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Abstract—Due to light scattering and absorption while trav-
eling through water, underwater images become hazy and loose
critical information resulting in poor contrast and weak color
performance. Hence, it is difficult to see the difference between
foreground colors and items, and to differentiate the background
in these images. To solve these issues, this study proposes a
novel technique for single underwater image enhancement which
relies on the recovery of the lost red-channel via a weighted
multi-scale fusion. Firstly, three color balance algorithms are
applied to the input image to gain more information about the
scene. Then, five weight maps are extracted from these balanced
versions of the input image to emphasize fine-details. Finally,
the enhanced output is obtained with the new red-channel,
white balanced green and blue channels followed by gamma
correction to maintain contrast of the image. The developed
method produces higher-quality underwater images that can
be evaluated qualitatively and quantitatively when compared to
state-of-the-art approaches.

Index Terms—underwater image dehazing, underwater image
enhancement, red-channel recovery, image enhancement

I. INTRODUCTION

The physical features of the subsea environment make
underwater image processing very difficult. Absorption and
scattering weaken the collected underwater images in many
circumstances. Since the light is dynamically retained because
it passes through the water, submerged images are charac-
terized by their low visibility, poor colors and strong haze.
As a result, a compelling strategy for enhancing underwater
images for both visualization and analysis is significant, and
so craved [1].

In an underwater environment, light can be diverted by
particles that are the same estimate as the light wavelengths or
particles that have a diverse refraction list than the water [2].
There are several studies proposed in literature to improve
underwater image quality. In the milestone work of He et
al. [3], the proposed method presents a prior based on the
dark channel information to reduce the haze from a single
image. The developed method succeeds in estimating the
thickness of the haze and recovers a haze-free output by
combining the prior with the haze model. In the other study
developed by Yadav et al. [4], a contrast limited adaptive
histogram equalization (CLAHE) is employed to improve the
foggy vision. In this approach, the “distribution” parameter is
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utilized to specify the form of the histogram, which produces
higher-quality outcomes than adaptive histogram equalization.
Huang et al. [5] propose an effective shallow-water image
enhancement method via relative global histogram stretching
(RGHS) with adaptive parameters. This method contains of
two components as contrast correction and color correction.
In another study by Igbal et al. [6], an unsupervised color
correction method (UCM) is developed for underwater image
enhancement. It is based on color balancing and contrast
correction in RGB and HSI color spaces. Ancuti et al. [7],
[8] build single image dehazing algorithms by means of the
weighted (multi-scale) fusion principle using color compen-
sation and white balancing, which lead to less noise, better
exposedness in the dark regions, corrected contrast, fine-details
and sharp edges in the output images.

There exist also deep learning algorithms for the underwater
image enhancement problem. However, traditional architec-
tures are mostly successful for synthetic images but less
effective for real-world scenes. In the study of Park et al. [9],
a novel approach via cycle-consistent generative adversarial
networks (CycleGAN) with a pair of content discriminators is
proposed to effectively enhance underwater images. In another
study, Li et al. [10] propose a fusion adversarial network
(FGAN) to dehaze underwater images. This network success-
fully corrects color cast issues and low contrast problems with
faster testing time and less parameters.

To this end, this study proposes a novel underwater image
enhancement method to achieve better dehazed and more
realistic output images in comparison to state-of-the-art ap-
proaches in literature. The developed method builds upon prin-
cipal component analysis (PCA), well-exposedness [11], [12],
saliency [13], brightness and Laplacian contrast feature maps
through a weighted multi-scale fusion in order to successfully
recover the lost red-channel back. The designed method is
compared with well-known underwater image enhancement
algorithms and it shows strong outputs both statistically and
visually.

This paper is organized as follows. Section II details the
proposed underwater image enhancement method. Section III
reports the experimental setup and discusses the results in
comparison to competing algorithms in literature. Finally,
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Fig. 1. Flowchart of the proposed method.

Sec. IV concludes this paper with a brief conclusion.

II. PROPOSED DEHAZING METHOD

A complete flowchart of the developed image enhancement
method is given in Fig. 1. At first, the input hazy image
is color balanced with three different algorithms (i.e., color
compensation [14], Gray World [15], white balance [16]) to
extract more information from the scene. At second, five
different weight maps (i.e., PCA, well-exposedness, saliency,
brightness, Laplacian contrast) are featured from these bal-
anced versions of the input image to highlight the details.
These features are then combined to form refined weights to be
used in the final multi-scale fusion step. After the fusion stage,
the enhanced output is obtained with the new red-channel; and
simply white-balanced blue and green channels of the input
image followed by a gamma correction as post-processing.
The remaining part of this section describes all details of the
proposed method.

A. Color Balance Algorithms

Color Compensation. An accurate identification of the chan-
nel to be corrected is almost impossible due to low contrast
and under exposure nature of underwater images. With the
long-wavelength attenuation phenomena, the particular focus
is on the red-channel compensation approach of Kumar and
Bhandari [14] given in Eqn. (1) as

In() = In(@) + ollc - In)(1 - In(@)la(z) (1)

where I7,(x) represents the intensity of compensated red-
channel at pixel location z, Ig(x) and Ig(z) denotes the
intensity of the red and green channels of the original image
at z, Ip and Ig are the average values of these channels,
respectively. All channel intensity values are normalized to
the range [0, 1] and the illumination parameter « varies in

[0, 1]. To avoid possible overcompensation, the red-channel
compensation is applied to locations with low values of this
channel through green channel only.

Gray World. Gray World is a conventional color constancy
method that assumes the average reflectance of surfaces in
the world is achromatic [15]. The algorithm is described by
Eqn. (2) as

I(z) = @gmy (2)
where I, (z) represents one of the three color channels R, G
and B at pixel location x, I, (x) is the color corrected version
of the corresponding channels at x, I. is the average intensity
value of I, and gray denotes a predefined parameter towards
which the intensity values of each channel are updated. The
value of gray varies depending on the application and it is
set to 195 in this study.

White Balance. White balance seeks to compensate the color
cast arising from selective absorption of colors with the depth
of water. In this study, the white balance method first sums
all color channels, finds the brightest pixel and its location,
and then applies color correction using scene illumination, i.e.,
Max RGB [16].

B. Weight Extraction

PCA. PCA feature maps [12] are extracted for each color
channel of each color balanced version of the input image.
Aligned with the theory of the PCA algorithm, it aims at giving
more weight to the dominant pixels of an image.

Let Ir, I and Ip be the color channels of sizes r X ¢
pixels. These three channels are first vectorized and then
put into columns of an rc x 3 data matrix (rc observations
with 3 variables) to calculate observation scores of PCA.
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Consequently, each score vector is linearly normalized to the
range [0, 1], and reshaped back to an r x ¢ weight matrix
Pr,, where I, represents one of the three color channels R,
G and B.

Well-exposedness. The feature of well-exposedness deter-
mines how effectively a pixel is exposed [11], [12]. It aims
at highlighting intensities which are not so close to 0 (dark
regions) or 1 (saturated regions), hence it favors pixels in
well-exposed regions with intensities close to 0.5. All channel
intensity values are assumed to be normalized to the range
[0, 1].

For a given color balanced image, this feature is obtained
for each color channel Ig, I and Ip using a Gaussian curve
given in Eqn. (3) as

(I, — 0.5)2) 3

E;, =exp (— 952

where E;_ denotes the well-exposedness map of the color
channel I, and o is set to 0.2.

Saliency. Several saliency modeling techniques have been
presented in literature to simulate the human visual system,
hence to highlight important regions and improve the visual
quality of images [12]. Saliency features are utilized in this
study to assign larger weights to pixels that are more salient
to human observers. The DCT based technique introduced
by Hou et al. [13] is adopted, resulting in S, saliency maps
for each color channel R, G and B of each color balanced
version of the input image.

Brightness. The brightness of an image is determined by
saturation, which is a significant impact element [17]. High
brightness always aids in the creation of more vivid colors.

In this study, brightness of a pixel is simply measured by
its absolute deviation from the mean of color channels at the
same spatial position. Brightness feature maps are extracted
for each color channel of each color balanced version of the
input image given in Eqn. (4) as

By, = |1, — M| “4)

where Bj, is the brightness map of the color channel 7, and
M denotes the average of R, G and B channels at each pixel
location.

Since the brightness is not well-preserved in underwater
images, this study enhances the brightness map in order to
highlight pixels which are not sufficiently saturated. To do
so, channel-based brightness histograms are normalized to
approximate the corresponding probability mass function.
Then, cumulative mass function is calculated, denormalized
and inverted to be used as a transfer function for enhancement.

Laplacian Contrast. The Laplacian contrast feature measures
the detail information in an image. It assigns higher values to
edges and fine textured areas. A simple Laplacian sharpening
kernel is used to calculate this feature map, denoted as Ly ,

for all color channels of each color balanced image. Absolute
values are processed.

C. Multi-scale Fusion and Post-processing

After all feature maps are characterized for each color
channel, they are multiplied to generate a refined weight map
for each color balanced version of the input image given in
Eqn. (5) as

Wi, =P, x By, xS, X Br, x Ly, &)

where W, represents final weights for each color channel R,
G and B per color balance. All these maps are first linearly
normalized to the range [0, 1] and then normalized to be sum-
to-one at each spatial position.

The well-known multi-scale fusion [11], [18] mechanism
is adapted with the Laplacian pyramid £ to decompose each
color balanced input images in to ¢-levels of distinct resolu-
tions, and the Gaussian pyramid G to accomplish the same
operation for the corresponding final feature maps. The fusion
is applied at each level of the pyramidal decomposition and a
fused Laplacian pyramid is obtained given in Eqn. (6) as

3
LFY) =) G{WiL{Cp} 6)
k=1
where W, and C}, represent 3-channel final weight maps and
the corresponding color balanced images, respectively. The
fused decomposition £(F*) is later used to obtain the output
image (¢ = 5).

The final dehazed output is obtained with the new red-
channel from above fusion, and green and blue channels of
white balanced image, which is followed by gamma correction
to further enhance the contrast (v = 1.25).

III. EXPERIMENTAL RESULTS

The underwater image dehazing algorithm is compared
with eight competing methods from literature through three
statistical metrics generally used in this research domain. Five
different images from the U45 Underwater Test Dataset [7],
namely Image 1, Image 2, Image 3, Image 4 and Image 5
(labeled as ORG), are tested as illustrated in the first column
of Fig. 2.

The statistical evaluation metrics are: (i) underwater image
quality measure (UIQM) [19], (ii)) underwater color image
quality evaluation (UCIQE) [20] and patch-structure contrast
quality index (PCQI) [21]. UIQM is a non-reference quality
metric that measures colorfulness, sharpness and contrast in an
image. UCIQE is also another non-reference metric for under-
water images. It measures the contrast, chroma and saturation
values in CIELab color space, to specify the image quality.
In addition, PCQI is one of the common —with reference—
quality index which is based on image contrast assessment.
It evaluates a local patch structure to calculate the contrast
enhancement. For the all three image quality indexes, the
higher metric value presents that the image has a better visual
quality.
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Fig. 2.
FGAN [10] and OURS.

FGAN

ANCUTI

CcleGAN

(Left-to-right) Input image, and the output images of HE [3], CLAHE [4], RGHS [5], UCM [6], Ancuti [7], Ancuti (CBF) [8], CycleGAN [9],

TABLE I
STATISTICAL SCORES FOR TEST IMAGES. THE HIGHEST SCORES ARE IN BOLDFACE
ORG HE [3] CLAHE [4] RGHS [5] UCM [6]

UIQM UCIQE PCQI | UIQM UCIQE PCQI | UIQM UCIQE PCQI | UIQM UCIQE PCQI | UIQM UCIQE _ PCQI
Image 1 22186 04610 - 52201  0,6420 10248 | 3,7257 0,5487 0,5487 | 32988 0,5815 0,8599 | 4,0633 0,5696 0,8641
Image 20,0086  0,3954 - 4,6790 077050 0,7970 | 2,0538 04907 0,7151 | 0,8523 0,5888 0,7590 | 4,3897  0,6427 0,8306
Image 3 -0,5288 04368 - 45219 07053 0,7351 | 12173 05402 0,6818 | 0,6649 06497 06702 | 4,5861 07163  0,7069
Image 44,1743 0,5043 - 52039 0,7049 09559 | 51211 0,5952 09625 | 43667 0,6646 0,9092 | 6,0058 06327 0,8738
Image 5 42262 04670 - 53778  0,6799 09172 | 53918 0,5712 09166 | 50778 0,6633 0,9571 | 6,1476 06512 09178
avg 2,098 0,529 n 50005 0,6874 0,8860 | 3,5019 0,5492 0,7649 | 2,8521 0,6296 0,8311 | 5,0385 0,6425 0,8386
std 2,0045  0,0360 - 0,3360  0,0247 0,1057 | 1,6468 0,0349 0,1537 | 1,8017 0,0367 0,1038 | 0,8651 0,0468 0,0715

ANCUTI [7] ANCUTI (CBF) [8] CycleGAN [9] FGAN [10] OURS

UIQM UCIQE PCQI | UIQM UCIQE PCQI | UIQM UCIQE PCQI | UIQM UCIQE PCQI | UIQM UCIQE _ PCQI
Image I 50110 05648 1,2142 | 50089 22063 00876 | 4,8550 055672 07931 | 50544 05713 009819 | 56351 0,5818 1,1983
Image 25,5520  0,6407 1,1704 | 47228 63399 02273 | 47941 06177 02073 | 49139 0,6354 09735 | 40528 0,6471 1,1104
Image 3 4,6909 06342 10576 | 45542 11,8285 0,1779 | 2,8075 06614 0,1705 | 44479  0,6080 0,8891 | 3,5401 0,6858  1,0763
Image 4  4,6071 06296 1,2635 | 52990 50517 00964 | 44679 05884 0,1357 | 52048 0,5949 009119 | 58667 0,5979  0,9226
Image 5 55494 06217 12143 | 54705 4,6064 0,1017 | 52911 0,6006 0,1247 | 59081 0,6251 0,8233 | 6,2430  0,6294 0,9126
avg 50821 06182 1,180 | 50111  6,0066 0,1382 | 44431 0,6071 0,863 | 5,1058 0,6069 0,159 | 5,0675 0,6284 1,040
std 04057 00274 0,697 | 0,3423 32038  0,0551 | 0,8588 0,318 02551 | 0,4745 0,0226 0,0583 | 1,0682 0,0367 0,1107

Competing methods include HE [3], CLAHE [4], RGHS [5],
UCM [6], Ancuti [7], Ancuti (CBF) [8], CycleGAN [9],
FGAN [10]. All these algorithms are executed with their
default parameter values under Matlab and Python environ-
ments. The visual results of all methods are illustrated in
Fig. 2 in which a side-by-side visual comparison indicates
that the proposed method generates visually realistic and more
appealing outcomes. In addition, the obtained statistical metric
scores are given in Table 1. It can be clearly concluded that
the proposed underwater image enhancement method produces
highly competitive results and surpasses most of the competing
approaches on average.

IV. CONCLUSION

This paper develops an underwater image dehazing algo-
rithm which combines several techniques. The red-channel
of the input image is recovered with the help of PCA,
well-exposedness, saliency, brightness and Laplacian contrast
feature maps through a multi-scale fusion of different color
balanced versions of the input image. Experimental results
prove the effectiveness of the proposed algorithm both visually
and statistically.
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