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ABSTRACT

AUTOMATED MELANOMA DETECTION IN DERMOSCOPIC IMAGES

Okur, Erdem

Ph.D. Program in Computer Engineering

Advisor: Assoc. Prof. Dr. Mehmet TÜRKAN

December, 2023

Cancer, with its varying and hard to detect types, became one of the most dangerous

diseases for humans. Melanoma is a type of skin cancer that has the most mortality

rate among its type. The usual melanoma detection process is based on awareness of

the patient and the experience of the visual investigator. Even though the invention

of dermoscopes reduce its effects, “subjectivity” problem plays a huge role on the

detection accuracy, which creates a need for automated detection. In this thesis,

history of automated melanoma detection on dermoscopic images and caveats of

present frameworks are studied. Different approaches to overcome these caveats are

explored. As a result, a new melanoma detection algorithm based on Bag of Visual

Words (BoVW) concept, which combines traditional methods with new age deep

learning techniques, is created. The performance of the new algorithm is tested on
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the popular International Skin Imaging Collaboration (ISIC) Challenge 2017 dataset,

which yielded tremendously good results. With 96.2% accuracy and more importantly

with 99.8% sensitivity, it surpassed all other entries in the ISIC 2017 Leaderboard.

Since, sensitivity represents the algorithm’s success on correctly classifying melanoma

cases, this success places the algorithm on a special place in the domain. Lastly, future

directions on the domain are explored on the terms of increasing the performance of

the newly born algorithm further.

Keywords: melanoma detection, bag of visual words, neural networks, ISIC.
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ÖZET

DERMOSKOPİK GÖRÜNTÜLERDE OTOMATİK MELANOM TESPİTİ

Okur, Erdem

Bilgisayar Mühendisliği Doktora Programı

Tez Danışmanı: Doç. Dr. Mehmet TÜRKAN

Aralık, 2023

Kanser, çeşitli ve tespit edilmesi zor türleri ile insanlar için en tehlikeli hastalık-

lardan biri haline gelmiştir. Melanom, türleri arasında ölüm oranı en fazla olan cilt

kanseri türüdür. Olağan melanom tespit süreci, hastanın farkındalığına ve görsel

muayene eden kişinin deneyimine dayanmaktadır. Dermoskopların icadı ile etkileri

azalsa da, “öznellik” sorunu melanom tespit doğruluğunda büyük rol oynamakta ve bu

da otomatik algılama ihtiyacını doğurmaktadır. Bu tezde, dermoskopik görüntülerde

otomatik melanom tespitinin tarihçesi ve daha önce sunulan sistemlerin açıkları

incelenmiştir. Bu açıkların üstesinden gelmek için farklı yaklaşımlar araştırılmıştır.

Sonuç olarak, geleneksel yöntemleri yeni çağın derin öğrenme teknikleriyle birleştiren

Görsel Kelimeler Çantası (BoVW) konseptine dayalı bir melanom saptama algoritması
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oluşturulmuştur. Yeni algoritmanın performansı, popüler Uluslararası Cilt Görün-

tüleme İşbirliği (ISIC) 2017 yarışması veri kümesi üzerinde test edilmiş ve son derece

iyi sonuçlar elde edilmiştir. %96,2 doğrulukla ve daha da önemli olarak %99,8

hassasiyetle yeni algoritma ISIC 2017 başarı tablosundaki diğer tüm katılımcıları

geride bırakmıştır. Hassasiyet, algoritmanın melanom vakalarını doğru sınıflandırma

konusundaki başarısını temsil ettiğinden bu başarı, algoritmayı alanında özel bir

yere yerleştirmektedir. Son olarak, yeni doğan algoritmanın performansını daha da

arttırmak açısından, alan üzerinde gelecekte izlenebilecek yönler araştırılmıştır.

Anahtar Kelimeler: melanom tespiti, görsel kelimeler çantası, sinir ağları, ISIC.
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CHAPTER 1: INTRODUCTION

In the realm of oncology, skin cancer (cutaneous malignancies) remain the most

prevalent form of cancer (Mayo Clinic, 2022; American Cancer Society, 2023).

According to Republic of Türkiye Ministry of Health, around 22000 new skin cancer

incidences occurred just in 2018 (Republic of Türkiye Ministry of Health, 2022).

In 2020, the European Union documented in excess of 100000 melanoma skin

cancer incidences, with the continent concurrently reporting over 16000 fatalities

attributed to this malignancy (Stewart, 2023). Similarly, in the United States, the

annual incidence of skin cancer surpasses the cumulative incidence of other prominent

cancers such as breast, lung, prostate, and colorectal (American Cancer Society,

2017). Specifically, 197700 new cases diagnosed in 2022 (American Academy of

Dermatology (AAD), 2022). Global statistics from the World Health Organization

elucidate that annually, non-melanoma skin cancers account for two to three million

new cases, while melanoma contributes an additional 132000 (WHO, 2017). It is

noteworthy that melanoma statistics are often delineated distinctly. This demarcation

stems from melanoma’s grave nature, qualifying it as the most lethal variant of

skin cancer. Despite comprising a mere 1% of the total skin cancer incidence,

it is responsible for the vast majority of skin cancer-related mortalities (American

Cancer Society, 2023). A comprehensive review of international data underscores

the severe implications of melanoma; for instance, in a 2020 European Commis-

sion research indicated that Europe experienced a melanoma-related death almost

every 33 minutes (European Commission, 2020). The research further unveils

crucial statistics pertaining to melanoma, encompassing aspects of survivability,

age demographics, and nation-specific mortality rates within Europe. Australia,

grappling with its heightened prevalence, regards melanoma, “Australia’s national

cancer”, as a primary health concern—it ranks as the third leading cancer following

prostate (in males) and breast (in females) malignancies. Every 30 minutes, an

Australian is diagnosed with melanoma. Projections for the current year suggest

that approximately 16800 Australians will receive a melanoma diagnosis (Melanoma
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Institute Australia, 2023a). Lastly, according to the Melanoma Research Foundation,

it is anticipated that melanoma will result in the demise of 7990 Americans in 2023.

Furthermore, melanoma diagnoses are made in approximately 400 American children

each year (Melanoma Research Foundation (MRF), 2023).

1.1. What is Melanoma?

Melanoma originates in the melanocytes, or pigment cells (Melanoma Institute

Australia, 2023b). During childhood or adolescence, the congregation of these cells in

the skin results in the formation of a mole. Melanoma arises when these melanocytes

undergo aberrant and unregulated growth. Approximately one-third of all melanomas

originate from pre-existing moles. However, it is crucial to note that melanomas can

manifest anywhere on the epidermis (Melanoma Institute Australia, 2023b). Due to

this fact, in this thesis moles are not separately mentioned and “lesion” will be used as

common term. Distinct from other forms of skin cancer, melanoma possesses a rapid

propensity to metastasize to other tissues. The mechanism of metastasis can occur

via the tissue, lymphatic system, or bloodstream (National Cancer Institute, 2023).

When dispersing through tissue, it extends merely to adjacent areas; however, once it

invades the lymphatic system or blood vessels, it can proliferate to distant tissues.

The affected tissue subsequently manifests a malignant growth, posing significant

treatment challenges. A silver lining is that melanoma typically presents on the skin’s

surface, allowing for potential early detection through simple visual examination,

hence enhancing the prospects of a comprehensive cure if diagnosed in early stages.

Regrettably, the definitive staging of melanoma is ascertainable only post the excision

or biopsy of a suspicious lesion or mole. For staging, four primary characteristics are

considered: tumor thickness (quantified on the Breslow scale (Marghoob et al., 2000)),

presence of ulceration, and dissemination to lymph nodes or other bodily regions.

Melanoma stages can be named specifically as Stage 0, I (A/B), II (A/B/C), III, and

IV, with each stage elucidated in depth in the following section.
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1.2. Stages of Melanoma

Staging is critical in selecting appropriate therapies and determining prognosis

of a melanoma case. To facilitate staging, a myriad of procedures might be

employed, including comprehensive physical examinations; lymph node mapping,

where a substance is administered adjacent to the melanoma for tracking through

lymphatic channels, potentially leading to a biopsy or lymph node removal surgery;

Computed Tomography (CT) scans; Positron Emission Tomography (PET) scans, in

which patients receive an injection of radioactive glucose - given that tumor cells

consume glucose more voraciously than their normal counterparts, these cells are

highlighted more prominently in the scan; Magnetic Resonance Imaging (MRI) using

gadolinium, where the tumor cells appear more luminous in magnetic resonance

imaging when gadolinium is introduced; and blood chemistry tests, such as measuring

Lactate Dehydrogenase (LDH) levels, where elevated LDH could signify the presence

of melanoma (National Cancer Institute, 2023). These investigative outcomes, in

conjunction with the biopsy from the suspected lesion, culminate in a conclusive stage

determination. For individuals diagnosed with Stage III or IV melanoma, merely

excising the lesion is not sufficient. As previously emphasized, addressing melanoma

at these advanced stages is considerably challenging, necessitating more intensive

interventions like chemotherapy (Airley, 2009), radiation therapy (Washington and

Leaver, 2016), immunotherapy (Naing and Hajjar, 2017), and targeted therapy (Yan

et al., 2011; Siegel et al., 2018). Hence, the prompt evaluation of any suspicious mole

or lesion is of paramount importance for potential early-stage identification. Table 1

provides concise and comprehensible definitions of the various stages of melanoma.

Table 1. The stages of melanoma as presented by the PDQ Adult Treatment Editorial

Board (last update: June 2023) (National Cancer Institute, 2023).

Stage Definition

Stage 0

At stage 0, atypical melanocytes are located within the epidermis. There is potential for these

deviant melanocytes to transform into cancerous cells and infiltrate the adjacent healthy tissue.

This stage is also referred to as “melanoma in situ.”
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Table 1 continued from previous page

Stage Definition

Stage I

The presence of cancer is confirmed.

This stage is further segmented into stages IA and IB.

Stage IA: The tumor’s thickness does not exceed 1 millimeter, and it may or may not exhibit ulceration.

Stage IB: The tumor’s thickness ranges between 1 to 2 millimeters and is devoid of ulceration

Stage II

This stage is segmented into stages IIA, IIB, and IIC.

Stage IIA: In Stage IIA, the tumor exhibits one of the following characteristics:

-It possesses a thickness greater than 1 millimeter but does not exceed 2 millimeters

and presents with ulceration.

-Alternatively, its thickness is more than 2 millimeters but remains within 4 millimeters,

and it lacks ulceration.

Stage IIB: In Stage IIB, the tumor exhibits one of the following characteristics:

-It has a thickness that exceeds 2 millimeters but is no greater than 4 millimeters,

accompanied by ulceration.

-Or, the tumor has a thickness surpassing 4 millimeters, but it is devoid of ulceration.

Stage IIC: The tumor possesses a thickness that exceeds 4 millimeters and is accompanied by ulceration.

Stage III

This stage is segmented into stages IIIA, IIIB, IIIC and IIID.

Segmentation is done based on the ulceration status of the primary tumor as well as the degree of its

proliferation into adjacent structures, including the lymph nodes, lymphatic vessels, and surrounding skin.

Each sub-stage features several number of conditions to consider. For further details on each sub-stage,

please refer to National Cancer Institute (2023).

Stage IV

In Stage IV, the cancer has metastasized to distant regions of the body.

This includes organs such as the lungs, liver, brain, spinal cord, and bones, as well as soft tissues,

encompassing muscles, the gastrointestinal (GI) tract, and distant lymph nodes. Additionally, the cancer

might have proliferated to skin areas considerably remote from its initial site of origin.

1.3. Early Detection and Clinical Features

The diagnosis of melanoma in early stages is critical as mentioned previously.

With that being noted, early detection hinges on increasing the community awareness

at first. Currently, several facilities and initiatives offer evaluation of skin lesions.

For example, Türkiye boasts 41 melanoma-specific visual inspection clinics (Euro

Melanoma, 2023). Moreover, numerous online platforms facilitate appointment

bookings in diverse clinics globally. Comprehensive information is also accessible

via the World Wide Web (Turkiye Kanserle Savas Vakfi, 2021; Mayo Clinic, 2023). A

prevalent guideline for lesion awareness is the “ABCD(E)’s of Melanoma” (WebMD,

2023; Melanoma UK, 2016). This elementary directive explains the Asymmetry,

Border irregularity, multitudinous Color variations, and the Diameter characteristics

of lesions. The “E” denotes “Evolution”, highlighting the rapid growth of a lesion.
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It should be noted that current studies do not incorporate the “E” in the automated

melanoma detection paradigm. Individuals suspecting a lesion based on these

guidelines are advised to consult a dermatologist or specialized medical professional

for a visual examination. Post-examination, the medical practitioner might recommend

an excision if deemed necessary. Should this be required, the excision procedure is

typically straightforward and brief, potentially offering complete remediation of the

suspect.

From the doctors’ and visual inspectors’ point of view, there are algorithms to

visually evaluate a lesion’s clinical features to detect melanoma. These features can

be classified as either global or local. Global features encompass the entirety of the

lesion, whereas local features predominantly manifest in a specific area or cluster

within the lesion. Clinically, they can be segregated into three primary categories:

Texture, Shape, and Color. The clinical features given in this section are important for

detecting melanoma automatically in traditional approaches. In section 2.2, how these

features are detected and utilized is explained with example studies.

The clinical features present within a lesion can exhibit diverse patterns, and

the methodologies employed by dermatologists during visual inspections lay the

groundwork for recognizing these features (Malvehy et al., 2007; Argenziano et al.,

2003; Braun et al., 2005). Pigment networks, spots and globules, aberrant and typical

networks, star-burst patterns, and vascular structures can be considered as signs of

melanoma. Additionally, a standardization approach outlined in Malvehy et al. (2007)

delineates two pivotal phases for clinical feature identification. The initial phase

involves a comprehensive examination of the lesion, where the features undergo visual

assessments, as elucidated in Table 2. If any feature indicative of melanoma is

identified as a “melanocytic lesion”, it prompts the visual investigator to proceed to

the second phase. This subsequent phase includes four guiding principles, which are

elaborated on and contrasted in depth in the following parts of this section.
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Table 2. The first step involves identifying key features during the visual inspection.

Lesions that raise suspicion based on these characteristics then progress to the second

evaluative step. (This table contains minor exceptions, please refer Malvehy et al.

(2007).)

Dermoscopic criterion Definition Diagnostic Significance

Pigment Network-

Pseudo-Network

Network of brownish interconnected lines overlying

background of tan diffuse pigmentation. In facial skin

a peculiar pigment network, also called pseudo-network,

is typified by round, equally sized network holes

corresponding to preexisting follicular ostia.

Melanocytic lesion

Aggregated globules

Numerous, variously sized, often clustered, round to oval

structures with various shades of brown and gray-black.

Should be differentiated from multiple blue-gray globules.

Melanocytic lesion

Streaks

These have been previously described separately as

pseudopods and radial streaming, but are now combined

into one term. They are bulbous and often kinked or

finger-like projections seen at the edge of a lesion. They

may arise from network structures but more commonly not.

Melanocytic lesion

Homogeneous

blue pigmentation

Structureless blue pigmentation in absence of pigment

network or other discernible structures.
Melanocytic lesion

Parallel pattern

Seen in melanocytic lesions of palms/soles and mucosal

areas. On palms/soles pigmentation may follow sulci or

cristae (ie, furrows or ridges) of the dermatoglyphics.

Rarely arranged at right angles to these structures.

Melanocytic lesion

Multiple milia-like cysts
Numerous, variously sized, white or yellowish,

roundish structures.
Seborrheic keratosis

Comedo-like openings

Brown-yellowish to brown-black, round to oval, sharply

circumscribed keratotic plugs in the ostia of hair follicles.

Irregularly shaped comedo-like openings are also called

irregular crypts.

Seborrheic keratosis

Light brown fingerprint-

like structures

Light brown, delicate, network-like structures with

fingerprint pattern.
Seborrheic keratosis

Cerebriform pattern
Dark brown furrows between ridges producing

brain-like appearance.
Seborrheic keratosis

Arborizing vessels Tree-like branching telangiectases. Basal cell carcinoma

Leaf-like structures

Brown to gray/blue discrete bulbous structures forming

leaf-like patterns. They are discrete pigmented nests

(islands) never arising from pigment network and usually

not arising from adjacent confluent pigmented areas.

Basal cell carcinoma

Large blue-gray

ovoid nests

Well-circumscribed, confluent or near confluent pigmented

ovoid or elongated areas, larger than globules,

and not intimately connected to pigmented tumor body.

Basal cell carcinoma

Multiple blue-gray

globules

Multiple globules (not dots) that should be differentiated

from multiple blue-gray dots (melanophages).
Basal cell carcinoma

Spoke-wheel areas

Well-circumscribed, radial projections, usually tan but

sometimes blue or gray, meeting at often darker

(dark brown, black, or blue) central axis.

Basal cell carcinoma

Ulceration
Absence of epidermis often associated with congealed

blood, not due to well-described recent history of trauma.
Basal cell carcinoma

Red-blue lacunae
More or less sharply demarcated, roundish or oval areas

with reddish, red-bluish, or dark-red to black.
Vascular lesion

Red-bluish to

reddish-black

homogeneous areas

Structureless homogeneous red-bluish to red-black areas. Vascular lesion

None of listed criteria Absence of above-mentioned criteria. Melanocytic lesion
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In Table 2, the term “melanocytic lesion” denotes a lesion resulting from the prolifer-

ation of melanocytes, which may be potentially precursory to melanoma. “Seborrheic

keratosis” encompasses benign, wart-like growths that, although they might resemble

precancerous manifestations, are actually benign. “Basal cell carcinoma” represents a

form of skin cancer, which, though it very seldom metastasizes, can manifest as red

patches, open wounds, or pinkish proliferations. “Vascular lesions” constitute another

category of lesions which are typically benign; however, their visual appearance can

be diagnostically challenging, contingent on their specific classification.

1.3.1. Pattern Analysis Criteria

The Pattern Analysis Criteria serve as a guideline facilitating the examination

of both global and local features within a suspect lesion. In this second step

analysis, the characteristics explored are essentially refined sub-categories of those

identified in the first step. The diagnosis may suggest melanoma based on the

specific attribute, its manifestation, or amalgamations of diverse variations of the same

feature. Comprehensive insights into the global and local features and their potential

implications can be found in Table 3.

Table 3. Pattern Analysis Criteria - Global and Local Features.

Global Features Definition Diagnostic significance

Reticular pattern Pigment network covering most parts of the lesion. Melanocytic nevus

Globular pattern
Numerous, variously sized, round to oval structures with

various shades of brown and gray-black
Melanocytic nevus

Cobblestone pattern
Large, closely aggregated, somehow angulated globule-like

structures resembling a cobblestone.
Dermal nevus

Homogeneous pattern
Diffuse, brown, gray-blue to gray-black pigmentation

in the absence of other distinctive local features.

Melanocytic

(blue) nevus

Starburst pattern Pigmented streaks in a radial arrangement at edge of lesion. Spitz/Reed nevus

Parallel pattern

Pigmentation on palms/soles that follows sulci or cristae

(furrows or ridges), occasionally arranged at right angles

to these structures.

Acral nevus/melanoma

Multicomponent pattern Combination of >= 3 above-listed patterns. Melanoma

Nonspecific pattern Pigmented lesion lacking above patterns. Possible melanoma

Local Features Definition Diagnostic significance

Pigment Network

Typical pigment network: light to dark brown network with

small, uniformly spaced network holes and thin network

lines distributed more or less regularly throughout lesion and

usually thinning out at periphery.

Benign melanocytic

lesion

Atypical pigment network: black, brown, or gray network

with irregular holes and thick lines.
Melanoma

Dots/globules
Black, brown, round to oval, variously sized structures

regularly or irregularly distributed within lesion.

If regular, benign

melanocytic lesion

If irregular, melanoma
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Table 3 continued from previous page

Streaks

(pseudopods and

radial streaming)

Streaks are bulbous and often kinked or finger-like

projections seen at the edge of lesion. They may arise from

network structures but more commonly not. They range in

color from tan to black.

If regular, benign

melanocytic lesion

(Spitz/Reed nevus)

If irregular, melanoma

Blue-whitish veil

Irregular, structureless area of confluent blue pigmentation

with an overlying white “ground-glass" film. Pigmentation

cannot occupy entire lesion and usually corresponds to a

clinically elevated part of the lesion.

Melanoma

Regression structures
White scar-like depigmentation and/or blue pepper-like granules

usually corresponding to a clinically flat part of the lesion.
Melanoma

Hypopigmented areas

(structureless/

homogeneous)

Focal areas devoid of structures with less pigmentation than

overall pigmentation of lesion and comprising at least

10% of total area.

Nonspecific

Blotches
Black, dark brown, and/or gray structureless areas with

symmetric or asymmetric distribution within lesion.

If symmetric, benign

melanocytic lesion

If asymmetric, melanoma

Vascular structures

Comma-like vessels. Dermal nevus

Hairpin vessels.

If uniformly distributed,

seborrheic keratosis

If irregularly distributed

consider melanoma

Dotted vessels. Melanoma

Linear-irregular vessels. Melanoma

Vessels and/or erythema within regression structures. Melanoma

In Table 3, the term “melanocytic nevus” pertains to benign growths encompassing

melanocytes. The “dermal nevus” corresponds to melanocytic growths, predominantly

benign in nature, situated within the dermis layer. “Spitz/Reed nevus” are types of

melanocytic growths bearing a close resemblance to melanoma, with a subset holding

the potential to metastasize. Conversely, “acral nevus” represents benign growths

primarily found on the palms or soles, and they are typically more diminutive in size.

1.3.2. ABCD Rule

The renowned ABCD Rule, which serves as a community guideline, is based on

four features of a lesion, namely A, B, C, and D, as mentioned in Section 1.3. For

professional visual inspectors, a variant of this guideline is prepared. The primary

deviation lies in the interpretation of “D”. In the public version, “D” refers to the

diameter (or dimension) of the lesion. In contrast, for trained investigators, it signifies

“dermoscopic structures”. These structures include various networks, structureless

zones, globules, streaks, and dots. Another significant distinction is present in the

evaluative methodology. Each characteristic within the ABCD Rule has a designated

score and an associated weight factor. During lesion assessment, the score for a specific
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characteristic is multiplied by its weight factor, resulting in an individual score for

that attribute. The aggregate of these individual scores gives the comprehensive score

for the lesion. A score below 4.75 suggests the lesion is benign. A score ranging

between 4.75 and 5.45 implies that the lesion might require excision or monitoring over

a certain duration. Should the score surpass the 5.45 benchmark, the lesion is deemed

necessitating removal. An exhaustive breakdown of these characteristics, alongside

their respective scores and weights, can be found in Table 4.

Table 4. ABCD Rule - Feature details with respective scores and weights.

Dermoscopic Criterion Definition Score Weight Factor

A: Asymmetry
In 0, 1, or 2 perpendicular axes; assess not only contour,

but also colors and structures.
0–2 1.3

B: Border
Abrupt ending of pigment pattern at periphery

in 0-8 segments.
0–8 0.1

C: Color
Presence of up to 6 colors (white, red, light-brown,

dark-brown, blue-gray, black).
1–6 0.5

D: Dermoscopic structures
Presence of network, structureless (homogeneous) areas,

branched streaks, dots, and globules.
1–5 0.5

1.3.3. Menzies Scoring

The Menzies Scoring method classifies certain lesion features into two distinct

categories. The initial category, termed as the negative features group, encompasses

merely two attributes: symmetry and singular color. Conversely, the positive features

group consists of nine attributes, given in Table 5. Notably, these positive features

serve as unambiguous markers for melanoma. Consequently, if a lesion lacks attributes

from the negative group but exhibits at least one feature from the positive group, it is

diagnosed as melanoma.

Table 5. Menzies Scoring - Feature Groups and definitions.

Negative Features Definition

Symmetry of pattern
Symmetry of pattern is required across all axes through lesion’s center of

gravity (center of lesion). Symmetry of pattern does not require shape symmetry.

Presence of a single color
The colors scored are black, gray, blue, dark brown, tan, and red.

White is not scored as a color.

Positive Features Definition

Blue-white veil

An area of irregular, structureless confluent blue pigmentation with an overlying

white “ground-glass" haze. It cannot occupy entire lesion and cannot be

associated with red-blue lacunae.

Multiple brown dots Focal areas of multiple brown (usually dark brown) dots (not globules).
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Table 5 continued from previous page

Pseudopods

Bulbous and often kinked projections that are found at the edge of lesion either

directly connected to the tumor body or pigmented network. They can never be

seen distributed regularly or symmetrically around the lesion. When connected

directly to the tumor body, they must have an acute angle to the tumor edge or

arise from linear or curvilinear extensions. When connected to the network, the

width of the bulbous ending must be greater than the width of any part of the

surrounding network and at least double that of its directly connected network

projection.

Radial streaming
Finger-like extensions at the edge of lesion that are never distributed regularly

or symmetrically around the lesion.

Scar-like depigmentation
Areas of white distinct irregular extensions (true scarring), which should not be

confused with hypopigmentation or depigmentation due to simple loss of melanin.

Peripheral black dots/globules Black dots/globules found at or near edge of lesion.

Multiple (5 or 6) colors
The colors scored are black, gray, blue, dark brown, tan, and red.

White is not scored as a color.

Multiple blue/gray dots
Foci of multiple blue or gray dots (not globules) often described as “pepper-like"

granules in pattern.

Broadened network Network made up of irregular thicker “cords" of the net, often seen focally thicker.

1.3.4. 7-Point Checklist

The 7-point Checklist serves as an additional diagnostic tool employed by derma-

tologists during the second step of lesion evaluation, as outlined in reference (Malvehy

et al., 2007). This checklist enumerates seven distinct features, combinations of which

could signify the potentiality of melanoma in a given lesion. Analogous to the ABCD

Rule, each feature within the checklist is allocated a specific score. The cumulative

score for a lesion is then derived based on the presence of these enumerated features

(elaborated upon in Table 6). A resultant score surpassing the threshold of 3 raises

suspicions of melanoma. A visual representation of this evaluation process can be

found in Figure 1, showcasing two melanoma instances evaluated via the 7-point

Checklist, inclusive of discerned features and their correlated scores.

Table 6. 7-point Checklist - Features with their scores.

Dermoscopic criterion Definition Score

1. Atypical pigment network Black, brown, or gray network with irregular holes and thick lines. 2

2. Blue-whitish veil

Irregular, structureless area of confluent blue pigmentation with and

overlying white “ground-glass" film. The pigmentation cannot occupy

the entire lesion and usually corresponds to a clinically elevated part

of the lesion.

2

3. Atypical vascular pattern
Linear-irregular or dotted vessels not clearly seen within regression

structures
2

4. Irregular streaks

Brown to black, bulbous or finger-like projections irregularly distributed

at the edge of lesion. They may arise from network structures but more

commonly not.

1

5. Irregular dots/globules
Black, brown, round to oval, variously sized structures irregularly

distributed within lesion.
1
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Table 6 continued from previous page

6. Irregular blotches
Black, brown, and/or gray structureless areas asymmetrically

distributed within lesion.
1

7. Regression structures
White scar-like depigmentation and/or blue pepper-like granules usually

corresponding to clinically flat part of the lesion.
1

Figure 1. Figure presenting two instances of melanoma assessed using the 7-point

Checklist. The discernible features, along with their corresponding scores, are depicted

for each case, as detailed in Dermoscopy.org (2003).

1.3.5. Evaluative Comparison of Second-Step Algorithmic Efficiencies

Dolianitis et al. (2005) conducted a study to gauge the efficacy of the four principal

methods used during the secondary phase of visual lesion inspection. For this, they

trained 61 Australian medical professionals in the techniques of Pattern Analysis

Criteria, ABCD Rule, Menzies Scoring, and the 7-Point Checklist. Subsequently, these

trained professionals were tasked with evaluating 40 images of melanocytic lesions.

The results of this study, captured in Table7, span three main metrics: sensitivity,

specificity, and accuracy.

Sensitivity, often termed the true positive rate, indicates the proportion of actual

melanoma cases that are correctly identified as such Parikh et al. (2008). This metric

is calculated by dividing the number of true positives by the sum of true positives

and false negatives. Conversely, specificity or the true negative rate highlights the

percentage of non-melanoma cases that are accurately recognized as non-melanoma.

It is derived by taking the ratio of true negatives to the sum of true negatives and false

positives.

In essence, high values of sensitivity and specificity signify the system’s com-

petence in definitively determining the presence or absence of melanoma in a given
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lesion. As per the data from Table 7, Menzies Scoring outperformed the other methods

in terms of sensitivity and accuracy. Pattern Analysis Criteria, however, achieved the

highest specificity. Given the critical nature of correctly identifying both melanoma

and non-melanoma cases, it is recommended to employ both the Menzies Scoring and

Pattern Analysis Criteria for optimal results.

Table 7. Evaluative comparison of four algorithms in the second step of visual

inspection Dolianitis et al. (2005).

Method Sensitivity Specificity Accuracy

Pattern Analysis Criteria 68.4% 85.3% 76.8%

ABCD Rule 77.5% 80.4% 79.0%

Menzies Scoring 84.6% 77.7% 81.1%

7-point Checklist 81.4% 73.0% 77.2%

1.4. Problem and Motivation

As stated emphatically with detail in the previous sections, melanoma represents a

particularly perilous category of skin cancer, identifiable through visual inspection by

trained clinicians. The heterogeneity and irregularity of clinical features in melanoma

present significant diagnostic challenges, primarily due to the subjective nature of

the visual assessment process. Hence, there exists a compelling imperative for the

development of automated detection algorithms, chiefly attributed to this issue of

“subjectivity” inherent in human evaluations. The variability in interpretation among

examiners, who differ in educational attainment and clinical experience, can lead

to inconsistent evaluations of identical lesions, as noted by Haenssle et al. (2018).

For a comprehensive analysis of how subjectivity problem affects adult melanoma

diagnosis, Dinnes et al. (2018) offer an extensive investigation. Additionally, the

diagnostic accuracy is also influenced by the context in which the patient is assessed,

with general clinical settings potentially staffed by general practitioners rather than

specialists, which could contribute to less accurate evaluations.

A widely adopted measure to improve melanoma detection accuracy is the usage
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of a dermoscope, a specialized instrument that allows for the magnified examination

of skin lesions, as well as the scalp, hair, and nails. The invention of dermoscopy

can be traced back to 1663 when Kolhaus employed a microscope to study the fine

vessels (Katsambas et al., 2015). The methodology underwent significant advancement

in 1878 with the introduction of immersion oil, which was applied between the lesion

and the lens to enhance the visualization of textures (Senel, 2011). Subsequently, the

integration of a light source led to the creation of a specialized microscope tailored

for the examination of skin surface lesions or moles, now known as the dermascope.

Essentially, the dermoscope is a diagnostic tool equipped with a light source and a

magnifying lens. This device, typically providing magnifications between 60x and

100x, utilizes a specific gel to enhance the clarity of the lesion’s magnified image for

subsequent analysis (Katsambas et al., 2015; Senel, 2011). Ultimately, in 2001, 3Gen

company emerged as a pioneer with the introduction of a polarized version of the

dermoscope, known as DermLite (2001). This innovation marked a turning point, and

since its inception, the application of dermoscopy in the detection of melanoma has

seen a swift and widespread increase. However, even with dermoscopic examination,

Haenssle et al. (2018) report an average sensitivity and specificity of 86.6% and 71.3%,

respectively, for melanoma detection by physicians, highlighting the influence of the

examiner’s experience level on diagnostic outcomes.

Given these findings, it is apparent that reliance on visual assessments can

lead to unnecessary medical interventions due to false positives or, conversely, to

missed diagnoses with potentially severe consequences, as undetected melanoma may

metastasize. This underscores the imperative for the development and integration of

sophisticated automated melanoma detection systems. Such systems would provide

invaluable support to dermatologists, aiming to bolster the precision and reliability of

visual inspections.

1.5. Contributions

In the light of the above, this thesis introduces a novel and computationally

efficient framework that synergizes traditional methodologies with the accessibility

of state-of-the-art deep learning architectures. This framework is conceived to offer a
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fresh vantage point within the research arena of melanoma detection. The approach

adopts a modular design, characterized by a reduced parameter set and minimal

constraints, relying on the Bag of Visual Words (BoVW) concept (Yang et al.,

2007) that capitalizes on deep features extracted from a pre-trained neural network.

The strategic use of feature extraction from an already trained network bestows the

framework with a lightweight and rapid processing capability, circumventing the

necessity for protracted deep learning training cycles. This aspect, combined with

the framework’s modular design, ensures ease of adaptation and updating, thereby

positioning our method as a more agile and adaptable option relative to current

methodologies. Finally, classification step is executed using the robust technique of

support vector machines, which utilize compact, sparse histograms derived from the

meticulously assembled BoVW lexicon. Furthermore, our framework is enhanced

with two innovative sub-processes tailored specifically for melanoma detection: the

refinement of image patches and the application of a bespoke weighting strategy in the

creation of histograms. The contributions of this research are specified as follows:

• An innovative methodology for the automated detection of melanoma is de-

scribed. It combines the time-honored Bag of Visual Words (BoVW) technique

with a pre-trained deep learning network.

• Instead of conventional key point descriptors for BoVW, an avant-garde feature

extraction strategy utilizing a deep network model is presented. These features

are then ingeniously integrated into the BoVW schema, applying K-means

clustering for dictionary construction.

• A novel image enhancement algorithm is introduced, that is specifically tailored

to augment the clarity and distinction of features extracted from lesion imagery.

To the best our knowledge, such an enhancement protocol has not been

previously incorporated within a BoVW-oriented framework.

• The framework is robust, yet agile. Its modular architecture not only simplifies

the update process but also successfully bypasses challenges associated with

prolonged training durations and the burden of heavy computational demands.
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1.6. Outline

This thesis is divided into five major chapters. Each chapter and their sections

are intended to build on the one before it, resulting in a comprehensive picture of

developing an automated melanoma detection algorithm. The following is an outline

of each upcoming chapter’s structure and key focus.

In Chapter 2 Literature Review, an introductory background on the automated

melanoma detection domain is initially provided. This is followed by an exploration

of the domain’s evolution, articulated in two distinct sections. The initial section

delves into the array of studies that have employed traditional methodologies for

automated melanoma detection, elucidating the algorithmic construction of such

traditional approaches specifically tailored to this domain. Subsequently, the final

section presents an up-to-date discourse on the state-of-the-art within this sphere,

delineating the current status and advancements characterizing the field of automated

melanoma detection.

Chapter 3 Methodology lays the foundation for the most recent findings of this

thesis, tracing the journey from initial methodologies to the innovative concept of

integrating traditional techniques with contemporary strategies to develop a high-

performing framework for melanoma detection. The sections within this chapter

sequentially present each methodology that was examined, detailing the progression

and interconnectedness of these approaches to demonstrate the evolutionary pathway

leading to the current framework.

Chapter 4 Experimental Results provides a comprehensive account of the testing

procedures for the newly proposed framework and its comparative analysis against

the domain’s state-of-the-art. Within its sections, the chapter furnishes meticulous

details regarding the dataset employed, the testing conditions, and the comparative

outcomes of the framework’s performance. Subsequent sections delve into a critical

discussion of these results, placing them alongside benchmarks set by competing

methodologies. A unique facet of this chapter is the final section, which is devoted

to a deeper examination of the framework’s predictions. This is conducted through

the lens of explainable artificial intelligence (XAI) (Došilović et al., 2018), aiming to
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shed light on the decision-making processes of the framework, thereby enhancing the

interpretability and transparency of its predictive capabilities.

Chapter 5 Conclusion is the last chapter and summarizes the key findings, discusses

the ramifications for the area, and briefly discusses potentially improvable sections of

the framework. It also considers the study’s weaknesses and shows possible further

research directions for future.
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CHAPTER 2: LITERATURE REVIEW

2.1. Background

The development of systems for the automated detection of melanoma involves

computational techniques to evaluate skin lesions. These systems are designed to

input images of the lesions, analyze them, and then provide a probability score or a

categorical determination of whether the lesion has melanoma or not. The inception of

such automated systems traces back to 1988, with a range of methodologies having

been introduced since that time (Okur and Turkan, 2018), notable examples being

the use of artificial neural networks (Marin et al., 2015), decision trees (Zhou and

Song, 2013, 2014), and basic thresholding techniques for lesion segmentation (Santy

and Joseph, 2015). Initially, the scarcity of data posed significant challenges. The

accessible images, which were either photographed using standard cameras or as

scanned images of slides, were inadequate in two main ways. Firstly, the quantity

of images was too limited to effectively train a diagnostic system that needs to account

for the diverse manifestations of the disease. Secondly, the technology of the time

was insufficient to accurately identify or discern critical lesion characteristics such as

textures and borders. This latter issue was particularly critical, as it impeded accurate

diagnosis, even with methods that did not require an extensive training phase.

The introduction of the dermoscope marked a pivotal advancement in the field.

Dermoscopy, as outlined in Section 1.4, has empowered dermatologists and visual

inspectors to procure images of lesions that are not only well-lit but also significantly

magnified. This enhancement has addressed the previously mentioned issue of poor

visual quality, enabling the capture of images rich in detail and critical features.

Subsequent to the widespread adoption of dermoscopy, the 2000s saw the release

of publicly accessible lesion datasets. However, the number of such datasets

remains limited, with prominent examples including the PH2, EDRA, DermoFit,

HAM10000 and the most importantly the International Skin Imaging Collaboration

(ISIC) Archive (Mendonca et al., 2015; Argenziano et al., 2000; The University of

Edinburgh, 2013; Tschandl et al., 2018; ISIC Archive, 2022). These repositories have
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been instrumental in propelling forward research into the domain.

After that, the architectural landscape for automated melanoma detection systems

saw considerable diversification. Traditional approaches held the forefront in perfor-

mance until the surge in application and popularity of convolutional neural networks

(CNNs) began to redefine the state of the art. Given that this thesis introduces

a framework that integrates a traditional method base with recent enhancements,

the subsequent two sections will delve deeply into both the traditional and modern

methodologies within this domain separately. This two part detailed exploration aims

to provide a clearer context for the framework proposed in this thesis.

2.2. Traditional Approaches

During their peak performance era, designers of traditional melanoma detection

systems commonly adhered to an established framework when analyzing dermoscopic

images. This framework consisted of three principal stages, each performing the

same function across different designs but executed in a manner unique to each

system. These stages closely parallel the clinical evaluation processes and lesion

characteristics that a seasoned dermatologist would assess during a visual inspection.

A block diagram providing a high-level view of this common framework is presented

in Figure 2, highlighting the main stages: lesion segmentation, clinical feature

extraction, and classification (Mishra and Celebi, 2016). It should be noted that while

this approach is widespread among researchers, not all have strictly adhered to or

implemented these stages in a rigid sequence; some stages might have been skipped or

combined depending on the study.

Following sub-sections will offer a more detailed account of each aforementioned

stage, with references to pertinent studies in the field. While the emphasis will be

placed on the three core stages depicted in Figure 2, ancillary processes such as

“Pre-processing”, “Post-processing” or “Feature generation/selection” will also be

discussed in context with the methods employed in the related research.
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Figure 2. The block diagram illustrating the three principal stages of automated

melanoma detection from dermoscopic images (Mishra and Celebi, 2016).

2.2.1. Lesion Segmentation

Traditional system designs for automated melanoma detection begin with the

critical stage of lesion segmentation. Despite being conceptually straightforward, its

accuracy is foundational for the effectiveness of subsequent processes like clinical

feature segmentation and feature extraction for classification. During this phase,

the lesion is delineated from the background, which includes the skin and any other

extraneous elements. The result is typically a binary image that distinguishes the

lesion for further detailed analysis while disregarding the surrounding skin. Successful

lesion segmentation is exemplified in Figure 3, where the lesion is clearly isolated from

its background. Extraction of clinical features then proceeds exclusively within the

confines of the isolated lesion area, enabling the discernment of key global attributes,

including the symmetry and the regularity of the lesion’s borders. Conversely, a

segmentation approach that is less effective may inadvertently incorporate background

pixels into the lesion’s outlined area, particularly around the borders. This can lead to

incorrect interpretation of both global and local border features and the extraction of
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Figure 3. Illustration of an effective lesion segmentation process: (a) the original

dermoscopic image, (b) the lesion segmented as a binary mask, and (c) the refined

mask post post-processing with the removal of artifacts such as the dermoscope

frame (Ogorzalek et al., 2011).

deceitful color features in the subsequent stage of feature extraction. Prior to delving

into various systems and methodologies for lesion segmentation, it’s imperative to

acknowledge two significant challenges in this phase: artifacts in dermoscopic images

and the assessment of segmentation quality.

Dermoscopic images often contain a variety of artifacts. Among the most

troublesome are those stemming from the inherent constraints of the dermoscopic

imaging process itself. Common artifacts include darkened corners, marks from

markers, gel bubble effects, color reference charts, ruler demarcations, and hair on

the skin (refer to Fig. 4). With the exception of skin hairs, these are typically

introduced during the imaging process. Moreover, variations in lighting, along with

noise and fluctuating contrast levels, can obscure crucial details in the images. For

traditional approaches artifacts “must” be dealt with by removing them as thoroughly

as possible either before segmenting the lesion or afterwards. This can be done

through pre-processing the original image or post-processing the segmented lesion—or

employing both approaches. An effective pre-processing technique for hair removal

is the use of software like DullRazor (Lee et al., 1997). Median filtering is another

strategy that can aid in noise reduction and image smoothing and can be used either

before or after processing to remove hair artifacts (Lee et al., 1997). Additional

techniques such as noise filtering, histogram adjustment, color normalization, and

contrast enhancement can be integrated into these supportive processes (Quintana

et al., 2009; Wight et al., 2011; Abbas et al., 2013). On the post-processing front,

methods like region merging (Wong, 2011), border dilation (Iyatomi et al., 2006), and
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Figure 4. Common imperfections found in dermoscopic photographs include: a)

shadowed corners, b) ink from markers, c) air bubbles in gel, d) pigment patches

from a color chart, e) measurement lines from a ruler, and f) strands of hair on the

skin (Mishra and Celebi, 2016).

smoothing are commonly applied to refine the segmentation outcome.

Assessment of segmentation quality is another problem encountered at the lesion

segmentation stage. The subjective nature of manual lesion segmentation and its

reliance on the expertise of the individual conducting the visual inspection contribute

to its inherent challenges. A seemingly optimal strategy for assessment involves

comparing manual segmentation against the outcomes of automated techniques.

Naturally, to gain a balanced view, manual segmentation should be subject to review

across a diverse array of lesions by several experts. For additional insight, one may

consult an illustrative study on objective evaluation measures referenced in Celebi et al.

(2009).

The literature proposes a variety of techniques for lesion segmentation that also ad-

dress previously mentioned problems. Notable methods include thresholding (Garnavi

et al., 2011; Celebi et al., 2013), clustering (Schmid, 1999; Mete et al., 2011; Melli

et al., 2006), fuzzy logic (Baral et al., 2014), supervised learning (Wu et al., 2013), and

graph theory (Yuan et al., 2009), with some approaches integrating multiple techniques

to enhance segmentation precision (Celebi et al., 2009). Among these techniques
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thresholding (Sezgin and Sankur, 2004) and its variations are the most widely used.

Thresholding stands out as a straightforward yet prevalent technique in image

segmentation and is frequently applied to the segmentation of lesions. It essentially

transforms grayscale or color images into binary representations. Numerous studies

have adapted thresholding, enhancing it through various modifications or by inte-

grating it with other methodologies for lesion segmentation. Garnavi et al. (2011)

devised a hybrid system to delineate lesion borders, combining color optimization

with clustering-based histogram thresholding. They scrutinized various color channels

across multiple color spaces to achieve a stark contrast between the lesion and the

skin. To facilitate this, 30 dermoscopic images were evaluated, with lesions manually

encircled by two dermatologists and two dermatology registrars. From this analysis,

25 color channels from six different color spaces —RGB, HSI, HSV, LAB, YCbCr,

and XYZ (in combination with RGB)—were examined (Tkalcic and Tasic, 2003), as

illustrated in Figure 5.

Figure 5. (Left) The block diagram outlining the color space optimization process

integrated with clustering-based histogram thresholding for lesion segmentation, and

(Right) the array of color channels employed in the color space transformation (Gar-

navi et al., 2011).

Subsequently, the segmentation outcomes were benchmarked against the manually

defined borders. Following this comparison, the most effective four color chan-

nels—X, XoYoR, XoYoZoR (where "o" denotes a logical OR), and R—were selected

for a secondary analysis alongside a new composite reference border derived from

these four channels. Ultimately, the channels X and XoYoR emerged as the most
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efficacious and were employed in a two-stage hybrid thresholding process. When the

algorithm was tested on an additional set of 85 dermoscopic images, it occasionally

surpassed the border marking accuracy of a registrar by 5.3%, using the markings

of experienced dermatologists as the ground truth. This study notably highlights the

influence of the visual investigator’s expertise in the field.

In a different study, Yuksel and Borlu (2009) recommended a thresholding

technique that incorporates a type-2 fuzzy logic system. The process begins by

transforming the dermoscopic image into a gray-scale version, followed by an analysis

of its histogram to determine an optimal threshold level. The procedure starts by

selecting a membership function, which is centered at the lowest value of gray-level.

This membership function is then systematically shifted along the histogram until

a point of maximal ultrafuzziness (Castillo and Melin, 2008) is identified, which is

then established as the ideal threshold value. By applying this threshold to the gray-

scale image, a binary mask is produced. They evaluated this method against adaptive

thresholding and the popular Otsu’s method (Nobuyuki, 1979). The authors claim

that the Otsu’s method tends to understate borders, whereas adaptive thresholding

exaggerates them, both introducing artificial irregularities in the border that do not

match the true (ir)regularity of the border. This issue is of paramount significance

because irregular borders are an indicator of melanoma. They have included some

illustrative results, which is presented in Figure 6.

Figure 6. (Lower panel) Source photographs, and (upper panel) outcomes of lesion

segmentation: (encircled in red) results from adaptive thresholding, (outlined in green)

Otsu’s method, and (highlighted in blue) Yuksel and Borlu (2009)’s technique.

In a separate piece of research, Celebi et al. (2013) introduced “Threshold Fusion”
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as an innovative approach, which employs a combination of various thresholding

techniques for the detection of lesion boundaries. They approach the fusion as

an optimization problem, aiming to minimize energy, and they construct an en-

semble using four established thresholding techniques: the fuzzy similarity method

by Huang and Wang (1995), the maximum entropy method by Kapur et al. (1985),

the minimum error thresholding method by Kittler and Illingworth (1986), and Otsu’s

method (Nobuyuki, 1979). The goal of this method is to achieve results that are on par

with the top thresholding techniques while remaining unaffected by the peculiarities of

different images. They evaluate each thresholding algorithm’s effectiveness in border

detection, considering the specific attributes of the images used. Acknowledging that

Otsu’s method may be less precise in certain situations, they pursue a blend of the

most efficient thresholding techniques through the threshold fusion strategy proposed

by Melgani (2006). Their fusion method demonstrates encouraging outcomes when

applied to 90 test dermoscopic images, offering a solution that is both rapid and

straightforward to execute. It is also deemed appropriate for images with artifacts

such as vessels, skin lines, or fine hairs.

2.2.2. Clinical Feature Extraction

The stage of clinical feature extraction is frequently merged with other stages or,

in some instances, completely omitted. The primary rationale for this is its similarity

to basic image segmentation problems encountered in the first stage. Once the entire

lesion has been segmented in the first stage, typical melanoma cases can be identified

by scrutinizing a range of clinical features, which are previously detailed in Section 1.3.

The core objective at this stage is either to segment these clinical features further or to

detect them.

To automate the recognition of clinical features, various feature extraction methods

can be employed. For instance, texture characteristics can be discerned by analyzing

the statistics derived from the gray-scale conversion of the input dermoscopic image.

Computing a pixel-intensity histogram allows for the estimation of the probability dis-

tribution of different pixel intensities (Hayashi et al., 2005). Beyond just considering

pixel intensity, statistical methods may also take into account the information from
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the local neighborhood of pixels (Akram et al., 2015). Additionally, model-based

approaches or spatial domain filtering might be used to identify texture features (Jamil

et al., 2016).

For extracting shape features, a common practice involves evaluating the lesion’s

asymmetry by dividing it along its principal axes and comparing the two halves to see

if they mirror each other (Ng et al., 2005). With regard to color features, clustering

techniques can be utilized to segregate and delineate color classes as defined by

dermatologists (Schmid, 1999). One approach might be to count the number of distinct

colors present on a lesion and establish a melanoma detection threshold based on this

count.

In essence, the primary goal of the clinical feature extraction stage is the precise

detection of these aforementioned features. Thus, the methodologies and algorithms

applied are very similar to those used in lesion segmentation, with the distinction lying

in the output. This stage focuses on segmenting the lesion region into multiple new

segments where specific clinical features are isolated. The output from this stage could

be a (binary) mask that highlights a feature when superimposed on the lesion area. This

mask could then be utilized to extract features for use in the final classification stage.

Alternatively, the output could be a simple pixel values correlating to the feature or just

a binary indication of the feature’s presence or absence.

It’s important to note that artifacts present in dermoscopic images may persist into

this stage if not completely addressed during the lesion segmentation phase. Therefore,

it may be necessary to apply similar pre-processing or post-processing techniques to

the feature segmentation as needed.

2.2.3. Classification

In the final stage, the local and global features collected from the previous stages

are used in a classification process. This final stage involves synthesizing features

based on the border information from lesion segmentation and the feature masks

derived from feature segmentation. These generated features are compiled for each

sample and serve as input for classification.

Classifiers such as Artificial Neural Networks (ANN) (Priddy and Keller, 2005),
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Support Vector Machines (SVM) (Steinwart and Christmann, 2008), logistic regres-

sion (Tenenhaus et al., 2010), decision trees (Zhou and Song, 2013, 2014), and

Bayesian classifiers (Li et al., 2014) are among the most popular choices for traditional

approaches to make sense of this data. It is important to recognize that due to the vast

and varied range of potential features, it may be beneficial to incorporate an optional

feature selection or dimensionality reduction step into the system. This can help reduce

computational complexity by selecting the most informative features and discarding

redundant or irrelevant ones, thereby streamlining the classification process.

In a methodology advanced by Celebi et al. (2007), subsequent to segmenting the

lesion, they proceed to delineate shape features from the lesion’s perimeter and parti-

tion the lesion into various potential clinical feature zones using the Euclidean Distance

Transform. To pinpoint the most pertinent and effective features for the classification

task, they apply several feature selection algorithms, including ReliefF (Kononenkoand

and Simec, 1995), mutual information-based feature selection (Battiti, 1994), and

correlation-based feature selection (Hall, 2000). For the classification itself, they

employ a SVM, where they conduct a grid search to fine-tune the hyperparameters

of the radial basis function kernel for optimal results (Wang et al., 2004). The efficacy

of their system was tested on a collection of 564 dermoscopic images, yielding a

specificity of 92.34% and a sensitivity of 93.33%.

Different strategies in this research area have generated notable outcomes by

utilizing diverse data sets. For example, Ganster et al. (2001) developed a K Nearest-

Neighbor algorithm focusing exclusively on shape and color features. Their system’s

objective is to classify the identified and extracted features into three categories:

benign, dysplastic, and malignant. During the evaluation phase, a dataset consisting

of 5,393 daily clinical lesion images was employed. From the 122 features initially

collated and extracted, the feature selection process narrowed this down to 21. The

overall results from their experiments indicated a sensitivity of 87% and a specificity

of 93% on the dataset used.

In yet another study, Rubegni et al. (2002) trained an ANN on a dataset comprising

588 images, including more than 200 cases of melanoma. They created 48 features

categorized into four groups: shape, color, texture, and islands of color. After feature
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selection, the final 13 features, segmented into shape and color groups, enabled the

trained network to achieve a diagnostic accuracy of 94%.

While the studies previously mentioned tend to focus on global feature groups,

there are methodologies that incorporate local features as well. Situ et al. (2008)

describe a bag-of-features model that employs patches from the segmented lesion

region. These patches, measuring 16× 16 pixels, are systematically extracted using

a grid overlay on the lesion. Descriptors for these patches are then developed using

wavelet transforms and “Gabor-like” filters (Schmid, 2001). A combination of 10

features is derived from the wavelets and an additional 13 from the Gabor-like filters.

These features are then classified using both a Naive Bayes classifier and SVMs. When

tested on a set of 100 epiluminescence microscopy skin lesion images—comprising 70

benign lesions and 30 melanomas—the repeated experiments averaged a diagnostic

accuracy of up to 82.21% on this test set.

Barata et al. (2014) have also addressed the issue of selecting an appropriate

strategy for lesion classification by considering both global and local features. They

proposed two distinct systems: the first extracts and classifies global features, while

the second identifies regular keypoints on the lesion and extracts local features for

classification. For texture features, they analyze gradient amplitude and orientation

histograms. For color features, they utilize six different color spaces—RGB, HSV,

HSI, LAB, LUV, and Opponent Color Space (Opp) (Bratkova et al., 2009)—character-

izing each by concatenating histograms from the three color channels within each color

space. The findings from their experiments suggest that both systems with global and

local features achieve commendable accuracy levels, yet the local feature-based system

has a slight advantage in terms of classification cost-efficiency.

The underlying rationale for using local features is their proven effectiveness in

other domains, such as image retrieval (Douik et al., 2016) and object recognition (Guo

et al., 2014). Consequently, local features have become increasingly popular for

melanoma detection. Despite this, the overall success of such approaches still hinges

on the specific methods applied at each stage of the process. Moreover, a direct

comparison between most of these traditional methodologies is challenging due to

the variation in datasets and image styles used in their evaluations. The forthcoming
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section is set to explore most recent studies and trends in the domain, shedding light

on advanced techniques currently being developed.

2.3. Deep Learning Based Approaches

Automated melanoma detection research commenced nearly three decades ago,

gaining significant momentum following the advent of dermoscopy. During this

time, an array of solutions has emerged, approaching the challenge from various

angles (Okur and Turkan, 2018; Adegun and Viriri, 2021). The most recent methods,

particularly the more sophisticated ones, predominantly rely on deep neural networks

and their ensemble counterparts. Such reliance brings forth issues related to the

considerable time and computational power required. Moreover, these techniques

often lack flexibility for updates or retraining when changes or enlargements occur

within datasets. Hence, the quest for automated melanoma detection continues

unabated in the research community.

One such recent significant contribution to melanoma detection research is out-

lined by Ain et al. (2019), featuring an inventive application of multi-tree genetic

programming coupled with a novel fitness function. This study integrates diverse

image feature types such as color and gray-scale local binary patterns, color contrast,

and geometric shapes into a sophisticated multi-tree genetic programming framework.

This framework is equipped with a set of seven specially selected operations that

facilitate crossover and mutation, each operation being meticulously chosen for this

specific context. Experimental results of this approach demonstrate its ability to

outperform traditional single-tree genetic programming techniques and several widely-

used classifiers. These include naive Bayes, K-nearest neighbors, support vector

machines, decision trees (J48), random forests, and multilayer perceptrons, all of

which were tested using the WEKA Tool (Frank et al., 2005). The data for these

investigations were sourced from the Dermofit database (The University of Edinburgh,

2013), containing 1300 images, and the PH2 database (Mendonca et al., 2015), which

includes 200 images.

In another notable study by Sharma et al. (2022), an integrated approach is

adopted that combines hand-crafted clinical features with convolutional neural network
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(CNN) models to enhance melanoma detection for dermatologists. These hand-crafted

features are based on color moments—including mean, standard deviation, skewness,

and kurtosis—across each color channel and incorporate attributes derived from the

gray-level co-occurrence matrix (GLCM) (Singh et al., 2017). The system developed

consists of a cascaded, dual-input ensemble deep learning model. The lesion image

itself constitutes the first input, which is processed by a CNN. The second input

comprises the hand-crafted features extracted from the image, which are then passed

through a multilayer perceptron (MLP) that includes four fully connected layers. These

two neural network streams converge into a joint fully connected layer, which is

followed by a softmax layer responsible for the final classification output. The study’s

results confirm that the dual-input model outperforms a traditional CNN when both

are trained on the HAM10000 (Tschandl et al., 2018) dataset, which consists of 10015

dermoscopic images.

In a very recent study, Ichim et al. (2023) proposed two models of decision

support systems. These models are founded on distinct approaches to ensemble

neural networks, with the overarching goal being to enhance diagnostic accuracy by

consolidating individual decisions from multiple neural network predictions. They

have used a dataset that they have assembled using medical images sourced from the

HAM10000 (Tschandl et al., 2018) and ISIC (2019) databases. The constructed dataset

is consisted four distinct classes: Melanocytic Nevus (NV), Basal Cell Carcinoma

(BCC), Benign Keratosis (BKL), and Melanoma (MEL). To address the disproportion

in the quantity of NV lesion images compared to the other lesion types, around 20%

of the NV images were randomly excluded from the dataset. To compensate for

the reduced number and enhance the dataset balance, augmentation techniques were

employed for the remaining lesion categories. The first system they have designed

utilizes the independent training of three distinct neural networks (MobileNet V2,

DenseNet 169, and EfficientNet B2 (Sandler et al., 2018; Huang et al., 2017a; Tan and

Le, 2019)) with a weighting system applied to the four lesion categories, influencing

the collective prediction outcome. Conversely, the second system comprises a series of

six binary models, each corresponding to a different class pairing within each network.

Predictive decisions are integrated using a weighted average for each class and model.
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Altogether, they claim their system employs 18 binary models. This binary model

ensemble achieves a global accuracy of 91.04%.

Although the studies made significant contributions to the field of melanoma

detection, direct comparisons or accurately determining their standing within the

domain is challenging again, due to the use of different datasets. A solution to this

problem emerged with the events like the International Skin Imaging Collaboration

(ISIC) Challenges (ISIC, 2022). The first of these challenges, the Skin Lesion

Analysis Towards Melanoma Detection (SLATMD) Challenge, took place during the

IEEE International Symposium on Biomedical Imaging (ISBI) in 2016 (ISIC, 2016).

This annual event has drawn researchers globally, evidenced by the 3300 participants

at the most recent ISIC 2020 event. The challenges offer meticulously curated,

human-verified training and testing image sets, complete with relevant metadata, and

feature thousands of images. Highlighting the ISIC events is essential for an accurate

understanding of the current and potential progress in the field.

Initially, the main goal for participants was to differentiate melanoma from benign

nevi and other malignancies based on diagnostic accuracy. Later editions introduced

new layers to the competition, such as addressing out-of-distribution samples in 2019

and incorporating clinical context in 2020. The datasets provided by ISIC for these

challenges, which include a subset from the ISIC Archive (2022), are equipped with

both training and test images and their corresponding metadata. The existence of a

standardized dataset and evaluation criteria allows for a leader-board at the end of each

challenge. This provides a benchmark that researchers in the domain can use to gauge

the performance of their own work, even if they did not participate in the challenge

itself.

It’s important to note that since launching an online evaluation server in 2018, ISIC

has decided not to disclose test image data and ground truths, instead releasing data

progressively. As of the completion of this thesis, the ISIC 2017 dataset remains the

most up-to-date dataset publicly available with ground-truth labels for test images and

benchmark segmentation masks. The thesis framework has been tested on the ISIC

2017 data and benchmarked against the performers on the ISIC Challenge 2017 Task

3 leader-board. Hence, remaining part of this section briefly presents the top-5 studies
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from that leader-board. Task 3 is the “lesion classification only” part of the challenge.

The highest-ranking entry, by Menegola et al. (2017), presented a composite

model incorporating seven subsidiary models. Six of these sub-models were based

on Inception architectures, with the seventh leveraging ResNet (Szegedy et al., 2015;

He et al., 2016a). An SVM classifier layer was employed to integrate the outputs from

these sub-models, a process that demanded substantial computational power during the

training phase. The team addressed three fundamental challenges related to the efficacy

of deep learning approaches: the volume of training data, the complexity of the model

architecture, and the need for extensive computational resources. To tackle the issue

of data volume, they have combined six datasets including the ISBI-SLATMD 2017

challenge, ISIC Archive, EDRA, PH2, Dermofit Library, and the IRMA Skin Lesion

Dataset (which is not publicly listed but available upon request). From this collection,

they curated two distinct subsets: the “deploy” set with 9640 images and the “semi” set

comprising 7544 images. Their strategy for model development was informed by their

prior work (Menegola et al., 2017), which involved utilizing a network pre-trained

on the ImageNet database, subsequently refined through fine-tuning for the specific

task of lesion classification. Drawing on this experience, they chose to work with

more complex models—specifically, ResNet-101 and Inception-v4 (Szegedy et al.,

2016)—and proceeded to rigorously evaluate hundreds of models derived from these

architectures. Ultimately, they assembled a meta-model that integrates the previously

mentioned seven models: three Inception-based models trained on the “deploy” set,

another three Inception-based models trained on the “semi” set, and one ResNet-based

model also trained on the “semi” set. Additionally, they employed an SVM-based

meta-learning layer trained on the validation subset of “deploy”. The team credits their

success to the use of deeper network architectures combined with larger datasets, the

implementation of data augmentation techniques, per-image normalization procedures

(for instance, subtracting the average of the image to enhance Inception-based models),

and the strategic fusion of decisions from multiple models, which they argue yields

better outcomes than relying on a single optimal model.

Following close behind, the second-place entry by Bi et al. (2017) deployed three

variations of ResNet models. Their first model approached the classification challenge
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as a multi-class problem, distinguishing among melanoma, nevus, and seborrheic

keratosis. The second and third models dealt with binary classifications and combined

the results of the previous two models into an ensemble, respectively. This team also

incorporated additional images from the ISIC Archive to bolster their dataset. They

customized the architecture of ResNet by adapting its final layer to contain either 3

or 2 neurons, aligning with the respective number of classes they were targeting. All

images in their dataset were resized to have their shorter axis measure 224 pixels.

To enhance the model’s generalization capabilities, they employed data augmentation

techniques that included random cropping and flipping of the images. The training

was conducted in batches of 90 images. They claim computational process of training

a single ResNet model was carried out over approximately “half a day, utilizing two

Titan X GPUs”. This is a clear evidence for high computational power needs of CNN

training.

In third place, DeVries and Ramachandram (2017) developed a “multi-scale” CNN

informed by the Inception architecture, which was pre-trained on the ImageNet dataset

and then fine-tuned to process different image resolutions. “Multi-scale” term comes

from the fact that, they employ a dual-input strategy, inputting images at two different

resolutions to the network. This dual-resolution setup is designed to exploit both the

macro and micro features of the lesions: one input provides a coarse-scale image that

encompasses the lesion’s overall context and shape, enabling the model to grasp the

general morphology of the lesion; the other input, at a finer resolution, presents more

detailed textural and low-level features that are critical for differentiating between

the various lesion classes. By combining insights from both these perspectives, they

expected from model to yield a more nuanced and accurate classification. Lastly, they

augmented the performance by training multiple models with minor modifications to

the original architecture, combining ten such models for their final classification, which

also resulted in a considerable demand for computational resources.

The fourth position was secured by Jia and Shen (2017), who utilized a deep

CNN with 14 convolutional layers followed by a single fully connected layer. This

network, a modified version of VGG-GAP (Zhou et al., 2015), was applied in a two-

stage process: first to generate class activation maps and then to classify lesions using
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these maps. In the first stage, the CNN analyzes the images to generate class activation

maps (CAM), which highlight the regions most influential for making a classification

decision. Following this, in the second stage, they use the CAM results to identify

and crop the significant areas from the original images. These cropped regions, which

contain features of interest, are then fed back into the second stage of the CNN. This

team also used data augmentation methods to increase the number of samples and they

are the only team mentioned here to utilize a pre-processing step for hair removal.

Lastly, occupying the fifth spot, Li and Shen (2017) applied two deep learning

methodologies focusing on lesion segmentation, feature extraction, and classification

tasks. The two deep learning architectures they introduce are the Lesion Indexing

Network (LIN) and the Lesion Feature Network (LFN). The LIN framework is

designed to tackle lesion segmentation and classification tasks concurrently. It

employs two fully-convolutional residual networks that have been trained on distinct

datasets that they have created from originals to output both a segmentation map

and a preliminary classification of the lesion. Additionally, they propose a unique

component, the lesion indexing calculation unit (LICU), which is used to assess the

significance of each pixel in the image with respect to the lesion classification decision.

The preliminary classification results are then refined by leveraging the distance map

created by the LICU, enhancing the classification’s accuracy. The LFN, on the other

hand, is a framework aimed specifically at the extraction of dermoscopic features. It

is a CNN-based model that has been trained on image patches. These patches are

strategically harvested from superpixel masks, which are representations of the image

divided into perceptually meaningful atomic regions.

To encapsulate the advancements and research discussed in this section, automated

melanoma detection is currently conceptualized predominantly as a binary classifica-

tion task, typically executed in two primary stages. In the initial stage, within a given

dermoscopic image, the aim is to discern and classify individual pixels or clusters

of pixels as belonging to either the lesion or non-lesion category. Following this,

the second stage involves further classification of those identified as lesion pixels

or pixel clusters into malignant (melanoma) or benign (non-melanoma) groupings.

Insights from the ISIC challenges and the methodologies developed in response to
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them suggest a shift in the field towards favoring a two stage approach over the

traditional three stage process. It is evident from recent top-performing studies

that there is a strong inclination towards integrating some variant of deep learning

networks, often pretrained on large datasets, which require extensive computational

load and considerable time investment to achieve top-tier results.

Despite the remarkable progress made, there remains room for improvement, and

the introduction of innovative algorithms could further advance melanoma detection

capabilities. The next chapter of this thesis will delve into the genesis and development

of a proposed melanoma detection framework, which aims to address the aforemen-

tioned challenges and enhance the effectiveness and efficiency of the detection process.
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CHAPTER 3: METHODOLOGY

Developing an automated melanoma detection framework is a complex and

evolving process, akin to a journey. For us, it began as an exploratory venture, a

proof of concept, where the initial idea of a framework is put to the test using a dataset

specifically curated for the task. Based on the outcomes of this initial testing, the

foundational concept behind the framework is either refined and developed further, or

completely revised.

This chapter meticulously chronicles this journey, laying out the various stages

in chronological order and dividing them into distinct sections for clarity and depth

of understanding. The following section is an exception to this, which is devoted to

describing the dataset prepared for the evaluation of each conceptual iteration of the

framework. Subsequent sections are dedicated to the exploration and examination of

these different ideas. Each section begins by detailing the idea, setting the stage for

what follows. This is succeeded by a discussion of the experiments conducted to test

the idea, along with the results obtained from these experiments. The concluding part

of each section, aptly titled “Verdict”, presents a critical assessment of the idea. It

lays out the decision made regarding the viability and potential of the idea based on

the experimental results. This could involve advancing the idea to the next stage of

development, modifying it in light of new approaches, or discarding it if it proves

unfeasible.

3.1. Experimental Dataset

The dataset of 670 dermoscopic images employed for testing the ideas given in

this study was sourced from the ISIC Archive. These images, each histopathologically

diagnosed as either benign or melanoma lesions, were initially part of a larger set of

3600 images. This collection was then narrowed down to 1643 images, of which 411

were identified as melanoma cases, with the remainder being benign.

However, further refinement of this dataset was necessary. After the exclusion of

duplicate samples and those with excessive artifacts, the number of melanoma cases
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was reduced to 335. To address the issue of class imbalance, an equal number of benign

images were selected to match the number of melanoma cases. This deliberate pairing

resulted in a balanced dataset comprising a total of 670 samples. This dataset forms

the foundational basis for the tests detailed in the subsequent sections of the study. It

is crucial to note, however, that this dataset is subject to varied alterations based on

the unique requirements of each test. These may involve resizing or pre-processing

customized to the experimental circumstances or aims. Each section in which such

changes are made, will expressly indicate and describe the alterations.

3.2. Sparse and Redundant Representations Framework

Our research indicated that there were relatively few studies that approached

melanoma detection through the lens of sparse and redundant representations, despite

the suitability of sparsity-related tools for this type of problem. The rationale for this

suitability became evident when examining the nature of the images and the features

of interest in melanoma detection.

For instance, the pixels at the border of a lesion that marked the transition from

lesion to the background skin were characteristically sparse. This sparsity was in

stark contrast to the denser pixel groups found within the lesion itself or in the

surrounding skin area. Additionally, the clinical features that were key to identifying

and diagnosing melanoma within the lesion area also tended to be sparsely distributed,

particularly when compared to the other pixels in the lesion. Therefore, it seemed

promising to frame classification of lesions and their clinical features within a sparse

representations optimization framework.

Sparse representations involve encapsulating most, if not all, of the information in a

signal using a linear combination of a limited number of elements or atoms drawn from

an overcomplete or redundant basis, often referred to as a dictionary. This dictionary

comprises a set of atoms, with their count significantly exceeding the dimensionality of

the feature space. As a result, any given signal can be represented in an infinite number

of ways, but the sparsest representation among these offers valuable insights for a range

of signal and image processing applications, as evidenced in various (Elad and Aharon,

2006; Protter and Elad, 2009; Peyre, 2009; Mairal et al., 2008; Mairal et al., 2008;
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Bryt and Elad, 2008; Peotta et al., 2006; Fadili et al., 2007; Mairal et al., 2008; Liao

and Sapiro, 2008). From a mathematical standpoint, sparse representation involves

solving a sparsity-constrained non-convex optimization problem, typically approached

through two approximate convex optimization steps: sparse coding, and dictionary

update. The process involves iteratively solving these two steps to arrive at a solution.

The literature on this subject is rich with a variety of “greedy pursuit algorithms”

for sparse coding and diverse “dictionary update techniques”. These methodologies

are underpinned by robust theoretical foundations and have demonstrated superior

performance compared to other signal and image processing tools, as elaborated in

Elad (2010). For readers interested in delving deeper into the intricacies of sparse

representations and the associated algorithms and techniques, Elad (2010) provides a

comprehensive resource.

In the beginning, our very first approach involved leveraging sparse representations

by examining the sparsity across different frequencies in dermoscopic images. The

fundamental approach was to reconstruct a scaled-down version of a dermoscopic

image from its decomposed form at various levels of sparsity. The subsequent

subsections of the study delve into the specifics of this method and its impacts

in greater detail. The primary objective was to extract feature-rich yet sparse

representations from dermoscopic images for the purpose of training an Artificial

Neural Network (ANN). This approach aimed to distill the most characteristic and

informative parts of a lesion from a dermoscopic image and then apply these extracted

features within an ANN framework. The ANN would then be in charge of assessing

these characteristics to detect the existence of melanoma.

3.2.1. Decomposition of a Dermoscopic Image

The decomposition process begins with a dictionary and the original image. The

first step in this process involves defining a block size, denoted as b. The image is

then partitioned into distinct patches, each measuring b×b pixels. For the purposes of

our approach, we have initially selected a block size of 8 which is default for the task.

This means that each patch extracted from the original image will be an 8× 8 pixel

square. To visually represent this step, Figure 7 is provided, illustrating how the image
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is divided into these smaller patches based on the chosen block size.

Figure 7. The decomposition process involves segmenting the lesion into patches

measuring 8 x 8 pixels. This is also done individually for each color channel in the

RGB image.

In the process of calculating sparse representation vectors, a Discrete Cosine

Transform (DCT) dictionary is employed. The creation of this dictionary follows the

methodology outlined in Elad’s book (Elad, 2010). A key element in this process is

the selection of the number of atoms in the dictionary. This number is predetermined

as 1024 by default. Subsequently, the DCT dictionary and the segmented image

patches are used together in a specific equation, as depicted in the Figure 8 below.

This equation derives sparse vectors that effectively represent each image patch in the

calculation.

Figure 8. Sparse vectors, each of size 1024×1, are computed to represent each image

patch. This computation is based on the equation Dx = y and utilizes the Orthogonal

Matching Pursuit (OMP) algorithm (Elad, 2010).

In the resultant sparse vectors, each element represents a sparse coefficient

corresponding to its respective image patch. These coefficients are arranged in

accordance with the frequencies of interest. To construct the decomposed image for

a specific frequency, the sparse coefficient with the same index is extracted from each
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vector and placed back into the spatial location corresponding to the original patch it

represents. This process is visually depicted for enhanced clarity using color coding in

Figure 9.

Consequently, from this method, a total of 1024 decomposed images are generated,

all derived from the sparse coefficients obtained from a single RGB lesion image. An

illustrative example of the outcome for two different lesions post-decomposition is

presented in Figure 10. This figure showcases the results following the decomposition

process.

Figure 9. In the representation, each color signifies a distinct frequency, and its

shades indicate varying sparse coefficient values. For clarity in the illustration, patches

arranged column-wise in the actual implementation are depicted as rows.

Figure 10. The outcomes of the decomposition process applied to two images are

presented, where (a) represents a melanoma case and (b) depicts a benign lesion. For

the sake of clarity only five of the total 1024 generated decomposed images are shown.

In the decomposed images, potential indicators of melanoma may exist, yet
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identifying the specific frequencies that contain these indicators presents a separate

challenge. Stemming from this observation, a new way for utilizing decomposed

images has been developed. This involves extracting eight new secondary features

from each of the 1024 decompositions of a single lesion image. The features

obtained from this process are then aggregated to form a comprehensive feature vector,

effectively encapsulating a detailed descriptor of that particular image. The secondary

features can be described as follows:

• Energy of Sparse Representation Error The rationale for employing the

energy of sparse representation error stems from the possibility that benign

and melanoma cases might differ in how well they can be represented. It

remains an open question whether the sparse representations of a lesion’s image

across various frequencies exhibit discernible differences between melanoma

and benign cases. To explore this, the energy levels of these frequencies can be

utilized as a feature to investigate and potentially identify any such differences.

m1 =
∥xi∥2

n
(1)

• l1 - norm on Sparse Codes

m2 =
∥xi∥1

∥xi∥2
(2)

• Entropy of Sparse Codes The entropy of sparse codes is considered a viable

feature because it is understood that an increase in entropy in a signal cor-

responds to an increase in uncertainty. This principle is observed in various

contexts, such as with ECG signals, where heightened entropy can signify

abnormalities. Applying this concept to melanoma detection, a similar inference
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can be made: an increase in the entropy of sparse codes of a lesion’s image might

indicate irregularities within the lesion.

m3 =−<
|xi|
∥xi∥1

, log
( |xi|
∥xi∥1

)
> (3)

• Mean

m4 =
∑

n
1 |xi|
n

(4)

• Variance

m5 =
∑

n
1(|xi|−µ)2

n−1
(5)

• Skewness

m6 =
1
n

n

∑
1
[
(|xi|−µ)

σ
]3 (6)

• Kurtosis Kurtosis, which measures the deviation of a distribution from a normal

distribution, is another metric that warrants examination for its effectiveness in

melanoma detection. Similar to entropy, both skewness and kurtosis might reveal

irregularities in melanoma cases.
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m7 =
1
n

n

∑
1
[
(|xi|−µ)

σ
]4 (7)

• l0 - norm on Sparse Codes The use of a DCT dictionary in image representation

may lead to differing levels of representational accuracy between benign and

melanoma cases. If one of these cases (either benign or melanoma) is

represented more effectively with the DCT dictionary, the sparsity level of the

less effectively represented case will be comparatively lower. In such a scenario,

the non-zero elements in the sparse vectors become significant indicators. Here,

n represents the total number of elements in the sparse vector, while nz refers to

the count of non-zero elements within that vector. Therefore, a higher number

of non-zero elements could indicate a lower level of sparsity, which in turn

might be indicative of the nature of the lesion (benign or melanoma) based on its

representational accuracy with the DCT dictionary.

m8 = (n−nz)/n (8)

For each individual decomposition out of the total 1024, the aforementioned

features are extracted. When this extraction process is applied across all decompo-

sitions, it results in a feature vector of size 8192× 1, representing a single sample.

This comprehensive process of feature extraction and assembly into a large vector is

depicted in the accompanying Figure 11.

Subsequently, to evaluate the effectiveness of these features, a simple pattern

recognition ANN is trained.
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Figure 11. Once the eight features are extracted from a single decomposition, they are

concatenated to form a unified feature vector, which has a size of 8192×1.

3.2.2. Experiments

Utilizing MATLAB’s (The MathWorks Inc., 2022) neural network toolkit, a basic

pattern recognition network is trained with the extracted features. This network

comprises a single hidden layer, with the number of neurons in this layer set to 5463,

which is approximately two-thirds of the total of input and output neurons. The dataset

is split in such a way that 70% of the samples are used for training, 15% for testing,

and the remaining 15% for validation.

Due to the high resolution of the images, which ranged from 900×600 to 4440×

6666 pixels, a resizing step was necessary before initiating the experiments. The

decomposition step became increasingly time-consuming for images with resolutions

exceeding 1024× 768 pixels. Particularly for images larger than 2000× 1500 pixels,

the decomposition of a single image could take almost half a day. To expedite this

process, the images were downscaled to near-minimum resolutions while maintaining

their aspect ratio.

The training process was repeated 10 times to obtain a reliable evaluation, resulting

in an average test accuracy of 56.92%. The average training accuracy was slightly

higher, recorded at 62.11%. The detailed results of all the tests conducted are compiled

and presented in a Table 8.
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Table 8. Training accuracy and test accuracy for each test.

Training Accuracy Test Accuracy
Test # 1 76.1% 55.4%
Test # 2 57.5% 54.5%
Test # 3 59.0% 58.4%
Test # 4 64.3% 62.4%
Test # 5 60.0% 59.4%
Test # 6 54.1% 55.4%
Test # 7 56.2% 57.4%
Test # 8 66.5% 51.5%
Test # 9 63.7% 59.4%

Test # 10 63.7% 55.4%
Average 62.1% 56.9%

3.2.3. Verdict

Several key observations emerged from the results of the experiment. Firstly, the

accuracy was found to be nearly equivalent to a random guess, akin to a coin toss.

Several factors might contribute to this outcome. One possibility is the sheer number

of decompositions per image, with a majority of the 1024 decompositions potentially

lacking any significant indicators of melanoma. Conceptualizing these decompositions

as various “layers” of a lesion, it becomes apparent that many might not contribute

meaningful information, leading the network either to learn ineffectively or to be

guided towards incorrect conclusions.

Another critical factor could be the structure of the feature set used in the ANN.

Although the total number of features was 8192, these essentially comprised groups of

8 features repeated across the decompositions. This redundancy in features might not

have provided the diverse and distinct information necessary for effective learning.

Given the overall low accuracy of this approach, it has been decided to abandon this

method. However, the insights gained from this experiment were valuable. Building

on this learning, a new approach is devised, focusing on the detection of key points

within the lesion for feature extraction.
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3.3. The Scale-invariant Feature Transform (SIFT) Framework

The next idea in the development of the melanoma detection framework involved

conducting a literature review focused on key point detection in images. Through this

review, the Scale-Invariant Feature Transform (SIFT) algorithm, as described by David

(1999), emerged as a potential candidate. SIFT is renowned for its ability to detect and

describe local features in images. It has been extensively applied in the field of object

recognition, as evidenced by various studies (Saeed et al., 2018; Li and Wang, 2018;

Deshmukh and Bhosle, 2016). The strength of SIFT lies in its invariance to location,

scale, and rotational changes, coupled with robustness against affine transformations

and variations in illumination. Given that the task of melanoma detection entails the

identification of clinical features on lesions, the SIFT algorithm presents itself as a

potentially effective tool for pinpointing critical points on a lesion. The forthcoming

sub-section is dedicated to providing an in-depth exploration of the SIFT algorithm,

including a discussion on how it can be applied specifically to the context of melanoma

detection.

3.3.1. SIFT Algorithm

The Scale-Invariant Feature Transform (SIFT) algorithm plays a crucial role in

detecting and describing local features within digital images. Fundamentally, SIFT

operates by identifying a set of key points within an image and then calculating specific

information based on the neighboring pixels around each key point, or directly from

the pixel constituting the key point itself.

Once this information is computed, it is attributed to the corresponding key point,

resulting in the creation of what are known as descriptors. These descriptors are then

utilized in tasks such as object recognition or other similar applications. A significant

attribute of these descriptors is their invariance to a variety of transformations. This

quality is particularly valuable because it ensures the reliability of the descriptors

even when the object of interest appears significantly altered due to changes in

perspective, scale, rotation, or lighting conditions. The original SIFT algorithm, which

is specifically designed for grayscale digital images, is described in further detail
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below.

The SIFT algorithm commences with the application of bilinear interpolation to

expand the original image, doubling its width and height. Subsequently, a scale space is

constructed for the image. This scale space is a conceptual tool that simulates how the

image appears at various scales, effectively representing the image at different levels

of detail. To create this scale space, the image is convolved repeatedly, progressively

reducing its size with each convolution, until it becomes too small to proceed further.

The next step involves the identification of candidate key points within this scale space.

Conceptually, each image in the scale space can be thought of as a three-dimensional

continuum, with the two spatial dimensions being the x and y coordinates of the pixels,

and the third dimension corresponding to the standard deviation of the convolution.

At this stage, the scale-space function comes into play. Its role is to allocate gray

values to every point within this three-dimensional space. Ideally, calculating the

Laplacian of this function and identifying its extrema would yield the desired candidate

key points. However, given the necessity to operate in a discrete approximation of this

continuous space, the algorithm employs the Difference of Gaussians (DoG) technique

as an alternative (Kamaladhas and Abitha, 2012). This technique involves subtracting a

blurred version of the image from another less blurred version, effectively filtering out

all but a few spatial frequencies present in the original grayscale image. The discrete

extrema found in these difference images are then used as reasonable approximations

of the Laplacian extrema, thereby identifying the candidate key points for further

analysis.

In the subsequent phase of the SIFT algorithm, each key point is assigned a

reference orientation, if feasible. There are instances where this step is not possible

for certain key points, such as when a key point is located at the image border

and lacks a sufficient number of neighboring points, or when a key point does not

exhibit a dominant orientation. Key points that fall into these categories are discarded.

Conversely, some key points may display more than one dominant orientation. In

such cases, these key points are represented multiple times, once for each distinct

orientation. The process of assigning reference orientations roughly entails examining

the gradients in the immediate vicinity of a point to determine if they share a relatively
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similar direction.

The final step involves computing descriptors for the key points identified in the

previous steps. For each key point, the algorithm creates a histogram based on the

distribution of gradient directions within its surrounding area. This surrounding area is

conceptualized as a circular neighborhood, and to align with the reference orientation,

the coordinate system of this neighborhood is rotated accordingly. A total of sixteen

histograms are computed in this manner. Consequently, for each key point, a descriptor

vector of size 128 (derived from 4×4×8 = 128) is generated.

For a more detailed understanding of this process, additional information and

explanations can be found in the works of David (1999) and Weitz (2016), which delve

deeper into the mechanics and applications of the SIFT algorithm.

3.3.2. Using SIFT in Melanoma Detection

The SIFT algorithm inherently focuses on extracting key points from a grayscale

digital image and assigning descriptors to each of these points. However, to effectively

adapt and employ this algorithm as a feature extractor for automated melanoma

detection task, several challenges needed to be initially addressed.

The primary challenge in adapting the SIFT algorithm for automated melanoma

detection lies in preserving the integrity of the data. The original SIFT algorithm

is designed for grayscale images, meaning that applying it directly to our dataset of

670 colored images, as mentioned earlier, would result in the loss of valuable color

information. Previous sections 1.3 have demonstrated the significance of color data in

detecting melanoma, highlighting the need to retain this information in the analysis. To

address this challenge, various implementations of SIFT that can handle color images

were explored. A particularly useful discovery was the comprehensive comparison of

different color descriptors and their invariance properties conducted by van de Sande

et al. (2010). Their study methodically examined the uniqueness of color descriptors,

providing insights into their performance under various conditions. One standout

variant identified through this research is the Transformed Colored SIFT. This version

of SIFT normalizes each color channel (RGB) individually before computing the SIFT

descriptors for each channel. As a result, the descriptors generated are invariant not
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just to scale and shift, but also to changes in light color and light color shift. The

key distinction of this approach, aside from its compatibility with colored images, is

that the descriptors are larger in size, with a dimension of 3(channels)× 128 = 384.

This expanded descriptor size ensures that no valuable color data is lost in the process,

potentially enhancing the robustness and effectiveness of the automated melanoma

detection system.

The second challenge in applying the SIFT algorithm for melanoma detection

arises from the variable image resolutions within the dataset, leading to a varying

number of key points detected by the algorithm for each image. For example, an image

labeled as benign might yield 100 key points and their corresponding descriptors,

whereas a malignant labeled image could result in 1000 key points and descriptors, or

the situation could be reversed. It’s important to note that this variability in key point

detection is not solely dependent on image resolution; images of the same resolution

can also yield differing numbers of key points. This inconsistency presents a two-

fold problem. One potential solution could be to impose a limit on the number of

key points detected by the algorithm. However, determining the appropriate threshold

for this limit poses its own challenge. In our experiments, we observed a wide

range in the number of key points detected, with the lowest being 7 and the highest

exceeding 12000 in a single image. This leads to another critical issue. As previously

discussed in 1.3, melanoma detection relies on the presence of various features on a

lesion. However, not every part of a lesion may exhibit signs indicative of melanoma.

Therefore, arbitrarily limiting the number of key points could potentially exclude

significant areas of the lesion that contain crucial diagnostic information. This situation

necessitates a careful approach to ensure that the key point selection process is both

efficient and comprehensive, capturing all relevant aspects of the lesion without being

overwhelmed by excessive data.

The discussion thus far highlights a third challenge in the application of the SIFT

algorithm for melanoma detection: the labeling of data. Our dataset comprises 670

cases, evenly split between benign and malignant melanoma diagnoses, each confirmed

through histopathological methods. However, the transformed colored SIFT algorithm

identifies a variable number of key points from each image, and these key points
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are not inherently labeled. Simply assigning the label of the whole image (e.g.,

melanoma) to all key points extracted from it is not accurate, as not all key points

may be representative of the melanoma-indicative region. To effectively utilize our

existing labels, the key points and their descriptors must collectively offer meaningful

or distinguishing information about the image from which they were extracted. It is

essential that these features, in aggregate, accurately characterize the nature of the

lesion.

Addressing the last two challenges required a well-thought-out strategy. The

following section details a proposed pipeline designed to ensure that the key points

can meaningfully represent the images they originate from, thereby providing a viable

solution to these challenges in the context of automated melanoma detection.

3.3.3. Bag of Visual Words Pipeline

The Bag of Visual Words (BoVW) is a renowned method for image classification,

drawing inspiration from the Bag of Words (BoW) concept in Natural Language

Processing (NLP) (Shekhar and Jawahar, 2012; Chen et al., 2017; Malpani et al., 2016;

Zhang et al., 2010). In the BoW model, the frequency of each word in a document

is counted, and these frequencies are then used to identify potential keywords that

characterize the document. A frequency histogram constructed from these word counts

serves as a descriptive representation of the document. Using these histograms, specific

types of documents can be classified, with each document essentially being treated as a

“bag” of words. Similarly, BoVW applies this concept to image features, treating them

as the “words” of the image. In the context of lesion images and for this approach,

these features are the Transformed Colored SIFT key points and their descriptors. By

creating a visual dictionary from these extracted key points and descriptors, a feature

frequency histogram can be generated for each image. This histogram can then be

instrumental in predicting the class of the image, whether it is benign or malignant.

The entire process of BoVW, from feature extraction to classification, is outlined

in the pipeline presented in Figure 12. This figure visually depicts how the BoVW

method is adapted and applied to the task of melanoma detection, highlighting each

step involved in transforming image features into a useful format for classification.
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Figure 12. Pipeline of BoVW with SIFT descriptors.

The BoVW pipeline operates through a series of structured steps, beginning with

the extraction of key points and their descriptors from the entire dataset. These

extracted features serve as the basis for what will become the visual dictionary,

representing the whole dataset. The next phase involves clustering these descriptors.

This is achieved using a clustering algorithm, which can be chosen based on specific

requirements or preferences (Rui and Wunsch, 2005). For this pipeline, K-Means

algorithm is used. The clusters formed through this process are integral to the model,

with the centroid of each cluster becoming an element of the visual dictionary. These

centroids effectively encapsulate the core characteristics of the various groups of

features present in the dataset. Following the formation of the visual dictionary, key

points and their descriptors are then extracted from each image individually. For each

image, a frequency histogram is created based on how its features align with the cluster

centers in the visual dictionary. This histogram is a critical component of the model,

as it provides a quantifiable representation of the image in terms of the established

visual dictionary. Lastly, the classification of an image is determined by a simple SVM

classifier with RBF kernel.

3.3.4. Experiments

The experimental procedures followed the outlined pipeline, utilizing MATLAB

2019b (The MathWorks Inc., 2022) for generating frequency histograms and perform-

ing the final classification step. However, due to concerns about memory efficiency,

50



Anaconda (Anaconda Inc., 2020) was employed for the clustering process. From the

dataset of 670 images, over a million key points and their descriptors were extracted.

The Mini Batch K-Means clustering implementation in the Sci-Kit Learn package

(Pedregosa et al., 2011) within Anaconda was particularly useful. It features a “partial

fit” method that allows for data to be inputted in variably-sized batches for clustering,

accommodating the large volume of data efficiently.

In addressing one of the previously mentioned challenges about the variability in

the number of key points extracted from each image, a normalization of the frequency

histogram for each image is employed. Two different normalization approaches were

tested, with the results of both approaches evaluated. The first approach involved using

the l1-norm, where the frequency histogram is divided by the total number of key

points extracted from the corresponding image. The second approach used a similar

method but involved dividing each element in the histogram by the l2-norm of the

histogram itself. These normalization techniques aimed to standardize the histograms,

making them comparable across images regardless of the number of key points each

image initially produced.

In implementing this pipeline, a new challenge related to determining the optimal

number of clusters is emerged. The inherent uncertainty in identifying the precise

number of clusters present in the dataset necessitates experimentation with various

options. For the current phase of the framework, a few potential cluster numbers are

tested. The outcomes of these tests are detailed in the results presented in Table 9

below.

Table 9. Results from the BoVW with SIFT descriptors framework initial experiments.

Normalization Method (right)

No. of Clusters (below)
l1 Norm l2 Norm

K = 10 50.7% 51.7%
K = 100 54.5% 58.2%
K = 200 52.5% 56.75%
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3.3.5. Verdict

The experiments conducted and their subsequent results have yielded valuable

insights into melanoma detection. However, they have also demonstrated that the SIFT-

based approach alone is insufficient for effectively differentiating melanoma from

benign lesions. Despite this, the implemented Bag of Visual Words (BoVW) pipeline,

with its modular structure comprising four distinct steps, emerges as a promising

candidate for the backbone of the final framework.

The modular nature of the BoVW pipeline, encompassing feature extraction,

clustering, histogram generation, and classification, offers significant flexibility. Each

of these steps can be individually improved or replaced as needed, without neces-

sitating a complete overhaul of the entire pipeline. This modular design allows for

targeted enhancements at specific stages of the melanoma detection process. For

instance, the results indicated that SIFT descriptors lack the necessary distinctiveness

to adequately separate melanoma cases from benign ones. Consequently, we can

explore new methods only for feature extraction that yield more discriminative feature

vectors suitable for next step, clustering. Likewise, the clustering step itself presents

opportunities for refinement. Smart decisions regarding the number of clusters

could be made, perhaps by initially clustering data from benign and malignant

lesions separately to enhance the uniqueness of the visual dictionary’s cluster centers.

Alternatively, the introduction of a new clustering algorithm altogether might offer

improvements.

In the case of SIFT descriptors, the relatively low accuracies observed may stem

from their inherent calculation process. As previously explained, SIFT descriptors are

derived from the pixels surrounding a key point, and these key points are identified

based on major pixel variations on the image. Such variations can occur not only

in clinical features of interest but also along lesion borders and due to imperfections

in the background skin. Consequently, some descriptors might not carry any relevant

information about melanoma or the lesion itself. Given this limitation and the resulting

low accuracies, the use of SIFT descriptor features has been discontinued.

In summary, the exploration and experiments with the SIFT descriptors led to
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their abandonment. However, this process has been instrumental in the introduction

of the new Bag of Visual Words pipeline. The approach following this will focus

on enhancing the feature extraction step. It’s also crucial to note the importance of

normalizing the histograms generated in this pipeline. This normalization is essential

due to the varying total number of features represented in each image’s histogram. The

results in Table 9 indicate that using the l2-norm for histogram normalization yields

better results. Therefore, moving forward, the l2-norm will be the standard approach

for normalization in our ongoing development of the BoVW pipeline.

3.4. BoVW with Deep Neural Network Features

In this revised approach to the previous melanoma detection framework, the feature

extraction step has undergone a significant transformation. Instead of relying on

the SIFT descriptors, the new strategy involves extracting descriptive feature vectors

from the activations of pre-trained, well-established deep learning networks. This

modification has led to an updated framework, as depicted in Figure 13.

Figure 13. BoVW approach with updated feature extraction and new pre-processing

step.

For this proof of concept, a selection of 10 pre-trained models has been chosen:

AlexNet, GoogleNet, Inceptionv3, Inception-ResNetv2, Resnet101, VGG19, DarkNet,

DenseNet201, ResNet50, and Xception (Krizhevsky et al., 2012; Szegedy et al., 2015,
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2016, 2017; He et al., 2016b; Simonyan and Zisserman, 2014; Redmon, 2013; Huang

et al., 2017b; Chollet, 2016). These models were selected based on their proven

efficacy in object detection and medical image processing tasks, coupled with their

availability for direct usage after minor adaptations to our specific requirements. To

tailor these pre-trained models to the task of melanoma detection, a few modifications

were made, including the introduction of a new pre-processing step. This step not only

helps to align the models with the specific needs of our task but also alters the manner

in which we represent a single lesion image within the framework.

The integration of the new pre-processing step into the melanoma detection

framework is necessitated by two key reasons. Firstly, the various network models

selected for this approach each require different input sizes. Directly resizing the

original images to these varying dimensions would result in significant data loss.

Secondly, the constraint posed by the size of the sample dataset, which comprises only

670 lesion images, also presents a challenge. Utilizing a single feature vector per image

would limit the ability to discern distinctive features crucial for accurate melanoma

detection. To address these challenges, a strategy was devised where images from the

dataset are segmented into multiple overlapping patches with sliding window method,

each corresponding to the input dimensions required by the selected deep learning

model. These patches are then fed individually into the model, and the feature vector

that characterizes each patch is extracted from just before the classification layer of the

model.

Consequently, every image in the dataset is transformed into an assemblage of

feature vectors, each representing a different segment of the image. This approach

bears similarity to the previous SIFT-based method, but it leverages the feature

extraction capabilities of deep learning models. Major difference is instead of focusing

on specific points on the image, the entire image is utilized. By breaking down each

image into multiple patches and analyzing them separately, the framework gains a

more granular and comprehensive understanding of the image, potentially enhancing

the accuracy of melanoma detection.
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3.4.1. Experiments

Different number of experiments were conducted in alignment with the previously

outlined workflow. MATLAB 2020b was utilized for generating frequency histograms

and for the final classification stage. To maintain memory efficiency, Anaconda was

used for the clustering process again. In order to be able to explore more information

in a rather quick succession, a smaller dataset is generated from the 670 images

previously mentioned in Section 3.1. With that, from the dataset of 670 images, two

distinct datasets were created. The first dataset, labeled “full scale”, included each

image from the original set. The second dataset, labeled “small scale”, contained

a subset of 142 images, selected to expedite the experimental process and allow

for quicker iterations. The newly implemented pre-processing step, which involves

generating a high number of patches from each original image, ensures that even with

the "small scale" dataset, meaningful results can be obtained. It’s important to note

before going into the experiments, for both datasets, 70% of the images from each

dataset were used for training the models, while the remaining 30% of the images

were set aside for testing.

Moreover, two different approaches were employed in the clustering phase,

resulting in two variations of the same experiment. In the first approach, all extracted

feature vectors were inputted into the K-Means clustering algorithm, and the resulting

cluster centers were used as they were. In the second approach, the feature vectors from

benign and malignant cases were clustered separately within their respective classes.

The cluster centers obtained from these two groups were then combined and utilized

together. The rationale behind experimenting with separate clustering for benign and

malignant feature vectors, as opposed to clustering them all together, stems from a

concern regarding the distinctiveness of the cluster centers. It is hypothesized that

clustering all the data together might result in cluster centers that fall into a ’gray area’

between benign and melanoma characteristics. This could potentially diminish the

distinctiveness of these centers.

The first experiment was designed to identify which network model yields the

most valuable feature vectors. This experiment utilized the “small scale” dataset,
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encompassing the entire set of 142 images, and was conducted using both of the

clustering methods with K = 100. The results of this experiment are shown in the

Table 10.

Table 10. Initial test results for identifying the most effective network model to extract

feature vectors.

Network Separate Clustering
Accuracy

Normal Clustering
Accuracy

AlexNet 59.52% 56.66%
DarkNet 63.19% 59.52%
DenseNet-201 63.80% 59.04%
GoogleNet 65.28% 62.38%
Inception-V3 65.00% 60.80%
Inception-ResNet-v2 70.04% 66.28%
ResNet-50 69.16% 61.90%
ResNet-101 78.57% 67.00%
VGG19 66.67% 61.90%
Xception 63.67% 59.52%

The results shed light to crucial knowledge beyond choosing the appropriate

network model. First of all, the best results came by far from the ResNet-101 model

with 78.57% accuracy. Following that, all networks yielded better results if separate

clustering is used which proves the hypothesis mentioned previously. Additionally on

a side note, it can be deducted that the network models that includes residual layers

have an advantage in this framework and yield better results in general.

Following the initial experiment, a subsequent experiment was conducted to

investigate whether combining other high-performing feature vectors with those from

ResNet-101 could enhance accuracy. Specifically, feature vectors from models that

achieved an accuracy of over 65.00% were appended to the ResNet-101 feature

vectors. This combined set of vectors was then tested within the framework.

This experiment was carried out using the “small scale” dataset again and focused

exclusively on the separate clustering approach. Before exploring the results though,

it’s important to note that the experiments conducted up to this point were primarily

for proof of concept, and as such, accuracy was the sole metric used for evaluation.

However, moving forward, the experiments aimed at refining the framework will
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include a broader range of metrics namely “Accuracy, Sensitivity, Specificity, and

Precision” to provide more comprehensive insights. The results detailed in Table 11,

revealed that while the combination with GoogleNet’s vectors came close, none of the

combined feature vector sets outperformed the ResNet-101 vectors when used alone.

Table 11. Combinations of feature vectors and their effects on the results.

Network Accuracy Sensitivity Specificity Precision

ResNet101 + AlexNet 71.4285% 85.7142% 57.1428% 66.6667%

ResNet101 + GoogleNet 76.1904% 76.1904% 76.1904% 76.1904%

ResNet101 + Inception v3 64.2857% 85.7142% 42.8571% 60.0000%

ResNet101 + Inception-ResNet v2 69.0476% 71.4285% 66.6667% 68.1818%

ResNet 101 + VGG19 71.4285% 90.4761% 52.3809% 65.5172%

In addition to the feature vectors, three key variables were identified that could

potentially impact the results of the melanoma detection framework. The first is

the resolution of each image. The varying resolutions of the images influence the

amount of information extracted when dividing them into patches. Some images,

due to their resolution, may yield more representative patches, while others might be

underrepresented. To mitigate this discrepancy, standardizing all images to a common

resolution without altering the aspect ratio was considered as a potential solution.

The second variable is the “OVERLAP” value, which dictates the degree of pixel

overlap when segmenting images using a sliding window technique. The overlap

value has an inverse relationship with the amount of information derived from each

image, a smaller overlap value results in more information being captured. However,

it’s hypothesized that too small an overlap might lead to redundancy and overfitting,

while a larger overlap could risk missing melanoma indicators or conflating benign and

malignant features.

The third variable is the number of clusters, which directly influences the size of

the “dictionary” used in the Bag of Visual Words method. To optimize these variables,

a range of values was established for each (as shown in Table 12), and combinations

of these values were tested in subsequent experiments.

As indicated in Table 12, the exploration of various combinations of the three
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Table 12. Range of possible values for the three variables to be tested.

Variable Values

Resolution
Between mean and

lowest resolution (ML)
Mean of all

resolutions (M)
Between mean and

highest resolution (MH) -

OVERLAP 20 50 80 100
No. of Clusters 20 50 80 100

variables amounts to a total of 48 distinct experiments and result tables. To maintain

clarity and focus on the most relevant findings, only the tables showcasing the top 3

results from these experiments are presented below.

Table 13. Experimental results where Mean of resolutions (ResNet101_M) and

OVERLAP = 50 values are used.

Network / Cluster Accuracy Sensitivity Specificity Precision

ResNet101_M / 20 69.0476% 66.6667% 71.4285% 70.0000%

ResNet101_M / 50 69.0476% 71.4285% 66.6667% 68.1818%

ResNet101_M / 80 80.9523% 85.7142% 76.1904% 78.2608%

ResNet101_M / 100 76.1904% 76.1904% 76.1904% 76.1904%

Table 14. Experimental results where between mean of resolutions and maximum

resolution (ResNet101_MH) and OVERLAP = 100 values are used.

Network / Cluster Accuracy Sensitivity Specificity Precision

ResNet101_MH / 20 59.5238% 52.3809% 66.6667% 61.1111%

ResNet101_MH / 50 64.2857% 66.6667% 61.9047% 63.6363%

ResNet101_MH / 80 85.7142% 95.2380% 76.1904% 80.0000%

ResNet101_MH / 100 83.3333% 80.9523% 85.7142% 85.0000%

Table 15. Experimental results where between mean of resolutions and lowest

resolution (ResNet101_ML) and OVERLAP = 100 values are used.

Network / Cluster Accuracy Sensitivity Specificity Precision

ResNet101_ML / 20 66.6667% 76.1904% 57.1428% 64.0000%

ResNet101_ML / 50 76.1904% 90.4761% 61.9047% 70.3703%

ResNet101_ML / 80 83.3333% 90.4761% 76.1904% 79.1667%
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Table 15 continued from previous page

ResNet101_ML / 100 71.4285% 80.9523% 61.9047% 68.0000%

Analyzing the data from Tables 13, 14, and 15, it becomes evident that varying

the combinations of the three key variables led to a significant improvement in the

results of our melanoma detection framework. Notably, the most effective results were

achieved with a specific combination: using 80 clusters, setting the image resolution

to a midpoint between high and mean, and dividing the images into patches with 100-

pixel intervals.

To conclusively gauge the level of improvement achieved over previous frame-

works, the best-performing combination identified from these experiments was also

tested on the “full scale” dataset. Remarkably, this framework, with the optimized

combination of variables, achieved an accuracy of 75.00%.

3.4.2. Verdict

The results obtained clearly indicate that the modifications made to the feature

vector extraction process in our workflow have positively impacted the overall

performance. Furthermore, the specific combinations of values for the three key

variables have optimized the workflow, leading to the most effective results achieved

to date. When compared to the best outcomes of the previous frameworks, there is a

notable improvement of nearly 19%.

The outcomes offer several key insights. Firstly, the Bag of Visual Words (BoVW)

based framework has proven not only effective but also adaptable for future updates.

Secondly, the ResNet-101 model, and residual networks in general, have demonstrated

their capability in providing highly representative feature vectors suitable for this

framework. Given their effectiveness, ResNet-101 vectors will be the primary choice

for feature extraction in future iterations of the framework. Additionally, the approach

of clustering feature vectors separately for benign and malignant lesions to construct

the BoVW dictionary has shown to be more effective than clustering all vectors

together. This separate clustering approach will be adopted as a standard practice

moving forward. The optimization of the variables such as resolution, overlap, and
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the number of clusters has significantly enhanced the framework’s performance. The

specific combination of using 80 clusters, setting the image resolution to a midpoint

between high and average (labelled MH), and segmenting the images into patches with

100-pixel intervals, has been identified as the most effective. These settings will be the

default parameters in subsequent versions of the framework.

3.5. BoVW with Neural Style Transfer (NST)

The adaptation of the feature extraction step to incorporate a pre-trained network

model marked a significant improvement in the framework. However, further

enhancements were necessary for optimal performance. One potential area of

improvement identified was the handling of patches extracted from lesion images.

In the current framework, patches are generated from the entire image, including

large areas of background skin and potential artifacts. As a result, a substantial

portion of these patches may contain information irrelevant to melanoma detection.

Under normal circumstances, this might not significantly impact the overall outcome.

However, the framework’s methodology involves treating each patch as representative

of the label assigned to the source image. This means that a patch derived solely from

the background skin of a melanoma-labeled image is inaccurately represented as a

melanoma feature vector. This misrepresentation can potentially mislead the system.

To overcome this, a new step before the preprocessing was tried: Neural Style

Transfer (NST) (Jing et al., 2020). NST is an optimization technique that merges two

distinct images: a content image, which is the primary subject, and a style reference

image, often you can see this as an artwork by a renowned artist. The goal of this

process is to produce an output image that retains the core structure or content of the

content image but rendered in the artistic style of the style reference image. This

technique is achieved through an optimization process where the output image is

iteratively refined to align with the content characteristics of the content image and

the stylistic elements of the style reference image. The extraction and matching of

these characteristics are accomplished using a CNN.

NST for melanoma detection starts with specifying the two components: the

content image and the style reference image. In this context, the content image serves
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as the foundation, establishing the fundamental characteristics for the output image.

For our framework, we have selected two types of content images. The first is a blank

canvas, essentially an empty image, while the second is created by averaging the color

channels of each lesion image in the “full scale” dataset. Both content images are

of the same size, 900× 900 pixels. This size strikes a balance between ensuring a

sufficient number of patches are available for effective feature extraction and reducing

the computational load to make the process more time-efficient. The style reference

in this case is the lesion images in our “full scale” dataset. NST employs a CNN to

extract defining features from the content image and style elements from the reference

image. These extracted elements are then combined to produce the output image,

which retains the characteristics of the content image but is rendered in the unique style

of the reference image. This uniformity in characteristics with individualized styles is

the fundamental advantage of NST. Figure 14 illustrates two transformed lesion images

using the empty content image. In contrast, Figure 15 demonstrates two transformed

lesion images using the averaged content image, a method also referred to as “Guided”

NST. The term “guided” is used because the introduction of shapes or styles into the

content image influences how the styles from the reference image are applied, thereby

guiding the transformation in a specific way.

Figure 14. NST - the original lesion images are displayed on the left side, while on the

right side, we see the results of transferring their styles onto an empty content image.

61



Figure 15. Guided NST - The top three images show a benign lesion with its styled

counterpart and a benign content image derived by averaging RGB channels from all

benign images. The bottom three represents the same for a malignant lesion.

3.5.1. Experiments

Two experiments were done to evaluate the effectiveness of the Neural Style

Transfer (NST) approach in melanoma detection framework.

The first experiment involved using the NST method to capture the styles from the

lesion images in the “full scale” dataset and applying them to an empty content image.

This approach focused solely on the style attributes of the lesions, omitting information

about shape and location of sub-textures. The hypothesis was that the unique styles

of the lesions would enhance the distinguishing features that help classify images as

benign or malignant. Despite these expectations, the results were not as anticipated.

The accuracy achieved was only 68.95%, which was significantly lower than the results

from previous version.

The second experiment employed the Guided NST method. This approach aimed

to create a content image that could guide the style transfer process in a way that would

highlight common characteristics across all samples, while also enhancing individual

features. The content image was generated by averaging the RGB channels of all

images within a class. The intent was to bring all samples to a common baseline while
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emphasizing the textures and colors within the lesions. However, this method, applied

to the “full scale” dataset using the stylized images from Guided NST, yielded an

accuracy of 70.14%. While this was a slight improvement over the NST experiment,

it still fell way short of the previous framework’s performance, which had an accuracy

of 75.00%.

3.5.2. Verdict

The results from the experiments with NST and Guided NST suggest that while

these techniques offer benefits in enhancing input patches, they fall short of improving

the performance of the existing melanoma detection pipeline. Consequently, the use

of NST in its current form will be discontinued in future iterations of the melanoma

detection framework.

A closer examination of the low performance associated with NST is crucial to

understand the decision to cease its use. In the first NST experiment, the default

settings involved an empty content image and utilized a pre-trained VGG-19 network.

This network was originally trained on everyday images, which differ significantly

from medical imaging data. Additionally, the standard NST process extracts activation

vectors from four different layers of the VGG-19 network, but this approach proved

to be extremely time-consuming in our experiments. Processing just one image took

about an hour, indicating that processing the entire dataset would be impractical for

a timely diagnosis. To mitigate this, only activations from the last layer of VGG-19

were used in our experiments. This change, however, may have reduced the possible

performance boost that employing all four layers may have provided. Given that one

of our aims is to develop a melanoma detection framework that is efficient and swiftly

adaptable to new data, the lengthy processing time of NST in its default configuration

renders it unsuitable for our cause.

In a future research, alternative network models, particularly those with residual

capabilities, might be considered for NST. As indicated in Table 10, networks

with residual capabilities have previously demonstrated better performance in our

framework.
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3.6. Bag of Visual Words with Enhanced Deep Features

The exploration of NST revealed that it was not a suitable approach for our

purposes. However, the concept of enhancing image patches remains a promising

avenue for improving the performance of our melanoma detection framework. Recent

advancements have shown that extracting various types of masks from the original

image and using them either for classification or as a means of image enhancement

can be effective in certain applications (Karakaya et al., 2021). These masks are

typically derived from pixel values and statistical analyses between them. Once

extracted, they can either be used directly as features or applied back to the image

as a form of enhancement, similar to a preprocessing step. In the new iteration of

our melanoma detection framework, this method is adopted to enhance image patches.

This involves extracting pertinent information from the patches and then reapplying it

to them, thereby improving their quality and relevance for the detection process. In the

framework, this step is positioned between the steps of dividing images into patches

and extracting feature vectors.

Additionally, the issue of patches containing excessive background skin and

artifacts is addressed, which has been a persistent challenge. In this updated version, a

more selective approach to patch gathering is implemented. This new step, named

“Patch Extraction” from now on, is designed to selectively extract patches based

on their lesion content. Specifically, it only extracts patches if more than 50% of

their pixels are derived from the lesion area. This is made possible by utilizing the

segmentation masks provided for each image in the ISIC Archive. According to that,

the framework is updated once more as seen in Figure 16.

3.6.1. Patch Enhancement Masks

To enhance the image patches, it is considered to use five different types of masks:

Principal Component Analysis (PCA), Well-exposedness, Saturation and Brightness.

These masks have been selected based on their demonstrations in similar contexts, as

detailed in Karakaya et al. (2021). The following provides an overview of each mask

and its intended function. The phrase “applying a feature mask” in this context refers
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Figure 16. Updated framework with newly added patch enhancement step.

to performing an element-wise multiplication between the original image patch and

the feature mask.

PCA. The first mask under discussion utilizes PCA to assign greater weights to

dominant pixels in an image, an approach aligned with the core philosophy of PCA.

Consider an image patch with its constituent color channels: Red (R), Green (G), and

Blue (B). Each of these channels has dimensions of r×c pixels, where r and c represent

the number of rows and columns, respectively, in the patch.

The PCA-based process involves several steps. Each color channel is transformed

into a vector. These vectors are then stacked to form a matrix of dimensions rc×

3. PCA is then applied to this matrix to compute observation scores. This analysis

highlights the principal components, essentially identifying the dominant features in

the color space of the image patch. The resulting score vectors are normalized linearly

within the range of [0,1]. These normalized scores are then reshaped back into matrices

of dimensions r×c , creating a PCA weight matrix for each color channel of the patch.

Lastly, to emphasize the less dominant pixels, which might be crucial in identifying

subtle signs of melanoma, the weight matrices are subtracted from 1. This inversion

gives larger weights to pixels that were initially less dominant in the PCA analysis.

The decision to focus on less dominant pixels is informed by the nature of
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melanoma, where key indicators may be dispersed and not immediately conspicuous,

especially in areas that appear healthy. This subtlety poses a challenge in melanoma

detection, even for experienced dermatologists. The use of PCA in this way aims to

enhance the visibility of these subtle but critical signs, as elaborated in the studies by

Elder et al. (2020) and Dahiya (2002). The Figure 17, shows a PCA mask and its

application.

Figure 17. On the left a PCA mask taken from a patch is shown. The same patch after

PCA mask is applied is on the right.

Well-exposedness. The “well-exposedness” mask focuses on the optimal exposure

level of pixels within an image. It aims to emphasize pixel intensities that are neither

too under-exposed (too dark) nor over-exposed (too bright). The exposure level is

gauged based on intensity values that fall within the range of [0,1], where 0 represents

complete under-exposure and 1 represents full over-exposure.

For this mask, the target is to highlight pixels whose intensity levels are close to

the median value of 0.5, indicating a balanced level of exposure. These well-exposed

pixels, situated in the mid-range of the intensity spectrum, are deemed to offer the most

useful visual information.

The well-exposedness feature for each color channel in an image patch is extracted

using a Gaussian curve. This process is applied separately to the Red (R), Green (G),

and Blue (B) channels of the image, denoted as IR, IG and IB respectively.
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The Gaussian curve is shown in the Eqn. 9 as

EI∗ = exp
(
−(I∗−0.5)2

2σ2

)
(9)

where EI∗ denotes the well-exposedness map of the color channel I∗ and σ is standard

deviation of the image patch pixels.

Saturation. Color variation plays a critical role in identifying melanoma, and

saturation (SAT) features are instrumental in assessing the purity and intensity of colors

within each image patch. High saturation values are indicative of colors that are more

intense and uniform. In the context of melanoma detection, areas with higher saturation

are often more significant and thus, SAT features assign greater weights to pixels with

higher saturation values.

To compute SAT features, the S-channel (saturation channel) of the HSV (Hue,

Saturation, Value) color space is employed. In line with the approach used for PCA

matrices, the saturation values are inverted by subtracting them from 1 before they

are used as a weight mask. This inversion ensures that the focus is on pixels with

higher original saturation values, as these are likely to be more relevant in the context

of melanoma detection. The Figure 18, shows a SAT mask and its application.

Figure 18. On the left a SAT mask taken from a patch is shown. The same patch after

SAT mask is applied is on the right.

Brightness. The brightness (BRI) feature of a pixel is calculated based on its
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deviation from the mean value of the color channels at the same spatial location. This

approach allows for the assessment of how bright or vibrant each pixel is compared

to the average color intensity at that point in the image. Once the BRI values are

computed with Eqn. 10 below for each pixel in each color channel, then they are

normalized to fit within a range of [0,1]. The Figure 19, shows a BRI mask and its

application.

BI∗ = |I∗−M| (10)

Figure 19. On the left a BRI mask taken from a patch is shown. The same patch after

SAT mask is applied is on the right.

3.6.2. Experiments

To comprehensively evaluate the effectiveness of the enhancement masks in the

melanoma detection framework, a series of 11 distinct runs were conducted. These

runs included tests of each mask individually as well as various combinations of these

masks. It’s important to note that the patch enhancement step, involving the application

of these masks, was incorporated between the patch extraction and feature extraction

steps in the workflow, with no other modifications made to the framework.

MATLAB 2020b was again the tool of choice for generating frequency histograms

and conducting the final classification step. Meanwhile, Anaconda was utilized for the

clustering process, ensuring efficient memory usage and “full scale” dataset is used.
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The results of these experiments, which include combinations of different enhance-

ment masks and their impact on the framework’s performance, are detailed in Table 16.

In this table, “RGB” refers to the original image patch without any mask applied. The

“+” symbol is used to represent element-wise multiplication, indicating how each mask

was applied to the image patches.

Table 16. Experimental results after applying masks individually or their combinations

to the image patches.

Accuracy Sensitivity Specificity Precision

PCA + RGB 64.45% 60.90% 68.00% 65.55%

SAT + RGB 69.00% 70.00% 68.00% 68.62%

BRI + RGB 70.50% 76.00% 65.00% 68.46%

W_EX + RGB 65.01% 70.00% 60.03% 63.65%

PCA + BRI + RGB 69.50% 72.00% 67.00% 68.52%

PCA + W_EX + RGB 65.50% 73.00% 58.00% 63.47%

PCA + SAT + RGB 63.00% 57.00% 69.00% 64.77%

SAT + BRI + RGB 71.40% 65.00% 77.00% 73.86%

W_EX + SAT + RGB 62.50% 70.00% 55.00% 60.86%

PCA + SAT + W_EX + RGB 70.00% 72.00% 68.00% 69.23%

PCA + SAT + BRI + RGB 72.50% 78.00% 67.00% 70.27%

PCA + SAT + W_EX + BRI + RGB 68.00% 72.00% 64.00% 66.66%

3.6.3. Verdict

The analysis of the results clearly shows that both the SAT and BRI masks, whether

used individually or in combination, tend to improve the results of the framework.

Among these, the BRI mask stands out as particularly effective. Conversely, the W_EX

(well-exposedness) mask appears to have a detrimental effect on overall accuracy.

In terms of combinations, the best results within the patch-enhanced BoVW

framework were achieved when the PCA, SAT, and BRI masks were used together.

Despite this improvement, it’s notable that the highest accuracy achieved with these

combinations still falls short of the previous benchmark of 75.00%. However, it’s

69



important to consider that the efficacy of patch enhancement is highly dependent on

the number and variability of patches. As such, increasing the number of samples and

the diversity of patches could potentially enhance the performance of this method.

Given this possibility, we have decided not to completely abandon the use of patch

enhancement. Instead, subsequent variations of the framework will be tested both with

and without the patch enhancement step to further evaluate its impact and potential

benefits as the dataset scales.

3.7. Weighted BoVW with Enhanced Deep Features for Melanoma Detection

Up to this point, the modifications and experimental efforts have primarily aimed

at enhancing feature vector quality. Most changes were responses to the first two

challenges highlighted in Section 3.3.2, focusing on improving how feature vectors

are derived from image patches. However, there has been no action yet to address the

third challenge, which is intrinsic to the nature of melanoma and its representation in

the framework.

Despite the substantial changes to the framework, one fundamental issue persists:

each original image is still represented by a combination of feature vectors extracted

from the image’s patches, with these vectors inheriting the same label as the image

itself. These labels become problematic in the context of melanoma detection. In a

malignant lesion, only a small portion of the lesion may exhibit melanoma-specific

features, while the majority of the lesion might display benign, non-informative

features. However, under the current labeling scheme, all patches from a malignant

lesion are labeled as malignant, irrespective of their actual content.

Melanoma’s inherent characteristics contribute to this challenge. A lesion is

classified as melanoma if it exhibits certain clinical features indicative of the condition.

These features are often scattered and present only in small areas, particularly in

early stages. The rest of the lesion may appear healthy, displaying benign features.

Conversely, a benign lesion lacks these melanoma indicators. Considering this, the

dictionary created in the BoVW framework ends up comprising half benign features

and half mixed features mislabeled as malignant.

To address this problem, an update to the histogram generation step in the
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framework has been thought, based on the following approach.

3.7.1. Weighted BoVW

BoVW technique comes from the Bag of Words as it is mentioned previously.

In NLP, this technique can be used to classify text documents with the frequency

of each word in the document. When looked carefully, one can see that there is a

similar problem in document classification as melanoma detection. If you think the

classification of a document in terms of its general topic, the problem seems to be

solved relatively easily with BoW because of the number of topic related words in

the text. A real life example may be a text about the performance of a processor.

When classified this way the BoW technique can easily say that this is a tech related

text. However, if the problem changes from “find the topic” to “which PC part’s

performance is discussed in the text”, then BoW will have problems. The frequencies

of processor related words are much much less than the tech related words. Moreover,

words like “a”, “an”, “the” dominate the frequency histograms. Then, the problem

becomes to finding small indicators scattered in the text to detect the PC part, which is

very similar to melanoma detection.

The solution again comes from the BoW concept. A weighting scheme applied to

the histograms can impact the performance immensely. In the case of NLP, one can

lower the impact of non-informative words by a smaller weight or some key words

may have huge weights to increase their impact. Choi and Han (2013)’s study presents

a good evaluation of some of these schemes for BoW concept. The same type of

approach can be used for melanoma detection. In the histogram generation step, a

weight can be applied to the melanoma features to make them look like their frequency

is much higher. This would differentiate the images with patches that are closer to the

melanoma cluster centers in the dictionary. Of course this could have been applied to

the benign features too but, benign features exist in both parts of the dictionary which

makes this not beneficial. The weight scheme is implemented in histogram generation

step of the framework.
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3.7.2. Experiments

Two experiments were conducted using the “full scale” dataset, utilizing MATLAB

2020b for processing. As in previous instances, Anaconda was employed for the

clustering phase. The experiments aimed to test the impact of introducing a weighting

scheme in the Bag of Visual Words (BoVW) framework, both with and without the

addition of patch enhancement.

The first experiment involved the application of the Weighted BoVW framework

without any patch enhancement. In this approach, a default weight of 10 was applied

by adding it specifically to the frequency of features identified as melanoma indicators

during histogram generation. This weight value has been determined following

extensive experiments among a range of options from 1 to 50.

The second experiment used the same Weighted BoVW framework but incor-

porated the patch enhancement step. Again, a default weight of 10 was applied.

Furthermore, the combination of PCA, BRI, and SAT masks, which previously showed

the best performance, was used to enhance the patches.

The results of these two experiments, detailing the effectiveness of the weighted

approach in the BoVW framework with and without patch enhancement, are presented

in the accompanying Table 17.

Table 17. Results of Weighted BoVW approach on “full scale” dataset.

Framework Accuracy Sensitivity Specificity Precision
Weighted BoVW
with Deep Features %91.00 %95.00 %87.00 %87.96

Weighted BoVW with
Enhanced Deep Features %94.50 %96.00 %93.00 %93.20

The outcomes of the experiments provide a compelling insight into the effec-

tiveness of the updated approaches in the melanoma detection framework. Notably,

both the Weighted BoVW frameworks outperformed all previous versions in terms of

accuracy.

Interestingly, the framework incorporating patch enhancement exhibited slightly

better performance compared to its non-enhanced counterpart. This improvement,

although modest, is particularly noteworthy given that patch enhancement had not
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previously demonstrated a clear advantage in earlier experiments. One plausible

explanation for this enhanced performance is the introduction of the weighting scheme.

By assigning greater significance to features indicative of melanoma, the weighting

scheme might have amplified the impact of the melanoma features that were further

emphasized through the patch enhancement process.

3.7.3. Verdict

The significant improvement in performance observed with the introduction of a

weighting scheme to the BoVW framework strongly suggests that this approach was

a beneficial and effective modification. This advancement is a pivotal moment as it

demonstrates a level of accuracy and reliability that suggests the framework is ready

for a broader evaluation within the field.

With this milestone achieved, the focus now shifts to detailing and illustrating the

final version of the framework. The remaining parts of this section will be dedicated to

presenting the Figure 20 that visually represents the latest iteration of the framework.

Accompanying this figure will be a thorough explanation of each step involved in

the process, providing a clear understanding of how the framework functions and the

rationale behind each component.

Figure 20. The latest framework: Weighted BoVW with Enhanced Deep Features.
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The framework consists of six steps in its finalized form: Preprocessing, Patch En-

hancement, Feature Extraction, BoVW Dictionary Generation, Histogram Generation

and Classification.

Preprocessing. The preprocessing step is about determining the optimal resolu-

tions for input images and extracting patches from them. It starts by considering three

potential common resolutions: “the mean resolution (M)”, “the average of the mean

and the highest (MH)”, and “the average of the mean and the lowest (ML)”. Subsequent

experiments, building on our previous work, indicated that the MH resolution was

the most effective, leading to its selection as the final resolution for the framework.

It’s important to note, however, that the specific value of MH is dependent on the

resolutions of the images in the dataset used, meaning that this value can vary with

different datasets.

Once the images are rescaled to the MH resolution, the framework extracts

overlapping image patches of n×n pixels from each image. The size of these patches,

denoted by n, is determined by the input requirements of the preselected pretrained

network model, which in this case is ResNet-101. Therefore, n is set to 224 pixels in

the framework.

Another key parameter in this process is the degree of overlap between successive

patches, defined by m × m pixels. This overlap parameter plays a crucial role in

dictating the similarity among the input patches used for feature extraction. Setting

m too small may lead to overfitting, as patches might become too similar, while a

large m value might cause the system to miss critical features that distinguish benign

from malignant lesions. Through empirical testing, the optimal value for m has been

established as 100 pixels.

The final phase of this step involves using segmentation masks, where available,

to count the number of pixels from both the background skin and the lesion within

each patch. Patches with more than 50% of their pixels corresponding to the lesion are

selected for feature extraction. Patches that do not meet this criterion are excluded.

Patch Enhancement. The enhancement of image patches extracted from the

melanoma detection framework is a crucial step that significantly contributes to the
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accuracy of the system. This enhancement is achieved through the application of

three specific feature maps: PCA, BRI, and SAT. The choice to use these three masks

was decided by an extensive analysis of various feature map candidates and their

combinations, also building upon insights from previous research (Okur and Turkan,

2022). These masks are calculated as described in Section 3.6.1.

Each of these feature maps is applied to enhance the image patches in every color

channel. The enhancement is executed through a direct per-pixel weighting strategy,

where the weights derived from these feature maps are applied either individually or

in combination to each image patch.

Feature Extraction. Regarding feature extraction, after rigorous testing of various

options, ResNet-101, pretrained on the ImageNet dataset (Deng et al., 2009), emerged

as the most effective model for our framework. The choice of ResNet-101 is based on

its proven efficacy in accurately extracting features relevant to melanoma detection.

In the implemented experiments, feature vectors are extracted from the final fully

connected layer of the ResNet-101 network. These feature vectors have a fixed size of

1000, corresponding to the fixed patch size of n = 224 pixels, which aligns with the

input layer requirements of the model.

BoVW Dictionary. In addressing the binary classification problem of distinguish-

ing between benign and malignant lesions in melanoma detection, BoVW needs the

feature vectors extracted from the image patches to be strategically organized into

clusters based on their labels for dictionary generation.

The step involves separately clustering the feature vectors derived from benign

images and those from malignant images. Specifically, the feature vectors from benign

images are grouped using (K/2)-means clustering, and the same method is applied

to the vectors from malignant images. The objective here is to identify distinct and

representative cluster centers for each class—benign and malignant. These centers

are expected to efficiently characterize the respective class’s feature space while

minimizing the presence of outliers. Each cluster center within a class effectively acts

as a specific marker, indicating that an image containing this feature likely belongs to

75



that class.

The total number of clusters, denoted as K, plays a critical role in determining

the size of the histogram vectors that are created in the next stage of the framework.

These histogram vectors are then used in a Support Vector Machine (SVM) for the

final classification. It’s important for these histograms to have a consistent length and

to be sufficiently sparse to effectively distinguish between benign and malignant cases.

The selection of the K value (number of clusters) should be carefully optimized

according to the size of the dataset. Larger datasets with more varied features and

indicators may require a higher K value to capture the increased diversity. In the case

of our “full scale” dataset used in this framework, BoVW dictionary includes 40 key

features per class, resulting in a total of K = 80 cluster centers.

Histogram Generation. The process of generating histograms starts after the

representative BoVW dictionary has been established, the framework proceeds to

construct histograms that capture the distribution of feature vectors in relation to the

cluster centers.

Each histogram is initialized as a zero vector with a length of K, corresponding to

the total number of cluster centers in the BoVW dictionary. For each feature vector

extracted from the image patches, the framework identifies the nearest cluster center

among the K available. This identification is based on minimizing the Euclidean

distance between the feature vector and the cluster centers. Upon determining the

nearest cluster center for each feature vector, the histogram is updated accordingly. The

index k of the nearest cluster center is identified, and the k-th value in the histogram

is incremented. The increment is by a weight, which is either 1 for benign or 10 for

malignant, depending on the closest center.

Lastly, given that each image results in a variable number of patches (and thus

feature vectors), the histograms produced for each image will have different counts

of contributions. To ensure that the histograms can be used to train an unbiased

classifier, they need to be normalized. The initial experiments in the development

of this framework indicated that normalization using the ℓ2-norm was more effective

than using the ℓ1-norm. Therefore, each histogram vector is normalized based on its
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ℓ2-norm, bringing them to a common scale and making them suitable for comparison

and classification.

Classification. To complete the melanoma detection process, a SVM classifier

with a radial basis function (RBF) kernel is employed (Cortes and Vapnik, 1995).

The SVM classifier is trained using a 10-fold cross-validation approach. The

hyperparameters of this SVM are optimized automatically using the functions available

in MATLAB 2020b.
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CHAPTER 4: EXPERIMENTAL RESULTS

To accurately assess the standing of our melanoma detection framework within

the broader context of the field, a fair and comprehensive comparison with other

successful frameworks is essential. The International Skin Imaging Collaboration

(ISIC) challenges, as discussed in Section 2.3, provide an ideal platform for such a

comparison. Each year, ISIC organizes a challenge accompanied by a specific dataset

for that year’s competition. Over time, ISIC releases the ground truth data for the test

set, along with a leader-board that ranks the participating frameworks based on their

performance.

This leaderboard is particularly valuable as it not only ranks the frameworks

but also provides detailed results for each competitor. This transparency enables

researchers to make fair and informed comparisons with state-of-the-art frameworks

in the domain. For this thesis, the ISIC 2017 Dataset (Codella et al., 2017) is utilized

and our framework’s performance is compared with the top-10 entries on the ISIC

Challenge 2017 Leader-board (ISIC, 2017).

4.1. ISIC 2017 Dataset

The ISIC datasets are meticulously organized and provide a standardized platform

for melanoma detection research, facilitating fair and uniform comparisons across

different studies. The datasets typically consist of separate, clearly defined sets of

training, validation, and testing images. This structure ensures that all participants

in the ISIC challenges use the exact same dataset for their experiments, maintaining

consistency across different frameworks.

For the purpose of our study, the ISIC 2017 dataset was chosen primarily due to

the availability of ground-truth labels for the test images (Goyal et al., 2020). Starting

from 2018, ISIC began hosting live challenges with an online evaluation server, and

consequently, stopped releasing test image data. This change makes the ISIC 2017

dataset the most recent one publicly available that includes both the ground-truth labels

for each test image and the gold standard segmentation masks.
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The ISIC 2017 dataset comprises 1626 benign and 374 melanoma images for

training, and 483 benign and 117 melanoma images for testing. These images are

sourced from patients of the contributing facilities and are fully labeled. One notable

characteristic of this dataset is the significant class imbalance, with malignant cases

being far less frequent than benign ones.

To address this imbalance, we implemented a data augmentation strategy similar to

the one used by Menegola et al. (2017), which ranked third in the lesion classification

category of the ISIC 2017 Challenge. This augmentation method involves randomly

modifying melanoma training images via horizontal and vertical shifts (up to 10%),

zoom (up to 20%), and rotation (up to 270 degrees). This process ensures that for

each original melanoma image, at least one augmented version is created, effectively

balancing the number of melanoma cases in the dataset to match the number of benign

cases.

4.2. Environment

The experimental setup for the melanoma detection framework was conducted on

a system with modest yet capable hardware specifications. The key specifications of

the system used for the experiments are as follows: Intel Core i7-4790K processor,

32GB RAM and NVIDIA GTX980. Additionally, MATLAB 2020b is utilized under

the Windows 10. Python 3.8 was used for clustering process for memory efficiency.

Even with these specifications, which is far from the latest in terms of technological

advancements, the framework demonstrated commendable efficiency in terms of

processing time. The most time-intensive part of the experiment, encompassing feature

extraction and training, was completed in approximately fourteen hours. This duration

is relatively short, considering the complexities often involved in image processing and

machine learning tasks.

A key factor contributing to this efficiency is the framework’s reliance on feature

extraction from a pretrained ResNet-101 model, rather than training a deep neural

network from scratch. By utilizing a pretrained model without a change, the framework

significantly reduces the computational burden associated with the training phase.
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4.3. Evaluation Metrics

In the context of the ISIC 2017 Challenge, the leader-board primarily uses Bal-

anced Multi-class Accuracy (BMA) as the key metric for ranking, considering that the

challenge involves two separate binary classification tasks: distinguishing melanoma

from nevus and seborrheic keratosis, the latter two being types of benign skin tumors.

However, for this research focusing specifically on differentiating between melanoma

and benign lesions, additional metrics are needed for a comprehensive evaluation.

Therefore, six other metrics provided by the ISIC organization are utilized to assess the

effectiveness of the proposed methodology against the leader-board results: Accuracy

(ACC= T P+T N
T P+FP+FN+T N ), Sensitivity (SENS= T P

T P+FN ), Specificity (SPEC= T N
T N+FP ), Dice

Coefficient (DC= 2T P
2T P+FP+FN ), Positive Predictive Value (PPV= T P

T P+FP ) and Negative

Predictive Value (NPV= T N
T N+FN ). The symbols T P, T N, FP, and FN represents true

positives, true negatives, false positives, and false negatives respectively.

4.4. Parameters and Patch Enhancement

The framework requires careful adjustment of its parameters given below, because

these parameters are influenced by the specific characteristics of the dataset in use. For

the ISIC 2017 dataset, it is essential to tailor these parameters appropriately to align

with the dataset’s unique features and ensure the framework operates at its highest

efficiency.

The preprocessing step rescales the lesion images based on the average and

maximum resolutions of the dataset. This process, which can be automated, computes

the MH resolution and then rescales images to match this resolution on their longer

sides while preserving aspect ratios. For the ISIC 2017 dataset, the MH resolution

standardizes the longer sides to 1430 pixels.

The patch size, n, is determined by the requirements of the chosen feature extractor

network. The overlap between patches, m, can typically be set as half the patch size.

With ResNet-101 as the feature extractor, n is set to 224, and m is set to 100, as

detailed in 3.7.3. Additionally, if segmentation masks are available like in the ISIC

2017 dataset, it allows for the exclusion of patches with more background than lesion
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pixels more easily. However, in datasets without segmentation masks, methods such

as adaptive thresholding can be employed to accomplish this task (Bradley and Roth,

2007).

The total number of clusters in the K-means algorithm (denoted as K) should

reflect the diversity of the dataset. Hence, it also needs to be adjusted. For the

ISIC 2017 dataset, K is empirically set to 1000 after testing values between 100 to

2500 with increments of 50. This number can also be estimated automatically using

techniques like silhouette analysis (Kaufman and Rousseeuw, 2008), keeping in mind

that histograms should remain sparse for efficient classification.

For patch enhancement, the effectiveness of patch enhancement masks (PCA,

BRI, and SAT) was re-evaluated with the ISIC 2017 dataset and evaluation metrics

to confirm their efficacy and determine the best combination. The results, shown

in Table 18, reveal that BRI significantly improves performance by 0.043 against

no enhancement in terms of accuracy, while SAT has minimal impact in line with

previous experiments decreasing the accuracy by an insignificant value, 0.003. It

is also important to note that, only SAT falls behind the framework without patch

enhancement. Hence, proving the benefits of our enhancement upgrade to BoVW

framework. In the meantime, PCA combined with BRI has the best accuracy with

increasing the no maps accuracy by 0.057. However, the combination of PCA, BRI,

and SAT, despite not being the top performer, was chosen for its superior SENS metric,

which is crucial for correctly detecting melanoma.

Table 18. The comparison of PCA, BRI and SAT enhancement maps, when tested on

ISIC 2017 dataset.

Maps ACC SENS SPEC DC PPV NPV
No map 0.909 0.985 0.832 0.915 0.854 0.982
PCA 0.923 0.996 0.850 0.929 0.870 0.995
BRI 0.952 0.994 0.911 0.954 0.918 0.993
SAT 0.906 0.996 0.816 0.914 0.844 0.995
PCA×BRI 0.963 0.990 0.936 0.964 0.939 0.989
PCA×SAT 0.912 0.998 0.826 0.919 0.852 0.998
BRI×SAT 0.955 0.998 0.913 0.957 0.920 0.998
PCA×BRI×SAT 0.962 0.998 0.925 0.963 0.931 0.998
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4.5. Results

The performance comparison with the top frameworks from the ISIC 2017

Challenge provides a critical benchmark for evaluating the effectiveness of the

melanoma detection method developed in this study. The ISIC 2017 Challenge

leader-board, featuring twenty successful frameworks for lesion classification, offers

a standardized basis for this comparison, as all methodologies were trained and tested

using the same dataset without incorporating external data.

In Table 19, the top ten methods from the leader-board are re-ranked based on

their success in melanoma detection. The comparison includes the evaluation metrics

mentioned previously: ACC, SENS, SPEC, DC, PPV, and NPV. These metrics are

ranged from 0 to 1 with higher values indicating better performance. In the table, the

highest values for each metric are highlighted in bold for easier comparison.

The “Rank” column in Table 19 shows the relative standing of each framework in

melanoma detection, while the “Team Name” and “Approach Name” columns provide

the official names of the teams and their methods as listed in the ISIC 2017 Challenge.

Table 19. The assessment of the Weighted BoVW with Enhanced Deep Features

framework in contrast to the top-10 frameworks on the ISIC (2017) Leader-board for

melanoma detection in terms of statistical performance.

Rank Team Name Approach Name ACC SENS SPEC DC PPV NPV
1 RECOD Titans / UNICAMP release (rc36xtrm) “alea jacta est” 0.872 0.547 0.950 0.624 0.727 0.896
2 USYD-BMIT EResNet (single scale w/o attributes) 0.858 0.427 0.963 0.541 0.735 0.874
3 University of Guelph - MLRG Last Minute Submission!!!! 0.845 0.350 0.965 0.469 0.707 0.860
4 CVI finalv_L2C1_trir 0.843 0.376 0.957 0.484 0.677 0.864

5 Computer Vision Inst.
Shenzhen Univ. task3_final_RQ 0.832 0.308 0.959 0.416 0.643 0.851

6 Inst. of High Performance Comput.
and Nat. Skin Center, Singapore

multi-task deep learning model for skin
lesion segmentation and classification-3 0.830 0.436 0.925 0.500 0.586 0.871

7 icuff comb 0.830 0.171 0.990 0.282 0.800 0.831
8 Casio and Shinshu Univ. joint team ResNet ensemble with normalized image 0.828 0.735 0.851 0.625 0.544 0.930
9 Univ. of Debrecen Ensemble of deep conv. neural networks 0.828 0.470 0.915 0.516 0.573 0.877

10 Univ. Federal de Mato Grosso Araguaia Medical Vision Lab - GooglAlexNet 0.827 0.521 0.901 0.540 0.560 0.886
* Okur and Turkan Weighted BoVW with Enhanced Deep Features 0.962 0.998 0.925 0.963 0.931 0.998

From the statistics presented, it is observed that the methodology developed in this

study outperforms the other algorithms in all the evaluation metrics, except for SPEC.

This achievement underscores the effectiveness of the proposed method in accurately

detecting melanoma. The detailed discussion of these results, provided in the following

section, offers insights into the strengths and potential areas for refinement of the

framework.
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4.6. Discussion

The methods featured in Table 19 predominantly rely on deep neural network

models and their ensembles (Menegola et al., 2017; Bi et al., 2017; DeVries and

Ramachandram, 2017; Jia and Shen, 2017; Li and Shen, 2017; Yang et al., 2017;

Vasconcelos and Vasconcelos, 2017; Matsunaga et al., 2017; Sousa and de Moraes,

2017; Harangi, 2018). A very brief overview of the top five methodologies, which

were examined in greater detail in Chapter 2, highlights the differences among them

as well as BoVW framework of ours.

Menegola et al. (2017)’s method stands out at the forefront with a composite model

comprising seven sub-models, six of which are based on Inception and one on ResNet.

This complex assembly necessitates substantial computational power, particularly due

to its integration via an SVM classifier layer. Following this, Bi et al. (2017)’s

method, which ranks second, utilizes three distinct strategies centered around ResNet.

They approached the classification task both as a multi-class problem (with labels for

melanoma, nevus, and seborrheic keratosis) and as a binary classification problem,

culminating in an ensemble model. DeVries and Ramachandram (2017), securing the

third spot, introduced a multi-scale CNN model grounded in the Inception network.

This model, initially pretrained on ImageNet, was further adapted to various image

resolutions, leading to the training of additional models and, subsequently, an ensemble

of ten models, imposing a significant computational demand. Jia and Shen (2017)’s

methodology, which placed fourth, employs a deep CNN with 14 convolutional layers

and a fully connected layer for image analysis and classification. Their approach,

utilizing a variant of VGG-GAP (Zhou et al., 2015), involves a two-stage process for

generating class activation maps and subsequent classification. Lastly, Li and Shen

(2017), ranking fifth, adopted two deep learning strategies for lesion segmentation and

feature extraction. Their dual-framework approach comprises two fully-convolutional

residual networks for concurrent segmentation and classification, alongside a deep

CNN specifically for feature extraction from dermoscopic images.

The Weighted BoVW framework diverges from the common practice of training

deep networks or their ensembles. Instead, it leverages a pretrained network to
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extract features from image patches, a strategy that circumvents the need for extensive

computational resources. Impressively, this method surpasses the performance of all

leader-board methodologies in almost every metric, barring specificity (SPEC) (Okur

and Turkan, 2024).

SPEC is a measure of the true negative rate, reflecting the accuracy in identifying

non-malignant cases. The slightly lower SPEC value achieved by our framework could

be linked to the construction of the BoVW dictionary. The separate construction of

benign and malignant clusters may lead to some overlap between them due to the very

close cluster centers, causing the BoVW weighting strategy to exhibit a slight bias

towards the malignant class. Despite this, Sensitivity (SENS), which represents the

true positive rate or the ability to correctly identify malignant cases, is often deemed

more critical than SPEC in melanoma detection. Our method achieves an exceptional

SENS value of 0.998, as shown in Table 19, underscoring its effectiveness in detecting

a high number of melanoma cases correctly, despite the potential for occasionally

misclassifying some benign ones.

Furthermore, PPV and NPV statistics reinforce these observations. Additionally,

the ACC and DC performances of our framework outshine those of competing

algorithms. This success is attributed to the unique approach taken towards lesion

images. While other methods typically treat each image as a single unit for feature

extraction and classification, our method adopts a different strategy. It builds a

dictionary using image patches from all training images, which is then employed

to identify semantically similar patches within a given lesion image, creating a

histogram for each. These histograms are crucial for classification, allowing for a more

generalized representation of malignant characteristics across multiple image patches

in each lesion. This approach contrasts with methods where each image contributes

only a single feature vector, leading to a more effective SVM-based detection in our

framework.

The proposed approach, while effective, does have its limitations. Presenting these

is done according to the framework’s modular structure. The first step to focus on is

the feature extraction step.

Currently, the feature extraction employs ResNet-101, a pretrained residual neural
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network. However, it’s important to note that ResNet-101 was originally trained

on non-dermoscopic images. Despite this, like other neural networks, it has a

characteristic where images with similar semantic content yield close representations

in the layer preceding classification. This is where the feature vectors for our

framework are extracted. The consistency in representations for lesion image patches,

even though the network was trained on non-lesion images, provides a basis for

their effective use in the framework. The semantic distinctions between these

representations are sufficiently clear to be reliable for our purposes. However, they are

still extracted based on non-lesion images and this indicates potential for improvement.

For instance, incorporating weights from a novel residual architecture specifically

trained on lesion images could significantly enhance the framework’s performance. As

a future enhancement, exploring and testing an alternative, readily available network

architecture is a viable strategy. Eventually, designing and training a new architecture

tailored to dermoscopic images could be a substantial advancement. This bespoke

architecture would be trained only once using publicly available dermoscopic images

and could potentially replace the current use of ResNet-101 in the framework.

A closer examination of the dictionary generation step in the framework also

reveals certain limitations associated with the current use of K-means clustering. First

aspect to look into may be setting the value of K. Instead of experimentally setting the

value, a systematic approach can be used, such as Hierarchical Clustering (Nielsen,

2016). Also known as hierarchical cluster analysis (HCA), hierarchical clustering

is a cluster analysis method that aims to establish a hierarchy of clusters where we

can predict a reasonable K value without experimenting exhaustively. Even though,

K-means has shown favorable results and setting this K value may boost this, it is

fundamentally a linear clustering algorithm, and there is potential for enhancement by

exploring non-linear alternatives. Such exploration could include evaluating different

variations of the K-means clustering module such as Kernel K-means (Dhillon et al.,

2004), Ensemble K-means (Iam-on and Garrett, 2010), Shift-Invariant K-means (Oktar

and Turkan, 2022) and other potential methodologies (Moradi Fard et al., 2020;

Kohonen, 1990; Martinetz et al., 1993), also present promising avenues for refining the

clustering process. Each cluster center in the BoVW dictionary represents a distinct
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feature identifiable in dermoscopic images. By adopting a more advanced clustering

algorithm, it might be possible to identify a broader range of unique features, leading

to the creation of a more comprehensive and descriptive dictionary.

Since one of our contributions includes better computational load and time

efficiency, it is important to specify the information regarding complexity of our

framework. The ResNet-101 network’s complexity is provided by He et al. (2016a)

in number of floating point operations as 7.6× 109. The remaining sections of the

framework has O(nK) complexity in the worst case. n is the number of feature vectors

and K represents number of cluster centers in the BoVW dictionary. Lastly, the

clustering is done separately in Sklearn library as previously stated. They provide their

K-Means implementation complexity as O(n(K+2/p)) based on Arthur and Vassilvitskii

(2006)’s study. n here represents the number of samples and p is the number of

features.

Finally, there’s a growing recognition of the importance of eXplainable Artificial

Intelligence (XAI) (Adadi and Berrada, 2018; Murdoch et al., 2019). XAI aims

to improve the transparency and interpretability of AI systems, enabling users to

understand, trust, and effectively manage these systems. This approach is particularly

crucial in fields like healthcare, where understanding the decision-making process of

such models is vital for clinical validation and user trust. With XAI the framework

could significantly enhance its explanatory precision. Hence, the next section of this

thesis will be specifically devoted to applying the XAI approach to this framework.

This exploration will delve into methodologies and techniques for making internal

workings of some steps inside the framework more transparent and understandable.

4.7. eXplainable Artificial Intelligence (XAI)

XAI represents a shift from the traditional "black-box" approach of AI to a more

transparent and understandable form (Adadi and Berrada, 2018; Murdoch et al., 2019).

The key difference between regular AI and explainable AI lies in the level of clarity

and comprehension they offer about how decisions or predictions are made.

In traditional AI systems, particularly those driven by complex machine learning

(ML) algorithms, decisions are often made in a way that is not transparent to the
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users or even for some cases the developers. These systems process input data and

produce output (such as predictions or classifications), but the internal decision-making

process remains opaque. This lack of transparency is why they are often referred to as

"black-box" systems. The architects of these systems may know the inputs and outputs

but might not fully understand the detailed workings of the algorithm that leads to a

particular result.

XAI aims to make the decision-making process of AI systems clear and under-

standable. It implements specific techniques and methods to ensure that decisions

made during the ML process is traceable and explainable. This approach enhances the

ability of users and developers to understand and trust AI systems. In XAI, it’s not just

about what decision was made, but also about why and how it was reached, including

the underlying logic and factors that influenced it, if possible.

In the context of our framework, which uses a SVM for classification, the concept

of XAI can still be applied. Although an SVM is not an AI in the conventional sense, it

can still be seen as a “black-box” system where the rationale behind its classifications

might not be immediately apparent. To make this framework more explainable,

identifying and highlighting the features that most significantly influence the SVM’s

decisions can be focused on. By elucidating which features are key indicators in

classifying a case as melanoma, you can provide more transparency and understanding

of the framework’s functioning.

Explaining classifications in machine learning, particularly in complex models like

the one in our framework, can be challenging. Shapley values, a concept from coali-

tional game theory, provide a powerful method to tackle this challenge (Sundararajan

and Najmi, 2019). They offer a way to understand how different features contribute to

the final classification decision.

In the context of our melanoma detection framework, applying Shapley values

allows for a detailed analysis of how each feature influences the classification of a

single test case as melanoma. This method treats each feature value of an instance as

a contributor to the outcome, and Shapley values help in fairly attributing the decision

(melanoma or not) to these contributors. After calculating Shapley values for each

correctly classified melanoma case, the Table 20 presents the most effecting 10 feature
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indexes.

Table 20. According to the Shapley values from all correctly classified melanoma

cases, the top 10 features most effective for a lesion to be classified as melanoma.

1 2 3 4 5 6 7 8 9 10
#818 #924 #651 #896 #526 #812 #592 #999 #797 #507

From the Table, the top 3 features out of the 1000 can exclusively be focused on,

which have the most significant impact on the decisions. They exist nearly %10 of

correctly classified melanoma cases. These “top” features represent the number of

image patches closest to the same cluster center in the BoVW dictionary, which are

assumed to be critical in the classification. It’s essential to recognize that these features

correspond to specific image patches that have a high resemblance to particular cluster

centers, denoting strong indicators of melanoma. The Figure 21 and Figure 22, shows

randomly selected 5 image patches per each of these top 3 features which includes the

feature they represent.

Figure 21. Example image patches for the most effective features. The image patches

on the right of a feature means that those patches include the feature.

Evidently, there is a discernible pattern. “Feature 924” primarily targets the

margins of lesions. In contrast, “Feature 818” concentrates on elements situated

directly on the lesion itself. Although the final image patch for 818 might appear

anomalous, it is relevant since over 60% of the patch encompasses the lesion, and
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Figure 22. The same example image patches from the Figure 21. The image patches

are replaced with their enhancement masks applied versions. The patches are darker

but structures inside lesions are more apparent.

it displays discernible structures. "Feature 651" presents an intriguing aspect. At

first glance, it appears to target areas similar to those of 818 and 924. Yet, it

uniquely focuses on a particular kind of structure where a lesion’s light and dark hues

intermingle, forming small circular shapes and streaks.

These findings could lay the groundwork for future studies aimed at refining

existing features or developing new ones. Firstly, the framework seems to accurately

identify melanoma cases by analyzing features derived from the BoVW dictionary’s

melanoma cluster centers. The last 500 cluster centers in this dictionary are derived

from feature vectors of melanoma image patches. Given that Table 20 highlights

features originating from indexes above 500, this indicates that the framework

leverages melanoma indicative features from the BoVW dictionary.

Furthermore, examining the image patches linked to the top three melanoma

indicative features reveals the framework’s focus on certain specific clinical charac-

teristics.

In future research, following our framework’s methodology could allow for a more

detailed analysis of each individual feature. Ultimately, this could lead to a more

streamlined BoVW dictionary, with a reduced number of elements, thereby crafting

a framework more finely tuned for melanoma detection.
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CHAPTER 5: CONCLUSION

In this thesis, a novel skin lesion classification framework, designed for the

automated detection of melanoma from dermoscopic images, is presented. This

framework, named the “Weighted Bag of Visual Words with Enhanced Features”, is

the culmination of a series of iterative improvements. Each iteration involved updating

the framework, testing it, and then deciding whether to retain the update or revert and

try a different approach. The final product is a robust and high-performing melanoma

detection system that leverages a BoVW methodology enriched with enhanced deep

learning features.

The framework operates through a six-stage pipeline. It begins with the prepro-

cessing of input images, followed by the generation of enhanced image patches. These

patches are then used for feature extraction via the ResNet-101 network. The extracted

feature vectors are clustered to create the BoVW dictionary, which in turn is used to

produce weighted image histograms. Finally, these histograms are classified using a

SVM classifier.

When compared with the top-10 state-of-the-art from the ISIC 2017 Challenge,

the framework demonstrated superior performance. It achieved an accuracy value

of 0.962, significantly higher than the nearest competitor’s 0.872. This impressive

performance is further bolstered by five additional statistical metrics, highlighting the

framework’s effectiveness in accurately diagnosing melanoma cases.

An additional advantage of the framework is its relatively low demand for

computational resources and time, particularly during the training phase. The entire

pipeline can be trained in just a few hours, even on an eight-year-old Intel i7-4790K

CPU, making it both time-efficient and practical. This efficiency ensures that the

framework can be readily deployed in case of a change in the framework or an update

to dataset for classifying test images, offering a timely and effective tool for melanoma

detection.

The modular design of the presented framework significantly contributes to its

adaptability and potential for future enhancements. This design principle ensures that
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each step of the framework operates as a distinct unit, with interfaces that interact

seamlessly with other components. As a consequence, modifications or improvements

to any single step can be made without disrupting the overall pipeline, as long as the

input and output parameters remain compatible with the rest of the system.

For instance, the feature extraction step, which currently utilizes ResNet-101 to

process image patches and produce feature vectors, can be easily substituted with a

different network model. This swap could be executed without affecting other steps

of the framework, such as the preprocessing step that supplies the image patches to

this step or the BoVW dictionary generation that utilizes the output feature vectors.

Newer and potentially more advanced network models, like those mentioned by Liu

et al. (2022), could be integrated to explore improvements in feature extraction

step. Moreover, the modular nature of the framework also allows for more nuanced

refinements within each step. For example, the relatively lower specificity (SPEC)

values observed could be addressed by introducing an additional refinement step during

the BoVW dictionary generation. This step would involve identifying and resolving

overlaps in clusters that have conflicting labels. An automated algorithm could be

developed to reassess and adjust benign cluster centers, enhancing the overall accuracy

of the framework.

Having being mentioned, the choice of clustering method for generating the BoVW

dictionary is also a critical aspect of the framework that could benefit from further

refinement. Currently, K-Means, a linear clustering algorithm, is employed. However,

considering the high dimensionality of the feature vectors and the fact that they are

clustered per class but used in a combined manner, there might be outlier instances

where cluster centers from both classes are too closely aligned. This proximity can

lead to misclassification, where a feature vector indicative of melanoma might be

incorrectly labeled as benign, or vice versa. Implementing new ways to set K value or

exploring non-linear clustering methods, as discussed in Section 4.6, could potentially

mitigate this issue by accommodating the complex nature of the data more effectively.

In summary, this thesis presents an innovative and robust framework for the

automated detection of melanoma from dermoscopic images. Utilizing the BoVW
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approach, this framework not only competes with but also surpasses existing state-of-

the-art methodologies in the ISIC context. Its standout features include combination of

traditional and new techniques, a modular structure that facilitates easy modifications

and a comparatively lower demand for computational resources and processing

time. Additionally, the integration of contemporary concepts like XAI enhances the

framework’s explanatory precision, adding to its appeal.

This combination of features positions the framework as a significant and refresh-

ing contribution to the field, offering an alternative that holds promise for future

development. While the framework achieves exceptionally high classification results,

the pursuit of perfection remains ongoing. The ultimate goal is to perfect the model

to the extent that it becomes an invaluable tool for dermatologists in clinical practice,

aiding in accurate and efficient diagnoses.

92



REFERENCES

Abbas, Q., Garcia, I. F., Celebi, M. E., Ahmad, W. and Mushtag, Q. (2013)

A perceptually oriented method for contrast enhancement and segmentation of

dermoscopy images, Skin Res. Technol., Vol. 19 (1), pp. 490–497.

Adadi, A. and Berrada, M. (2018) Peeking inside the black-box: A survey on

explainable artificial intelligence (XAI), IEEE Access, Vol. 6, pp. 52138–52160.

Adegun, A. and Viriri, S. (2021) Deep learning techniques for skin lesion analysis and

melanoma cancer detection: A survey of state-of-the-art, Artif. Intell. Rev., Vol. 54.

Ain, Q. U., Xue, B., Al-Sahaf, H. and Zhang, M. (2019) Multi-tree genetic

programming with a new fitness function for melanoma detection, IEEE Cong.

Evolutionary Comput., pp. 880–887.

Airley, R. (2009) Cancer Chemotherapy: Basic Science to the Clinic, Wiley.

Akram, M. U., Tariq, A., Khalid, S., Javed, M. Y., Abbas, S. and Yasin, U.

(2015) Glaucoma detection using novel optic disc localization, hybrid feature set and

classification techniques, Australasian Phys. Eng. Sci. Med., Vol. 38 (4), pp. 643–655.

American Academy of Dermatology (AAD) (2022) Skin cancer. [Online]. Available

at: https://www.aad.org/media/stats-skin-cancer. (Accessed: 30 October 2023).

American Cancer Society (2017) Cancer facts and figures in USA 2017. [Online].

Available at: https://www.cancer.org/content/dam/cancer-org/research/cancer-

facts-and-statistics/annual-cancer-facts-and-figures/2017/cancer-facts-and-figures-

2017.pdf. (Accessed: 30 October 2023).

American Cancer Society (2023) Key statistics for melanoma skin cancer. [Online].

Available at: https://www.cancer.org/cancer/types/melanoma-skin-cancer/about/key-

statistics.html. (Accessed: 30 October 2023).

Anaconda Inc. (2020) Anaconda Software Distribution. [Online]. Available at:

https://www.anaconda.com/. (Accessed: 13 November 2023).

Argenziano, G., Soyer, H. P., Chimenti, S., Talamini, R., Corona, R., Sera, F.,

Binder, M., Cerroni, L., Rosa, G. D., Ferrara, G. and Hofmann-Wellenhof, R. (2003)

Dermoscopy of pigmented skin lesions: results of a consensus meeting via the internet,

93



J. Am. Acad. Dermatol., Vol. 48 (9), pp. 679–693.

Argenziano, G., Soyer, H. P., Giorgio, V. D., Piccolo, D., Carli, P., Delfino, M., Ferrari,

A., Hofmann-Wellenhof, R., Massi, D., Mazzocchetti, G., Scalvenzi, M. and Wolf,

I. H. (2000) Interactive Atlas of Dermoscopy, Milan: Edra Medical Publishing and

New Media.

Arthur, D. and Vassilvitskii, S. (2006) How slow is the k-means method?, Proceedings

of the Twenty-Second Annual Symposium on Computational Geometry, p. 144–153.

https://doi.org/10.1145/1137856.1137880

Baral, B., Gonnade, S. and Verma, T. (2014) Lesion segmentation in dermoscopic

images using decision based neuro fuzzy model, IJCSIT, Vol. 5 (2), pp. 2546–2552.

Barata, C., Ruela, M., Francisco, M., Mendonca, T. and Marques, J. S. (2014) Two

systems for the detection of melanomas in dermoscopy images using texture and color

features, IEEE Syst. J., Vol. 8 (3), pp. 965–979.

Battiti, R. (1994) Using mutual information for selecting features in supervised neural

net learning, IEEE Trans. Neural Netw., Vol. 5 (4), pp. 537–550.

Bi, L., Kim, J., Ahn, E. and Feng, D. (2017) Automatic skin lesion analysis using

large-scale dermoscopy images and deep residual networks. [Online]. Available at:

https://arxiv.org/abs/1703.04197. (Accessed: 05 November 2023).

Bradley, D. and Roth, G. (2007) Adaptive thresholding using the integral image, J.

Graph. Tools, Vol. 12 (2), pp. 13–21.

Bratkova, M., Boulos, S. and Shirley, P. (2009) oRGB: A practical opponent color

space for computer graphics, IEEE Comput. Graph. Appl., Vol. 29 (1), pp. 42–55.

Braun, R. P., Rabinovitz, H. S., Oliviero, M., Kopf, A. W. and Saurat, J.-H. (2005)

Dermoscopy of pigmented skin lesions, J. Am. Acad. Dermatol., Vol. 52 (1), pp. 109–

121.

Bryt, O. and Elad, M. (2008) Compression of facial images using the K-SVD

algorithm, J. Visual Commun. Image Represent., Vol. 19 (4), pp. 270–283.

Castillo, O. and Melin, P. (2008) Type-2 Fuzzy Logic: Theory and Applications,

Springer.

Celebi, M. E., Kingravi, H. A., Uddin, B., Iyatomi, H., Aslandogan, Y. A., Stoecker,

W. V. and Moss, R. H. (2007) A methodological approach to the classification of

94



dermoscopy images, Comp. Med. Imag. and Graph., Vol. 31 (1), pp. 362–373.

Celebi, M. E., Schaefer, G., Iyatomi, H. and Stoecker, W. V. (2009) Lesion border

detection in dermoscopy images, Comp. Med. Imag. Graph., Vol. 33 (2), pp. 148–153.

Celebi, M. E., Wen, Q., Hwang, S., Iyatomi, H. and Schaefer, G. (2013) Lesion border

detection in dermoscopy images using ensembles of thresholding methods, Skin Res.

Technol., Vol. 19 (1), pp. 252–258.

Celebi, M. E., Schaefer, G., Iyatomi, H., Stoecker, W. V., Malters, J. M. and Grichnik,

J. M. (2009) An improved objective evaluation measure for border detection in

dermoscopy images, Skin Res. Technol., Vol. 15 (4), pp. 444–450.

Chen, G., Chang, I. and Yeh, H. (2017) Action segmentation based on bag-of-visual-

words models, 2017 10th International Conference on Ubi-media Computing and

Workshops (Ubi-Media), pp. 1–5.

Choi, S. and Han, S. (2013) Evaluating weighting schemes for adult image detection

using bag of visual words, Int. Conf. ICT Conv., pp. 815–816.

Chollet, F. (2016) Xception: Deep learning with depthwise separable convolutions,

IEEE Conf. Comp. Vis. Pat. Rec., Vol. pp. 1800–1807.

Codella, N., Gutman, D., Celebi, M. E., Helba, B., Marchetti, M. A., Dusza, S., Kalloo,

A., Liopyris, K., Mishra, N., Kittler, H. and Halpern, A. (2017) Skin lesion analysis

toward melanoma detection: A challenge at the 2017 International Symposium on

Biomedical Imaging (ISBI), hosted by the International Skin Imaging Collaboration

(ISIC), arXiv: 1710:05006, Vol. .

Cortes, C. and Vapnik, V. (1995) Support-vector networks, Mach. Learn.,

Vol. 20 (3), pp. 273–297.

Dahiya, M. (2002) The melanocytic proliferations: A comprehensive textbook of

pigmented lesions, Arch. Pathol. & Lab. Med., Vol. 126 (8), pp. 999–1000.

David, L. G. (1999) Object recognition from local scale-invariant features, Proc. Int.

Conf. Comp. Vis. Volume 2, p. 1150.

Deng, J., Dong, W., Socher, R., Li, L., Li, K. and Fei-Fei, L. (2009) Imagenet: A large-

scale hierarchical image database, IEEE Conf. Comp. Vis. Patt. Rec., pp. 248–255.

DermLite (2001) Who we are. [Online]. Available at: https://dermlite.com/.

(Accessed: 30 October 2023).

95



Dermoscopy.org (2003) 7-point Checklist. [Online]. Available at:

https://dermoscopy.org/consensus/2d.asp. (Accessed: 30 October 2023).

Deshmukh, J. and Bhosle, U. (2016) Sift with associative classifier for mammogram

classification, 2016 International Conference on Signal and Information Processing

(IConSIP), pp. 1–5.

DeVries, T. and Ramachandram, D. (2017) Skin lesion classification us-

ing deep multi-scale convolutional neural networks. [Online]. Available at:

https://arxiv.org/abs/1703.01402. (Accessed: 05 November 2023).

Dhillon, I. S., Guan, Y. and Kulis, B. (2004) Kernel k-means: Spectral clustering and

normalized cuts, Proc. ACM SIGKDD Int. Conf. Know. Discov. Data Mining, pp. 551–

556.

Dinnes, J., Deeks, J. J., Grainge, M. J., Chuchu, N., di Ruffano, L. F., Matin, R. N.,

Thomson, D. R., Wong, K. Y., Aldridge, R. B., Abbott, R., Fawzy, M., Bayliss, S. E.,

Takwoingi, Y., Davenport, C., Godfrey, K., Walter, F. M. and Williams, H. C. (2018)

Visual inspection for diagnosing cutaneous melanoma in adults, Cochrane Database

Syst. Rev., Vol. 12.

Dolianitis, C., Kelly, J., Wolfe, R. and Simpson, P. (2005) Comparative performance

of 4 dermoscopic algorithms by nonexperts for the diagnosis of melanocytic lesions,

Archives of Dermatology, Vol. 141 (8), pp. 1008–1014.

Douik, A., Abdellaoui, M. and Kabbai, L. (2016) Content based image retrieval using

local and global features descriptor, Int. Conf. Adv. Technol. Signal Image Process.,

pp. 151–154.
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leri 2018. [Online]. Available at: https://hsgm.saglik.gov.tr/depo/birimler/kanser-

db/Dokumanlar/Istatistikler/Kanser_Rapor_2018.pdf. (Accessed: 30 October 2023).

Rubegni, P., Cevenini, G., Burroni, M., Perotti, R., Dell’Eva, G., Sbano, P. and

Miracco, C. (2002) Automated diagnosis of pigment skin lesions, Int. J. Cancer,

Vol. 101 (6), pp. 576–580.

Rui, X. and Wunsch, D. (2005) Survey of clustering algorithms, IEEE Transactions on

Neural Networks, Vol. 16 (3), pp. 645–678.

Saeed, F., Hussain, M. and Aboalsamh, H. A. (2018) Classification of live scanned

fingerprints using dense sift based ridge orientation features, 2018 1st International

Conference on Computer Applications Information Security (ICCAIS), pp. 1–4.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. and Chen, L. (2018) Mobilenetv2:

Inverted residuals and linear bottlenecks, 2018 IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 4510–4520.

Santy, A. and Joseph, R. (2015) Segmentation methods for computer aided melanoma

detection, Global Conf. Communication Tech., pp. 490–493.

Schmid, C. (2001) Constructing models for content-based image retrieval, IEEE

Comp. Soc. Conf. Comp. Vis. Pattern Recog., Vol. 2, pp. 39–45.

Schmid, P. (1999) Segmentation of digitized dermatoscopic images by two-dimensional

color clustering, IEEE Trans. Med. Imag., Vol. 18 (2), pp. 164–171.

Senel, E. (2011) Dermatoscopy of non-melanocytic skin tumors, Indian J. Dermatol.

Venereol. Leprol., Vol. 77 (1), pp. 16–22.

Sezgin, M. and Sankur, B. (2004) Survey over image thresholding techniques and

quantitative performance evaluation, J. Elec. Imag., Vol. 13 (1), pp. 146–165.

Sharma, A. K., Tiwari, S., Aggarwal, G., Goenka, N., Kumar, A., Chakrabarti, P.,

104



Chakrabarti, T., Gono, R., Leonowicz, Z. and Jasinski, M. (2022) Dermatologist-

level classification of skin cancer using cascaded ensembling of convolutional

neural network and handcrafted features based deep neural network, IEEE Access,

Vol. 10, pp. 17920–17932.

Shekhar, R. and Jawahar, C. V. (2012) Word image retrieval using bag of visual words,

2012 10th IAPR International Workshop on Document Analysis Systems, pp. 297–301.

Siegel, R. L., Miller, K. D. and Jemal, A. (2018) Cancer statistics, 2018, CA: A Cancer

J. Clinicians, Vol. 68 (1), pp. 7–30.

Simonyan, K. and Zisserman, A. (2014) Very deep convolutional networks for large-

scale image recognition, arXiv e-prints, Vol. .

Singh, S., Srivastava, D. and Agarwal, S. (2017) GLCM and its application in pattern

recognition, Int. Symp. Comput. Business Intell., pp. 20–25.

Situ, N., Yuan, X., Chen, J. and Zouridakis, G. (2008) Malignant melanoma detection

by bag-of-features classification, IEEE Int. Conf. Eng. Med. Biol. Soc., pp. 3110–3113.

Sousa, R. T. and de Moraes, L. V. (2017) Araguaia medical vision lab at isic 2017 skin

lesion classification challenge, ArXiv, Vol. abs/1703.00856.

Steinwart, I. and Christmann, A. (2008) Support Vector Machines, Springer.

Stewart, C. (2023) Skin cancer in europe - statistics and facts. [Online]. Avail-

able at: https://www.statista.com/topics/11101/skin-cancer-in-europe/#topicOverview.

(Accessed: 30 October 2023).

Sundararajan, M. and Najmi, A. (2019) The many shapley values for model

explanation, Int. Conf. Mach. Lear.

Szegedy, C., Ioffe, S., Vanhoucke, V. and Alemi, A. (2017) Inception-v4, inception-

resnet and the impact of residual connections on learning, Proc. Thirty-First AAAI

Conf. Art. Int., AAAI Press, pp. 4278—-4284.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z. (2016) Rethinking the

inception architecture for computer vision, IEEE Conf. Comp. Vis. Pat. Rec., pp. 2818–

2826.

Szegedy, C., Wei, L., Yangqing, J., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,

Vanhoucke, V. and Rabinovich, A. (2015) Going deeper with convolutions, 2015 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9.

105



Szegedy, C., Ioffe, S. and Vanhoucke, V. (2016) Inception-v4, inception-resnet and the

impact of residual connections on learning, CoRR, Vol. arxiv.org/abs/1602.07261.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J. and Wojna, Z. (2015)

Rethinking the inception architecture for computer vision. [Online]. Available at:

https://arxiv.org/pdf/1512.00567.pdf. (Accessed: 05 November 2023).

Tan, M. and Le, Q. (2019) EfficientNet: Rethinking model scaling for convolutional

neural networks, Proceedings of the 36th International Conference on Machine

Learning, Vol. 97, pp. 6105–6114.

Tenenhaus, A., Nkengne, A., Horn, J., Serruys, C., Giron, A. and Fertil, B. (2010)

Detection of melanoma from dermoscopic images of naevi acquired under uncontrolled

conditions, Skin Res. Technol., Vol. 16 (1), pp. 85–97.

The MathWorks Inc. (2022) Matlab version: 9.13.0 (r2022b). [Online]. Available at:

https://www.mathworks.com. (Accessed: 13 November 2023).

The University of Edinburgh (2013) Dermofit image library. [Online]. Available

at: https://licensing.edinburgh-innovations.ed.ac.uk/product/dermofit-image-library.

(Accessed: 30 October 2023).

Tkalcic, M. and Tasic, J. F. (2003) Colour spaces: perceptual, historical and

applicational background, IEEE EUROCON Computer as a Tool, Vol. 1, pp. 304–308.

Tschandl, P., Rosendahl, C. and Kittler, H. (2018) The ham10000 dataset, a large

collection of multi-source dermatoscopic images of common pigmented skin lesions,

Scientific Data, Vol. 5.

Turkiye Kanserle Savas Vakfi (2021) Melanom cilt kanseri. [Online]. Available

at: https://www.kanservakfi.com/kanser-turleri/melanom-cilt-kanseri/. (Accessed: 30

October 2023).

van de Sande, K. E. A., Gevers, T. and Snoek, C. G. M. (2010) Evaluating color

descriptors for object and scene recognition, IEEE Transactions on Pattern Analysis

and Machine Intelligence, Vol. 32 (9), pp. 1582–1596.

Vasconcelos, C. N. and Vasconcelos, B. N. (2017) Convolutional neural

network committees for melanoma classification with classical and expert knowledge

based image transforms data augmentation, arXiv: Computer Vision and Pattern

Recognition, Vol. .

106



Wang, J., Chen, Q. and Chen, Y. (2004) RBF kernel based support vector machine with

universal approximation and its application, Advances in Neural Networks, Springer

Berlin Heidelberg, pp. 512–517.

Washington, C. M. and Leaver, D. T. (2016) Principles and Practice of Radiation

Therapy, Elsevier.

WebMD (2023) Moles and skin cancer screening. [Online]. Available

at: https://www.webmd.com/melanoma-skin-cancer/screening-moles-cancer#1. (Ac-

cessed: 30 October 2023).

Weitz, E. (2016) SIFT - Scale-Invariant Feature Transform. [Online]. Available at:

http://weitz.de/sift/. (Accessed: 13 November 2023).

WHO (2017) Radiation: Ultraviolet (uv) radiation and skin cancer. [Online].

Available at: https://www.who.int/news-room/questions-and-answers/item/radiation-

ultraviolet-(uv)-radiation-and-skin-cancer. (Accessed: 30 October 2023).

Wight, P., Lee, T. K., Lui, H. and Atkins, M. S. (2011) Chromatic aberration

correction: an enhancement to the calibration of low-cost digital dermoscopes, Skin

Res. Technol., Vol. 17 (3), pp. 339–347.

Wong, A. (2011) Automatic skin lesion segmentation via iterative stochastic region

merging, IEEE Trans. Info. Tech. Biomed., Vol. 15 (6), pp. 929–936.

Wu, Y., Xie, F., Jiang, Z. and Meng, R. (2013) Automatic skin lesion segmentation

based on supervised learning, Int. Conf. Imag. Graph., pp. 164–169.

Yan, L., Rosen, N. and Arteaga, C. (2011) Targeted cancer therapies, Chin. J. Cancer,

Vol. 30 (1), pp. 1–4.

Yang, J., Jiang, Y., Hauptmann, A. G. and Ngo, C. (2007) Evaluating bag-of-visual-

words representations in scene classification, Proc. Int. Work. Mult. Inf. Ret., pp. 197—

-206.

Yang, X., Zeng, Z., Yeo, S. Y., Tan, C., Tey, H. L. and Su, Y. (2017) A novel

multi-task deep learning model for skin lesion segmentation and classification, ArXiv,

Vol. abs/1703.01025.

Yuan, X., Situ, N. and Zouridakis, G. (2009) A narrow band graph partitioning method

for skin lesion segmentation, Pattern Recog., Vol. 42 (6), pp. 1017–1028.

Yuksel, M. E. and Borlu, M. (2009) Accurate segmentation of dermoscopic images

107



by image thresholding based on type-2 fuzzy logic, IEEE Trans. Fuzzy. Syst.,

Vol. 17 (4), pp. 976–982.

Zhang, Y., Jin, R. and Zhou, Z.-H. (2010) Understanding bag-of-words model: A

statistical framework, International Journal of Machine Learning and Cybernetics,

Vol. 1, pp. 43–52.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A. and Torralba, A. (2015)

Learning deep features for discriminative localization. [Online]. Available at:

https://arxiv.org/abs/1512.04150. (Accessed: 05 November 2023).

Zhou, Y. and Song, Z. (2013) Binary decision trees for melanoma diagnosis, Int. W.

Multiple Classifier Syst., pp. 374–385.

Zhou, Y. and Song, Z. (2014) Melanoma diagnosis with multiple decision trees, Comp.

Vis. Tech. Diag. Skin Cancer, pp. 267–282.

108


	e5972d3039a37a58a06284efaabd2fc274d3c98ad0620187518ef89e78e55661.pdf
	ABSTRACT
	ÖZET
	DEDICATION
	ACKNOWLEDGEMENT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES

	e5972d3039a37a58a06284efaabd2fc274d3c98ad0620187518ef89e78e55661.pdf
	e5972d3039a37a58a06284efaabd2fc274d3c98ad0620187518ef89e78e55661.pdf
	e5972d3039a37a58a06284efaabd2fc274d3c98ad0620187518ef89e78e55661.pdf
	INTRODUCTION
	What is Melanoma?
	Stages of Melanoma
	Early Detection and Clinical Features
	Pattern Analysis Criteria
	ABCD Rule
	Menzies Scoring
	7-Point Checklist
	Evaluative Comparison of Second-Step Algorithmic Efficiencies

	Problem and Motivation
	Contributions
	Outline

	LITERATURE REVIEW
	Background
	Traditional Approaches
	Lesion Segmentation
	Clinical Feature Extraction
	Classification

	Deep Learning Based Approaches

	METHODOLOGY
	Experimental Dataset
	Sparse and Redundant Representations Framework
	Decomposition of a Dermoscopic Image
	Experiments
	Verdict

	The Scale-invariant Feature Transform (SIFT) Framework
	SIFT Algorithm
	Using SIFT in Melanoma Detection
	Bag of Visual Words Pipeline
	Experiments
	Verdict

	BoVW with Deep Neural Network Features
	Experiments
	Verdict

	BoVW with Neural Style Transfer (NST)
	Experiments
	Verdict

	Bag of Visual Words with Enhanced Deep Features
	Patch Enhancement Masks
	Experiments
	Verdict

	Weighted BoVW with Enhanced Deep Features for Melanoma Detection
	Weighted BoVW
	Experiments
	Verdict


	EXPERIMENTAL RESULTS
	ISIC 2017 Dataset
	Environment
	Evaluation Metrics
	Parameters and Patch Enhancement
	Results
	Discussion
	eXplainable Artificial Intelligence (XAI)

	CONCLUSION
	REFERENCES
	CURRICULUM VITAE


