
ENHANCING MUTATION TESTING: SEARCH-BASED
OPTIMIZATION TO IMPROVE TESTING QUALITY

SERHAT UZUNBAYIR

Thesis for Ph.D. Program in Computer Engineering

Graduate School

Izmir University of Economics

İzmir

2024

ENHANCING MUTATION TESTING: SEARCH-BASED
OPTIMIZATION TO IMPROVE TESTING QUALITY

SERHAT UZUNBAYIR

THESIS ADVISOR: ASST. PROF. DR. KAAN KURTEL

A Ph.D Thesis

Submitted to

the Graduate School of Izmir University of Economics

the Department of Engineering

İzmir

2024

csucularli
Rectangle

ABSTRACT

ENHANCING MUTATION TESTING: SEARCH-BASED OPTIMIZATION TO

IMPROVE TESTING QUALITY

Uzunbayır, Serhat

Ph.D. Program in Computer Engineering

Advisor: Asst. Prof. Dr. Kaan KURTEL

January, 2024

Software testing is a crucial phase in the software development lifecycle. Without

thorough testing activities, the product may be ineffective or unreliable. Because any

changes in the source code require the re-execution of test suites, it is important that

the code coverage aligns with the requirements of the project. Mutation testing, a fault-

oriented white-box unit testing technique, is the process that enables the evaluation of

the quality of test suites and identify weaknesses in test procedures. Although effective,

the application of mutation testing faces a range of challenges: high costs, the presence

of equivalent mutants, and the redundancies in test suites. This study therefore

aims to explore the progress of mutation testing and its position within software

engineering, tracing its evolution from classic methodologies to the integration of

iv

artificial intelligence and innovative search-based hybrid techniques. This involves

delving into the traditional principles of mutation testing, its problems, providing an

in-depth analysis of mutation testing tools, particularly for C#, and evaluating their

functionalities. This leads into the introduction of a novel hybrid method, combining

two meta-heuristics: genetic algorithms and ant colony optimization, the aim of which

is to optimize the test suite reduction problem in search-based mutation testing. The

problem of equivalent mutants is also addressed by utilizing genetic algorithms to

enhance the efficiency of higher-order mutation testing. Consequently, this research

contributes to mutation testing in solving problems mentioned above. It proposes

innovative approaches that integrate advanced computational techniques, and thus

paving the way for more effective software quality assurance practices.

Keywords: software testing, mutation testing, search-based mutation, genetic algo-

rithms, ant colony optimization, meta-heuristics.

v

ÖZET

MUTASYON TESTİNİ GELİŞTİRME: TEST KALİTESİNİN İYİLEŞTİRİLMESİ

İÇİN ARAMA TABANLI OPTİMİZASYON

Uzunbayır, Serhat

Bilgisayar Mühendisliği Doktora Programı

Tez Danışmanı: Dr. Kaan KURTEL

Ocak, 2024

Yazılım testi, yazılım geliştirme yaşam döngüsünün önemli bir aşamasıdır. Kap-

samlı test faaliyetleri olmadan ortaya çıkan ürün kullanışsız veya güvenilmezdir. Kay-

nak kodundaki değişiklikler test paketlerinin yeniden yürütülmesini gerektirdiği için,

kod kapsamı projenin gereksinimleriyle uyumlu olmalıdır. Hata odaklı bir şeffaf kutu

birim test tekniği olan mutasyon testi, test paketlerinin kalitesinin değerlendirilmesi

ve test prosedürlerindeki zayıflıkların belirlenmesi için kullanılır. Mutasyon testinin

uygulanması her ne kadar etkili olsa da, yüksek maliyetler, eşdeğer mutantların varlığı

ve test paketlerindeki test fazlalıkları nedenlerinden dolayı uygulamada zorluklar

göstermektedir. Bu çalışmada, yazılım mühendisliğinde mutasyon testi araştırılmış,

klasik metodolojilerden yapay zeka ve yenilikçi hibrit tekniklerin entegrasyonuna

vi

kadar gelişiminin izini sürülmüştür. Mutasyon testinin geleneksel ilkeleri ve problem-

leri incelenmiş ve C# programlama dili için mutasyon test araçlarının derinlemesine

analizi yapılmıştır. Test grubu azaltma problemini optimize etmek için iki metasezgisel

yöntemi (genetik algoritmalar ve karınca kolonisi optimizasyonu) birleştiren arama ta-

banlı mutaston testi için yeni bir hibrit yöntem sunulmuştur. Eşdeğer mutantlar sorunu,

daha üst düzey mutasyon testlerinin verimliliğini artırmak için genetik algoritmalar

kullanılarak ele alınmıştır. Sonuç olarak bu çalışma, test kalitesinin iyileştirilmesi için

mutasyon testine katkı sağlamaktadır. Gelişmiş hesaplama tekniklerini entegre eden,

böylece daha etkili, verimli ve gelişmiş yazılım kalite güvence uygulamalarının önünü

açan yaklaşımlar önermiştir.

Anahtar Kelimeler: yazılım testi, mutasyon testi, arama tabanlı mutasyon, genetik

algoritmalar, karınca koloni optimizasyonu, metasezgiseller.

vii

This thesis work is dedicated to my precious wife Cemre...

viii

ACKNOWLEDGEMENT

I would like to express my sincere gratitude to my supervisor, Asst. Prof. Dr. Kaan

KURTEL, for his unwavering support, guidance, and patience throughout my research.

His insightful feedback and constructive criticism have been invaluable in shaping the

direction of this thesis.

I would like to thank my committee members, Prof. Dr. Şaban EREN and Prof. Dr.

Hüseyin AKCAN, for their time and expertise in reviewing and providing feedback on

my work. I would like to thank Prof. Dr. Cem EVRENDİLEK and Asst. Prof. Dr.

Serap ŞAHİN for their valuable ideas, contributions, and feedback during my thesis

committee meetings. I would like to extend my special thanks to Assoc. Prof. Dr.

Senem KUMOVA METİN, Assoc. Prof. Dr. Kaya OĞUZ, and Assoc. Prof. Dr.

Zeynep Nihan BERBERLER for their belief in my ability to complete this study. They

were consistently supportive and available to help whenever I needed them.

I would like to express my heartfelt thanks to my beloved wife, Cemre UZUN-

BAYIR, who inspires me to become a better person every day. Her unwavering support

has been my guiding light; she never gave up on me, even in my lowest moments. Her

strength and patience have been my rock, and without her, I would be truly lost. Her

love and belief in me have made all the difference in my journey, and for that, I am

eternally grateful.

I would like to express my deepest gratitude to Dr. Erenus YILDIZ, whose

guidance, contributions, and support have been invaluable, particularly during the

most challenging times. His wisdom and encouragement have been fundamental to

my progress.

I am also immensely grateful to Dr. Erdem OKUR, a constant source of support

and motivation. He was always there when I felt lost, pushing me to take decisive

action and inspiring me to move forward with confidence.

Additionally, my sincere thanks go to my colleagues Çınar GEDİZLİOĞLU, Melek

Büşra TEMUÇİN, Duygu GEÇKİN, and Hande AKA UYMAZ. Their unwavering

encouragement and support have been pivotal to my research activities.

ix

Finally, I would like to thank to my parents Gül UZUNBAYIR, Ömer UZUN-

BAYIR, and my sister Gülşah UZUNBAYIR for their love and endless support. Also

my friends, especially Levent Tolga EREN, for their support and encouragement

throughout this journey. Their unwavering faith in me has been a constant source

of motivation and inspiration.

Thank you all for your contributions to this work.

x

TABLE OF CONTENTS

ABSTRACT ... iv

ÖZET ... vi

DEDICATION .. viii

ACKNOWLEDGEMENT ... ix

TABLE OF CONTENTS... xi

LIST OF TABLES ... xv

LIST OF FIGURES ... xvii

LIST OF ABBREVIATIONS ...xviii

CHAPTER 1: INTRODUCTION .. 1

1.1. Thesis Statement ... 1

1.2. What is Mutation Testing? ... 1

1.3. Problems of Mutation Testing ... 4

1.4. Research Questions.. 6

1.5. Contributions ... 7

1.6. Organization of the Thesis ... 8

1.7. List of Publications .. 9

CHAPTER 2: PRELIMINARIES AND RELATED WORK............................ 11

2.1. Fundamental Principles of Mutation Testing 11

2.2. Mutation Analysis.. 12

2.2.1. Mutation Process .. 12

2.2.2. Cost of Mutations .. 17

2.3. Cost Reduction Techniques Literature Review 18

2.3.1. Computational Cost Reduction Techniques 19

2.3.2. Manual Cost Reduction .. 31

2.4. Challenges and Current Trends for Mutation Testing 37

2.4.1. Challenges and Interests of Mutation Testing......................... 37

2.4.2. A Hot Topic: Artificial Intelligence Supported Mutation Testing 39

2.4.3. State of the Art Models for Mutation Testing Using AI 49

xi

2.5. Conclusion... 50

CHAPTER 3: AN ANALYSIS ON MUTATION TESTING TOOLS 51

3.1. Mutation Testing Tools for Different Programming Languages 51

3.2. Mutation Operators for C# .. 53

3.3. Mutation Testing Tools for C# .. 55

3.3.1. Nester ... 55

3.3.2. Stryker .. 55

3.3.3. NinjaTurtles ... 57

3.3.4. VisualMutator .. 57

3.3.5. PexMutator .. 58

3.3.6. CREAM .. 58

3.4. An Analysis of Mutation Tools for C# Based On Tool Characteristics.... 59

3.5. A Case Study: Cross-Evaluation of the Tools 61

3.5.1. Methodology .. 62

3.5.2. Research Questions ... 62

3.5.3. Subject Programs .. 63

3.5.4. Results .. 63

3.6. Conclusion... 67

CHAPTER 4: EVOCOLONY: A HYBRID APPROACH 69

4.1. Search-Based Mutation Testing... 69

4.2. Test Case Reduction Problem ... 72

4.3. Genetic Algorithms .. 76

4.4. Ant Colony Optimization ... 78

4.5. Methodology .. 81

4.5.1. Research Questions ... 81

4.5.2. EvoColony: A Hybrid Approach to Search-Based Mutation

Testing ... 81

4.6. Experimental Design .. 87

4.6.1. Test Environment... 87

4.6.2. Test Data ... 89

4.6.3. Benchmark Algorithms ... 89

xii

4.6.4. Results and Evaluation ... 90

4.7. Conclusion... 99

CHAPTER 5: LEVERAGING MUTANTS IN HIGHER-ORDER.................... 100

5.1. First-Order and Equivalent Mutants .. 100

5.2. Higher-Order Mutation Testing .. 101

5.3. Methodology .. 103

5.3.1. A Genetic Algorithm for Higher-Order Mutant Generation....... 104

5.3.2. A Random Search Algorithm for Higher-Order Mutant Gener-

ation ... 110

5.3.3. Research Questions ... 111

5.4. Experimental Design .. 111

5.4.1. Test Environment... 112

5.4.2. Subject Programs .. 113

5.4.3. Genetic Algorithm Parameter Settings 114

5.5. Results .. 115

5.6. Conclusion... 117

CHAPTER 6: CONCLUSION ... 119

6.1. Summary ... 119

6.2. Future Work ... 120

6.3. Final Remarks .. 121

REFERENCES ... 134

CURRICULUM VITAE.. 135

xiii

LIST OF TABLES

Table 1. An original program and its mutant.. 13

Table 2. Mutation testing results of the example. .. 17

Table 3. An example of higher-order mutation. .. 23

Table 4. An example of equivalence mutation. .. 31

Table 5. Mutation testing tools. .. 52

Table 6. Some traditional mutation operators (Jia and Harman, 2010). 53

Table 7. Some mutation operators for C# (Derezińska, 2006). 54

Table 8. Feature comparison of mutation testing tools for C#. 60

Table 9. Subject programs for the case study. .. 63

Table 10. NinjaTurtles vs. other tools. ... 64

Table 11. Stryker vs. other tools. .. 64

Table 12. Nester vs. other tools. ... 64

Table 13. VisualMutator vs. other tools.. 65

Table 14. PexMutator vs. other tools. .. 65

Table 15. Relative test suite evaluation... 65

Table 16. Average results for mutation score ... 66

Table 17. Average results for disjoint mutant sets. .. 66

Table 18. Reference mutant set. ... 67

Table 19. Tool rankings. ... 67

Table 20. Subject programs details.. 89

Table 21. Genetic and ant colony parameters of EvoColony............................ 91

Table 22. EvoColony results. ... 92

Table 23. Comparative test results. ... 93

Table 24. An original program and its first-order mutant. 101

Table 25. An original program and its an equivalent mutant. 101

Table 26. Original program and its higher-order mutant................................. 102

Table 27. Subject programs. .. 114

Table 28. Ratio of generated equivalent mutants. ... 116

xiv

Table 29. Execution cost of different selection strategies................................ 116

Table 30. Percentage of the generated higher-order mutants from each mutation

order. ... 117

xv

LIST OF FIGURES

Figure 1. The place of mutation testing in software development..................... 3

Figure 2. Thesis structure and preparation process. 9

Figure 3. Traditional mutation process. ... 13

Figure 4. Mutation testing cost reduction techniques. 20

Figure 5. Compiler-based run-time optimization.. 29

Figure 6. Compiler-integrated run-time optimization. 29

Figure 7. Mutant schemata run-time optimization. 30

Figure 8. Byte-code translation run-time optimization. 30

Figure 9. Utilizing AI in mutation testing... 41

Figure 10. Meta-heuristic optimization algorithms categorization with examples.. 71

Figure 11. Test suite reduction process. ... 72

Figure 12. Test case reduction using detection matrix. 74

Figure 13. Test case reduction using detection matrix (cont’d).......................... 75

Figure 14. Traditional genetic algorithm steps. ... 78

Figure 15. Traditional ant colony algorithm steps. ... 80

Figure 16. The EvoColony algorithm steps. ... 85

Figure 17. Test data setup... 88

Figure 18. Reduced rest suite size comparison. ... 94

Figure 19. Run-time performance comparison for BubbleSort. 95

Figure 20. Run-time performance comparison for Calendar. 96

Figure 21. Run-time performance comparison for TriangleType. 96

Figure 22. Run-time performance comparison for ArrayOperations. 96

Figure 23. Run-time performance comparison for TemperatureConverter. 97

Figure 24. Run-time performance comparison for QuadraticSolver. 97

Figure 25. Run-time performance comparison for HashTable. 97

Figure 26. Run-time performance comparison for BinarySearch. 98

Figure 27. Run-time performance comparison for BankAccount. 98

Figure 28. Run-time performance comparison for AutoDoor............................ 98

xvi

Figure 29. Flow chart of the proposed genetic algorithm. 109

Figure 30. Test environment to create first-order mutants. 112

Figure 31. Experiment details to create higher-order mutants. 113

xvii

LIST OF ABBREVIATIONS

ACO : Ant Colony Optimization

AI : Artificial Intelligence

ANN : Artificial Neural Networks

CI/CD : Continuous Integration & Continuous Delivery

CISQ : Information and Software Quality Consortium

CNN : Convolutional Neural Network

DL : Deep Learning

EC : Evolutionary Computation

GA : Genetic Algorithm

GA-SP : Genetic Algorithm Single-Point Crossover

GA-DP : Genetic Algorithm Double-Point Crossover

GCN : Graph Convolutional Network

HTML : Hypertext Mark-up Language

JSON : JavaScript Object Notation

KLOC : Thousands of Lines of Code

LINQ : Language Integrated Query

LOC : Lines of Code

ML : Machine Learning

MLP : Multilayer Perceptron

NSGA-II : Non-Dominated Sorting Genetic Algorithm II

RS : Random Search

RQ : Research Question

SDLC : Software Development Life Cycle

SHOM : Strong Higher-Order Mutant

SOTA : State of the Art

TDD : Test Driven Development

XML : Extensible Markup Language

xviii

CHAPTER 1: INTRODUCTION

1.1. Thesis Statement

The objective of this thesis is to enhance the effectiveness and applicability of

mutation testing. The study seeks to optimize mutation testing methodologies by

focusing on three key areas: evaluating mutation testing tools for C#, reducing the

number of test cases in a test suite using two meta-heuristic approaches in search-

based mutation testing, and employing genetic algorithms for higher-order mutation

testing to deal with equivalent mutants.

1.2. What is Mutation Testing?

In the software development lifecycle, testing emerges as a pivotal stage for

evaluating software quality. It is a strategic process integral to the development

and maintenance of reliable products. The objective of software testing is not to

demonstrate that a system is free of errors, but rather to identify and reveal faults within

the system. To do that, various testing strategies both manual to automated methods,

are employed in software testing. Currently, there is a noticeable shift towards

automation in testing activities (Adams and McIntosh, 2016), which consequently

increases the overall costs. Statista reported that in its fiscal year of 2023, Apple

Inc. invested an unprecedented 29.92 billion U.S. dollars in research and development,

which include testing, marking an increase of approximately 3.5 billion dollars over

the previous year (Laricchia, 2023). Furthermore, another report in 2022 emphasized

that according to the Information and Software Quality Consortium (CISQ), the annual

cost of poor software quality in the United States grown to be no less than $2.41 trillion

(Krasner, 2022). Consequently, the volume of testing activities has also increased. A

Google report indicates that on an average day, there are approximately 13K projects,

800K builds, and 150 million tests conducted (Memon et al., 2017). These real-world

phenomena demonstrate that software testing is crucial and represents a significant

financial investment involved in ensuring software quality.

1

The widespread adoption of software products, compounded by the expanding list

of functional requirements and specifications, presents a major challenge in the process

of thorough testing. Traditional methods such as exhaustive testing, which attempts to

cover all possible data combinations, are becoming increasingly impractical due to the

endless expansion in the number of potential test inputs. This has led to the adoption of

more sophisticated testing strategies, such as code coverage criteria such as condition,

branch and statement coverage, which are essential in assessing the confidence level of

a software system. Nonetheless, achieving 100% code coverage is a demanding task,

requiring significant computational resources as well as considerable human effort.

This situation arises for three main reasons: firstly, certain requirements have different

coverage criteria; secondly, the test case generation process cannot be fully automated,

and finally, there are some test cases that require human involvement (Kintis, 2016).

Mutation testing, a type of fault-based white-box testing first introduced in the

late 1970s, has gained an importance for its effectiveness in identifying faults and

improving test suite quality. Figure 1 depicts the position of mutation testing in

the scope of software development. This method involves mutation analysis which

modifies the original program code through a set of predefined mutation operators,

and creates an environment that mimics potential programmer errors. At the end of

this procedure, a unique metric, the mutation adequacy score, is calculated to measure

its effectiveness. In an empirical study conducted by Chekam et al. (2017), mutation

testing was compared with statement and branch coverage, leading to the conclusion

that mutation testing was the more effective of the two in detecting faults within a test

suite. Additionally, Chen et al. (2020) explored how the size of the test set affects its

efficacy and suggested a method for controlling test size during the evaluation of test

adequacy. These findings highlight the necessity of minimizing the test suite size while

maintaining its effectiveness.

Mutation analysis has long been a focus in software engineering research (Usaola

and Mateo, 2010), and has found application in various industry projects (Jia and

Harman, 2010; Papadakis et al., 2019). Large companies, including Google and

Facebook, are investigating the application of mutation testing to their products, as

evidenced by studies such as Petrović et al. (2021), and Beller et al. (2021). However,

2

SDLC

Requirement
Analysis

Design

Implementation

Deployment

Testing

Contains

White-Box
Testing

Black-Box
Testing

Contains

Unit
Testing

Integration
Testing

Mutation
Testing

Execution
Testing

Operations
Testing

Contains

Planning

Figure 1. The place of mutation testing in software development.

such analysis is costly, complex, and time-consuming, due to the needs for high

computational resources, stemming from the large number of mutants. Therefore, this

field faces a wide range of testing challenges. These include, assessing the quality of

test suites (Nayyar et al., 2015), reducing the number of test cases (Noemmer and Haas,

2020; Palomo-Lozano et al., 2018), identifying faults within programs (Papadakis and

Le Traon, 2014; Pearson et al., 2017), comparing test coverage criteria (Andrews et al.,

2006), and automating mutation processes with comparative studies in widely-used

programming languages such as Java (Kintis et al., 2018) and C# (Uzunbayir and

Kurtel, 2019).

In recent years, the field of mutation testing has witnessed a drastic shift with the

integration of artificial intelligence and meta-heuristic optimization techniques such

3

as genetic algorithms and ant colony optimization (Lima and Vergilio, 2018). This

type of an approach is called search-based mutation testing and has the potential to

automate and improve the testing process, particularly in object-oriented programming

languages. Although mutation testing is an effective method for detecting faults in test

suites, its widespread adoption has been hindered by its time-consuming and complex

nature. This study, therefore, underscores the importance of mutation testing in modern

software development but also aims to contribute to the field by exploring mutation

testing tools and search-based methodologies. More details about mutation testing,

principles, procedures, cost reduction techniques, and existing studies are discussed in

Chapter 2.

1.3. Problems of Mutation Testing

There are many problems in the field of mutation testing. Below is a listing

and brief summary of many open problems in the area of mutation testing based

on the nature of the approach and recent academic activities. Some problems have

been intensively studied in the last decade (Papadakis et al., 2019; Jia and Harman,

2010), whereas others have emerged more recently (Örgård, 2022; Panichella and

Liem, 2021). The equivalent mutant problem is the most common, along with test

case reduction and higher-order mutation. However, for all of these, there is a lack of

efficient solutions and more work is needed to clarify the principles and standardize

the techniques for all types of mutation analysis.

1. Higher-Order Mutation: First-order mutation research has been limited since

there is no clear theoretical basis for the value of mutants. Higher-order

mutation produces better mutants; however, most of these are still equivalent.

Generation of more valuable mutants with higher-order mutations remains a goal

of research.

2. Equivalent Mutant Problem: One of the main problems of mutation analysis

is detection and reduction of equivalent mutants. There are many techniques to

deal with the problem; however, none can solve it efficiently, and the problem is

still unresolved.

4

3. Test Case Reduction for Mutation Testing: Test case reduction in mutation

testing is a process aimed at minimizing the number of test cases while

maintaining or even enhancing the effectiveness of the test suite. This concept

is crucial in mutation testing due to the often excessive number of mutants

generated, which can make the testing process resource-intensive and time-

consuming. Reducing the number of test cases can lead to more efficient testing

processes without compromising the quality of the software being tested.

4. AI Supported Mutation Testing: Following recent trends and advances in AI

areas such as artificial neural networks, machine learning, and deep learning,

mutation testing problems tend to show more meaningful results, as problems

can now be resolved with AI support.

5. Search-Based Mutation Testing: Using meta-heuristic optimization techniques

such as ant colony optimization, particle swarm optimization, and others in the

context of mutation testing, defining fitness functions, test data generation, and

introducing mutation operators create a potential research area to be further

explored.

6. Mutation Tools Comparison and Development: Comparative studies for the

existing mutation testing tools are limited to a few programming languages.

Additionally, many new programming languages lack their own mutation testing

tools, and existing tools still need some adjustments, updates, or improvements,

especially considering equivalent mutants.

7. Continuous Mutation Testing: The use of continuous mutation testing can

help ensure that software remains robust and reliable as it evolves over time.

This involves automatically running mutation tests as part of the software

development pipeline. This methodology is particularly relevant in the context

of agile development and DevOps practices.

8. Model-Based Mutation Testing: Model-based mutation that uses state ma-

chines or graph-based models has not been studied well over the last years.

5

Developing efficient and scalable tools in this area could improve testing

strategies, particularly for complex, state-dependent systems.

Combining two or more approaches may also improve the overall outcome, such

as combining search-based mutation testing with higher-order mutations or exploring

equivalent mutant issues in the model-based mutation. The use of mutation testing

can improve the effectiveness of software tests, but it is important to approach it with

careful consideration and planning to overcome the challenges involved to produce

more meaningful results.

1.4. Research Questions

This research seeks to explore the domain of mutation testing in greater depth. Our

investigation is driven by a selection of the problems or their combinations listed in

Section 1.3. Therefore, we ask the following four key research questions:

• RQ1: What are the existing studies, prevailing trends, challenges, and advance-

ments in the field of mutation testing as observed in recent academic and industry

practices? (All problems)

• RQ2: How can existing mutation testing tools for C# be compared in terms of

their features and effectiveness? (Problem 6)

• RQ3: How can the number of test cases in a test suite be reduced, and how can

this process be enhanced using meta-heuristic methods in search-based mutation

testing? (Problem 3 and 5)

• RQ4: How does the implementation of genetic algorithms as a search strategy

in higher-order mutation testing impact the efficiency of generating high-

quality mutants, particularly in reducing the production of equivalent high-order

mutants? (Problem 1, 2, and 5)

These questions aim to investigate mutation testing tools and propose practical

applications of search-based techniques for mutation testing in software engineering.

By addressing these questions, we aim to contribute to the improvement of testing

quality.

6

1.5. Contributions

This thesis makes several significant contributions to the field of mutation testing:

• Addressing RQ1: A comprehensive review of the literature is conducted.

This review updates the existing literature by examining and categorizing the

latest developments in AI related to mutation testing, alongside the associated

challenges and interests. Such an approach lays a solid foundation for this thesis.

The identification of existing research gaps contextualizes the present study and

also contributes to the broader academic discourse by outlining potential areas

for future investigation.

• Addressing RQ2: An extensive evaluation of the most popular mutation

testing tools for C# has been carried out. Since the existing literature lacks

such a study specifically for C#, this analysis stands out in its thoroughness,

comparing features, capabilities, and limitations of these tools. The findings are

further evaluated by a case study. This contribution holds significant value for

practitioners and researchers seeking the most effective tools for mutation testing

in C# environments.

• Addressing RQ3: A novel hybrid approach, called “EvoColony”, combining

two search-based techniques for test case reduction, is proposed. This approach

shows an innovative design and implementation. The comparative analysis of

this methodology against four traditional approaches demonstrates its effective-

ness to both the theoretical and practical aspects of mutation testing.

• Addressing RQ4: A comparative study for genetic algorithms is presented,

designed to improve the efficiency and effectiveness of higher-order mutation

testing. The empirical results were obtained using four different selection

methods, and these provide new insights into the optimization of mutation testing

processes. This aspect particularly contribute to advancing the use of meta-

heuristics in search-based higher-order mutation testing.

7

1.6. Organization of the Thesis

This research is divided into six chapters. To provide a clear understanding of how

we prepared this thesis, we have presented the process in the form of a system sequence

diagram, as shown in Figure 2. The organization of the thesis is outlined below:

• Chapter 1 provides an introduction of the research topic, its significance in the

field of software engineering, describes the context for mutation testing, states

contributions, presents the organization of the thesis, and lists the publications

from this study.

• Chapter 2 discusses the foundational concepts relevant to mutation testing,

and reviews existing literature to situate the current research within the field

including latest trends, areas of interests, in particular, the innovations using sub-

fields of artificial intelligence such as evolutionary computation and machine

learning.

• Chapter 3 presents existing mutation testing tools, including a detailed analysis

of mutation testing tools for C#, comparing their features, capabilities, and

limitations, and presents a case study for evaluation.

• Chapter 4 introduces and elaborates on “EvoColony”, a novel hybrid approach

proposed in this research for test case reduction using search-based mutation

testing. The focus is on the description of the approach, its design, implementa-

tion, and effectiveness in mutation testing through a comparative analysis with

four traditional approaches.

• Chapter 5 explores the application of genetic algorithms in enhancing the

efficiency and effectiveness of higher-order mutation testing for equivalent

mutant reduction, presenting empirical results using four different selection

methods.

• Chapter 6 summarizes the key findings of the current research, discusses the

implications, highlights the contributions to the field, and suggests directions for

future research.

8

:Mutation
Testing :Tools :Thesis:Test Case

Reduction
:Equivalent

Mutants

Review

Problems

Chapter 2:
Related Work

Find Tools

Tools For C#

Analyze Test Case Reduction

Results

Analyze Equivalent Mutants

Results

Chapter 5:
Leverage

Higher Order
Mutation

Finalize

:Publication

Prepare Article

Prepare Article
Chapter 3:

Tool Analysis

Prepare Article
Chapter 4:
EvoColony

Prepare Article

Figure 2. Thesis structure and preparation process.

1.7. List of Publications

The results presented in this thesis have been published, accepted, or are to be

published in the conferences or journals specified in below:

1. Uzunbayir S. and Kurtel K.: An Analysis on Mutation Testing Tools for

C# Programming Language, 2019 4th International Conference on Computer

Science and Engineering, published in September 11, 2019. (Chapter 3)

2. Uzunbayir S. and Kurtel K.: EvoColony: A Hybrid Approach to Search-

Based Mutation Test Suite Reduction Using Genetic Algorithm and Ant Colony

Optimization, International Journal of Intelligent Systems and Applications in

Engineering, Vol. 12, No. 1, published in December 25, 2023. (Chapter 4)

3. Uzunbayir S. and Kurtel K.: Leveraging Genetic Algorithms for Efficient

Search-Based Higher-Order Mutation Testing, Computing and Informatics, Vol.

43, No. 3, accepted in December 19, 2023. (Chapter 5)

9

4. Uzunbayir S. and Kurtel K.: Mutation Testing Reinvented: How Artificial

Intelligence Complements Classic Testing Methods, to be published in 2024.

(Chapter 2)

In addition to the above papers, four additional conference papers cited below were

published during the preparation of this study. Studies 1 and 3, in particular, proved to

be instrumental in guiding the choice of methods used in this thesis.

1. Uzunbayir S.: A Genetic Algorithm for the Winner Determination Problem

in Combinatorial Auctions, 2018 3rd International Conference on Computer

Science and Engineering, published in September 20, 2018.

2. Uzunbayir S. and Kurtel K.: A Review of Source Code Management Tools

for Continuous Software Development, 2018 3rd International Conference on

Computer Science and Engineering, published in September 20, 2018.

3. Uzunbayir S.: Reverse Ant Colony Optimization for the Winner Determination

Problem in Combinatorial Auctions, 2022 7th International Conference on

Computer Science and Engineering, published in October 28, 2022.

4. Uzunbayir S.: Relational Database and NoSQL Inspections using MongoDB

and Neo4j on a Big Data Application, 2022 7th International Conference on

Computer Science and Engineering, published in October 28, 2022.

10

CHAPTER 2: PRELIMINARIES AND RELATED WORK

This chapter aims to answer RQ1 outlined in Section 1.4: “What are the existing

studies, prevailing trends, challenges, and advancements in the field of mutation testing

as observed in recent academic and industry practices?”

In this chapter, we discuss the fundamental principles of mutation testing, prelimi-

nary concepts, and methodologies to establish the necessary context for understanding

the area of mutation testing. Then, pivotal research and a detailed literature review

that have significantly influenced the evolution of mutation testing are presented. This

exploration includes innovative methodologies and emerging trends, assessing their

impact on both academic research and practical applications in the industry.

2.1. Fundamental Principles of Mutation Testing

The huge number of potential errors in a software program makes it impractical to

create mutants that mimic every possible fault. Mutation testing, therefore, focuses on

a subset of faults that closely resemble the error-free version of the system, adequately

representing the whole spectrum of possible errors. This approach is grounded in two

fundamental hypotheses: the Competent Programmer Hypothesis and the Coupling

Effect.

The Competent Programmer Hypothesis operates on the premise that programmers

are skilled and thus produce software that nearly aligns with the correct version

(DeMillo et al., 1978). This suggests that any errors made by such programmers

are likely minor and only require a few syntactic modifications for correction.

Mutation testing, under this hypothesis, seeks to replicate these minor errors through

simple syntactic alterations, effectively simulating the types of mistakes a competent

programmer might make.

The Coupling Effect shifts the focus from programmer behavior to the nature of

the faults themselves (DeMillo et al., 1978). It assumes that test data capable of

identifying programs with minor errors are inherently sensitive enough to also detect

more complex errors. The concept, received further clarification from Offutt (1989).

11

According to this, a test suite capable of identifying all simple mutants in a program

would also probably detect a substantial number of complex mutants. Consequently,

mutation testing is generally confined to simple mutants, as noted by Jia and Harman

(2011). The validity of the Coupling Effect and the Coupling Effect has been the

subject of various research studies seeking to empirically support these hypotheses

(Offutt, 1992; Kapoor, 2006).

2.2. Mutation Analysis

Formally, given an original program P, mutation testing uses mutation operators to

generate a set of mutants M for P. Mutation operators are used to apply syntactical

transformation rules to generate mutants. These operators usually correspond to

regular programmer errors. Each mutant m ∈ M is the same as the original program

P, except that a mutated program statement is changed by a mutation operator. Then,

all mutants in the set of M are executed using the test suite T of P. At the end of

this procedure, the effectiveness of T is evaluated using a mutation adequacy score,

comparing the execution results between the mutants and the original program. A

mutant m is killed by the test case t ∈ T in P if its results are different, otherwise m

survives (Jia and Harman, 2011; Chen and Zhang, 2018).

Although mutation testing is a reliable method for identifying suitable test cases

that can detect actual faults, due to its vast number, it is not feasible to generate

mutations for all potential faults in a program. Consequently, mutation testing typically

focuses on a subset of faults that are closest to the correct version of the program, under

the assumption that this subset can provide an adequate representation of all faults,

based on the principles of the Competent Programmer and the Coupling Effect.

2.2.1. Mutation Process

The traditional procedure for mutation analysis, in which mutants are created,

executed, and evaluated using a test suite containing test cases, is shown in Figure

3. The entire process involves six steps and can be described as follows:

Step 1: The original program P is altered by using mutation operators to create

12

Original
Program

P

Generate
Mutants

Mutant
Set M ...

Test Case 1

Test Case n

Test Suite
T

Execute
T on P

is P
correct?Fix P

Execute T on
each alive M

Are all M
killed?

Analyze and
Mark

Equivalent
Mutants

End

Start

NO

YES

NO

YES

Figure 3. Traditional mutation process.

various mutants M. A mutant is a changed and faulty version of the original program.

Table 1 shows an example of a simple mutation operation. Generated mutants can

contain one or more faults, such as changed operators, changes in operand position,

or deletion of statements. This step can be completely automated by using tools that

apply specific mutation operators to P.

Table 1. An original program and its mutant.

Original Program P Mutant M

READ n1 and n2

if (n1 >50 && n2 >70)

PRINT n1

end if

READ n1 and n2

if(n1 >50 || n2 >70)

PRINT n1

end if

Step 2: P and M are executed against the test suite T .

Step 3: In order to verify whether or not the output is correct, P is executed using

T . If incorrect, then P must be fixed before continuing.

13

Step 4: When the output of the original program is correct, T is executed for each

living mutant. Then, their output is compared with the output of P to identify which

mutants should be killed. The mutant survives if P and the mutant give the same

results; otherwise, it is killed and eliminated.

Step 5: Then, the mutation adequacy score is calculated using equation (1), which

represents the proportion of mutants killed to the total number of mutants that can be

killed. The procedure ends when all mutants have been killed.

Step 6: If any mutants survive, they must be inspected manually to decide if they

are equivalent or if the test cases are not adequate to kill them. Equivalent mutants

always produce the same results as the original program and can never be killed; i.e.

they are syntactically different but functionally equivalent to P. If equivalent mutants

are detected, they should be eliminated. If no mutants are equivalent but still alive,

new test cases should be added to T , and the process continues with Step 4.

Mutation analysis measures the quality of the test suite with respect to the mutation

adequacy score. In the end, the goal of the tester would be to increase the mutation

score calculated by using equation (1) close to 1, so that T is sufficient to detect all

the faults indicated by the mutants. Thus, this procedure provides a structured and

effective way to measure test adequacy (Ma and Offutt, 2005).

Mutation adequacy score =
(

Killed mutants
All mutants−Equivalent mutants

)
(1)

Let us illustrate with an example and provide a detailed explanation of the

procedure. Consider the following code piece:

Original program:

1 Read a number

2 i f (number > 50)

3 P r i n t "RED"

4 e l s e

5 P r i n t "BLUE"

6 end i f

14

To test this program, we supply values to the “number” variable, specifically 0,

49, 50, 51, and 90 by using equivalent partitioning and boundary value analysis. The

objective is to determine whether these values are sufficient to identify all the defects.

Next, seven mutants are generated from the original program provided above, using

various mutation operators:

Mutant 1: Change operator > to <

1 Read a number

2 i f (number < 50)

3 P r i n t "RED"

4 e l s e

5 P r i n t "BLUE"

6 end i f

Mutant 2: Change operator > to ==

1 Read a number

2 i f (number == 50)

3 P r i n t "RED"

4 e l s e

5 P r i n t "BLUE"

6 end i f

Mutant 3: Change operator > to <=

1 Read a number

2 i f (number <= 50)

3 P r i n t "RED"

4 e l s e

5 P r i n t "BLUE"

6 end i f

15

Mutant 4: Change operator > to >=

1 Read a number

2 i f (number >= 50)

3 P r i n t "RED"

4 e l s e

5 P r i n t "BLUE"

6 end i f

Mutant 5: Deletion of Print “RED” statement

1 Read a number

2 i f (number > 50)

3 e l s e

4 P r i n t "BLUE"

5 end i f

Mutant 6: Deletion of Print “BLUE” statement

1 Read a number

2 i f (number > 50)

3 P r i n t "RED"

4 end i f

Mutant 7: Wrong syntax number !% 50

1 Read a number

2 i f (number ! % 50)

3 e l s e

4 P r i n t "BLUE"

5 end i f

16

Table 2 presents the results of the mutation testing for the example mentioned

above. Mutants that produce the same results as the expected output are colored green,

indicating their survival. In contrast, those that produce different results are marked

in red, signifying their elimination. Specifically, the input value 0 leads to the failure

of mutants 1 and 3, while having no impact on mutants 2, 4, and 5. The objective

of mutation testing is to eradicate all mutants, thereby enhancing the quality of the

test suite. As depicted in Table 2, mutants 1, 2, 3, and 4 are successfully eliminated.

However, mutants 5 and 6 persist against some inputs and remain unaffected by others.

Furthermore, mutant 7 triggers a compilation error. This implies that mutants 5, 6,

and 7 are equivalent or redundant for testing this program and, ideally, should not be

generated in the initial phase of the process.

Table 2. Mutation testing results of the example.

Input
Expected

Output
Mutant 1 Mutant 2 Mutant 3 Mutant 4 Mutant 5 Mutant 6 Mutant 7

0 BLUE RED BLUE RED BLUE BLUE nothing syntax error

49 BLUE RED BLUE RED BLUE BLUE nothing syntax error

50 BLUE BLUE RED RED RED BLUE nothing syntax error

51 RED BLUE BLUE BLUE RED nothing RED syntax error

90 RED BLUE BLUE BLUE RED nothing RED syntax error

2.2.2. Cost of Mutations

Mutation testing is an extremely costly process that requires substantial compu-

tational resources and human effort. It is time-consuming as a result of the need to

compile and test each mutant separately. The cost of mutations can be explained with

respect to the mutation analysis process expressed in Section 2.2.1:

• In Step 1, where numerous mutants are created using mutation operators, the

number of mutations is proportional to the product of the number of data

references and the data objects for a software component (Offutt et al., 1996).

• In Step 2, where the original program and the mutants are executed against the

test suite, the cost can be neglected, since no computation is needed.

17

• In Step 3, the verification of the correctness of the original program output is

checked, and therefore manual intervention is required, increasing the required

effort. Although this task is not unique to mutation testing, it is still considered

within the scope of cost.

• In Step 4, where the execution of the original program and all mutants with the

test cases in the test suite causes significant computational costs.

• In Step 5, the adequacy of the mutation is calculated and the cost depends on

the calculation operation.

• In Step 6, the equivalent mutants and the generation of additional test data are

determined to kill the remaining mutants, and these challenging tasks require a

complete inspection of the program mechanics.

Many solutions have been proposed to reduce computational resources of mutation

testing and human effort; some focus on reducing mutations or executions for

computational cost, and others, on reducing manual costs for human effort. However,

none of these proved to be 100% effective. The next section introduces these

techniques.

2.3. Cost Reduction Techniques Literature Review

Mutation analysis requires a significant amount of time and resources for the

following reasons: The process of mutation generation may be difficult considering

larger programs, since each mutation should denote a potential error; a test suite should

contain robust test cases to find and manage mutations; therefore, preparing a good

test suite is time-consuming; designing mutations, preparing test cases, and evaluating

results may be a demanding process, especially working with complex programs. To

reduce these costs, various categories of cost reduction techniques have been proposed

over the years. Offutt and Untch (2001) used the categories of do fewer, do faster, do

smarter, while Mateo et al. (2010)’ categories were mutation generation, and test case

generation and execution. Due to the distinct nature of costs and resources they aim to

optimize in the testing process, in this study, as depicted in Figure 4, the cost reduction

18

techniques are separated into two: computational cost reduction, and manual cost

reduction techniques.

2.3.1. Computational Cost Reduction Techniques

Computational cost reduction techniques can be classified into three; mutant

reduction, execution cost reduction, and run-time optimization. The main source

of computational costs comes from performing mutation analysis with a large number

of mutants in the test suite. Some of the mutants may be unnecessary, if equivalent,

or meaningless, and therefore should not be generated in the first place. Therefore,

reducing the number of mutants while preserving the effectiveness of the testing

process has become an important research topic. In other words, mutant reduction

techniques can be defined as the problem of finding a subset of mutants for which the

mutation adequacy score of testing with all mutants is equal to testing with the subset

of mutants. Here, we discuss four mutant reduction techniques: mutant sampling,

selective mutation, higher-order mutation, and mutant clustering.

Mutant sampling is a technique that involves the selection of a subset of mutants

generated for a specific software program. The objective of mutant sampling is

to reduce the number of mutants that need to be evaluated by selecting a smaller

but representative subset. The purpose of this selection is to obtain a sample that

accurately represents the full set of mutants, allowing for the extrapolation of the

results of mutation testing to the entire set. There exist various methods for selecting a

representative sample of mutants, including variation random sampling. The choice

of method depends on the particular requirements of the mutation testing and the

characteristics of the tested program. The ultimate goal of mutant sampling is to

balance the accuracy of the results and the effort required to carry out the testing

process.

Wong (1993) experimented with various sampling proportions between 10% and

40% in increments of 5%. As a result, sampling with 10% of the mutants is 16%

less effective than processing with the entire set. This study concluded that mutant

sampling is valid with a x% value higher than 10%, and was empirically studied

by DeMillo et al. (1988), and King and Offutt (1991). Papadakis and Malevris

19

C
om

pu
ta

tio
na

l C
os

t R
ed

uc
tio

n
M

an
ua

l C
os

t R
ed

uc
tio

n

M
ut

an
t

R
ed

uc
tio

n

M
ut

an
t

Sa
m

pl
in

g
Se

le
ct

iv
e

M
ut

at
io

n

H
ig

he
r-O

rd
er

M
ut

at
io

n
M

ut
an

t
C

lu
st

er
in

g

R
un

-ti
m

e
O

pt
im

iz
at

io
n

Ex
ec

ut
io

n
C

os
t R

ed
uc

tio
n

St
ro

ng
 M

ut
at

io
n

W
ea

k
M

ut
at

io
n

Fi
rm

 M
ut

at
io

n
Fu

nc
tio

na
l

Q
ua

lif
ic

at
io

n

C
om

pi
le

r-b
as

ed
C

om
pi

le
r-

in
te

gr
at

ed

M
ut

an
t

Sc
he

m
at

a
By

te
-c

od
e

tra
ns

la
tio

n

Pa
ra

lle
l

Ex
ec

ut
io

n

Eq
ui

va
le

nt
M

ut
an

t
R

ed
uc

tio
n

Eq
ui

va
le

nt
M

ut
an

t
C

la
ss

ifi
ca

tio
n

Eq
ui

va
le

nt
M

ut
an

t
D

et
ec

tio
n

M
ut

at
io

n
Te

st
in

g
C

os
t R

ed
uc

tio
n

Te
ch

ni
qu

es

Fi
gu

re
4.

M
ut

at
io

n
te

st
in

g
co

st
re

du
ct

io
n

te
ch

ni
qu

es
.

20

(2010) empirically investigated the effectiveness of the test of different random mutant

sampling methods, ranging from 10% to 60% in steps of 10%. They concluded that

the loss of effectiveness of recorded tests ranges between 26% and 6%. The authors

also applied second-order mutation and demonstrated that second-order strategies

with mutant sampling are effective in significantly reducing the number of produced

and equivalent mutants. This led to additional savings in the number of required

test cases while still maintaining a low level of fault detection loss. However, to

validate the claims statistically, this study requires more experiments with second-

order mutation to validate the claims statistically. Derezińska and Rudnik (2017)

used random sampling and compared various sampling criteria such as fully random,

class random, file random, method random, mutation operator random, and namespace

random techniques in an object-oriented program, and suggested that the degree of

sampling is about 40% for object-oriented operators, compared to 30-35% for standard

ones. They concluded that sampling is helpful in reducing the number of mutants;

however, it also reduces the mutation adequacy score. Therefore, the article suggests

that in practical situations, the number of mutants is necessarily the most significant

factor in terms of cost. The overall time required for mutation testing is also heavily

influenced by the number of tests needed. Furthermore, Pitts (2021) argued that

random mutant selection is almost as effective as selecting only a smaller set of mutants

when a posteriori similar information is available and to highlight that observations are

only valid in an environment that adequately allows mutations. As a result, the author

concludes that random selection is still an efficient technique. However, a wider range

of test subjects and programs can be used to experiment with random sampling in

different environments.

Selective mutation is an approximation technique to reduce the number of mutants

by identifying a small set of mutation operators whose mutants can simulate those

generated by all available operators. In addition, this technique focuses on a subset of

highly effective operators that result in significant savings. This means that selective

mutation creates fewer mutations and that test suites that perform well for these

mutations will also perform well for all mutations created by all mutation operators. In

simpler terms, selective mutation focuses on a subset of mutations that yield the most

21

impact and cost-effectiveness. It is crucial to exercise caution when implementing

selective mutation, as it has the potential to decrease overall trust in the results of

mutation testing. If the portion of code chosen for mutation does not accurately

represent the complete system, the results obtained may not give a fair assessment

of the quality of the test suite.

Offutt et al. (1996) experimented with this idea in the Mothra software testing

environment developed by DeMillo et al. (1988), and found that only five of the

twenty-two mutation operators were adequate to perform an effective mutation

analysis. This contradicts the results of previous mutation testing studies, as previous

approaches focused on increasing the number of mutation operators to intensify

mutations. However, in this study, fewer operators were found to increase efficiency

and opens up more research opportunities in the area of mutation testing. Siami Namin

et al. (2008) used statistical methods to find a subset of the comprehensive Proteum

mutation operators that generates a significantly smaller number of mutants compared

to the entire set. Despite this reduction, the subset still allows for an accurate prediction

of the effectiveness of the test suite on the mutants produced by the full set of operators.

The cross-validation results showed that the procedure used to identify the subset

was appropriate and that the findings can be applied to other programs. With this

model, researchers can more efficiently estimate the effectiveness of a test suite in a

program without having to generate all possible mutants. Zhang et al. (2013) explored

the application of two strategies, operator-based and random mutant selection. The

result indicated that the combination of operator-based and random mutant selection

results in more precise and comprehensive fault detection compared to the use of each

strategy independently. The research evaluated various sampling strategies on 11 real-

world Java programs and concluded that a sample of only 5% provided highly precise

mutation scores. Gopinath et al. (2016, 2017) showed that selective mutation is actively

harmful to mutation diversity and performs worse than random sampling.

Higher-order mutation aims to find rare but valuable mutants that can denote

faults. In this mutation testing method, mutants are generated by applying mutations

to already mutated programs, rather than directly to the original program. This results

in the creation of a new set of more complex and realistic mutants that better reflect

22

real-world faults in the software. This approach is considered a more advanced form

of mutation testing compared to traditional first-order mutation, which only modifies

the original program by mutation one operator only (see Table 3).

Table 3. An example of higher-order mutation.

Original Program First-Order Mutant Higher-Order Mutant

READ x and y

if (x == 10 || y < 20)

PRINT "DONE"

end if

READ x and y

if (x == 10 && y < 20)

PRINT "DONE"

end if

READ x and y

if (x != 10 && y < 20)

PRINT "DONE"

end if

The advantages of higher-order mutation testing are: improving the accuracy of

mutation score by generating more complex and realistic mutants, reducing the number

of mutants, enhancing the reliability of mutation testing, improving the coverage of

testing to uncover faults, and identifying complex faults to make testing applicable for

interactions between different mutants and interactions between mutants and the test

suite.

Polo et al. (2009) presented an approach to reduce the cost of mutation testing by

combining first-order mutants using various combination algorithms. Depending on

the algorithm used, the number of mutants can be halved, resulting in a substantial

decrease in the time and effort required for mutant execution and analysis. Further-

more, the article shows that the second generation of mutants has significantly fewer

equivalent mutants, as demonstrated by a decrease from 18.66% to approximately

5%. This study is important in showing that higher-order mutation can be used

to reduce equivalent mutants. However, it needs to be validated with additional

research using industrial applications, and Van Nho et al. (2019) showed that the

combination of mutants using this technique brings more effective results. Harman

et al. (2011) used higher-order mutation for test data generation. Their study presented

SHOM, a new technique for generating test data through the use of mutations. It

combines dynamic symbolic execution with search-based software testing methods to

achieve high mutation adequacy and the ability to detect both simple and complex

mutations. They conducted an empirical study using 17 programs, including industrial

23

company programs. The results showed that SHOM performed better than previous

mutation-based test data generation techniques, successfully identifying between 8%

and 38% more mutations than the previous best approach. Abuljadayel and Wedyan

(2018) proposed a method to create higher-order mutants with a genetic algorithm and

developed a tool using Java. To assess the effectiveness of the proposed idea, they

performed experiments with mutants generated using HOMAJ on a 315 LOC program

and created test cases using Randoop. Their findings showed that their algorithm

uses a replacement crossover to produce new parent mutants, which are harder to kill

than the previous population. These solutions show potential, but their study needs

to be extended using larger programs and other programming languages to compare

their effectiveness. Lima and Vergilio (2018) reported a systematic mapping study

on search-based higher-order mutation testing. Their study looked at various aspects,

such as the search-based algorithms used, the fitness of the evaluation applied, and the

evaluation methods. They also analyzed the main publication venues and tracked the

evolution of the field over time, including trends and opportunities for future research.

The study found 17 different algorithms used in the context of higher-order mutation,

with the genetic algorithm and NSGA-II being the most widely used. This points

to the potential for exploring other objectives with multi-objective algorithms, which

seems to be a growing trend in the field. Recently, Li et al. (2022) used deep learning

mutation testing to assess whether a higher-order mutation is applicable in this context.

They proposed a mutation testing framework that evaluates mutant classification tuples

using first-order and higher-order mutants with four common datasets. The study

reported that higher-order mutation effectively reduces the set of mutants using deep

learning methods in mutation testing. Furthermore, extensive higher-order mutation

tests have shown it to be more efficient than first-order mutation in the following

studies; Papadakis and Malevris (2010), Kintis et al. (2010), Madeyski et al. (2014),

Omar and Ghosh (2012), Mateo et al. (2010), and Parsai et al. (2016). More on higher-

order mutation is discussed and experimented in Chapter 5 of this dissertation.

Mutant clustering, proposed by Hussain (2008), is a subset of mutants chosen

using clustering algorithms rather than random selection, as in mutant sampling. The

goal is to minimize the number of mutants that need to be evaluated and to present the

24

results in a more comprehensible manner. This is achieved by grouping mutants based

on structural or behavioral similarities. First, all first-order mutants are generated.

Then, a clustering algorithm is applied to distribute first-order mutants into various

clusters that can be killable by the test suite. Each mutant in the same cluster is

guaranteed to be killed by similar test cases. In the end, a small number of mutants

will be selected from each cluster. As for clustering algorithms, it is possible to

apply K-means, agglomerative hierarchical clustering, or mean-shift clustering after

mutant generation is complete. Mutant clustering is a valuable method for improving

the productivity and precision of mutation testing. By grouping similar mutants, it

becomes easier to identify patterns and understand the strengths and weaknesses of the

test suite, providing valuable information on the quality of the tests.

Ma and Kim (2016) applied mutant clustering to reduce the number of mutants

executed. They showed that their approach is capable of clustering mutants by

comparing the values of an innermost expression, which, as a result, is more effective

than mutant sampling. The study introduced the idea of c-overlapped mutants, in which

mutants are weakly killed in a test case, and involves testing only one mutant from each

group of overlapping mutants with strong mutation. The research successfully reduces

the number of mutants generated; however, the mutants were only grouped based on

their expression, and this had the drawback of requiring at least two mutants to be

generated by the mutation operator. The scope of clustering should be expanded to

include mutants for a statement, which would show greater reduction in the cost by

clustering a larger number of mutants. Yu and Ma (2019) worked on the clustering

of c-overlapped mutants and focused on the clustering at three levels; the expression,

statement, and block levels. The results of the study show that clustering mutants at the

statement level led to a 24.44% reduction in mutant executions compared to the weakly

live mutant filtering approach. The authors claimed that this reduction is higher than

that achieved by the expression-level clustering method, which resulted in a reduction

of only 10.51%. The block-level clustering resulted in a smaller reduction of 1.06%

compared to the statement-level clustering. However, this small improvement is not

practical, due to the increased cost of saving states required for a wider comparison

scope. Liu and Song (2021) used second-order mutants with a self-organizing map

25

neural network. The first step involved using a more integrated combination strategy to

generate second-order mutants with muJava. The next step was to analyze the reasons

for killing mutants and used the similarity of intermediate values in the execution of

the second-order mutants to construct an appropriate self-organizing neural network

model. The final step was to cluster the second-order mutants based on this model to

achieve a reduction in their number. The results of the experiments showed that this

method was effective in reducing the number of second-order mutants that produced

similar adequacy scores compared to the first-order mutation version.

Execution cost reduction techniques aim to reduce costs by optimizing the mutant

execution process. In this context, there are four types of execution cost reduction

techniques; strong mutation, weak mutation, firm mutation, and functional

qualification.

Strong mutation is a type of mutation testing in which each mutant generated

by the mutation operator is executed and its behavior is compared with that of the

original program. The goal of a strong mutation is to determine whether the program’s

test suite is able to distinguish between the original program and each mutant, thus

indicating that the test suite is effective in finding faults in the program. It is usually

called traditional mutation testing or general mutation testing. Simply stated, a mutant

generated from a given original program using mutant operators can be killed if and

only if the mutant produces results different from the original program.

Weak mutation aims to avoid complete execution of the original program and its

mutants. To do this, it compares the results of the original program and the mutant

immediately after the execution of the mutant or mutated component, rather than

waiting for the final step, as in a strong mutation process. It is in some ways more

effective, allowing for checking of each mutant condition immediately after execution,

so that there may not be a need to generate every single mutant. However, in other

ways, this approach may be less effective than strong mutation in that it trades test

effectiveness for effort costs.

Kintis et al. (2010) worked on weak mutation and revealed that it not only

significantly decreases the number of equivalent mutants produced, but also provides

a stronger test criterion than previously believed. Moreover, they offered an estimate

26

of how many first-order mutants need to be removed to eradicate the entire original

set. The findings of their research revealed that targeting just a fraction of the mutant

set for elimination is sufficient, as this leads to the removal of the remainder. Their

experimental set could be extended to include more methods such as higher-order or

selective mutation for further advances. Souza and Gheyi (2020) used weak mutation

in method-level mutation operators and experimented with first-order and higher-order

mutants. They claimed that higher-order mutants are not very efficient in method-

level mutation. The study encoded 223 first-order mutants and 438 higher-order

mutants, finding that, on average, 91% of all mutants could be discarded. This study

reveals the usefulness of weak mutation and provides interesting details for further

investigation by applying it to other mutation strategies or programming languages.

Yao et al. (2020) suggested a method to generate test data for weak mutation testing

based on the dominance levels of mutant branches. They converted all mutants in the

original program into mutant branches to create a new program that incorporates all

these branches. They evaluated the dominance relationship of the mutant branches

in the transformed program to determine the non-dominant mutant branches and

their dominance levels. The proposed method was applied to 15 programs and the

experimental results showed that compared to other methods, it improves the quality

of the test data and reduces the cost of mutation testing. The study required a separate

execution of each mutant, increasing costs, but this approach increased the fault

detection ability of the test suite.

Firm mutation aims to create an alternative to weak and strong mutations to

overcome the disadvantages of both terms. In a firm mutation, there is no expectation

of an assertion guaranteeing that the difference in behavior would be caught. The

change needs to propagate further from its place of origin until the lexical boundaries

of the source.

Jackson and Woodward (2001) proposed a parallel firm mutation technique for

Java programs. At that time, they claimed that no clear systematic approach existed for

choosing the parts of a program’s code to use for firm mutation testing, since there were

no object-oriented approaches. However, since then, the emergence of object-oriented

languages has provided a potential solution. The study explored the application of firm

27

mutation to Java methods by leveraging Java threads to execute mutants and paved the

way for the usage of object orientation along with parallelism used in multithreading

for mutation testing. Singh and Srivastava (2017) proposed an extension to firm

mutation in a small-scale application with aspect-oriented programming. Their aim

was to assess the costs of mutation operators’ application. The authors claimed that

the system evaluated in this study reduces the number of live mutants to deal with.

Despite this being an approximation, they argued that well-designed test suites can

uncover most of the faults introduced by the mutation operator. However, a small

but still significant increase in the size of the test set was required to produce reliable

results in terms of the mutant analysis criteria.

Functional qualification applies a number of algorithms to mutation analysis

with the aim of reducing execution costs. This approach can function in any

test environment, thus the test bench used can be implemented with any language,

as long as the results return pass or failure, which are considered for each test.

Therefore, whenever a checker or assertion is missing from the functional verification

environment, mutations will remain alive. Coverage metrics do not check the output

behavior, which is captured instead by functional qualification, which is able to

measure the bug detection.

Lin et al. (2012) presented a novel error propagation analysis method that

effectively addresses the issue of error propagation in mutation analysis. The authors

used a probabilistic analysis of HDL designs to add the appropriate observation points.

Using the firm mutation approach, the mutant status was reported as determined by

monitoring these selected observation points. As a result, the firm mutation approach

could more effectively identify surviving mutants and eliminate redundant test cases,

thus reducing the simulation cost for subsequent strong mutations. Empirical results

demonstrated that the proposed method is more efficient than weak mutation, which

neglects the problem of error propagation.

Run-time optimization use various sources, such as compilers, files, or parallel

machines, in order to reduce costs. There are five approaches in this category;

compiler-based, compiler-integrated, mutant schemata, byte-code translation,

and parallel execution.

28

Compiler-based run-time optimization was introduced Delamaro (1993). It is a

generic method in which mutants are compiled to form an executable program. After

that, each compiled mutant is tested with a number of test cases, as shown in Figure

5. This is a fast technique; however, the speed might sometimes be limited when the

run-time of a program takes longer than the compilation time. This problem is called

compilation bottleneck in the literature (Byoungju and Mathur, 1993).

Test Case 1

Test Case 2

Test Case 3

Test Case n

Test Suite
T

Executable
Program

Mutant 1

Mutant n

Compiled
Mutant 1

Compiled
Mutant n

Figure 5. Compiler-based run-time optimization.

Test Case 1

Test Case 2

Test Case 3

Test Case n

Test Suite
T

Executable
Program

Original
Program P

Object
Code
Image

Instrumented
Compiler

Mutant
Patches

Figure 6. Compiler-integrated run-time optimization.

Compiler-integrated run-time optimization was proposed by DeMillo et al.

(1991). It is aimed at reducing performance problems of compiler-based methods.

Since the original program and the mutant differ with a single syntactic change,

compilation of each mutant separately might cause redundant compilation costs.

To remove this drawback, the compiler-integrated method contains an instrumented

compiler that produces two outputs from the original program; an executable object

code for the original program and a set of patches for mutants as shown in Figure 6.

29

These patches consist of information to help convert the object code to the executable

code for the related mutant (Krauser, 1991).

Mutant schema run-time optimization was proposed by Untch et al. (1993). In this

approach, compilation of the mutants is not separated. Instead, a meta-mutant, which

represents all possible mutants, was generated (see Figure 7). This meta-mutant will

be tested with the test suite and it will be compiled only once. Therefore, compilation

costs will be reduced. More detailed explanations and experiments can be found in the

works of Schuler and Zeller (2009) and Wright et al. (2013).

Test Case 1

Test Case 2

Test Case 3

Test Case n

Test Suite
T

Executable
Program

Mutant 1

Mutant n

Compiled
Mutant

Schemata

Figure 7. Mutant schemata run-time optimization.

Test Case 1

Test Case 2

Test Case 3

Test Case n

Test Suite
T

Executable
Program

Original
Program P

(source
code)

Original
Program P

(byte-
code)

Compile

Byte-code
Mutant 1

Byte-code
Mutant n

Figure 8. Byte-code translation run-time optimization.

Byte-code translation run-time optimization was proposed by Ma et al. (2005).

Instead of generating mutants from the source code of the original program, this

method generates them from the compiled object code (see Figure 8). Therefore, these

byte-code mutants do not have to be executed by compiling them. This technique

allows working on off-the-shelf programs when their source code is not available. The

30

drawback of the method is that some mutation operators cannot be represented with

byte-codes (Schuler et al., 2009; Vallée-Rai et al., 2010).

Parallel execution idea was proposed by Mathur and Krauser (1988). In this study,

the authors executed several mutants on a vector processor. Parallel execution aims

to improve the efficiency of mutation testing by executing the original program and

its mutants in parallel processors. This approach reduces the total time for mutation

analysis. Offutt et al. (1992) developed HyperMothra tool that is capable of performing

mutations using the Intel iPSC/2 hypercube machine with 16 processors. Mateo and

Usaola (2013) adapted this idea to current technologies by using five algorithms under

different network configurations and different number of processors.

2.3.2. Manual Cost Reduction

Manual cost reduction techniques are based on equivalent mutant problem.

Identifying whether a mutant is equivalent or not is undecidable (Budd and Angluin,

1982), therefore, it is not possible to develop fully automated solutions and human

intervention is required.

An equivalent mutant is generated when a mutation does not change the output of

the original program, i.e. it is syntactically different but semantically identical. An

example of an equivalent mutant, which is created by substituting the operator of the

original program + with the operator *, is illustrated in Table 4. Since the value of a

does not change within the scope of the if statement, the original program P and the

mutant M will produce identical results.

Table 4. An example of equivalence mutation.

Original Program P Mutant M

int a = 2, b = 2, c = 3

if (b == 2)

PRINT b AND c

b = a + b

end if

int a = 2, b = 2, c = 3

if (b == 2)

PRINT b AND c

b = a * b

end if

31

Many different techniques have been proposed to at least partially automate the

reduction of manual costs for equivalence mutations. The solutions to the equivalent

mutant problem can be divided into three categories: equivalent mutant reduction,

equivalent mutant detection, and equivalent mutant classification.

Equivalent mutant reduction is based on an attempt to reduce the number of

equivalent mutants. The main approach is to use higher-order mutation methods, such

as second-order mutation (Jia and Harman, 2009). Harman et al. (2010) claim that

higher-order mutants can simulate real faults better than first-order mutants. Other

approaches suggest co-evolutionary search techniques to prevent equivalent mutants

(Adamopoulos et al., 2004).

Polo et al. (2009) created a set of second-order mutants through the combination

of first-order ones. The second-order generation of mutants showed a significant

reduction in the number of equivalent mutants, with the percentage decreasing from

18.66% to around 5% in one of their experiments. As a part of the testooj tool

they implemented, three combination strategies were employed, namely LastToFirst,

DifferentOperators, and RandomMix. All three methods notably decreased the number

of equivalent mutants, with LastToFirst and RandomMix cutting the number of

mutants by half, while DifferentOperators reduces the number by a different amount.

The experiments were promising; however, they needed to validate the results using

industrial projects. Papadakis and Malevris (2010) empirically evaluated several

first- and second-order mutation testing strategies. The results suggested that, in

general, first-order strategies were more successful in identifying faults compared

to second-order strategies, although they came at a higher cost. On the other hand,

second-order strategies significantly reduced the number of equivalent mutants and

resulted in considerable savings in the number of mutants generated and required test

cases. Statistical analysis and more experiments would direct the research to better

results. Madeyski et al. (2014) proved that second-order mutants can significantly

improve the efficiency of mutation testing, but at a cost in testing strength. They

implemented four distinct second-order mutation strategies, in conjunction with the

first-order mutation, and conducted a comparative analysis across multiple dimensions.

The experimental investigation revealed that second-order mutation, specifically the

32

JudyDiffOp strategy, yielded the most favorable outcomes in terms of the total number

of mutants generated, the correlation between the employed mutation strategy and

equivalent mutant generation, the count of uneliminated mutants, the duration of

mutation testing, and the time required for manual classification. The results were

good, but not perfect. Higher-order mutants than second-order ones needed to be

implemented and compared with these results. Kintis et al. (2010) stated that the

use of second-order mutation can be advantageous in two ways: first, it can decrease

the number of equivalent mutants generated, and second, it can allow high collateral

coverage for strong mutation. With these advantages in mind, a new set of second-

order mutation testing strategies based on the dominator was developed. Although

the investigation of the study of the collateral behavior of second-order strategies

was promising, more research was needed to determine which criterion should be

prioritized to achieve collateral coverage and the advantages of this approach. A more

recent research by Garg et al. (2023) proposed a technique called Cerebro that was

able to learn to identify a subset of mutants that can kill all other mutants in a given

set. They conducted experiments with 58 programs and found that Cerebro was able to

identify these mutants with 0.85 precision and 0.33 recall in a scenario that is trained

on different projects than the ones it was evaluated on. This information was useful and

can be used by testers to design test cases that can kill more than twice the number of

mutants that are harder to kill than they would be able to using randomly selected

mutants or other machine learning-based mutant selection techniques. According

to the experiments, Cerebro analyzed 66% fewer equivalent mutants and executed

90% fewer mutants, which significantly reduced the practical effort and cost of the

approach.

Equivalent mutant detection approaches attempt to correctly identify a per-

centage of all equivalent mutants of the original program. These techniques reduce

mutation costs, but not their effectiveness (Kintis, 2016). They function by eliminating

equivalent mutants by developing useful heuristics, and the most effective heuristic

methods depend on compiler optimizations (Mateo et al., 2013). The aim is to

transform mutants to their optimized versions in such a way that semantically

equivalent mutants will resemble the optimized version. The effectiveness of this

33

method has been empirically studied by Papadakis et al. (2015), and the results indicate

that the approach can identify up to 30% of all equivalent mutants. Papadakis et al.

(2015) examined the feasibility of utilizing the compiler optimization techniques of

the GCC compiler to detect equivalent mutants. They stated that their approach

was easily scalable and widely applicable, relying on the same technology as most

compilers. Their method indicated that any mutant that produces code compiled

identical to that of the original program is deemed equivalent. As a result, they were

able to demonstrate that the method can effectively identify a significant number of

equivalent mutants in the real world. Furthermore, they used an empirical study of

18 benchmark programs and discovered that the proposed method was capable of

detecting 30% equivalent mutants. Offutt and Pan (1997) introduced a set of heuristic-

based strategies with the aim of determining the infeasibility of constraint systems that

model the conditions necessary for the killing of a mutant during mutation testing.

They proposed a partial solution to the problem of equivalent mutant detection and

the feasible path problem, and demonstrates the specific relationship between the two.

Their findings demonstrated that the approach was an effective partial solution to the

aforementioned issues. Furthermore, they showed that this technique was applicable

to the feasible path problem and may produce better results than equivalent mutants.

Future work for this general technique could be generalized to all instances of the

feasible test problem and thus could support branch coverage techniques and data flow

testing. Nica and Wotawa (2012) proposed an approach that involved the integration

of constraint representations of programs with mutation testing to identify a unique

test case that distinguishes a program from its mutant. However, due to the underlying

problem being undecidable, their approach could not ensure a solution. They claimed

that the effects of various parameters, such as nesting depth, are subject to further

study. Additionally, their approach enabled the incorporation of new test cases into the

test suite. The test cases they computed improved the mutation score. Hierons et al.

(1999) suggested that amorphous slicing can be used to support manual analysis of

particularly hard-to-kill mutants. The authors demonstrated that program slicing was

able to make it easier to determine whether mutants are equivalent. When a mutant

is not equivalent, program slicing simplified it, making it easier for the tester to find

34

test cases that can identify and eliminate it. When either firm or strong mutations

are used, program slicing may also be used to identify certain equivalent mutants in

advance, allowing the tester to generate fewer equivalent mutants. Their approach was

not combinatorial explosion; however, they needed to perform more experiments with

more real-world projects. Laurent et al. (2017) proposed a gamified system that can

be used as a standalone tool for equivalent mutant detection. The authors presented a

prototype of a gamified equivalent mutant detection platform, which allowed players

to identify and eliminate mutants in software programs by writing a test or labeling

them as equivalent. Players could earn points for successfully killing a mutant or

agreeing on its equivalence. The study aimed to investigate the effects of different

mutant and player attributes to optimize the game and achieve the best possible results

for the tester. The idea sounds promising, but there is no indication that there exists an

actual implementation as of today. Most recently, Jammalamadaka and Parveen (2022)

suggested an interesting approach using the wavelet convolutional rain optimization

technique to distinguish between equivalent and nonequivalent mutants based on code

features. They added a wavelet function to the neural network to reduce the dimension

of features in the convolutional layers. The simulation results demonstrated that this

technique was better at identifying equivalent mutants in the source code than other

existing methods with 85.17% precision. To make it more valid, the authors need to

experiment with other classifiers for their approach. Moreover, Gong et al. (2022)

presented an innovative method for automatic detection of equivalent mutants by

tracing the program behavior. The research suggested that the detection of equivalent

mutants involves the use of a weighted software behavior graph, which was not

previously used. The proposed method was capable of detecting different execution

paths and was sensitive to the frequency of execution. By comparing the weighted

software behavior graphs of an alive mutant and its original program, it was possible

to precisely examine whether the alive mutant is the same as the original program in

terms of infection state or propagation. The authors evaluated the performance of their

approach using an open dataset of equivalent mutants manually evaluated. The results

showed that the approach was able to detect 77.5% of all equivalent mutants, which

was a significant improvement over the existing methods.

35

Equivalent mutant classification aims at categorizing mutants as either possible

to kill or possible to make equivalent by using the program characteristics rather than

detecting the existence of equivalent mutants. These techniques suggest that if a mutant

does not conform to the characteristics of the program, it is probably killable.

An empirical study conducted by Papadakis et al. (2014) revealed that equivalent

mutant classification is effective only when low-quality test suites are used for the

program under test. However, a study by Zhang et al. (2018) claimed that their

proposed methods, namely predictive mutation testing, can improve the precision

of mutant execution results with only a small overhead. Schuler and Zeller (2013)

investigated the use of coverage changes to detect nonequivalent mutants. They

claimed the hypothesis that if a mutant alters the coverage of a run, it is more likely

to be non-equivalent. The study involved 140 manually classified mutations of seven

Java programs. The findings indicated that the problem of undetected mutants was

widespread, with about 45% of these mutants being equivalent. Furthermore, manual

classification of mutants was a time-consuming task, with approximately 15 minutes

required per mutation. The study showed that coverage is a simple, efficient, and

effective method of identifying equivalent mutants. The authors should focus on

finding the most powerful mutants and evaluate improvements in test suites using

the proposed approach in future studies. Naeem et al. (2020) developed a method to

predict equivalent mutants without the need for manual human intervention by training

classification models. To achieve this, the authors utilized three different classifiers;

Random Forest, Gradient Boosted Trees, and Support Vector Machines. Through

experiments carried out on ten subject programs ranging from a few hundred to a

few thousand lines of code, the study demonstrated that the proposed approach can

achieve high levels of accuracy in predicting classification results in two application

scenarios. Since machine learning is a current trend for mutation testing, the idea

should be further investigated using various mutant reduction techniques, such as

selective mutation. A more recent approach by Kusharki et al. (2022) presented an

automated method to classify equivalent mutants in the mutation testing of Android

applications using tree-based convolutional neural networks. The authors used a tool

to generate a standardized dataset, transformed the data into vector representation,

36

and generated training, development, and testing datasets. The results indicated that

automating the classification of equivalent mutants still requires more work and should

be explored further using more operators and other tools.

2.4. Challenges and Current Trends for Mutation Testing

In this section, challenges and current trends in mutation testing that involve newly

emerging ideas and approaches, especially considering the latest advances in artificial

intelligence, are discussed to enrich our understanding of RQ1.

2.4.1. Challenges and Interests of Mutation Testing

Although mutation testing has been around for several decades, it still faces a

number of challenges, and new trends and interests are emerging in the field. These

challenges and interests for mutation testing can be listed as follows:

• One of the biggest challenges in mutation testing is the high computational cost.

Mutation testing involves the creation of a large number of mutant programs,

each of which must be executed using the test suite. This may be time-

consuming and computationally expensive, particularly for large codebases. As

a result, researchers and practitioners are exploring new techniques to reduce the

cost of mutation testing.

• Another challenge in mutation testing is the tool support demands. While

there are several mutation testing tools available, they often have limitations in

terms of the languages and frameworks that they support. Additionally, some

of these tools can be difficult to use, particularly for those new to mutation

testing. As a result, researchers and practitioners are working on developing

new mutation testing tools that are more user-friendly and support a wider range

of programming languages and frameworks.

• Mutation analysis for model-based testing using formal models and generated

variations from those models is another area which requires constructing a

model of the software under test. This model can be a formal model, such as

37

a finite-state machine or a push-down automata, or an informal model, such

as a high-level design document. Then, mutants are generated for the model

followed by test case execution and adequacy calculation. Model-based testing

can be challenging to implement, especially for complex software systems. It

requires expertise in model construction and mutation generation, and it can be

computationally expensive to execute a large number of mutants. However, it is

a valuable approach to identify weaknesses in a test suite and guide future testing

efforts.

• In recent years, there has been growing interest in the application of mutation

testing to machine learning models. Machine learning models are increasingly

being used in a wide range of applications, from healthcare to finance. However,

these models can be difficult to test, particularly as they become more complex.

Mutation testing offers a way to evaluate the quality and effectiveness of machine

learning models by creating small changes to the model and evaluating its

performance. This is an exciting new area of research in mutation testing and

one that is likely to see significant growth in the coming years.

• There is a trend towards the integration of mutation testing into continuous

integration and continuous delivery (CI/CD) pipelines. CI/CD pipelines are

used to automate software testing and deployment, and mutation testing can be

a valuable addition to these pipelines. By integrating mutation testing into the

pipeline, developers can automatically evaluate the quality and effectiveness of

their test suites, and identify potential bugs and errors before they are deployed

to production.

• Automated test case generation for mutation testing is another interest which

refers to the process of automatically creating test cases that can detect faults

in the software being tested. It can be useful in overcoming challenges that

come with manual test case creation. Techniques such as search-based testing

using heuristic approaches, such as genetic algorithms, symbolic execution,

and random testing, can be employed to generate test cases. Automated test

case generation helps to reduce the effort and cost required for creating test

38

cases. However, it also presents challenges, such as ensuring the effectiveness of

the generated test cases and achieving coverage of the possible inputs. With

advanced techniques and tools, automated test case generation for mutation

testing can be an efficient and effective way to test software.

• Mutant generation is important because it can help improve the quality and

reliability of software. However, it is equally important to generate mutants in a

way that balances mutation density, maintains equivalence, and ensures coverage

for meaningful results. Balancing mutation density means creating a reasonable

number of mutants that are sufficient to test the program, but not too many to

overwhelm the testing process. Too many mutants can be time-consuming and

resource-intensive and lead to diminishing returns. By balancing the mutation

density, the testing process can be made more efficient and effective.

• Dealing with equivalent mutants is crucial to ensure that the mutations do not

change the program’s functionality. Equivalent mutants do not contribute to the

testing process and can waste resources. Therefore, it is essential to identify and

remove equivalent mutants to avoid skewing the results.

Mutation testing research in computer science is constantly growing to address the

above challenges and new developments. New practitioners and researchers in the field

are expected to facilitate the application of this area to industrial projects in the future.

2.4.2. A Hot Topic: Artificial Intelligence Supported Mutation Testing

It is almost impossible to guarantee that no bugs remain in a piece of software.

However, it is still necessary to have adequate test sets in accordance with the test

policy during validation activities. At this point, artificial intelligence (AI) methods

can be used to learn from errors and produce mutants that mimic possible errors.

This improves the quality of the test cases and helps to decrease the time and budget

needed. It also supports test automation, enabling rapid generation of new white-box

test cases when software changes are made (Cai et al., 2021), and defect prediction,

reducing costs while providing high-quality software products (Pachouly et al., 2022).

39

The application of AI techniques in mutation testing has been studied by various

researchers and has recently become an important trend.

Sleuth was one of the early automated test generation tools developed by a team

at Colorado State University to determine whether AI planning provided an easy and

natural way to generate test sequences (Mraz et al., 1995). The same team members

have also shown how the concepts of AI and mutation testing can be combined (von

Mayrhauser et al., 2000). As a result, they obtained useful mutants using four best

mutation operators. As the subject progressed, they pointed to understanding the

acceptance criteria for the adequacy of the mutation and the investigation of what

kind of mutations can produce useful error correction test scenarios, together with

the knowledge of the application.

AI subfields, such as machine learning (ML) and evolutionary computation (EC),

also considered and experimented within the concept of mutation testing and are

increasingly being used to enhance the mutation testing process. Artificial neural

networks (ANNs), which is a huge part of ML can automate the creation of mutations,

other techniques can improve the selection of mutations and can more accurately

analyze the results of tests, and EC can help create a smaller group of mutants while

still retaining important information. Figure 9 shows the utilization of AI subfields in

mutation testing applications.

2.4.2.1. Machine Learning

Machine learning techniques can be divided into two parts: Artificial Neural

Networks and other techniques.

Artificial Neural Networks: An ANN refers to a category of machine learning

algorithms that simulate the structure and function of the human brain. These

algorithms are designed to perform complex tasks, such as image recognition, speech

recognition, and natural language processing, by identifying patterns in large amounts

of data. In an ANN, artificial neurons, which are individual processing nodes, are

connected and process information by transmitting signals through the connections.

The strength of these connections can be modified during training, allowing the

network to learn from its experiences.

40

A
rt

ifi
ci

al
 N

eu
ra

l N
et

w
or

ks

M
ac

hi
ne

 L
ea

rn
in

g

M
ut

an
t

Se
le

ct
io

n

C
on

vo
lu

tio
na

l
N

et
w

or
ks

 fo
r M

ut
at

io
n

M
ul

ti-
la

ye
r P

er
ce

pt
ro

ns
fo

r M
ut

at
io

n
A

na
ly

si
s

R
ei

nf
or

ce
m

en
t L

ea
rn

in
g

fo
r H

ig
he

r-
O

rd
er

 M
ut

an
ts

M
ut

an
t

C
la

ss
ifi

ca
tio

n

A
ut

om
at

ed
 M

ut
an

t
 G

en
er

at
io

n

D
ee

p
Le

ar
ni

ng
 fo

r
Pr

ed
ic

tiv
e

M
ut

at
io

n

M
ut

an
t

Pr
io

rit
iz

at
io

n

Te
st

 C
as

e
Pr

io
rit

iz
at

io
n

M
ut

at
io

n
Sc

or
e

Pr
ed

ic
tio

n

Se
ar

ch
-b

as
ed

M

ut
at

io
n

Te
st

in
g

Pa
rt

ic
le

 S
w

ar
m

O
pt

im
iz

at
io

n

H
ill

 C
lim

bi
ng

U
til

iz
in

g
A

I i
n

M
ut

at
io

n
Te

st
in

g

Ev
ol

ut
io

na
ry

 C
om

pu
ta

tio
n

A
ut

om
at

ed
 M

ut
an

t
 G

en
er

at
io

n
A

nt
 C

ol
on

y
O

pt
im

iz
at

io
n

A
rt

ifi
ci

al
 B

ee
 C

ol
on

y
O

pt
im

iz
at

io
n

Te
st

 C
as

e
R

ed
uc

tio
n

O
th

er
 T

ec
hn

iq
ue

s

Fi
gu

re
9.

U
til

iz
in

g
A

Ii
n

m
ut

at
io

n
te

st
in

g.

41

One use of ANNs in mutation testing is to analyze the results of mutation testing

and identify patterns in the way that different mutations are detected by the tests. This

information could then be used to guide the selection of mutants for further testing,

helping to make mutation testing more efficient and effective. Another application of

ANNs in mutation testing is to automatically generate new mutants. ANNs could be

trained on a source code and then used to generate new mutants that are likely to be

effective in finding bugs and weaknesses in the code.

Shen et al. (2018) focused on the impact of mutation on neural networks and the

influence of neural depth on mutation analysis. The authors proposed the MuNN

method involving five mutation operators, which can calculate the mutation adequacy

score. They stated that theirs was the first study to analyze ANNs in the context

of mutation testing. The results of the experiments demonstrated that the analysis

of mutations in neural networks has distinct characteristics within the domain. This

suggests that domain-specific mutation operators are necessary to improve mutation

analysis. The results also reveal that the effects of mutation are gradually reduced as

the depth of the neurons increases.

Yao et al. (2019) argued that it is challenging to assess the adequacy of Con-

volutional Neural Network (CNN) applications using traditional testing criteria and

presented a new model coverage approach based on mutation testing for CNN by

applying it to a classification model called LeNet-5 to evaluate testing accuracy. Their

results demonstrated that the Add Fully Connected Layers (AFCL) model is the best

local model considering test adequacy. This study seems promising; however, it needs

to be further evaluated and validated using a wider range of test subjects.

Klampfl et al. (2020) used a mutated neural network and attempted to distinguish

it from its original form using test evaluation techniques. The results of their experi-

ments, which involved the use of Multi-Layer Perceptrons (MLPs) and Convolutional

Neural Networks (CNNs), indicated that relying solely on the mutation score is not

adequate to identify an adequate quantity of mutants. Their study showed that it

works at the configuration level, implying that the test data alone are insufficient for

thoroughly testing neural networks. They obtained 99% adequacy for MLP Classifier

Saturn and 97% adequacy for MLP Classifier X. As a result, it becomes apparent

42

that specialized testing suites for neural network libraries are required to significantly

improve the mutation score.

The application of ANNs in mutation testing is still in its early stages, and this area

has the potential to grow and evolve with technological advancement. ANNs could

become a valuable tool for software developers in the future, helping to improve the

quality and reliability of software systems.

Other Techniques: Other techniques deal with the development of algorithms and

models capable of learning from data and making predictions or performing actions

without explicit programming. The overall process involves training a model using a

large dataset, allowing it to identify patterns and relationships in the data. The model

then utilizes these patterns to predict the outcomes for new, previously unseen data.

There are three primary learning categories here: supervised learning, unsuper-

vised learning, and reinforcement learning. In supervised learning, the algorithm

is trained using a labeled dataset, where the correct output is known for each input.

The algorithm learns how to map between inputs and outputs and can then be used to

predict new unseen data. Unsupervised learning involves training an algorithm on an

unlabeled dataset, which requires the algorithm to identify patterns and relationships

in the data. This type of learning is utilized when the desired output is unknown and

is used to uncover hidden structures in the data. Reinforcement learning trains an

algorithm through trial-and-error, where the algorithm receives rewards or penalties

based on its actions. Over time, the algorithm learns the actions that are most likely to

result in the highest rewards.

Currently, discussions of these concepts inevitably include deep learning (DL). DL

is a specialized area within the field of ML that is based on the concept of ANNs.

The objective of DL is to create complex models that can learn and identify patterns

in large amounts of data, such as audio, images, and text. The term “deep" in deep

learning refers to the number of hidden layers in the network. This technique involves

training a model using a vast dataset that allows it to make predictions based on the

input data without the need for explicit programming. In recent times, deep learning

has been utilized in various applications such as speech and image recognition, natural

language processing, and autonomous vehicles and has produced outstanding results

43

in these areas. DL represents a high potential area within ML, and its impact on a wide

range of industries and applications continues to grow.

There are several ways in which other ML techniques can be utilized in mutation

testing. For instance:

• Automation of the mutation generation process, reducing the manual effort

required.

• Determination of which mutations are likely to have a greater impact on the code

and prioritize them for testing, reducing the manual testing effort.

• Prioritization of test cases based on their ability to detect mutations, allowing

testers to focus on the most crucial test cases first.

• Prediction of the mutation score of a program, which measures the efficacy of the

test suite in detecting mutations. This can help testers assess the completeness

of the test suite and identify areas that require additional testing.

Integration of other ML techniques in mutation testing has the potential to improve

the efficiency and effectiveness of the testing process, making it easier for developers

to identify and resolve code defects.

Strug and Strug (2012) used a classification algorithm to predict the success of

the mutation and assess errors encountered during the experiments. The approach

presented in the study was centered on the similarity between mutants. The goal was

to minimize the number of mutants that need to be tested by taking advantage of this

similarity. The structure of each mutant is analyzed by constructing a hierarchical

control flow graph that represents the program’s flow, variables, and conditions. Based

on this graph, a similarity score is calculated between the mutants. This score is then

used to predict the ability of a given test to detect a mutant by applying a classification

algorithm. The authors claimed that their results were promising; however, random

selection was problematic considering test suites. Therefore, more future work and

experimentation is required to validate the approach.

Zhang et al. (2018) proposed predictive mutation term which suggests the pre-

diction of testing results that can be identified without executing mutants. They

44

built a predictive model using classification algorithms with coverage and mutation

operators collected through mutants executed on previous versions of the projects.

Their experiments demonstrate that this method improves the efficiency of mutation

testing by up to 151.4X. Furthermore, in a study by Mao et al. (2019), additional

features and deep learning models were used to show a prediction accuracy of more

than 0.85 in 654 projects, and it was shown that it is consistent with the previously

proposed study Zhang et al. (2018). These advances seem to produce promising

solutions, although it is important to develop more models and compare them with

the results of this research.

Ma et al. (2018) proposed a new mutation testing framework specific to DL systems

using both source-level and model-level mutation operators in two datasets: MNIST

and CIFAR-10. The results show that the source-level mutation testing obtains lower

mutation score on model A, but obtains higher mutation score on model B. Hence they

concluded that, mutation testing increases the test quality of DL systems and can be

further extended to cover more diverse areas of deep learning. All of the discussed

applications can still be explored further by combining other subfields of AI, such as

vector support machines.

Naeem et al. (2019) used a TensorFlow-based deep learning Keras model to predict

whether mutants will survive or die. They applied predictive analysis using program

dependency graphs on five open source projects consisting of more than 10 KLOC

to minimize accuracy loss. Consequently, both RNN and MLP demonstrated strong

effectiveness in scalable mutation testing for mutant prediction.

Durelli et al. (2019) conducted a study to examine the application of ML in

software testing. Through a systematic mapping of the relevant literature, the study

classified the research based on various aspects such as the testing phase, the type of

ML technique utilized, and the type of software being tested. The results indicated

a noticeable increase in the use of ML in software testing and its application in

different testing phases, including requirement analysis, testing design, test case

generation, test case selection, and test execution. The research also highlighted that

the most prevalent type of ML applied in software testing is supervised learning,

followed by unsupervised learning and reinforcement learning. The study provides

45

a comprehensive examination of the current state of research in this field and identifies

potential avenues for future research.

Panichella and Liem (2021) discussed the usage of ML techniques in mutation

testing, due to the similarity of the ML model development process to the test-driven

development (TDD) process, where a training algorithm generates a model that fits the

data points to labels within a certain degree of precision. However, when considering

mutation testing techniques for ML systems through TDD, the distinction between

production and test code is unclear, and the authenticity of mutation operators can

be called into question. Based on these observations, the authors suggested several

steps to better align mutation testing techniques for ML with the paradigms and

terminology of classical mutation testing, such as competent programmer hypotheses

and the coupling effect. The study noted that there is no clear indication of how

ML approaches should be applied in mutation testing concepts. They also suggested

that, when ML is applied to mutation testing, important considerations are mutation

operators for ML, the system being tested and small mutant term.

Tambon et al. (2023) claimed that adapting mutation testing to DL systems would

make systems more verifiable than ever. DL testing is difficult due to its random

behavior. Although some progress has been made in using mutation testing for

supervised learning in DL, little has been done for reinforcement learning, which is

a crucial part of DL but operates differently from supervised learning. The authors

proposed the RLMutation framework for using mutation testing in reinforcement

learning, which identifies a set of mutation operators relevant to reinforcement learning

and produces test cases. This allowed for a comparison of different definitions of the

behavior of mutation operators and higher-order mutations. The results revealed that

the selection of the mutation killing definition can determine whether a mutation is

killed and how the test cases are generated. The framework successfully generated

higher-order mutations using DQN, A2C, and PPO models on LunarLander and

CartPol datasets with unique features that can improve testing in reinforcement

learning systems.

A more recently study by Khanfir et al. (2023) argued that pre-trained language

models can be used to automatically generate meaningful mutations with a better

46

chance of uncovering bugs in a program. They developed a predefined language model

called µBERT, based on fault injection. The proposed method uses these models to

prioritize the execution of test cases, so that the most important tests are run first, thus

reducing the total time required to perform a full mutation test. The results of the

experiments show that the effectiveness of µBERT was 82.92% compared to other

models: Pit-all, Pit-default, and Pit-rv-all. And, it can significantly reduce the time

required to perform mutation testing, while still effectively uncovering bugs in the

program. The authors stated that there is no research group currently working with

ML approaches in software testing and that their study sheds light on the usefulness of

these concepts in mutation testing.

2.4.2.2. Evolutionary Computation

EC is a subfield of AI that utilizes the concepts of natural selection and genetics

to optimize and resolve complex issues. This approach models problem-solving as a

natural selection process, where a population of potential solutions evolves over time

through selection and recombination of the best solutions, ultimately leading to the

discovery of a satisfactory solution.

Various techniques fall under the umbrella of EC including genetic algorithms,

genetic programming, evolution strategies, and particle swarm optimization, to name

a few. These techniques have been employed in diverse areas such as optimization,

machine learning, robotics, and control systems. EC offers a biologically inspired

solution to problem-solving in AI and has been applied to a wide range of applications

with notable success.

EC can play a role in mutation testing by automating the process of generating

and evaluating new mutations. For example, a genetic algorithm can be utilized to

evolve the set of mutations applied to the program, with the objective of maximizing

the detection of these mutants by the test suite. This approach can lead to the discovery

of more effective mutations and a more complete test suite. Thus, it is also known as

“search-based mutation testing".

In 2017, Jatana et al. (2017) conducted a systematic review to assess trends in

search-based mutation testing. Their analysis covered 43 papers, diving deeper into

47

18 of them. Their findings indicated that search-based methods are primarily effective

for both generating mutants and optimizing test cases. Another comprehensive review

was carried out by Silva et al. (2017). Their focus was on the application of meta-

heuristic methods in search-based mutation testing. They examined 49 papers related

to the creation of test data and another 15 concerning mutant generation. The main

techniques examined were genetic algorithms, hill climbing, and NSGA-II.

Souza et al. (2016) proposed a hill climbing algorithm to optimize the mutation

score, and experimented with C programs that include dynamic data structures and

pointers. To overcome the difficulties, the authors implemented constraints. The

results showed that the hill climbing algorithm outperforms other algorithms in

generating test data for mutation testing and is able to produce high mutation scores,

and it was concluded that this approach for test data generation in mutation testing is

worth exploring, but, however, it needs further experimentation and different datasets.

Jatana and Suri (2020) compared the performance of particle swarm optimization

and genetic algorithm in generating test data for mutation testing. The objective of

the evaluation was to evaluate the effectiveness of particle swarm optimization and

GA in optimizing the mutation score. The results indicated that both particle swarm

optimization and the genetic algorithm can be applied effectively to mutation testing,

with particle swarm optimization slightly outperforming the genetic algorithm in terms

of optimization of the mutation score.

Mishra et al. (2022) proposed a method to minimize the size of the test dataset

while maximizing the mutation score by removing duplicate test cases that cover

the same mutants. The method was applied to the same software under the test

used for path testing and has been shown to effectively cover a maximum number

of mutants with a minimum number of test cases and also to be capable of generating

a test suite that provides maximum path coverage while requiring fewer test cases

than other algorithms. As a result, the authors created an optimal test suite with the

highest adequacy, achieved by using a genetic algorithm to find the maximum mutation

coverage and eliminate redundant test cases. In the future, more tools should be added

to increase the effectiveness and verifiability of these results.

A recent study by Arasteh et al. (2022) used an artificial bee colony optimization

48

algorithm to identify the paths most susceptible to faults. Following this, they applied

mutation operators to the identified paths for analysis. Their methodology led to a

reduction of approximately 28% in the total number of mutants. The authors proposed

that widely used Java mutation testing tools such as MuJava and Jester could leverage

this strategy to generate mutants at a lower computational cost.

AI has been increasingly applied in mutation testing to improve its efficiency and

accuracy. The use of AI can help to automate the process of detecting nonequivalent

mutants, which reduces the need for manual effort and makes the testing process more

efficient. Moreover, AI techniques, such as ANNs, ML, and EC, can be used to develop

models that can accurately classify mutants as equivalent or non-equivalent. These

models can be trained on large mutant datasets, which can improve the accuracy of

the classification results. In general, the application of AI in mutation testing has the

potential to greatly enhance the effectiveness and efficiency of the testing process.

2.4.3. State of the Art Models for Mutation Testing Using AI

In recent years, significant progress has been made in developing state-of-the-art

(SOTA) models that take advantage of AI in mutation testing. These models aim

to automate and optimize the mutation testing process, leading to improved fault

detection and more efficient testing methodologies. By utilizing AI algorithms, these

SOTA models can effectively generate, evaluate, and prioritize mutants, enabling

software developers and testers to identify critical faults and vulnerabilities in their

code.

One such approach is DeepMutation, which uses neural networks to automatically

generate and evaluate mutants. By combining mutation operators and neural networks,

DeepMutation surpasses traditional methods in its ability to identify faults.

Another approach, known as MutateGCN, focuses on graph-structured code and

utilizes graph convolutional networks (GCNs). By representing the code as a graph and

employing GCNs, MutateGCN enhances mutation testing, particularly for programs

with graph-based structures.

MuDiff takes a machine learning-based approach, using diff analysis to detect

semantic discrepancies between mutants and the original code. This technique

49

prioritizes mutants based on their changes, improving the efficiency and effectiveness

of mutation testing.

DeepMutation++ builds upon the success of DeepMutation by incorporating

additional mutation operators and leveraging transfer learning. This extension enables

DeepMutation++ to enhance fault detection capabilities and exhibit good generaliza-

tion in various software projects.

2.5. Conclusion

Although the area of mutation testing appears to have reached its mature state,

the number of publications and studies on the topic is increasing regardless. We have

discussed equivalent mutants, the many computational cost reduction techniques that

have been proposed to reduce them, explained which AI techniques can be used to

enhance mutation testing, and examined current studies. However, these are still

ongoing issues that need attention. Recent work in the area also tends to focus

on developing source code applications that can use mutation testing in industry

supported by AI, increase the effectiveness of mutation analysis, and widen its areas

of application in software engineering.

The next focus in this thesis is on mutation testing tools for evaluation, search-

based mutation testing using evolutionary computation, and higher-order mutation

testing applications. In the next sections, we discuss, analyze, and experiment in these

areas of mutation testing.

As a result, RQ1 outlined in Section 1.4 is answered in this chapter: “What are

the existing studies, prevailing trends, challenges, and advancements in the field

of mutation testing as observed in recent academic and industry practices?” All

aspects and challenges of mutation testing are explored together with the recent

interests are identified. There is a current trend for using mutation testing with AI

practices. The findings of this chapter have been synthesized into a survey article

(Uzunbayir and Kurtel, 2024).

50

CHAPTER 3: AN ANALYSIS ON MUTATION TESTING TOOLS

This chapter aims to answer RQ2 outlined in Section 1.4: “How can existing

mutation testing tools for C# be compared in terms of their features and effectiveness?”

Mutation testing is resource intensive, requires a large number of mutants, making

it necessary to automate the mutant creation process. Many tools for mutation testing

exist both in the literature and in the field, each supporting a different programming

language. Most of the tools available were implemented using C, C++, and Java

programming languages, which support strong mutation, weak mutation, higher-order

mutation, as well as object-oriented operators specific to object-oriented programming

languages such as Java and C# (Papadakis et al., 2017). Since comparative studies

for C# is rather limited in the literature compared to other object-oriented languages,

our focus is on it. We list the most popular tools, discuss object-oriented operators,

investigate tools for C#, by examining their unique attributes to help testers select the

most suitable tool through a comparative evaluation, and present a case study to select

one of the available tools for our experiments used this thesis.

3.1. Mutation Testing Tools for Different Programming Languages

Mutation testing tools offer several advantages to software developers. These

benefits include improved test suite effectiveness, early bug detection, reduced cost,

faster software development, and improved code quality. Additionally, they can

improve software development efficiency by automating the testing process and

identifying defects more quickly. They vary in features, capabilities, and supported

languages. Some are open-source and freely available, while others are commercial

products. Choosing the right tool for a project depends on the programming language

used, the desired level of test coverage, and the available resources.

In this section, we cover 56 mutation testing tools. Note that there is a wide range

of tools in the literature, and from these, we selected the most popular ones proposed

or updated between 2013 and 2023. Moreover, we provide at least one tool for a

specific language as an example. Table 5 lists popular mutation testing tools and their

51

Table 5. Mutation testing tools.

Programming Language Tool
Alloy Mualloy
C Mutgen, ESTP, SMT-C, Milu
C++ MuCPP, Mutate_CPP
C and C++ Mull, Proteum, PlexTest, Certitude, CCMutator
C# Nester, Stryker, NinjaTurtles, VisualMutator, PexMutator,

CREAM
Fortran Mothra
Go Gremlins, Gomutate
Haskell Mucheck, Fitspec
HTML REDECHECK, WebMuJava
Java PIT, Jester, ByteME, MutMut, Bacterio, Jumble, muJava,

MuClipse, LittleDarwin, Judy, JavaLanche
JavaScript and Node.js Mutode, Mutandis
PHP MutateMe, Hambug, InfectionPHP
PL/SQL Muplsql
Ruby Mutant, Heckle
R Mutant
Rust Cargo Mutants
Python Mutmut, MutPy, Mutatest, CosmicRay
Scala Stryker4s, Scalamu
SQL SQLMutation, SchemaAnalyst, JDAMA
Swift Muter

supported programming languages. According to the table, Java and C# have many

different tools for mutation testing. Python supports four different tools, as it is also

a popular language. Many old and new programming languages have their own tool

support. Whenever a new programming language is proposed, its associated mutation

testing tool is also proposed, indicating that researchers are working on implementing

mutation support to the new trends.

Mutation testing tools automatically insert changes into code by mutation operators

and then check how well the test suite can find these changes. These tools give useful

information about how effective the test suite is and point out parts of the code that

might have hidden bugs by automating the process.

Instead of trying to review all mutation testing tools, which is not practical, we

focus on C# because it is popular, being widely used in many different applications,

there are a lot of tools available for it, and not much comparative research has been

done in this area yet.

52

3.2. Mutation Operators for C#

Mutation operators modify the original program to generate mutants. Common

mutation operators are applicable to multiple programming languages (Boubeta-Puig

et al., 2011). Table 6 details some of these operators specifically used for Fortran in

conjunction with the Mothra tool.

Table 6. Some traditional mutation operators (Jia and Harman, 2010).

Mutation Operator Description

AAR Array reference for array reference replacement

ABS Absolute value insertion

ACR Array reference for constant replacement

AOR Arithmetic operator replacement

ASR Array reference for scalar variable replacement

CAR Constant for array reference replacement

CNR Comparable array name replacement

CRP Constant replacement

CSR Constant for scalar variable replacement

DER DO statement alterations

DSA DATA statement alterations

GLR GOTO label replacement

SVR Scalar variable replacement

UOI Unary operator insertion

Conventional mutation operators, typically used in procedural programming lan-

guages, are quite broad in nature. In contrast, object-oriented programming languages

need a more extensive set of mutation operators to adequately test unique features such

as encapsulation, inheritance, and polymorphism (Kim et al., 2000).

Early studies on mutation operators for object-oriented languages centered around

Java. Following the successful application in Java, these operators were also adapted

for use in C# (as detailed in Table 7).

53

Table 7. Some mutation operators for C# (Derezińska, 2006).

Mutation Operator Description

AMC Access modifier change

IHD Hiding variable deletion

IHI Hiding variable insertion

IOD Overriding method deletion

IOP Overridden method calling position change

IOR Overridden method rename

ISK Base keyword deletion

IPC Explicit call of a parent’s constructor deletion

PNC New method call with child class type

JTD This keyword deletion

JSC Static modifier change

EAM Accessor method change

EMM Modifier method change

MNC Method name change

MCO Member call from another object

ORO Operand replacement operator

EMO Expression modification operator

RSR Return statement replacement

SAN Statement analysis

RFI Referencing fault insertion

EHR Exception handler removal

EHC Exception handling change

EXS Exception swallowing

DMO Delegated method order change

OID Overriding indexer deletion

NDC Namespace declaration change

PRM Property replacement with member field

54

Certain operators create easily killable mutants, which makes them not useful,

while others produce mutants that remain unkillable even after applying the entire

test suite. These indestructible mutants, known as equivalent mutants, yield the same

output as the original program. There are various strategies to address this problem,

including detecting, reducing, and classifying equivalent mutants (Orzeszyna, 2011).

A positive aspect of object-oriented operators is that they typically generate a smaller

number of mutants compared to traditional operators (Ma et al., 2005).

3.3. Mutation Testing Tools for C#

3.3.1. Nester

Nester (2002), the pioneering mutation testing tool for C#, requires the .NET

Framework 2.0 and is compatible only with the NUnit framework. Its latest version

features an XML-based grammar and a C# parser, enhancing its ability to dynamically

read grammar tokens for faster mutation analysis. It includes a GUI, influenced by the

SharpDevelop IDE, with a text editor.

In its project view mode, Nester displays project files with a clear color-coding

system: mutants killed in green, mutants surviving in red, and code sections not

covered by test cases in blue. This visual approach effectively demonstrates code

evaluation post-testing.

Mutation Information displays test results in raw XML format, with HTML and

Excel also supported. The results are presented in a square table format, making

it easier to see how many mutants each test case eliminates. Nester supports

various mutation operators, including addition, multiplication, shift, and or, relational,

inclusive or, exclusive or, conditional and, and conditional or operators.

3.3.2. Stryker

Stryker (2014), also known as Stryker.NET, is another C# mutation testing tool that

can be installed via the NuGet package manager. It works with .NET CoreApp 1.1+

and .NET Framework 4.5+, requiring .NET core runtime 2.2+ for seamless operation.

Stryker supports a range of operators,

55

• Arithmetic operators (+,−,∗,/,%)

• Assignment statements (+=,−=,∗=,/=,% =,<<=)

• Boolean literals (true, f alse)

• Checked statements (checked(1+2))

• Equality operators (>,<,>=,<=,==, ! =)

• Logical operators (&&, ||)

• LINQ methods (f irst(), last(),skip())

• String literals (“”)

• Unary operators (+var,−var, var)

• Update operators (var++,var−−,++ var,−− var)

Stryker features five different reporters for result display which can be listed as

follows:

• HTML Reporter: Outputs an HTML file for a visual representation of the

project and mutations, suitable for large projects with numerous mutants.

• Console Reporter: Visually displays mutations post-test run, without creating

new files, ideal for smaller projects needing quick runs.

• Progress Reporter: Shows the real-time status of the mutation test, including

a time counter for the remaining test time, making it appropriate for larger

projects.

• Console Dots Reporter: Indicates the number of mutants that have completed

testing without impacting system performance, useful in build servers.

• JSON Reporter: Outputs a JSON file for a visual representation of mutations

from the last test run.

56

3.3.3. NinjaTurtles

NinjaTurtles (2014), an open-source and user-friendly C# mutation testing frame-

work, supports method-by-method testing to improve test suite quality and is con-

ducive to test-driven development. It seamlessly integrates with existing C# unit test

frameworks.

The installation options for NinjaTurtles include using the NuGet package manager

or downloading binary files. Its source code is available on CodePlex for those who

need it. The framework is equipped with a variety of operators, such as arithmetic and

bit-wise operators, branch substitution, conditional boundary, sequence point deletion,

and substitutions for reading and writing variables, parameters, and fields of the same

type.

NinjaTurtles delivers test results in an XML file format and is compatible with

numerous unit testing frameworks, including NUnit, xUnit, and MSTest.

3.3.4. VisualMutator

VisualMutator (2013) is another mutation testing tool for C# that integrates as an

extension within the Visual Studio IDE. The tool mutates code during post-compilation

and is capable of second-order mutation using its built-in operators. It is compatible

with NUnit and XUnit frameworks and can output results to an XML document if

required. Its integration as a Visual Studio tool window makes it user-friendly, and

includes functionality to mark equivalent mutants.

The tool is well documented on its website and supports a range of traditional and

object-oriented mutation operators:

• Super/base keyword deletion

• Delegated method change

• Method delegated for event handling change

• Accessor modifier method change

• Exception handler removal

57

• Exception handling change

• Exception swallowing

• This keyword insertion

• Member variable initialization deletion

• Member call from another inherited class

• Reference assignment with other compatible type

Additionally, VisualMutator offers a command prompt feature for situations where

interactivity is not necessary.

3.3.5. PexMutator

PexMutator (2010) is the fifth mutation testing tool that uses dynamic symbolic

execution for test generation. Initially, it transforms the original program into a

meta-program featuring weak mutant killing constraints. Subsequently, PexMutator

leverages its engine to generate test cases, which are then used in conjunction with the

weak constraints to eliminate the mutants.

This tool utilizes five effective mutation operators: relational, arithmetic, logical,

binary, and unary operators.

3.3.6. CREAM

The Creator of Mutants CREAM (2008) is the last mutation testing tool discussed

in this study for C# programs. To operate effectively, it requires the .NET Framework

4.0 and Visual Studio. Additionally, it is compatible with NUnit, NCover, SVN Client,

and Excel.

CREAM’s most recent version encompasses structural operators as well as a

variety of object-oriented operators. Detailed information about these features is

available in its user manual. To address the issue of equivalent mutants, CREAM offers

optional cost-saving techniques such as selective mutation and mutant clustering.

58

3.4. An Analysis of Mutation Tools for C# Based On Tool Characteristics

In this section, we conduct an analysis based on tool characteristics. For this

reason, we perform an analysis and comparison between C# tools discussed in the

previous section, we define four tool characteristics: 1) open-source, 2) object-oriented

operators, 3) mutation generation level, and 4) mutant format based on a study by

Halabi and Shaout (2016). Open-source implies that the source code of the tool

is publicly accessible and modifiable. Object-oriented operators determine if the

tool supports specific operators for object-oriented programming, as discussed in

Section 3.2. Mutation generation level refers to optimization techniques during run-

time, including source code, byte-code, or compiler-based methods. Mutant format

addresses the efficiency aspect, questioning whether mutants are stored in separate

files or in memory.

We have introduced seven additional characteristics common among the tools: 1)

traditional operators, indicating support for standard mutation operators; 2) unit testing

frameworks, specifying compatible frameworks; 3) GUI, denoting the presence of a

graphical user interface for user convenience; 4) detailed user manual, assesses the

availability of an online guide for users; 5) LINQ support, checks if tools facilitate

LINQ queries, a C# syntax for data retrieval; 6) result display format, examines the

types of formats supported for displaying outcomes; 7) equivalent mutant reduction,

which is essential for mutation testing efficiency, to find if any tools offer features to

handle equivalent mutants.

The results of our analysis are presented in Table 8. This analysis revealed that all

the evaluated tools support traditional mutation operators. However, only NinjaTurtles,

VisualMutator, and CREAM offer object-oriented operators for managing object-

oriented aspects of the language. All tools are open-source, with the exception of

VisualMutator, which is being developed by the Institute of Computer Science at

Warsaw University of Technology. Multiple unit testing frameworks are supported

by some tools; for instance, NUnit is compatible with Nester, NinjaTurtles, Visual-

Mutator, and CREAM, while Stryker works with VSTest. There was no information

available regarding CREAM’s support.

59

Ta
bl

e
8.

Fe
at

ur
e

co
m

pa
ri

so
n

of
m

ut
at

io
n

te
st

in
g

to
ol

s
fo

rC
#.

C
ha

ra
ct

er
is

tic
s

N
es

te
r

St
ry

ke
r

N
in

ja
Tu

rt
le

s
V

is
ua

lM
ut

at
or

Pe
xM

ut
at

or
C

R
E

A
M

Tr
ad

iti
on

al
op

er
at

or
s

Y
E

S
Y

E
S

Y
E

S
Y

E
S

Y
E

S
Y

E
S

O
bj

ec
t-

or
ie

nt
ed

op
er

at
or

s
N

O
N

O
Y

E
S

Y
E

S
N

O
Y

E
S

O
pe

n-
so

ur
ce

Y
E

S
Y

E
S

Y
E

S
N

O
Y

E
S

Y
E

S
U

ni
tt

es
tin

g
fr

am
ew

or
ks

N
U

ni
t

V
ST

es
t

N
U

ni
t,

X
U

ni
t,

M
ST

es
t

N
U

ni
t,

X
U

ni
t

N
/A

N
U

ni
t,

N
C

ov
er

M
ut

an
tg

en
er

at
io

n
le

ve
l

So
ur

ce
co

de
B

yt
e-

co
de

C
om

pi
le

r-
ba

se
d

C
om

pi
le

r-
ba

se
d

C
om

pi
le

r-
ba

se
d

C
om

pi
le

r-
ba

se
d

G
U

I
Y

E
S

N
O

N
O

Y
E

S
N

O
Y

E
S

D
et

ai
le

d
us

er
m

an
ua

l
N

O
Y

E
S

Y
E

S
Y

E
S

N
O

Y
E

S
M

ut
an

tf
or

m
at

Se
pa

ra
te

fil
e

In
m

em
or

y
Se

pa
ra

te
fil

e
Se

pa
ra

te
fil

e
In

m
em

or
y

Se
pa

ra
te

fil
e

L
IN

Q
su

pp
or

t
N

O
Y

E
S

N
O

N
O

N
O

N
O

R
es

ul
td

is
pl

ay
op

tio
ns

X
M

L
,H

T
M

L
,E

xc
el

H
T

M
L

,J
SO

N
X

M
L

X
M

L
N

/A
E

xc
el

E
qu

iv
al

en
tm

ut
an

tr
ed

uc
tio

n
N

O
N

O
N

O
N

O
N

O
Y

E
S

60

In terms of mutant generation, Nester operates at the source code level, Stryker

at the byte-code level, and others at a compiler-based level. Having a graphical

user interface (GUI) simplifies usage, eliminating the need for command prompt

memorization. Nester, VisualMutator, and CREAM are equipped with GUIs, with

some such as Nester offering both GUI and non-GUI options.

The usability of tools is greatly influenced by the availability of comprehensive

documentation. Stryker, NinjaTurtles, VisualMutator, and CREAM provide detailed

guides on their websites. Stryker is the only tool that supports LINQ. Regarding

result display formats, many tools are optional for XML, while CREAM uses Excel,

and Stryker uses HTML and JSON. No information was found about PexMutator’s

capabilities in this area. Finally, CREAM stands out for its support of equivalent

mutant reduction, incorporating features such as strong and weak mutation interfaces,

selective mutation, and mutant classification. However, there is no further support for

CREAM, therefore, VisualMutator becomes the most useful and robust tool among all.

3.5. A Case Study: Cross-Evaluation of the Tools

In the following two chapters of this research, a particular mutation testing tool

for C# has been selected for mutant generation. This choice was the result of a

case study aimed at evaluating various tools to determine the most suitable one for

our research goals. We identified five tools analyzed in the previous Section 3.4

excluding CREAM. The decision not to include the CREAM tool in our C# mutation

testing toolkit was based on several reasons. The crucial one for its exclusion is its

discontinued support. In the dynamic domain of software engineering, especially

with a prevalent language such as C#, using tools that no longer receive updates or

support can introduce significant drawbacks. Tools without ongoing support might not

work well with the latest C# versions or frameworks, leading to potential integration

issues. They may also miss essential updates or fixes for known bugs, affecting the

test’s effectiveness and accuracy. Therefore, selecting a tool that benefits from active

maintenance ensures that our research remains current, efficient, and aligned with the

latest standards and methodologies in software testing.

61

3.5.1. Methodology

This case study included a detailed comparison of five selected mutation testing

tools. The primary objective of this cross-evaluation is to determine the extent to

which a test set that can be killed by one tool can also be killed by other tools. This

comparison is crucial as it reveals the strengths and weaknesses of each tool, based

on their mutation operators, fault detection capabilities, and overall compatibility with

different codebases. This rigorous evaluation, based on quantitative data guided us to

choose the tool that best meets the specific needs and objectives of our study.

The secondary goal of this case study is to ensure a balanced comparison among

the tools. Test cases in the test suite are designed to kill all killable mutants. A special

mutant set called a disjoint mutant set is required for these experiments (Kintis et al.,

2018). A disjoint mutant set is the minimum subset of mutants that need to be killed in

order to kill the original set. In other words, they do not contain any equivalent mutants.

Equivalent mutants produced by the tools have been manually identified and subtracted

from all mutants. Mutation testing is applied independently using each tool. Therefore,

one test set for each subject program, a total of eight test sets are generated manually.

Each test case was removed one by one and checked if the mutation score decreased or

not. To produce an accurate disjoint mutant set, it was necessary to remove redundant

test cases. At the end, a reference mutant set has been constructed from the disjoint

mutants sets considering all tools.

3.5.2. Research Questions

This case study aims to achieve an understanding of the effectiveness of mutation

testing tools for C#. Effectiveness in this section is defined as the ability of a mutation

testing tool to kill more mutants. The tool that demonstrates a higher mutant kill rate

is considered more effective. We delve deeper by dividing RQ2 into two distinct but

interrelated sub-research questions:

• RQ2a: Is there a C# mutation testing tool that is more effective than the others?

• RQ2b: How can these tools be fairly compared?

62

3.5.3. Subject Programs

To evaluate the effectiveness of the chosen tools, eight widely-used mutation

testing subject programs were selected, each differing in size and complexity. Some

of these programs were initially employed in Java-based experiments in a study by

Rani et al. (2015) and have been adapted into C# for this research, complemented by

additional similar common mutation testing programs. Table 9 presents a list of these

programs, along with their descriptions and code sizes.

Table 9. Subject programs for the case study.

Subject Program Description Lines of Code

FindMin Returns the minimum number element from a list. 15

Palindrome Finds if the word is a palindrome. 17

QuickSort A sorting routine. 25

QuadraticSolver Decides whether a given equation is quadratic or not. 73

TriangleType Finds the type of a triangle. 123

PrintPrimes Finds and prints n prime integers. 49

CalculateDays Finds the number of days between dates. 51

PatternIndex Finds index of pattern in a subject string. 85

3.5.4. Results

Our detailed study includes five separate tables, each dedicated to contrasting a

particular mutation testing tool with its competitors. Table 10 offers a comparison

of NinjaTurtles with various other tools, highlighting performance indicators. Table

11 puts Stryker in focus, comparing its functionality and performance efficiency with

other available tools. Table 12 is devoted to the analysis of Nester, comparing its

effectiveness and ease of use with others. In Table 13, we examine visualMutator,

analyzing how it compares and contrasts with other mutation testing tools. Lastly,

Table 14 examines PexMutator. Taken together, these tables provide a detailed

perspective, allowing a better understanding of the landscape of mutation testing tools

in C# in Table 15.

63

Table 10. NinjaTurtles vs. other tools.

NinjaTurtles
Stryker Nester VisualMutator PexMutator

Subject Program All
Mutants

Disjoint
Mutants

All
Mutants

Disjoint
Mutants

All
Mutants

Disjoint
Mutants

All
Mutants

Disjoint
Mutants

FindMin 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Palindrome 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 97.00% 84.33%
QuickSort 98.66% 76.86% 96.82% 87.24% 94.40% 90.01% 96.92% 87.19%
Quadratic 90.71% 84.01% 100.00% 100.00% 94.58% 85.12% 100.00% 100.00%
TriangleType 100.00% 100.00% 100.00% 100.00% 100.00% 90.39% 100.00% 73.22%
CalculateDays 99.25% 98.22% 100.00% 100.00% 95.55% 100.00% 100.00% 94.53%
PrintPrimes 100.00% 100.00% 100.00% 100.00% 97.18% 91.25% 92.00% 82.33%
PatternIndex 93.82% 77.20% 92.46% 88.53% 96.03% 92.78% 94.81% 90.25%
Average 97.81% 92.04% 98.66% 96.97% 97.22% 92.78% 97.59% 88.98%

Table 11. Stryker vs. other tools.

Stryker
NinjaTurtles Nester VisualMutator PexMutator

Subject Program All
Mutants

Disjoint
Mutants

All
Mutants

Disjoint
Mutants

All
Mutants

Disjoint
Mutants

All
Mutants

Disjoint
Mutants

FindMin 95.66% 90.21% 88.63% 80.44% 100.00% 95.55% 96.22% 92.15%
Palindrome 100.00% 100.00% 100.00% 100.00% 88.22% 85.46% 99.00% 92.25%
QuickSort 92.44% 90.48% 96.82% 87.24% 94.40% 90.39% 96.92% 87.19%
Quadratic 94.88% 84.01% 88.59% 78.56% 94.58% 85.12% 100.00% 100.00%
TriangleType 89.25% 82.15% 88.45% 80.77% 100.00% 100.00% 100.00% 77.66%
CalculateDays 91.55% 85.22% 92.55% 78.58% 100.00% 100.00% 100.00% 88.96%
PrintPrimes 100.00% 100.00% 100.00% 100.00% 97.18% 91.25% 92.00% 65.95%
PatternIndex 91.25% 78.98% 89.27% 76.25% 96.03% 85.44% 88.98% 78.88%
Average 94.38% 88.88% 93.04% 85.23% 96.30% 91.65% 96.63% 85.38%

Table 12. Nester vs. other tools.

Nester
NinjaTurtles Stryker VisualMutator PexMutator

Subject Program All
Mutants

Disjoint
Mutants

All
Mutants

Disjoint
Mutants

All
Mutants

Disjoint
Mutants

All
Mutants

Disjoint
Mutants

FindMin 93.58% 90.65% 92.63% 90.02% 99.65% 99.05% 100.00% 100.00%
Palindrome 88.69% 75.98% 89.36% 81.56% 92.63% 88.63% 100.00% 84.33%
QuickSort 96.54% 89.55% 96.55% 77.52% 100.00% 100.00% 95.63% 88.77%
Quadratic 91.58% 88.65% 89.56% 82.22% 95.66% 87.64% 100.00% 100.00%
TriangleType 100.00% 100.00% 78.63% 65.26% 89.63% 85.50% 100.00% 73.22%
CalculateDays 99.45% 88.62% 100.00% 100.00% 100.00% 100.00% 88.63% 78.63%
PrintPrimes 93.66% 91.88% 100.00% 100.00% 100.00% 100.00% 90.65% 86.63%
PatternIndex 95.69% 79.56% 80.56% 73.65% 93.63% 89.26% 94.66% 91.05%
Average 94.90% 88.11% 90.91% 83.78% 96.40% 93.76% 96.63% 87.83%

64

Table 13. VisualMutator vs. other tools.

VisualMutator
NinjaTurtles Stryker Nester PexMutator

Subject Program All
Mutants

Disjoint
Mutants

All
Mutants

Disjoint
Mutants

All
Mutants

Disjoint
Mutants

All
Mutants

Disjoint
Mutants

FindMin 96.63% 91.66% 85.69% 88.95% 90.85% 85.74% 95.63% 91.56%
Palindrome 100.00% 100.00% 91.52% 85.96% 100.00% 100.00% 95.00% 94.63%
QuickSort 88.65% 78.69% 100.00% 100.00% 92.65% 86.52% 85.64% 80.56%
Quadratic 92.88% 89.68% 100.00% 100.00% 90.56% 84.58% 78.95% 71.57%
TriangleType 89.66% 81.97% 88.56% 80.47% 100.00% 100.00% 100.00% 84.65%
CalculateDays 96.78% 92.85% 78.50% 69.56% 100.00% 100.00% 100.00% 93.59%
PrintPrimes 100.00% 100.00% 87.99% 76.52% 91.56% 82.69% 93.65% 87.44%
PatternIndex 89.65% 78.95% 85.45% 80.56% 85.45% 75.98% 92.63% 88.56%
Average 94.28% 89.23% 89.71% 85.25% 93.88% 89.44% 92.64% 86.57%

Table 14. PexMutator vs. other tools.

PexMutator
NinjaTurtles Stryker Nester VisualMutator

Subject Program All
Mutants

Disjoint
Mutants

All
Mutants

Disjoint
Mutants

All
Mutants

Disjoint
Mutants

All
Mutants

Disjoint
Mutants

FindMin 100.00% 100.00% 100.00% 100.00% 95.63% 92.36% 88.52% 81.64%
Palindrome 100.00% 100.00% 100.00% 100.00% 94.78% 90.06% 91.00% 84.12%
QuickSort 89.57% 85.63% 96.82% 87.24% 100.00% 100.00% 95.79% 92.63%
Quadratic 94.56% 89.74% 76.52% 75.26% 95.96% 87.49% 84.96% 82.25%
TriangleType 78.56% 69.96% 100.00% 100.00% 78.63% 74.62% 100.00% 89.63%
CalculateDays 89.65% 84.45% 100.00% 100.00% 79.63% 68.92% 100.00% 88.58%
PrintPrimes 90.63% 87.85% 100.00% 100.00% 91.62% 90.01% 100.00% 81.69%
PatternIndex 89.52% 84.44% 90.63% 85.46% 96.26% 89.52% 94.63% 91.45%
Average 91.56% 87.76% 95.50% 93.50% 91.56% 86.62% 94.36% 86.50%

Table 15. Relative test suite evaluation.

NinjaTurtles Test Suite Stryker Nester VisualMutator PexMutator
All Mutants 94.38% 94.90% 94.28% 91.56%
Disjoint Mutants 88.88% 88.11% 89.23% 87.76%
Stryker Test Suite NinjaTurtles Nester VisualMutator PexMutator
All Mutants 97.81% 90.91% 89.71% 95.50%
Disjoint Mutants 92.04% 83.78% 85.25% 93.56%
Nester Test Suite NinjaTurtles Stryker VisualMutator PexMutator
All Mutants 98.66% 93.04% 93.88% 91.56%
Disjoint Mutants 96.97% 85.23% 89.44% 86.62%
VisualMutator Test Suite NinjaTurtles Stryker Nester PexMutator
All Mutants 97.22% 96.30% 96.40% 92.64%
Disjoint Mutants 92.78% 91.65% 93.76% 86.57%
PexMutator Test Suite NinjaTurtles Stryker Nester VisualMutator
All Mutants 94.59% 96.63% 92.64% 96.15%
Disjoint Mutants 88.98% 85.38% 86.57% 87.83%

65

Table 16. Average results for mutation score

Mutation Adequate Test Suites Average
VisualMutator 95.64%
PexMutator 95.00%
Nester 94.29%
NinjaTurtles 93.78%
Stryker 93.48%

Table 17. Average results for disjoint mutant sets.

Mutation Adequate Test Suites Average
VisualMutator 91.19%
Nester 89.57%
Stryker 88.66%
NinjaTurtles 88.50%
PexMutator 87.19%

RQ2a: Is there a C# mutation testing tool that is more effective than the others? To

answer RQ2a, we can ask if there is a tool that subsumes the others? Or, is there a tool

that kills all killable mutants of other tools? There can be two answers; yes, there is a

single tool that is superior to others. Or, no, there is not a single tool that is superior to

others, which means the tools are not comparable.

According to the results in Table 16, and Table 17, there is no tool that subsumes the

rest. All generated test suites have reduced effectiveness when compared to mutants

with other tools. Stryker test suite performs the worst compared to the others on

average. VisualMutator test suite performs the best when compared to the others on

average.

RQ2b: How can these tools be fairly compared?

To answer RQ2b, a special mutant set called a reference mutant set based on

disjoint mutant sets is required. It helps to classify the tools in terms of their

effectiveness. Table 18 shows the number of mutants in the reference mutant sets for

each subject program. As a result, a total of 184 mutants are selected in the reference

mutant sets. The performance is different for all methods; however, on the average

results can be discussed. Based on the results in Table 19, VisualMutator seems to

perform the best among the listed tools with a high average of 93.47%. PexMutator

also has a respectable average score of 91.30%. Although not as high as VisualMutator,

66

Table 18. Reference mutant set.

Number of Disjoint Mutants Number of Mutants
Subject Program NinjaTurtles PexMutator Nester Stryker VisualMutator Reference Set
FindMin 4 3 4 3 4 4
Palindrome 6 9 11 7 9 11
QuickSort 14 13 14 13 12 14
Quadratic 16 19 14 14 15 19
TriangleType 19 22 21 18 24 24
CalculateDays 26 29 25 25 33 33
PrintPrimes 33 35 30 29 31 35
PatternIndex 41 38 40 41 44 44
TOTAL 159 168 160 150 172 184

Table 19. Tool rankings.

Mutation Adequate Test Suites Average
VisualMutator 93.47%
PexMutator 91.30%
Nester 86.95%
NinjaTurtles 86.41%
Stryker 81.52%

it still indicates that PexMutator is effective in mutation testing. Nester falls in the

middle with a score of 86.95%. It is not the highest, but it is certainly not the lowest

either. This suggests that it is effective in detecting faults or vulnerabilities in the

software being tested. Stryker has the lowest score among the listed tools with an

average of 81.52%. This suggests that it might not be as effective compared to the

others. Therefore, we selected VisualMutator to generate mutants for our study.

3.6. Conclusion

This chapter proved to be crucial for the subsequent chapters of this study, as it

facilitated the identification of the most effective and practical mutation testing tool for

C# through our experimental findings. Following this, our research progressed with

a case study that involved a comparative evaluation of the performance of selected

tools, aiming to identify and show the top performer. This allowed us to establish

a comprehensive comparison of these tools for further analysis. This comparative

analysis will be beneficial for testers in choosing the optimal mutation testing tool for

C# applications. Future expansions of this study could include exploring additional

tool characteristics and subject programs. Additionally, similar studies could be

67

conducted for different programming languages and their tools, broadening the scope

and applicability of the research.

As a result, RQ2 outlined in Section 1.4 is answered: “How can existing mutation

testing tools for C# be compared in terms of their features and effectiveness?”

Available mutation testing tools for C# were reviewed and analyzed. A case study

was conducted to determine the most suitable tool for the experiments conducted

in this thesis which was determined as VisualMutator. The findings of this chapter

have been synthesized into a conference article except the case study presented in

Section 3.5 (Uzunbayir and Kurtel, 2019).

68

CHAPTER 4: EVOCOLONY: A HYBRID APPROACH

This section aims to answer RQ3 outlined in Section 1.4: “How can the number

of test cases in a test suite be reduced, and how can this process be enhanced using

meta-heuristic methods in search-based mutation testing?”

Test case reduction is one of the key problems in mutation testing, primarily

due to its role in enhancing process efficiency and reducing computational demands.

By simplifying the number of test cases, this process can cut down on resource

usage, associated costs, and sharpens the focus on the most effective tests, leading

to improved fault detection. Furthermore, it contributes to better test suite quality

by eliminating redundant tests and ensures that mutation testing remains scalable.

Search-based mutation testing uses meta-heuristic approaches to enhance the mutation

testing process. These methods excel in rapidly exploring numerous potential

solutions, especially useful in mutation testing due to the large search space created

by numerous code mutations. However, one challenge lies in managing the test suite

size, which can slow down the process. To address this, this chapter has focused

on developing EvoColony, a novel approach combining genetic algorithms and ant

colony optimization to reduce test cases in a test suite. This hybrid method leverages

the strengths of both techniques: genetic algorithms provide an effective initial

solution, while ant colony optimization refines it and avoids local optima, ensuring

a balance between exploration and exploitation. The effectiveness of EvoColony is

validated against traditional methods, including random search and variants of genetic

algorithms, showing superior performance in achieving optimal solutions.

4.1. Search-Based Mutation Testing

Search-based mutation testing merges mutation testing principles with search-

based optimization methods. This technique employs meta-heuristic algorithms such

as genetic algorithms, ant colony optimization, or particle swarm optimization. Meta-

heuristics are capable of solving complex problems with the aim of finding an optimal

solution from a large search space (Silva et al., 2017). In the context of mutation

69

testing, these algorithms can be independently used to generate optimal mutants or

reduce test cases of the test suite. Therefore, search-based mutation testing can

increase testing efficiency by lowering time and computational demands for creating

and maintaining a robust test suite, and automating test case generation to decrease

manual intervention.

Figure 10 shows the categorization of meta-heuristics with examples. Different

meta-heuristic algorithms can be applied in search-based mutation testing, each with

specific limitations. Some of these can be listed as follows:

• Ant colony optimization is theoretically complex and has unpredictable conver-

gence times.

• Genetic algorithms may be slow to converge to a solution, require long iterations,

and can be computationally expensive.

• Particle swarm optimization risks getting trapped in local minimums, and its

performance is highly parameter-sensitive.

• Simulated annealing can take a long time to converge in complex scenarios, and

selecting an appropriate cooling schedule is crucial.

• Tabu search can be computationally demanding and needs a memory structure.

To overcome these drawbacks, a multipurpose strategy is often necessary. Hybrid

models combining different algorithms’ strengths are common, improving both relia-

bility and efficiency. Parameter tuning is critical, with automated methods such as grid

search or dynamic adaptation during the run aiding in finding optimal settings.

In this chapter, the aim is to use search-based mutation testing in test case reduction.

The challenge of test case reduction in software testing is a critical issue that focuses

on reducing the size of test suites while ensuring that they maintain their effectiveness

and comprehensive coverage. This problem is particularly relevant because of the

increasing complexity of software systems, leading to larger and more unwieldy test

suites. As the number of test cases grows, so does the demand for time and resources

for testing, making efficiency a key concern. In the following sections, we discuss

70

M
et

a-
H

eu
ris

tic
 O

pt
im

iz
at

io
n

A
lg

or
ith

m
s

Ev
ol

ut
io

na
ry

A

lg
or

ith
m

s
Sc

ie
nc

e-
B

as
ed

A

lg
or

ith
m

s
Sw

ar
m

 In
te

lli
ge

nc
e

A
lg

or
ith

m
s

H
um

an
-B

as
ed

A

lg
or

ith
m

s

G
en

et
ic

 A
lg

or
ith

m
s

Ev
ol

ut
io

n
St

ra
te

gy

G
en

er
ic

 P
ro

gr
am

m
in

g

Ev
ol

ut
io

na
ry

Pr
og

ra
m

m
in

g

Si
m

ul
at

ed
 A

nn
ea

lin
g

C
ha

rg
ed

 S
ys

te
m

Se
ar

ch

C
en

tra
l F

or
ce

O
pt

im
iz

at
io

n

Bl
ac

k
H

ol
e

Al
go

rit
hm

Pa
rti

cl
e

Sw
ar

m
O

pt
im

iz
at

io
n

An
t C

ol
on

y
O

pt
im

iz
at

io
n

Ar
tif

ic
ia

l B
ee

 C
ol

on
y

C
ro

w
 S

ea
rc

h
Al

go
rit

hm

H
ar

m
on

y
Se

ar
ch

Ex
ch

an
ge

 M
ar

ke
t

Al
go

rit
hm

H
um

an
 G

ro
up

Fo
rm

at
io

n
Al

go
rit

hm

Po
lit

ic
al

 O
pt

im
iz

er

Ba
ct

er
io

lo
gi

ca
l

Al
go

rit
hm

H
ill

C
lim

bi
ng

Fi
re

fly
 A

lg
or

ith
m

Br
ai

n
St

or
m

O
pt

im
iz

at
io

n

Fi
gu

re
10

.M
et

a-
he

ur
is

tic
op

tim
iz

at
io

n
al

go
ri

th
m

s
ca

te
go

ri
za

tio
n

w
ith

ex
am

pl
es

.

71

test case reduction problem, genetic algorithms, and ant colony optimization in detail.

Then, we propose and experiment with our proposed approach EvoColony which uses

both meta-heuristics to reduce test cases in search-based mutation testing.

4.2. Test Case Reduction Problem

A major aspect of test case reduction is identifying and eliminating redundant test

cases (see Figure 11). These are tests that do not add extra value in terms of coverage

or defect identification. Optimizing the test suite by eliminating such redundancies is

essential, but it must be done without compromising the quality of the testing process.

The goal is to generate a smaller set of test cases that are equal to its larger form, and

still effective.

Eliminate
redundant test

cases

Test Case 1

Test Case 2

Test Case 3

Test Case 4

Test Case 5

Test Case 6

Test Case 7

Test Suite

Test Case 1

Test Case 3

Test Case 6

Test Case 7

Test Suite

Figure 11. Test suite reduction process.

Balancing efficiency with effectiveness is at the heart of the test case reduction

problem. The objective is to reduce the number of test cases without reducing

their ability to detect defects. This balance is crucial as it ensures that the testing

process remains thorough and becomes more efficient. Additionally, there are often

limitations in terms of the cost and resources available for testing. With limited time

and computational power, optimizing the testing process to make the most of these

resources is a key consideration. Another layer of complexity is added by the dynamic

nature of the software. Frequent changes and updates in software require continuous

72

revisions and optimizations of the test suite. This dynamic environment makes the

test case reduction problem even more challenging, as the test suite must be regularly

evaluated and adjusted to remain effective.

Haga and Suehiro (2012) introduced a method for test case reduction using a

reduction matrix. This method is illustrated in Figures 12 and 13, which depict an

example based on this study. Initially, the scenario involves 9 test cases and 6 mutants.

Upon analysis, it is observed that test cases 1, 2, and 3 are redundant, since test case

4 alone is capable of eliminating all the mutants that these tests collectively address.

Consequently, test cases 1, 2, and 3 are eliminated. Similarly, test cases 6, 7, and 8

are found to be also redundant because test case 5 can target all mutants that these

tests could. As a result, these test cases are also removed. Ultimately, this approach

effectively reduces the number of test cases from 9 to just 3, while still ensuring that

all mutants are addressed during testing.

Ensuring that the reduced test suite still covers all critical aspects of the program,

including both functional and nonfunctional requirements, is also vital. The ultimate

aim is to utilize the testing process, making it more efficient and cost-effective while

maintaining the reliability of the software. To achieve this, various meta-heuristics are

employed. These strategies focus on finding the optimal balance between reducing the

size of the test suite and maintaining robust coverage and defect detection capabilities.

In this study, we selected two meta-heuristics to further investigate the challenges

of test case reduction. According to Jatana et al. (2017) genetic algorithms are the

most frequently used technique for search-based mutation testing. These algorithms

operate as they are exploring different parts of an unknown territory, ensuring that the

important areas of the search space will not be missed. This approach helps finding

a good, but not the best, solution. On the other hand, ant colony optimization uses a

team of ants efficiently searching for food. This approach would effectively intensify

the search around the promising areas identified by genetic algorithm. It fine-tunes and

enhances the solutions, focusing on the most promising paths identified in the initial

exploration phase. Therefore, we combined these two approaches.

73

1

0

0

0

1

0

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9

M1

M2

M3

M4

M5

M6

1

0

0

0

0

1

0

0

1

0

0

0

1

0

0

0

1

1

1

0

1

1

0

1

1

0

0

1

0

0

0

0

0

0

1

0

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

0

1

0

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9

M1

M2

M3

M4

M5

M6

1

0

0

0

0

1

0

0

1

0

0

0

1

0

0

0

1

1

1

0

1

1

0

1

1

0

0

1

0

0

0

0

0

0

1

0

1

0

1

0

0

1

1

1

0

0

0

0

1

0

0

0

1

0

TC1 TC2 TC3 TC4 TC5 TC6 TC7 TC8 TC9

M1

M2

M3

M4

M5

M6

1

0

0

0

0

1

0

0

1

0

0

0

1

0

0

0

1

1

1

0

1

1

0

1

1

0

0

1

0

0

0

0

0

0

1

0

1

0

1

0

0

1

1

1

0

0

0

0

Figure 12. Test case reduction using detection matrix.

74

TC4 TC5 TC6 TC7 TC8 TC9

M1

M2

M3

M4

M5

M6

0

0

1

0

0

0

1

0

0

0

1

1

1

0

1

1

0

1

1

0

0

1

0

0

1

0

1

0

0

1

1

1

0

0

0

0

TC4 TC5 TC6 TC7 TC8 TC9

M1

M2

M3

M4

M5

M6

0

0

1

0

0

0

1

0

0

0

1

1

1

0

1

1

0

1

1

0

0

1

0

0

1

0

1

0

0

1

1

1

0

0

0

0

TC4 TC5 TC9

M1

M2

M3

M4

M5

M6

1

0

0

0

1

1

1

0

1

1

0

1

1

1

0

0

0

0

Figure 13. Test case reduction using detection matrix (cont’d).

75

4.3. Genetic Algorithms

Genetic algorithms are inspired by the natural selection process seen in biological

systems, rooted in Darwin’s evolutionary theory and Mendel’s genetics work (Sharma

et al., 2016). They serve as a problem solving method for complex search optimization

challenges with numerous potential solutions. The task of identifying the optimal

solution in this vast solution space is time-consuming. These algorithms use the

principle of “survival of the fittest” to gradually discover the best solution (Uzunbayir,

2018).

In a traditional genetic algorithm, the process begins with a population of randomly

generated entities, known as chromosomes, each representing a potential solution.

The effectiveness of these individuals in solving the problem is measured using a

fitness function. When parent individuals are selected, their offspring are created

through crossover and mutation processes, aiming to produce superior solutions over

successive generations. The algorithm continues until a predetermined stopping

condition is met, ultimately converging towards the most optimal solution.

A distinctive aspect of a genetic algorithm is the method of translating the problem

into chromosome representations and developing a fitness function tailored to the

specific domain of the problem.

Chromosome: A chromosome represents an individual solution in the problem

solving process. It symbolizes a distinct point in the broader solution space and

is composed of a series of genes. Each gene corresponds to a specific attribute or

parameter of the solution. The structure of the chromosome is designed to facilitate its

alteration through various processes of the algorithm.

Fitness Function: The fitness function measures the adequacy of a chromosome

in solving the problem by giving it a score based on its performance. Higher scores

are indicative of more effective solutions. This function is crucial to directing the

algorithm in deciding which solutions to keep and which to modify in search of the

optimal solution.

A basic genetic algorithm operates through six main steps as depicted in Figure 14:

1. Initial population: The algorithm starts by creating a random collection

76

of chromosomes, forming the initial population. The population size varies

according to the specific dataset and the problem domain.

2. Evaluation: The fitness of each individual in the population is evaluated using

a predefined fitness function determined by the user. This is performed for

the initial population at the start and at the end of each iteration for the new

population as well.

3. Selection: Individuals are selected for the next generation based on their fitness

levels. Those with higher fitness values are likely to be chosen, whereas those

with lower fitness may be discarded. Various selection methods, such as roulette-

wheel, rank, or tournament selection, can be used.

4. Crossover: Offspring are produced by merging the genes of two parent

individuals. This process aims to combine the best traits of the parents,

potentially leading to better solutions. Several crossover techniques exist,

including single-point, multi-point, uniform, or arithmetic crossover.

5. Mutation: After crossover, mutation is applied to the offspring at a low

probability. This step introduces small changes to an individual, fostering

genetic diversity and enabling exploration of new solution spaces.

6. Terminate: The algorithm concludes when it identifies the best solution. The

termination condition is crucial to managing the computation time. Possible

termination criteria include reaching a fitness threshold or producing a set

number of generations.

Genetic algorithms bring a significant level of efficiency to the optimization of

software testing processes. Their inherent robustness enhances test effectiveness and

provides the flexibility to integrate new genetic or mutation operators specific to

various testing scenarios. Additionally, they can handle the dynamic nature of software

development, where requirements and environments frequently change, by easily

adapting to these changes and evolving the test cases accordingly. This adaptability

ensures that the testing process remains relevant and effective over time, even as the

software evolves.

77

Initial population

Selection

Evaluation

Crossover

Mutation

Iterate

Stop

Evaluation

Terminate

Start

Figure 14. Traditional genetic algorithm steps.

4.4. Ant Colony Optimization

Ant colony optimization technique, introduced by Marco Dorigo, draws inspiration

from the foraging behavior of ants in nature (Dorigo et al., 2006). Ants, in their natural

environment, have the ability to discover the shortest path between a food source and

their nest through a self-organizing system. When ants explore an area containing

food, they lay pheromone trails on their return to the nest. These pheromones are

detectable by other ants, which tend to follow paths with higher concentrations of

pheromones. Over time, as pheromones evaporate on less-used paths, the most efficient

route, marked by the strongest pheromone trail, becomes the preferred path for the

colony. This route typically represents the shortest route from the nest to the food

source. The reliance on the strength of the pheromone to determine the path choice

makes this a probabilistic method (Uzunbayir, 2022).

78

In the ant colony algorithm, the problem to be solved is structured as a graph.

This graph consists of nodes, each representing a possible state or decision point,

and edges, which signify the transitions between these states. The structure of the

graph, directed or undirected, depends on the specific problem being addressed. This

graphical representation is crucial for the algorithm’s operation as it mimics the way

ants navigate and make decisions in their environment.

A basic ant colony algorithm operates in six steps (see Figure 15):

1. Parameter initialization: Initially, the pheromone levels on the paths in the

graph are set to zero, indicating an absence of pheromones. Essential parameters

for the algorithm’s behavior include:

• Number of ants: Determines the quantity of artificial ants navigating the

graph to create solutions. More ants can lead to better solutions but require

more computational resources and time.

• Pheromone evaporation rate (ρ): Ranges from 0 to 1 and indicates how

quickly pheromone trails dissipate. A higher rate allows faster adaptation,

but may result in instability.

• Pheromone intensity (Q): Sets initial pheromone levels. Balanced initial

concentrations are crucial for algorithm efficiency.

• Pheromone influence factor (α): Dictates the importance of pheromone

trails in ants’ route decisions.

• Heuristic information (β): An optional parameter that influences the

significance of the available heuristic guidance for the ants.

• Termination criteria: Defines the total number of runs of the algorithm or

other conditions to stop the algorithm.

2. Path construction: Initially, ants randomly traverse the graph, constructing

solutions. In subsequent iterations, solutions are refined on the basis of

probabilistic decision-making influenced by pheromone levels and optional

heuristic information.

79

3. Solution evaluation: Each ant’s path is assessed using a problem-specific

objective function, such as the path length for shortest path problems.

4. Pheromone update: Pheromone levels increase based on the quality of the

solution, with better solutions leading to higher deposits of pheromones. Some

variants allow only the best or a group of elite ants to update pheromone levels.

5. Pheromone evaporation: To mimic natural evaporation, unused pheromone

trails are reduced, typically by multiplying the current level by (1−ρ).

6. Terminate: The algorithm concludes once a predetermined stopping criterion is

met, such as a certain number of iterations, an objective function threshold, or a

custom condition.

Ant colony optimization has several benefits in tackling optimization challenges.

In mutation testing, where numerous mutants are involved, it can efficiently navigate

this large space, focusing on mutants more likely to reveal faults and thus decreasing

the required number of test cases.

Parameter
initialization

Solution evaluation

Path construction

Pheromone update

Pheromone
evaporation

Iterate

Stop

Terminate

Start

Figure 15. Traditional ant colony algorithm steps.

80

4.5. Methodology

This section outlines the research questions and describes the proposed method

called EvoColony. The method is explained, the stages are described and illustrated,

and the pseudocode of the algorithm is presented.

4.5.1. Research Questions

The primary goal of this chapter is to present and assess the efficacy of the proposed

hybrid approach, named EvoColony, within the scope of search-mutation testing. To

achieve a comprehensive evaluation, we have divided RQ3, initially stated at the start

of this chapter, into two sub-research questions:

• RQ3a: Can the EvoColony algorithm effectively minimize the number of test

cases in a test suite while maintaining a high mutation adequacy score?

• RQ3b: Compared to conventional search-based methods, including random

search, genetic algorithms, and ant colony optimization, how does EvoColony

perform?

The primary objective behind answering these questions is to provide an under-

standing of the advantages of integrating meta-heuristic algorithms into search-based

mutation testing, particularly to reduce the number of test cases. Secondary objective

is to assess whether the proposed approach is able to perform the task and does it make

it better than the others or not.

4.5.2. EvoColony: A Hybrid Approach to Search-Based Mutation Testing

EvoColony is a technique that combines genetic algorithm with ant colony

optimization to leverage the strengths of both methods. This combination addresses

the limitations inherent in genetic algorithms, utilizing the capabilities of ant colony

optimization to mitigate these drawbacks. For example, genetic algorithms often

risk converging to local optima instead of exploring global optima. On the contrary,

optimization of the ant colony shows better adaptability to changes in the problem

81

environment, helping to avoid early convergence to local optima. Furthermore, tuning

parameters in genetic algorithms, such as the crossover rate, mutation rate, and

selection strategy, can be more complex and labor intensive compared to relatively

simpler and more straightforward parameter tuning in ant colony optimization.

By integrating these two approaches, ant colony optimization can improve the

performance of the genetic algorithm. It achieves this by using the genetic algorithm

parameters to guide the initial distribution of pheromones during the graph initializa-

tion phase, thus creating a more efficient hybrid approach.

EvoColony can be segmented into four distinct stages: input preparation, genetic

algorithm part, ant colony optimization part, and output, as shown in Figure 16:

1. Input Preparation: The initial stage involves preparing the necessary inputs for

EvoColony. These include the test program, its corresponding test suite, and the

set of mutant programs. Algorithm 3 is used to start the process.

2. Genetic Algorithm: The second stage initiates the genetic algorithm. This

involves encoding test cases from the test suite as chromosomes, establishing

a fitness function according to a specific equation 1, and setting the parameters

for the genetic algorithm. The fitness function is defined as follows:

f (x) = M(x)+(1−S(x)) (1)

Here, f(x) denotes the fitness of the test suite x, M(x) represents the mutation

adequacy score for the test suite x, and S(x) is the normalized size of the test suite

x. The fitness of the initial population is evaluated, followed by the selection of

parents for the next generation using roulette-wheel selection.

The likelihood of chromosome selection is proportional to the values of the

fitness function. The mating process then occurs, involving a single-point

crossover and mutation at certain probabilities, leading to the creation of a new

solution. This cycle repeats until the optimal solution is identified. Algorithm 1

presents the details of this stage for initial test case reduction in the EvoColony

process.

82

The time complexity of this part can be approximated as follows:

(a) The initialization of the population in has a time complexity of O(n), as it

involves creating and initializing each individual in the population.

(b) The calculation of fitness in has a time complexity of O(T ×M), as it

involves running the test program on each individual in the population and

calculating their fitness based on the number of test cases and mutants.

(c) The while loop will run until the stopping condition is true. The number

of iterations in the while loop depends on the stopping condition and the

number of individuals in the population. Therefore, the time complexity of

the while loop is O(n×S).

(d) The discarding of the least fit tests in has a time complexity of O(S), as it

involves finding and removing the least fit individuals from the population.

(e) The addition of the offspring in has a time complexity of O(1), as it

involves adding the offspring to the population.

Hence, overall time complexity can be approximated as:

O(n×S×T ×M)

where

• n represents the number of iterations,

• S is the population size,

• T stands for the test cases,

• M is the number of mutants.

3. Ant Colony Optimization Algorithm: In the third stage, the ant colony

optimization takes place. Utilizing the best solution from the genetic algorithm

as a starting point, the parameters for the ant colony are set, the ant colony graph

is constructed, and initial pheromones are distributed on paths based on the

genetic algorithm’s solution. Ants navigate these paths, updating pheromones

83

along the trails. Pheromone evaporation occurs on paths less traveled. The

solution is continually assessed and refined through repeated iterations until the

most effective solution is determined. Algorithm 2 presents the details of this

stage for the solution refinement.

The time complexity of ant colony optimization part can be estimated as follows:

(a) Constructing the graph has a time complexity of O(V +E), where V is the

number of vertices and E is the number of edges in the graph.

(b) Initializing pheromones has a time complexity of O(V 2), as it involves

initializing a matrix of size V x V.

(c) Constructing the path for each ant has a time complexity of O(V), as each

ant visits all vertices once.

(d) Calculating the mutation score has a time complexity of O(M), where M is

the number of mutants.

(e) Updating pheromones has a time complexity of O(V 2), as it involves

updating the pheromone matrix for each edge in the path.

(f) Finding the best path has a time complexity of O(V), as it involves iterating

over all vertices to find the maximum score.

Hence, the overall time complexity can be approximated as:

O(n× (a× (V +M)+V 2))

where

• n is the number of iterations,

• a is the number of ants,

• V is the number of vertices,

• M is the number of mutants.

4. Output: The final stage involves presenting the best solution. The expected

result is a reduced test set that maintains an optimal mutation score.

84

Initialization Evaluation

Selection

Crossover

Mutation

Best solution

Parameter
initialization

Path construction

Pheromone update with
GA solution

Pheromone update

Pheromone
evaporate

GA solution

Stop

Iterate

Stop

Iterate

Genetic
Algorithm

Part

Ant Colony
Optimization

Part

Inputs: Test program + Test suite + Mutants

Output: Reduced test cases

I

II

III

IV

Evaluation

Solution evaluation

Figure 16. The EvoColony algorithm steps.

85

Algorithm 1 EvoColonyGA for Initial Reduction
Require: testProgram, testCases,size,mutants,cPoint,mRatio

1: i = 0
2: GASolution← /0
3: population[i]← initializePopulation(testCases,size)
4: population[i].calculateFitness(testProgram,mutants)
5: while stoppingCondition ̸= true do
6: parents← population[i].select()
7: o f f spring← parents.crossover(cPoint)
8: o f f spring← parents.mutation(mRatio)
9: population[i].calculateFitness(testProgram,mutants)

10: population.discardLeastFitTests()
11: population.add(o f f spring)
12: i← i+1
13: end while
14: GASolution.add(population)
15: return GASolution

Algorithm 2 EvoColonyACO for Refinement

Require: GASolution, testProgram, testCases,ants,τinit ,α,β
1: i = 0
2: ACOSolution← /0
3: graph← constructGraph(testCases)
4: initializePheromones(graph,GASolution,τinit)
5: while stoppingCondition ̸= true do
6: for ant in ants do
7: path← ant.constructPath(graph,α,β)
8: score← calculateMutationScore(path, testProgram,mutants)
9: updatePheromones(graph, path,score)

10: end for
11: i← i+1
12: end while
13: bestPath← f indBestPath(graph)
14: ACOSolution.add(bestPath)
15: return ACOSolution

Algorithm 3 EvoColonyMain

1: size,cPoint,mRatio← prepareInputsGA()
2: ants,τinit ,α,β ← prepareInputsACO()
3: GASolution← EvoColonyGA(program, tests,size,mutants,cPoint,mRatio)
4: ACOSolution← EvoColonyACO(GASolution, program, tests,ants,τinit ,α,β)
5: Print(ACOSolution)

86

4.6. Experimental Design

This section details the testing environment, describes the test data, and discusses

the benchmark algorithms used in this chapter.

4.6.1. Test Environment

The experiments were carried out using ten different programs, all written in C#.

Some of these programs were sourced from the existing software testing literature

(Wedyan et al., 2022; Bashir and Nadeem, 2017), while others were chosen from

common mutation testing experiments. Programs not originally in C# were converted

to this language. The selected programs offer a variety of features, including

mathematical calculations, array manipulations, and intricate branching conditions,

thus ensuring a diverse test set. Each program varies in size. For each of these

programs, initial test suites were generated using IntelliTest and subsequently manually

refined. This refinement process ensured that the tested programs were error-free and

that the experimental results were not skewed by any run-time exceptions. Mutants

for each program were created using VisualMutator selected based on the results of

Chapter 3, as illustrated in the referenced Figure 17. For the purpose of this study, five

standard mutation operators supported by VisualMutator were chosen. This selection

was based on the observation that the mutation adequacy score remained largely

unchanged even when additional operators were included. The specific operators

selected for this research are detailed as follows:

• Arithmetic Operator Replacement: This involves replacing one arithmetic

operator with another, such as (+, -, *, /).

• Relational Operator Replacement: This changes the relational operators such

as (<, <=, >, >=, ==, !=).

• Logical Operator Replacement: This substitutes one logical operator for

another (&, |,)̂.

• Logical Connector Replacement: This replaces logical connectors (&&, ||).

87

• Operator Deletion: This generates two mutants for each operation, including

operators such as (+, -, >, <=, %).

In addition, the study incorporates four object-oriented mutation operators to

account for object-oriented programming features:

• Accessor Method Change: This modifies the accessor methods for a class’s

properties or fields.

• Accessor Modifier Change: This changes the accessibility level of a class’s

property or field accessor.

• Member Variable Initialization Deletion: This operator removes the initial-

ization of member variables.

• Member Call from Another Inherited Class: This mutates a method call

within a class (or its base class) to a call to a member of another class that has

the same base class.

Subject
ProgramSubject

ProgramSubject
Program

Run IntelliTest Test Suite

Run
VisualMutator

Mutants
Programs

Test Suite
Test Suites

Mutants
ProgramsMutants

Programs

Figure 17. Test data setup.

For comparative analysis, five different algorithms were implemented: random

search, two variants of the traditional genetic algorithm with single-point and double-

point crossovers, a traditional ant colony algorithm, and the newly proposed Evo-

Colony algorithm. These algorithms were applied to run each of the subject programs.

The experiments were carried out on a desktop computer equipped with Windows 11

Pro OS and an Intel i7 9700k 2.8 GHz processor.

88

Table 20. Subject programs details.

Subject Program Size in LOC Number of Mutants
BubbleSort 93 85
Calendar 115 114
TriangleType 123 149
ArrayOperations 113 176
TemperatureConverter 104 95
QuadraticSolver 73 88
HashTable 107 151
BinarySearch 64 164
BankAccount 76 110
AutoDoor 169 195
Total 1037 1227

4.6.2. Test Data

The specifics of the programs used as subjects in this study are outlined in Table

20. This includes information on each program’s size in terms of lines of code (LOC)

and the total count of mutants. Across all programs, the cumulative code size amounts

to 1037 LOC, and the total number of mutants is 1227. For all these programs, the

initial mutation adequacy scores have been calculated to be 1.000.

4.6.3. Benchmark Algorithms

The experiments utilize the following selected benchmark algorithms:

• Random Search (RS): This method involves iteratively selecting test case

subsets at random, assessing their mutation adequacy scores, and retaining those

within a satisfactory score range. This process is repeated until the target

mutation adequacy score is achieved.

• Traditional Genetic Algorithm with Single-Point Crossover (GA-SP): This

approach starts with an initial population of random test case subsets. A single-

point crossover and mutation are then applied to generate new generations. The

subsets are evaluated using a fitness function based on mutation adequacy scores.

The algorithm progressively refines the population, aiming to optimize fitness

and decrease test cases until a predefined maximum generation is reached.

89

• Traditional Genetic Algorithm with Double-Point Crossover (GA-DP): This

genetic algorithm variant uses two crossover points within the test case sequence,

exchanging portions of the parent sequences to create offspring. The fitness

of each offspring, determined by the mutation adequacy score, is evaluated.

The double-point crossover is designed to introduce more diversity into the

test case subsets, potentially leading to a more efficient reduced set. This

algorithm continuously applies double-point crossover and mutation to evolve

the population towards an optimal fitness level.

• Traditional Ant Colony Optimization Algorithm (ACO): In this algorithm,

each test case is represented as a node on a graph. The algorithm involves

choosing a set of test cases by forming a path through this graph. Pheromones

are initially distributed evenly across all paths. Artificial ants construct solutions

by following a probabilistic function influenced by pheromone levels. Upon

completing a path, each ant assesses the fitness of its selected subset based

on mutation adequacy scores. Pheromones are then updated accordingly,

reinforcing paths leading to higher fitness scores and reducing those that don’t.

The process iterates until a set number of iterations are completed.

• EvoColony: This newly proposed algorithm is executed and its performance is

compared with the other algorithms to determine the effectiveness of the test

suite reduction.

4.6.4. Results and Evaluation

This section details the experimental outcomes and their evaluation. The experi-

ments were structured around the research questions outlined earlier in Section 4.5.1.

RQ3a: Can EvoColony algorithm effectively minimize the number of test cases in

a test suite while maintaining a high mutation adequacy score?

The goal of this RQ is to determine if EvoColony can decrease the number of test

cases without compromising the test suite’s ability to effectively detect defects.

The parameters used for the genetic and ant colony optimization components of

EvoColony are displayed in Table 21. These parameters were chosen based on a blend

90

of experimental results, empirical data, and considerations of computational efficiency.

Table 21. Genetic and ant colony parameters of EvoColony.

Genetic Algorithm Specific Parameters
Selection type: Roulette-wheel selection
Crossover probability: 0.8
Mutation probability: 0.06
Population size: Twice the number of initial test cases
Chromosome size: Number of test cases
Maximum iteration: 200 generations
Ant Colony Algorithm Specific Parameters
α: 2
β : 2
ρ: 0.02
Q: Based on the genetic algorithm results
Number of ants: 100
Maximum iteration: 1000

Table 22 provides a detailed overview of the EvoColony test outcomes across

various subject programs. This includes comparative data such as the initial number of

test cases, the size of the reduced test suite, and the test reduction ratio. The mutation

adequacy scores for all experiments remained at an optimum level, even after the test

case reduction. The reduction ratio was computed using the following formula (2):

Reduction Ratio =
Initial # o f test cases−Reduced # o f test cases

Initial # o f test cases
x 100 (2)

One of the standout observations is the significant reduction in the number of test

cases across the board. For instance, BubbleSort saw its test cases drop by a substantial

50.48%, while maintaining a perfect mutation adequacy score. This implies that not

only were the test cases reduced, but they were optimized so that they were still

able to cover the necessary conditions and branches for effective mutation testing.

However, it is important to note the variation in reduction percentages. TriangleType

had the smallest reduction at 29.37%, suggesting room for improvement. Despite these

reductions, the mutation adequacy scores remain perfect for all programs. This high

level of mutation adequacy indicates that the sets of test cases, although reduced, are

nevertheless of high quality, and effective in identifying potential faults.

The aggregate statistics presented at the end of the table provide a broader

91

Table 22. EvoColony results.

Subject
Program

Initial
of Test Cases

Reduced
Test Suite Size

Reduction
Ratio

BubbleSort 105 52 50.48%
Calendar 130 70 46.15%
TriangleType 126 89 29.37%
ArrayOperations 149 81 45.64%
TemperatureConverter 115 63 45.22%
QuadraticSolver 108 72 33.33%
HashTable 119 65 45.38%
BinarySearch 123 69 43.90%
BankAccount 152 94 38.16%
AutoDoor 165 102 38.18%
Total 1192 757 36.49%

perspective, indicating that from an initial count of 1192 test cases, the number

was effectively reduced to 757, marking a noteworthy overall reduction of 36.49%.

Importantly, despite this reduction in test cases, the mutation adequacy score for each

of the subject programs consistently remained at a perfect 1.000. This underscores

the fact that reducing the number of test cases does not equate to a decline in

testing adequacy, confirming that only non-essential test cases were eliminated. These

experimental findings clearly demonstrate EvoColony’s capability to considerably

reduce the number of test cases while still preserving the integrity and quality of the

testing process. Therefore, the answer to RQ3a is yes.

RQ3b: In comparison to conventional search-based methods, including random

search, genetic algorithms, and ant colony optimization, how does EvoColony per-

form?

The objective of this RQ is to evaluate the effectiveness of the EvoColony algorithm

relative to other prevalent methods. The aim is to ascertain if EvoColony outperforms,

underperforms, or matches other methods in improving test suite quality.

Based on the in results in Table 23, it is apparent that the RS method demonstrates

the least significant reductions and is comparatively less effective than other method-

ologies. Subpar performance of RS can primarily be related to its limited optimization

capabilities. Unlike more sophisticated algorithms such as GA-SP, GA-DP and ACO,

RS lacks an iterative optimization mechanism.

92

Ta
bl

e
23

.C
om

pa
ra

tiv
e

te
st

re
su

lts
.

R
S

G
A

-S
P

G
A

-D
P

A
C

O
E

vo
C

ol
on

y

Su
bj

ec
t

Pr
og

ra
m

In
iti

al
#

of
Te

st
C

as
es

R
ed

uc
ed

Te
st

Su
ite

Si
ze

R
ed

uc
tio

n
R

at
io

R
ed

uc
ed

Te
st

Su
ite

Si
ze

R
ed

uc
tio

n
R

at
io

R
ed

uc
ed

Te
st

Su
ite

Si
ze

R
ed

uc
tio

n
R

at
io

R
ed

uc
ed

Te
st

Su
ite

Si
ze

R
ed

uc
tio

n
R

at
io

R
ed

uc
ed

Te
st

Su
ite

Si
ze

R
ed

uc
tio

n
R

at
io

B
ub

bl
eS

or
t

10
5

84
20

.0
0%

68
35

.2
4%

65
38

.1
0%

60
42

.8
6%

52
50

.4
8%

C
al

en
da

r
13

0
96

26
.1

5%
83

36
.1

5%
83

36
.1

5%
77

40
.7

7%
70

46
.1

5%
Tr

ia
ng

le
Ty

pe
12

6
10

9
13

.4
9%

10
0

20
.6

3%
97

22
.9

9%
95

24
.6

0%
89

29
.3

7%
A

rr
ay

O
pe

ra
tio

ns
14

9
10

5
29

.5
3%

98
34

.2
3%

90
39

.6
0%

88
40

.9
4%

81
45

.6
4%

Te
m

pe
ra

tu
re

C
on

ve
rt

er
11

5
90

21
.7

4%
81

29
.5

7%
81

29
.5

7%
75

34
.7

8%
63

45
.2

2%
Q

ua
dr

at
ic

So
lv

er
10

8
81

25
.0

0%
78

27
.7

8%
77

28
.7

0%
75

30
.5

6%
72

33
.3

3%
H

as
hT

ab
le

11
9

92
22

.6
9%

76
36

.1
3%

72
39

.5
0%

70
41

.1
8%

65
45

.3
8%

B
in

ar
yS

ea
rc

h
12

3
92

25
.2

0%
85

30
.8

9%
83

32
.5

2%
79

35
.7

7%
69

43
.9

0%
B

an
kA

cc
ou

nt
15

2
13

1
13

.8
2%

12
0

21
.0

5%
11

6
23

.6
8%

10
5

30
.9

2%
94

38
.1

6%
A

ut
oD

oo
r

16
5

13
5

18
.1

8%
11

8
28

.4
8%

11
5

30
.3

0%
11

2
32

.1
2%

10
2

38
.1

8%

93

Figure 18. Reduced rest suite size comparison.

Moreover, RS does not adapt or improve its methodology based on previous results,

instead relying solely on a stochastic or random selection process.

GA variants demonstrate moderate effectiveness in reducing test cases, outper-

forming RS and often delivering comparable outcomes. Their performance is notably

stable across different subject programs, indicating their robustness and reliability

for test case reduction. The two GA variants show similar results, with only

minor variations in their reduction percentages, which seem to be influenced by

the characteristics of the specific program being tested. For instance, both GA-SP

and GA-DP achieved identical reduction rates for programs such as Calendar and

TemperatureConverter, at 36.15% and 29.57% respectively, but their effectiveness

varied for other programs. Moreover, the GA variants not only surpass RS in

performance but also compete well with ACO and EvoColony.

While GA variants are reliable and robust, ACO tends to provide superior test

case reduction in certain programs. For example, ACO achieved significant reductions

in programs such as BubbleSort and Calendar, with reduction rates of 42.86% and

40.77%, respectively. This positions ACO as the second-most effective method

according to these results.

EvoColony stands out as the most advantageous approach for test case reduction

among the four methods evaluated. It consistently outperforms the others in terms

of minimizing the number of test cases for all the subject programs. Additionally,

94

Figure 18 comparing the test suite reductions, in relation to the data in the comparative

results in Table 23, further highlights EvoColony’s effectiveness. The findings show

that EvoColony, on average, manages to reduce about one-third of all test cases. This

level of efficiency establishes it as the top-performing algorithm in the experiments.

To evaluate the time efficiency of five different test case reduction methods, notable

variations in execution times were observed. Figures 19 to 28 present the execution

time results in minutes for each subject program individually. In all experiments, on

the average, RS performed faster than the others followed by EvoColony, ACO, GA-

SP, and then GA-DP.

RS, with its straightforward methodology, recorded the quickest iteration times,

averaging approximately 8.73 minutes. GA-SP and GA-DP demonstrated more

structured search techniques and logged average execution times of 13.13 and 14.06

minutes, respectively. These times reflect the additional duration needed for their

crossover processes. ACO, renowned for its complex pheromone trail mechanics and

probabilistic decision-making, required an average time of 11.95 minutes, which is

lower than the genetic algorithm variants. The proposed EvoColony method, although

faster than the GA variants and ACO, was slower than RS, achieving an average

execution time of 11.23 minutes. This relatively efficient performance is attributed

to its strategy of combining GA for broad initial searches with ACO for targeted local

optimizations, thus enabling quicker convergence towards effective solutions.

RS GA-SP GA-DP ACO EvoColony
0

3

6

9

12

15

BubbleSort

Ti
m

e
(m

in
ut

es
)

Figure 19. Run-time performance comparison for BubbleSort.

95

RS GA-SP GA-DP ACO EvoColony
0

4

8

12

16

20

Calendar

Ti
m

e
(m

in
ut

es
)

Figure 20. Run-time performance comparison for Calendar.

RS GA-SP GA-DP ACO EvoColony
0

4

8

12

16

20

TriangleType

Ti
m

e
(m

in
ut

es
)

Figure 21. Run-time performance comparison for TriangleType.

RS GA-SP GA-DP ACO EvoColony
0

4

8

12

16

20

ArrayOperations

Ti
m

e
(m

in
ut

es
)

Figure 22. Run-time performance comparison for ArrayOperations.

96

RS GA-SP GA-DP ACO EvoColony
0

4

8

12

16

20

TemperatureConverter

Ti
m

e
(m

in
ut

es
)

Figure 23. Run-time performance comparison for TemperatureConverter.

RS GA-SP GA-DP ACO EvoColony
0

3

6

9

12

15

QuadraticSolver

Ti
m

e
(m

in
ut

es
)

Figure 24. Run-time performance comparison for QuadraticSolver.

RS GA-SP GA-DP ACO EvoColony
0

4

8

12

16

20

HashTable

Ti
m

e
(m

in
ut

es
)

Figure 25. Run-time performance comparison for HashTable.

97

RS GA-SP GA-DP ACO EvoColony
0

3

6

9

12

15

BinarySearch

Ti
m

e
(m

in
ut

es
)

Figure 26. Run-time performance comparison for BinarySearch.

RS GA-SP GA-DP ACO EvoColony
0

3

6

9

12

15

BankAccount

Ti
m

e
(m

in
ut

es
)

Figure 27. Run-time performance comparison for BankAccount.

RS GA-SP GA-DP ACO EvoColony
0

5

10

15

20

25

AutoDoor

Ti
m

e
(m

in
ut

es
)

Figure 28. Run-time performance comparison for AutoDoor.

98

4.7. Conclusion

The proposed hybrid approach excels in reducing test cases significantly more than

the other compared methods while preserving the quality of the test suites. This success

highlights the benefits of utilizing complementary algorithms. EvoColony’s dual

optimization strategy is particularly advantageous, genetic algorithms for initial search

and ant colony optimization for subsequent refinement. This approach effectively

harnesses the strengths of both techniques while mitigating their individual limitations.

Future research could explore enhancing EvoColony to handle more complex

mutation types or combining it with additional machine learning techniques for a

more adaptive testing approach. Comparisons with other search-based strategies, such

as particle swarm optimization, tabu search, simulated annealing, or other hybrid

methods, could also provide valuable insights.

As a result, RQ3 outlined in Section 1.4 is answered: “How can the number

of test cases in a test suite be reduced, and how can this process be enhanced

using meta-heuristic methods in search-based mutation testing?” To answer

this, EvoColony was introduced, evaluated through a comparative analysis against

four traditional approaches, and showed better results. The findings of this chapter

have been synthesized into a research article (Uzunbayir and Kurtel, 2023a).

99

CHAPTER 5: LEVERAGING MUTANTS IN HIGHER-ORDER

This chapter aims to answer RQ4 outlined in Section 1.4: “How does the

implementation of genetic algorithms as a search strategy in higher-order mutation

testing impact the efficiency of generating high-quality mutants, particularly in

reducing the production of equivalent high-order mutants?”

Higher-order mutation testing involves modifying source code with multiple

mutation operators to create varied versions of the program. This method aims to

enhance the testing process, specifically its design and implementation stages, by

enabling automated evaluation of test cases. One of the main challenges in higher-

order mutation testing is the need to generate a substantial number of mutants and

navigate a complex mutation search space. To tackle this, the issue is modeled as a

search problem similar to the problem explained in Chapter 4. This chapter introduces

another search strategy based on genetic algorithms for mutation testing. The goal

is to lower the production of equivalent high order mutants, thereby achieving an

adequate mutation score with a smaller set of mutants. Experiments were conducted

to compare this approach with a random search method and four distinct genetic

algorithm variants, each employing a different selection technique: roulette wheel,

tournament, rank, and truncation selection.

5.1. First-Order and Equivalent Mutants

Mutation testing primarily involves duplicating the original program and introduc-

ing artificial faults using mutation operators to create a mutant. This mutant is then

subjected to a test suite to identify these introduced errors. The concept is explored

in detail in Chapter 2. For clarity and as a refresher, we will provide an explanation

here once again. A typical example of this process is illustrated in Table 24, where the

original code is cloned and altered by switching the “greater than to (>)” operator with

the “less than (<)” operator.

A mutant generated by applying a single mutation operator to the original program

is referred as a first-order mutant. These mutants are considered as traditional and

100

simple mutants that include only one fault. This is exemplified in Table 24, where a

first-order mutant is displayed.

Table 24. An original program and its first-order mutant.

Original Program First-Order Mutant

READ a number

if (number > 100)

PRINT “I AM STRONG!"

else

PRINT “I AM WEAK!"

end if

READ a number

if (number < 100)

PRINT “I AM STRONG!"

else

PRINT “I AM WEAK!"

end if

An equivalent mutant yields identical results to the original program, presenting a

challenge in identifying mutants during mutation analysis. The essence of the issue is

that test suites fail to detect equivalent mutants caused by the introduced fault, requiring

manual intervention for their identification and elimination. Studies indicate that such

mutants are not uncommon; they frequently occur, at times comprising over 50% of

all mutants (Grün et al., 2009). Table 25 provides an example of an equivalent mutant.

Table 25. An original program and its an equivalent mutant.

Original Program Equivalent Mutant

a = 2

READ b

if (b == 2)

PRINT “b"

b = a + b

end if

a = 2

READ b

if (b == 2)

PRINT “b"

b = a * b

end if

5.2. Higher-Order Mutation Testing

The concept of second-order mutation testing introduced by Offutt (1992) in his

research on the coupling effect in mutation analysis. Offutt claimed that more complex

101

faults could be detected through second-order mutation, observing a decrease in the

survival rate of second-order mutants in experiments. This idea was further explored

by Polo et al. (2009), Madeyski (2008), and Mateo et al. (2012), who demonstrated that

combining first-order mutants to form second-order mutants could reduce the number

of equivalent mutants without compromising the quality of the test suite. However,

these studies also indicated a potential challenge: some second-order mutants proved

to be harder to eliminate in mutation analysis.

The notion of higher-order mutation testing involves introducing multiple artificial

faults into the original program. The number of faults inserted determines the order

of the mutant; for instance, a mutant created with two faults is a second-order mutant,

while one with three faults is a third-order mutant. Table 26 illustrates a higher-order

mutant with two faults, categorizing it as a second-order mutant.

Table 26. Original program and its higher-order mutant.

Original Program Higher-Order Mutant

Read A and B

multiplication = 1

if (A > B)

multiplication = A * B

result = multiplication / 2

end if

Read A and B

multiplication = 1

if (A > B)

multiplication = A + B

result = multiplication * 2

end if

In practical applications, many higher-order mutants turn out to be irrelevant. This

is because if a test can eliminate a first-order mutant that is part of a higher-order

mutant, it can usually also eliminate the higher-order mutant, owing to the coupling

effect hypothesis in mutation testing. Nevertheless, Jia and Harman (2009) highlight

that certain higher-order mutants are beneficial. They identified various categories of

higher-order mutants exhibiting unique characteristics. To generate these mutants, the

authors used three search-based algorithms. In their experiments with ten different

programs, they found that approximately 67% of the generated higher-order mutants

were indeed more challenging to kill compared to the first-order mutants.

102

5.3. Methodology

In this section, we discuss the justification for selecting the investigated methods

and provide details on the implementation of the proposed genetic algorithm and the

random search algorithm.

Higher-order mutation testing is acknowledged for its potential usefulness, offering

advanced capabilities over first-order mutation testing. It is adept at simulating more

complex and realistic programming faults, which requires the use of improved test

optimization techniques (Jia and Harman, 2009). The primary goal of the proposed

method is to tackle a significant challenge in higher-order mutation testing: the

reduction of the number of mutants at the mutant generation stage.

To generate higher-order mutants, search-based testing techniques, particularly

meta-heuristics, are employed with the aim of reducing costs. The selection of

this technique is based on three main reasons. Firstly, the large set of mutants in

higher-order mutation testing includes both useful and less beneficial mutants. A

selective process that identifies the more useful mutants can significantly reduce costs.

Secondly, a meta-heuristic search is guided by a fitness function, allowing for a more

efficient and strategic search process compared to exhaustive techniques. This method

can find optimal solutions without having to explore all possible options. Lastly,

numerous studies in the literature present promising results for search-based mutation

testing, lending support to this approach.

The choice of genetic algorithms for this study is particularly important. Genetic

algorithms are renowned for their effectiveness in large search spaces and their

capability to navigate towards optimal solutions efficiently. Their ability to adapt and

evolve in response to the specific requirements of the problem space aligns well with

the dynamic and complex nature of higher-order mutation testing. They are designed

to avoid common issues such as becoming trapped in local optima, a frequent problem

in other optimization methods. Their suitability for tasks involving the evaluation and

selection of the best candidates from a large pool of options makes them ideal for

optimizing the selection of higher-order mutants.

103

5.3.1. A Genetic Algorithm for Higher-Order Mutant Generation

In this section, we discuss our method for generating higher-order mutants using

a genetic algorithm. The algorithm is designed to identify the fittest mutants in a

given search space. We discuss the specifics of chromosome representation and the

fitness function, which are critical components of our approach for higher-order mutant

generation.

5.3.1.1. Chromosome Representation

The algorithm operates on a population of individual entities that represent

potential solutions. These solutions are embodied in chromosomes, which act upon

various features. In this context, a higher-order mutant is analogous to a chromosome.

This chromosome is conceptualized as an array of strings, where each string represents

a line of code from the source code of a higher-order mutant. Thus, every line

of a higher-order mutant is encapsulated within these chromosomes. The mutated

statements within the chromosomes are derived from their corresponding first-order

mutants. To accurately represent higher-order mutants, the chromosomes may contain

two or more faults.

5.3.1.2. Fitness Function

A fitness function plays a crucial role in a genetic algorithm, as it assesses how

close a candidate solution is to the ideal solution for a given problem. Essentially,

it determines the quality of a solution, categorizing it as good, poor, or somewhere in

between. This evaluation is vital for the genetic algorithm to effectively select the most

suitable solution from the available search space.

Once the initial setup is complete, the algorithm proceeds to the selection phase.

During this phase, the fitness of each mutant is computed. The fitness score ranges

from 0 to 1. A score closer to 1 indicates that the mutant is relatively easy to eliminate,

while a lower score suggests that the mutant is more resilient and may require multiple

test cases to be effectively neutralized.

To calculate the fitness value f (c) for a mutant c in a population, we consider TCn,

104

which represents the nth test case in the test suite that successfully kills the mutant c.

With TCtotal being the total number of test cases, the fitness value is derived using these

variables (see Equation 1). This calculation helps in determining the effectiveness of

each mutant in terms of how challenging it is to eliminate them, guiding the selection

of the most robust mutants for further analysis.

f (c) =
∑

n
i=1 TCn

TCtotal
(1)

5.3.1.3. Initialization

The initial population is created by randomly combining several first-order mu-

tants. The number of first-order mutants to be merged can vary based on user

preference. For instance, to generate a third-order mutant, three first-order mutants

would need to be combined. This initial merging process sets the stage for the

development of higher-order mutants.

5.3.1.4. Selection

During the selection phase, certain higher-order mutants are chosen for the

production of offspring in subsequent stages. This phase is crucial as it identifies

the candidate solutions that will be carried forward to the next generation. In this

study, we have experimented with four widely used selection mechanisms: roulette

wheel, tournament, rank, and truncation selection. Each of these mechanisms offers a

different approach to selecting the most promising mutants when generating higher-

order mutants. The user selects which selection method is to be executed in the

implementation.

Roulette Wheel Selection: In the first version, the roulette wheel selection method

is used to update the statements. This technique focuses on selecting the most suitable

parents from a group for the creation of offspring. Unlike a traditional roulette wheel

where each slot has an equal chance of selection due to uniform sizes, the roulette

wheel in genetic algorithms is designed to be weighted. This means that individuals

with higher fitness values have a higher probability of being selected.

105

For each chromosome c and its corresponding fitness value f (c) in a population P

consisting of n chromosomes, P = {c1,c2,c3, ...,cn}, the selection probability p(ck) is

calculated using the formula 2:

p(ck) =
f (ck)

∑
n
i=1 f (cl)

,where l = 1,2,3, ...,n (2)

This formula determines the relative fitness of each individual in the population.

The roulette wheel is then divided into sections based on these calculated proportions.

The wheel is spun n times, where n is the population size. Upon each spin, two

individuals are chosen from the respective section where the wheel stops. This method

ensures that individuals with higher fitness are more likely to be chosen, guiding the

algorithm towards potentially more successful solutions.

Tournament Selection: In the second version, tournament selection is employed.

This method involves picking a random subset of individuals from the population and

then conducting a “tournament” among them. The individual with the highest fitness

score within this subset is selected as a parent for the next generation. This process is

typically repeated several times to select multiple parents. These parents are then used

for creating offspring through crossover and mutation operations. Within the context

of mutation testing, each “individual” in the population represents a test suite. The

fitness in this scenario reflects the ability of the test suite to detect mutants.

Rank Selection: The third version of the algorithm incorporates rank selection.

This technique involves first sorting individuals based on their fitness levels. Following

this sorting, individuals are selected for reproduction based on their rank within this

ordered list. Unlike methods such as roulette wheel selection, which depend on the

absolute fitness values to determine the probability of selection, rank selection focuses

on the relative position of an individual within the population. The primary advantage

of this approach is its ability to prevent premature convergence by prioritizing relative

fitness over absolute fitness. This aspect is particularly beneficial in mutation testing,

where the objective function might have complex landscapes. By focusing on relative

fitness, rank selection ensures a more diverse genetic pool, which is crucial for

106

effectively navigating rugged objective functions in mutation testing.

Truncation Selection: In the final version, the truncation selection method is

implemented. This approach involves selecting the top-performing individuals from

the population and discarding the ones with lower fitness. It essentially focuses on

replicating the most fit individuals for the subsequent generation. Truncation selection

is known for its elitist nature, making it particularly effective in situations where quick

convergence towards a high-quality solution is the goal.

The formula (3) is used for determining the number of individuals to be selected is

as follows:

Number of Selected Individuals = ⌈T ×N⌉ (3)

The truncation threshold T is a crucial factor, ranging between 0 and 1. For

example, setting T to 0.2 implies that only the top 20% of individuals, as determined

by their mutation score, are selected. The symbol N represents the total population

size.

5.3.1.5. Mating

During the mating stage, the algorithm applies crossover and mutation to the

selected higher-order mutants, based on specific criteria:

Crossover: This process involves combining two chosen higher-order mutants

to create offspring. The number of crossover points is determined based on user

preference. In this study, a double point crossover is used. It is important to ensure that

the offspring generated are not merely first-order mutants. If such a situation arises, an

additional mutation is randomly applied to generate a second-order mutant.

Mutation: Mutation in higher-order mutants involves either adding or removing a

first-order mutant randomly. When adding, a first-order mutant is randomly selected

from the pool. In contrast, when removing a first-order mutant, the choice is made

among those contributing to the higher-order mutant. Users have the discretion to

decide the number of first-order mutants to be added or removed. This process should

not result in the transformation of a higher-order mutant back to a first-order mutant.

107

5.3.1.6. Stopping Condition

Determining the appropriate stopping point for a genetic algorithm is critical for its

efficiency and effectiveness. Several criteria can be considered:

• Fixed Number of Generations: The simplest approach, where the algorithm

halts after reaching a predetermined number of generations.

• Convergence: The algorithm stops when the population converges, indicated by

minimal variation in the fitness values across individuals. This may suggest the

discovery of an optimum, though not necessarily.

• Threshold Fitness Value: The process can also be halted once an individual

attains or surpasses a specific fitness threshold. This criterion is useful when

targeting a known solution or a minimum acceptable quality of solution.

In this research, the termination of the algorithm is controlled by a user-defined

parameter, specifically the maximum number of distinct higher-order mutants. Once

the algorithm reaches this limit, it ceases operation and outputs a list of the higher-

order mutants that have been identified. The detailed pseudocode outlining the stages

of the genetic algorithm is presented in Algorithm 4. Additionally, a flow chart of the

entire algorithmic process can be found in Figure 29.

Algorithm 4 Proposed Genetic Algorithm
Require: f irstOrderMutants,size,selectionMethod,cPoint,mRatio

1: i = 0
2: higherOrderMutants← /0
3: population[i]← initializePopulation(f irstOrderMutants,size)
4: population[i].calculateFitness()
5: while stoppingCondition ̸= true do
6: parent← population[i].select(selectionMethod)
7: o f f spring← parents.crossover(cPoint)
8: o f f spring← parents.mutation(mRatio)
9: population[i].calculateFitness()

10: population.discardLowestScoringMutants()
11: population.add(o f f spring)
12: i← i+1
13: end while
14: higherOrderMutants.add(population)
15: return higherOrderMutants

108

Initialize population

Select individuals for
the mating process

Choose

Use
Roulette
Wheel

selection

Use
Tournament

selection

Use Rank
selection

Use
Truncation
selection

Perform crossover

Perform mutation

No

Add offspring into the
current population

Stop?

Population set

Evaluate fitness

Return population

Yes

Evaluate fitness

Start

End

Figure 29. Flow chart of the proposed genetic algorithm.

109

The time complexity of the algorithm is estimated as follows: O(k×n×m) where

k represents the number of iterations, n stands for the chromosome length, m is the

population size.

5.3.2. A Random Search Algorithm for Higher-Order Mutant Generation

Random search is a straightforward, non-heuristic method for exploring the space

of potential solutions. Unlike genetic algorithms, which evolve a population through

generations using selection, crossover, and mutation, a random search algorithm

uniformly samples across the search space, assessing solutions that are generated

randomly. In this approach, the selection parameters are entirely random, lacking any

systematic or intelligent strategy for sampling from the search space.

Algorithm 5 Proposed Random Search Algorithm
Require: f irstOrderMutants

1: i = 0
2: higherOrderMutants← /0
3: while stoppingCondition ̸= true do
4: randomHigherOrderMutant← makeHigher(f irstOrderMutants)
5: randomHigherOrderMutant.execute()
6: f itness← randomHigherOrderMutant.calculateFitness()
7: if f itness == OK then
8: higherOrderMutants← randomHigherOrderMutant
9: end if

10: i← i+1
11: population.add(o f f spring)
12: end while
13: return higherOrderMutants

In this study, the random search method is employed to independently select

candidate higher-order mutants from the pool of all available higher-order mutants.

This process requires an initial, randomly chosen set of first-order mutants to create

higher-order mutants. These mutants are then evaluated for their fitness, and based on

these evaluations, selected mutants are added to a list of higher-order mutants.

Using random search as a benchmark is valuable for assessing the effectiveness

of more complex algorithms. Demonstrating that the genetic algorithm surpasses the

performance of a random search provides concrete evidence of its added value. It

suggests that the algorithm’s success is not merely due to random chance but is a result

110

of its sophisticated navigation through the search space. The steps and processes of the

random search algorithm are detailed in the pseudocode provided in Algorithm 5.

5.3.3. Research Questions

The objective of this chapter is to introduce a genetic algorithm to evaluate the

effects of different selection methods when generating higher-order mutants. To

achieve a detailed evaluation, we have divided RQ4, mentioned at the start of this

chapter, into three sub-research questions:

• RQ4a: What is the effectiveness of different selection methods in minimizing

the generation of equivalent higher-order mutants? This question investigates

various selection strategies used during the genetic algorithm’s selection phase.

The goal is to identify the selection method that most effectively reduces the

number of equivalent mutants during the creation of higher-order mutants.

• RQ4b: How do different selection methods compare in terms of execution

cost? This research question seeks to assess the efficiency of various selection

methods. Specifically, it aims to determine which method is the fastest and which

is the slowest, on average, among those implemented in this study.

• RQ4c: What proportion of higher-order mutants is produced at each mutation

order? A significant challenge is managing the volume of mutants generated.

This question intends to examine whether varying the order of mutants can

still reduce the total number of mutants generated while still yielding effective

results.

5.4. Experimental Design

This section explains the experimental design used to evaluate the research

objectives. It covers the setup of the test environment, the details of subject programs

including their size, mutants, and test cases, configuration of genetic algorithm

parameters, and analysis of results.

111

5.4.1. Test Environment

Our test environment, depicted in Figure 30, was established to create first-order

mutants using the following configuration and tools:

• The experiments were conducted on a desktop computer equipped with a

Windows 11 operating system and powered by an Intel i7 9700k 2.8 GHz

processor.

• For this experiment, we used VisualMutator based on the evaluation from

Chapter 3. VisualMutator was used to generate, compile, and run first-order

mutants, which were then used as inputs for assessing test cases.

• To develop and manage test cases in the test suite, IntelliTest and SentryOne

tools were used. These tools are automated test case generators tailored for

unit testing in the NUnit format. The primary objective of using both tools

was to ensure comprehensive coverage of the subject programs, aiming to

eliminate all generated first-order mutants. In instances where mutants remained

uneliminated, additional test cases were incorporated manually.

Run VisualMutator to
create First Order

Mutants

Subject
Programs

Run IntelliTest &
SentryOne to create

TestSuites

Subject
ProgramsSubject

ProgramsSubject
ProgramsSubject

ProgramsSubject
ProgramsSubject

Programs

First Order
MutantsFirst Order

MutantsFirst Order
MutantsFirst Order

MutantsFirst Order
MutantsFirst Order

MutantsFirst Order
Mutants Sets

First Order
MutantsFirst Order

MutantsFirst Order
MutantsFirst Order

MutantsFirst Order
MutantsFirst Order

MutantsTest Suites

Figure 30. Test environment to create first-order mutants.

Once the first-order mutants for all the subject programs have been generated, the

study proceeds to execute both the random search algorithm and four different versions

of the genetic algorithm. These are implemented to create higher-order mutants,

allowing for the evaluation and comparison of results. Figure 31 illustrates this process

through a diagram.

112

First Order
Mutants
Subject

Program 1

First Order
Mutants
Subject

Program 6

Apply Genetic
Algorithm

Roulette Wheel
Selection

Tournament
Selection

Rank
Selection

Truncation
Selection

Higher
Order

Mutants
Subject

Program 1

Higher
Order

Mutants
Subject

Program 6

Apply Random
Search Algorithm

First Order
Mutants
Subject

Program 2

First Order
Mutants
Subject

Program 3

First Order
Mutants
Subject

Program 4

First Order
Mutants
Subject

Program 5

First Order
Mutants
Subject

Program 7

Higher
Order

Mutants
Subject

Program 2

Higher
Order

Mutants
Subject

Program 3

Higher
Order

Mutants
Subject

Program 4

Higher
Order

Mutants
Subject

Program 5

Higher
Order

Mutants
Subject

Program 7

Figure 31. Experiment details to create higher-order mutants.

5.4.2. Subject Programs

The subject programs used in this study are developed in C# and their details,

including size, the number of first-order mutants, and the number of test cases, are

provided in Table 27. These programs are described as follows:

• TriangleType: This program determines the type of a given triangle - whether

it is equilateral, isosceles, or scalene.

• PrintPrimes: It is designed to identify and display all prime numbers up to a

specified input value.

• CalculateDays: This program computes and outputs the number of days

between two specified dates.

• HashTable: This program involves creating a hash table based on data from a

given test file and then retrieving values using their respective keys.

• CocktailSort: A variation of the bubble sort algorithm, this program sorts an

113

input array by traversing from both the start and the end, rather than just from

the beginning.

• MatchPattern: It searches for and identifies occurrences of a specified pattern

within an expression.

• MoonPhases: This program calculates the current phase of the moon and

estimates the remaining days in the lunar cycle.

Table 27. Subject programs.

Subject Program Lines of Code # of First-Order Mutants # of Test Cases
TriangleType 123 102 77
PrintPrimes 49 99 65
CalculateDays 51 85 89
HashTable 107 172 56
CocktailSort 75 204 83
MatchPattern 62 68 71
MoonPhases 165 381 95

5.4.3. Genetic Algorithm Parameter Settings

After conducting various experiments to optimize the genetic algorithm parame-

ters, the following settings were selected for the proposed genetic algorithm:

• Probability of Crossover: This value is set at 0.7 which is commonly utilized

in genetic algorithms and is considered an effective balance between exploring

new solutions and exploiting existing effective solutions.

• Probability of Mutation: A lower mutation probability is used s 0.07 to intro-

duce a moderate level of randomness into the algorithm, without significantly

altering the primary characteristics of the individuals. This helps in avoiding

local optima.

• Maximum Number of Iterations: Fixed at 1000 iterations. It was observed that

beyond this point, there were no significant changes in the results, indicating an

optimal stopping point for the algorithm.

114

• Chromosome Size: Determined to be equal to the number of lines of code in

the subject program. This size effectively represents the crucial aspects of the

subject program and facilitates better optimization.

To ensure the reliability of these settings, the experiments were repeated 30 times

for each subject program. This repetition was aimed at determining if there were

any variations in the results across trials. After 30 trials, no significant changes were

observed in the results, leading to the conclusion of the experimental phase.

5.5. Results

This section details the results obtained from averaging 30 experiments conducted

on each of the seven test programs.

The data in Table 28 addresses RQ4a, which asks: “What is the effectiveness of

different selection methods in minimizing the generation of equivalent higher-order

mutants?” The table compares the proportion of equivalent mutants generated for

each test program across different methods: random search and four genetic algorithm

(GA) versions with distinct selection strategies (roulette wheel, tournament, rank, and

truncation selection). While each approach produced equivalent mutants, the ratios

varied.

Among all methods tested, random search was found to be the least efficient, with

an average equivalent mutant ratio of 26.8%. In contrast, the truncation selection

variant of the proposed genetic algorithm exhibited a slightly lower equivalent mutant

ratio (18%) compared to the rank selection approach, making it the most effective

among the tested strategies.

Specifically, the MatchPattern program showed a 33% ratio of equivalent mutants

when using random search, while the HashTable program demonstrated an 11% ratio

of equivalent mutants when using the GA with the roulette wheel selection strategy.

Table 29 provides an answer to RQ4b: “How do different selection methods

compare in terms of execution cost?” This research question aims to identify the

fastest performing selection strategy in terms of average execution time. The results

indicate that rank selection was the least efficient in this regard, taking an average of

115

Table 28. Ratio of generated equivalent mutants.

Subject
Program

Random
Search

GA with
Roulette Wheel

Selection

GA with
Tournament

Selection

GA with
Rank

Selection

GA with
Truncation
Selection

TriangleType 30% 25% 25% 21.2% 14%
PrintPrimes 30.3% 28.4% 24.1% 25.5% 21%
CalculateDays 23.2% 15.2% 18.8% 15% 20%
HashTable 16% 11% 15% 13% 15%
CocktailSort 22.5% 18% 12.3% 16.3% 14.2%
MatchPattern 33% 20.7% 17.6% 22.5% 20.4%
Moon Phases 28.1% 21.5% 25% 20.1% 18%
Average 26.8% 20% 19.7% 19.1% 18%

Table 29. Execution cost of different selection strategies.

Subject
Program

Roulette Wheel
Selection

Tournament
Selection

Rank
Selection

Truncation
Selection

TriangleType 10.2 10.4 13 9.4
PrintPrimes 11 11.3 13.2 10.2
CalculateDays 8.2 8.5 10.5 7.3
HashTable 10.2 10.6 12.3 10
CocktailSort 14 15.3 16 12.3
MatchPattern 8.5 9 10 6.3
MoonPhases 12.7 12.9 15 11.1
Average 10.7 11.1 12.9 9.5

12.9 minutes. Following this, tournament selection was the next slowest, averaging

11.1 minutes.

Comparatively, tournament selection was found to be 0.4 minutes slower on

average than roulette wheel selection. Overall, the quickest selection was truncation

selection, averaging an execution time of 9.5 minutes.

Looking at individual programs, MatchPattern recorded the fastest execution time

at 6.3 minutes using truncation selection. Conversely, the slowest execution time was

observed in the CocktailSort program, which took 16 minutes using rank selection.

Table 30 is dedicated to addressing RQ4c, which asks: “What proportion of higher-

order mutants is produced at each mutation order?” This question explores whether

generating mutants of a higher order can lead to a reduced number of mutants that yield

more effective results. The results clearly indicate that an increase in the mutation order

correlates with a decrease in the number of mutants generated.

116

For this experiment, all subject programs were subjected to both random search

and the various versions of the genetic algorithm, with the average results displayed

in Table 30. For example, the proportion of second-order mutants generated using GA

with truncation selection stands at 50.1%. However, this percentage drops to 14.2%

for fourth-order mutations, signifying an overall reduction of 35.9% in the mutant

ratio as the order increases. This trend demonstrates the effectiveness of higher-order

mutations in decreasing the overall quantity of mutants while potentially improving

the quality of the results.

Table 30. Percentage of the generated higher-order mutants from each mutation order.

Subject
Program

Random
Search

GA with
Roulette Wheel

Selection

GA with
Tournament

Selection

GA with
Rank

Selection

GA with
Truncation
Selection

SecondOrder 55.5% 46.3% 55.2% 64.2% 50.1%
ThirdOrder 37.6% 29.4% 26.1% 23.1% 29.2%
FourthOrder 30.2% 18.1% 15.2% 15.5% 14.2%

Overall, these research questions and experiments collectively explore the com-

plications of higher-order mutation testing, focusing on the optimization of selection

strategies, resource efficiency, and the structural characteristics of higher-order mu-

tants. Our results show that the generation of higher-order mutants can be facilitated

with genetic algorithms using first-order mutants generated from mutation testing

tools.

5.6. Conclusion

This chapter focused on higher-order mutation and a search-based mutation testing

approach using genetic algorithms. These algorithms were applied to first-order

mutants to generate higher-order mutants, aiming to tackle the issue of equivalent

mutants. To thoroughly evaluate its effectiveness and reliability, we selected seven

diverse test programs, each accompanied by a specific test suite tailored to detect and

eliminate higher-order mutants. These test environments provided a comprehensive

platform for assessing our algorithm’s performance.

117

As a result, RQ4 outlined in Section 1.4 is answered: “How does the imple-

mentation of genetic algorithms as a search strategy in higher-order mutation

testing impact the efficiency of generating high-quality mutants, particularly

in reducing the production of equivalent high-order mutants?” Four genetic

algorithm variants, each incorporating a different selection method, for higher-

order mutant generation was proposed. The findings indicate that genetic

algorithm variants effectively reduces the number of equivalent mutants when

forming higher-order mutants. Specifically, truncation selection is found to be

the best selection strategy. The findings of this chapter have been synthesized into

a research article (Uzunbayir and Kurtel, 2023b).

118

CHAPTER 6: CONCLUSION

6.1. Summary

In this thesis, mutation testing was comprehensively explored via experimentation.

We asked four RQs in Section 1.4 and addressed them in the subsequent chapters

separately.

Firstly, various aspects and methodologies were blended to form a comprehensive

overview of the field to address RQ1. The background of the topic was described,

which involved identifying the fundamental principles, applications, and challenges of

mutation testing involving artificial intelligence approaches. It was pointed out that the

steady increase in academic studies and tools indicate that the area is growing rapidly.

Following this, the focus shifted to mutation testing tools specific to the C#

programming language to address RQ2. This segment of the thesis offered an in-depth

analysis of these tools, comparing and contrasting their features and effectiveness.

This comparative approach is invaluable for guiding testers in selecting the most

suitable tools for C# applications, providing critical insights into the practical aspects

of mutation testing.

Next, EvoColony, an innovative approach that merges genetic algorithms and ant

colony optimization for effective mutation test suite reduction, is introduced to address

RQ3. This part of the study not only demonstrated EvoColony’s greater the efficiency

compared to other methods, but also highlighted its dual optimization strategy.

Lastly, higher-order mutation testing through the lens of genetic algorithms is

explored to address RQ4. Several selection methods for the algorithm is discussed

and the ability to reduce the number of equivalent mutants is evaluated. A comparative

analysis presented here demonstrates that the performance of these selection methods

varies, with particular emphasis on the efficiency of a genetic algorithm-based

approach compared to other methods.

Together, all RQs of this thesis coalesce to form a comprehensive and detailed

examination of mutation testing, representing a significant contribution to the field.

Therefore, thesis statement mentioned in Section 1.1 has been successfully addressed.

119

6.2. Future Work

The thesis outlines several important paths for further exploration in the domain

of mutation testing. Of these, a key focal area is the integration of mutation testing

with various other testing techniques, potentially leading to the creation of new,

innovative hybrid methods that exploit aspects of traditional and higher-order mutation

testing, combined with search-based and machine learning approaches. For example,

these approaches can be used for various purposes, for example, natural language

processing (NLP), in which certain requirements are extracted from texts. This

involves parsing the text, identifying key phrases and terms, and structuring them into

formal requirements. Once requirements are extracted using NLP, mutation testing can

be used to validate the tests derived from these requirements, ensuring they align with

the intended functionality. Combining NLP for extraction and mutation testing for

validation creates an iterative process where extracted requirements are continuously

refined based on the effectiveness of the tests.

Furthermore, there is strong potential for advancing existing hybrid methods, such

as EvoColony. Adapting these approaches to address would allow the development of

more intricate mutation types and their integration with other sophisticated artificial

intelligence techniques. This evolution would eventually lead to more adaptive and

efficient testing strategies.

Investigating alternative selection strategies and optimization techniques for higher

order mutation testing is another emerging research direction. Investigating alternative

selection strategies and different search-based optimization methods, e.g., ant colony

optimization or particle swarm optimization, could be highly beneficial. Comparative

analyses involving larger-scale projects under test conditions similar to the ones

employed here may provide valuable insights, enabling us to refine our approach and

potentially uncover a more universally effective solution to the challenges associated

with higher-order mutants and the equivalent mutant problem.

These areas of research signify the potential for continued growth and innovation

in mutation testing. Pursuing these directions, the field can bring more advanced and

efficient tools and methodologies for software testing.

120

6.3. Final Remarks

Overall, this study underlines the dynamic and evolving nature of mutation

testing in software engineering. By incorporating traditional methods with advanced

computational techniques, the approach taken in thesis not only draws on the current

developments in mutation testing, but also opens opportunities for innovative future

solutions. This work lays a strong foundation for further exploration and development

in the field, highlighting the vital role of mutation testing in enhancing software quality

and testing efficiency. Thus, these findings will significantly contribute to a deeper and

more nuanced understanding of mutation testing techniques, which will be increasingly

valuable as the field continues to evolve.

121

REFERENCES

Abuljadayel, A. and Wedyan, F. (2018) An approach for the generation of higher

order mutants using genetic algorithms, International Journal of Intelligent Systems

and Applications, Vol. 12 (1), pp. 34.

Adamopoulos, K., Harman, M. and Hierons, R. M. (2004) How to overcome the

equivalent mutant problem and achieve tailored selective mutation using co-evolution,

Genetic and Evolutionary Computation Conference, Springer, pp. 1338–1349.

Adams, B. and McIntosh, S. (2016) Modern release engineering in a nutshell–

why researchers should care, 2016 IEEE 23rd International Conference on Software

Analysis, Evolution, and Reengineering (SANER), Vol. 5, IEEE, pp. 78–90.

Andrews, J. H., Briand, L. C., Labiche, Y. and Namin, A. S. (2006) Using mutation

analysis for assessing and comparing testing coverage criteria, IEEE Transactions on

Software Engineering, Vol. 32 (8), pp. 608–624.

Arasteh, B., Imanzadeh, P., Arasteh, K., Gharehchopogh, F. S. and Zarei, B. (2022)

A source-code aware method for software mutation testing using artificial bee colony

algorithm, Journal of Electronic Testing, Vol. pp. 1–14.

Bashir, M. B. and Nadeem, A. (2017) Improved genetic algorithm to reduce mutation

testing cost, IEEE Access, Vol. 5, pp. 3657–3674.

Beller, M., Wong, C.-P., Bader, J., Scott, A., Machalica, M., Chandra, S. and Meijer,

E. (2021) What it would take to use mutation testing in industry—a study at facebook,

2021 IEEE/ACM 43rd International Conference on Software Engineering: Software

Engineering in Practice (ICSE-SEIP), IEEE, pp. 268–277.

Boubeta-Puig, J., Medina-Bulo, I. and García-Dominguez, A. (2011) Analogies and

differences between mutation operators for ws-bpel 2.0 and other languages, 2011

IEEE Fourth International Conference on Software Testing, Verification and Validation

Workshops, IEEE, pp. 398–407.

Budd, T. A. and Angluin, D. (1982) Two notions of correctness and their relation to

testing, Acta Informatica, Vol. 18 (1), pp. 31–45.

Byoungju, C. and Mathur, A. P. (1993) High-performance mutation testing, Journal of

122

Systems and Software, Vol. 20 (2), pp. 135–152.

Cai, G., Su, Q. and Hu, Z. (2021) Automated test case generation for path coverage

by using grey prediction evolution algorithm with improved scatter search strategy,

Engineering Applications of Artificial Intelligence, Vol. 106, pp. 104454.

Chekam, T. T., Papadakis, M., Traon, Y. L. and Harman, M. (2017) An empirical

study on mutation, statement and branch coverage fault revelation that avoids the

unreliable clean program assumption, 2017 IEEE/ACM 39th International Conference

on Software Engineering (ICSE), pp. 597–608.

Chen, L. and Zhang, L. (2018) Speeding up mutation testing via regression test

selection: An extensive study, 2018 IEEE 11th International Conference on Software

Testing, Verification and Validation (ICST), pp. 58–69.

Chen, Y. T., Gopinath, R., Tadakamalla, A., Ernst, M. D., Holmes, R., Fraser, G.,

Ammann, P. and Just, R. (2020) Revisiting the relationship between fault detection, test

adequacy criteria, and test set size, Proceedings of the 35th IEEE/ACM International

Conference on Automated Software Engineering, pp. 237–249.

CREAM (2008) Cream. [Online]. Available at: http://galera.ii.pw.edu.pl/adr/

CREAM/. (Accessed: 16 May 2023).

Delamaro, M. (1993) Proteum—a mutation analysis based testing environment,

Master’s thesis, University of São Paulo.

DeMillo, R. A., Guindi, D. S., McCracken, W., Offutt, A. J. and King, K. (1988) An

extended overview of the mothra software testing environment, Workshop on Software

Testing, Verification, and Analysis, IEEE, pp. 142–151.

DeMillo, R. A., Krauser, E. W. and Mathur, A. P. (1991) Compiler-integrated program

mutation, Computer Software and Applications Conference, 1991. COMPSAC’91.,

Proceedings of the Fifteenth Annual International, IEEE, pp. 351–356.

DeMillo, R. A., Lipton, R. J. and Sayward, F. G. (1978) Hints on test data selection:

Help for the practicing programmer, Computer, Vol. 11 (4), pp. 34–41.

Derezińska, A. (2006) Advanced mutation operators applicable in c# programs,

Software Engineering Techniques: Design for Quality, Springer, pp. 283–288.

Derezińska, A. and Rudnik, M. (2017) Evaluation of mutant sampling criteria

in object-oriented mutation testing, Computer Science and Information Systems

123

http://galera.ii.pw.edu.pl/adr/CREAM/
http://galera.ii.pw.edu.pl/adr/CREAM/

(FedCSIS), 2017 Federated Conference on, IEEE, pp. 1315–1324.

Dorigo, M., Birattari, M. and Stutzle, T. (2006) Ant colony optimization, IEEE

Computational Intelligence Magazine, Vol. 1 (4), pp. 28–39.

Durelli, V. H., Durelli, R. S., Borges, S. S., Endo, A. T., Eler, M. M., Dias, D. R. and

Guimarães, M. P. (2019) Machine learning applied to software testing: A systematic

mapping study, IEEE Transactions on Reliability, Vol. 68 (3), pp. 1189–1212.

Garg, A., Ojdanic, M., Degiovanni, R., Chekam, T. T., Papadakis, M. and Le Traon, Y.

(2023) Cerebro: Static subsuming mutant selection, IEEE Transactions on Software

Engineering, Vol. 49 (1), pp. 24–43.

Gong, D., Wang, T., Su, X. and Zhang, Y. (2022) Equivalent mutants detection based

on weighted software behavior graph, International Journal of Software Engineering

and Knowledge Engineering, Vol. 32 (06), pp. 819–843.

Gopinath, R., Ahmed, I., Alipour, M. A., Jensen, C. and Groce, A. (2017)

Mutation reduction strategies considered harmful, IEEE Transactions on Reliability,

Vol. 66 (3), pp. 854–874.

Gopinath, R., Alipour, M. A., Ahmed, I., Jensen, C. and Groce, A. (2016) On the limits

of mutation reduction strategies, Proceedings of the 38th International Conference on

Software Engineering, pp. 511–522.

Grün, B. J., Schuler, D. and Zeller, A. (2009) The impact of equivalent mutants, 2009

International Conference on Software Testing, Verification, and Validation Workshops,

IEEE, pp. 192–199.

Haga, H. and Suehiro, A. (2012) Automatic test case generation based on genetic

algorithm and mutation analysis, 2012 IEEE International Conference on Control

System, Computing and Engineering, IEEE, pp. 119–123.

Halabi, D. and Shaout, A. (2016) Mutation testing tools for java programs–a survey,

International Journal of Computer Science Engineering, Vol. 5, pp. 11–22.

Harman, M., Jia, Y. and Langdon, W. B. (2010) A manifesto for higher order

mutation testing, Third International Conference on Software Testing, Verification, and

Validation Workshops, IEEE, pp. 80–89.

Harman, M., Jia, Y. and Langdon, W. B. (2011) Strong higher order mutation-based

test data generation, Proceedings of the 19th ACM SIGSOFT Symposium and the 13th

124

European Conference on Foundations of Software Engineering, New York, NY, USA,

Association for Computing Machinery, p. 212–222.

Hierons, R., Harman, M. and Danicic, S. (1999) Using program slicing to assist in

the detection of equivalent mutants, Software Testing, Verification and Reliability,

Vol. 9 (4), pp. 233–262.

Hussain, S. (2008) Mutation clustering, Master’s thesis, King’s College London.

Jackson, D. and Woodward, M. R. (2001) Parallel firm mutation of java programs,

Mutation Testing for the New Century, Springer, pp. 55–61.

Jammalamadaka, K. and Parveen, N. (2022) Equivalent mutant identification using

hybrid wavelet convolutional rain optimization, Software: Practice and Experience,

Vol. 52 (2), pp. 576–593.

Jatana, N. and Suri, B. (2020) Particle swarm and genetic algorithm applied to

mutation testing for test data generation: A comparative evaluation, Journal of King

Saud University-Computer and Information Sciences, Vol. 32 (4), pp. 514–521.

Jatana, N., Suri, B. and Rani, S. (2017) Systematic literature review on search based

mutation testing, e-Informatica Software Engineering Journal, Vol. 11 (1), pp. 59–76.

Jia, Y. and Harman, M. (2009) Higher order mutation testing, Information and

Software Technology, Vol. 51 (10), pp. 1379–1393.

Jia, Y. and Harman, M. (2010) An analysis and survey of the development of mutation

testing, IEEE Transactions on Software Engineering, Vol. 37 (5), pp. 649–678.

Jia, Y. and Harman, M. (2011) An analysis and survey of the development of mutation

testing, IEEE Transactions on Software Engineering, Vol. 37 (5), pp. 649–678.

Kapoor, K. (2006) Formal analysis of coupling hypothesis for logical faults,

Innovations in Systems and Software Engineering, Vol. 2 (2), pp. 80–87.

Khanfir, A., Degiovanni, R., Papadakis, M. and Traon, Y. L. (2023) Efficient mutation

testing via pre-trained language models. [Online]. Available at: https://arxiv.org/pdf/

2301.03543.pdf. (Accessed: 16 May 2023).

Kim, S., Clark, J. A. and McDermid, J. A. (2000) Class mutation: Mutation testing for

object-oriented programs, Proc. Net. ObjectDays, Citeseer, pp. 9–12.

King, K. N. and Offutt, A. J. (1991) A fortran language system for mutation-based

software testing, Software: Practice and Experience, Vol. 21 (7), pp. 685–718.

125

https://arxiv.org/pdf/2301.03543.pdf
https://arxiv.org/pdf/2301.03543.pdf

Kintis, M. (2016) Effective Methods to Tackle the Equivalent Mutant Problem when

Testing Software with Mutation, PhD thesis, Athens University of Economics and

Business.

Kintis, M., Papadakis, M. and Malevris, N. (2010) Evaluating mutation testing

alternatives: A collateral experiment, Software Engineering Conference (APSEC),

2010 17th Asia Pacific, IEEE, pp. 300–309.

Kintis, M., Papadakis, M., Papadopoulos, A., Valvis, E., Malevris, N. and Le Traon,

Y. (2018) How effective are mutation testing tools? an empirical analysis of java

mutation testing tools with manual analysis and real faults, Empirical Software

Engineering, Vol. 23 (4), pp. 2426–2463.

Klampfl, L., Chetouane, N. and Wotawa, F. (2020) Mutation testing for artificial

neural networks: An empirical evaluation, 2020 IEEE 20th International Conference

on Software Quality, Reliability and Security (QRS), IEEE, pp. 356–365.

Krasner, H. (2022) The cost of poor software quality in the us: A 2022 report, https:

//www.it-cisq.org/wp-content/uploads/sites/6/2022/11/CPSQ-Report-Nov-22-2.pdf.

Accessed: 20 February 2023.

Krauser, E. (1991) Compiler-Integrated Software Testing, PhD thesis, Purdue

University.

Kusharki, M. B., Misra, S., Muhammad-Bello, B., Salihu, I. A. and Suri, B.

(2022) Automatic classification of equivalent mutants in mutation testing of android

applications, Symmetry, Vol. 14 (4), pp. 820.

Laricchia, F. (2023) Apple inc’s expenditure on research and develop-

ment from fiscal year 2007 to 2023, https://www.statista.com/statistics/273006/

apple-expenses-for-research-and-development/. Accessed: 20 November 2023.

Laurent, T., Guillot, L., Toyama, M., Smith, R., Bean, D. and Ventresque, A.

(2017) Towards a gamified equivalent mutants detection platform, Software Testing,

Verification and Validation Workshops (ICSTW), 2017 IEEE International Conference

on, IEEE, pp. 382–384.

Li, Y., Shen, W., Wu, T., Chen, L., Wu, D., Zhou, Y. and Xu, B. (2022) How higher

order mutant testing performs for deep learning models: A fine-grained evaluation

of test effectiveness and efficiency improved from second-order mutant-classification

126

https://www.it-cisq.org/wp-content/uploads/sites/6/2022/11/CPSQ-Report-Nov-22-2.pdf
https://www.it-cisq.org/wp-content/uploads/sites/6/2022/11/CPSQ-Report-Nov-22-2.pdf
https://www.statista.com/statistics/273006/apple-expenses-for-research-and-development/
https://www.statista.com/statistics/273006/apple-expenses-for-research-and-development/

tuples, Information and Software Technology, Vol. 150, pp. 106954.

Lima, J. A. P. and Vergilio, S. R. (2018) Search-based higher order mutation

testing: A mapping study, Proceedings of the III Brazilian Symposium on Systematic

and Automated Software Testing, New York, NY, USA, Association for Computing

Machinery, p. 87–96.

Lin, H.-Y., Wang, C.-Y., Chang, S.-C., Chen, Y.-C., Chou, H.-M., Huang, C.-Y.,

Yang, Y.-C. and Shen, C.-C. (2012) A probabilistic analysis method for functional

qualification under mutation analysis, 2012 Design, Automation & Test in Europe

Conference & Exhibition (DATE), IEEE, pp. 147–152.

Liu, J. and Song, L. (2021) Second-order mutation testing cost reduction based

on mutant clustering using som neural network model, 2021 IEEE 45th Annual

Computers, Software, and Applications Conference (COMPSAC), IEEE, pp. 974–979.

Ma, L., Zhang, F., Sun, J., Xue, M., Li, B., Juefei-Xu, F., Xie, C., Li, L., Liu, Y., Zhao,

J. et al. (2018) Deepmutation: Mutation testing of deep learning systems, 2018 IEEE

29th International Symposium on Software Reliability Engineering (ISSRE), IEEE,

pp. 100–111.

Ma, Y.-S. and Kim, S.-W. (2016) Mutation testing cost reduction by clustering

overlapped mutants, Journal of Systems and Software, Vol. 115, pp. 18–30.

Ma, Y.-S. and Offutt, J. (2005) Description of class mutation mutation operators for

java, Electronics and Telecommunications Research Institute, Korea, Vol. .

Ma, Y.-S., Offutt, J. and Kwon, Y. R. (2005) Mujava: An automated class mutation

system, Software Testing, Verification and Reliability, Vol. 15 (2), pp. 97–133.

Madeyski, L. (2008) Impact of pair programming on thoroughness and fault

detection effectiveness of unit test suites, Software Process: Improvement and Practice,

Vol. 13 (3), pp. 281–295.

Madeyski, L., Orzeszyna, W., Torkar, R. and Jozala, M. (2014) Overcoming

the equivalent mutant problem: A systematic literature review and a comparative

experiment of second order mutation, IEEE Transactions on Software Engineering,

Vol. 40 (1), pp. 23–42.

Mao, D., Chen, L. and Zhang, L. (2019) An extensive study on cross-project predictive

mutation testing, 2019 12th IEEE Conference on Software Testing, Validation and

127

Verification (ICST), IEEE, pp. 160–171.

Mateo, P. R. and Usaola, M. P. (2013) Parallel mutation testing, Software Testing,

Verification and Reliability, Vol. 23 (4), pp. 315–350.

Mateo, P. R., Usaola, M. P. and Alemán, J. L. F. (2012) Validating second-

order mutation at system level, IEEE Transactions on Software Engineering,

Vol. 39 (4), pp. 570–587.

Mateo, P. R., Usaola, M. P. and Offutt, J. (2010) Mutation at system and functional

levels, 2010 Third International Conference on Software Testing, Verification, and

Validation Workshops, pp. 110–119.

Mateo, P. R., Usaola, M. P. and Offutt, J. (2013) Mutation at the multi-class and system

levels, Science of Computer Programming, Vol. 78 (4), pp. 364–387.

Mathur, A. P. and Krauser, E. W. (1988) Modeling mutation on a vector processor,

Proceedings of the 10th international conference on Software engineering, IEEE

Computer Society Press, pp. 154–161.

Memon, A., Gao, Z., Nguyen, B., Dhanda, S., Nickell, E., Siemborski, R. and Micco,

J. (2017) Taming google-scale continuous testing, 2017 IEEE/ACM 39th International

Conference on Software Engineering: Software Engineering in Practice Track (ICSE-

SEIP), IEEE, pp. 233–242.

Mishra, D. B., Acharya, B., Rath, D., Gerogiannis, V. C. and Kanavos, A. (2022)

A novel real coded genetic algorithm for software mutation testing, Symmetry,

Vol. 14 (8), pp. 1525.

Mraz, R. T., Howe, A. E., von Mayrhauser, A. and Li, L. (1995) System testing with

an ai planner, Proceedings of Sixth International Symposium on Software Reliability

Engineering. ISSRE’95, IEEE, pp. 96–105.

Naeem, M. R., Lin, T., Naeem, H. and Liu, H. (2020) A machine learning approach

for classification of equivalent mutants, Journal of Software: Evolution and Process,

Vol. 32 (5).

Naeem, M. R., Lin, T., Naeem, H., Ullah, F. and Saeed, S. (2019) Scalable

mutation testing using predictive analysis of deep learning model, IEEE Access,

Vol. 7, pp. 158264–158283.

Nayyar, Z., Rafique, N., Hashmi, N., Rashid, N. and Awan, S. (2015) Analyzing test

128

case quality with mutation testing approach, 2015 Science and Information Conference

(SAI), IEEE, pp. 902–905.

Nester (2002) Nester. [Online]. Available at: http://nester.sourceforge.net/.

(Accessed: 01 June 2023).

Nica, S. and Wotawa, F. (2012) Using constraints for equivalent mutant detection,

Electronic Proceedings in Theoretical Computer Science, Vol. .

NinjaTurtles (2014) Ninjaturtles. [Online]. Available at: http://www.mutation-testing.

net/. (Accessed: 16 May 2023).

Noemmer, R. and Haas, R. (2020) An evaluation of test suite minimization techniques,

International Conference on Software Quality, Springer, pp. 51–66.

Offutt, A. (1989) The coupling effect: Fact or fiction, ACM SIGSOFT Software

Engineering Notes, Vol. 14 (8), pp. 131–140.

Offutt, A. J. (1992) Investigations of the software testing coupling effect, ACM

Transactions on Software Engineering and Methodology, Vol. 1 (1), pp. 5–20.

Offutt, A. J., Lee, A., Rothermel, G., Untch, R. H. and Zapf, C. (1996) An

experimental determination of sufficient mutant operators, ACM Transactions on

Software Engineering and Methodology (TOSEM), Vol. 5 (2), pp. 99–118.

Offutt, A. J. and Pan, J. (1997) Automatically detecting equivalent mutants and

infeasible paths, Software Testing, Verification and Reliability, Vol. 7 (3), pp. 165–

192.

Offutt, A. J., Pargas, R. P., Fichter, S. V. and Khambekar, P. K. (1992) Mutation testing

of software using a mimd computer, in 1992 International Conference on Parallel

Processing, Citeseer.

Offutt, A. J. and Untch, R. H. (2001) Mutation 2000: Uniting the orthogonal, Mutation

Testing for the New Century, Springer, pp. 34–44.

Omar, E. and Ghosh, S. (2012) An exploratory study of higher order mutation testing

in aspect-oriented programming, Software Reliability Engineering (ISSRE), 2012 IEEE

23rd International Symposium on, IEEE, pp. 1–10.

Örgård, J. (2022) Recommendations for mutation testing as part of a continuous

integration pipeline: With a focus on c++, Master’s thesis, University of Gothenburg.

Orzeszyna, W. (2011) Solutions to the equivalent mutants problem: A systematic

129

http://nester.sourceforge.net/
http://www.mutation-testing.net/
http://www.mutation-testing.net/

review and comparative experiment, Master’s thesis, Blekinge Institute of Technology.

Pachouly, J., Ahirrao, S., Kotecha, K., Selvachandran, G. and Abraham, A. (2022) A

systematic literature review on software defect prediction using artificial intelligence:

Datasets, data validation methods, approaches, and tools, Engineering Applications

of Artificial Intelligence, Vol. 111, pp. 104773.

Palomo-Lozano, F., Estero-Botaro, A., Medina-Bulo, I. and Núñez, M. (2018) Test

suite minimization for mutation testing of ws-bpel compositions, Proceedings of the

Genetic and Evolutionary Computation Conference, pp. 1427–1434.

Panichella, A. and Liem, C. C. (2021) What are we really testing in mutation

testing for machine learning? a critical reflection, 2021 IEEE/ACM 43rd International

Conference on Software Engineering: New Ideas and Emerging Results (ICSE-NIER),

IEEE, pp. 66–70.

Papadakis, M., Delamaro, M. and Le Traon, Y. (2014) Mitigating the effects

of equivalent mutants with mutant classification strategies, Science of Computer

Programming, Vol. 95, pp. 298–319.

Papadakis, M., Jia, Y., Harman, M. and Le Traon, Y. (2015) Trivial compiler

equivalence: A large scale empirical study of a simple, fast and effective equivalent

mutant detection technique, Proceedings of the 37th International Conference on

Software Engineering-Volume 1, IEEE Press, pp. 936–946.

Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Le Traon, Y. and Harman, M. (2017)

Mutation testing advances: An analysis and survey, Advances in Computers, Vol. .

Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Le Traon, Y. and Harman, M. (2019)

Mutation testing advances: An analysis and survey, Advances in Computers, Vol. 112,

Elsevier, pp. 275–378.

Papadakis, M. and Le Traon, Y. (2014) Effective fault localization via mutation

analysis: A selective mutation approach, Proceedings of the 29th Annual ACM

Symposium on Applied Computing, pp. 1293–1300.

Papadakis, M. and Malevris, N. (2010) An empirical evaluation of the first and second

order mutation testing strategies, 2010 Third International Conference on Software

Testing, Verification, and Validation Workshops, IEEE, pp. 90–99.

Parsai, A., Murgia, A. and Demeyer, S. (2016) A model to estimate first-order mutation

130

coverage from higher-order mutation coverage, 2016 IEEE International Conference

on Software Quality, Reliability and Security (QRS), pp. 365–373.

Pearson, S., Campos, J., Just, R., Fraser, G., Abreu, R., Ernst, M. D., Pang, D. and

Keller, B. (2017) Evaluating and improving fault localization, 2017 IEEE/ACM 39th

International Conference on Software Engineering (ICSE), IEEE, pp. 609–620.

Petrović, G., Ivanković, M., Fraser, G. and Just, R. (2021) Practical mutation

testing at scale: A view from google, IEEE Transactions on Software Engineering,

Vol. 48 (10), pp. 3900–3912.

PexMutator (2010) Pexmutator. [Online]. Available at: https://www.csc2.ncsu.edu/

techreports/tech/2010/TR-2010-10.pdf. (Accessed: 16 May 2023).

Pitts, R. (2021) Random selection might just be indomitable, 2021 IEEE International

Conference on Software Testing, Verification and Validation Workshops (ICSTW),

pp. 1–6.

Polo, M., Piattini, M. and García-Rodríguez, I. (2009) Decreasing the cost of mutation

testing with second-order mutants, Software Testing, Verification and Reliability,

Vol. 19 (2), pp. 111–131.

Rani, S., Suri, B. and Khatri, S. K. (2015) Experimental comparison of automated

mutation testing tools for java, 2015 4th International Conference on Reliability,

Infocom Technologies and Optimization (ICRITO) (Trends and Future Directions),

IEEE, pp. 1–6.

Schuler, D., Dallmeier, V. and Zeller, A. (2009) Efficient mutation testing by

checking invariant violations, Proceedings of the Eighteenth International Symposium

on Software Testing and Analysis, ACM, pp. 69–80.

Schuler, D. and Zeller, A. (2009) Javalanche: efficient mutation testing for java,

Proceedings of the the 7th Joint Meeting of the European Software Engineering

Conference and the ACM SIGSOFT Symposium on The Foundations of Software

Engineering, ACM, pp. 297–298.

Schuler, D. and Zeller, A. (2013) Covering and uncovering equivalent mutants,

Software Testing, Verification and Reliability, Vol. 23 (5), pp. 353–374.

Sharma, V., Kumar, R. and Tyagi, S. (2016) A review of genetic algorithm and

mendelian law, International Journal of Scientific & Engineering Research, Vol. 7 (12).

131

https://www.csc2.ncsu.edu/techreports/tech/2010/TR-2010-10.pdf
https://www.csc2.ncsu.edu/techreports/tech/2010/TR-2010-10.pdf

Shen, W., Wan, J. and Chen, Z. (2018) Munn: Mutation analysis of neural networks,

2018 IEEE International Conference on Software Quality, Reliability and Security

Companion (QRS-C), IEEE, pp. 108–115.

Siami Namin, A., Andrews, J. H. and Murdoch, D. J. (2008) Sufficient mutation

operators for measuring test effectiveness, Proceedings of the 30th International

Conference on Software Engineering, ACM, pp. 351–360.

Silva, R. A., de Souza, S. d. R. S. and de Souza, P. S. L. (2017) A systematic review on

search based mutation testing, Information and Software Technology, Vol. 81, pp. 19–

35.

Singh, M. and Srivastava, V. M. (2017) Extended firm mutation testing: A cost

reduction technique for mutation testing, Image Information Processing (ICIIP), 2017

Fourth International Conference on, IEEE, pp. 1–6.

Souza, B. B. and Gheyi, R. (2020) Most higher mutants are useless for

method-level mutation operators using weak mutation. [Online]. Available

at: http://dspace.sti.ufcg.edu.br:8080/jspui/bitstream/riufcg/20158/1/BEATRIZ%

20BEZERRA%20DE%20SOUZA%20-%20TCC%20CIE%cc%82NCIA%20DA%

20COMPUTAC%cc%a7A%cc%83O%202020.pdf. (Accessed: 01 June 2023).

Souza, F. C. M., Papadakis, M., Le Traon, Y. and Delamaro, M. E. (2016) Strong

mutation-based test data generation using hill climbing, Proceedings of the 9th

International Workshop on Search-Based Software Testing, pp. 45–54.

Strug, J. and Strug, B. (2012) Machine learning approach in mutation testing, IFIP

International Conference on Testing Software and Systems, Springer, pp. 200–214.

Stryker (2014) Nester. [Online]. Available at: https://stryker-mutator.io/. (Accessed:

16 May 2023).

Tambon, F., Majdinasab, V., Nikanjam, A., Khomh, F. and Antonio, G. (2023)

Mutation testing of deep reinforcement learning based on real faults, International

Conference of Software Testing (ICST2023).

Untch, R. H., Offutt, A. J. and Harrold, M. J. (1993) Mutation analysis using mutant

schemata, ACM SIGSOFT Software Engineering Notes, Vol. 18, ACM, pp. 139–148.

Usaola, M. P. and Mateo, P. R. (2010) Mutation testing cost reduction techniques: A

survey, IEEE Software, Vol. 27 (3), pp. 80–86.

132

http://dspace.sti.ufcg.edu.br:8080/jspui/bitstream/riufcg/20158/1/BEATRIZ%20BEZERRA%20DE%20SOUZA%20-%20TCC%20CIE%cc%82NCIA%20DA%20COMPUTAC%cc%a7A%cc%83O%202020.pdf
http://dspace.sti.ufcg.edu.br:8080/jspui/bitstream/riufcg/20158/1/BEATRIZ%20BEZERRA%20DE%20SOUZA%20-%20TCC%20CIE%cc%82NCIA%20DA%20COMPUTAC%cc%a7A%cc%83O%202020.pdf
http://dspace.sti.ufcg.edu.br:8080/jspui/bitstream/riufcg/20158/1/BEATRIZ%20BEZERRA%20DE%20SOUZA%20-%20TCC%20CIE%cc%82NCIA%20DA%20COMPUTAC%cc%a7A%cc%83O%202020.pdf
https://stryker-mutator.io/

Uzunbayir, S. (2018) A genetic algorithm for the winner determination problem in

combinatorial auctions, 2018 3rd International Conference on Computer Science and

Engineering (UBMK), IEEE, pp. 127–132.

Uzunbayir, S. (2022) Reverse ant colony optimization for the winner determination

problem in combinatorial auctions, 2022 7th International Conference on Computer

Science and Engineering (UBMK), IEEE, pp. 19–24.

Uzunbayir, S. and Kurtel, K. (2019) An analysis on mutation testing tools for c#

programming language, 2019 4th International Conference on Computer Science and

Engineering (UBMK), IEEE, pp. 439–443.

Uzunbayir, S. and Kurtel, K. (2023a) Evocolony: A hybrid approach to search-based

mutation test suite reduction using genetic algorithm and ant colony optimization,

International Journal of Intelligent Systems and Applications in Engineering,

Vol. 12 (1), pp. 437–449.

Uzunbayir, S. and Kurtel, K. (2023b) Leveraging genetic algorithms for efficient

search-based higher-order mutation testing, Computing and Informatics, Vol. 43 (3).

Uzunbayir, S. and Kurtel, K. (2024) Mutation testing reinvented: How artificial

intelligence complements classic methods. Unpublished manuscript.

Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P. and Sundaresan, V. (2010)

Soot: A java bytecode optimization framework, CASCON First Decade High Impact

Papers, IBM Corp., pp. 214–224.

Van Nho, D., Vu, N. Q. and Binh, N. T. (2019) A solution for improving

the effectiveness of higher order mutation testing, 2019 IEEE-RIVF International

Conference on Computing and Communication Technologies (RIVF), IEEE, pp. 1–5.

VisualMutator (2013) Visualmutator. [Online]. Available at: https://visualmutator.

github.io/web/. (Accessed: 16 May 2023).

von Mayrhauser, A., Scheetz, M., Dahlman, E. and Howe, A. E. (2000) Planner

based error recovery testing, Proceedings 11th International Symposium on Software

Reliability Engineering. ISSRE 2000, IEEE, pp. 186–195.

Wedyan, F., Al-Shishani, A. and Jararweh, Y. (2022) Gasubtle: A new genetic algo-

rithm for generating subtle higher-order mutants, Information, Vol. 13 (7), pp. 327.

Wong, W. E. (1993) On mutation and data flow, PhD thesis, Purdue University.

133

https://visualmutator.github.io/web/
https://visualmutator.github.io/web/

Wright, C. J., Kapfhammer, G. M. and McMinn, P. (2013) Efficient mutation

analysis of relational database structure using mutant schemata and parallelisation,

Software Testing, Verification and Validation Workshops (ICSTW), 2013 IEEE Sixth

International Conference on, IEEE, pp. 63–72.

Yao, X., Zhang, G., Pan, F., Gong, D. and Wei, C. (2020) Orderly generation of test

data via sorting mutant branches based on their dominance degrees for weak mutation

testing, IEEE Transactions on Software Engineering, Vol. 48 (4), pp. 1169–1184.

Yao, Y., Liu, J., Huang, S., Hui, Z., Wu, K., Chen, L., Yang, S. and Chen, Q. (2019)

Testing adequacy of convolutional neural network based on mutation testing, 2019

IEEE 19th International Conference on Software Quality, Reliability and Security

Companion (QRS-C), IEEE, pp. 536–537.

Yu, M. and Ma, Y.-S. (2019) Possibility of cost reduction by mutant clustering

according to the clustering scope, Software Testing, Verification and Reliability,

Vol. 29 (1-2), pp. e1692.

Zhang, J., Zhang, L., Harman, M., Hao, D., Jia, Y. and Zhang, L. (2018) Predictive

mutation testing, IEEE Transactions on Software Engineering, Vol. pp. 1–1.

Zhang, L., Gligoric, M., Marinov, D. and Khurshid, S. (2013) Operator-based

and random mutant selection: Better together, Proceedings of the 28th IEEE/ACM

International Conference on Automated Software Engineering, IEEE Press, pp. 92–

102.

134

	INTRODUCTION
	Thesis Statement
	What is Mutation Testing?
	Problems of Mutation Testing
	Research Questions
	Contributions
	Organization of the Thesis
	List of Publications

	PRELIMINARIES AND RELATED WORK
	Fundamental Principles of Mutation Testing
	Mutation Analysis
	Mutation Process
	Cost of Mutations

	Cost Reduction Techniques Literature Review
	Computational Cost Reduction Techniques
	Manual Cost Reduction

	Challenges and Current Trends for Mutation Testing
	Challenges and Interests of Mutation Testing
	A Hot Topic: Artificial Intelligence Supported Mutation Testing
	Machine Learning
	Evolutionary Computation

	State of the Art Models for Mutation Testing Using AI

	Conclusion

	AN ANALYSIS ON MUTATION TESTING TOOLS
	Mutation Testing Tools for Different Programming Languages
	Mutation Operators for C#
	Mutation Testing Tools for C#
	Nester
	Stryker
	NinjaTurtles
	VisualMutator
	PexMutator
	CREAM

	An Analysis of Mutation Tools for C# Based On Tool Characteristics
	A Case Study: Cross-Evaluation of the Tools
	Methodology
	Research Questions
	Subject Programs
	Results

	Conclusion

	EVOCOLONY: A HYBRID APPROACH
	Search-Based Mutation Testing
	Test Case Reduction Problem
	Genetic Algorithms
	Ant Colony Optimization
	Methodology
	Research Questions
	EvoColony: A Hybrid Approach to Search-Based Mutation Testing

	Experimental Design
	Test Environment
	Test Data
	Benchmark Algorithms
	Results and Evaluation

	Conclusion

	LEVERAGING MUTANTS IN HIGHER-ORDER
	First-Order and Equivalent Mutants
	Higher-Order Mutation Testing
	Methodology
	A Genetic Algorithm for Higher-Order Mutant Generation
	Chromosome Representation
	Fitness Function
	Initialization
	Selection
	Mating
	Stopping Condition

	A Random Search Algorithm for Higher-Order Mutant Generation
	Research Questions

	Experimental Design
	Test Environment
	Subject Programs
	Genetic Algorithm Parameter Settings

	Results
	Conclusion

	CONCLUSION
	Summary
	Future Work
	Final Remarks

	REFERENCES
	CURRICULUM VITAE

