GENERATING MEANINGFUL INTERACTIONS
BETWEEN NON-PLAYABLE GAME CHARACTERS
FOR ADAPTIVE GAMEPLAY

MUHTAR CAGKAN ULUDAGLI

Thesis for the Ph.D. Program in Computer Engineering

Graduate School
Izmir University of Economics

Izmir

2023

GENERATING MEANINGFUL INTERACTIONS
BETWEEN NON-PLAYABLE GAME CHARACTERS
FOR ADAPTIVE GAMEPLAY

MUHTAR CAGKAN ULUDAGLI

THESIS ADVISOR: ASSOC. PROF. DR. KAYA OGUZ

A Ph.D. Thesis
Submitted to
the Graduate School of Izmir University of Economics

the Department of Computer Engineering

Izmir

2023

ETHICAL DECLARATION

I hereby declare that I am the sole author of this thesis and that I have conducted
my work in accordance with academic rules and ethical behaviour at every stage
from the planning of the thesis to its defence. I confirm that I have cited all ideas,
information and findings that are not specific to my study, as required by the code of

ethical behaviour, and that all statements not cited are my own.

Name, Surname:

Muhtar Cagkan ULUDAGLI

Date:
28.12.2023

Signature:

ABSTRACT

GENERATING MEANINGFUL INTERACTIONS BETWEEN NON-PLAYABLE
GAME CHARACTERS FOR ADAPTIVE GAMEPLAY

Uludagli, Muhtar Cagkan

Ph.D. Program in Computer Engineering
Advisor: Assoc. Prof. Dr. Kaya OGUZ

December, 2023

This thesis presents decision-making methods that are used by non-player characters
(NPCs) in computer games; and it proposes a graph generator algorithm to be used
by NPC communities. In the thesis, we firstly review the literature for finding out
which decision-making methods are used for game NPCs. We list existing methods for
industry games, present decision-making frameworks in the literature and also come
up with a detailed taxonomy. After reviewing the literature, it can be seen that there
are not any appropriate means for generating social networks that can be used by NPC
communities in games for adaptive gameplay. Hence, we propose such a generator,
AnatoliA, for this purpose. We lay out our key assumptions, present our algorithm
and give detailed analysis of our model. Our results show that, AnatoliA outperforms
some earlier generators on some of the key metrics. In the final part of the thesis,
we also evaluate different use case possibilities of our algorithm and discuss future

improvements.

Keywords: Video game, NPC Decision-making, Graph generator, Social networks.

iv

OZET

UYARLANABILIR OYNANIS ICIN OYUNCU OLMAYAN KARAKTERLER
ARASINDA ANLAMLI ETKILESIMLER OLUSTURULMASI

Uludagli, Muhtar Cagkan

Bilgisayar Miihendisligi Doktora Programi
Tez Damsmani: Dog. Dr. Kaya OGUZ
Aralik, 2023

Bu tez bilgisayar oyunlarinda oyuncu olmayan karakterler (OOK’lar) tarafindan
kullanilan karar verme yontemlerini sunar, ve bu tiir OOK topluluklar: tarafindan
kullanilacak bir ¢izge olusturucu algoritmasi Onerir. Tezde Oncelikle oyunlarda
OOK’lar i¢in hangi karar verme yontemlerinin kullanildigin1 bulmak icin literatiir
taramasi yapilmistir. Bilgisayar oyunlari i¢in kullanilan bu yontemleri tanimlamakta,
literatiirdeki karar verme yontemlerini sunmakta ve ayrica ayrintili bir taksonomi
olusturmaktayiz. Literatiirii gézden gecirdigimizde, oyunlarda OOK topluluklari
tarafindan kullanilabilecek bir sosyal ag olusturmanin uygun bir yolu olmadigim
gordiik. Biz de bu amacla AnatoliA adinda bir ¢izge olusturucu yarattik. Tezde,
bu algoritma i¢in temel varsayimlarimizi ortaya koyuyor, algoritmamizi sunuyor ve
modelimizin ayrintili analizini yapiyoruz. Sonucglarimiz, AnatoliA’nin bazi temel
Olctimlerde daha onceki bazi ¢izge olusturuculardan daha iyi performans verdigini
gosteriyor. Tezimizin son boliimii olarak, algoritmamizin farkli kullanim yollarini da

degerlendiriyor ve gelecekteki yapilabilecek iyilestirmeleri tartisiyoruz.

Anahtar Kelimeler: Video oyunu, OOK Karar-verme, Cizge olusturucu, Sosyal aglar.

To my beloved parents, Sevgi and Esref,

they are my lanterns amidst the fogs of despair..

vi

ACKNOWLEDGEMENTS

First and foremost, I would like to thank my advisor, Assoc. Prof. Dr. Kaya Oguz,
for his continuous support, mentorship and companionship along the way. Without
him, this work would not be completed. And even, without him, my undergraduate
thesis project would not be completed; and my field of work, which I am currently
satisfied and very happy with, would be different. Throughout these passing years, I
have learned so much from him and I will be eternally grateful to him.

Second of all, I would like to thank my precious wife, Damla, for her undying love,
support, friendship and partnership throughout this journey. I thank her for bearing all
the hardships of life with me, and also for running the house while I was not completely
there for her because of this work. Without her, I would be lost already. My sun, my
star, the meaning of my life, my joy, my blaze, my paradise, other half of my existence,
all my hopes, and my garden of roses, thank you for everything. I love you so much,
you are mine, and I will meet you at the end of all time.

Next, I would like to thank my parents, my dear mother, Sevgi and my beloved
father, Esref. They are the reason why I am here and continue to pursue this noble line
of work. If they were not always there for me when I need them, I think I would not
come this far. I dedicated this thesis to them. I also thank my big brother, Cagri, and
my sister-in-law, Nesrin, for giving me my beautiful niece, Saye Nehir. All my hopes
are for the next generation, and I hope that in the future, you will be very successful,
prosper, healthy, and most of all, an independent woman. I love you, my little princess.

I would like to thank all of my closest friends. The bad times would be unbearable
and the good times would be boring without you. I hope that you will always be
around, to laugh, to cry, and to live and to die together.

Lastly, I thank all of my coworkers, my fellow researchers, all the staff of our
university, and all of the professors and the teachers whom I have learned so much
until now. I am deeply indebted to them for their profound knowledge.

As my last words, I would like to send my eternal love to the heavens for all of my
lost ones, especially my grandma and my grandpa, and all the lost ones of all the good
people around our world. Life is better because of the dreamers, and thank you very
much for teaching me that so early in life. I wish that I will be worthy for you until the

end of my life.

Vil

TABLE OF CONTENTS

ABSTRACT e v
OZET . . . v
ACKNOWLEDGEMENTS o . vii
TABLE OF CONTENTS e viii
LISTOFTABLES e X
LISTOFFIGURES e xi
CHAPTER 1: INTRODUCTION e 1
1.1 Motivation e 1
1.2 Preliminaries e e e 2
1.3 Theoretical Foundations 5
1.4 Research Questions 7
1.5 Thesis Layout i e e 8
CHAPTER 2: LITERATUREREVIEW 10
2.1 Literature Review Methodology 10
2.2 Decision-Making Methods of NPCs 11
2.2.1 Finite State Machines 12

2.2.2 Decision Trees i e 13

2.2.3 Behavior Trees e 14

2.2.4 Ruleset- or Logic-based Decision-Making 16

2.2.5 Goal-based Decision-Making 18

2.2.6 Artificial Neural Networks 19

2.2.7 Hybrid Methods 20
2.2.8 Decision-Making Frameworks 20
2.2.9 Review of the Methods 21

2.3 Network Generation Algorithms 21
2.3.1 Network Generation with Communities 23

2.3.2 Network Generation with Communities and Attributes 24

24 Summary e e e e e 26

viii

CHAPTER 3: OUR SOCIAL NETWORK GENERATION ALGORITHM,

“AnatoliA” . L oL oL e e e 27
3.1 Preliminaries e e 27
3.2 Method 28

3.2.1 ASSUmptionso e e e e e 28
3.2.2 Generation Parameterso 29
3.2.3 Algorithm 30
3.3 Results e 35
3.3.1 Generated Graphs 37
3.3.2 Assumptions and Model Properties Evaluation 38
3.3.3 Comparison with Other Graph Generators 44
3.3.4 Evaluation with Real Dataset 49
3.4 Discussiono e e e e 51

CHAPTER 4: APPLICATIONS OF THE PROPOSED ALGORITHM 55
4.1 Further Improvements of Our Method 55
4.2 Previous NPC Networks 57
4.3 A Minor Case Study: AnatoliA vs. Fallout 4 NPC Network 58
4.4 Towards a General NPC Personality Model 62
4.5 The Ultimate Model: Adaptive NPC Community 64

CHAPTER 5: CONCLUSION & FUTURE DIRECTIONS 66

REFERENCES e 70

CURRICULUM VITAE 86

X

LIST OF TABLES

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.

Table 6.
Table 7.
Table 8.
Table 9.

Table 10.

Table 11.

Table 12.

Table 13.

Table 14.

Table 15.

Table 16.

Table 17.

An overview of the literature surveys.
The Hybrid Decision-Making Methods.
The NPC Decision-Making Frameworks
The Decision-Making Methods used in Known Games for NPCs. .

The earlier graph generators.

Description of generation parameters.
Graph model properties and assumptions #1.
Graph model properties and assumptions #2.
Maximum runtimes of the algorithm.
Model properties comparison between graph generators.
Similarity evaluation for AnatoliA compared to other generators. .
Evaluation results for AnatoliA ground truth communities.

Evaluation results for AnatoliA when ground truth communities
arenotknown.l
Model properties comparison between graph generators using
Sinanet benchmark. oo oo
Community detection comparison between graph generators using

Sinanet benchmark.

Model properties comparison for AnatoliA using Fallout 4 NPC
network.
Model properties evaluation with other generators using Fallout 4

NPCnetwork. e

30
42
42
42
45
46
47

LIST OF FIGURES

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Figure 8.
Figure 9.

Figure 10.
Figure 11.
Figure 12.

Figure 13.

A sample finite state machine. 12
A sample decisiontree. 14
Behavior tree details. L oL 15
An example behaviortree. 000 15
A sample schema for rule-based decision-making. 16
A sample schema for fuzzy-logic based decision-making. 17
A sample action library and action steps for GOAP. 18
The overview of AnatoliA algorithm. 31
Edge generation in AnatoliA. L. 36
A graph example with N = 1250 nodes and A = 100 attributes. . 38
Normal distribution of node-attribute affinity values 39
AnatoliA vs. LFR for edge degree distributions. 40
Our Adaptive NPC Community Model. 65

xi

CHAPTER 1: INTRODUCTION

1.1 Motivation

Over the years, computer games have improved substantially, offering players dynamic
and vibrant virtual worlds to explore. The actions and interactions of non-player
characters (NPCs) are a vital factor in achieving a depth of gameplay experience. The
storyline of the game is shaped by NPCs, who take on a variety of roles, including
those of allies, enemies, quest givers, and spectators, who add authenticity to the
virtual world. Algorithms that enable meaningful interactions between NPCs needs
to be developed in order to generate engaging and intelligent NPC behavior.

The absence of sufficient diversity and depth in the area of NPC interaction
methods is a major problem. Many current methods place a heavy emphasis on
pre-scripted behaviors or basic decision-making models, which can lead to recurring
and predictable NPC behavior. To solve this problem, we suggest using each NPC’s
intrinsic motivation to create an adaptive gameplay experience that increases the
diverse and unpredictable nature of NPC activities.

The idea of an NPC-to-NPC (N2N) network, where each node represents a unique
NPC and the edges reflect the connections and interactions between NPCs, is crucial to
our research. We want to capture the depth and interconnectedness of NPC activities
by creating such a network, enabling emergent gameplay and complex social dynamics
in the virtual environment.

We carried out a comprehensive review of NPC decision-making techniques that
are frequently utilized in academic literature to establish the foundation for our
study. This study found a need for innovative methods that go beyond conventional
programmed behaviors and add more complex models that take the dynamic nature
of gaming settings into account. In order to help NPCs display more complex and
contextually relevant behaviors, we attempted to create a social network generation
algorithm that is especially suited for NPC decision-making.

The internal attributes particular to each node must also be taken into account while
creating the N2N graph, in addition to the interactions between NPCs. These internal
characteristics include unique NPC aspects like personality, motives, and ambitions

that have a big impact on how they make decisions and interact with other NPCs later

on. We seek to build a more realistic and engaging virtual environment where NPCs
have different personalities and interact with one another in sophisticated ways by
including these internal attributes into our network generation process.

In summary, this thesis proposes a novel N2N graph generation algorithm for
computer games in order to solve the shortcomings of current NPC interaction
approaches. We aim to build adaptive gameplay experiences that promote diversity
and unpredictability by implementing intrinsic motivation for each NPC. We want
to capture the complexity of NPC behaviors through the building of an NPC graph,
leveraging internal attributes to support sophisticated decision-making and realistic
social interactions. The goal of this study is to improve the field of NPC behavior

modeling and assist in the creation of more realistic and compelling video games.

1.2 Preliminaries

In computer science, or more specifically in graph theory, a graph can be defined
as a discrete structure which includes the nodes, that hold various information in
themselves, and the edges, that are the connections between these nodes (Rosen, 2007).

In mathematical notion, a simple graph G could be defined as:
G=(V,E) (1)

where V, is a nonempty set of nodes (can also be called as vertices), and E, is a set
of edges. Every edge has two endpoints as nodes, where the edge connects these two
nodes together.

There are different graph models. Three most important ones are listed in this
section.

The first one is the directed graph. Different from the simple undirected graphs,
the edges of a directed graph (which can be called as arcs) have certain directions. The
pair of nodes, (u«,v), connected by a directed edge has an order, where u is the starting
node and v is the ending node (Rosen, 2007). With this information at hand, directed

graph can be denoted as:

Ga=(V.E C{(x,y)| (x.y) € V2, x#y}) 2

The second type is the weighted graph. A weighted graph is a graph where each
edge is assigned a numerical value (Fletcher et al., 1991). This graph model uses a

weight matrix to hold the weight information which can be denoted as:

W= [Wij]nxn 3)

where w;; is the weight for the edge between the nodes i and j, and the width and
length of the matrix W is n, which is also the number of nodes in the graph. Depending
on the context, the weights might reflect different concepts such as costs, lengths, or
capacities. With including weight matrix in definition, the weighted graph can be
defined as:

Gy = (V,E,W) 4)

The last type we list here is the attributed graph. Graphs with attributes refer to
graph structures where additional information, known as attributes or properties, is
associated with the nodes and/or edges of the graph (Newman, 2018). Each node
in a graph with attributes can have one or more attributes associated with it. These
attributes can reflect a name, a numerical value, a category, a date, or any other
important information about the node. Similarly, edges in the graph can be linked with
attributes that offer additional information about the relationship between connected
nodes.

Essentially, weighted graph is a special kind of edge-attributed graph where it has
only one numerical value as the only attribute for the edge. In most cases, we assume
the graphs with attributes have only node attributes, but in specific cases or problems,
this situation may change. In here, we will define node-attributed graphs. For every
node, there may be an attribute list for these graphs. This list can be defined in a matrix

form by using the notation:

A= [aik]nxm S)

where a;; is the kth attribute for node i, n is the number of nodes in the graph and m is
the number of attributes per node. By using this matrix, we can denote the graph with
node attributes as:

Ga - (VvaA) (6)

All of the different graph models we listed above can be combined to create
different models. We used undirected unweighted node-attributed graph model for
our graph generation algorithm. However, it is easy to change or extend our model
with different graph types when needed.

Graphs can be used to denote different networks. Technological networks such
as the Internet, power grids or transportation & distribution networks, social and
affiliation networks, networks of information such as the World Wide Web and
academic citation networks, and natural networks such as biochemical, neural and
ecological networks are the few of the many examples that can be represented by
computer graphs. From all of these usage scenarios, we use the computer graphs for
representing a generated social network in this thesis.

A social network is a network where the nodes are people or occasionally a group
of people, and the edges reflect some type of social connection between them, such
as friendship or co-working (Newman, 2018). The social networks research is often
conducted by sociologists, long before the computer scientists came into the picture.
The most studied social network examples by the researchers are the collaborations of
scientists (Grossman and Ion, 1995; Newman, 2001), movie actor networks (Amaral
et al., 2000), covert or criminal networks (Salganik and Heckathorn, 2004), online
communities such as Usenet (Smith, 1999; Lueg and Fisher, 2003), or Facebook
(Lewis et al., 2008), and animal networks (Sailer and Gaulin, 1984; Lusseau, 2003).

Most of the time, defining a particular social network is similar to defining a
computer graph. The only important thing that must be considered is to select the
correct graph type. Is the network is directed or undirected, weighted or unweighted,
attributed or non-attributed, or is it used combinations of these, is the real question to
answer.

As in these given examples, the researchers mostly studied the networks already
created by nature, however, sometimes it is not easy to acquire this kind of information
freely. For instance, gathering data from Facebook can be subject to different laws and
regulations. In these times, algorithmic generation of synthetic data for social networks
is one of the probable solutions.

In computer science and data analysis, the term “graph generation” refers to the

act of building or generating graphs. Graph generation can be used for many different

purposes, such as simulating networks, modeling real-world systems, or creating fake
data to test apps and algorithms.

There are various methods for generating graphs, and each is appropriate for
a particular set of needs and use cases. Some common methods and models for
graph generation include random graph generation using models such as Erds-Rényi
model (Erdos and Rényi, 1959) or Watts-Strogatz model (Watts and Strogatz, 1998),
preferential attachment model for scale-free networks (Newman, 2018), generation
with community structures, and spatial graph model.

In many domains, such as computer networks, data mining, computational biology,
and social network analysis, graph generation is a vital tool. Researchers and analysts
can create graphs with desired attributes or real-world structures to test and study
algorithms, to validate their theories, and to learn more about complex systems and
how they behave.

In our graph generation algorithm, we use a model that combines preferential at-
tachment model, community structures, spatial proximity and node-attribute similarity
rules together and we create a unique approach to resemble real-world networks in this

manner.

1.3 Theoretical Foundations

The goal of this section is to lay the theoretical groundwork for research on developing
an N2N graph generation algorithm for computer games. We dive into the fundamental
ideas of decision-making, NPC definition within the game context, social network
generation, and existing methods for constructing such networks in order to allow a
thorough comprehension of the proposed research.

NPC behaviour and interaction in computer games centre around decision-making.
This process encompasses the selection of actions or behaviours from a range of
options available to NPCs, which depend on their internal state and the perceived
situation in the game world. The decisions of NPCs are influenced by a range
of factors, including their objectives, incentives, convictions, and environmental
indications. By implementing decision-making models, NPCs can demonstrate
intelligent and adaptable behaviour, thereby enhancing the realism and immersion of

the game.

In the context of computer games, NPCs are characters that are under the control of
the game’s artificial intelligence, rather than the human players. NPCs play different
roles and can range from supportive characters who aid the player’s progress to
adversaries who create challenges and obstacles. These characters add to the story,
gameplay, and overall ambience of the game world. Through realistic and captivating
behaviour simulations, NPCs increase the player’s sense of immersion and control
within the virtual world.

Creating a social network within the NPC ecosystem has great potential for
promoting complicated and dynamic interactions between NPCs. Social networks
represent the associations, links, and dependencies that exist among individuals
within a system. Concerning NPC behaviour, a social network can be formed by
depicting NPCs as nodes and their interactions as edges, producing a graph-like
configuration. This network allows the illustration of social dynamics, influence, and
communication patterns among NPCs, which generates contextually appropriate and
emerging behaviours.

Several techniques are available to create social networks in the NPC ecosystem.
One method is to predefine NPC interactions and relationships based on scripted
scenarios or rules. While this technique provides control over NPC behaviour, it
frequently causes limited diversity and high predictability. Another method involves
using statistical or probabilistic models to create networks based on predetermined
attributes or preferences of NPCs. Such models help predict the likelihood of
interactions between NPCs, resulting in more behavioural flexibility and variation.
Moreover, network creation algorithms may employ machine learning techniques,
like reinforcement learning or evolutionary algorithms, to create and modify social
networks in response to NPC behaviours and environmental cues.

Our research proposes the development of a new technique for constructing N2N
graphs that addresses the limitations of current methods. Our method aims to create an
adaptive gameplay environment where NPCs exhibit various unforeseen behaviours by
introducing intrinsic motivation for each individual NPC. The algorithm directs each
NPC’s decision-making process and subsequent interactions within the social network
while considering internal characteristics such as personality, motives, and goals that

are exclusive to them. Our research aims to advance the field of NPC behaviour

modelling by integrating these underlying concepts and methods, thereby facilitating
the development of more realistic and captivating video games.

To conclude, the theoretical foundations of this research encompass the definition
of NPCs in games, their employed decision-making techniques, and the development
of social networks for these NPCs using existing techniques. By comprehending these
essential ideas, a framework can be established for the creation of an N2N graph
generation algorithm that encourages contextually rich and adaptable NPC actions in

video games.

1.4 Research Questions

This section outlines the research questions that will guide the design of our framework
for adaptive and realistic gameplay. Aside from focusing on the specifics of
the social network generator and how it is used in NPC communities in games,
the questions also encompass the broad objectives of accomplishing human-like
interactions and coordination within the framework. The following research questions

will be investigated:

* Which NPC decision-making methods are used in game industry? How are these
methods used, in which situations are they combined, in which games are they
used, which of them are used the most and the least, and how many different

game genres are they employed in?

* How can a social network generator that incorporates node attributes and

communities be designed to enhance the interactions between NPCs in games?

* How can this generator be compared to other social network generators and real-
life networks with respect to performance? What are the key metrics to evaluate

such generators and the communities formed by them?

* Are there any known NPC networks with node attributes and communities? Is
there a demand for an NPC network generator? Does our network generator

create networks similar to in-game NPC networks?

* Is it possible to create a general NPC personality model? Is it possible to create

an adaptive NPC community model? Which factors need to be considered to

develop such models?

We want to improve our knowledge of and capabilities for NPC interaction,
coordination, and communication in computer games by tackling these research
questions. The study will help develop a strong and well-organized framework that
supports realistic and adaptable gameplay experiences with an emphasis on human-
like interactions. Additionally, research into the social network generation method and
how NPC communities use it will provide light on how real-world and social network
dynamics are applied to game design and artificial intelligence.

We seek to validate and improve the suggested framework through empirical
experiments, simulations, and assessments, assuring its effectiveness and potential for
real-world application. The results of this study will make significant contributions to
the academic and game development communities by providing novel viewpoints on

NPC behavior modeling and increasing the overall gaming experience.

1.5 Thesis Layout

This section details the individual chapters and their corresponding research areas. The
thesis structure aims to explore the research topic comprehensively by commencing
with an introduction, followed by a literature review, social network generator
algorithm, application of the algorithm with NPCs, and ending with a summary of

findings and contributions. Below is the suggested layout for the thesis:

1. Introduction: The aim of this introductory chapter is to provide an overview of
the research focusing on the significance of developing an N2N framework that
allows for realistic and adaptive gameplay. It outlines the objectives, research
questions and theoretical foundations that serve as the basis for the study.
Furthermore, this chapter establishes the context for the following chapters and

presents the research methodology adopted.

2. Literature Review: Chapter 2 comprehensively reviews previous NPC decision-
making methods. The existing academic literature is surveyed in this chapter,
examining various techniques and approaches employed in NPC behaviour
modelling and decision-making. This chapter identifies limitations and gaps in

current methods and highlights the need for novel approaches to enhance NPC

8

interactions in computer games. In this chapter, the strengths and weaknesses
of previous methods are critically analysed, generating a foundation for the

development of the proposed framework.

3. Social Network Generation Algorithm: Chapter 3 discusses the development
and description of the algorithm for generating social networks. This chapter
presents the methodology and techniques used to develop a generator that
creates social networks with node attributes and communities. The algorithm
incorporates assumptions inspired by real-life social network dynamics, such as
node placement techniques, the homophily principle, conceptual proximity, and
nodes with numeric attributes. The chapter outlines the algorithm’s design as

well as the implementation details and principles underlying its functionality.

4. Applications of the Proposed Algorithm: Chapter 4 examines the implementation
of the social network generator algorithm in the context of NPC communities
in computer games. This section outlines the potential enhancements that
the algorithm can provide and the possibilities of integrating it into gameplay
environments. Additionally, it presents early findings and evaluations of the
algorithm’s efficiency when compared to actual NPC networks. It explores
the NPC characteristic model and NPC community model and their potential

impacts on future games.

5. Conclusion: The thesis concludes with the final chapter, which summarises the
significant findings, contributions, and implications of the research. It revisits
the research objectives and questions to evaluate the extent to which they have
been answered. In this chapter, the significance of the proposed framework for
advancing the area of NPC behaviour modelling and its potential impact on the
development of more immersive and captivating computer games are discussed.
The chapter also outlines possible directions for future research and concludes

with closing remarks.

CHAPTER 2: LITERATURE REVIEW

2.1 Literature Review Methodology

NPCs have become an increasingly important part of the overall player experience
in the rapidly growing field of computer games. These artificial beings, controlled
by their own decision-making processes, add significantly to the story, difficulty and
immersion of a game. The need for more sophisticated and dynamic NPC behaviour
has become apparent as the gaming industry continues to push the boundaries of
realism and engagement. With this in mind, this dissertation begins a thorough
investigation of the decision-making processes currently used by NPCs in video games.

We conducted this analysis, because NPCs react and interact based on their own
circumstances, and those circumstances require the decision-making techniques to
be used to make those actions and interactions happen. By conducting a thorough
literature review, we aim to identify gaps for potential innovation, as well as the
advantages and disadvantages of current approaches. This review lays the groundwork
for the creation of a novel and more immersive decision-making system that promises
to enhance the game experience by showcasing the state of the art in NPC decision-
making.

It becomes increasingly evident when we examine the intricate details of NPC
decision-making in video games that the present situation requires not only more
sophisticated decision-making algorithms but also a deeper comprehension of the
social dynamics that influence NPC interactions. This necessity has led us to
broaden the scope of our investigation beyond just NPC decision-making methods.
The development of adaptive NPC communities within the gaming environment has
emerged as a crucial element in creating a genuinely immersive and dynamic gameplay
experience. In this regard, we identify a notable gap in the existing literature: the
absence of a comprehensive social network generation algorithm designed to meet
the particular requirements of NPCs and NPC communities. As a result, in an effort
to address this shortcoming, our review extends its scope to include the processes

involved in the development of social networks with node attributes and communities.

10

2.2 Decision-Making Methods of NPCs

Decision-making allows NPCs in video games to choose their course of action
in relation to both their internal states and how they perceive their surroundings
(Millington, 2019). It is possible to develop more convincing NPCs by combining
algorithms designed for NPC decision-making, such as behavior trees, in combination
with the fundamental algorithms, such as finite state machines or decision trees, which
are suited for the majority of games.

A number of surveys on decision-making algorithms contain indirect remarks
about how they are used in video games. Some surveys concentrate on a particular
algorithm for making decisions, while others include broad artificial intelligence
algorithms for video games. The existing surveys with regard to the algorithms
addressed are listed in table 1. These studies do not concentrate solely on NPC

decision-making algorithms.

Table 1: An overview of the literature surveys. FSM stands for finite state machines,
DT stands for decision trees, BT stands for behavior trees, L/R stands for logic-based
or rule-based algorithms, GOAP stands for goal oriented action planning, and ANN
stands for artificial neural networks.

Title FSM DT BT L/R GOAP ANN
Al in computer games: Survey and perspectives (Cavazza, 2000) v v
Current Al in games: A review (Sweetser and Wiles, 2002) v v v v

The past, present and future of artificial neural networks in digital

games (Charles and McGlinchey, 2004)

The use of Fuzzy Logic for Artificial Intelligence in Games (Pirovano,

2012)

Behavior Trees for Computer Games (Sekhavat, 2017) v v
Building a planner: A survey of planning systems used in commercial
video games (Neufeld et al., 2019)

A Survey: Development and Application of Behavior Trees (Zijie et al.,
2021)

A survey of behavior trees in robotics and ai (Iovino et al., 2022) v v

v

Non-player character decision-making in computer games (Uludagh
and Oguz, 2023) (Our review article)

In contrast to existing surveys, this review focuses on all available decision-making
algorithms with respect to their application for the NPCs in computer games. Some of
these are created solely for NPCs and others are decision-making methods also used in
other scenarios.

In the first section of this review, we make an attempt to define and categorize the

approaches used for NPC decision-making in computer games, and we will also list

11

the previous studies that include these methods.

2.2.1 Finite State Machines

A finite state machine (FSM) is an abstract machine that has a limited number of
fixed states it can be in (Bourg and Seemann, 2004). They were sufficient in the
early stages of game industry to give NPCs a way to make decisions. Games like
Pac-Man and Sonic used FSMs to control their characters to follow or run away from
the player depending on their current state. Due to the elegance of the method and
the computational limitations of early computer systems, FSMs were used widely.

FSMs are still used in more contemporary games, either alone or in addition to other

recover

health is low health is high

wander

player is absent

techniques.

player attacks

player is near

losing the

player is killed fight

Figure 1: A sample finite state machine for an NPC with four states and seven
transitions. In this scenario, when an NPC comes across the player while wandering,
it will attack the player. If the player is winning the fight, the NPC runs for its life.

FSMs are a common sight in automata theory. Formally, an FSM can be defined
as a 5-tuple (X, S,59,8,F) where X is the input alphabet, S is a finite set of states, s
is the starting state (sop € S), 9 is the state-transition function as § : § x £ — § and
F is the finite set of final states (F C S). Their inclusion in video games follows the
same rules, such as only being in one state at a time. An FSM contains a set of states
and conditions that allow the machine to change states. They don’t provide a reject or
accept response, unlike their automaton counterparts. Game entities, including NPCs,
are given FSMs that allow the entity to behave according to its current state. The
machine can change state when a condition is met. The state machine is also destroyed

when the entity disappears, such as when an NPC dies. Figure 1 contains a sample

12

FSM for an imaginary NPC.

FSM usage for NPC decision-making in the literature on is confined (Cavazza,
2000; Nareyek, 2000; Fu and Houlette, 2002). One of the games that implemented
FSMs is in the study by Laird (2001), in which used an extension of the FSM concept
was used to implement more human-like NPCs. More recent studies have used FSMs
for NPCs in various games, including those with a historical theme (Syahputra et al.,
2019), in character recognition games (Fathoni et al., 2020), in strategy games with
defensive tactics (Fauzi et al., 2019), or 2D character mimicking games (Sindhu et al.,

2022).

2.2.2 Decision Trees

The algorithmic trees known as decision trees (DTs) can be thought of as a structured
set of nested if-then-else rules. Because they are modular and easy to use, they are the
simplest way to make decisions.

A DT consists of nodes, each of which can have zero or more child nodes. This is
similar to the regular tree abstract data type. Leaf nodes are nodes that don’t have any
descendants of their own. In a DT, the root node is referred to as the start node; nodes
with decisions, including the start node, are referred to as decision nodes; and the leaf
nodes are referred to as the end nodes which include actions carried out after they are
reached (Millington, 2019).

The basic DT algorithm begins by analyzing decisions at the root. Until an action is
performed in a leaf node, each decision moves the algorithm to the next node. Figure 2
shows a sample DT with a total of nine nodes.

DTs are frequently utilized in both industry and academia as the NPC decision-
making methods. Mas’udi et al. (2021) employed the NPC decision-making using
DTs for a 3D kart-racing game, which is one specific example. Quadir and Khder
(2022), in their study, explain the progress made in developing a responsive enemy
based on DTs, also employed DTs. For their study, which includes a fighting game,
Lie and Istiono (2022) also used DTs.

Black & White (Yannakakis and Togelius, 2018) was another game that used DTs;
according to Wexler (2002), who studied this game, the DTs in the game represented

the NPCs’ beliefs about common object types. To create these DTs, the game uses the

13

Is the player
around?

Yes No

Is the player
healthy?

Can you see a
potion?

Yes No Yes

(e) (Comw) [
Randomly

20%

@

Figure 2: A sample decision tree. If the player is around and healthy, then with a
chance of 20 percent, NPC will attack to the player; and with a chance of 80 percent,
will evade the player. If the player is not around and the potion is around, then NPC
will pick it up.

Iterative Dichotomiser 3 algorithm by Quinlan (1986). This algorithm generates a DT
from a dataset by iteratively partitioning features into two or more groups at each step.

It applies a top-down greedy approach to construct a DT.

2.2.3 Behavior Trees

A behavior tree (BT) is a tree of hierarchical nodes that regulates an Al agent’s
decision-making process (Loyall and Bates, 1991; Mateas and Stern, 2002). The actual
instructions that govern the Al entity are contained in the tree’s leaves. Other branches
of the tree contain various kinds of utility nodes that regulate how the Al navigates
the tree to reach at the command sequences appropriate to the circumstance. Figure 3
provides a brief categorization and explanation of the BT nodes and tasks’ operational
principles. Additionally, Figure 4 provides a straightforward illustration of a BT usage
situation.

According to Millington (2019), BTs are a common method of shaping the
decisions of NPC characters. One of the first modern games to use BTs for NPC
decision-making was Halo 2 (Yannakakis and Togelius, 2018), and many other games
have since followed suit. The techniques used to represent in-game NPC behavior
using BTs are described in Isla (2005). While Johansson and Dell’Acqua (2012)
compared BTs with emotional behavior networks in their study, Simonov et al.

(2019) incorporated personality traits of NPCs to decision-making to provide a more

14

Composite Nodes

* Sequence => behaves like an AND gate. (if all of the child nodes return success, then it is success.)

* Selector => behaves like an OR gate. (if any one of the child nodes return success, then it is success.)

Decorator Nodes

* |Inverter => behaves like a NOT gate.
* Succeeder => always return success result while processing this branch.
* Repeater => reprocess its children each time they return a result.

* Repeat until Fail => reprocess its children until they return failure result.

Leaf Nodes => nodes that implemented the actions of Al.

Result Types => Success, Failure, Running

Figure 3: Node, task and result types of behavior trees.

—
Walk to the) Lean on the INVERTER Hold the
Door 2 Door Door
Kill the Pile the Zombies
Zombies = Rocks Around

Close the Lock the
Door Door

Figure 4: An example behavior tree. If NPC can walk to door, then it must carry out
at least one of the actions in the selector branch. If it kills the zombie, then it returns
success to the parent selector node. Or if it closed and locks the door, then it returns
success to the parent selector node also. If it wants to carry out all of the sequence,
then it must lean on the door, and when zombies are not around, it must hold the door.

15

convincing gaming Al.

The Mafia III video game’s NPC decision-making algorithm was described in
Holba and Huber (2021). The issues the creators had when building the Al for The
Last of Us were covered in Panwar (2022). Colledanchise and Ogren (2018) explains
how they used BTs to build a Pac-Man playing agent from scratch in their book. The
use of BTs in Al design for the multiplayer online battle arena (MOBA) gaming genre
was mentioned in the Lin et al. (2019).

BTs are also used in various game genres, such as role-playing games (RPGs). One
such example is implemented in the research of Rodrigues et al. (2021). BTs can be
used in first-person shooter (FPS) games and virtual reality (VR) games. The study by
Pyjas et al. (2022) used BTs in a FPS VR game set in the World War II era. In Miyake
et al. (2019), the authors explained that they used BTs and FSMs together to create a
decision-making tool for NPCs in the game Final Fantasy XV, which they call the A
Graph Editor.

2.2.4 Ruleset- or Logic-based Decision-Making

Rule-based systems (RBSs) were used in the early stages of the Al research. According
to Millington (2019), using RBSs is not a common strategy because it requires more

effort and is less effective than using FSMs or DTs.

ARBITER

Shoot Arrow

Y

DATABASE RULES

Cast Spell
|~ | Arrow Gount <5 THEN .

Arrow Count = 10
Mana Points = 40
Walking

- " IF Mana Points > 50 THEN ...

IF running THEN ...

Figure 5: A sample schema for rule-based decision-making. The arbiter is an
intermediate process that checks the rules according to the information in the database
to complete certain actions. In this example, the first rule will not be fired at this
moment to complete Cast Spell action, since Arrow Count is 10 at the database and the
first rule states that it must be less than 5.

16

The organization structure of RBSs includes three elements: an information
database, a rule set, and between these, an arbiter as shown in Figure 5.

According to Forgy (1979, 1989), most Al systems use the Rete Matching
algorithm to match the appropriate rules with the correct information in the database
for RBS. Baldur’s Gate and Virtua Fighter (Yue and de Byl, 2006) are two games
known to use rule-based decision-making algorithms such as Rete to regulate the
actions of NPCs.

The other method of rule-based decision-making is fuzzy logic (FL). FL is a form
of logic in which the truth values of the given variables can be real numbers between 0
(false) and 1 (true). These truth values are called partial truth values, and their values,
such as half true or nearly false, can be defined with this usage (Novdk et al., 1999).
The use of FL in game Al was first described in O‘Brien (1996) and is widely used in
both the academic and industrial game communities. The procedure for using FL is

shown in Figure 6.

(N

FUZZY RULES
Fuzzy

IF health == 0:
THEN character is dead.

IF 0 < health < 25: \
THEN character is near dead. \

F———— IF 25 <= health < 50: i . .
! \ . . THEN character is half-dead. \ “| b " . [1 :
| Inputs Fuzzification \5 Defuzzification t | Outputs |
L \ A .. U L]

IF 50 <= health < 75: oy
THEN character is half-healthy. di

m
z
z
m

IF 75 <= health < 100:
THEN character is near healthy.

IF health == 100:
THEN character is healthy.

2 4

Figure 6: A sample schema for fuzzy-logic based decision-making. The method takes
inputs from NPCs or from the environment, fuzzify them, decide what to do according
to the fuzzy rules, defuzzify the result that is coming from the fuzzy decision-making
engine and gives needed outputs to the NPCs or to the environment.

There are numerous articles about the use of FL in game Al. Shaout et al. (2006)
created a Pac-Man clone game in which all enemy decisions are made by FL. Fujii
et al. (2008) investigates RBS and FL usage in a car racing game. Van Waveren (2001)
also used FL in his thesis to develop the decision-making of NPCs in the game Quake

IIT Arena clone. Li et al. (2004) used belief-desire-intention agent theory for an earlier

17

arcade game called BattleCity, and used an FL-based framework for enemy NPCs to
increase the detail of their decision-making. Soylucicek et al. (2017) also used FL for
drone decisions in a space-themed 2D arcade game called Meteor Escape.

There are more sophisticated applications of FL in NPC decision-making. To
control cars in video games, Niewiadomski and Renkas (2014) invented a novel type
of fuzzy controller called a hierarchical fuzzy controller. To see if a partner NPC in
a poker game could use facial expressions to advise the player character about the
opponent’s hand, Ohsone and Onisawa (2008) built a DT using FL. The researchers
integrated the BTs and FL to provide a decision-making approach for the robot agents

playing a soccer game simulation in Abiyev et al. (2016).

2.2.5 Goal-based Decision-Making

NPCs in video games may have specific tasks to perform. Goal-oriented behavior
occurs when an NPC chooses an option from a list of options that brings the NPC
closer to its goal. When multiple goal-oriented actions are performed sequentially to
achieve a larger goal, this is the foundation of goal-directed action planning (GOAP)
(Millington, 2019; Orkin, 2003). The essential elements and working mechanism of
GOAP is described in Figure 7.

-
-

Goal State

Start State

Figure 7: A sample action library and action steps for GOAP. According to this
example, NPC selects certain actions with orderly fashion from the library to fulfill
its goals. This NPC selects Select Weapon, Load Weapon and Attack action states in
this order and reaches its goal state, which we can guess that it may be Defeat Enemy
state.

18

Orkin (2006) indicates that the NPC movement in the video game FE.A.R. was
handled by an FSM with only three states. However, they developed a goal-based
system that transitions to the appropriate state using the available knowledge for NPC
interaction and planning. GOAP was also studied and compared with FSMs by Long
(2007). He examined two approaches based on different criteria. To address the
shortcomings of GOAP, Sloan et al. (2011) developed a new strategy called Utility-
Directed GOAP and compared it to a Sims-like environment. Sloan (2015) expanded
on his earlier study by introducing the idea of smart ambiance, which allows NPCs to
use environmental context knowledge to their advantage.

A real-time tactical space game was created by Studiawan et al. (2018) to test
whether GOAP would improve performance in this type of game. Suyikno and
Setiawan (2019) studied the use of GOAP, focusing on the hide-and-seek behavior
of NPCs in the context of stealth-oriented video games. The study by Johansen et al.
(2022) examined the use of domain-independent classical planners for NPC control in
an interactive storytelling game engine.

In addition, GOAP can be designed for use in a variety of game engines and
development environments. An example is given by Sielicki et al. (2018), who
developed GOAP modules in Unreal Engine and observed a severe lack of efficient
GOAP tools and frameworks that common developers could use on the most popular
game engines. If the system has only one goal, GOAP can also be combined with
the Iterative Deepening A* algorithm to solve time complexity problems (Millington,

2019).

2.2.6 Artificial Neural Networks

Artificial neural networks (ANNs) are mathematical structures consisting of several
processors connected in various ways. They are artificial, but have some vague
similarities to the human neurological system, which influenced their design (Gupta,
2013). ANNSs are mostly used in engineering for data operations such as pattern
recognition, image processing, and similar tasks because of their ability to analyze
large amounts of data.

Artificial neurons (or simply nodes) carry information in an ANN, while edges

connect these nodes by delivering data signals. To determine which neuron is activated,

19

the weights of all input nodes are determined using a mathematical formula. The output
of a neuron is determined from its inputs.

ANNS are typically used as a learning component in machine learning approaches.
However, in some situations they can be used as the primary decision-making
technique for NPCs in a computer game. Madsen and Adamatti (2013) used ANNs
to help NPCs make decisions in a role-playing game. They used ANNs and FSMs to
decide the attack behavior of the NPC. Although they did not use a computer game in
their study, Jolly et al. (2007) offered an original decision-making strategy for NPCs

in a robot football league using ANNS.

2.2.7 Hybrid Methods

Other than these studies, there are also some hybrid decision-making methods that
combine different methods together. For instance, Shu and Chaudhari (2008) combines
fuzzy Logic with neural networks and Abiyev et al. (2016) combines fuzzy logic with

behavior trees. Whole list of hybrid methods can be seen from Table 2.

Table 2: The Hybrid Decision-Making Methods.

Related Study Method Combination
(El-Nasr et al., 2000) Decision Tree, Fuzzy Logic
(Orkin, 2006) Finite State Machine, Goal-Oriented Action Planning
(Ohsone and Onisawa, 2008) Decision Tree, Fuzzy Logic
(Shu and Chaudhari, 2008) Artificial Neural Network, Fuzzy Logic
(Florez-Puga et al., 2008) Behavior Tree, Case Based Reasoning
(Fujii et al., 2008) Rule-Based System, Fuzzy Logic
(Perez et al., 2011) Behavior Tree, Grammatical Evolution
(Dey and Child, 2013) Behavior Tree, Reinforcement Learning

(Madsen and Adamatti, 2013) Finite State Machine, Artificial Neural Network
(Schwab and Hlavacs, 2015) Behavior Tree, Genetic Algorithm, Goal-Oriented Action Planning

(Fu et al., 2016) Behavior Tree, Reinforcement Learning

(Abiyev et al., 2016) Behavior Tree, Fuzzy Logic

(Sagredo-Olivenza et al., 2017) Behavior Tree, Programming by Demonstration

(Kopel and Hajas, 2018) Decision Tree, Artificial Neural Network, Reinforcement Learning
(Partlan et al., 2022) Behavior Tree, Genetic Algorithm

(Meng and Hyung, 2022) Behavior Tree, Reinforcement Learning, Simulated Annealing
(Zhu and Feng, 2022) Artificial Neural Network, Genetic Algorithm

(Widhiyasana et al., 2022) Artificial Neural Network, Genetic Algorithm

2.2.8 Decision-Making Frameworks

In the field of NPC decision-making, several frameworks have also been established

for various goals. Some are used for general decision-making of NPCs, some are

20

used as personality engines for virtual characters and others, as emotion engines for
the appraisal theory. We have listed all of these NPC decision-making frameworks in

Table 3.
Table 3: The NPC Decision-Making Frameworks

Framework Type Framework

General Decision-Making Al Graph Editor (Miyake et al., 2019), FE.A.R SDK,
GPGOAP, ReGoap (Orkin, 2006)

Personality Engine Extreme Al (Georgeson and Child, 2016)

Emotion Appraisal Engine GAMYGDALA (Popescu et al., 2013), FAtiMA (Dias
et al.,, 2014; Mascarenhas et al., 2021), EmoBeT
(Belle et al., 2022), EmotionalBT (Dell’Acqua and
Costantini, 2022)

Social Interaction CiF (McCoy et al., 2010, 2011), CiF-CK (Guimaraes
etal., 2017)

Communication Network ~ GVSN (Perrie and Li, 2014)

2.2.9 Review of the Methods

Overall, the first part of this survey covers a wide range of studies. We have attempted
to collect published video games and the NPC decision-making mechanisms used
in such games from the reviewed papers. We provide a bibliography that outlines
the decision-making mechanisms used in each game. The list for the NPC decision-
making methods used in these video games is shown in Table 4.

Our research suggests that decision-making techniques can be used with NPCs,
the environments in which they interact, or with other entities such as communities
of NPCs. The decision processes used by NPCs can be useful for spatial movement,
planning or acting, controlling vehicles or other devices, or interacting with other game
elements such as players or other NPCs. First-person shooter (FPS), strategy, role-
playing (RPG), action/adventure, or 2D/platform are the five primary game genres to

which the game environments in the study belong.

2.3 Network Generation Algorithms

There are extensive surveys covering the topic of graph generation, including (Chakrabarti

and Faloutsos, 2006; Bonifati et al., 2020; Xiang et al., 2021). There are also

21

Table 4: The Decision-Making Methods used in Known Games for NPCs.

Game Studio/Year Method Source
Virtua Fighter Sega-AM2, 1993 RB Yue and de Byl
(2006)
Close Combat Atomic Games, FL Sweetser and Wiles
1996 (2002)
Creatures Millennium Interac- ANN Yannakakis and To-
tive, 1996 gelius (2018)
Half-Life Valve, 1998 FSM Game Source
Codes !
Baldur’s Gate BioWare, 1998 RB Yue and de Byl
(2006)
Unreal Epic Games, 1998 FL Johnson and Wiles
(2001)
Police Quest: SWAT Sierra FL Sweetser and Wiles
2 Entertainment, (2002); Johnson and
1998 Wiles (2001)
Civilization: Call to Activision, 1999 FL Johnson and Wiles
Power (2001)
The Sims Maxis, 2000 RB, GOAP Millington (2019)
Black & White Lionhead Studios, DT Yannakakis and To-
2000 gelius (2018)
No One Lives For- Monolith FSM, GOAP Orkin (2003)
ever 2: A Spy in Productions, 2002
H.A.R.M.’s Way
Halo 2 Bungie Inc., 2004 BT Yannakakis and To-
gelius (2018)
SWAT. 4 Irrational ~ Games, GOAP Pittman (2007)
2005
FE.AR. Sierra GOAP Orkin (2006)
Entertainment,
2005
S.TALKUER.: GSC Game World, GOAP Long (2007)
Shadow of 2007
Chernobyl
Deus Ex: Human Eidos, 2011 GOAP Sloan (2015)
Revolution
The Last of Us Naughty Dog, 2013 DT, BT Panwar (2022)
Alien: Isolation SEGA, 2014 BT Panwar (2022)
Final Fantasy XV Square Enix, 2016 FSM, BT Miyake et al. (2019)
Mafia III 2K Games, 2016 DT, BT Holba and Huber

(2021)

22

various models for generating networks, including random graphs, power-law degree-
distributed random graphs, small-world model, and exponential random graphs. The
works of Aiello et al. (2000, 2001); Nobari et al. (2011) analyze these models. The
main focus of this section will be the studies that present graph generation methods

with communities and attributed nodes.

2.3.1 Network Generation with Communities

Most of the time, networks with communities are generated to assess the performance
of community detection methods. Community detection is a popular research area, as
discussed in comprehensive surveys (Lancichinetti and Fortunato, 20095; Orman and
Labatut, 2009; Fortunato, 2010; Fortunato and Hric, 2016; Javed et al., 2018).

The studies of Fortunato (2010) and Fortunato and Hric (2016) use incredibly
thorough surveys to explain fundamental ideas like how a community is defined,
community structure in actual networks, overlapping communities, and so on. Rossetti
and Cazabet (2018) focuses on the dynamic networks that vary over time, while Xie
et al. (2013) surveys overlapping community detection in particular. These works can
be used to gain more understanding of the community detection topic.

Although many studies have been conducted to discover communities in real
networks, approaches for generating synthetic networks with communities are still few
in the field. The study by Girvan and Newman (2002) develops one of the first network
generators. They developed this generator to evaluate the effectiveness of their recently
proposed community discovery method. Some features of real-world networks, such
as variable degree distributions on nodes and fixed community sizes, were not present
in their generator.

The Lanchichinetti-Fortunato-Radicchi (LFR) benchmark, named after its devel-
opers, is one of the most well-known network generators for community detection
in networks (Lancichinetti et al., 2008). For the degree distributions of the nodes,
they generated their network using a power-law. Real-world networks, often known as
scale-free networks, have this characteristic. Being a scale-free network means that the
few nodes have many edges while the majority of nodes have few edges (de Solla Price,
1965; Barabdsi and Albert, 1999). To better mimic the properties of real-world

networks, they adopted the power-law degree distribution for both the nodes and the

23

community formation. In addition, directed and weighted graphs with overlapping
communities are added to the LFR benchmark (Lancichinetti and Fortunato, 2009a).
Since the networks with communities are created to test the community detection

methods, the node attributes are ignored during the generation process.

2.3.2 Network Generation with Communities and Attributes

There are studies that generate networks with node attributes without considering
communities. DataSynth framework generate property graphs by using their novel
graph partitioning algorithm (Prat-Pérez et al., 2017). Attributed graph model
utilizes generative graph model (Leskovec et al., 2010) to create node attributes
from previously observed networks (Pfeiffer III et al., 2014). Since our approach
considers both the generation of networks with node attributes and the generation of
communities, this section focuses on the studies that cover both aspects.

The LFR-EA (Elhadi and Agam, 2013) is one of the earliest to generate a network
containing both community structure and node characteristics. It is an addition to
the LFR benchmark. This technique was developed to find communities using node
attributes in networks. Three parameters—total attribute count, domain value count for
each attribute, and assignment influence parameter—control the attribute generation on
top of LFR network generation.

The idea of homophily arises when node attributes are taken into account in the
context of community creation. The easiest way to explain homophily is that it occurs
when nodes connect with other nodes that are more similar to them than with nodes
that are not (McPherson et al., 2001). As a result, the nodes within a community have
a tendency to share more characteristics. The study by Largeron et al. (2015), in which
they introduce the Attributed Graph Generator with Community Structure (ANC)
algorithm, is one example that produces synthetic networks employing the homophily
property. They designed a network generation model with the properties of local
preferential attachment, small-world, community structure, community homogeneity
and homophily.

Benyahia et al. (2016) extend ANC for dynamic networks. Dynamic networks are
the networks that change and evolve over time. The authors assume that the most of

the time the nodes and the edges in a social networks change, new connections are

24

formed, some nodes join or leave certain communities in the network. Therefore, they
created a framework called DANCer, to be able to generate such networks.

In contrast to the previous examples, Nettleton (2016) developed a generator
for online social networks. They generated appropriate datasets for predefined
graph topologies by varying node attribute values, community structures, and data
distributions, but they did not generate the actual network. They used public datasets,
such as those from the government and social networks, to create their graphs
specifically for their application domain.

acMark, a network generator with cluster labels and node properties, was intro-
duced by Maekawa et al. (2019). The advantages of this method, according to the
authors, include variable control over cluster separability, a variety of distributions
for attribute values, node degrees, and cluster sizes, and linear time complexity
proportional to the number of edges generated. They generated the networks using
a Bayesian approach and evaluated the results in terms of graph property distribution
management, generation scalability, cluster separability, and unambiguous clustering
implementation.

According to Wang et al. (2021), the FastSNG method is the fastest social network
generator with attributes and communities. The authors compared their method with
previous network generation techniques in terms of time complexity and concluded
that it can generate a network with a trillion nodes in a reasonable amount of time.

Citraro and Rossetti (2021) presented X-Mark, a recent network generator that
combines structural topology and node attributes to create networks. They compared
their approach to previous node-attributed network generators. Their method uses both
categorical and continuous attribute value types and produces networks that adhere to
both community homogeneity and the homophily principle.

GenCAT (Maekawa et al., 2021), an extension of the previously created acMark
generator (Maekawa et al., 2019), is the final generator discussed in this section.
GenCAT aims to resolve the problem of inaccurate simulation of relationships among
labels (i.e., communities), node attributes, and graph topology that may occur in earlier
generators. Through conducting additional tests and evaluations, they expanded their
strategy in acMark.

You can overview all the previous generators we survey here with their specified

25

properties in Table 5.

Table 5: The earlier graph generators. v* indicates that the given generator includes
that property, while x indicates that it is not. Comm. means “Communities”, Atfr.
means “Node attributes”, Param. means “Adjustable method parameters/properties”.

The Generator

Comm. Attr. Param.

Degree Distribution

Properties

G.&N. (Girvan and Newman, 2002)
LFR (Lancichinetti et al., 2008)
Overlapp. LFR (Lancichinetti and Fortunato, 2009a)
DataSynth (Prat-Pérez et al., 2017)
AGM (Pfeiffer III et al., 2014)
LFR-EA (Elhadi and Agam, 2013)
ANC (Largeron et al., 2015)
DANCer (Benyahia et al., 2016)
acMark (Maekawa et al., 2019)
FastSNG (Wang et al., 2021)
X-Mark (Citraro and Rossetti, 2021)
GenCAT (Maeckawa et al., 2021)

X

constant

power-law

power-law

schema-driven
attribute-correlated
power-law

clustering method-driven
clustering method-driven
uniform, normal, power-law
power-law

power-law

power-law, normal, input list

one of the first generators

power-law degree dist.

overlapping communities

topology created with synthetic data
property-to-node matching algorithm
LFR with attributes

categorical attributes

dynamic graph & communities
class-preference probability

claimed to be the fastest

one of the first attribute-related edge generation
class-preference probability

Our method ‘AnatoliA’

Llesaaa s ax xaas

RN N N N N N N

N RN N N N N NN

currently power-law (adjustable)

modifiable distributions, object-oriented,
attribute&proximity-related edge generation

24 Summary

Our overarching goal is to use the knowledge gained from these two explorations—the

reviews of NPC decision-making methods and social network generation—to design a

new social network generator. In contrast to typical methods, this generator establishes

a strong emphasis on node attributes, closely replicating the personality traits and

characteristics of NPCs in games.

We aim to develop an innovative method for

establishing NPC networks, enhancing the immersive experience of virtual worlds.

26

CHAPTER 3: OUR SOCIAL NETWORK GENERATION ALGO-
RITHM, “ANATOLIA”

3.1 Preliminaries

One important feature of the real networks is that some nodes in the network connect
to particular nodes more than they connect to other nodes. By doing so, they create
certain groups that can be called communities. A community can be defined as a
group of nodes that are connected within that group with higher probabilities than
being connected to the nodes in outer groups (Fortunato and Hric, 2016). When the
definition of the communities is based on the connectivity patterns of the graph, it is
often referred as a structural community; however, if they are defined according to
a common function or a role of the community nodes, it is referred as a functional
community (Yang and Leskovec, 2015). A more recent and preferable naming
convention for functional communities is meta-community (Bonifati et al., 2020), and
the communities created by our method will be referred as such hereafter.

When real networks are investigated, it can be speculated that the nodes are
connected to one another with respect to their similar internal properties. As an
example, consider that the people are nodes of a real network, and they form relations if
they share similar personality traits, such as thinking of two people can share a bond if
they both like cats. The network nodes, in our perspective, also tend to connect to other
nodes that are similar to them from the conceptual distance aspect. One such example
of that can be being in a professional relation with co-workers. Our assumption is that
these two factors are the most common features of real world networks when we think
about the process of forming relationships. Therefore, they have been considered as
the foundational principles of the method in this study.

We propose the AnatoliA algorithm which can generate a node-attributed network
with meta-communities. These meta-communities are defined by the node attributes,
and the edges between the nodes are created with a combination of node attributes
and their conceptual node positions. AnatoliA is novel in its definition of generalized
attributes and the generalized functions to create connections between nodes. Many
parameters of the graph generation process can be tweaked and adjusted to meet the

requirements of the users.

27

The following section presents our assumptions and explains our method. Section
3.3 gives our results with respect to the comparisons with similar or alternate methods
and a real dataset. The final section concludes Chapter 3 with our final thoughts and

the future work that can be done to improve our method.

3.2 Method

We explain the design and implementation of our proposed algorithm, AnatoliA in this

section.

3.2.1 Assumptions

Assumption. 1: Randomness of node placements Firstly, our method employs
diamond-square algorithm to scatter the nodes pseudo-randomly into the graph.
Diamond-square algorithm (Fournier et al., 1982) is a method mostly used for
generating heightmaps for 3-dimensional terrains. The algorithm is a tool in computer
graphics for creating realistic landscapes.

Most of the graph generators we have surveyed did not deal with creating the
topology of the generated graph with using a known method. Furthermore, they used
the pre-developed graph topologies for drawing their graphs without considering the
effects of the node placements. However, in a real network, the positions of the nodes
can be important for different aspects. Therefore, we assume that using a proven

algorithm for a similar purpose can be beneficial for placing the nodes in our graph.

Assumption. 2: Conceptual proximity for forming relations Communities created
in actual places, whether it is an offline or an online place (Lesser et al., 2000).
Theretfore, the positions of the members of the community is important. We can
refer these positions as conceptual positions, since these positions can be determined
according to being in a workplace, in a professional seminar or in a friendship
gathering.

By using this assumption, we accept that the node placements and the conceptual
proximity between these nodes is one of the most important factors to create relations,
hence, the edges of the network. We take benefit of this assumption in our edge

generation process.

28

Assumption. 3: Homophily principle Homophily (McPherson et al., 2001) is best
described as creating more edges between similar nodes, by assuming that the similar
nodes have more common features for being connected. Using this principle is an
effort for generating synthetic networks that resemble real network properties.

We ensure that our generated networks use the homophily principle by forming the

edges between the nodes with the help of the similarity of node attributes.

Assumption 4. Node attributes with values for attraction There are earlier studies
that generated networks with node attributes as we have covered in our literature
review. Though these examples contain node attributes, most of them did not pay
attention to the idea of the negative/positive attributes and the effect of these attribute
alignments on the edge formation process.

We think that having negative or positive values for node attributes contributes

heavily to the edge generation phase of our method.

Assumption 5. Edge generation with power law degree distribution Most real
world networks share some common properties. One of these properties is power
law degree distribution (Newman, 2018). Some earlier network generators —mostly
for social networks— used it for both for node and edge degrees, while some of the
examples used it on either one of them.

Since we use a different approach on node generation phase, we decided to use
power law degree distribution only on our edge generation phase. In our method, the
nodes that have the most attributes and the least conceptual distance to other nodes
create more edges, as the nodes with less attributes and more distance to other nodes

create less edges.

3.2.2 Generation Parameters

Table 6 lists the five direct parameters that can be used to generate a network using
AnatoliA. The number of nodes, N, and the number of attributes for each node, A,
are used to create nodes for the graph G that will be created when the algorithm is
complete. The parameter k£ determines the maximum number of nodes a cell can hold
before it can be determined how far the nodes can reach to create an edge and if their

conceptual distance is within a threshold before an edge is created using the maximum

29

distance, L, and threshold for proximity, ¢.

Table 6: Description of generation parameters.

Parameter Description

Number of nodes

Number of general attributes
Maximum number of nodes in a cell
Maximum distance

Threshold for proximity

- N

While these parameters can be used to adjust the algorithm for a specific context,
it can be customized further. The diamond-square algorithm that is used to create a
heightmap has a roughness parameter (p) to determine how steep the change between
neighbor positions will be. Setting p to values closer to 1 creates larger changes
between neighbor nodes. The algorithm also allows the function to be used for the
generation of attribute values. While a normal distribution is used by default, it is
possible to change the probability distribution to fit the requirements of a specific

context.

3.2.3 Algorithm

AnatoliA consists of five consecutive phases; grid generation, general attribute
generation, node generation, edge generation and resulting graph generation &
drawing. Overview of all the phases is given in Figure 8. The explanations for

generation parameters were given in Table 6.

Phase 1. Grid generation In order to place the nodes in a graph topology, we firstly
need to create a grid matrix.

The initial step in the method is to use the diamond-square algorithm to create a
heightmap that will be used to distribute the initial candidate positions for the nodes
in the graph. This algorithm requires a grid of size (2" 4 1)? because it updates the
midpoints as it operates on smaller sizes of grids. Therefore, the size of the grid is set

to m X m where m is bound to the number of nodes N as given in Equation 7.

m — 2 [loe(VN=1)] 4 | (7)

30

1: Generate the graph grid: - Grid(..)
Require: N
Return: A matrix of size (m x m) with uniformly random numbers in entries.
Every value in P is used to determine the number of nodes.

2: Generate general node attributes: - generate_general_attributes(..)
Require: A
Return: An attribute list (o) of size A that contains general node attributes

(alquZ:---eaA)-

3: Generate the graph nodes: - generate_nodes(..)
Require: N, o
Return: A node list (V 3 {Vp,Vi,...,Vy}); where the number of attributes for each
node is A, and the affinity level values for every attribute of every node is normally
distributed among all the attribute affinity levels.
Every node in V is placed into matrix sequentially by using P.

4: Generate the graph edges: - generate_edges_with_similar_distance(..)
Require: V
Return: A dictionary (E) in a key-value pair form, where key is a node from
{Vo,V1,...,Vy € V} and the value (also € V) is a list of adjacent nodes.

5: Create the graph: - Graph(..)
Require: V.E, o
Return: A graph (G) generated by V & E & a.

Figure 8: The overview of AnatoliA algorithm.

31

This approach creates cells greater than or equal to the number of nodes. Each cell
will have some number of candidate positions with respect to the value that has been
generated by the diamond-square algorithm for that cell.

The diamond-square algorithm that operates on a grid of size m x m briefly runs as
follows. Initially, the four cells at the corners are set to random values. The algorithm
then alternates between the diamond and square steps. In the diamond step, the grid is
treated as a square, and the midpoint that lies on the diagonals of the four corners of
the square is set to the sum of the average value of the corners and a random value. In
the diamond step, the nodes that form a diamond is considered and the midpoint that
lies in the vertical and horizontal axes of this diamond is set to the sum of the average
corners of the diamond and a random value. These steps are performed sequentially in
smaller squares and diamonds until all cell values have been set.

During realization of the diamond-square algorithm, the values are normalized to
integers between 1 and & so that the next step can place a list of candidate positions to
each cell. The variable k can be set to any integer value where k > 1 to parameterize
the generation of the network.

In computer graphics, a heightmap represents a terrain where higher cell values
represent higher elevations. AnatoliA treats higher values in the cells as more crowded
and places candidate positions around the center of each cell randomly using a uniform
distribution. These positions are kept in a list P and since k > 1, the number of

candidate positions in P are greater than the number of nodes.

Phase 2. Generation of general attributes The attributes that the nodes of the graph
can have are determined in this phase. The nodes can have A number of attributes
where each attribute has an affinity level. The algorithm allows the values for these
affinity levels to be set using a custom function so that it is possible to use any required
probability distribution. The default function for the affinity levels employs a normal
distribution with y = 0 and 6> = 1. These attributes are placed into a list & of size A
where each attribute is denoted with an integer subscript of &. Each node is assigned

such a list to decide the affinity levels of their attributes.

Phase 3. Node generation The nodes of the graph are generated with using the

node-placeable positions list, P, and the attribute list, . For every node, we add every

32

attribute from o. We also determine the values of the particular attributes in the nodes
in this phase using the process described in previous phase.
The node is placed into a position in P sequentially, and the node is added into the

node list, V, where it is used to generate edges in the next phase.

Phase 4. Edge generation For generation of the graph edges, a map of node
adjacency, E, in a key-value pair format (E = {k,[v]}) is created. All the nodes in
V arranged as the keys of the E at first.

The value for a certain key node in E, is actually a list of nodes that have an edge
to that certain key node. These node lists for each key node are determined by using a
combination of attribute similarity, s, and conceptual proximity, d, of the nodes. The
edges between two nodes, vi € V and v, € V, is determined by using a combination of
s(vi,v) and d(vy,v7).

Similarity of two nodes, s(vq,v2), is calculated as follows:

» Affinity levels of same attributes in different nodes are multiplied:

Soy (Vl,V2) = Vl((Xl) X Vz(OCl).

 This similarity is calculated among every attribute for the node pair:

Sap (V1,v2) = Vi(02) X Va(), ..., 80, (V1,v2) = Vi(04) X Va(ay).

* When per-attribute similarity values are calculated, they are summed up to a
general similarity between those nodes:

s(vi,m) = Z{‘(sai) = Sq, +Say + ..+ Sa,-

o If this resulting similarity value, s(v,v;), is bigger than 0, then we can say that
the nodes are similar. If the value is less than O, then we can say that the nodes

are dissimilar.

We use the properties of mathematical operations for our benefit in node similarity
calculations. When two affinity level values have the same sign (both negative or both
positive), the multiplication of these two values are always positive. Similarity value
between two nodes are calculated as a summation of these particular values. Therefore,
when more values have positive signs, it is likely that the resulting similarity value

between the nodes will be bigger than 0. If one attribute is so close to the extreme

33

values, -1 or +1, then this attribute hugely affects the calculation of similarity value,
hence, the edge generation phase between the nodes.

Conceptual proximity of two nodes, d, is a measure of whether these nodes are
close enough to form an edge in the given context. It is calculated as follows in our

method:

* The maximum distance between any two nodes according to their conceptual

positions in the graph, L, is determined at first.

* A proximity value between two nodes, d(vi,v;), is calculated:

d(vi,v2) = |p(vi) — p(v2)|/L, where p(v) is the position of node v.

o If this proximity value, d(vy,v;) is less than, + = 0.1 x L, then we can say the
nodes are conceptually close. If the value is bigger than 7, then we can say that

they are far from each other.

In literature, this proximity value is determined according to the given context.
While there are no consensus on how it can be determined whether two people are in
close proximity, we assumed that the 10% of the maximum distance can be considered
as a close distance in social relationships and decided to use it for our method. In
different contexts, however, this proximity value can be decreased or increased. We
evaluate the selection of this value later in Chapter 4.

With calculating these two values, there are two conditions for generating an edge

between two nodes:

* If two nodes, v; and vy, are similar according to their similarity value, s(vi,v2),
then we can say that these nodes are similar enough to create an edge between

one another.

* Moreover, if v; and v; are in close proximity according to their proximity value,
d(v1,v2), then we can say that they are close enough to form an edge on that

conceptual distance.

* If these two conditions are met together, then an edge, e(,1,7), is generated

between v; and v».

34

The values in the edge dictionary E, is filled one by one for every key node by
using the properties mentioned in last paragraphs without disrupting the power law.
Power law distribution is applied to the edge generation by creating a list of numbers.
The numbers in the list start from the value of number of nodes and are divided until
they reach one. The sum of the numbers in the list is set to the number of nodes as the
last step.

For example, if there are 16 generated nodes, then the divided numbers in order
are 8, 4, 2 and 1. The number, 8, is increased by one to 9, for setting the sum as 16.
The power law list includes {9, 4, 2, 1}. It means that 1 node has 9 edges, 2 nodes
have 4 edges, 4 nodes have 2 edges and 9 nodes have 1 edge. The power-law degree
distribution in edge generation is ensured with this way.

The edge dictionary at final, E, with the node list, V are used to generate the
resulting graph and draw it.

Since this edge generation phase is the core of our method, we also give it as a

detailed algorithm in Figure 9.

Phase 5. Resulting graph generation & drawing For the last phase, a graph
G: (V,E,«) is created. A color list is also created randomly for every connected
component in G.

By using a dictionary structure, where the keys are the connected components of
the resulting graph, and the value corresponds to each key is a list of nodes that the key
component contains; the color of the nodes are determined.

As a summary; positions of the nodes are determined at Phase I with respect to
Assumption 1. The attributes that the nodes have are generated at Phase 2. The nodes
in G are generated with their names, grid positions and general attributes at Phase
3. The edges between the nodes are generated using the Assumptions 2, 3, 4 and 5
at Phase 4. The resulting graph and the connected components that the graph nodes

belong to are drawn at their respective positions at Phase 5.

3.3 Results

In this section, we firstly give some example graphs that are generated with the help of

our method. We also evaluate our generated graphs according to these listed factors:

35

generate_edges_with_similar_distance(N,D)
1: maxy = max(Dy), maxy = max(Dy).

2l }maxf-i-maxf,.
E=0

4: V' =sorted{V} — minD(vy,...,vy)
5% B AV S AV Wi Wi by P S Vs Vowsss W 1
6: divy = find_divisors(N)

7: divg = reverse(divy)

8: forx=0,1,...,length(divy) do

9

fory=0,1,...,divy[x] do
10: if y > length(V') then
11: vs = random(V')
12; else
13: vs =V']y]
14: end if
15: E' — Ej[v4]
16: forz=0,1,....dive[x] do
17: if in_circle(vy,E'[z],L) and attracted(vy, E'[z])] then
18: es — E'[7]
19: end if
20: end for
21: E[vs] « e
22: V' .remove(v;)
23: end for
24: end for
25: return £

Figure 9: Edge generation in AnatoliA.

36

* One of the first evaluation steps is to find out if our generated graphs are met the
assumptions we have in the first place. For that, we present assumption-result
evaluation and use some metrics on our generated graphs that are created with

different generation parameters.

* We present running times of our algorithm with respect to different generation

parameters.

* Secondly, we compare these properties with similar graph generators that are

also created with same mutual generation parameters by using different metrics.

* Thirdly, we compare the communities formed by AnatoliA with the communities
formed by the similar generators by using attribute-aware community detection

(CD) methods.

* We also evaluate our two assumptions concerning the communities in our
generated graphs. If we assume that we know the ground-truth communities,
which CD method will perform better in that case. And if we assume that
ground-truth communities are unknown, what will be the result of evaluation

metrics for our method.

* Lastly, we evaluate our model properties and community structure compared to

a real graph dataset called “Sinanet” (Jia et al., 2017).
In the next section, we give example generated graphs.

3.3.1 Generated Graphs

You can see an example generated graph in Figure 10. Our generated graphs show that
there are highly connected one or two nodes that are mostly central to the graph. The
vast difference in colors show that there are many connected components in the graphs.

A detailed look on particular nodes shows that some nodes form no edges for
connecting other nodes. This may have been arisen due to the fact that those nodes have
not any similarity to the nodes that are most close to them. This shows the importance
of the node placement approach.

We made a more thorough analysis on generated graphs by looking at the model

properties with different generation parameters in the next sections.

37

Figure 10: A generated graph example with N = 1250 nodes and A = 100 general
attributes. Our original grid layout approach is used to draw the graph nodes and
edges. Connected components are denoted with different colors.

3.3.2 Assumptions and Model Properties Evaluation

We try to evaluate our model according to its own creation rules. Our assumptions
are listed in Section 3.2.1. We present these evaluations, and give the measurement

metrics used in model properties evaluation in this section.

3.3.2.1 Homophily Measurement

For measuring the homophily in our graph that is aligned with our Assumption 3, we
employed the measure explained in Easley and Kleinberg (2010), which is also used
in ANC (Largeron et al., 2015) generator. We created our own interpretation for this
calculation process, calculated Homophily Measure (HM) for our graph and created a
new metric called Normalized Homophily Measure (NHM) by normalizing the value

of HM. We calculate these measures using the formulas:

B

HM =) (0i—E;) (8)
=1

1

_ HM —min(HM)
NHM = max(HM) —min(HM) ©

38

where O; is the ratio of the number of observed edges according to the given
attribute i over total edge count, and E; is the probability of two nodes create edges
with the given attribute i is similar among them. While calculating O; we assumed that
if the multiplication of the affinity levels of the same attribute between two nodes is
positive, then the edge is created according to that attribute in a certain fraction. E; is
calculated under the assumption that if the both affinity levels of the same attribute for
two different nodes are of same mathematical sign (i.e. both positive or both negative),
then they can form an edge according to that attribute.

We have listed the homophily of the generated graphs in Table 7 and Table 8 for

different number of nodes and for different number of meta-communities.

3.3.2.2 Normal Distribution of Affinity Levels

According to our Assumption 4, the affinity level values of the node attributes are
distributed using normal distribution. We control how many attributes that each node
will have with A parameter.

You can see histogram plot for the frequencies of the attribute values for two

example graphs with N = 500 and N = 1000 while A is constant as 10 from Figure 11.

Normal Distribution from Vertices' Affinity Levels Normal Distribution from Vertices' Affinity Levels
AnatoliA AnatoliA

Frequency
©
g
Frequency

60

40

204

o
-1.00 -0.75 -0.50 -0.25 0.00 025 050 075 100
Affinity Level Values Affinity Level Values

ol
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

(a) N =500,A =10 (b) N =1000,A =10

Figure 11: Normal distribution of node-attribute affinity values with two example
graphs.

3.3.2.3 Power-Law Edge Generation

According to our Assumption 5, edges of our graphs are generated with a power-law
degree distribution. We wrote the details of the generation process in Section 3.2.3.

We compared our generation process with LFR benchmark (Lancichinetti et al.,

39

2008) that also uses power-law degree distribution. You can see the density plots for

edge degree distributions between AnatoliA and LFR benchmark from Figure 12.

Figure 12: AnatoliA vs. LFR for edge degree distributions. They both use power-law
degree distributions.

If we analyze this figure, we can see that while the power-law degree distribution in
LFR benchmark is very strict, we created a more relaxed version. In our version, some
nodes can create edges to get a varied generation result. As an implication of that, the
power-law curve is more smooth than the curve of LFR example which is more steep

than ours as you can see from the given plots.

3.3.2.4 General Properties of Our Model

In this section, we evaluate the general characteristics of our generation approach. To
do that, we firstly explain the model properties briefly.

Average clustering coefficient (CC) (Watts and Strogatz, 1998) is a measure of
how tightly the nodes in a network cluster together. The average number of steps
along the shortest paths for all potential pairs of nodes is known as average shortest-
path length (SPL) (or characteristic path length) in networks. It is a way to assess
how effectively the information transports over a network. Average degree gives the
average node degree in the whole network. The clustering coefficient, the average
shortest path length and the average node degree are three most reliable metrics of a

network’s topology. The graph diameter is the average eccentricity of the nodes in a

40

graph, which the eccentricity of a node can be defined as the maximum distance from
the node to all other nodes.

We also used centrality measures for evaluation. The total percentage of all-pairs
shortest paths that pass through a node represents its betweenness centrality (Brandes,
2001). The ratio of the average shortest path distance to a node over all reachable
nodes is its closeness centrality (Freeman, 1978). We used the average of these two
centrality values for evaluating the generated graphs.

As the categorization of Xiang et al. (2021) is applied; CC, average degree,
betweenness and closeness centrality measures give the characteristics of the node
distributions. Edge count, diameter and SPL. measures are considered as general graph
statistics. There are many more properties that can be covered, however, we consider
these properties sufficient for our purpose.

These structural measures give most of the characteristic properties of our gen-
erated graphs. We have listed these resulting measurements for our model in two
different tables. In Table 7, we listed graphs with variable number of nodes (250
< N < 2500) and constant number of node attributes (A = 10). We subsequently listed
generated graphs with constant number of nodes (N = 500) and variable number of
node attributes (10 <A < 100) in Table 8.

We also have a separate result for an example generated graph with N = 10*, A =
20, as (Clustering Coeff. = 0.121, Degree = 4.564, Betweenness Centrality = 5.73¢”,
Closeness Centrality = 0.011, Edge count = 22819, Conn. Component Count = 3716,
Diameter = 40, SPL = 8.3, NHM = (0.824). Due to the runtime issues, we do not have
enough simulation data for that many nodes to calculate the mean values, thus we have

listed this result separately. We also evaluate our running times in next section.

3.3.2.5 Running Time Evaluation

A computer with these specifications are used for simulating the generation process for
evaluating runtimes of our algorithm: Intel-i7 8-core processor, 32GB RAM, NVIDIA
1070 GTX 8GB GPU.

We have listed the maximum running times for our algorithm out of 10 simulations
for every different generation parameter used. You can see the results from Table 9.

We have also singular running time results. Our algorithm spent maximum time of

41

Table 7: Model properties and assumptions. Average (Avg.) measurements come from
10 simulations performed with the same graph properties as A = 10. Mean values are

given in table.

Measures (Average) N=250 N=500 N=1k N=2k N=2.5k
Clustering Coeff. 0.184 0.189 0.178 0.174 0.138
Degree 3.364 3.848 4.639 5.163 3.729
Betweenness Centrality — 7.15¢73 2.25¢73 9.96¢* 5.6le™* 2.04¢™*
Closeness Centrality 0.066 0.049 0.036 0.027 0.015
Edge Count 420 962 2319 5163 4661
Conn. Component Count 57 130 277 574 917
Diameter 18 19 25 28 31
SPL 5.900 5.507 6.126 7.370 7.150
NHM 0.891 0.876 0.862 0.858 0.855

Table 8: Model properties and assumptions.

Avg. measurements come from 10

simulations performed with the same graph properties as N = 500. Mean values are

given in table.

Measures (Average) A=10 A=25 A=50 A=75 A=100
Clustering Coeff. 0.189 0.171 0.159 0.169 0.155
Degree 3.848 3.771 3.794 3.833 3.836
Betweenness Centrality — 2.25¢™> 2.48¢™3 234e 3 243¢73 2.43¢73
Closeness Centrality 0.049 0.048 0.051 0.052 0.050
Edge Count 962 942 949 958 959
Conn. Component Count 130 137 137 137 134
Diameter 19 19 19 19 18
SPL 5.507 5.806 5.504 5.569 5.668
NHM 0.876 0.847 0.832 0.820 0.819

Table 9: Maximum runtimes (in seconds) of the algorithm for given graph properties

(out of 10 simulations).

A=10 A=25 A=50 A=75 A=100

N =250 0.22
N =500 0.96
N=1000 17.74

N =2000 51.16
N =2500 94.95

0.39

1.45

9.02
54.05
105.20

1.27
3.20
12.60
65.90
115.65

2.04

5.55
17.91
81.98
126.63

4.05
9.54
26.48
102.27
141.09

42

244.11 seconds for (N = 2000, A = 200) condition, and spent 860.39 seconds for (N =
5000, A = 10) condition.

As it can be seen from these results, the runtime increases as the number of nodes
increases. As the number of node attributes increases, there is also an increase in
running time. It is evident that the increasing factor of node count effect is more than
the effect of attribute count.

When we investigate the source reason of the running time spike with the increasing
effect of the node count, we see that the edge generation part, pairwise distance
calculation between the nodes, and summation calculations in various points of the
algorithm are some of the most notable reasons of it. Since we are doing many
calculations to decide if we need to form an edge according to the node attribute values
and the distance between the nodes, our algorithm spent a lot of time in that process.

We discuss this situation also in Section 3.4.

3.3.2.6 Time Complexity Estimation

AnatoliA has two properties that can affect the time complexity of the method the most,
the number of nodes, N, and the number of general attributes, A. The method has five
phases, but the most important phase is the edge generation, therefore, we analyze it
here.

In this phase, we have three loops inside of each other. Before any loop,
find_divisors function finds the numbers divy and divg. divy is a list of numbers,
and these numbers are found by consecutively halving N until the numbers reach to 1.
Because of this halving process, the length of divy and divg both converge to log(N).
Since we used length(divy) as our upper bound in the first outer loop, it completes its
execution in O(log(N)) time.

In the middle loop, the upper bound is divy[x], where in every iteration, a’ivv [x] is

,%,]X , 5. Since the summation of this list of numbers, Z a/ 2 =

bound to 1,..., 1¢
1+..+X 6+ % + % + %V converges to N, the contribution of this loop to total time will
be ~ O(N).

The inner loop uses divg[x] as its upper bound, which is a list with the reversed
order of numbers of divy[x]. Because of this reason, the summation of the numbers

inside the list also converges to N, and hence, its contribution will also be ~ O(N).

43

Inside the inner loop, we have two functions, in_circle, which checks if two nodes
are close enough to form an edge, and attracted, which checks if two nodes are similar
enough to form an edge.

in_circle function works as this: it takes the difference of the conceptual positions
of two nodes in question and checks if this difference is smaller than our proximity
threshold. Since the pairwise distances between all nodes are already calculated before
the loops, the operation spends O(1) time.

attracted function, multiplies every attribute affinity level values for two nodes in
question and sums them up. Since every node has A number of attributes, and the
multiplication&summation operation spends constant time, the whole operation lasts
O(A) time. When A is small compared to N, we can take its contribution as constant.
In greater values, we also need to take its contribution into account.

When the contribution of every part of the edge generation phase is taken into
consideration, we can conclude the worst-case time complexity estimation of AnatoliA
as T(N) = O(N?log(N)) when A < N, and T(N,A) = O(AN?log(N)) when A ~ N.
Since all the other phases of our method spend at least O(N) and at most O(N?) time,

we can assume our upper bound comes from mostly our edge generation phase.

3.3.3 Comparison with Other Graph Generators

We compared our graph generator with earlier generators with respect to different
evaluation metrics.

Firstly, we compared our algorithm with ANC (Largeron et al., 2015), DANCer
(Benyahia et al., 2016), GenCAT (Maekawa et al., 2021) and X-Mark (Citraro and
Rossetti, 2021) with respect to their model properties. We selected these generators
since they create graphs with communities and node attributes, they use similar
approaches with us for their generation process and the source codes or the applications
of their algorithms were easy to access and use.

Secondly, we compared our algorithm by detecting its communities using various
community detection methods. For that evaluation, we used the same generators
we mentioned in previous paragraph. We employed three different evaluation on

community detection (CD) methods:

44

¢ We used CD methods that take the node attributes into account (i.e. attribute-
aware CD methods) while comparing the communities formed by other gener-
ators with the communities formed in our method. With this step, we find out
which earlier generator is more similar to our approach in community detection

aspect.

* We assume that the connected components as our ground-truth communities and

compare them with the communities that are found by various CD methods.

* We assume that we do not know the ground-truth communities in our generated
graphs and evaluate our communities with some metrics that can be used in these

situations.

3.3.3.1 Model Properties Similarity Evaluation

In this section, we try to evaluate similarity of AnatoliA to earlier generators with
respect to their model properties. For that reason, we simulate graphs as N = 500,A =
10, for every graph generator. You can see the results of this simulation from Table 10.
Table 10: Model properties comparison between graph generators. Average

measurements come from 10 simulations performed with the same graph properties
for each graph as (N = 500, A = 10). Mean values are given in table.

Measures (Average) ANC DANCer GenCAT X-Mark AnatoliA
Clustering Coefficient 0.108 0.158 0.547 0.109 0.189
Degree 4.492 8.248 29.558 11.465 3.848
Betweenness Centrality 7.1le 3 4.83¢73 2.26e73 3.6le3 22573
Closeness Centrality 0.224 0.296 0.476 0.360 0.049
Edge Count 1123 2074 7389 2866 962

of Connected Component 1 1 1 1 130
Diameter 9.3 6.1 4 4.875 19.1
Average SPL 4.539 3.420 2.125 2.796 5.507

From the results, we can concur that, according to the model properties, ANC
generator is the one that has the most resemblance to AnatoliA. From eight measures,
five of results for ANC is very similar to our method’s results. In one measure, —
specifically in clustering coefficient— the most similar generator is DANCer. Also in
betweenness centrality measure, the result of GenCAT generator nearly identical to

ours.

45

In one measure (i.e., the connected component count), however, we did not
compare any generator with our generator, since all of the other generators produce

connected graphs, different than ours.

3.3.3.2 Community Similarity Comparison

We selected I-Louvain (Combe et al., 2015) and EVA (Citraro and Rossetti, 2019)
attribute-aware CD methods for detecting the communities formed by AnatoliA and
other generators. We employed widely used community similarity evaluation metric,
Normalized Mutual Index (NMI), for evaluation of community similarities.

You can find the detailed results of our comparisons on Table 11 for attribute-aware
CD methods.

It is evident in these results that the most similar generators to our generator are
DANCer and GenCAT in detected community aspect. When NMI results of [-Louvain
CD method are analyzed, X-Mark is also has a subjectively high result. For EVA CD
method, NMI comparison puts the DANCer generator in second place. These results

may indicate that DANCer generates mostly similar communities to our method.

Table 11: NMI scores of similarity evaluation for AnatoliA in comparisons with other
graph generators using node-attribute aware CD methods. Mean values are given in
table.

CD Methods: [-Louvain EVA

ANC 0.1 0.485
DANCer 0.159 0.862
X-Mark 0.103 0.558
GenCAT 0.048 0.918

3.3.3.3 Connected Components as Ground Truth Communities

As we described before, we assumed that the connected components are the ground-
truth communities in our generated graphs. We compared these ground-truth com-
munities formed by AnatoliA to the communities detected by CD algorithms. In
this comparison, we also used general CD methods (i.e., CPM (Palla et al., 2005),
Louvain (Blondel et al., 2008), and APAL (Doluca and Oguz, 2021)) which do not
consider the node attributes while detecting the communities. We mainly do that

for understanding that if the structural communities detected by general CD methods

46

will have a similarity score more than the ones that are found by attribute-aware CD
methods. We again employ the metric NMI, for similarity evaluation, and also (2)
Adjusted Rand Index (ARI) measure.

For both NMI and ARI, the lower and upper bounds are 0 and 1, respectively.
Zero means that there are not any similarity between the given community and the
community detected by the CD method. One as the result means maximum similarity
between two communities, the given and the detected one. You can find our results for
this part in Table 12.

Table 12: Evaluation results for AnatoliA ground truth communities compared to the

communities found by CD methods. Mean values are given in table. (N = 500, A =
10).

Measures: NMI ARI

CPM 0.785 0.354
Louvain 0.848 0.205
APAL 0.257 0.211
I-Louvain 0.890 0.310
EVA 0.708 0.128

For all of the CD methods in this assumption, we accepted the total connected
components as the ground-truth communities of our generated graphs. This assump-
tion comes from the fact that in social relations, being in a community means that being
highly connected to other nodes (Yang and Leskovec, 2015). We as people, all know
somebody through somebody else. Therefore, knowing a person means that we have
some form of acquaintance to the people who knows that person and it creates a weak
relation between us and them. Because of that, we used that assumption for this part.

From the results, we can see that according to NMI metric, I-Louvain is the one
that finds most similarities. The close second in this metric is Louvain method. In
ARI metric, CPM is the one that finds two different community list, ground-truth and
detected, as most similar. In this metric, the second score again comes from I-Louvain
method.

These results may be an indication that the structural communities formed by our
nodes and edges are mostly overlapped with the functional ones created with the effect
of the node attributes if we take our ground-truth community assumption as true.

In the next part, we assume that we do not know the ground-truth communities of

47

our generated graphs.

3.3.3.4 Unknown Ground Truth Communities

If ground-truth communities are not present, then different metrics can be used to
evaluate the community quality of the graphs. The Silhouette Coefficient (Rousseeuw,
1987) is an example of such evaluation metric, where a higher Silhouette Coefficient
score relates to a model with better defined communities. It is a score between -1 and
+1, where the positive scores near to +1 means that the graph is densely clustered.
Near-zero scores can indicate overlapping communities.

Other than the Silhouette Coefficient, there are two other metrics we used to
evaluate the community structures of our graphs. One of them is Calinski-Harabasz
score (Calinski and Harabasz, 1974) —also known as the Variance Ratio Criterion—
, where a higher score relates to a model with better defined communities. The
Davies-Bouldin index (Davies and Bouldin, 1979) can also be used to evaluate the
graph models, where a lower index relates to a model with better separation between
the communities. The lowest possible score for Davies-Bouldin index is zero, which
indicates a better partitioning.

For all of these metrics, the number of clusters to detect must be predetermined to
measure the community quality. We used more than one number for the cluster count
to evaluate the effects of this change. The mentioned metrics are applied to the results
of a K-means clustering algorithm. We used the node attribute values list per graph
node for the training instances to cluster with K-means algorithm.

Table 13: Evaluation results for AnatoliA when ground truth communities are assumed

to be not known. Ccc is the connected component count of the given graph (N = 500,
A =10). Mean values are given in table.

K-means Label Count = 3 A/2 A Ccc
Silhouette Coefficient 0.075 0.075 0.081 0.090
(—l<sc<

Calinski & Harabasz Score 40.422 34312 26.933 8.464
(0 < ch_score)
Davies & Bouldin Index 2.859 2472 2.117 1.222
(0 < db_index)

It can be seen from Table 13, that the Silhouette Coefficient increases in direct

48

proportion to the number of predefined number of labels. As it is very close to O,
it can be speculated that the communities in our generated graphs may be defined
as overlapping communities. Calinski-Harabasz score and Davies-Bouldin index are
decreasing with the increasing number of labels. These two together give us mixed

results about our community quality.

3.3.4 Evaluation with Real Dataset

For evaluating our generator further, we used a real network dataset, Sinanet (Jia et al.,
2017). It is a microblog user relationship network with 3490 nodes, 30282 edges and
10 numerical attributes per-node.

There are two parts for this evaluation. In the first part, we evaluated the model
properties with respect to Sinanet network. In the second part, we evaluated if the

communities generated in our model are similar to the ones in Sinanet network.

3.34.1 Model Properties Evaluation

For evaluating our method, we generated networks with the same number of nodes and
node attributes with Sinanet, where N = 3490 and A = 10 for every node-attributed
graph generator (i.e. ANC, DANCer, GenCAT, X-Mark and AnatoliA) we have.
We compared these generators by using maximum mean discrepancy (MMD) over
clustering coefficient, degree, betweenness and closeness centrality values, and by
using absolute mean difference (AMD) over edge count, connected component count,
diameter and average shortest path length values for their model properties. The results
for this evaluation is shown on Table 14.

From the results of model evaluation, we can claim that the most similar graphs
to Sinanet are generated by GenCAT generator. X-Mark is also very successful on
edge count and diameter measures. The most similar graphs on degree measure are
generated with DANCer generator.

Nevertheless, our generator AnatoliA is a close contender in some measures,
specifically clustering coefficient and betweenness centrality measures as we denote
this fact by underlining those scores in the results table. Other than this result, when we
look at the connected component count measure, we see that all other generators have

an AMD value as 23. This is due to the fact that all other generators create connected

49

Table 14: Model properties comparison between graph generators using Sinanet
benchmark. Measurements come from simulations performed with the same graph
properties for each graph as (N = 3490, A = 10). ANC and DANCer graphs
are generated in their respective applications and exported into our generator for
comparison.

MMD Over ANC DANCer GenCAT X-Mark AnatoliA
Clustering Coefficient 0.043 0.035 8.39¢ ™ 0.014 0.004
Degree 0.078 0.013 0.014 0.041 0.119
Betweenness Centrality 8.53¢7 3.67¢7% 7.15¢7 % 5917 % 2.55¢798
Closeness Centrality 0.044 0.026 0.002 0.006 0.233
AMD Over

Edge Count 19647 14463 38383 8046 19557
of Connected Components 23 23 23 23 999
Diameter 5 1 2 0 38
Average SPL 2.513 1.236 0.215 0.563 7.359

graphs. However, the graphs generated by AnatoliA are disconnected graphs. The
AMD over connected component count is higher in our method than in any other
generator, as shown in the table, but we still identify it as the most successful one

because the Sinanet network is also a disconnected graph.

3.3.4.2 Community Detection Evaluation

To evaluate the communities formed by AnatoliA, we used the attribute-aware CD
methods, [-Louvain and EVA, to detect the communities in Sinanet, and compare these
detected communities with AnatoliA and same generators from previous section. We
used NMI measure for evaluating the community similarity. Results of this comparison

is shown on Table 15.

Table 15: NMI scores of community detection comparison between graph generators
using Sinanet benchmark. Measurements come from simulations performed with the
same graph properties for each graph as (N = 3490, A = 10). ANC and DANCer
graphs are generated in their respective applications and their data are exported into
our environment for comparison.

CD Methods: [-Louvain EVA

ANC 0.009 0.106
DANCer 0.013 0.147
GenCAT 0.014 0.441
X-Mark 0.009 0.141
AnatoliA 0.065 0.286

50

From the results, we can say that when the communities are detected by the
I-Louvain method, the graphs generated by our method have the most similar
communities to Sinanet. When EVA method is used for community detection,
AnatoliA is second after GenCAT generator. From these results, we can argue that
our method creates networks that have real-world network properties on community

aspect.

3.4 Discussion

We designed an algorithm to create synthetic networks with communities and node
attributes. Our algorithm can create the edges between the nodes with respect to two
aspects from the social context, namely the proximity and the homophily. The number
of generation parameters is small. However, since our algorithm uses object oriented
programming in every step of the process, all the internal parameters can be tweaked or
there can be some additions when needed. As an example, we used power-law degree
distribution for the edges and normal distribution for the values of affinity levels in the
node attributes. If the users of our algorithm want to change one of these behaviors,
only thing they need to do is changing a little part in one of the methods for one of
the source code classes. After that change, all the other parts of the algorithm work
accordingly. In this sense, AnatoliA is very easy to alter and can be modified with the
needs of the users.

To achieve our results, we performed experimental simulations with different
generation parameters. We try to estimate the significance of our algorithm by
evaluating its model properties and by comparing it with earlier similar network
generators such as LFR, ANC, DANCer, X-Mark and GenCAT. We also try to evaluate
how the node attributes and edge generation process affects the communities by
using both general and attribute-aware CD methods such as CPM, Louvain, APAL,
[-Louvain and EVA. We further evaluate our generator with comparing it with a
real-world network, Sinanet. We used different measures for graph properties and
community assessment and try to devise our own measures such as NHM when there
is none applicable.

There are some limitations we can address regarding our research and the

opportunities to improve our research more in future.

51

As a first limitation, our algorithm creates static graphs. However, in most cases,
the graphs and the community structures in them change over time or over different
factors. One of the articles (Benyahia et al., 2016) we surveyed actually created their
generator with dynamic communities in mind. Hence, the merge and split interactions
between the communities must also be covered. Moreover, the node attributes are also
subject to change if we think of individuals. People tend to dislike some things which
they like in the past, or vice versa. Their specific traits can also change with time.
An algorithm which also considers these changes can be very beneficial for creating a
dynamic graph generator.

We created an algorithm that only work on undirected unweighted graphs. It is
a limitation in many aspects, such as the lack of directed information propagation in
social networks (Schweimer et al., 2022) can be a missing functionality in a network
generator such as ours. If we think that the nodes as people in a social network,
they chose to share information with another person in one-way for certain cases.
Some sensitive information is kept hidden from the general public, or in this case, the
community the person belongs to. We created the affinity levels of the node attributes
with this mindset, but there can be some public and some private node attributes by
taking this knowledge into consideration. This intimacy between individuals is an
aspect yet to be covered in future for better graph generators.

Another limitation can be our node placement algorithm. We used diamond-square
algorithm to place the nodes in our generated graphs. Yet, in this usage, we do not place
the nodes considering the proximity between nodes, the node similarities, or the power-
law edge generation aspect. Placing more central nodes to the correct places in the
graph can create more connected graphs, or better community structures. Depending
on this same situation, some nodes do not have any edges. Provided that these nodes
are placed into the graph with better positions, these problems may be overcome.

One of the most important limitations of our study was the long running time
of our algorithm. Since we create a graph generator, time complexity of it is also
very important. Our first aim was to create an algorithm which generates graphs with
communities and node attributes, and because of that, the running time was the least of
our concerns at first. However, we can address this issue by creating a more efficient

algorithm in future. Using parallel-processing in the generation of synthetic graphs is

52

efficient mostly (Bressan et al., 2013), so it can be a solution for our problem, too.

Generating large graphs can also come with other problems such as improper graph
visualizations or unsuitable graph layouts. Also, there are not many research examples
that show the contributions of the node attributes in their graph visualizations. These
problems are also present in our work. We used our grid layout approach for showing
the nodes at a better separated positions, however, we accept that our approach has also
its own shortcomings.

When we increase the number of general attributes for graph generation, we usually
expect the number of connected components to increase as well, since it generally
decreases the likelihood of node similarity. However, the number of connected
components in the graphs generated by our method does not change significantly with
respect to the number of general attributes. We can also evaluate our generator from
this perspective.

We can count the conceptual proximity and node similarity calculations as our last
limitations. For calculating the proximity, we benefited the physical proximity rules
from social context (Stopczynski et al., 2018). The humans can accept themselves
near to or far from from each other according to the place they are in. The effect of this
assumption must be evaluated with respect to the usage area of our generator. Different
use-cases can have their own proximity calculations. We solved this problem in our
generator by using an external ratio value for the conceptual proximity; however, a
fully different proximity calculation approach may be adopted, since it is a subjective
solution. Therewithal, measuring node similarity in accordance with the values of
the node attributes may have its disadvantages. One can think that some of the node
attributes influences the edge generation phase more than other attributes in the graph.
In the future, implementing the node attributes with different importance or giving
different weights to them may be a better approach.

One of the most important ideas we consider while we are creating AnatoliA is the
broad spectrum of its usage areas. We employed it mostly in social context, however it
can be applied to different networks with minimum adjustments. AnatoliA is a robust,
easy to use and reliable synthetic graph generator with communities and node attributes
and it is implemented in one of the most used programming languages nowadays with

object oriented programming principles. We hope that AnatoliA and further iterations

53

of it can be used as a base network generation solution for various applications in Al,

computer games, biology and communications.

54

CHAPTER 4 : APPLICATIONS OF THE PROPOSED ALGO-
RITHM

4.1 Further Improvements of Our Method

We start this chapter by discussing the advancement opportunities of our generation
algorithm. These ideas improve our method significantly, in one or more application
areas. We briefly debated some of the concepts we discussed here also in Chapter 1
and Section 3.4.

The first concept we wanted to include in our method is edge weight. We can
come across with weighted social networks in different contexts (Murase et al., 2014;
Li et al., 2020). In these studies, the weights often define the importance of the edges
in network. Large or small weight values may indicate that these edges may have
different priorities depending on the situation. If our method contains the weight
concept, then every node corresponding to an NPC, can have relations with other
nodes with different priorities. It is important, since this rule can be present in real
social networks (Bellingeri et al., 2023).

Related with the weights, an edge in a network can also have a direction. Directed
networks are analyzed in different studies (MacKay et al., 2020; Schweimer et al.,
2022). Direction in an edge means that the information or context in a node can only
flow or spread out from that node to another, but not vice versa, according to the given
direction. The edge directions is also another major concept in networks. Its usage
in our method can also be beneficial since there can be one-way relations in NPC
networks, such as interacting with in-game merchants, tavern owners, quest-givers and
such.

One other concept we can discuss is overlapping communities. It is studied in
different works (Xie et al., 2013; Doluca and Oguz, 2021), in a context where joining
more than one community at the same time is significant. We mostly detected the
communities in our method according to the edge formations and the node attributes,
however, overlapping communities concept can also be covered. NPCs in games can
also have multiple communities such as the personal party they are traveling with, a
guild that includes other NPCs with the same professions they belong to, a city or a

part of a city where they live, and so on.

55

If we review earlier studies, we can see that there are studies concerning the
directed weighted networks with overlapping communities (Lancichinetti and Fortu-
nato, 2009a). Therefore, combining these three concepts is very common in academic
research on graphs. They are also commonly combined and used for NPC networks in
games. We can also include one other topic in here, which we covered in Chapter 2,
which is dynamic networks. In dynamic networks, the nodes, the edges, the attributes
or the communities can be subject to change over time or with different environmental
effects. The NPCs are not static, hence, they are expected to change their behaviors
with time and other effects.

Other than these ideas, we also come up with different ideas using social theories.
The most prominent one for us is the usage of different attribute visibility. From social
context, we can think that people tend to share their own traits if they are publicly
visible or knowable (Lewis et al., 2008). Some people choose not to share their
private and sensible information to all of their related people. Therefore, creating
two different node attribute visibility, private and public, and use them accordingly in
edge formation process can be a better approach for our method. For instance, if two
nodes are connected with a weighted edge, and if these two nodes have many mutual
public attributes, then one node can choose to share its private attributes with the other
one, and according to these private attribute values, the edge weight can be increased.
This ensures a stronger connection between two nodes with many common traits, both
public and private.

The other important idea we come up with is about the edge formation process in
our method. The details of our edge formation method can be read from Chapter 3.
If we want to summarize, we have a summation formula that is used to evaluate the
similarity between two different nodes with respect to their attribute affinity values.
In this formula, we assume that every attribute affects the node similarity equally.
However, if we give weights to the node attributes, and calculate the node similarity
with proportional to these weights, then the calculation will represent the real world
better. If we think about real life relationships, some personal traits affect more than
the others when we want to connect with other people, and it should be similar in NPC
networks.

The last idea we wanted to include in our method is creating different proximity

56

calculation options according to context at hand. For now, our method decides that two
nodes are close enough to form an edge by using a certain threshold (i.e. 10% distance
between the most distant nodes). We decided to use this threshold by assuming that
this distance can be considered too close to and/or within personal space of a person
for closed spaces. For NPC networks, setting this threshold to a known value can be
a sufficient solution. However, creating different options for different usage examples
can also be beneficial.

Additionally, we can suggest the inclusion of general social theories and com-
munity dynamics into our method. These concepts include small groups and the
clique theory (Homans, 1950), small-world networks (Newman, 2018), preferential
attachment (de Solla Price, 1965), community homogeneity/heterogeneity, triadic
closure (Asikainen et al., 2020), information diffusion/spreading (Al-Taie et al., 2017)
and two-step flow of communication hypothesis (Lazarsfeld et al., 1968), strong/weak
ties theory (Granovetter, 1973), and reciprocity (Mauss, 2000). We tried to employ
the concepts from same group of theories such as homophily and power-law degree
distribution. Nonetheless, one or more concepts from these given ones can also be
included to correctly identify NPC networks, since most of these theories are directly

coming from the real-world social networks.

4.2 Previous NPC Networks

In this section, we tried to present earlier NPC social networks that are used or
created in academic studies. We do this to identify the key points in earlier networks,
the differences between these networks and the networks created with our network
generator, and usage possibilities of our generator in NPC networks.

In their study, Lee et al. (2011) exploited social networks to compute automatic
reputation. They built a social network by examining the authors’ keyword referencing
behaviors in a collection of text documents. They also address their social network by
using community detection techniques. They discovered a number of unexpected situ-
ations, including that the network was scale-free and that it had negative assortativity.
Although this work did not include an NPC but a social network of people, we decided
to include it; since the next study we cover seems to be a continuation of the earlier

work and also has a mutual author.

57

Brown et al. (2017) employs a similar method of automatic reputation calculation
on various social networks, including networks that they generated procedurally and
two NPC networks they extracted from the video games The Elder Scrolls 4: Oblivion
and Fallout 4. In their article, they investigate a strategy for allowing NPC interactions
to propagate reputation from an initial witness point of quest accomplishment to all
other NPCs. Their tests indicate that information originating from densely populated
areas spreads more rapidly than information produced in smaller quests from remote
locations in the game. They shared their algorithm, the network nodes and the cities
where those nodes belong to as open-source .

Brown et al. (2020a) used same graphs for a different study, where they employed
evolutionary graph compression and diffusion methods for city discovery in RPG
games. In this study, they also shared the edge connections of the same graphs as
open-source 2.

Other than these studies, we could not find any other academic work that shares

the NPC social networks they used. It is also evident from this fact that a usable NPC

network generator is needed for these types of research problems.

4.3 A Minor Case Study: AnatoliA vs. Fallout 4 NPC Network

In this section, we try to evaluate our generator with respect to NPC social networks
we can find as open-source. The researchers from Brown et al. (2020a) shared four
different networks from four different computer games. These can be listed as: Fallout:
New Vegas, Fallout 4, The Elder Scrolls IV: Oblivion and The Elder Scrolls V: Skyrim.
We selected the NPC network from Fallout 4 to compare it with an AnatoliA generated
network.

For this evaluation, we used particular assumptions. Fallout 4 NPC network has
information about the nodes (i.e. the names of the nodes), the communities of the
nodes (i.e. which fictional cities they belong to), and the edges between the nodes
(i.e. the connections that are formed when NPCs interact with each other). Since there
was no information about node attributes in Fallout 4 network, we could employ two

different evaluations:

Thttps://github.com/nikitakraev/inno-thesis/tree/master
Zhttp://www.cosc.brocku.ca/~houghten/gamegraphs.html

58

e We can assume that there is no attribute information on both networks, and

evaluate them accordingly, or,

* We can assume that we accept the player attributes (called as “perks” in the
game) from the game as our NPC attributes, and generate the respective node

attributes on both social networks in a predefined way.

Since AnatoliA can only generate network nodes with their attributes, we accept
the second assumption and try to evaluate differences according to this assumption.
For this assumption, we benefit from OpenAl’s GPT3.5, and its application, ChatGPT
(Brown et al., 2020b). Using open-sourced dialogues from Fallout 4 Fandom Wiki 3,
we create structured prompts to correctly extract NPC attribute affinity level results.
These results should be regarded as ambiguous, as there is no way to verify if ChatGPT
detects the numerical affinity values with an objective formulation. However, we
assume that ChatGPT is among the few cutting-edge chatbots equipped with extensive
natural language processing features, capable of subjectively identifying attribute
values based on character dialogues.

To evaluate our network generator, we create AnatoliA networks with the same
properties as Fallout 4 network. We also get the model properties of Fallout 4
network, and compare them with the model properties of our generated networks.
For comparison, we used the absolute mean difference (AMD) between the property
values, as we previously did in Section 3.3. The details of the model properties can
also be found in the same section. We make this evaluation by changing our proximity
threshold to various values, which is used in edge generation phase of our method. We
try to understand which proximity value fits better to our needs compared to an actual
NPC network.

We choose to compare different proximity values with respect to a reference NPC
network, because as we discussed in Section 3.2.3, there is no way to correctly
determine “the close proximity”, since it changes from context to context. By using
Fallout 4 network, we can check which value corresponds to a close value for proximity
between two nodes to form an edge in a game NPC network. To do that, we get the

general properties of Fallout 4 network, generate 50 AnatoliA networks for different

3Shared under Creative Commons Attribution-Share Alike License 3.0 (Unported) (CC BY-SA),
https://fallout.fandom.com/wiki/Fallout_4_characters

59

proximity threshold values, and compare the AMD between our mean model property
values with values of Fallout 4 NPC network properties. We collected the results of
this evaluation in Table 16.

Table 16: Model properties comparison for AnatoliA using Fallout 4 NPC network.
Measurements come from 50 simulations performed with the same graph properties for
each graph as (N = 152, A =7, C = 8). Subscript values describe the edge generation
proximity threshold, less than 0.1, 0.2, 0.3, 0.4 and 0.5, in order.

Fallout
Network AMD Over A6A<()‘1 A6A<0_2 A6A<0.3 A6A<0_4 A6A<0.5
7.50e=9% Clustering Coefficient 591792 1.05¢°" 0.119 0.128 0.137
2.829 Degree 0.971 0.319 0.136 0.041 0.025
4.59¢=92 Betweenness Centrality 426092 4.16¢79%2 4.12¢72 4.08¢ 2 4.09¢ 2
0.129 Closeness Centrality 0.094 0.055 0.032 0.020 0.017
215 Edge Count 73.82 24.22 10.36 3.08 1.92
1 # Connected Components 55 48 43 41 41
17 Diameter 4.5 7.1 7.7 7.6 8.1
7.889 Average SPL 3.393 4.305 4.566 4.607 4.698

From the results, it is possible to infer that setting the proximity threshold to 0.5
is the best option, as this value is very similar to the property values coming from
the Fallout 4 network. This value produces the most similar results for four different
properties and is a strong competitor for another property. Another threshold value
is 0.1, which produces results that are very similar to the Fallout 4 network in three
different properties of the model. This particular value was used to evaluate our
generator in Section 3.3. Therefore, it can be argued that using this value as our
threshold in previous evaluations was a reasonable choice.

We also compared the model properties of our generator with previous generators,
GenCAT (Maekawa et al., 2021) and X-Mark (Citraro and Rossetti, 2021), by using
our two successful proximity thresholds, 0.1 and 0.5. The evaluation results can be
found in Table 17. These results show that AnatoliA has promising outcomes in
most of the properties, and it has more similar values to the Fallout 4 network in
most of the given graph properties. The betweenness centrality value is also similar,
and the differences to other generators are rather small. Since our method generates
disconnected graphs, the only unsuccessful result comes from the number of connected
components property.

There are limitations in this evaluation. The first limitation is using ChatGPT to

generate attributes in the Fallout 4 network. While we explained our reasons for this

60

Table 17: Model properties evaluation for AnatoliA with earlier generators using
Fallout 4 NPC network. Measurements are the mean values come from 50 simulations
performed with the same graph properties for each graph as (N =152, A =7, C = 8).
Subscript values describe the edge generation proximity threshold, less than 0.1 and
0.5, in order.

Fallout
Network AMD Over A6A<0_1 A6A<0‘ 5 GenCAT X-Mark

7.50e=92 Clustering Coefficient 0.059 0.137 0.646 0.092
2.829 Degree 0.971 0.025 12.201 8.399
4.59¢792 Betweenness Centrality 0.043 0.166 0.040 0.037
0.129 Closeness Centrality 0.094 0.017 0.395 0.304
215 Edge Count 73.82 1.92 927.26 638.38

1 # Connected Components 55 41 0 0

17 Diameter 4.5 8.1 13.8 13
7.889 Average SPL 3.393 4.698 5.962 5.562

in previous paragraphs, it is clearly a significant limitation.

The second limitation pertains to the lack of conceptual node positions in the
Fallout 4 network. We examined the effects of different proximity values, but the
NPC network data does not include any positions for NPCs in the network. Only
additional information available from the network data is the community information
to which each NPC belongs. We have decided to omit this viewpoint entirely to avoid
introducing another black-box method for generating conceptual positions, similar to
what was done with ChatGPT during attribute generation.

In conclusion, these findings can assist us in identifying a more suitable proximity
threshold value. However, it is imperative to conduct further evaluations and
assessments for confirmation. Perhaps we can explore alternative NPC networks that
are appropriate for comparison with the networks generated by AnatoliA. We can also
conduct a user study, to find out whether our generator is suitable or not for real-
life scenarios of NPC network creation in games. Additionally, we can compare the
real communities given by Fallout 4 network with communities detected by attribute-
aware community detection methods in our generated networks to examine whether

our attribute generation process is appropriate in such cases.

61

4.4 Towards a General NPC Personality Model

The primary goal of this thesis is to improve the realism of NPCs in computer
games. To that end, we developed a procedural approach for creating NPC social
networks. The resulting graphs of our approach can serve as the foundation for NPC
communities. For individual NPCs, we try to lay out the characteristics of a general
NPC personality model in this section. Because we want to improve the NPC realism,
we assume that the model we propose must be entirely similar to human beings in terms
of personal characteristics. However, it is possible to adjust this model to different
living creatures that can be positioned as NPCs in games such as supernatural beings,
animals or plants.

The first component we want to cover is the personality engine. Every NPC
has a character, a distinct set of features which defines its inner world of ideas,
feelings and thoughts. This engine must consist certain sub-parts for certain character
traits. This list of sub-parts can include personal details —e.g., age, gender, nation,
affiliation, conceptual location, etc.—, ancestral information -e.g., parents, belief
systems, family tree, etc.—, general persona —e.g., optimist, pessimist, creative, etc.—,
current mood/emotion —e.g., happy, sad, confused, terrified, etc.—, body features —e.g.,
tall, short, fat, skinny, handicapped, etc.—, habits, likes/dislikes, and hobbies/phobias.

The second component is the action engine. This engine includes the actions and
activities that an NPC can do. A limited list of possible actions for a human-like NPC
may include walking, running, moving, looking, sitting down and standing up, turning,
talking and interacting (with someone), grabbing (something), hitting (to something
or to someone), holding (tools), and so on. The action engine can use NPC decision-
making methods to perform these actions and interactions, many of which are analyzed
in Chapter 2.

The memory engine can be proposed as the third component of this model. Humans
have both the short-term and long-term memories. Short-term memory can help the
NPCs with their consecutive actions and their short-term goals. Long-term memory,
on the other hand, can help them to define, form and change their relationships and
their long-term objectives. By using this engine, the NPCs can behave and act with

prior knowledge on both other NPCs and their environments.

62

The fourth component can be counted as the learning engine. This component
must can use machine learning (ML) techniques such as reinforcement learning for its
benefit. By using ML approaches, NPCs can learn from their mistakes. It must also be
responsible for the creativity of the NPCs. Creation of ideas, tools and artifacts must
be done with the help of this engine.

The communication engine is the fifth component of our model. The NPCs can
interact with each other by using a predefined language, body signs, gestures and
mimics. This engine provides the dynamic relationships between NPCs.

The final component of our model is the health engine, which is responsible for
addressing immediate health concerns such as illness, limb loss, loss of eyesight,
loss of hearing ability, and other medical issues. Additionally, the health engine is
used for life partner choices, transferred genes —i.e., the genetic information inherited
from ancestors—, and reproduction —i.e., the genetic information transmitted to the
descendants—.

There are existing studies in literature for components of our model, some of which
we have already covered in the thesis. For instance, Georgeson and Child (2016)
created an NPC personality engine called Extreme Al In this engine, you may also
define some possible actions of NPCs, in addition to its character traits. Perrie and Li
(2014) created a social gossiping network as an example of a communication engine.
Studies from Popescu et al. (2013) and Hooley et al. (2004) create emotion engines
such as GAMYGDALA and EmoBot for in-game NPCs. We did not find any studies
concerning some of our model components such as memory engine or health engine.

From our perspective, the various components of a game NPC must work in
harmony. An NPC’s personality, emotions, and current mood must respond to external
stimuli. Additionally, the actions of an NPC must have consequences. If an NPC
acquires useful knowledge, it must store this information in its long-term memory.
An NPC’s learning should be ongoing and cease only upon its demise. Before an
NPC dies, it must form meaningful relationships with other NPCs and communicate at
varying levels depending on the strength of the relationship. If the NPC’s personality
and memory encode a desire to reproduce, it should exhibit this behavior. In summary,
a general NPC model, like the one we propose, is necessary for creating believable and

realistic NPCs in video games.

63

To achieve this goal, in this thesis, we created the nodes of our network generator
with attributes, positioning them as NPC personality traits such as likes/dislikes. We
generated relationships between these nodes by using these traits as one of the essential
decision criteria. We used the conceptual positions of NPCs as the other prominent
decision criteria for forming edges between the nodes. In the next section, we give our

ultimate model for our purpose, the adaptive NPC community model.

4.5 The Ultimate Model: Adaptive NPC Community

Our ultimate model comprises several aspects. Firstly, it includes our general NPC
personality model designed for nodes within the NPC social network. Network edges
are created based on interactions between NPC nodes. Certain node attributes are
defined as private, while others are defined as public. NPCs can decide to form new
relationships or terminate existing ones based on their interactions and the similarity
of nodes.

Moreover, the communities in NPC social network must adhere to the rules
of social dynamics and network theory of humans (Liu et al., 2017). In both
Section 3.2 and Section 4.1, we discuss some of these social rules, including
homophily, community homogeneity, small-world networks and power-law degree
distribution.

Information flow/diffusion is a crucial concept in social networks (Wu et al.,
2004). Employing directed and weighted edges in our network generator may create
new possibilities. The NPCs can decide to share their public traits and information
with a community, and decide to share their private traits and information with a
different community. Sensitive information can be shared with a broader community
if individuals possess more talkative or indiscreet personalities.

Other relevant concepts to mention are the theory of evolution and game theory.
The term “survival of the fittest” impacts both individual NPCs and their communities.
NPCs can have mutual or competing goals. To achieve their goals, they can work
cooperatively as a community (Brede, 2011), or NPC communities can expel certain
NPCs if they fail to follow the rules of their game. In these scenarios, the theory of
evolution and game theory dictate that unsuccessful NPCs will be eliminated, while

successful ones may be promoted to leadership positions in order to form their own

64

NPC Social Network
NPC Community

b}

. B -
! [!

Figure 13: Our Adaptive NPC Community Model.

communities.
We have created a model schema to gather all the concepts mentioned in previous
sections regarding the adaptive NPC community model. It can be seen from Figure 13.
In summary, we have developed a social network generator that follows several
principles discussed in this chapter, and this generator may serve as an origin point for

our ultimate NPC community model.

65

CHAPTER 5: CONCLUSION & FUTURE DIRECTIONS

The goal of this thesis was to provide a framework for N2N and N2P coordination,
interaction, and communication for realistic and adaptive gameplay in video games.
This study has significantly advanced the field of NPC modeling and improved the
overall player experience by conducting a thorough literature review of previous NPC
decision-making techniques, creating a social network generator algorithm with node
attributes and communities, and integrating these components into game environments.

The significance of the proposed framework was established in the first chapter,
which also outlined the objectives of the study. It highlighted the shortcomings of
current NPC interaction techniques and the need for novel approaches that take into
account collaborative, human-like interactions. The theoretical foundations section
laid the groundwork by talking about decision-making, the definition of NPCs in the
context of games, the creation of social networks, and known methods for doing so.
The following chapters had a strong foundation thanks to these principles.

The thorough literature review in Chapter 2 examined previous NPC decision-
making processes and previous social network development methodologies. It
identified shortcomings and limitations in the field by providing a critical analysis of
the methods currently in use. This chapter added to the theoretical understanding of
general NPC models by synthesizing the results of academic research, and provided
insightful information on how to create more complex and adaptive NPC interactions.

The key element of the proposed framework, the social network generation
algorithm, was discussed in Chapter 3. This algorithm incorporated concepts drawn
from the dynamics of real-world social networks, including the use of specific node
placement strategies, the concept of homophily, conceptual proximity, and the use of
numerical node attributes to indicate node affinity. The concept and execution of the
algorithm were described in detail, laying the groundwork for building social networks
that capture the complexity of NPC interactions. The foundation for Chapter 4 was
laid by the algorithm’s ability to create diverse and realistic social networks with node
attributes and communities.

In Chapter 4, we explore the integration of the generation algorithm into the gaming
environment. We propose options to improve our algorithm for better use cases in NPC

communities. Our algorithm is evaluated through a minor test case, featuring an NPC

66

network. We demonstrate the capabilities of our algorithm with respect to this real
network. The key concepts of our general NPC model and adaptive NPC community
model are shown as a result.

We make comprehensive efforts to address our research questions. A thorough
literature review preceded the development of a survey article focusing on NPC
decision-making in computer games. The survey provides valuable insights into how
these methodologies are applied in industry games and presents tabulated results that
detail the combination of methods used in literature. Additionally, a taxonomy table
(Uludagh and Oguz, 2023) was developed, outlining the decision-making methods
used for different game genres and usage environments.

The significance of AnatoliA, our social network generator with node attributes
and communities, cannot be overstated as it contributes greatly to the establishment
of dynamic NPC communities. Rigorous evaluation against existing generators and
real-world data revealed promising outcomes, demonstrating significant efficacy across
critical metrics. Correspondingly, our findings have been submitted to a prominent
journal.

The endeavor to identify real NPC communities utilized in computer games
culminated in the discovery of four different NPC networks, one of which served as
the basis for evaluating our methodology through particular criteria. These networks
including the one we used did not have node attributes, which led us to create them.
This observation highlights the scarcity of available NPC networks and the need for a
dedicated NPC network generator that can be used in similar situations.

As alast effort, we propose a general NPC personality model and an adaptive NPC
community model to use them in computer games. We could not fully evaluate the
models or their underlying principles. However, the lack of similar models in existing
literature further emphasizes the significance of delving deeply into this paradigm for
future investigations.

We believe that the results of this study have important implications for video
game design. The proposed system promotes adaptive gameplay by allowing NPCs
to interact and coordinate in a human-like manner. By generating complex social
networks that accurately represent the intricacies of real-world social dynamics,

“AnatoliA” is used to enrich the game experience. This allows for emergent behaviors,

67

context-sensitive decision-making, and varied interactions between NPCs and players.

Moreover, our study contributes to NPC modeling by bridging the gap between
academic research and practical implementation. We build on existing knowledge of
decision-making models and incorporate social network dynamics. This paves the
way for more sophisticated and immersive NPC interactions. Our goal is to create
social networks that capture the dependencies, influences, and communication patterns
among NPCs, resulting in more realistic behaviors.

The successful development of the proposed framework demonstrates its ability to
produce engaging, compelling gameplay. Game designers can create NPCs that exhibit
complex social interactions, adapt to changing game circumstances, and give players a
sense of immersion by using the social network generator algorithm. The framework
enables game developers to incorporate emergent narratives and gameplay scenarios
in place of scripted behavior, increasing the depth and replayability of video games.

Although NPC behavior modeling has advanced as a result of this research, there
are still a number of directions that could be explored in the future. First, it is possible
to improve the scalability and effectiveness of network generation in larger game
contexts by further refining and optimizing the social network generator algorithm. In
addition, by combining machine learning methods with data-driven strategies, NPCs
can become more adaptive and responsive, able to learn and change their behavior over
time.

Furthermore, the proposed methodology can also be extended to examine how
player interactions affect NPC behavior and social networks. The social network
generation algorithm could become more dynamic and player-driven by incorporating
player choices and behaviors. Additionally, exploring the possibility of NPCs
coordinating and communicating between games could lead to the creation of richer,
more immersive game universes.

To conclude, this dissertation has addressed the need for a framework for NPC-
to-NPC and NPC-to-player interaction, communication, and coordination in computer
games that is realistic and adaptive. The study has advanced NPC behavior modeling
by conducting a literature review of previous NPC decision-making techniques,
creating a social network generation system, and combining these elements. The

proposed architecture makes it possible to create NPCs with interactions, adaptability,

68

and coordination similar to those of humans, improving the overall game experience.
The conclusions of the research have applications for game design, providing new
opportunities for scenarios that are both immersive and interesting to play. As the
gaming industry continues to evolve, the proposed framework provides a stepping
stone to more intelligent and dynamic NPCs that will enrich the future of interactive

entertainment.

69

REFERENCES

Abiyev, R. H., Giinsel, 1., Akkaya, N., Aytac, E., Cagman, A. and Abizada, S.
(2016) Robot Soccer Control Using Behaviour Trees and Fuzzy Logic, Procedia
Computer Science, Vol. 102(August), pp. 477—484.

Aiello, W., Chung, F. and Lu, L. (2000) A random graph model for massive graphs, in
‘Proceedings of the thirty-second annual ACM symposium on Theory of computing’,

pp. 171-180.

Aiello, W., Chung, F. and Lu, L. (2001) A random graph model for power law graphs,
Experimental Mathematics, Vol. 10(1), pp. 53—66.

Al-Taie, M. Z., Kadry, S., Al-Taie, M. Z. and Kadry, S. (2017) Information diffusion
in social networks, Python for Graph and Network Analysis pp. 165-184.

Amaral, L. A. N., Scala, A., Barthelemy, M. and Stanley, H. E. (2000) Classes
of small-world networks, Proceedings of the national academy of sciences,

Vol. 97(21), pp. 11149-11152.

Asikainen, A., Iniguez, G., Urefia-Carrién, J., Kaski, K. and Kiveld, M.
(2020) Cumulative effects of triadic closure and homophily in social networks, Science

Advances, Vol. 6(19), p. eaax7310.

Barabasi, A.-L. and Albert, R. (1999) Emergence of scaling in random networks,
Science, Vol. 286(5439), pp. 509-512.

Belle, S., Gittens, C. and Graham, T. N. (2022) A Framework for Creating Non-Player
Characters That Make Psychologically-Driven Decisions, in ‘2022 IEEE International
Conference on Consumer Electronics (ICCE)’, IEEE, pp. 1-7.

Bellingeri, M., Bevacqua, D., Sartori, F., Turchetto, M., Scotognella, F., Alfieri, R.,
Nguyen, N., Le, T., Nguyen, Q. and Cassi, D. (2023) Considering weights in real

social networks: A review, Frontiers in Physics, Vol. 11, p. 242.

Benyahia, O., Largeron, C., Jeudy, B. and Zaiane, O. R. (2016) Dancer: Dynamic
attributed network with community structure generator, in ‘Joint European Conference

on Machine Learning and Knowledge Discovery in Databases’, Springer, pp. 41-44.

70

Blondel, V. D., Guillaume, J.-L., Lambiotte, R. and Lefebvre, E. (2008) Fast unfolding
of communities in large networks, Journal of statistical mechanics: theory and

experiment, Vol. 2008(10), p. P10008.

Bonifati, A., Holubov4, 1., Prat-Pérez, A. and Sakr, S. (2020) Graph generators: State
of the art and open challenges, ACM Computing Surveys (CSUR), Vol. 53(2), pp. 1-
30.

Bourg, D. M. and Seemann, G. (2004) Al for Game Developers, O’Reilly Series,
O’Reilly Media, Inc.

Brandes, U. (2001) A faster algorithm for betweenness centrality, Journal of

mathematical sociology, Vol. 25(2), pp. 163-177.

Brede, M. (2011) Playing against the fittest: A simple strategy that promotes the
emergence of cooperation, Europhysics Letters, Vol. 94(3), p. 30003.

Bressan, S., Cuzzocrea, A., Karras, P., Lu, X. and Nobari, S. H. (2013) An effective
and efficient parallel approach for random graph generation over GPUs, Journal of

Parallel and Distributed Computing, Vol. 73(3), pp. 303-316.

Brown, J. A., Ashlock, D., Houghten, S. and Romualdo, A. (2020a) Evolutionary
Graph Compression and Diffusion Methods for City Discovery in Role Playing Games,
in ‘2020 IEEE Congress on Evolutionary Computation (CEC)’, IEEE, pp. 1-8.

Brown, J., Lee, J. and Kraev, N. (2017) Reputation systems for non-player character
interactions based on player actions, in ‘Proceedings of the AAAI Conference on

Artificial Intelligence and Interactive Digital Entertainment’, Vol. 13, pp. 151-157.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G.,
Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C.,
Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish,
S., Radford, A., Sutskever, I. and Amodei, D. (2020b) Language Models are Few-Shot

Learners.

Calinski, T. and Harabasz, J. (1974) A dendrite method for cluster analysis,

Communications in Statistics-theory and Methods, Vol. 3(1), pp. 1-27.

71

Cavazza, M. (2000) Al in computer games: Survey and perspectives, Virtual Reality,
Vol. 5(4), pp. 223-235.

Chakrabarti, D. and Faloutsos, C. (2006) Graph mining: Laws, generators, and
algorithms, ACM computing surveys (CSUR), Vol. 38(1), pp. 2—es.

Charles, D. and McGlinchey, S. (2004) The past, present and future of artificial
neural networks in digital games, in ‘Proceedings of the 5th international conference
on computer games: artificial intelligence, design and education. The University of

Wolverhampton’, pp. 163-169.

Citraro, S. and Rossetti, G. (2019) Eva: Attribute-aware network segmentation, in
‘International Conference on Complex Networks and Their Applications’, Springer,

pp. 141-151.

Citraro, S. and Rossetti, G. (2021) X-Mark: a benchmark for node-attributed commu-

nity discovery algorithms, Social Network Analysis and Mining, Vol. 11(1), pp. 1-14.

Colledanchise, M. and C)gren, P. (2018) Behavior trees in robotics and Al: An

introduction, CRC Press.

Combe, D., Largeron, C., Géry, M. and Egyed-Zsigmond, E. (2015) I-Louvain: An
Attributed Graph Clustering Method, in ‘International Symposium on Intelligent Data

Analysis’, Springer, pp. 181-192.

Davies, D. L. and Bouldin, D. W. (1979) A Cluster Separation Measure, IEEE
Transactions on Pattern Analysis and Machine Intelligence, Vol. PAMI-1(2), pp. 224—
227.

de Solla Price, D. J. (1965) Networks of Scientific Papers, Science,
Vol. 149(3683), pp. 510-515.

Dell’ Acqua, P. and Costantini, S. (2022) Emotional Behavior Trees for Empathetic
Human-Automation Interaction, in “WOA 2022: 23rd Workshop From Objects to
Agents’.

Dey, R. and Child, C. (2013) QL-BT: Enhancing behaviour tree design and
implementation with Q-learning, in ‘2013 IEEE Conference on Computational

Inteligence in Games (CIG)’, IEEE, pp. 1-8.

72

Dias, J., Mascarenhas, S. and Paiva, A. (2014) FAtiMA Modular: Towards an Agent
Architecture with a Generic Appraisal Framework, in T. Bosse, J. Broekens, J. Dias
and J. van der Zwaan, eds, ‘Emotion Modeling: Towards Pragmatic Computational

Models of Affective Processes’, Springer International Publishing, Cham, pp. 44-56.

Doluca, O. and Oguz, K. (2021) APAL: Adjacency Propagation Algorithm for
overlapping community detection in biological networks, Information Sciences,

Vol. 579, pp. 574-590.

Easley, D. and Kleinberg, J. (2010) Networks, crowds, and markets: Reasoning about

a highly connected world, Cambridge university press.

El-Nasr, M. S., Yen, J. and loerger, T. R. (2000) FLAME — Fuzzy Logic Adaptive
Model of Emotions, Autonomous Agents and Multi-agent systems, Vol. 3(3), pp. 219-
257.

Elhadi, H. and Agam, G. (2013) Structure and attributes community detection:
comparative analysis of composite, ensemble and selection methods, in ‘Proceedings

of the 7th workshop on social network mining and analysis’, pp. 1-7.

Erdos, P. and Rényi, A. (1959) On the evolution of random graphs, in ‘The structure

and dynamics of networks’, Princeton University Press, pp. 38—82.

Fathoni, K., Hakkun, R. and Nurhadi, H. (2020) Finite State Machines for Building
Believable Non-Playable Character in the Game of Khalid ibn Al-Walid, in ‘Journal of
Physics: Conference Series’, Vol. 1577, IOP Publishing, p. 012018.

Fauzi, R., Hariadi, M., Nugroho, S. M. S. and Lubis, M. (2019) Defense behavior of
real time strategy games: comparison between HFSM and FSM, Indonesia Journal of

Electrical Engineering and Computer Science, Vol. 13(2), pp. 634—642.

Fletcher, P., Hoyle, H. and Patty, C. (1991) Foundations of Discrete Mathematics,
PWS-KENT Publishing Company.

Florez-Puga, G., Gomez-Martin, M., Diaz-Agudo, B. and Gonzalez-Calero, P.
(2008) Dynamic Expansion of Behaviour Trees, in ‘Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital Entertainment’, Vol. 4,

pp- 36-41.

73

Forgy, C. L. (1979), On the efficient implementation of production systems., PhD

thesis, Carnegie Mellon University.

Forgy, C. L. (1989) Rete: A fast algorithm for the many pattern/many object
pattern match problem, in J. Mylopolous and M. Brodie, eds, ‘Readings in Artificial

Intelligence and Databases’, Morgan Kaufmann, San Francisco (CA), pp. 547-559.

Fortunato, S. (2010) Community detection in graphs, Physics reports, Vol. 486(3-
5), pp. 75-174.

Fortunato, S. and Hric, D. (2016) Community detection in networks: A user guide,
Physics reports, Vol. 659, pp. 1-44.

Fournier, A., Fussell, D. and Carpenter, L. (1982) Computer rendering of stochastic
models, Communications of the ACM, Vol. 25(6), pp. 371-384.

Freeman, L. C. (1978) Centrality in social networks conceptual clarification, Social

networks, Vol. 1(3), pp. 215-239.

Fu, D. and Houlette, R. (2002) Putting Al in entertainment: An Al authoring tool for

simulation and games, IEEE Intelligent Systems, Vol. 17(4), pp. 81-84.

Fu, Y., Qin, L. and Yin, Q. (2016) A Reinforcement Learning Behavior Tree Framework
for Game Al, in ‘2016 International Conference on Economics, Social Science, Arts,

Education and Management Engineering’, Atlantis Press, pp. 573-579.

Fujii, S., Nakashima, T. and Ishibuchi, H. (2008) A study on constructing fuzzy systems
for high-level decision making in a car racing game, in ‘2008 IEEE Congress on

Evolutionary Computation, CEC 2008’, IEEE, pp. 3626-3633.

Georgeson, J. and Child, C. (2016) NPCs as People, Too: The Extreme Al Personality
Engine, arXiv preprint arXiv:1609.04879 .

Girvan, M. and Newman, M. E. (2002) Community structure in social and biological
networks, Proceedings of the national academy of sciences, Vol. 99(12), pp. 7821
7826.

Granovetter, M. S. (1973) The strength of weak ties, American journal of sociology,

Vol. 78(6), pp. 1360-1380.

74

Grossman, J. W. and Ion, P. D. (1995) On a portion of the well-known collaboration

graph, Congressus Numerantium pp. 129-132.

Guimaraes, M., Santos, P. and Jhala, A. (2017) CiF-CK: An architecture for social
NPCs in commercial games, in ‘2017 IEEE Conference on Computational Intelligence

and Games (CIG)’, IEEE, pp. 126-133.

Gupta, N. (2013) Artificial neural network, Network and Complex Systems,
Vol. 3(1), pp. 24-28.

Holba, J. and Huber, G. (2021) Open-world Enemy Al in Mafia III, in ‘Game Al Pro —
Online Edition 2021°, Game Al Pro, chapter 16.

Homans, G. C. (1950) The Human Group, Harcourt, Brace & World.

Hooley, T., Hunking, B., Henry, M. and Inoue, A. (2004) Generation of
Emotional Behavior for Non-Player Characters-Development of EmoBot for Quake
1l, in ‘PROCEEDINGS OF THE NATIONAL CONFERENCE ON ARTIFICIAL
INTELLIGENCE’, Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT
Press; 1999, pp. 954-955.

Iovino, M., Scukins, E., Styrud, J., Ogren, P. and Smith, C. (2022) A survey of Behavior
Trees in robotics and Al, Robotics and Autonomous Systems, Vol. 154, p. 104096.

Isla, D. (2005) GDC 2005 Proceeding: Handling Complexity in the Halo 2 Al, in
‘Game Developers Conference 2005°.
URL: https://www.gamedeveloper.com/programming/gdc-2005-proceeding-handling-

complexity-in-the-i-halo-2-i-ai

Javed, M. A., Younis, M. S., Latif, S., Qadir, J. and Baig, A. (2018) Community
detection in networks: A multidisciplinary review, Journal of Network and Computer

Applications, Vol. 108, pp. 87-111.

Jia, C., Li, Y., Carson, M. B., Wang, X. and Yu, J. (2017) Node attribute-enhanced

community detection in complex networks, Scientific reports, Vol. 7(1), p. 2626.

75

Johansen, N. S., Ker, L. B., Stolberg, J. A. B., Tollund, R. G., Hyldig, N., Oktober,
P. and Torralba, A. (2022) Towards Believable Non-Player Characters with Domain-
Independent Planning, in ‘2022 Workshop on Scheduling and Planning Applications
woRKshop’.

Johansson, A. and Dell’Acqua, P. (2012) Comparing behavior trees and emotional
behavior networks for NPCs, in ‘2012 17th International Conference on Computer

Games (CGAMES)’, IEEE, pp. 253-260.

Johnson, D. and Wiles, J. (2001) Computer games with intelligence, in ‘10th IEEE
International Conference on Fuzzy Systems.(Cat. No. 01CH37297)’, Vol. 3, IEEE,
pp- 1355-1358.

Jolly, K., Ravindran, K., Vijayakumar, R. and Kumar, R. S. (2007) Intelligent decision
making in multi-agent robot soccer system through compounded artificial neural

networks, Robotics and Autonomous Systems, Vol. 55(7), pp. 589-596.

Kopel, M. and Hajas, T. (2018) Implementing Al for Non-player Characters
in 3D Video Games, in N. T. Nguyen, D. H. Hoang, T.-P. Hong, H. Pham
and B. Trawinski, eds, ‘Intelligent Information and Database Systems’, Springer

International Publishing, Cham, pp. 610-619.

Laird, J. E. (2001) It knows what you're going to do: Adding anticipation to
a Quakebot, in ‘Proceedings of the fifth international conference on Autonomous

agents’, pp. 385-392.

Lancichinetti, A. and Fortunato, S. (2009a) Benchmarks for testing community

detection algorithms on directed and weighted graphs with overlapping communities,

Physical Review E, Vol. 80(1), p. 016118.

Lancichinetti, A. and Fortunato, S. (2009b) Community detection algorithms: a

comparative analysis, Physical review E, Vol. 80(5), p. 056117.

Lancichinetti, A., Fortunato, S. and Radicchi, F. (2008) Benchmark graphs for testing
community detection algorithms, Physical review E, Vol. 78(4), p. 046110.

Largeron, C., Mougel, P.-N., Rabbany, R. and Zaiane, O. R. (2015) Generating

attributed networks with communities, PloS one, Vol. 10(4), p. e0122777.

76

Lazarsfeld, P. F., Berelson, B. and Gaudet, H. (1968) The people’s choice: How the

voter makes up his mind in a presidential campaign, Columbia University Press.

Lee, J., Duan, Y., Oh, J. C., Du, W., Blair, H., Wang, L. and Jin, X. (2011) Automatic
reputation computation through document analysis: A social network approach,

in ‘2011 International Conference on Advances in Social Networks Analysis and

Mining’, IEEE, pp. 559-560.

Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C. and Ghahramani, Z.
(2010) Kronecker graphs: an approach to modeling networks., Journal of Machine
Learning Research, Vol. 11(2).

Lesser, E., Fontaine, M. and Slusher, J. (2000) Knowledge and communities,

Routledge.

Lewis, K., Kaufman, J., Gonzalez, M., Wimmer, A. and Christakis, N. (2008) Tastes,
ties, and time: A new social network dataset using Facebook. com, Social networks,

Vol. 30(4), pp. 330-342.

Li, P, Yu, J., Liu, J., Zhou, D. and Cao, B. (2020) Generating weighted social
networks using multigraph, Physica A: Statistical Mechanics and its Applications,
Vol. 539, p. 122894.

Li, Y., Musilek, P. and Wyard-Scott, L. (2004) Fuzzy logic in agent-based game design,
in ‘IEEE Annual Meeting of the Fuzzy Information, 2004. Processing NAFIPS 04.,
Vol. 2, IEEE, pp. 734-739.

Lie, C. S. K. and Istiono, W. (2022) How To Make NPC Learn The Strategy In Fighting
Games Using Adaptive AI?, International Journal of Scientific and Technical Research

in Engineering (IJSTRE), Vol. 7(4).

Lin, J., He, J. and Zhang, N. (2019) Application of behavior tree in Al design of MOBA
games, in ‘2019 IEEE 2nd International Conference on Knowledge Innovation and

Invention (ICKII)’, IEEE, pp. 323-326.

Liu, W., Sidhu, A., Beacom, A. M. and Valente, T. W. (2017) Social network theory,

The international encyclopedia of media effects pp. 1-12.

7

Long, E. (2007) Enhanced NPC Behaviour using Goal Oriented Action Planning,

Master’s thesis, University of Abertay Dundee, Dundee, Scotland.

Loyall, B. A. and Bates, J. (1991) Hap a reactive, adaptive architecture for agents, in

‘Citeseer’.

Lueg, C. and Fisher, D. (2003) From Usenet to CoWebs: interacting with social

information spaces, Springer Science & Business Media.

Lusseau, D. (2003) The emergent properties of a dolphin social network,
Proceedings of the Royal Society of London. Series B: Biological Sciences,

Vol. 270(suppl_2), pp. S186—S188.

MacKay, R. S., Johnson, S. and Sansom, B. (2020) How directed is a directed
network?, Royal Society open science, Vol. 7(9), p. 201138.

Madsen, C. A. B. C. W. and Adamatti, D. F. (2013) Using Artificial Neural Networks
in NPC Decision-Making Process, International Journal of Computer and Information

Technology, Vol. 2(6), pp. 1009-1013.

Maekawa, S., Sasaki, Y., Fletcher, G. and Onizuka, M. (2021) GenCAT: Generating
Attributed Graphs with Controlled Relationships between Classes, Attributes, and

Topology, arXiv preprint arXiv:2109.04639 .

Maekawa, S., Zhang, J., Fletcher, G. and Onizuka, M. (2019) General generator
for attributed graphs with community structure, in ‘proceeding of the ECML/PKDD
Graph Embedding and Mining Workshop’, pp. 1-5.

Mascarenhas, S., Guimaraes, M., Santos, P. A., Dias, J., Prada, R. and Paiva, A.
(2021) FAtiMA Toolkit-Toward an effective and accessible tool for the development

of intelligent virtual agents and social robots, arXiv preprint arXiv:2103.03020 .

Mas’udi, N. A., Jonemaro, E. M. A., Akbar, M. A. and Afirianto, T. (2021) Devel-
opment of Non-Player Character for 3D Kart Racing Game Using Decision Tree,

Fountain of Informatics Journal, Vol. 6(2), pp. 51-60.

Mateas, M. and Stern, A. (2002) A behavior language for story-based believable
agents, IEEE Intelligent Systems, Vol. 17(4), pp. 39-47.

78

Mauss, M. (2000) The gift: The form and reason for exchange in archaic societies,
WW Norton & Company.

McCoy, J., Treanor, M., Samuel, B., Tearse, B., Mateas, M. and Wardrip-Fruin,
N. (2010) Comme il Faut 2: A fully realized model for socially-oriented gameplay,
in ‘Proceedings of the Intelligent Narrative Technologies III Workshop’, INT3 10,
Association for Computing Machinery, New York, NY, USA, pp. 1-8.

McCoy, J., Treanor, M., Samuel, B., Wardrip-Fruin, N. and Mateas, M. (2011) Comme
il Faut: A System for Authoring Playable Social Models, in ‘Proceedings of the AAAI

Conference on Artificial Intelligence and Interactive Digital Entertainment’, Vol. 6.

McPherson, M., Smith-Lovin, L. and Cook, J. M. (2001) Birds of a feather: Homophily

in social networks, Annual review of sociology, Vol. 27(1), pp. 415-444.

Meng, F. and Hyung, C. J. (2022) Research on Multi-NPC Marine Game Al System
based on Q-learning Algorithm, in ‘2022 1EEE International Conference on Artificial
Intelligence and Computer Applications (ICAICA)’, IEEE, pp. 648—652.

Millington, 1. (2019) Artificial Intelligence for Games, 3 edn, CRC Press.

Miyake, Y., Shirakami, Y., Shimokawa, K., Namiki, K., Komatsu, T., Tatsuhiro, J.,
Prasertvithyakarn, P. and Yokoyama, T. (2019) A Character Decision-Making System
for FINAL FANTASY XV by Combining Behavior Trees and State Machines, in ‘Game
Al Pro 360: Guide to Architecture’, CRC Press, p. 339.

Murase, Y., Torok, J., Jo, H.-H., Kaski, K. and Kertész, J. (2014) Multilayer weighted
social network model, Physical Review E, Vol. 90(5), p. 052810.

Nareyek, A. (2000) Intelligent agents for computer games, in ‘International

Conference on Computers and Games’, Springer, pp. 414-422.

Nettleton, D. F. (2016) A synthetic data generator for online social network graphs,
Social Network Analysis and Mining, Vol. 6(1), pp. 1-33.

Neufeld, X., Mostaghim, S., Sancho-Pradel, D. L. and Brand, S. (2019) Building a
Planner: A Survey of Planning Systems Used in Commercial Video Games, IEEE
Transactions on Games, Vol. 11(2), pp. 91-108.

79

Newman, M. (2018) Networks An Introduction, Oxford university press.

Newman, M. E. (2001) The structure of scientific collaboration networks, Proceedings

of the national academy of sciences, Vol. 98(2), pp. 404-409.

Niewiadomski, A. and Renkas, K. (2014) Hierarchical fuzzy logic systems and

controlling vehicles in computer games, Journal of Applied Computer Science,

Vol. 22(1), pp. 201-212.

Nobari, S., Lu, X., Karras, P. and Bressan, S. (2011) Fast random graph generation, in
‘Proceedings of the 14th international conference on extending database technology’,

pp- 331-342.

Noviék, V., Perfilieva, I. and Mockor, J. (1999) Mathematical Principles of Fuzzy Logic,
Vol. 517, Springer Science & Business Media.

Ohsone, K. and Onisawa, T. (2008) Friendly partner system of poker game with facial
expressions, in ‘2008 IEEE Symposium On Computational Intelligence and Games’,

IEEE, pp. 95-102.

Orkin, J. (2003) Applying Goal-Oriented Action Planning to Games, in S. Rabin, ed.,
‘Al Game Programming Wisdom, Vol. 2°, Charles River Media, Inc., USA.

Orkin, J. (2006) Three states and a plan: the Al of FEAR, in ‘Game Developers
Conference 2006°, CMP Game Group, San Jose, California, p. 4.

Orman, G. K. and Labatut, V. (2009) A comparison of community detection algorithms

on artificial networks, in ‘International conference on discovery science’, Springer,

pp. 242-256.

O‘Brien, L. (1996) Fuzzy Logic in Games, Game Developer Magazine,
Vol. 3(2), pp. 52-55.

Palla, G., Derényi, 1., Farkas, I. and Vicsek, T. (2005) Uncovering the over-
lapping community structure of complex networks in nature and society, Nature,

Vol. 435(7043), pp. 814-818.

Panwar, H. (2022) The NPC Al of The Last of Us: A case study, arXiv preprint .

80

Partlan, N., Soto, L., Howe, J., Shrivastava, S., El-Nasr, M. S. and Marsella, S.
(2022) EvolvingBehavior: Towards Co-Creative Evolution of Behavior Trees for Game
NPCs, in ‘Proceedings of the 17th International Conference on the Foundations of
Digital Games’, FDG ’22, Association for Computing Machinery, New York, NY,
USA.

Perez, D., Nicolau, M., O’Neill, M. and Brabazon, A. (2011) Evolving Behaviour
Trees for the Mario AI Competition Using Grammatical Evolution, in ‘Applications of

Evolutionary Computation’, Springer, Berlin, Heidelberg, pp. 123-132.

Perrie, J. and Li, L. (2014) Building a Dynamic Social Community with Non
Playable Characters, 1EICE TRANSACTIONS on Information and Systems,
Vol. 97(8), pp. 1965-1973.

Pfeiffer III, J. J., Moreno, S., La Fond, T., Neville, J. and Gallagher, B.
(2014) Attributed graph models: Modeling network structure with correlated

attributes, in ‘Proceedings of the 23rd international conference on World wide web’,

pp- 831-842.

Pirovano, M. (2012) The use of fuzzy logic for artificial intelligence in games,

University of Milano, Milano .

Pittman, D. L. (2007) Practical Development of Goal-Oriented Action Planning Al,
Master’s thesis, Southern Methodist University, Dallas, TX, USA.

Popescu, A., Broekens, J. and Van Someren, M. (2013) GAMYGDALA: An Emotion
Engine for Games, IEEE Transactions on Affective Computing, Vol. 5(1), pp. 32-44.

Prat-Pérez, A., Guisado-Gdmez, J., Salas, X. F., Koupy, P., Depner, S. and Bartolini,
D. B. (2017) Towards a property graph generator for benchmarking, in ‘Proceedings

of the fifth international workshop on graph data-management experiences & systems’,

pp. 1-6.

Pyjas, G. M., Weinel, J. and Broadhead, M. (2022) Storytelling and VR: Inducing
emotions through Al characters, Proceedings of EVA London 2022 pp. 198-204.

Quadir, A. M. and Khder, M. A. (2022) Exploring the Potential of AI-Driven

Opponents in Video Games, in ‘2022 ASU International Conference in Emerging

81

Technologies for Sustainability and Intelligent Systems (ICETSIS)’, IEEE, pp. 464—
469.

Quinlan, J. R. (1986) Induction of decision trees, Machine learning, Vol. 1(1), pp. 81—
106.

Rodrigues, S., Rayat, H. K., Kurichithanam, R. M. and Rukhande, S. (2021) Shriek: A
Role Playing Game Using Unreal Engine 4 and Behaviour Trees, in ‘2021 4th Biennial

International Conference on Nascent Technologies in Engineering (ICNTE)’, IEEE,

pp. 1-6.

Rosen, K. H. (2007) Discrete mathematics and its applications, The McGraw Hill

Companies.

Rossetti, G. and Cazabet, R. (2018) Community discovery in dynamic networks: a
survey, ACM Computing Surveys (CSUR), Vol. 51(2), pp. 1-37.

Rousseeuw, P. J. (1987) Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis, Journal of computational and applied mathematics,

Vol. 20, pp. 53-65.

Sagredo-Olivenza, 1., Gémez-Martin, P. P., Gémez-Martin, M. A. and Gonzilez-
Calero, P. A. (2017) Trained Behavior Trees: Programming by Demonstration to

Support Al Game Designers, IEEE Transactions on Games, Vol. 11(1), pp. 5-14.

Sailer, L. D. and Gaulin, S. J. (1984) Proximity, sociality, and observation: the
definition of social groups, American Anthropologist pp. 91-98.

Salganik, M. J. and Heckathorn, D. D. (2004) Sampling and estimation in
hidden populations using respondent-driven sampling, Sociological methodology,

Vol. 34(1), pp. 193-240.

Schwab, P. and Hlavacs, H. (2015) Capturing the essence: Towards the automated
generation of transparent behavior models, in ‘Proceedings of the AAAI Conference

on Artificial Intelligence and Interactive Digital Entertainment’, Vol. 11.

Schweimer, C., Gfrerer, C., Lugstein, F., Pape, D., Velimsky, J. A., Elsdsser, R. and
Geiger, B. C. (2022) Generating simple directed social network graphs for information
spreading, in ‘Proceedings of the ACM Web Conference 2022°, pp. 1475-1485.

82

Sekhavat, Y. A. (2017) Behavior trees for computer games, International Journal on

Artificial Intelligence Tools, Vol. 26(02), p. 1730001.

Shaout, A., King, B. W. and Reisner, L. A. (2006) Real-Time Game Design of Pac-Man
Using Fuzzy Logic, Int. Arab J. Inf. Technol., Vol. 3(4), pp. 315-325.

Shu, F. and Chaudhari, N. S. (2008) A chaotic behavior decision algorithm based on
self-generating neural network for computer games, in ‘2008 3rd IEEE Conference on

Industrial Electronics and Applications’, IEEE, pp. 1912-1915.

Sielicki, M., Daszuta, M. and Szajerman, D. (2018) Adaptation and application of

Goal Oriented Action Planning in Unreal Engine, Computer Game Innovations p. 103.

Simonov, A., Zagarskikh, A. and Fedorov, V. (2019) Applying Behavior characteristics
to decision-making process to create believable game Al, Procedia Computer Science,
Vol. 156, pp. 404-413. presented at 8th International Young Scientists Conference on
Computational Science, YSC2019, 24-28 June 2019, Heraklion, Greece.

Sindhu, R. M., Annabel, L. S. P. and Monisha, G. (2022) Development of a 2D Game
using Artificial Intelligence in Unity, in ‘2022 6th International Conference on Trends

in Electronics and Informatics (ICOEI)’, IEEE, pp. 1031-1037.

Sloan, C. (2015), Drive-Based Utility-Maximizing Computer Game Non-Player
Characters, PhD thesis, Technological University Dublin, Dublin, Ireland.

Sloan, C., Mac Namee, B. and Kelleher, J. D. (2011) Utility-Directed Goal-Oriented
Action Planning: A Utility-Based Control System for Computer Game Agents,

MartinMcGinnity Intelligent Systems Research Centre, University of Ulster .

Smith, M. A. (1999) Invisible crowds in cyberspace, in ‘Communities in Cyberspace’,

Routledge London, pp. 195-218.

Soylucicek, A. E., Bostanci, E. and Safak, A. B. (2017) A Fuzzy Logic Based Attack
Strategy Design for Enemy Drones in Meteor Escape Game, International Journal of

Computer Theory and Engineering, Vol. 9(3), pp. 167-171.

Stopczynski, A., Pentland, A. and Lehmann, S. (2018) How physical proximity shapes

complex social networks, Scientific reports, Vol. 8(1), pp. 1-10.

83

Studiawan, R., Hariadi, M. and Sumpeno, S. (2018) Tactical Planning in Space Game
using Goal-Oriented Action Planning, JAREE (Journal on Advanced Research in

Electrical Engineering), Vol. 2(1).

Suyikno, D. A. and Setiawan, A. (2019) Feasible NPC Hiding Behaviour using Goal
Oriented Action Planning in case of Hide-and-Seek 3D Game Simulation, in ‘2019
Fourth International Conference on Informatics and Computing (ICIC)’, IEEE, pp. 1-
6.

Sweetser, P. and Wiles, J. (2002) Current Al in games: A review, Australian Journal of

Intelligent Information Processing Systems, Vol. 8(1), pp. 24-42.

Syahputra, M., Arippa, A., Rahmat, R. and Andayani, U. (2019) Historical theme
game using finite state machine for actor behaviour, in ‘Journal of Physics:

Conference Series’, Vol. 1235, IOP Publishing, p. 012122.

Uludagh, M. C. and Oguz, K. (2023) Non-player character decision-making in
computer games, Artificial Intelligence Review, Vol. 56(12), pp. 14159-14191.

Van Waveren, J. M. P. (2001) The Quake Il Arena Bot, Master’s thesis, Delft
University of Technology, Delft, Netherlands.

Wang, B., Wang, C. and Feng, H. (2021) FastSNG: The Fastest Social Network Dataset
Generator, in ‘Companion Proceedings of the Web Conference 2021, pp. 680-684.

Watts, D. J. and Strogatz, S. H. (1998) Collective dynamics of ’small-world’ networks,
Nature, Vol. 393(6684), pp. 440—442.

Wexler, J. (2002) Artificial Intelligence in Games, Rochester: University of Rochester

Widhiyasana, Y., Harika, M., Hakim, F. F. N., Diani, F., Komariah, K. S. and
Ramdania, D. R. (2022) Genetic Algorithm for Artificial Neural Networks in Real-
Time Strategy Games, JOIV: International Journal on Informatics Visualization,

Vol. 6(2), pp. 298-305.

Wu, E., Huberman, B. A., Adamic, L. A. and Tyler, J. R. (2004) Information flow
in social groups, Physica A: Statistical Mechanics and its Applications, Vol. 337(1-
2), pp. 327-335.

84

Xiang, S., Wen, D., Cheng, D., Zhang, Y., Qin, L., Qian, Z. and Lin, X. (2021) General
graph generators: experiments, analyses, and improvements, The VLDB Journal

pp- 1-29.

Xie, J., Kelley, S. and Szymanski, B. K. (2013) Overlapping community detection in
networks: The state-of-the-art and comparative study, Acm computing surveys (csur),

Vol. 45(4), pp. 1-35.

Yang, J. and Leskovec, J. (2015) Defining and evaluating network communities based

on ground-truth, Knowledge and Information Systems, Vol. 42(1), pp. 181-213.

Yannakakis, G. N. and Togelius, J. (2018) Artificial Intelligence and Games, Springer.
http://gameaibook.org.

Yue, B. and de Byl, P. (2006) The State of the Art in Game Al Standardisation,
in ‘Proceedings of the 2006 International Conference on Game Research and

Development’, CyberGames ’06, Murdoch University, Murdoch, AUS, pp. 41-46.

Zhu, M. and Feng, L. (2022) Design and Implementation of NPC Al based on
Genetic Algorithm and BP Neural Network, in ‘Proceedings of the 14th International

Conference on Computer Modeling and Simulation’, ICCMS ’22, Association for

Computing Machinery, New York, NY, USA, pp. 168-173.

Zijie, W., Tongyu, W. and Hang, G. (2021) A Survey: Development and Application
of Behavior Trees, in Q. Liang, W. Wang, X. Liu, Z. Na, X. Li and B. Zhang, eds,
‘Communications, Signal Processing, and Systems’, Springer Singapore, Singapore,

pp. 1581-1589.

85

CURRICULUM VITAE

Mubhtar Cagkan Uludagh received his BSc degree in Computer Engineering from the
Faculty of Engineering, Izmir Institute of Technology in 2012 and his MSc degree in
Game Technologies from the Informatics Institute, Middle East Technical University
in 2017. He worked as a software developer at METU Computer Center for over three
years during his MSc education. He’s been studying at Computer Engineering PhD
Program at Izmir University of Economics since July 2017 and he’s been working as a
research assistant at the same department since April 2018.

His research interests cover the topics such as graph/data science, player-computer
interaction, artificial intelligence for games, psychology in game design and virtu-

al/augmented/mixed reality.

List of Publications

1. Muhtar Cagkan Uludagh, Kaya Oguz. Generating Complex Social Networks
with Node Attributes. Information Sciences. 2023, Elsevier, 30 pages.
(submitted at 20.07.2023)

2. Uludagli, M.C., Oguz, K. Non-player character decision-making in computer
games. Artif Intell Rev (2023). Springer, Volume 56, Number 12, pg. 1-33.
https://doi.org/10.1007/s10462-023-10491-7

3. Tekgiin, E, Uludagh, MC, Akcan, H, Erdeniz, B. Virtual body anthropomor-
phism increases drift in self-location: Further support for the humanoid shape
rule. Comput Anim Virtual Worlds. 2022; 33(2):e2038. https://doi.org/10.1002/
cav.2038

4. ULUDAGLI, MUHTAR CAGKAN and ACARTURK, CENGIZ (2018) "User
interaction in hands-free gaming: a comparative study of gaze-voice and
touchscreen interface control," Turkish Journal of Electrical Engineering and
Computer Sciences: Vol. 26: No. 4, Article 24. https://doi.org/10.3906/
elk-1710-128

86

