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Burak Akbuğday and Aydin Akan∗
Dept. of Electrical and Electronics Eng.

Izmir University of Economics
Izmir, TURKEY

akan.aydin@ieu.edu.tr

Abstract—Attention-Deficit/Hyperactivity Disorder (ADHD) is
a common mental disorder affecting both children and adults. It
is characterized by issues with concentration, hyperactivity, and
impulsivity, which can interfere with everyday duties and inter-
personal relationships. Although behavioral studies are utilized
to treat the disease, there is no proven method for detecting it.
The Electroencephalogram (EEG) is a non-invasive method that
monitors electrical activity in the brain and is commonly used
to identify neurological and mental illnesses such as ADHD. In
this study, the topographic EEG feature maps (EEG-FMs) were
obtained from 6 traditional time-domain characteristics known
as Hjorth activity, Hjorth mobility, Hjorth complexity, kurtosis,
and skewness. The feature maps were concatenated and used as
input to Convolutional Neural Network (CNN) model for ADHD
classification. To show the efficacy of the recommended approach,
EEG data from 15 ADHD individuals and 18 control subjects
(CS) were analyzed. The results showed that concatenated EEG-
FMs were successful to classify ADHD with up to 99.72%
accuracy.

Index Terms—Attention Deficit Hyperactivity Disorder
(ADHD), EEG , Feature Map, Convolutional Neural Network
(CNN).

I. INTRODUCTION

ADHD (Attention-Deficit/Hyperactivity Disorder) is a
neuro-developmental disorder that affects both children and
adults. It is characterized by difficulties with attention, hyper-
activity, and impulsivity have a significant impact on people’s
mental health, academic performance, and social connections.
Overall, the treatment of ADHD is important for improving
the individual’s quality of life, reducing the risk of develop-
ing other mental health problems, and improving long-term
outcomes. [1]–[4]. It is challenging to diagnose ADHD, and
incorrect diagnoses are frequently made [1], [2]. Most research
employs non-invasive methods to identify ADHD, such as
electroencephalography (EEG). EEG signals have been widely
used as a reliable, affordable, and non-invasive way to measure
brain activity [1], [2], [5].

As of today, a lot of study has been done on calculating the
linear and nonlinear aspects of EEG signals to detect ADHD.
EEG is a technique used to measure the electrical activity of
the brain. There are two main approaches to analyzing EEG
data: linear and non-linear. Linear analysis is a conventional
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method that focuses on measuring the amplitude and frequency
of brainwaves in specific frequency bands. Linear methods
assume that the brain’s electrical activity is generated by
linear combinations of independent sources, and therefore
only consider the linear relationships between EEG signals.
Non-linear analysis, on the other hand, focuses on the non-
linear relationships between EEG signals. Non-linear methods
assume that the brain’s electrical activity is generated by non-
linear interactions between neural populations, and therefore
consider the non-linear relationships between EEG signals.
Prior research on ADHD has relied on the monitoring of
EEG signals during various cognitive tasks [4] or at resting
state conditions [6]. The most intriguing findings of these
investigations were that ADHD patients exhibited increased
slow-wave activity, mainly in the theta and delta bands,
and decreased fast-wave activity, primarily in the beta band.
In investigations to detect ADHD, a number of non-linear
metrics have been utilized successfully to glean important data
from the EEG. In comparison to the models outlined above,
convolutional neural networks (CNN) have the advantage of
being able to automatically learn features using a large dataset.
To differentiate between ADHD patients and healthy subjects,
some researchers [2], [7]–[12] used various deep learning
models utilizing EEG data, providing accurate classification
results. Recent research has concentrated on using the images
obtained from the EEG signal as input in CNN architectures
[7], [9], [11] rather than using the raw EEG signal as input
[8], [10], [12] because of the crucial importance of the input
layer in CNN applications. In the aforementioned ADHD
investigations, various methods for producing input images for
deep networks utilizing EEG signals are proposed [13]–[15].

Topic et al. [13] conducted a study with two feature maps
topographic and holographic namely TOPO-FM and HOLO-
FM. Deep learning (DL) was used as a feature extraction
method where all the extracted features were fused afterward.
Finally, machine learning algorithms were applied for emotion
recognition on DEAP, SEED, DREAMER, and AMIGOS
datasets. The topographic and holographic maps were cre-
ated using nine features namely fractal dimension, Hjorth
activity, mobility and complexity, peak-to-peak, root-mean-
square, band power, differential entropy, and the power spec-
tral density. The image shape was 200x200x3 and the CNN

1195ISBN: 978-9-4645-9360-0 EUSIPCO 2023

Authorized licensed use limited to: ULAKBIM UASL - Izmir Ekonomi Univ. Downloaded on January 19,2024 at 11:14:05 UTC from IEEE Xplore.  Restrictions apply. 



(a)
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Fig. 1: a) 10-20 Electrode System b) 9x9 mapping axis

architecture had 2 convolutional layers with ReLU activation
functions where the first convolutional layer was followed by a
max pooling layer and the second one with a fully connected
layer. The resulting features were fused together and given
into Support Vector Machine (SVM) classifier. Results showed
that TOPO-FM based classification has a significant success
on different datasets and authors stated that the proposed
methodology outperformed the studies in the literature [13].

In this study, we aim to develop a fast and automated ADHD
classification using concatenated EEG Feature Map (EEG-FM)
based input images which are utilized for the training of an
advanced CNN-based model.

II. MATERIAL AND METHOD

The placements of the EEG electrodes or the EEG topogra-
phy for a particular EEG segment are typically not taken into
account when applying the EEG characteristics. Moreover,
deep learning-based methods can be utilized to extract more
significant characteristics that exceed hand-crafted, traditional
ones [13]–[15]. This work aims to demonstrate the benefits of
concatenated EEG feature maps. EEG feature maps represent
both spatial and temporal information of each EEG segment.
As a result, after computing various linear and non-linear
EEG features, feature map images are created. Classification
of ADHD patients and CS are performed using a sophisticated
CNN-based model.

A. Experimental ADHD Dataset

EEG data are recorded from 15 ADHD patients and 18
CS using the Brain Vision system at the İzmir Katip Çelebi

(a) (b)

Fig. 2: Example EEG-FM images of a) CS and b) ADHD
subjects

University. The International 10-20 System is a widely used
method for placing electrodes on the scalp during EEG record-
ing. It provides a standardized method for electrode placement
during EEG recording, which facilitates the comparison of
EEG data across studies and allows for the accurate localiza-
tion of brain activity. Using the International 10-20 system, the
utilized EEG signals are recorded from 30 distinct channels
(Fp1, Fp2, F7, F8, F3, F4, Fz, FT7, FT8, FC3, FC4, FCz,
T3, T4, C3, C4, Cz, TP7, TP8, CP3, CP4, CPz, T5, T6,
P3, P4, Pz, O1, O2, Oz). The sampling frequency of the
Brain Vision system was 1 kHz. The EEG signal of each
participant was recorded for a total of 4 minutes while they
are in the open-eyes resting state condition. The Izmir Katip
Çelebi University Non-Interventional Clinical Research Ethics
Committee granted consent for the gathering of the EEG data
utilized in this study on July 11, 2019, under approval number
76.

To eliminate power line interference and other disturbances,
a Butterworth band-pass filter with a cutoff frequency of [0.5−
50] Hz is applied to each channel. Moreover, the EEG data
from each channel is separated into 5 s segments.

B. Feature Extraction

Determining the features to be calculated in EEG signals
is important for ensuring the accuracy and relevance of the
analysis, selecting the appropriate features for the specific
application, and reducing the computational burden of the
analysis. The choice of features should be based on the
research question or clinical application, and should be
carefully considered to optimize the effectiveness of the
analysis. The EEG signals can be used to extract numerous
linear and nonlinear properties in both the time-frequency
domain and the frequency domain.

In the proposed study, time-features; Hjorth activity (HA),
mobility (HM) and complexity (HC), peak-to-peak (PTP)
value, skewness (SKW), and kurtosis (KTS) were used [13],
[16]. The Eq. 1, 2 and 3 were utilized to obtain HA, HM,
and HC where V ar(z(t)) is the variance of the signal z(t)

and dz(t)
dt is the first derivative of the signal z(t). The SKW

and KTS features were calculated using Eq. 4 and Eq. 5,
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Fig. 3: The flowchart of the proposed approach

respectively where z̄) indicates the mean of the signal z(t)
[17].

HA = V ar(z(t)) (1)

HM =

√
V ar(dz(t)dt )

V ar(z(t)
(2)

HC =
HM(dz(t)dt )

HM(z(t))
(3)

SKW =
1

N

N∑
i=1

(zi − z̄)3

σ3
(4)

KTS =
1

N

N∑
i=1

(zi − z̄)4

σ4
(5)

The extracted features are mapped into two-dimensional
topographical feature maps proposed in [13]–[15] as explained
in the following section.

The EEG segments of 5 s in length were used to extract
the time domain features for all 30 channels’ 48 (4 min x 5
s) segments. 6 features were obtained for each EEG channel
and each segment of ADHD patients and CS. The feature
vector was then normalized by scaling between 0 and 1, as
indicated in Eq. 6, which comprises features computed from
EEG segments of both ADHD patients and CS.

k
′

i =
ki − kmin

kmax − kmin
(6)

where k
′

i denotes the normalized feature value of ith subject,
kmaxand kmin are the maximum and minimum values of the
total feature vector.

C. The Construction of Topographic EEG Feature Map

The International 10-20 system, given in Fig. 1-a, that
is used in the recording stage, was also used to map the
normalized feature values of 30 EEG channels on the matrix
as shown in Fig. 1-b. In previous studies, a mapping was
proposed to accurately map every electrode into a matrix with
nine rows and nine columns which is suitable for all EEG
dataset with less than 81 electrodes [13]–[15]. Hence, the
matrix mapping is adopted for our dataset to obtain EEG Topo-
FMs. In the feature matrix, the green points which include the
name of the corresponding channel, are filled with normalized
feature values. Eq. 7 can be used to represent the values of
the missing (blue) points which are empty, as a function of
the feature (green) values around them

A(i,j) =
A

′

(i+1,j) +A
′

(i−1,j) +A
′

(i,j+1) +A
′

(i,j−1)

M
,

0 ≤ i, j ≤ 8; (i, j) ∈ N

(7)

where A indicates the normalized feature value of the blue
point, A

′
is the normalized value of the point neighboring this

point. The default value of K is 1, and it refers to the number
of non-zero components in the numerator.

A complete EEG-FM of a particular feature is then formed
by interpolating the empty elements of the matrix and apply-
ing a ”jet” color-map. Finally, the generated color EEG-FM
images were stored as ”png” images with 684 × 541 pixel
size. The whole procedure of getting EEG-FMs and obtaining
the feature images was carried out using MATLAB©2022b.
The EEG-FMs obtained using the complexity feature for the
first EEG segments of one ADHD patient (right) and one
CS (left) are given as an example in Fig. 2. Regarding the
“jet” color mapping in the images, the red color designates
active electrodes whereas the dark blue color indicates that
an electrode is completely inactive. The coordinates for each
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Fig. 4: CNN architecture used in the study

electrode were fixed according to the 10–20 electrode mapping
on the 9× 9 matrix as shown in Fig. 1-b.

D. Combination of Topographic EEG-FMs

In this study, the topographic EEG-FMs are concatenated
and used an augmented input for the classification. This pre-
processing is performed before the CNN classification since
the number of samples in the dataset highly affects the per-
formance of the CNN model. The augmentation is performed
where the quad combination of all 6 features were randomly
concatenated into a 2 × 2 image matrix. Hence, the dataset
including 3.656 original EEG-FMs for CS and 2.724 EEG-
FMs for ADHD subjects is used to generate 5.484 CS and
4.086 ADHD augmented images. The size of the concatenated
images are 1082× 1368, however, to be able to compare the
results of using single EEG-FMs, the size of the concatenated
images are reduced to 684× 541.

E. CNN-Based Classification

The process of CNN-based classification of ADHD typi-
cally involves the following steps: data acquisition, data pre-
processing, feature extraction, training the CNN model, and
testing the model.

The proposed CNN architecture includes 2 convolutional
layers where each followed by a max-pooling layer. The
information of the second max-pooling layer is flattened and
sent into a dense layer. Afterward, 50% dropout is applied and
the structure is finalized with a dense layer. In convolutional
layers, Rectified Linear Unit (ReLU) activation function and
a kernel with size 3 are utilized. The last dense layer adopts
a sigmoid activation function since the problem is a binary
classification. The batch size was 32 and the Adam optimizer
is used with a 0.001 learning rate. The CNN architecture is

shown in Fig. 4. The concatenation algorithm and CNN classi-
fication were performed using Python programming language
and the TensorFlow platform.

III. RESULTS AND DISCUSSION

The six extracted features are used to generate concatenated
topographic EEG-FMs for the classification of ADHD and
healthy subjects using a CNN as summarized in Fig. 3. The
performance of the CNN model was analyzed using accuracy,
precision, recall, and loss metrics. In Table I, it is shown that
the accuracy of the first and last epochs were 89.36% and
99.72%, respectively. The precision increased similarly that in
the last epoch, 99.65% can be seen. The recall metric started
from 85.39% and increased up to 99.69% which showed that
the model identified positives properly. The epoch number was
selected on purpose since it was observed that more than 5
epochs resulted in over-fitting on our dataset. The validation
accuracy started from 97.46% and ended at 99.48% while the
validation loss decreased from 6.64% to 1.54%.

As stated in a study conducted by Chen et al., the DL
approach is more successful than the classical SVM classifier
to identify ADHD patients. As the input to train the CNN, the
connectivity matrix was employed to represent the brain net-
work. After 50 epochs, the suggested framework resulted in an
accuracy of 98.17% on the validation data. The results imply
that the DL framework’s data representation is significant for
the performance [7].

In another study, EEG data was transformed into a color
picture by assigning each of the three sub-bands (theta, alpha,
and beta+low gamma) to one of the RGB channels. After
normalization, the data was fed into a CNN model with 13
layers. Results showed 99.06% train accuracy and 97.81%

TABLE I: RESULTS OF THE CNN MODEL

Epoch Training
Accuracy

Training
Precision

Training
Recall

Training
Loss

Validation
Accuracy

Validation
Loss

1 0.8936 0.8923 0.8539 2.2715 0.9746 0.0664
2 0.9852 0.9846 0.9808 0.0426 0.9854 0.0359
3 0.9922 0.9919 0.9899 0.0231 0.9847 0.0403
4 0.9966 0.9968 0.9951 0.0099 0.9892 0.0215
5 0.9972 0.9965 0.9969 0.0061 0.9948 0.0154
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TABLE II: COMPARISON OF THE PROPOSED METHOD WITH RECENT STUDIES

Study Dataset Approach Classification Accuracy
Proposed Study 15 ADHD patients and 18

healthy subjects
Concatenation of Topographic
EEG-FMs

CNN 99.72%

Moghaddari et al. [9] 31 ADHD patients 30
healthy subjects

θ, α, β, and γ sub-band separation
and RGB image creation

Deep CNN 98.48%

Chen et al. [7] 50 ADHD patients 51
healthy subjects

Mutual information Connectivity
matrix

Deep CNN 94.67%

validation accuracy were obtained [9]. The comparison of the
proposed method to state of art studies is provided in Table II.

In this study, a CNN model with only 2 layers was utilized
to eliminate the complexity and run time of the training.
It was seen that the suggested model outperformed existing
research without being constrained by its small size [9].
Another concern in DL approaches is the number of samples
in the dataset. Although the sample size was found to be
adequate in this paper, it was observed that the validation
accuracy started from a relatively high value. The source of
this complication is assumed to be the split ratio of train and
validation sets. Fortunately, according to the literature, the
relationship between performance metrics can be considered
acceptable. Besides, through the epochs, it can be seen that
the training accuracy becomes higher than validation accuracy
as expected while the loss of both training and validation
decreased to an acceptable level.

IV. CONCLUSION

In this study, it is aimed to classify ADHD patients and
healthy CS utilizing a 2 layer CNN architecture. Six time-
domain features are extracted, and the features are mapped
onto topographic feature map images. We propose using a
combination of these feature maps by concatenating them into
2 × 2 augmented images. The overall results showed that
the proposed CNN model successfully differentiated ADHD
patients and CS. Further research aims to investigate vari-
ous combinations of EEG-FMs such as arithmetic, geometric
averaging, and 3D representations for the augmentation, and
increase the CNN model’s complexity to improve the perfor-
mance.

It is important to note that CNN-based ADHD classifica-
tion is developing field, and further research is needed to
adequately examine its utility and reliability in healthcare
situations. Overall, CNN-based ADHD classification showed
potential as a prospective method of early identification and
diagnosis of the disorder, and may possibly lead to more
effective treatments in the future.
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