sa)

*w(sa)); 
             end 

       
             if CostFunctionLocal(n,ga,it)<CostFunction(n,it) 
                 CostFunction(n,it)=CostFunctionLocal(n,ga,it); 
                 S2(:,:,n,it)=DummyS2Loc(:,:); 
                 Tday(n,:,it)=TdayLocal; 
                 Cday(n,:,it)=CdayLocal; 
                 C(n,:,it)=CLocal; 
                 if CostFunction(n,it)<BestSol 
                 BestSol=CostFunction(n,it); 
                 BestAnt=n; 
                 BestIt=it; 
                 BestS1=S1(n,:,it); 
                 BestS2=S2(:,:,n,it); 
                 else 
                 end 
             end 
        end                 

          

        
     end 
%% Pheromone deposit     
     for antt=1:NbANT 
     for a=1:NbOrders  
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          for v=1:NbMachines 
              if S1(antt,a)==v 

                 
                  DeltaTau1(a,v)=0.5/CostFunction(antt,it); 
                  tau1(a,v)=tau1(a,v)+DeltaTau1(a,v); 

               
              end 

              
          end 
     end 

      
     for x=1:NbMachines 
         for y=1:size(find(S2(x,:,antt,it)~=0),2)-1 
             

tau2(S2(x,y,antt,it),S2(x,y+1,antt,it))=tau2(S2(x,y,antt,it),S2(x,y+

1,antt,it))+(0.5/CostFunction(antt,it)); 
         end 

          
     end    

      
     end 
%% Pheromone Evaporation 
    tau1=(1-eva)*tau1; 
    tau2=(1-eva)*tau2; 
%% Best solution 
    BestCost(it)=BestSol; 
    disp(['Iteration ' num2str(it) ': Best Cost = ' 

num2str(BestCost(it))]);          
end     

                
%% Results 

  
figure; 
plot(BestCost,'LineWidth',2); 
xlabel('Iteration'); 
ylabel('Best Cost'); 
grid on; 
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Appendix G 

 

Results of the ACO Algorithm 

Experiment 

No 
Best Sequence of Machines 

Obj. 

Value 

Average 

Computation 

Time in 

Minutes 

1 M1={59,35,1,48,10,11,3,39,56,12,51,4} 

M2={34,33,37,36,7,9,8,41,14,6,13} 

M3={2,5,15,46,45,5038,44,40,42} 

M4={21,54,27,22,26,29,23,57,58,47,32} 

M5={17,28,30,31,25,20} 

M6={18,24,19,16,55,43,60,49,52,53} 

 

15 1,3 

2 M1={7,8,3,15,60,14,12,11,10,75,67,77,65,68,48,49} 

M2={45,43,6,4,9,13,54,16,17,2,53} 

M3={1,51,47,46,5,52,20,63,74,76,72,61,,66,19} 

M4={62,26,37,27,28,25,41,37,57,79,78,71,59} 

M5={35,29,23,39,31,39,40,38,36,34} 

M6={44,33,55,21,22,48,70,73,69,64,24,50,80,56,42,58} 

 

 

 

50 2 

3 M1={20,18,6,87,8,98,91,16,84,71,22,97,59,85,74,10,80,7

0,54,23,67,69} 

M2={2,14,4,7,5,64,17,24,21,12,68,61,58,63,55,53,11} 

M3={9,1,3,15,19,25,13,56,62,65,60,57,95,73,83,96,77,72

,75,86} 

M4={76,29,29,37,51,92,82,46,50,93,81,33,49,78,99,32,4

7} 

M5={28,34,36,41,43,44,48,52,35,45} 

M6={42,31,40,94,39,30,79,66,90,27,89,38,100,88} 

 

33 2.5 

4 M1={1,59,11,39,56,3,51,57,49,54,47,32} 

M2={7,4,9,5,3,33,34,41,42} 

M3={37,46,2,36,35,10,8,38,44,6,45,29} 

M4={58,48,16,14,15,12,27,50,23,43,13} 

M5={21,26,18,19,20,22,28} 

M6={55,24,17,30,31,52,25,60,53,40} 

 

44 1.6 

5 M1={62,46,48,47,49,6,38,40,79,76,60,77,63,52,53,2,13,6

5} 

M2={7,9,43,8,3,4,45,51,54,41,37} 

M3={1,10,80,5,14,12,59,71,68,64,11,61,42,56} 

M4={73,19,17,15,20,32,7070,57,18,67,58,78,16,27,34,33

} 

M5={31,29,26,24,25,28,35,30} 

M6={21,69,23,22,75,44,55,50,66,74,36,39,72} 

 

54 2 
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6 M1={2,5,3,13,4,91,57,66,59,97,71,88,80,51,46,74,98,53,

86} 

M2={7,8,11,17,1,10,16,47,45,67,68} 

M3={77,6,14,15,9,12,78,94,100,90,87,48,72,73,75,79,50,

61,58,56,69,70,62} 

M4={81,76,25,23,24,22,31,37,92,18,20,19,32,21,82} 

M5={40,26,28,30,3829,41,43,44,39,33,27,42} 

M6={52,36,34,35,60,63,65,55,64,54,93,49,83,96,84,89,9

5,85,99} 

 

52 2.6 

7 M1={1,3,10,2,57,39,49,42} 

M2={7,59,48,14,51,52,4,11,45} 

M3={41,33,6,37,5,38,35,13} 

M4={8,9,15,46,36,44,43,12,54} 

M5={17,21,30,20,47,58,53,56} 

M6={25,24,27,26,29} 

M7={18,55,60,28} 

M8={16,34,23,32,19,22,31,50,40} 

 

4 2 

8 M1={4,3,2,51,74,79,77,67,61,72} 

M2={1,73,68,10,19,18,16,11,13,54} 

M3={7,45,6,43,47,17,4} 

M4={46,9,55,15,8,48,5,20,12,14,65,60,64,63,71,58,49} 

M5={26,27,25,31,22,34,41,57,78} 

M6={38,30,33,36} 

M7={23,62,69,32,50,24,28,80,52,59,53} 

M8={21,35,40,39,42,29,37,56,66,76,70,75} 

 

35 2.25 

9 M1={98,91,97,57,4,13,1,20,19,2} 

M2={87,3,15,67,6,24,25,22,5,9,70,64,56,11,88,73,23} 

M3={53,68,14,16,7,18,63} 

M4={10,17,21,12,8,58,62,78,74,85,100,72} 

M5={30,75,93,71,96,90,41,86,37,32,80,79} 

M6={42,36,48,34,45,40,33,38} 

M7={76,49,92,94,95,82,84,77,29,47,89,27,69} 

M8={52,31,59,55,46,43,65,28,44,39,35,60,26,51,54,61,5

0,83,81,99,} 

 

42 2.5 

10 M1={59,5,43,45,31,52,11} 

M2={3,9,48,54,57,47,32,42} 

M3={1,4,6,7,34} 

M4={36,2,35,38,8,46,30,49,10,44} 

M5={15,17,14,12,27,25,13,22,23} 

M6={18,24,21,16,26} 

M7={29,60,55,58,39,53} 

M8={41,33,37,28,20,56,19,50,40,51} 

 

15 1.7 

11 M1={73,3,11,4,44,10,76,40,49,71} 

M2={2,5,8,7,69,62,37,57,41,14,38} 

M3={45,43,47,54,13,12,39} 

M4={1,9,6,60,75,70,80,61,78,59,68,65,58,56,55} 

M5={32,20,64,15,19,28,29,30,18,16,17,72,79} 

M6={23,34,31,24,36} 

M7={51,26,27,48,42,52,74,67,33} 

M8={21,35,22,25,77,66,46,63} 

 

36 2 

12 M1={50,93,87,80,46,97,2,9,58} 

M2={176,68,54,59,84,98,91,17,94,49,71,73,72} 

M3={4,8,16,7,1,13,12,61,55,64,47,51} 

M4={14,62,77,96,82,63,6,74,69,99,10} 

39 2.225 
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M5={18,25,23,37,22,19,21,90,89,35,85,86,75,24,81,88} 

M6={36,40,31,29,32,41} 

M7={30,44,28,45,48,38,33,43,27,70,56,95} 

M8={66,92,53,57,52,100,39,78,83,26,60} 
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Appendix H 

 

Structure of the Design of Experiments 

StdOr
der 

RunO
rder 

PtT
ype 

Blo
cks 

Number of 
Machines 

Number of 
Product Types 

Number of 
Orders 

Min Obj 
Func 

Avg 
Comp 
Time 

2 1 1 1 6 4 80 50 1.1 

8 2 1 1 8 4 80 35 2.1 

6 3 1 1 6 7 100 52 1.2 

4 4 1 1 6 7 60 44 1.78 

7 5 1 1 8 4 60 4 1.1 

10 6 1 1 8 7 60 15 1.95 

3 7 1 1 6 4 100 33 2.43 

5 8 1 1 6 7 80 54 2.5 

11 9 1 1 8 7 80 36 2 

1 10 1 1 6 4 60 15 1.4 

12 11 1 1 8 7 100 39 2.25 

9 12 1 1 8 4 100 42 2.5 
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Appendix I 

Structure of the Design of Experiments -Multilevel Factorial Design 

Factors: 3     Replicates: 1 

Base runs:    12 Total runs:    12 

Base blocks:   1 Total blocks:   1 

Number of levels: 2. 2. 3 

Design Table (randomized) 

Run  Blk  A  B  C 

  1    1  1  1  2 

  2    1  2  1  2 

  3    1  1  2  3 

  4    1  1  2  1 

  5    1  2  1  1 

  6    1  2  2  1 

  7    1  1  1  3 

  8    1  1  2  2 

  9    1  2  2  2 

 10    1  1  1  1 

 11    1  2  2  3 

 12    1  2  1  3 
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Appendix J 

 

Results of the Design of Experiments-Minimum Objective Function 

General Linear Model: Min Obj Func  
 
Factor                   Type   Levels  Values 

Number of Machines       fixed       2  6. 8 

Number of Product Types  fixed       2  4. 7 

Number of Orders         fixed       3  60. 80. 100 

 

 

Analysis of Variance for Min Obj Func, using Adjusted SS for Tests 

 

Source                               DF   Seq SS   Adj SS  Adj MS   F  P 

Number of Machines                    1   494,08   494,08  494,08  ** 

Number of Product Types               1   310,08   310,08  310,08  ** 

Number of Orders                      2  1436,17  1436,17  718,08  ** 

Number of Machines*                   1   154,08   154,08  154,08  ** 

  Number of Product Types 

Number of Machines*Number of Orders   2   182,17   182,17   91,08  ** 

Number of Product Types*              2   160,17   160,17   80,08  ** 

  Number of Orders 

Number of Machines*                   2    50,17    50,17   25,08  ** 

  Number of Product Types* 

  Number of Orders 

Error                                 0        *        *       * 

Total                                11  2786,92 

 

** Denominator of F-test is zero or undefined. 
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Appendix K 

Results of the Design of Experiments-Average Computation Time 

General Linear Model: Avg Comp Time 

Factor Type   Levels  Values 

Number of Machines fixed 2  6. 8 

Number of Product Types  fixed 2  4. 7 

Number of Orders fixed 3  60. 80. 100 

Analysis of Variance for Avg Comp Time, using Adjusted SS for Tests 

Source DF   Seq SS   Adj SS   Adj MS   F  P 

Number of Machines 1  0,18501  0,18501  0,18501  ** 

Number of Product Types 1  0,09187  0,09187  0,09187  ** 

Number of Orders 2  0,60382  0,60382  0,30191  ** 

Number of Machines* 1  0,00021  0,00021  0,00021  ** 

  Number of Product Types 

Number of Machines*Number of Orders   2  0,19532  0,19532  0,09766  ** 

Number of Product Types* 2  1,25645  1,25645  0,62823  ** 

  Number of Orders 

Number of Machines* 2  0,85762  0,85762  0,42881  ** 

  Number of Product Types* 

  Number of Orders 

Error 0 * * * 

Total 11  3,19029 

** Denominator of F-test is zero or undefined. 
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Appendix L 

Results of the Regression Model- Minimum Ojective Function 

Regression Analysis: Min Obj Func 

The regression equation is 

Min Obj Func = 17,2 - 6,42 Number of Machines + 3,39 Number of Product Types 

+ 0,550 Number of Orders 

Predictor Coef  SE Coef T      P 

Constant 17,19    30,40   0,57  0,587 

Number of Machines -6,417    3,251  -1,97  0,084 

Number of Product Types   3,389    2,167   1,56  0,157 

Number of Orders 0,5500   0,1991   2,76  0,025 

S = 11,2625   R-Sq = 63,6%   R-Sq(adj) = 49,9% 

Analysis of Variance 

Source DF SS MS F P 

Regression 3  1772,2  590,7  4,66  0,036 

Residual Error   8  1014,7  126,8 

Total 11  2786,9 

Source DF  Seq SS 

Number of Machines 1   494,1 

Number of Product Types   1   310,1 

Number of Orders 1   968,0 




