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ABSTRACT 
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SECONDARY STRUCTURES WITHIN EXTREME LOOPS 
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Advisor: Assoc. Prof. Dr. Osman DOLUCA 

 

October, 2023 

 

G-quadruplexes are high-order structures formed by non-canonical, telomeric nucleic 

acids, such as single-stranded guanine (G)-rich DNA and RNA sequences. G-

quadruplexes represent a class of non-canonical nucleic acid structures that arise from 

guanine-rich sequences. Many algorithms have been developed to predict G-

quadruplex-forming sequences in DNA and RNA. The expectation is that an improved 

version of the G4-CATCHALL algorithm can be created to predict G-quadruplex 

sequences in DNA and RNA. It is aimed to integrate the detection of secondary 

structures in extreme cycles known to contain potential G-quads, and to use an 

expanded parameter set to increase the accuracy of the prediction. It is expected that 

the performance of the improved algorithm will be evaluated in both synthetic and 

experimental datasets and will contribute to the original G4-CATCHALL algorithm. 

Evaluating the performance of the improved algorithm on both synthetic and 

experimental datasets, it is expected to be a valuable tool in identifying potential G-

quadruple forming sequences, which is important for contributing to the original G4-
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CATCHALL algorithm and making potential therapeutic applications more 

understandable. 

 

 

Keywords: G-quadruplex, G-quadruplex prediction, Motif prediction, extreme loops, 

G4Catchall, RNA and DNA topology,  
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AŞIRI DÖNGÜLER İÇİNDEKİ İKİNCİL YAPILARIN TESPİT EDİLMESİYLE 

G4-CATCHALL ALGORİTMASININ GELİŞTİRİLMESİ 
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Ekim, 2023 

 

G-dörtlü yapılar, tek sarmallı guanin (G) açısından zengin DNA ve RNA dizileri gibi 

kanonik olmayan, telomerik nükleik asitler tarafından oluşturulan yüksek dereceli 

yapılardır. G-dörtlü gruplar, guanin bakımından zengin dizilerden ortaya çıkan bir 

kanonik olmayan nükleik asit yapıları sınıfını temsil eder. DNA ve RNA'da G-dörtlü 

oluşturan dizileri tahmin etmek için birçok algoritma geliştirilmiştir. Beklenti, DNA 

ve RNA'daki G-dörtlü dizilerini tahmin etmek için G4-CATCHALL algoritmasının 

geliştirilmiş bir sürümünün oluşturulabilmesidir. Potansiyel G-dörtlüleri içerdiği 

bilinen aşırı döngülerdeki ikincil yapıların tespitini entegre etmek ve tahminin 

doğruluğunu artırmak için genişletilmiş bir parametre seti kullanmak 

amaçlanmaktadır. Geliştirilen algoritmanın performansının hem sentetik hem de 

deneysel veri setlerinde değerlendirilmesi ve orijinal G4-CATCHALL algoritmasına 

katkı sağlaması beklenmektedir. İyileştirilmiş algoritmanın performansının hem 

sentetik hem de deneysel veri kümeleri üzerinde değerlendirilmesi, orijinal G4-

CATCHALL algoritmasına katkıda bulunmak ve potansiyel terapötik uygulamaları 



vii  

daha anlaşılır kılmak için önemli olan potansiyel G-dörtlü oluşturma dizilerini 

belirlemede değerli bir araç olması bekleniyor. 

 

 

Anahtar Kelimeler: G-dörtlüleri, G-dörtlü tahmini, Motif tahmini, aşırı döngüler, 

G4Catchall, RNA ve DNA topolojisi. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Overview of G-quadruplex Structures and Their Biological Significance 

 

Nucleic acid structures, counting G-quadruplexes, play a crucial part in 

different organic forms such as gene expression, genome solidness, and cellular 

capacities. G-quadruplexes are shaped by guanine-rich sequences, where four guanine 

bases come together to create a steady square-planar course of action through 

Hoogsteen base blending (Sun et al., 2019; Zhang et al., 2009). The arrangement of G-

quadruplexes includes the stacking of G-tetrads, which are encourage stabilized by 

cations, regularly potassium particles, and mediating circles. 

Numerous genomic domains, including promoter fragments and telomeres, 

have been demonstrated in many studies to contain G-quadruplexes. Studies have 

appeared that G-quadruplexes have impacts on transcriptional action, telomere 

support, DNA replication and numerous cellular capacities (Pavlova et al.,2021). 

 

 

Figure 1. Structures of G-quadruplex. A) G-quadruplex form in DNA or RNA 

sequences B) Discrimination of G-quadruplex structures (Rhodes and Lipps, 2015). 

In the studies, many techniques have been used to examine the structural 

properties of G-quads in detail. These techniques have generally emerged as 

experimental studies such as biophysical analysis, X-ray crystallography, NMR 
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spectroscopy, and computational modeling (Rhodes and Lipps, 2015). Through the 

discoveries of the investigates, more detailed and broad information was obtained 

approximately the stability of G-quadruplexes and their interactions with proteins and 

small molecules. 

Understanding the key part that G-quadruplexes play in biological processes 

and having a broad information of their complex structure and potential applications 

is fundamental.This investigate zone proceeds to advance, with progressing 

examinations into the challenges, open questions, and future headings within the 

field.By uniting the existing information and motivating advance investigation, 

analysts point to harness the potential of G-quadruplexes for different therapeutic and 

diagnostic applications (Puig Lombardi and Londoño-Vallejo, 2020).   

 

1.2. Brief Summary of G4Catchall Algorithm and Its Limitations 

 

The G4catchall algorithm may be a computational tool that predicts the 

arrangement of G-quadruplex structures in DNA sequences. It was created based on 

the examination of experimentally approved G-quadruplex sequences, and it 

employments a set of rules to predict the probability of G-quadruplex arrangement in 

a given DNA sequence. The algorithm considers different components, counting the 

length and composition of the DNA sequence, the presence of G-runs, and the stability 

of the predicted G-quadruplex structure. 

The G4Catchall algorithm moreover has certain limitations. A case of this 

limitation is its failure to assess the region of G-quadruplexes. In expansion, the 

algorithm does not take into consideration the impact of flanking sequences or the 

impact of cellular variables on G-quadruplex arrangement. Subsequently, encourage 

exploratory approval is essential to affirm the predicted G-quadruplex structures and 

their potential biological importance. 

The G4catchall algorithm and other G-quadruplex (G4) detection algorithms 

play a vital part in distinguishing and characterizing G4 structures in nucleic acid 

sequences. It utilizes a machine learning approach that combines different sequence-

based highlights, such as G4-specific motifs, stability, and loop characteristics, to 

classify potential G4-forming locales. 

Other algorithms utilized for G4 prediction incorporate QGRS Mapper, 

Quadparser, G4NN, and G4Hunter. Quadparser and QGRS Mapper are two algorithms 
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commonly utilized for G-quadruplex (G4) prediction. Quadparser recognizes G4 

motifs by applying a predefined set of rules. At the same time, QGRS Mapper utilizes 

a pattern-matching approach utilizing regular expressions to distinguish G4s based on 

G-rich sequences and loop lengths.  Both algorithms are included within the 

recognizable of G4 structures, with Quadparser putting accentuation on sequence 

patterns and thermodynamic stability, whereas QGRS Mapper centers on the 

acknowledgment of G4 motifs through pattern coordinating. Both G4Hunter and 

G4NN utilize different strategies to distinguish G4s, with the previous using a 

probabilistic model and the other one utilizing an artificial neural network strategy. It 

is vital to note that the adjustment between susceptibility and specificity could be a 

critical figure to consider (Kikin, D’Antonio and Bagga, 2006; Huppert, 2005). 

 Whereas Quadparser, G4NN, G4Hunter, and QGRS Mapper have been 

important in recognizing G-quadruplexes (G4s), they are not without limitations. One 

common limitation is their dependence on sequence-based highlights, which can lead 

to wrong positives or the neglecting of G4s with atypical highlights. Moreover, certain 

algorithms have restrictions on sequence length or particular nucleotide contexts, 

limiting their feasibility in certain genomic regions. The delicate adjustment between 

susceptibility and specificity must moreover be taken into mind. A few algorithms 

prioritize susceptibility, allowing for the detection of a wide extend of potential G4-

forming regions, but with a higher wrong positive rate. On the other hand, other 

algorithms prioritize specificity, result in lower wrong positive rates but possibly lost 

a few true G4 structures (Bedrat, Lacroix and Mergny, 2016). 

In expansion to the previously mentioned limitations, the field of G4 prediction 

faces challenges related to agreement and structural assessment. Firstly, the lack of 

agreement among distinctive algorithms presents changefulness in G4 distinguishing 

proof, as each algorithm utilizes significant models, parameter settings, and training 

datasets. Subsequently, there can be incompatibility in G4 prediction results, making 

it troublesome to determine a specific G4 landscape in a given sequence (Garant, 

Perreault and Scott, 2017). 

Moreover, the dependence on sequence-based highlights in G4 prediction 

algorithms neglects substantial structural aspects of G4s. G4 structures are impacted 

by variables past the primary sequence, such as DNA topology, flanking sequences, 

and the chromatin environment (Chen et al., 2021). These structural components can 

considerably affect G4 arrangement and stability but are not continuously incorporated 
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into sequence-based prediction algorithms. Subsequently, the current approaches may 

not completely capture the complexity of G4 structures and their functional 

implications. 

 Tending to these limitations requires progressions in G4 prediction algorithms 

that organize both sequence-based and structural highlights. By joining a more 

comprehensive understanding of G4 arrangement and considering additional 

components past the nucleotide sequence, ready to improve the accuracy and reliability 

of G4 prediction strategies and achievement more profound insights into their 

biological importance. 

G4catchall and other G4 prediction algorithms ensure important tools for 

initializing potential G4 structures in nucleic acid sequences. In any case, their 

performance may be affected by the trade-off between susceptibility and specificity, 

dependence on sequence-based highlights, and the complexity of G4 arrangement 

completely different biological contexts. Advance progressions and integration of 

experimental information are essential to progress the precision and reliability of G4 

prediction algorithms. 

 

1.3 Importance of Detecting Secondary Structures Within Extreme Loops 

The importance of detecting secondary structures within extreme loops lies in 

the fact that these structures can play a crucial role in various biological processes. 

Extreme loops are the longest unpaired stretches in RNA structures and can harbor 

functional elements such as binding sites, cleavage sites, and regulatory elements. 

Secondary structures within extreme loops have been shown to be involved in RNA 

stability, localization, and function (Risitano, 2004). 

For example, studies have shown that RNA structures with stable hairpins 

within extreme loops have increased stability and protection against RNase 

degradation. In expansion, it has been appeared that the presence of hairpins within 

extreme loops can balance RNA-protein intuitive and can serve as acknowledgment 

sites for RNA-binding proteins. 

Moreover, RNA structures with G-quadruplexes within extreme loops have 

been appeared to play a part in translational regulation and splicing. G-quadruplexes 

within extreme loops have been appeared to be recognized by RNA-binding proteins 

and to play a part in elective splicing.Therefore, detecting secondary structures within 

extreme loops can provide important insights into RNA function and regulation 
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(Zhang, Harvey and Cheng, 2019). 

As a result, understanding the secondary structures found in extraordinary 

loops can give critical modern bits of knowledge into how RNA functions and how its 

regulation works.  

Predicting secondary structures within extreme loops is important as these 

regions often exhibit unique characteristics and functional roles. Extreme loops, 

moreover known as huge loops or long loops, are locales in nucleic acids where the 

length of the loop surpasses a certain limit or shows unusual highlights compared to 

ordinary loops Here's why extreme loops are important and how various tools are 

employed to study them: 

Structural diversity: Extreme loops exhibit diverse structural properties, 

including complex folding patterns, bulges, internal loops, and higher-order structural 

motifs. Understanding the structural characteristics of extreme loops provides insights 

into their stability, flexibility, and potential functional roles. 

Regulatory functions are of most extreme importance in various biological 

processes, counting but not restricted to transcriptional regulation, RNA processing, 

and post-transcriptional alterations. In specific, extreme loops play a vital part in these 

processes. They can act as regulatory components, enhancers, or silencers, influencing 

gene expression and cellular capacities (Mattick et al., 2023). 

The regions that show a tall prevalence of extreme loops are ordinarily those 

of non-coding RNAs, which play a vital role in gene regulation, cellular signaling, and 

disease treatment. These loops are known to help with the creation of functional RNA 

structures, counting riboswitches, ribozymes, and RNA-binding protein recognition 

sites (Radecki et al., 2021, Statello et al., 2021). 

 Extreme loops, which function as binding sites for RNA-binding proteins 

(RBPs) and other regulatory molecules, improve RNA-protein interactions. The area, 

stability, and protein recognition of RNA are altogether impacted by these interactions. 

The mechanics of RNA-protein complexes can be way better caught on by 

characterizing these interactions, which too sheds light on how they affect functional 

results. 

Numerous inherited diseases and disorders have been connected to extreme 

loop modifications or structural changes. Such mutations may disturb the stability or 

functionality of RNA structures within extreme loops, ultimately resulting in 

anomalous gene expression or impeded cellular processes. This highlights the 
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significant role of extreme loops in disease associations. Recognizing and 

understanding these structural modifications can help in disease determination and 

therapeutic mediations (Weskamp and Barmada, 2018). 

Several computational tools and algorithms are available for studying extreme 

loops and predicting their secondary structures. Some commonly used tools include 

RNAstructure, RNAStructureFold, NUPACK, and ViennaRNA Package. These tools 

utilize various approaches such as thermodynamic calculations, comparative 

genomics, and machine learning algorithms to predict RNA secondary structures and 

analyze extreme loops (Zadeh et al., 2010; Lorenz et al., 2011; Reuter and Mathews, 

2010). 

Through utilization of these techniques, researchers can attain a higher level of 

comprehension regarding the structural and functional attributes of anomalous loops, 

discern their operational mechanisms within biological processes, and scrutinize their 

plausible ramifications on disease pathways. 

 

1.4 Possible Hairpin-G4 Hybrid Structure Formation   

A hairpin structure and a G-quadruplex (G4) structure coexisting or interacting 

with one another within the same RNA or DNA molecule is referred to as the creation 

of hairpin-G4 hybrid structures. In order to create a stem-loop structure, 

complementary sections of a nucleic acid strand must couple together 

intramolecularly, creating hairpins. The stacking of guanine (G) nucleotides into planar 

structures known as G-quartets, on the other hand, results in the formation of G-

quadruplexes, which are non-canonical nucleic acid structure (Ravichandran et al., 

2021). 

 

Figure 2. A) A typical G4 structure is shown schematically. B) A G4-hairpin 

(Ravichandran et al., 2021). 
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There are numerous processes via which hairpin-G4 hybrid structures might 

develop. If there is no direct connection between the two structures, the coexistence of 

G4 and hairpin structures in diverse positions on the same molecule offers one possible 

explanation for this phenomenon. The formation of a hairpin shape with a G-rich 

sequence in the loop region is another plausible possibility. The hairpin stem of this 

structure can fold into a G-quadruplex structure while doing so. In this instance, the 

G4 and hairpin structures are physically linked together inside the same molecule. 

The potential roles that hairpin-G4 hybrid structures could play in a variety of 

biological processes has sparked interest in them. They might contribute to the control 

of translation, mRNA processing, gene regulation, and other cellular processes. The 

accessibility of protein and other molecule binding sites can be influenced by the 

coexistence of hairpin and G4 structures, which can have an impact on gene expression 

and cellular processes (Agarwal et al., 2014). 

Utilizing both experimental and computational methods is necessary to 

understand the creation and characteristics of hairpin-G4 hybrid structures. X-ray 

crystallography, nuclear magnetic resonance (NMR), and spectroscopic approaches 

are examples of experimental techniques that can provide structural information. 

Numerous computational methods and techniques have been developed to forecast the 

generation of hairpin-G4 hybrid structures based on an analysis of sequence and 

thermodynamics. RNAfold, an application for folding RNA, is one such instrument 

(Winnerdy et al., 2019). 

All things considered, the potential emergence of hairpin-G4 hybrid structures 

complicates our knowledge of RNA and DNA structure and function. Examining these 

hybrid structures can help us understand the various ways that nucleic acids act and 

how they are regulated. 

 

1.5 Paths of Secondary Structure G4 Compatation  

Different folding mechanisms can result in the development of secondary 

structures in G-quadruplex (G4) DNA or RNA molecules. The sequence and length of 

the G4-forming area, the presence of cations or other molecules that stabilize the 

structure, the thermodynamic stability of various intermediate states, and other 

variables all play a role in determining the precise folding process (Grün and 

Schwalbe, 2021). 

There are general phases involved in the production of G4 secondary 
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structures, even though the precise folding pathway for a given G4 structure can be 

complex and reliant on particular sequence properties. A folding mechanism that can 

compact G4 structures has been developed, and it can be summed up as follows (You 

et al., 2017): 

Initial unstructured state: The guanine-rich portion of the G4-forming sequence 

is single-stranded and devoid of any distinct secondary structure. 

Nucleation: The creation of a G-quartet, a planar arrangement of four guanine 

bases bound together by Hoogsteen hydrogen bonding, usually marks the beginning 

of the folding process. In order to create the initial G-quartet, neighboring guanine 

bases must be stacked during this nucleation process. 

Propagation: Guanine bases can stack on top of one another to produce a G-

quadruplex core after the initial G-quartet has been formed. The consecutive addition 

of guanine bases during this propagation stage results in the development of many G-

quartets, usually in a planar configuration. 

Normally, loop regions arise to connect the guanine lengths between the G-

quartets. These loops may adopt various conformations and have varying lengths and 

sequences. The growth of loops supports the overall stability and structural variation 

of G4 secondary structure. 

Stabilization: The binding of cations, such as potassium (K+) or sodium (Na+), 

in the central channel created by the G-quartets frequently increases the stability of the 

G4 structure. The oxygen atoms of guanine bases can coordinate with cations, 

providing electrostatic stability and encouraging the creation of a compact G4 

structure. 

Higher-order structures can sometimes be created by further folding or stacking 

G4 motifs with one another. These structures may result from interactions between G4 

sequences at the molecular level or through the assembly of G4-quadruplexes with 

extra stems or loops. 

It's important to remember that a number of variables, including the presence 

of other DNA-binding proteins, the concentration of cations, and the existence of other 

secondary structures nearby, might affect the folding pathway and speed of G4 

compaction. Our knowledge of the folding processes and dynamics of G4 structures is 

aided by experimental methods like NMR spectroscopy, X-ray crystallography, and 

single-molecule investigations. 

Overall, the development and growth of G-quartets, the formation of loops, the 
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coordination of cations, and potential higher-order folding events all contribute to the 

compacting of G4 structures. Understanding these routes is essential for determining 

the functional functions and physical characteristics of G4 structures. The sequence 

and environmental factors may change the particular folding mechanism. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1 Previous Research on G-quadruplex and Their Prediction 

 

Motifs consisting of non-canonical and guanine-rich sequences play important 

roles in gene regulation and stabilization. As a result of the researches, these motifs 

are called G-quartets. Guanine tetrads are stacked together in these arrangements and 

held together by Hoogsteen hydrogen bonds, making steady secondary structures. 

Various nucleic acid atoms, counting DNA, RNA, and telomeric DNA, have been 

appeared to incorporate G-quadruplexes, which have been connected to critical 

physiological functions such DNA replication, translation, and translation. Also, G-

quadruplexes are charming candidates for therapeutic mediation due to their affiliation 

with a number of human diseases, counting cancer and neurodegenerative disorders 

(Kwok and Merrick, 2017). 

For the reason of explaining their functional roles and comprehending their 

suggestions in disease pathways, it is significant to precisely predict the structures of 

G-quadruplexes. In spite of giving point by point structural information, Nuclear 

magnetic resonance (NMR) spectroscopy and X-ray crystallography are strenuous, 

time-consuming, and not agreeable to high-throughput examination. Thus, computer-

based prediction strategies have risen as important adjuncts for quickly distinguishing 

putative G-quadruplex themes in nucleotide sequences  (Das et al., 2021). 

For the purpose of predicting G-quadruplex structures in nucleotide sequences, 

a variety of methods have been used. The availability of sequence data, the desired 

level of accuracy, and the available computational resources are only a few of the 

variables that influence which approach is chosen. The taking after are a few of the 

typical strategies: 

One way is the sequence-based procedure, which predicts G-quadruplex-prone 

regions by taking into thought sequence characteristics such the presence of G-rich 

motifs and specific nucleotide sequences. This method frequently uses machine 

learning or statistical analysis to find probable G-quadruplex motifs based on sequence 

properties (Monti et al., 2021). The structural-based method is an alternative strategy 

that predicts the presence of G-quadruplexes in nucleotide sequences by taking into 

account their structural characteristics, such as loop lengths, loop sequences, and the 
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number of G-tetrads. This approach frequently uses algorithms that examine the 

stability and folding potential of G-quadruplex structures using structural principles 

and energy estimates. Sequence-based and structural-based elements are used in 

hybrid approaches to increase the accuracy of G-quadruplex prediction. By combining 

sequence data with structural limitations, they trust to capture both neighborhood 

sequence patterns and global structural highlights that impact the creation of G-

quadruplexes (Chambers et al., 2015).  For G-quadruplex prediction, machine learning 

methods including support vector machines (SVM), random forests, and deep learning 

models have become more and more popular (Zhang et al., 2023). In order to predict 

the behavior of fresh sequences, these approaches attempt to learn patterns and 

relationships from the training data, which might comprise different aspects like 

sequence motifs, physicochemical characteristics, and structural parameters. For the 

prediction of G-quadruplexes, a variety of web-based servers and applications have 

been created with user-friendly user interfaces. These platforms frequently include 

additional features including the display of predicted structures and integration with 

other bioinformatics tools, as well as a variety of prediction techniques. The choice of 

a particular strategy should be based on the individual research issue, available 

resources, and desired accuracy. It ought to be noted that each technique has its one of 

a kind qualities and limits. Also, combining diverse procedures or consolidating 

information from a few sources can make strides the exactness and constancy of 

expectations (Brázda et al., 2019). 

G4NN is a computational tool created to capture potential RNA G-quads . The 

implementation of a new measure based on abstract sequence similarity is suggested 

by the current research. This score is computed through the utilization of a rudimentary 

artificial neural network (ANN), denominated as G4NN. Notably, G4NN is trained on 

the sequences that are housed within the G4RNA database.The G4RNA screener was 

developed as a motif-independent tool based on the structural features of the G-

quadruplexes (Garant, Perreault and Scott, 2017). 

The developed tool evaluates the probability of G-quad formation on the basis 

of factors such as stability of G-quads, loop length and loop array composition. The 

generated algorithms are tested using data containing experimentally validated G-

quadruplets and non-G-quadruplets. 

Results from these test sequences used and the experimentally proven G-quads 

sequences demonstrated the accuracy of g4NN in detecting G-quads. Additionally, 
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G4NN has demonstrated its capacity to improve predictive abilities for G-quads while 

also spotting unconventional G-quads through comparison with previously examined 

methods. 

Researchers typically use the web-based server QGRS Mapper to carry out 

sequence analysis and identify probable G-quadruplex groups. The parameters of the 

QGRS Mapper have been developed taking loop length and stability into account, just 

like many other tools. In addition, it also includes sequence conservation analysis in 

order to evaluate G-quads that may occur among different species. 

QGRS Mapper evaluates the accuracy of its performance over experimentally 

validated G-quad arrays. The web server also performs graphs of the predicted G-

quads and detailed visualization of the predicted structure.It allowed researchers to 

customize the estimation parameters on the sequences they wanted to examine 

according to the subject they wanted to investigate (Kikin, D’Antonio and Bagga, 

2006). 

QGRS Mapper is an essential web server for researchers interested in the 

research and development of G-quads. The software furnishes a facile and user-

friendly interface, together with resilient prediction algorithms and comprehensive 

visualization functionalities, thereby rendering the identification and analysis of G-

quadruplex structures in nucleotide sequences undemanding.  

While there are many methods and tools developed for the prediction of G-

quads, the limitations of these methods make it very difficult for researchers to move 

their studies forward, and that's why G4Hunter was introduced to improve these 

limitations. 

The G4Hunter algorithm includes many new features and a machine learning 

approach to improve the accuracy and reliability of the prediction of G4-quads.To 

evaluate a particular DNA sequence's tendency to generate G-quadruplex structures, 

G4Hunter makes use of a broad range of sequence and structural information. It 

considers context around probable G-quadruplex motifs as well as variables like 

guanine content, loop length, and stability.Utilizing a sizable dataset of G-

quadruplexes with experimental validation, assess G4Hunter's performance. They 

show that, in terms of sensitivity, specificity, and total prediction accuracy, G4Hunter 

surpasses other prediction techniques. 

The advancement of G4Hunter provides a significant contribution to the G-

quadruplex research domain through the provision of a sophisticated algorithm for 



13  

predicting G-quadruplex structures. Furthermore, it offers novel perspectives into the 

prevalence of these structures and their prospective biological importance. 

 

2.2 Previous Research on the G4Catchall Algorithm and Its Limitations 

The G4Catchall algorithm is a tool developed for the prediction and analysis 

of structures of G-quadruplexes in both DNA and RNA sequences. It aims to identify 

and characterize potential G4 motifs based on their sequence patterns and structural 

properties. 

The algorithm implemented in this study employs a regular expression 

matching strategy, akin to other existing algorithms for G4 detection. The approach 

utilizes a distinctive pattern, denoted as the G4 Catchall motif, which is specifically 

tailored to effectively detect a wide range of G4 structures characterized by varying 

loop lengths and arrangements.  

Gx1NL1Gx2NL2Gx3NL3Gx4 

In this motif, the 'G' represents a guanine base, 'x' denotes a range of guanine 

repeats (typically 2 to 5), 'N' represents any nucleotide (A, T, C, or G), and 'L' denotes 

a range of loop lengths (typically 1 to 7 nucleotides). The subscripts 1, 2, 3, and 4 

indicate different occurrences of G-runs and loop sequences. 

By using this motif, the G4 Catchall algorithm searches for sequences that 

match the pattern in the input DNA or RNA sequence. It identifies potential G4 motifs 

by detecting sequences with multiple guanine runs separated by loop sequences of 

varying lengths. The algorithm does not consider the folding stability or in vivo 

likelihood of the predicted G4 structures; it provides a binary "yes/no" output based 

on pattern matching. 

One of the challenges in G4 detection is handling nested structures, where 

multiple G4 motifs can overlap within a long sequence. The G4 Catchall algorithm 

offers two techniques for managing overlapping matches to handle this:  

Counting only identical motifs that do not overlap In this method, the algorithm 

exclusively counts instances of the same G4 motif that do not overlap.This avoids 

overestimating the number of G4 structures in cases where nested structures may be 

present. 

Counting overlapping motifs with different loop sequences: Here, the 

algorithm counts overlapping motifs with different loop sequences as separate G4 

structures. This allows for the identification of distinct G4 motifs within nested 
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structures. 

The G4 Catchall algorithm provides a flexible framework for G4 detection and 

analysis, allowing researchers to customize the motif parameters and analyze different 

types of G4 structures. The use of this method is thought to be very helpful in the early 

assessment and detection of potential G4 patterns in DNA and RNA sequences. 

 

2.3 Previous Research on the Detection of Secondary Structures within 

Extreme Loops 

 

The examination of the affect of loops on quadruplex stability could be a 

significant calculate to comprehend the structural and functional characteristics of G-

quadruplexes. Mediating sequences, moreover assigned as loops, represent the regions 

between continuous G-tracts inside the quadruplex structure, comprising non-G 

nucleotides. These loops apply a significant impact on determining the flow and 

stability of the quadruplex (Arora and Maiti, 2009). 

Investigate has uncovered that the length and sequence composition of loops 

exerts a significant impact on the stability of G-quadruplex structures. In common, 

shorter loops contribute to more prominent stability, as they lead to more tightly 

packing of the G-tetrads. Alternately, longer loops present a degree of adaptability and 

may disturb the stacking intuitive between G-tetrads, coming about in diminished 

stability. By the by, particular loop sequences showing specific patterns and intuitive 

can upgrade the in general stability of the quadruplex structure (Guédin et al., 2010). 

The stability of G-quadruplexes is affected by different components concerning 

the nature of loop residues, counting their character and situating inside the loop. The 

interest of loop residues in hydrogen bonding or other interactions with the G-tetrads 

can move forward stability. On the other hand, the nearness of loop residues that cause 

steric clashes or destabilizing interactions can decrease stability.  

Besides, the stability and folding of G-quadruplex structures can be altogether 

affected by the nearness of bulges, which are unpaired nucleotides inside the loops. 

Bulges cause disjunction within the stacking of G-tetrads and modify hydrogen 

holding patterns, coming about in varieties in stability and structural elements. 
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CHAPTER 3: METHODLOGY 

 

3.1 How RNAFold is Working? 

 

An RNA molecule's secondary structure can be predicted by the software 

program RNAfold using the main sequence. The most stable RNA molecule folding 

patterns are determined using thermodynamic methods. 

The RNAfold algorithm is based on the ideas of minimum free energy (MFE) 

folding. It rates the stability of several RNA molecule folding scenarios and chooses 

the folding pattern with the lowest free energy as the most likely one. Base pair 

creation is taken into account in the free energy calculation, along with other structural 

elements including loops, bulges, and interactions between internal and exterior base 

stacking   (Lorenz et al., 2011). 

In the RNAfold prediction method, potential secondary structures are 

investigated in the combinatorial space and their stabilities are assessed. It looks for 

folding patterns that enhance base pairing while reducing the structure's overall free 

energy. The algorithm determines the most stable folding configuration by taking into 

account both local and global interactions. 

RNAfold can handle multiple sequence alignments as well as individual RNA 

sequences. Base pairing probabilities, energy readings, and other structural annotations 

are all information regarding the expected secondary structure that is provided. The 

projected structures can also be graphically represented by RNAfold. 

It's crucial to remember that RNAfold's calculations contain a number of 

assumptions and simplifications. The presumption stated above assumes that the 

folding process takes place within the parameters of physiological circumstances and 

that the RNA molecule in issue is submerged in an aqueous solution. In some 

situations, especially for complex RNA molecules or under unusual experimental 

circumstances, these hypotheses may restrict the precision of predictions  (Wayment-

Steele et al., 2022). 

Overall, RNAfold is a popular technique for predicting RNA secondary 

structure and has greatly advanced our knowledge of RNA folding and structure-

function correlations. 
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3.2 Explanation of the Datasets Used in the Study 

 

All the potential ways to produce G4 were combined into one synthetic 

sequence. However, the human genome serves as our real sequence, and information 

about the human genome will be used to compare G-quadruplexes there. From a recent 

work (Chambers et al. others, 2015), the coordinates of the G-quadruplex-forming 

domains experimentally discovered in the human genome will be obtained. The 

relevant dataset including the sequences can be found in the GEO database under 

accession number GSE63874. 

This dataset included several samples that were examined. These studies were 

conducted with Na, K, and PDS present. Among small molecule G4-linkers, 

pyridostatin (PDS) and its derivatives, such as PyPDS, are well recognized for their 

high affinity for G-quadruplexes (G4s). The precise mechanism by which they identify 

and attach to G4s is still unknown. 

Although pyridostatin (PDS) is widely acknowledged as a powerful inducer 

and stabilizer of G-quadruplexes (G4s), it remains unclear what genes this substance 

specifically targets. In light of this situation, the instances created via PDS will be used 

as a dataset.  Then, in case studies involving PDS, the 150 base pair single-ended Fastq 

reads (Read-1) were aligned to the human genome (hg19) using the bwa meme 

alignment tool. The equivalent chromosomal regions were assigned to the matching 

Read-1 and Read-2 files.  

The generated alignment files in BAM format were translated to BED files and 

then handled by bedtools. Related actions 1) using the BAM to BED format converter 

(bamToBed); 3) group BED files only to maintain the best alignments (groupBy -g 4 

-c 5 -o max); 4) extraction of fasta sequences corresponding to BED intervals (bedtools 

getfasta -s). 2) expanding BED files by 30 base pairs in both directions (slopBed -s -r 

30); 3) grouping BED files only to keep the best alignments (groupBy -g 4 -c 5 -o 

max).  

R was then used to compare the Read-1 and Read-2 files using the generated 

fasta sequence files and the original Fastq file. Any poly-A sequence with a tail 

exceeding 9 bases underwent a targeted clipping process. For each pair of readings, 

baseline discrepancies and differences in quality ratings were calculated. The average 

single base mismatch values for all reads spanning each matched genomic region were 

calculated. 
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Hg19 is the genomic construct that was employed in this analysis. 

 

3.3 Overview of the Enhanced G4Catchall Algorithm with the Inclusion of the 

Secondary Structures within Extreme Loops 

The G4 Catchall algorithm has been modified, and the Enhanced G4 Catchall 

method now takes into account secondary structures created within the extreme loops 

of G-quadruplex (G4) motifs. This improvement enables a more thorough examination 

of G4 structures, accounting for structural features other than the primary sequence 

pattern. 

The extreme loops of G4 motifs, sometimes referred to as lateral loops, were 

treated as flexible areas lacking precise structural information in the initial G4 Catchall 

method. It has been shown, nevertheless, that these loops occasionally take on 

secondary structures like hairpins or bulges, which can affect the stability and 

usefulness of G4 structures. 

With the help of the improved approach, secondary structures within the 

extreme loops of G4 motifs may now be found and described. By carefully examining 

the possibilities for base pair creation and stem-like structures within the areas of the 

loop, this procedure is completed. In order to determine the likelihood of secondary 

structure creation, the algorithm analyzes the loop sequences for the presence of 

complementary nucleotide pairs and calculates a secondary structure score (Arora and 

Maiti, 2009). 

The quantity and stability of base pairs, the length and placement of the loop 

sequences, and the sequence context around the loops are some of the variables used 

to calculate the secondary structure score. Higher scores suggest a greater likelihood 

that secondary structures will grow inside the extreme loops. 

The improved algorithm predicts G4 motifs more precisely by taking into 

account both the primary sequence pattern and probable secondary structure elements 

by including the examination of secondary structures. The accuracy of G4 forecasts 

improves as a result, and it also helps us understand a wider variety of G4 

configurations. 

The presence and functional significance of these structures must still be 

confirmed through experimental validation, despite the fact that the improved method 

offers useful insights into the putative secondary structures within G4 motifs. The 

program acts as a computational tool to direct future research and determine which 
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areas should be prioritized for experimental analysis. 

The algorithm is programmed using Python 3.9.2 in such a way that the search 

rules such as the number of G-paths and the limitations of loops, etc. can be specified 

by parameters.It was designed to create a folding profile for an RNA sequence using 

the Biopython module and the ViennaRNA software package. 

The function CallRNAfold runs with the parameters filename and temp, where 

temp is set to 37. The aforementioned function accepts two parameters. 

The term "filename" refers to the name of the file that contains RNA sequences 

and structures. 

Temperature (optional): Signifies the specific temperature at which the 

prediction is to be conducted. The default value for the temperature is set at 37 degrees 

Celsius. 

The variable "directory" is used to store the path to the directory where the 

ViennaRNA Package is installed. 

Execute the command to open a file named "output.txt" in write mode.The 

method close() is utilized in this line to open a file named "output.txt" in write mode 

("w") and promptly terminate the file connection. This process involves either 

generating or erasing the contents of the file in order to facilitate its future utilization.  

If the file "temp_output.fold" exists in the operating system's path. The function 

os.remove("temp_output.fold") is used to delete the file named "temp This condition 

evaluates the presence of a file named "temp_output.fold" within the current directory. 

If the condition is met, this line of code will delete or remove it. The purpose of this 

step is to verify the absence of a pre-existing file with an identical name prior to the 

generation of a new file through the RNAfold prediction process. 

The line `print(os.getcwd())` is responsible for outputting the current working 

directory to the console. This feature can be advantageous for the purpose of 

debugging, as it provides visibility into the specific directory from which the script is 

being executed. 

The line of code employs the subprocess.run() function to perform the 

RNAfold program. The following is an analysis of the parameters that are supplied to 

it: 

The provided command-line arguments correspond to the execution of the 

RNAfold program. The aforementioned items encompass: 

Please provide the file path of the RNAfold executable, including the directory 
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in which it is located. 

The "noconv" option in RNAfold allows for the exclusion of the conversion of 

non-standard characters present in the input file. 

The "-i" option is used to designate the input file for the RNAfold program. 

The filename parameter represents the specific file that is supplied as an argument to 

the function. 

The temperature for the prediction can be set using the "--temp" parameter. The 

value is transformed into a string using the str() function. 

The parameter "--outfile=temp_output.fold" is used to designate the name of 

the output file in which RNAfold will store the outcomes of its predictions. 

The output file "temp_output.fold" is opened for reading.The method `read()` 

is utilized in this line to open the file named "temp_output.fold" in read mode ("r"). 

The contents of the file are then read and stored in the variable called `output`. The 

retrieval of the RNAfold prediction findings is performed by the script. 

The output is represented as rows.The function "split("\n")" is utilized to divide 

the contents of the output variable into a collection of strings, where each string 

corresponds to a line extracted from the file. Each line of the text is delimited by 

newline letters ("\n"). 

The given line of code, `description = rows[2]`, is responsible for extracting 

the third line, identified by its index 2, from the list of rows. Subsequently, the 

extracted line is assigned to the variable named "description". This particular line 

commonly encompasses details pertaining to the secondary structure of RNA. 

The score is calculated as a floating-point number obtained by extracting the 

numerical value from a string that matches the regular expression pattern "\([ ]*[+-

]?[0-9]*[.]?[0-9]+The regular expression [0-9]+\.? can be used to match one or 

moreThe last element of the second row, obtained by applying a regular expression 

pattern to the string, is extracted and then its first and The provided code snippet 

utilizes regular expressions, namely the re.findall() function, to do a search for numeric 

values enclosed within parentheses within the description line. The program retrieves 

these numbers, turns the final one into a floating-point data type, and subsequently 

assigns it to the variable named "score". The aforementioned value denotes the 

numerical representation of the RNA secondary structure's score. 

The value of DBN is obtained by removing any numerical values included in 

parentheses from the string in the third element of the rows list. The provided code 
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snippet utilizes regular expressions, namely the re.sub() function, in order to eliminate 

numerical numbers included within parentheses from the description line. The 

outcome, denoting the Dot-Bracket Notation (DBN) structure, is allocated to the DBN 

variable. 

The value of the element at index 2 in the rows array is obtained by removing 

any leading or trailing whitespace from the DBN string. The third line (description) in 

the rows list is modified by this code snippet, which updates it with the cleaned DBN 

structure. The cleaning process involves removing any leading and trailing whitespace. 

The provided line of code executes a loop that iterates over the elements in the 

"rows" list and prints each element to the console. The utilization of this approach can 

prove to be advantageous in the process of debugging and comprehending the material 

encapsulated within the "temp_output.fold" file. 

Ultimately, the function yields a tuple that encompasses the score and the 

changed list of rows. The score denotes the prediction score for the RNA secondary 

structure, whereas the rows correspond to the lines extracted from the 

"temp_output.fold" file. 

Within the confines of the context manager, the function iterates over the 

split_seq_pos list. For every element within this enumerated collection (comprising a 

tuple consisting of a level and positions): 

The program generates a header line that incorporates data pertaining to the 

present level, temperature, and score. The formatting of this header is as follows: 

>Level: {level} | Temperature: {temperature} | Score: {score:.2f}. The header serves 

the purpose of providing contextual information for the written material. 

The header line is written to the output file using the output_file.write() 

method. 

Subsequently, the system generates a textual output consisting of the recorded 

positions. The positions are concatenated into a string using the method ', 

'.join(map(str, positions)), so enhancing their legibility and facilitating their writing to 

the file. 

Upon completing the header and positions for a particular level, the function 

proceeds to generate a blank line by executing the command output_file.write("\n"). 

The presence of an empty line functions as a demarcation point, effectively delineating 

several tiers of data within the output file, hence enhancing visual clarity. 

The iteration persists until all levels within the split_seq_pos have been 
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executed. 

Ultimately, the context manager assumes the responsibility of properly closing 

the output file. 

In brief, this function processes structured data pertaining to split sequences, 

corresponding temperature values, and scores, and transforms them into a coherent 

manner that can be easily comprehended. Subsequently, the formatted data is written 

to an output file. In order to enhance clarity, an empty line is utilized to separate each 

level of split sequences inside the output file.The file named "temp_output.fold". 

The function initializes a list named "ranges" with no elements, which will be 

used to hold the temperature values that are generated. 

The temp variable is assigned the value of the starting temperature (start). 

The program enters a while loop that iterates until the value of the variable 

"temp" becomes smaller than the value of the variable "end". The iteration construct 

is responsible for generating the temperature values within the defined range. 

Within the iteration: 

The current value of the variable "temp" is appended to the list "ranges" using 

the "ranges.append()" method.The function "append(temp)" is executed. The 

temperature is appended to the existing list. 

The temp variable is incremented by the step value (temp += step), so 

facilitating its convergence towards the final temperature. 

Upon completion of the loop, the function will return the ranges list, which 

encompasses the temperature values that have been generated. 

In brief, this function generates a sequence of temperature values commencing 

from a designated temperature, increasing by a specified increment, and concluding 

just prior to a specified concluding temperature. 

The function utilizes a context manager (with open(output_filename, "w") as 

output_file) to open the output_filename in write mode ("w"). This guarantees that the 

output file is appropriately managed and closed subsequent to the writing process. 

The algorithm sequentially processes each temperature measurement within 

the specified temperature range. For any given temperature: 

Within the iteration of the loop pertaining to a particular temperature: 

The temporary filename is generated using the format 

"output_{temp_value}.fasta". The given filename is associated with the output file that 

corresponds to the particular temperature in question. 
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The context manager is used to access the temporary file associated with the 

current temperature in read mode ("r"). 

The program generates a header line in the output file, denoting the temperature 

value as "Temperature: 10.0" for example. The purpose of this header is to facilitate 

the identification of the data that corresponds to each temperature. 

The content of the temporary file is replicated into the output file. This process 

amalgamates the data extracted from individual files corresponding to specific 

temperature ranges into a unified dataset. 

In conclusion, the temporary file is eliminated through the utilization of the 

os.remove(temp_filename) function, so facilitating the process of tidying up and 

liberating disk space. 

The aforementioned procedure is iteratively executed for every temperature 

value within the temperature_range. As a consequence, an amalgamated output file is 

generated, encompassing data extracted from each individual output file 

corresponding to a certain temperature. 

group_numbers Function: 

This function is responsible for grouping a list of numbers into consecutive 

ranges. For example, given a list of numbers like [1, 2, 3, 5, 6, 7, 10], it will group 

them into ranges such as "1-3, 5-7, 10". 

Parameters: 

lst: A list of integers that you want to group into ranges. 

The function initializes an empty list called groups to store the grouped ranges. 

It also initializes start and end variables with the first element of the input list 

lst.The function then iterates through the elements of lst starting from the second 

element (index 1). 

For each element, it checks whether it is consecutive to the previous element. 

If it is (i.e., the difference between the current element and the previous one is 1), it 

updates the end variable to the current element. 

If the current element is not consecutive to the previous one, it checks whether 

the start and end are the same (indicating a single number) or different (indicating a 

range). Based on this, it appends the appropriate representation (either the single 

number or a range) to the groups list. 

Finally, it joins all the groups into a comma-separated string and returns it.The 

function takes a list of numbers, groups them into consecutive ranges, and returns a 



23  

string representing these ranges as comma-separated values. 

In the context of computer programming, the statement "if __name__ == 

"__main__":" is commonly used to designate the main entry point of a program. 

The aforementioned Python construct is a frequently used method to ascertain 

if the script is being executed directly as the primary program or if it is being imported 

as a module into another script. When the script is designated as the primary program, 

the code contained within this block will be executed. 

The user's input string is stored in the variable "input_str".Kindly provide the 

initial temperature, final temperature (excluding), and temperature increment 

(separated by commas): 

The user is prompted to provide a string of values related to temperature, 

separated by commas. The input() function is employed to obtain user input, and the 

resulting string is assigned to the variable input_str. The values of start_temp, 

end_temp, and temp_step are then extracted from input_str by splitting it at each 

comma and converting the resulting substrings to floating-point numbers. 

This step involves the processing of the user input acquired in the preceding 

stage. This action performs the following functions: 

The method input_str.split(",") divides the input string into many values by 

using a comma as the delimiter. This results in a list of values, such as ["start_temp", 

"end_temp", "temp_step"]. 

The function map(float, ...) is utilized to transform every element within the 

list into a floating-point number, which corresponds to a decimal number. The 

conversion of user inputs from strings to numerical values is a common practice due 

to the fact that user inputs are often represented as strings. 

The variables start_temp, end_temp, and temp_step are allocated the 

corresponding values from the list. 

The function "generate_temperature_ranges" is used to calculate a range of 

temperatures based on the provided parameters: the starting temperature (start_temp), 

the ending temperature (end_temp), and the temperature step (temp_step). 

This portion of the code is responsible for reading RNA sequences from an 

input file, processing them, and preparing temporary files for further analysis. 

inputfile is set to "inputs.fa," which is assumed to be the input file containing 

RNA sequences. You should replace this with the actual path to your input file.Two 

empty lists, inputnames and inputseqs, are initialized. These lists will be used to store 



24  

the names and sequences of the RNA molecules read from the input file. 

The script opens the input file ("inputs.fa") in read mode using a context 

manager (the with open(inputfile, "r") as f: statement).It then iterates through the lines 

of the input file using a for loop 

For each line in the input file: 

If the line starts with ">", it is assumed to be the name or description of the 

RNA sequence. In this case, a new empty string is appended to the inputseqs list, and 

the name is appended to the inputnames list. 

If the line does not start with ">", it is assumed to be part of the RNA sequence. 

It is added to the most recent (last) element in the inputseqs list after stripping any 

leading or trailing white spaces. 

After processing all lines in the input file, the script prints the length of the 

inputseqs list, which represents the number of RNA sequences read from the input file 

Next, the script enters a loop over the RNA sequences in inputnames. For each 

sequence, it does the following:It creates a temporary output file named 

"example.fasta" using a with open(tempfile, "w") as f: statement.It writes the name 

(from inputnames) and the corresponding sequence (from inputseqs) into the 

temporary file. 

A new variable split_output_filename is set to "split_seq_pos_output.txt.”The 

script creates this file and immediately closes it. This file will be used to store 

information related to split sequences later in the code. 

The aforementioned code invokes the generate_temperature_ranges method, 

passing the values acquired via user input as arguments. The function computes a 

series of temperature values by utilizing the given initial, final (non-inclusive), and 

incremental values. The variable temperature_range stores the range of temperatures 

that have been obtained. 

In the context of the given temperature range, the variable "temp_value" 

iterates through each element. 

The provided code snippet demonstrates a for loop that sequentially iterates 

over each temperature value within the temperature_range. The code block that 

follows will be executed for each temperature value. 

The function CallRNAfold was invoked with the arguments "example.fasta" 

and temp_value, and the resulting values were assigned to the variables scr and o1. 

Within the iteration of the for loop, a function named CallRNAfold is runs by this 
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particular line of code. The function is passed two arguments, namely "example.fasta". 

The provided input represents a filename or file path denoting a file titled 

"example.fasta." 

The variable "temp_value" represents a temporary value. The present 

temperature value is derived from the temperature_range that is being iterated in the 

loop. 

The function CallRNAfold is observed to execute computations pertaining to 

predictions of RNA folding and yields two values, denoted as scr and o1, which are 

subsequently allocated to variables. 

The variables Seq and DBN are assigned the second and third lines from the 

o1 list, respectively. These lines correspond to the sequence and the dot-bracket 

notation of the predicted structure. 

The empty lists splitSequences and splitSeqPos are initialized to store the split 

sequences and their positions. 

The dictionaries openSequence and openSeqPos are initialized to store the 

open sequences and their positions at different levels. These dictionaries will help keep 

track of the sequences and positions as we iterate through the dot-bracket notation. 

A loop iterates over each position in the dot-bracket notation (DBN) to identify 

the different levels and the corresponding open sequences. It examines each character 

in the dot-bracket notation to determine its type (open parenthesis, dot, or closing 

parenthesis) and takes appropriate actions. 

If an open parenthesis is encountered, the code increases the curlvl variable, 

indicating the current level. It also appends "/" to the open sequence and initializes the 

position list for that level. This prepares to store the upcoming nucleotides for the open 

sequence. 

If a dot is encountered, the code appends the corresponding nucleotide to the 

open sequence and adds its position to the position list for that level. The current 

method involves grouping together nucleotides and their matching locations within the 

open sequence at this time.  

If a closing parenthesis is found, the program continues by decreasing the 

variable curlvl, which denotes a decrease in the level's magnitude. 

It appends the open sequence and its positions to the splitSequences and 

splitSeqPos lists, respectively. This marks the end of the current open sequence at the 

current level. The dictionaries are cleared of the open sequence and position list 
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corresponding to the current level once the relevant calculations have been completed 

in preparation for any upcoming open sequence at a lower level.  

Any open sequences and their corresponding positions that weren't closed 

before the dot-bracket notation ended are then added to splitSequences and 

splitSeqPos, respectively, when this loop is finished. These open spots and sequences 

serve as a good indicator for those that are still open. 

The code then iterates over the split sequences and checks if any of them 

contain "e". If they do, it further splits them at "e" and prints the position ranges of the 

secondary structures within the extreme loops. This step helps identify and analyze the 

extreme loops within the predicted structure. 

The name of the output file is "split_seq_pos_output.txt". 

The aforementioned code assigns the value "split_seq_pos_output.txt" to the 

variable output_filename. The designated file name for the storage of certain data will 

be determined. 

The function "write_split_seq_pos_to_file" is designed to write the values of 

"temp_value", "splitSeqPos", and "scr" to a file specified by "output_filename". 

The aforementioned line invokes the execution of a function named 

"write_split_seq_pos_to_file" by passing the subsequent arguments: 

The variable "temp_value" represents the current temperature value that is 

being processed within the loop. 

The splitSeqPos data structure encompasses position information. 

The term "scr" refers to a numerical value that represents a score. 

The output_filename refers to the designated name of the file in which data will 

be written. 

The function is observed to generate and record data pertaining to position 

information, temperature, and score into the designated output file. 

The output filename is defined as "output_{temp_value}.fasta". 

The output_filename is assigned a formatted string that incorporates the current 

temperature value by replacing {temp_value}. As an illustration, when the value of 

temp_value is 37, the resulting output_filename is transformed into "output_37.fasta". 

The production of the FASTA file is being initiated. 

The subsequent code snippet initiates the opening of the output_filename in 

write mode ("w") by employing a context manager (with open(...)). The following code 

segment is responsible for the generation of an output FASTA file. 
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In this code block, a for loop is used to iterate through the elements of the 

splitSequences. It is probable that this particular data structure has pertinent 

information pertaining to RNA sequences. 

Within the loop, the variable "i" serves as an index, while the variables "level" 

and "sequence" are extracted from each element of the "splitSequences" collection. 

The coordinates are obtained from the variable splitSeqPos[i][1], which is 

presumably the positional information associated with the sequence. 

The description string is structured in a manner that includes details pertaining 

to the level, temperature, and score. 

The information is written to the output file in FASTA format using the 

output_file.write() method. > The user's text can be enhanced to have a more academic 

tone without adding any additional information. 

The description and sequence are additionally outputted to the console for the 

purpose of display. 

The aforementioned procedure yields a multitude of FASTA files, with each 

file corresponding to a distinct temperature value. 

The process of combining output files. 

Following the execution of the loop responsible for generating the output files, 

the code proceeds to invoke the merge_output_files function in order to consolidate 

all of these output files into a singular file denoted as "merged_output.fasta." The 

anticipated behavior of this function is the aggregation of output files that correspond 

to a certain range of temperature values into a single file. 
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CHAPTER 4: RESULT 

 

In the written algorithm, Window approach was preferred in order to predict 

more clearly the G-quadruplexes that may occur in extreme loops. On the generated 

synthetic sequence, primarily Window size range was evaluated in three different ways 

small, middle, and large.  

The tool we wanted to do is find and detect base ranges that can create hairpins 

in a string. But while taking the deltaG values as a base for this hairpin formation, we 

also need to set a threshold for it. And we used for Window approach to find out how 

to determine what was trash. Because when it divides each array into windows and 

looks at DeltaG, the values that come out change according to the size of the windows. 

The proximity and distance of the distances between the arrays change the deltaG 

calculation and the probability of detecting the locations where hairpins may occur. 

When it takes the window interval small, it can do a much more detailed calculation, 

but it is likely to miss the corresponding sequences that may create hairpins. However, 

when it makes the window gap large, many possibilities are missed again because the 

area becomes larger. We thought that more than one range scan should be done for 

this.  

 

Figure 3. Synthetic sequences. 

 



29  

 

Figure 4. Synthetic sequences testing on RNAfold. Cannot find G-quadruplexes with 

test sequences with RNAFold. 

The algorithm splits the given array into parts and assigns points to the resulting 

windows based on their DeltaG values. In order to observe how the intervals change 

according to their size, we examined the window size selections in three ways, 30, 50 

and 90, and we obtained separate graphs for each window size. Trashold has changed 

constantly with window size. We created an average graph by dividing the window 

size value for each value in the profile. According to the graph obtained, based on the 

scores of the secondary structures that may occur regionally, the formation of hairpins, 

but the decrease in the scores when trashold is increased was observed. The graph 

gives us the average of 50 when window size 90 is selected, and the average of 30 

when 50 is selected. Where secondary structures are high tells us they can form 

hairpins. 
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Figure 5. Window size plots of profiles A) Window size :30 B) Window size : 50 C) 

Window size: 90 D) Display 3 window size plots together. 

 

While continuing with the Window approach, 2 questions arose. The first one 

is which trashold/window to choose and the other one is that the peaks that can be 

caught when the window size is kept small will take the average of each peak instead 

of giving a clear one as the window will take the average of the regions as you get 

bigger. If the same trashold is used, the areas to be selected will be different and the 

ends that can form G4 will not come close to each other when the hairpin is opened. 

Besides the advantages of both window size ranges, the lack of a common trashold has 

led to the abandonment of the window approach. We decided to look at the part from 

the beginning to the end of each hairpin to see if the ends converge in the window. The 

algorithm was able to find the scoring for each window size, so we thought converting 

it to scoring for each hairpin would help avoid any gaps in between. Using a new 

strategy, we aimed to improve the algorithmic detection of experimentally discovered 

G-fours. We tried to achieve this by finding a whole directory, which we call the layer 

approach, and determining the level by starting to count when the hairpin is formed by 

examining the directory one by one (when the brackets are opened). . Levels are 

created according to DeltaG values in each opened series, and the chance of finding 

G4 in each level changes. In addition to just performing RNA folding calculations, the 

user can specify the temperature range. In this way, you can scan according to temp 

and observe the formations in between. The files obtained according to Temp were 

combined into a single file for ease of analysis. The final output was then given to the 

Enhanced G4Catchall algorithm. Then, a comparison was made with the results 

obtained for both applications on Hg19 chr21, which has been experimentally proven 

to have G-quadruplex. As a result of this comparison, out of 4617 entries, G4Catchall 

detected 3553, while Enhanced G4Catchall detected 3677. However, the reason why 

the negatives cannot be viewed is that the RNAfold, which the algorithm uses as a 

parameter, is too long and cannot be read. Confusion Matrix interpretation was 

attempted by looking at the True Positive (TP) and False Negative (FN) values of both 

algorithms. 
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Table1. Confusion Matrix. 

 

 

When calculation is made for Recall(Sensitivity) from these values; 

From the TP/TP+FN ratio, it was found to be 0.76954 for G4Catchall, while 0.79640 

was observed for Enhanced G4Catchall. 

 

Table 2. Recall Calculation Analyses. ( TP/TP+FN) 
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CHAPTER 5: DISCUSSION 

 

The aim of this study is to predict G-quadruplexes that may occur on extreme 

loops and to develop the G-4Catchall algorithm. The G4Catchall algorithm is a tool 

that currently incorporates the innovation of considering atypical feature types and 

applying separate rules for shorter GQs. In this study, we wanted to consider extreme 

loops in addition to these features. Based on many web servers and algorithms 

developed on the estimation of G-quadruplexes, an algorithm was written using and 

changing the parameters of the RNAFold algorithm. 

Considering the previous studies, the probability that a hairpin structure will 

prefer to be G4 when opened may depend on its stability. The stability of the structure 

can be found by comparing it with the stability of G4. But here it is not easy to find 

the stability of the G4 while you can find the stability of the structure as DeltaG. 

Because it is not possible to predict which G4 will be based on. In this proposed 

solution, in order to compare the two, open G4s in the whole sequence can be detected 

and compared with the structure that is likely to form G4. 
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CHAPTER 6: CONCLUSION 

 

As confirmed by the literature, our study showed that it is reasonable to give a 

temperature range based on the results obtained, even if there is a low increase. The 

G4Catchall algorithm was already looking at Level 0 values. With this study, by giving 

the temperature range and looking at the openings that occur at other temperatures and 

levels other than Level 0, we can say that it is already difficult to find G-quadruplex 

and therefore there is no other alternative. 

More experimentally validated sequences are needed to better assess the 

accuracy of the algorithms. The study highlights the importance of the stability of 

extreme loops on G4 formation. We think that ongoing experiments and future studies 

may play a role in identifying potential G-quadruplex formation sequences and thereby 

enabling the advancement of many biological processes and therapeutic applications. 
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