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1. Introduction
Colon cancer is one of the most common cancer types 
worldwide and the second and third leading cause of cancer 
deaths for men and women, respectively. Approximately 
8% of cancer-related deaths in the world are associated 
with colon cancer (Schweiger et al., 2013). The molecular 
heterogeneity and complexity of this type of cancer make 
the prediction of the disease and potential treatments more 
difficult. To better characterize and resolve heterogeneity, 
researchers have focused on the subtyping of colon 
tumors. The Colorectal Cancer Subtyping Consortium 
(CRCSC) published a study in which CRC patients were 
stratified into 4 distinct Consensus Molecular Subtypes 
(CMS) and 1 unknown group in which patients had no 
CMS information (no label) (Guinney et al., 2015). 

For CMS subtyping, CRCSC developed the 
CMSclassifier algorithm, which uses hundreds of genes 
from all available genome data (Buechler et al., 2020). 
Subsequently, an R package called CMScaller was 
developed and published by Eide et al. (2017) that uses 
more than 500 genes from the genome data. However, 

before Buechler et al. published RNA-Seq and microarray 
data-based CMS subtyping (ColoType) with 40 genes 
(Buechler et al., 2020), there had been no specific RNA-
Seq-based CMS approach. The rationale for this study is 
that microarray and RNA sequencing technologies are 
inherently different, and both technologies have some 
shortcomings—as summarized in Eilertsen et al.’s study 
(2020)—such as inherent technical biases observed with 
microarrays related to cross-hybridization and limited 
dynamic range of expression (Wang et al., 2009). These 
shortcomings impact subtype distributions according 
to clinically relevant classification frameworks such as 
CMS. As long as the systematic biases are addressed 
(representation of short genes and genes with low 
expression levels), RNA-Seq is a reliable and preferred 
method for transcriptomic subtyping of colon cancer by 
whole transcriptome profiling (Wang et al., 2009). 

Studies show that cancer classification based on gene 
expression data has become an important part of modern 
medicine. Therefore, in this study, we applied support 
vector machines (SVMs) to classify CRC patients with 
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CMS status based on their gene expression levels. We 
mainly focused on RNA-Seq data that includes CMS 
information for each patient.

2. Materials and methods
2.1. Gene expression data and survival data
RNA-Seq data for the CRC patients were obtained from 
the TCGA database using the TCGAbiolinks package 
(Colaprico et al., 2016). We considered patients with 
primary tumor (PT) and solid tissue normal (STN). Among 
these patients, we selected those who were diagnosed 
with primary adenocarcinoma but who had not received 
therapy. We used disease-specific survival (DSS) data 
for the survival analysis; the survival data of the TCGA 
COAD samples was obtained from Liu et al. (2018). To 
identify the molecular subtype-specific prognostic genes 
in colon cancer, we downloaded and used the subtype 
information of TCGA COAD patients from synapse.org. 
After collecting the required information, we were left with 
29 patients in CMS1, 82 in CMS2, 27 in CMS3, and 58 in 
CMS4 (Table 1). We filtered the genes with very low or no 
expression using fragments per kilobase of transcript per 
million (FPKM) values. We filtered the genes with FPKM 
values below 0.5 in both PT and STN to avoid the systematic 
bias of RNA-Seq data on genes with low expression. After 
this filtering, 14,334 genes remained for further analysis. 
Following the filtering process, we used log-CPM(x+1) to 
normalize the raw counts to overcome any variations that 
might arise from experimental differences (Robinson and 
Oshlack, 2010; Jun et al., 2012; Ritchie et al., 2015).
2.2. Identification of subtype-specific prognostic genes 
for colon cancer using FCM
To identify subtype-specific prognostic genes, analyses 
were performed separately for each CRC molecular 
subtype. The FCM clustering algorithm was then applied to 
stratify patients into 2 clusters (groups) with membership 
degrees for each patient and cluster centers. The algorithm 
assigned each patient to one of the clusters with the 
maximum membership degree, which displays the degree 
of belonging to the corresponding cluster. A representative 
FCM clustering of the FOXJ1 gene for each subtype was 
depicted as a violin plot, as shown in Figure 1. 

The genes that could significantly be differentiated 
between the survivals of these 2 groups were chosen with 

a cutoff p-value of 0.01 using log2 expression values. By 
applying an FCM-based approach, we obtained 86 genes 
for CMS1, 148 genes for CMS2, 8 genes for CMS3, and 53 
genes for CMS4, all statistically significant (p < 0.01). After 
reducing the number of genes, we performed univariate 
Cox regression to obtain the most informative genes for 
further analysis. As a result of univariate Cox regression, 
we reduced the numbers to 6, 48, 2, and 25 for CMS1, 
CMS2, CMS3, and CMS4, respectively. It should be noted 
here that since we could not find any significant genes for 
CMS3 with a maximum p-value of 0.01, we considered the 
p-value cut-off to be 0.05 for the CMS3 group to have at 
least 1 gene for each molecular subtype.
2.3. Gene selection 
With the advent of next-generation sequencing, it is 
possible to detect tens of thousands of genes simultaneously, 
providing deep insight into cancer classification problems. 
The major challenge in classifying gene expression data is 
to extract disease/cancer-related information from a large 
amount of redundant information and noise. Therefore, 
obtaining significant information is a key step in classifying 
gene expression data.

Rather than starting with more than 20,000 genes and 
applying any feature selection methods, we began with the 
molecular subtype-specific prognostic genes identified 
in the previous section. These genes play a crucial role 
in colorectal cancer subtype classification. We searched 
for the gene list using a backward elimination method 
(Figure 2).
2.4. SVM classification
SVMs are kernel-based machine-learning algorithms 
developed by Vapnik (2000). They have been applied to 
numerous areas, such as pattern recognition, medicine, 
bioinformatics, biological studies, and other sciences. 

An SVM finds an ideal decision boundary called an 
ideal separation hyperplane to separate classes. The ideal 
decision boundary or hyperplane is determined according 
to the maximum margin principle. The algorithm locates 
the ideal hyperplane that maximizes the distance between 
classes. The vectors that define these hyperplanes are called 
support vectors.

If the classes are linearly separable, the SVM performs 
efficiently and splits the classes without an overlap. 
However, a perfect separation may not be observed in 

Table 1. Data description. Number of patients used for the training dataset and test dataset.

CMS1 CMS2 CMS3 CMS4 Total
Training set 28 82 27 58 195
Test set 125 49 9 18 101
Total 53 131 36 76 296
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many real-life data sets. In that case, the SVM searches for 
the hyperplane, which minimizes the classification error 
rate and maximizes the margin (Bishop, 2006). If the data 
is linearly nonseparable, the SVM uses kernel functions 
(i.e. linear, nonlinear sigmoid functions) and radial basis 
kernels to convert nonseparable data into a linearly 
separable data form.

Cancer classification based on gene expression data 
has become an important part of modern medicine, 
providing an objective and accurate diagnosis of different 
types of cancers/diseases. A number of machine learning 
approaches, e.g., SVMs, random forest, and k-nearest 
neighbor, have been applied to gene expression data 
classification. However, these approaches pose challenges 
since patient tumors are not classified through gene 
expression but via pathological information in the clinical 
setting. This shows that there is a gap in the literature in 
terms of cancer classification at the gene expression level. 
Colon cancer is a type of cancer that requires further 
investigation. Therefore, in this study, we applied the SVM 

algorithm to the classification of colorectal cancer patients, 
as it is one of the most powerful supervised learning 
algorithms. The SVM is performed using the “e1071” 
package in R with a radial basis kernel and 10-fold cross-
validation to optimize the model parameter.
2.5. Performance evaluation metrics
The class-specific performances were calculated according 
to the precision, sensitivity, specificity, false discovery rate 
(FDR), and balanced accuracy, defined as follows: 

Precision = TP
TP + FP

Sensitivity = TP
TP + FN 

Specificity = TN
TP + FN

FDR = FP
FP + TP

Balanced accuracy = sensitivity + specificity
2   
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Figure 1. FCM clustering. Stratification using FCM, where C1 and C2 are cluster centers for cluster I and II, respectively; points in the 
same cluster are similar, and points that overlap are assigned to one of the clusters with respect to the maximum membership degrees.
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Precision = TP
TP + FP

Sensitivity = TP
TP + FN 

Specificity = TN
TP + FN

FDR = FP
FP + TP

Balanced accuracy = sensitivity + specificity
2   

 

CER = # of misclassified patients
# of patients in the test set 

 

 ,

where TP represents true positives, FP represents false 
positives, TN is true negatives, and FN is false negatives. 
Overall performance is measured by the classification 
error rate (CER), shown below:

Precision = TP
TP + FP

Sensitivity = TP
TP + FN 

Specificity = TN
TP + FN

FDR = FP
FP + TP

Balanced accuracy = sensitivity + specificity
2   

 

CER = # of misclassified patients
# of patients in the test set 

 
2.6. Statistical analysis 
Statistical analyses were performed using R language 
(v.4.0.2). Kaplan–Meier and log-rank tests were performed 
to assess survival differences between clusters and risk 
groups. Univariate Cox regression analysis was performed 

using “survival” and “survminer” packages in R; p-values 
below 0.01 were considered statistically significant for all 
comparisons except for CMS3 subtype-specific prognostic 
genes, as previously described.

3. Results 
We considered the discovery set used in identifying the 
subtype-specific prognostic genes as the training set and 
the test set as the TCGA COAD data not included in the 
training set. The CMS clinical information of all patients 
(training and test sets) was downloaded from synapse.
org. The training set (66% of the dataset) was used to train 
the SVM classification model, and the test set (34% of the 
dataset) was used to measure the CER.

The results show that when we used 25 genes, we 
reached the minimum CER, which is 0.0396 (Figure 3). 

Figure 2. Flowchart of the study’s method. Identification of prognostic genes and backward elimination algorithm for gene 
selection to classify CRC patients. ER: error rate; G: the gene set.
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Moreover, the subtype-specific statistics are given in terms 
of precision, specificity, sensitivity, FDR, and balanced 
accuracy (Table 2). We observed that CMS3 has the 
smallest sensitivity but the highest specificity, and the 
other subtypes (CMS1, CMS2, and CMS4) not only have 
high sensitivity but also high specificity for the 25-gene 
list.

4. Discussion
In this study, we discovered 2 gene lists for colon cancer 
classification with minimum CERs. The SVM is a kernel-
based algorithm and one of the most widely applied 
classification algorithms in bioinformatics due to its high 
accuracy (Zhi et al., 2018). This is the first study to classify 
TCGA COAD patients using a new pipeline that involves 
identifying survival-associated genes and applying SVMs 
with backward elimination. Utilizing this novel method, 
we aimed to improve classification accuracy and identify 
potential prognostic biomarkers for colon cancer. 

Molecular mechanisms have become increasingly 
important in the development of CRC. By combining 
molecular mechanisms with machine learning, we can 
deepen our understanding of what causes CRC and 
potentially find new treatment methods. Zhou et al. (2022) 
discovered prognostic markers for CRC by constructing 

molecular subtypes. The authors used different clustering 
methodologies to find markers that predict survival. Our 
approach differs from theirs because we used consensus 
subtypes and identified subtype-specific markers that 
predict survival. More precisely, we applied FCM 
clustering to identify 2 distinct groups with significantly 
differing survival characteristics.

CMSs of colorectal cancer patients are determined 
by molecular tumor pathologic information. Although 
patient treatment modalities for colon cancer today are 
prescribed by tumor staging, very few tools have been 
used to guide clinical decisions until now (Ågesen et al., 
2012; Sveen et al., 2012; Shinto et al., 2020) Buechler et al. 
(2020) developed the 40-gene ColoType risk score model 
for CRC patient classification with an 88% performance in 
TCGA-COAD RNA-Seq data. To compare our results with 
that study, we used the 40 genes reported in their study 
in our training and test sets using the SVM classification 
algorithm. The error rate was measured as 0.13 when the 
40 genes were used with our test set. 

It is important to note that this study is specific to 
CRC RNA-Seq data with additional CMS information—
that is, patients without CMS information were excluded. 
Thus, our approach is limited only to publicly available 
TCGA COAD data. We tested a single cohort; therefore, 

 

Genes CER 
CBFA2T3, TOX, COL1A1, CTHRC1, CXCL10, DTNA, EGFL6, JAM2, CETP, 
LY6G6D, MMP11, NPFFR1, PEG10, SGCG, POU5F1B, RNF125, RNF43, 
SHROOM4, SPIB, TGFBI, TMEM88, TPH1, ZC3HAV1L, FOXQ1, CD7 

0.0396 

 

 
Figure 3. Performance analysis using 25 genes. Classification performances of each 
CMS in terms of sensitivity, specificity, and false discovery rate. Overall performance 
is given in terms of classification error rate, which is the ratio of misclassified patients 
over all patients in the test set. 
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other cohorts with CMS information could be further 
investigated. 

In order to identify CMS-specific genes, we considered 
patients who had primary adenocarcinoma and had 
received no prior treatment. We selected patients with 
DSS clinical information presented in Liu et al.’s study 
(2018) and whose DSS was more specific than “overall 
survival’’ (OS).  Due to the low number of CMS3 patients 
in the TCGA COAD study and as our patient selection 
criteria further limited the number of patients in each 
molecular subtype, the patient number in the CMS3 
group was relatively low (36). The reliability of this study 
could be further improved by using and combining more 
RNA-Seq gene expression data and patients’ CMS subtype 
information. 

5. Conclusion
We identified a gene list for precise colon cancer 
classification, minimizing classification errors. Our results 
show the lowest sensitivity but the highest specificity when 
using CMS3-associated genes. This discovery is significant 
due to the limited number of patients in this clinical 
subgroup.
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Table 2. Classification performance. 25 genes were used, leading to a minimal classification error rate.

Precision Sensitivity Specificity FDR Balanced
accuracy

CMS1 1.0000 0.9600 1.0000 0.0000 0.9800
CMS2 0.9796 0.9796 0.9800 0.0204 0.9798
CMS3 1.0000 0.7778 1.0000 0.0000 0.8889
CMS4 0.8571 1.0000 0.9634 0.1429 0.9817
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