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Abstract

Environmental pollution is a big challenge that has been faced by humans in

contemporary life. In this context, fossil fuel, cement production, and plastic waste

pose a direct threat to the environment and biodiversity. One of the prominent

solutions is the use of renewable sources, and different organisms to valorize wastes

into green energy and bioplastics such as polylactic acid. Chlorella vulgaris, a

microalgae, is a promising candidate to resolve these issues due to its ease of

cultivation, fast growth, carbon dioxide uptake, and oxygen production during its

growth on wastewater along with biofuels, and other productions. Thus, in this

article, we focused on the potential of Chlorella vulgaris to be used in wastewater

treatment, biohydrogen, biocement, biopolymer, food additives, and preservation,

biodiesel which is seen to be the most promising for industrial scale, and related

biorefineries with the most recent applications with a brief review of Chlorella and

polylactic acid market size to realize the technical/nontechnical reasons behind the

cost and obstacles that hinder the industrial production for the mentioned

applications. We believe that our findings are important for those who are

interested in scientific/financial research about microalgae.
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1 | INTRODUCTION

Fossil fuels have a significant impact on human health (Rajagopalan &

Landrigan, 2021) and environmental issues, leading to nearly one in

five deaths worldwide and 8.7 million premature deaths annually

(Chaisson, 2021). Fuels and cooking technology pose serious health

risks to 3 billion people, leading to 7 million fatalities in 2016. Heart

disease, cancer, stroke, chronic illnesses, and respiratory problems

are the leading causes (Sekar et al., 2021). Food production accounts

for 15% of fossil fuel use (Shagun, 2023), with agriculture and food

handling accounting for 21% and 49% of total US food production,

respectively (Save On Energy, 2022). The pollution generated by

fuels reduces photosynthesis, hindering crop growth and causing

major staple crops to lose 110 million tons annually, 4% of global crop

production, and potentially 15% in some regions (CCAC, 2023).

Cement and plastic production are other sources that contribute to

air pollution. More than 4 billion tons of cement are produced

annually, contributing to about 8% of global CO2 emissions (Chatham

House, 2018) and its production is growing by 2.5% each year

(Rubenstein, 2012). While 400 million tons of plastic are produced

annually (IUCN, 2021), almost 12 million barrels of oil are consumed

annually to produce plastic bags (Roberts, 2020). Over 99% of

plastics are fossil fuel‐based (CHO, 2020), with 14 million tons ending

up in the ocean annually. Humans have produced 8.3 billion tons of

plastic since the 1950s, with 6.3 billion tons discarded. Only 9% has

been recycled and 12% incinerated, increasing production from 2
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million tons in the 1950s to 4 million tons in 2015. 79% of plastic

waste is found in the natural environment, with an estimated 12

billion tons by 2050 (Mullarkey, 2017). Polymers, including fossil and

bio‐based plastics, are classified as biodegradable if over 60%–70%

degrade within 6 months (Awaja et al., 2004). Bio‐based polymers can

be produced from plants (Ehman & Area, 2021), and animals

(Machineni & Rao Anupoju, 2022). Despite the fact that not all bio‐

based plastics are biodegradable,. Approximately half of the current

bio‐based plastics on the market are not (Rahman & Bhoi, 2021).

Microbial fermentation is a promising method for producing bio‐

based, degradable polymers, such as polylactic acid (PLA), by

converting corn into dextrose through wet milling and fermentation

(Gotro, 2012). PLA is now a commercial bioplastic made of 100%

biological materials, making it suitable for mixing with microalgae

(Bulota & Budtova, 2015). Polyhydroxyalkanoates (PHAs) bio-

degradable biopolymer can also be obtained from oiled and de‐

oiled microalgae biomass; further, microalgae can be employed in

biorefineries to reduce the cost of the processes (Chew et al., 2017),

making it a sustainable technology for companies and investors since

they aim for long‐term profitability, continuous improvements, and

market recognition (Pavolová et al., 2021). Technological shocks that

are described as abrupt technological advancements that have a

major impact on social, political, economic, or other outcomes play a

direct role in investment as well (Akbari et al., 2021). However, the

literature lacks information on recent advancements in using Chlorella

vulgaris, microalgae known for its ease of cultivation and fast‐growing

features (Ma'mun et al., 2022), for biofuels, food additives correlated

with health, biocement, and biopolymer production, covering techni-

cal and some financial obstacles that hinder Chlorella vulgaris from

being utilized on industrial scales, addressing a crucial question

regarding the most practical industrial application technically and

economically and the future research needed to make certain

applications more practical to resolve the present issues with plastic

and fossil fuel usage.

2 | CHLORELLA VULGARIS

C. vulgaris is a green eukaryotic microalga of the genus Chlorella

that has existed on Earth since the Precambrian period (Safi

et al., 2014). These algae were found by Martinus Willem Beijerink

in 1890 as the first microalgae with a well‐defined nucleus

(Beyerinick, 1890). C. vulgaris requires macro‐ and micronutrients

to grow. The macronutrients involve nitrogen (N), carbon (C), and

phosphorus (P) (Aguda et al., 2023), while the micronutrients

involve inorganic trace elements (Hong et al., 2016). Moreover, C.

vulgaris requires a tolerated range of temperature, light intensity,

and pH with optimum values of 25–30°C (Ma et al., 2014) and

6.5–9 (Jiang et al., 2021), respectively. It has the ability to grow

under 2500–1000 lux of light intensity, including a 16:8 light:dark

cycle (Febrieni et al., 2020). Microalgae cultivation faces challenges

such as availability of nutrients, temperature, light source, water

availability, harvesting, and cost. Open‐pond cultivation is not

preferred over lab‐scale due to the microalgal contamination risk.

On the other hand, a 1‐hectare lab‐scale cultivation is required due

to the high costs of operation, process, and maintenance (Maroušek

et al., 2023). Photobioreactors (PBRs) are transparent systems that

allow producers to control production conditions by separating

them from the external environment. They offer higher yield

without contamination risk and cost about 1.4 million USD per

hectare. However, their increased building costs make them

unlikely to offer a competitive advantage in lower‐priced nations

(Maroušek et al., 2023). Producing 1 ton of dry algae biomass was

estimated to be 500 and 110 USD for the PBRs and open pond,

respectively, considering the price of CO2 capture when integrated

into biomass production, which was 250 and 55 USD for the

photobioreactor and open pond, respectively (Zabochnicka

et al., 2022).

C. vulgaris is a spherical microscopic cell with a 5‐ to 10‐μm

diameter (Scragg et al., 2003) and has many elements similar to plants

(Dvoretsky, Akulinin, et al., 2016). Its cell wall is crucial for

maintaining cell integrity and providing protection against invaders

and harsh environments (Safi et al., 2014). Moreover, the cell wall

properties affect microalgae applications such as biodiesel produc-

tion. Biodiesel can be derived from triglycerides by its conversion to

biodiesel in the trans‐esterification process (John Love &

Bryant, 2017), and C. vulgaris is an attractive model for triglyceride

studies due to its high triglyceride accumulation (Unterlander

et al., 2017). However, its complex cell wall significantly obstructs

lipid extraction (Dvoretsky, Dvoretsky, et al., 2016). Furthermore, cell

wall composition is also important in bioplastic production (Rahman &

Miller, 2017). Its 51–58% protein content makes it more crack‐

resistant and thermally stable than Spirulina which is utilized to blend

the biomass for bioplastic formation (Zeller et al., 2013). Therefore,

there were some efforts to control the protein content in C. vulgaris

by increasing the ratio of the light intensity using red and white LED

lamps (Metsoviti et al., 2020). Following the cell wall, a gel‐like

substance known as cytoplasm, which is composed of water, soluble

proteins, and minerals that contain microalgae organelles, namely,

mitochondria, chloroplast, Golgi body, vacuoles, and a nucleus, exists

(Safi et al., 2014). Mitochondria and chloroplasts are crucial in

microalgae growth, regulating respiration and carbon dioxide uptake,

which impacts lipid, biomass, and bioactive compound productivity.

Mitochondria have their own DNA for respiration (Lewin &

Andersen, 2022), while chloroplasts are responsible for photo-

synthesis and have their own DNA as well (Safi et al., 2014). C.

vulgaris lacks evidence of adapting to produce photosynthetic

pigments to absorb light intensities (Rendón et al., 2013). Genetic

engineering tools have shown promising results in improving

photosynthesis, with a 1.2‐fold increase in capacity and growth

(Yang et al., 2017). Further study is needed to understand the

function of mitochondria and chloroplasts under nuclear genome

control and their own genomes for short and long‐term effects.

In the early 1990s, German scientists considered C. vulgaris as a

new food source. Japan is currently the largest consumer of Chlorella

sp. for food (Safi et al., 2014) and medicinal purposes (Freitas, 2017).
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Notably, the Chlorella sp. market started to be attractive recently. The

size of the global chlorella sp. market was estimated at USD 275.21

million in 2021 and is anticipated to increase to USD 506.99 million

by 2030, rising at a CAGR of 6.3% over the forecast period

(2023–2030) from USD 292.55 million in 2022. Chlorella sp.

application for food and beverages industry occupied the largest

share in 2021, followed by personal care industry, nutraceuticals and

Pharmaceuticals, and others, respectively. The demand for Chlorella

sp. applications in medicine and personal care, is expected to increase

market size in Northern America and Europe, respectively, and

currently, Europe occupies 24.3% of Chlorella sp. market globally. In

addition to that, several promising companies have stated about

biodiesel production from algae which makes micro‐macro algae

highlighted candidates for the studies and the potential of their

utilization in the fuel sector. ExxonMobil and Solix Biofuels in the

USA stated about producing 1500 gallons and 5000–8000 gallons

yearly, respectively (Abdo et al., 2022; ExxonMobil, 2018). Euglena

Co., Ltd in Japan stated about producing 76,650 gallons (from waste

cooking oil and algae) yearly (Euglena, 2018). The major contributors

in the Chlorella sp. market worldwide are mentioned in Table 1 below

(Skyquest, 2022).

3 | HARVESTING TECHNIQUES

Harvesting is an important factor in utilizing microalgae on the

industrial scale because of the cost (Fasaei et al., 2018), risk of

contamination (Wan et al., 2015), and effect on the final product

(Hidayah Mat Yasin et al., 2019). Harvesting expenses make up about

90% of the cost of the equipment used in biomass production, and

they make up about 30% of the total cost of producing microalgae

(Ma et al., 2023), while harvesting of microalgae oil makes up about

60% of the produced oil (biodiesel) (Dewayanto et al., 2023).

Different techniques can be used for harvesting microalgae as shown

in Figure 1 below (Barros et al., 2015). Flocculation is a cost‐effective,

simple, and efficient method for large‐scale biomass harvesting

(Chozhavendhan et al., 2022). Positively charged flocculants can

destabilize and neutralize the negatively charged surface of micro-

algae, forming flocs for harvesting (Pugazhendhi et al., 2019).

Flocculation can be categorized into physical, chemical, and biological

flocculation, depending on the harvested material (Branyikova

et al., 2018). Chitosan, a commonly used organic polymer in C.

vulgaris harvesting (Rashid et al., 2013), is an expensive flocculant and

impractical for large‐scale production due to its high cost (Yin

et al., 2020). It costs 20–50 USD per kg and 7280 USD to harvest a

ton of microalgae; however, it can be optimized for coating,

functionalizing micro and nanospheres, and dual harvesting with

additional flocculants like clay. Changing chitosan into nano‐chitosan

can reduce costs to $24.6 per ton, making biodiesel production

economically feasible (de Morais et al., 2023). Cationic starch is also a

synthetic organic polymer that can be used to harvest C. vulgaris

(Huang et al., 2019). The acidic environment weakens electrostatic

forces between microalgae and flocculates, making the process pH‐

dependent. The harvesting efficiency of C. vulgaris using cationic

starch reached 99% at pH 11, with 25.74 g L−1 flocs concentration.

The maximum biomass flocculation capacity was 8.62 g at pH 3

utilizing 1 g of starch, with self‐flocculation. pH also affected the

diameter of C. vulgaris flocs, with 0.553mm achieved at pH 11, larger

than 0.208mm at pH 3 (Huang et al., 2019). A study suggests that the

use of electrolytic microbubbles can enhance the efficiency of

harvesting cationic starch for C. vulgaris, which is 5.5 times larger

than the flocculation‐settling process but requires more energy (Wei

TABLE 1 Major contributors in the Chlorella sp. market
worldwide (Meticulous Research, 2022).

Company Country

Flora Manufacturing & Distributing Ltd Canada

Roquette Klötze GmbH & Co. KG Germany

Phycom Netherlands

Tianjin Norland Biotech Co., Ltd. China

Fuqing King Dnarmsa Spirulina Co. Ltd. China

Far East Microalgae Industries, Co., Ltd. (FEMICO) Taiwan

Allmicroalgae—Natural Products, S.A Portugal

Qingdao Haizhijiao Biotechnology Co., Ltd. China

STAUBER U.S.

Alver World SA Switzerland

AlgoSource France

Taiwan Chlorella Manufacturing Company Taiwan

E.I.D.—Parry India

Dongtai City Spirulina Bio‐engineering Co., Ltd. China

Duplaco B.V. Netherlands

Sun Chlorella Corporation Japan

Algorigin Switzerland

Yunnan Green A Biological Project Co., Ltd China

Zhejiang Comp Spirulina Co., Ltd. China

Gong Bih Enterprise Co., Ltd. China

Wilson Group Taiwan

F IGURE 1 Harvesting techniques for microalgae.
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et al., 2020). Although cationic starch grafted tannin and nano‐

chitosan were documented to be very cheap, cost 27.4 and 24.6 USD

per ton for microalgae harvesting, no reports of their commercial use

exist (de Morais et al., 2023). Polymeric compounds can be

economically feasible flocculants except forpolymeric flocculants if

the ionic strength of culture suspension is high (Mathimani &

Mallick, 2018). Therefore, inorganic polymers such as polyelectrolyte

EM1, poly aluminum chloride, and polyacrylamide were proposed for

this purpose, even though they have a risk of pollution and pH

dependency (Wan et al., 2015). Metal salts like ferric sulfate,

aluminum sulfate, and ferric chloride are non‐polymeric chemicals

used in microalgae flocculation. Aluminum sulfate is cost‐effective,

costs 28 USD per ton (de Morais et al., 2023), but requires high

doses, potentially leading to biomass contamination with aluminum

or iron (Ummalyma et al., 2016). Physical flocculation using

ultrasound, electro‐flocculation, and magnetic nanoparticles was also

suggested to overcome the chemical drawbacks; nevertheless, some

have disadvantages as well. Electro‐flocculation is unsuitable for

industrial scales, since electro‐flocculation requires energy consump-

tion (Fayad et al., 2017), while ultrasound is hard to apply for large

scales (Bosma et al., 2003). Magnetic nanoparticles are one of the

best ways to harvest microalgae due to their possibility in dustrial‐

scale applications and eco‐friendly (Wang et al., 2015). Yet, there are

recent efforts to lower the cost and energy consumption of magnetic

nanoparticle synthesis and minimize the utilization of reagents during

the harvesting process to make it more practical for the industrial

scale. It was documented that the lowest cost is 347 USD per ton by

magnetic nanoparticle fabrication and modification using arginine (de

Morais et al., 2023). Coated and naked magnetic nanoparticles were

compared for C. vulgaris harvesting, detachment, and recycling of the

nanoparticles. Yttrium iron oxide (Y3Fe5O12) was more efficient in

terms of harvesting efficiency; it reached 90%, while naked iron oxide

(Fe3O4) was much easier to recycle under higher pH values (Zhu

et al., 2019). Diethylaminoethyl (DEAE) and polyethyleneimine (PEI)

showed a high harvesting efficiency as well (>90%). While the

detachment was possible only for DEAE beads (Prochazkova

et al., 2013). Recent evidence stated that Fe3O4 nanoparticles coated

with PEI had a high efficiency which was up to 99%. However, the

study did not include detachment or recycling efficiency (Gerulová

et al., 2022). Furthermore, microwave‐synthesized naked Fe3O4

particles were evaluated. The particles were prepared using a rapid

and low‐cost method, precipitating iron sulfate using NaOH and

drying in the microwave. The harvesting efficiency was over 99% at

pH 3.0, and the particles could be recycled and reused at least five

times. However, the detachment process involves chloroform

addition (Savvidou et al., 2021), which should be replaced or avoided.

Therefore, new investigations into the detachment process are

required. Bio‐flocculation is another way to harvest C. vulgaris by

different techniques such as auto‐flocculation by controlling pH by

adding alkali or controlling the consumption of CO2 to increase the

pH which leads to the sedimentation and aggregations of microalgae

(Mathimani & Mallick, 2018), although, requires alkaline addition, and

involves magnesium precipitation. It is unrelated to the changes in

microalgal cells, and the term “auto‐flocculation” was suggested to be

misleading (Vandamme et al., 2012). Microorganisms can be used as

bio‐flocculants as well. The harvesting efficiency was 99% and 100%

by utilizing Aspergillus fumigatus and Aspergillus sp. UMN F01,

respectively (Chen et al., 2018). However, the mechanism of bio‐

flocculation using microorganisms has not been fully defined; it is

thought to be mainly a function of the reactivity of the extracellular

biopolymer and/or the direct adsorption of the self‐aggregating

microorganisms on the target algae (Wan et al., 2015). Moreover, the

high cost of bioflocculation which is 1350 USD per ton, adds another

issue that should be addressed in the future and minimized to make it

more practical for the scaling up.

4 | APPLICATIONS

4.1 | Bioremediation integration with biodiesel
production

Bioremediation is a subfield of biotechnology that uses live organisms

like bacteria and microorganisms to remove contaminants, pollutants,

and toxins from soil, water, and other environments (Brown, 2022).

Algae are well‐known as autotrophs (organisms that utilize the

energy from photosynthesis to grow), play a significant role in

wastewater treatment (Amaro et al., 2023). Algae's chemical

treatment capabilities through photosynthesis, can fix carbon dioxide

and efficiently remove excess nutrients at a low cost. Moreover, they

produce oxygen, which can mitigate the biological oxygen demand

(BOD) of wastewater. Algae use waste as food and break down

contaminants through enzymes, uptaking nutrients like nitrogen and

phosphorus (Sahu, 2014) to grow and produce biomass, which can be

utilized for different applications, including biodiesel (Anand

et al., 2023). The choice of microalgae for wastewater treatment

depends on the tolerance of a specific species to wastewater and its

ability to grow and absorb nutrients from wastewater (Ariyanti

et al., 2012). For instance, Chlamydomonas mexicana, Scenedesmus

obliquus, Chlamydomonas pitschmannii, and C. vulgaris were cultivated

with diazinon, and it was found that C. vulgaris showed better growth

with a higher removal of diazinon by 94% (Kurade et al., 2016). The

bioavailability of nutrients like phosphorus in wastewater is crucial

for preventing phosphorus production, reducing costs. Plus, the

concerning phosphorus depletion on Earth has brought attention to

the bioavailability of phosphorus. Phosphorus can be available in

different forms, minerals and organic. However, not all organic and

mineral sources are accessible to micro‐macro organisms, which must

be addressed for sustainable technology (Stávková & Mar-

oušek, 2021). C. vulgaris has been tested recently in integrated

systems for different types of wastewater treatment with lipids

investigation and biodiesel production simultaneously. When C.

vulgaris was grown in textile wastewater (TWW), the results showed

the highest growth in 50% diluted TWW reaching 11.07mg g−1 of

fatty acids methyl ester; on the other hand, C. vulgaris could remove

methylene blue from undiluted TWW up to 99%, chemical oxygen
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demand (76%), phosphorous, and nitrogen more than 80%, producing

9.12mg g−1 of fatty acids methyl ester which included palmitic acid

C16:0 and linolenoic acid C18:3. Thus, the authors asserted that

utilizing undiluted wastewater is more practical (Fazal et al., 2021).

The potential of dairy wastewater was investigated for lipid

accumulation and fatty acids characterizations for biodiesel produc-

tion; the authors stated that the maximum accumulation of lipids was

seen in effluent with 50% dilution for initial and secondary

concentration (93%, 86%) correspondingly in concentrations of 13

and 26 million cells per mL of algae, while the highest percentage of

nitrate removal was 57% (Khalaji et al., 2021), and before this study,

the fatty acids methyl ester in the lipids were analyzed for biodiesel

production when C. vulgaris was cultivated and compared with C.

sorokiniana pa.91 in non‐sterilized effluent of dairy wastewater with

light intensity optimization. The maximum and initial lipid content for

C. sorokiniana pa.91 and C. vulgaris was 35%, 37%, and 31%, 34% at

2500 lux, respectively, and according to the amount of cetane

number, the authors showed that the lipid qualities are effective for

biodiesel and the fuel has a great potential even at low temperatures

according to cold flow plugging properties (CFPP), and cloud point

(CP) values (Asadi et al., 2020). However, the literature lacks some

information about a practical extraction for lipids and biodiesel

production, along with productivity and yield amounts, by utilizing

dairy wastewater. Municipal and urban wastewater are not less

important than dairy wastewater because they can also provide the

microalgae with the required nutrients. Municipal wastewater was

employed for water treatment along with CO2 capture and biodiesel

production in a coupled system to reduce the cost of the process. The

maximum growth was achieved at a C/N ratio of 4 with 5% (v/v) CO2

concentration, nitrate removal of 81%, ammonium removal of more

than 99%, and phosphate removal of 88%. The obtained fatty acid

methyl esters number was C16 to C18 showing the potential for

biodiesel production (Ayatollahi et al., 2021). However, urban

wastewater was indicated to its potential for biodiesel production

when C. vulgaris was cultivated and the lipids formed 8% of the

utilized dry biomass (3.7 g) along with nutrients removed by 87% of

phosphate, 99% of ammoniacal nitrogen, and nitrate, and the authors

stated that biomass is suitable to be utilized as a feedstock for

biodiesel production considering the amount of the obtained fatty

acid methyl esters (Ariana, 2016). Nevertheless, new investigations

are required further to realize the optimization effect on the

properties of the produced biodiesel and the characterization of

fatty acid methyl esters because the literature lacks these data. Pilot‐

scale (open raceway ponds) was also investigated for swine waste-

water treatment along with carbon dioxide capture for biodiesel

production. At 3% CO2, C. vulgaris MBFJNU‐1 produced more

microalgal biomass (478.5mg L−1) and total fatty acids (21%), had

higher CO2 bio‐fixation productivity (63.2 mg L‐1 d−1) and lipid

production (9.1 mg L−1 d−1), and nutrients removal (total phosphorus,

28%; total nitrogen, 82%; chemical oxygen demand, 37%). Addition-

ally, enzymatic transesterification of wet biomass with 5% lipase TL

and 5% phospholipase PLA resulted in the maximum biodiesel

conversion (93%) (Xie et al., 2022). However, the study did not assess

the biochemical makeup of microalgae cultivated in swine waste-

water, a crucial factor for wastewater treatment and high‐value

product production simultaneously. Additionally, a border investiga-

tion is needed for pilot‐scale ponds, as most studies focus on lab‐

scale comparisons. Scientific research is crucial for producing and

utilizing biofuels at a low cost. However, the competitiveness of

biofuels is also influenced by the price of fossil fuels. High fossil fuel

prices make biofuels more economically viable, while a decrease may

reduce their marketability. Government policies and investment can

also impact the biofuel market, as increased investment in biofuel

technologies can lead to higher oil prices (Vochozka, Horák,

et al., 2020). The EUR/USD exchange rate is also a significant factor,

as it is heavily reliant on global oil prices, which affects all markets, as

many nations use these currencies as their reserve currency

(Vochozka et al., 2020).

4.2 | Biohydrogen

Hydrogenase is an enzyme produced by green algae that plays an

important role in anaerobic metabolism which can catalyze the

reversible oxidation of molecular hydrogen (promotes the formation

and utilization of hydrogen) (Wittkamp et al., 2018). This enzyme is

produced by green microalgae by coupling photosynthetic electron

transport chains and plastid hydrogenase [Fe‐Fe] to generate

hydrogen gas which differs from other enzymes produced by other

microorganisms such as [Ni‐Fe] hydrogenase, and nitrogenase.

Hydrogenase [Fe‐Fe] is more active than [Ni‐Fe] hydrogenase and

nitrogenase by 10−100 times and by 1000 times, respectively (Li

et al., 2022), due to the existence of a distinctive active center

(cluster H) (Khetkorn et al., 2017). Consequently, biohydrogen

production was investigated in microalgae. C. vulgaris can be utilized

to produce biohydrogen in many ways (direct and indirect) due to the

ability of microalgae to produce hydrogenase. In a direct way,

biohydrogen can be directly produced during photosynthesis from

the water. However, the accumulation of the simultaneously

produced oxygen inhibits hydrogenase enzymes. In an indirect way,

the biomass of the microalgae can be utilized by other microorgan-

isms by dark fermentation to produce hydrogen. The major drawback

of this method is the biomass pretreatment requirement which can

be done by different methods (Figure 2 below) because the

hydrolytic enzymatic activity of hydrogen‐producing bacteria is

typically low, the pretreatment step is frequently necessary for the

hydrolysis of algal biomass to release the organic materials from the

algal cells and make them readily biodegradable to be utilized further

in the fermentation. Thus, it is considered one of the challenges that

should be handled in biohydrogen studies (Wang & Yin, 2018).

Nevertheless, biorefinery employment can be more practical to

reduce the cost of this process. For instance, the biomass of C.

vulgaris, Scenedesmus obliquus, and Consortium C was converted into a

carbon source for a bacterial strain, namely Enterobacter aerogenes by

fermenting the microalgal biomass after cultivating the microalgae in

urban wastewater for treatment. The sugar was accumulating after
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reaching the status of nutritional stress in the bioreactor and

afterward, the fermentation took place, and the highest yield of

biohydrogen was 56.8 mL H2/gVS by Scenedesmus obliquus followed

by Consortium C and C. vulgaris with 46.8 mL H2/gVS and 40.8 mL

H2/gVS, respectively, while the highest‐accumulated biohydrogen

production potential was for Scenedesmus obliquus (2.96mL) followed

by Consortium C and C. vulgaris with (2.91 mL) and (2.35mL),

respectively. Interestingly, C. vulgaris biomass reached a high

production rate (2.9 mL h−1), but due to the longer lag phase which

was observed compared to other strains, the accumulated biohydro-

gen was lower than theirs as it was already mentioned (Batista

et al., 2015). Therefore, more investigations on different composition

media with different dilutions to figure out the productivity of

biohydrogen of C. vulgaris biomass should be investigated since the

culture media can affect the overall carbohydrates concentration in

the biomass and eventually affect the fermentation outcome.

Additionally, the pretreatment procedure for microalgae biomass

might have a substantial impact on the microalgae's composition and

biohydrogen output since it was investigated for Scenedesmus

obliquus, and Chlorella sorokiniana which was uncovered for C. vulgaris

(Wang & Yin, 2018). Another strategy to produce biohydrogen by C.

vulgaris is sulfur‐deprived cells because sulfur deficiency is a major

factor in the cultures of microalgae that plays a role in biohydrogen

production since it can inhibit protein synthesis and causes severe

stress effects, leading to degradation of the photosynthetic apparatus

(Nagy et al., 2018) which is known as complicated machinery that

contains several complexes of protein–pigment that is involved in

photosynthesis process (Rochaix, 2016), and eventually reduces the

production of oxygen, which is an inhibitor of the hydrogenase

enzyme (Antal & Lindblad, 2005). When immobilized‐sulfur‐deprived

cultures of C. vulgaris were cultivated to produce biohydrogen, the

maximum rate was 34.8 mL L−1 h−1 (Rashid et al., 2011). However,

when artificial wastewater was utilized for immobilized‐sulfur‐

deprived cultures of C. vulgaris, the production rate was notably

decreased to 1.63mL L−1 h−1; nevertheless, further investigation is

required because the growth conditions such as light: dark cycle, light

type, and intensity were not similar (Ruiz‐Marin et al., 2020).

Recently, the potential of biohydrogen production by C. vulgaris

without sulfur deficiency was also highlighted using direct photo-

synthesis without sulfur deficiency in the media or exposing the cells

to stress conditions, and biohydrogen was obtained in the dark and

light conditions average of 2.08 and 4.98mL L−1 h−1 for the dark and

light conditions, respectively. While the maximum rate reached

12mL L−1 h−1 (Touloupakis et al., 2021). Even though hydrogen

mobility is now more affordable costing 7 Euro per 100 km than

traditional fossil fuels 15.6 Euro per 100 km for the first time in the

European Union, hydrogen is still in its early stage in the majority of

nations which impedes the advancement of hydrogen infrastructure

worldwide (Maroušek et al., 2022). The low yield and high cost of

biohydrogen production limit its industrial scale production and make

it uncompetitive with other biofuels like biodiesel besides, the

challenges including biohydrogen purification, storage, delivery, and

safety, must be addressed to ensure hydrogen's viability and

competitiveness (Feng et al., 2023). It has been demonstrated that

nanoparticles enhance biohydrogen synthesis in microbial systems by

acting as catalysts, promoting enzymatic processes that produce

hydrogen (Maroušek, 2022), and enhancing the biomass productivity

of the microalgae (Hidalgo et al., 2023). However, certain concentra-

tions can be toxic. Therefore, more investigations related to

optimization are required.

4.3 | C. vulgaris supplements and extracts for food
preserving

C. vulgaris is versatile food source rich in functional macro‐micro

nutrients, including protein, fatty acids, and minerals (Panahi

et al., 2016) and is rich in vitamins (Salvia et al., 2014) with more

folate than spinach (Bito et al., 2020). The anti‐lipid effects (lowering

bad cholesterol and triglyceride) of C. vulgaris were investigated in

many studies (Sherafati et al., 2022). In this regard, C. vulgaris powder

was examined in mice, and it was observed that increases in serum

and liver total cholesterol and triglycerides were significantly

suppressed in the given C. vulgaris mice when were fed by a high‐

fat diet of powdered C. vulgaris, and there was not a significant

difference in high‐density lipoprotein (HDL) with no significant effect

in the endogenous metabolism (Chovančíková & Šimek, 2001). On

the other hand, it was indicated that the addition of C. vulgaris to

atorvastatin treatment (reducing the body's capacity to produce

cholesterol by decreasing this production) for 8 weeks of the therapy

did not associate with improved control of serum lipid profiles

(Panahi et al., 2012). Once, the anticancer properties of C. vulgaris

extracts were highlighted by increasing the levels of the proteins Bax,

P53, and caspase‐3 while decreasing the amount of the protein Bcl‐2,

which causes apoptosis and DNA damage (Yusof et al., 2010), and for

this reason, the function of C. vulgaris extracts as antioxidant and

anticancer were also investigated on HeLa and DPPH cell lines. The

results showed that some extracts of C. vulgaris exhibited more than

F IGURE 2 Pretreatment methods for algal biomass for
biohydrogen production via the fermentation process.
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50% anticancer activity and antioxidant activity against Hela cancer

cell lines (El‐fayoumy et al., 2021). Furthermore, water extracts from

Spirulina platensis and C. vulgaris showed prolonged characteristics of

packaged sardine fish when they were investigated due to the

availability of mineral content and bioactive chemical components.

The extracts prolonged the shelf life of sardine for 3 days. However,

the utilization of water extracts from S. platensis was preferred over

the extracts of C. vulgaris. Nevertheless, both extracts can be used as

antimicrobial and antioxidant additives to preserve sardine fish

because these extracts inhibit the growth of lactic acid bacteria,

while C. vulgaris extract was a stronger inhibitory on tyramine

accumulation, with 2‐ to 4‐fold lower tyramine accumulation in

sardine meat than S. platensis extract. Also, the authors indicated that

C. vulgaris extract was more effective in the inhibition of ammonia

production and the most toxic biogenic amines such as tyramine and

histamine in fish meat (Özogul et al., 2021). However, the impact of

the extracts on the accumulation of biogenic amines was different,

depending on storage time and amine type (Özogul et al., 2021).

Additionally, the carotenoid in C. vulgaris extracts, in particular, can

be used to make bio‐based plastic for food packaging. Lutein, α‐

carotene, and β‐carotene were isolated from C. vulgaris, and it was

demonstrated that the addition of carotenoids to chitosan film

considerably enhanced the film and demonstrated its suitability for

use as a packaging material due to its antioxidative qualities (Şahin

et al., 2019). Hence, new investigations in terms of utilization of C.

vulgaris extracts in bio‐based plastic are needed and how the extracts

affect the mechanical and thermal properties of the bioplastics along

with their effects on the shelf life of the packed products if they were

used for packaging. Utilization the whole microalgae for food sector

is commercially available and the most reasonable application of

Chlorella sp. because the process is faster and easier than others

which minimizes the overall cost (Enzing et al., 2014). However,

consumer demand significantly affects its market, and Spirulina

dominates the market since 12,000 tons is produced yearly, while

only 5000 tons is produced from Chlorella (Rani et al., 2018).

Probably, understanding certain extracts from Chlorella that Spirulina

does not or poorly have and correlating these extracts with health‐

boosting might raise Chlorella's market. The literature lacks informa-

tion about the integration of a specific extract production with other

productions since this process can reduce the overall cost leading to a

better feasibility to produce an extract in industrial scale.

4.4 | Biocement

Biocement is a product innovation in the development of a

bioprocess technology called Biocementing or Biocementation.

Biocement refers to calcium carbonate (CaCO3) deposits formed as

a result of microbial activity in the systems that contain rich

supplements in calcium ions. The major role of microorganisms in

the precipitation of carbonate is due to their capability to produce an

alkaline environment by many physiological actions (Ariyanti,

2012). The effects of different nitrogen sources and different

concentrations of sodium bicarbonate and carbon dioxide were

investigated on C. vulgaris in terms of biomass concentration,

biocement sedimentation rate, and productivity. According to the

results, nitrate was favored over urea and ammonium, while the

biocement efficiency was 90% and the biomass productivity was

490mg L−1 when calcium chloride (0.4 g L‐1), sodium bicarbonate

(2.5 g L‐1), and sodium nitrate (1 g L‐1) were applied in the growth

medium at the recommended proportions (Arabian, 2022). Further,

the biomineralization capability of different species of microalgae in

calcification media that contained sodium bicarbonate and calcium

chloride dehydrate was investigated. Among the eight microalgae

that have been examined, Synechocystis sp. had the highest calcium

ion removal rate (0.70mM day‐1), followed by C. vulgaris (0.40 mM

day‐1) (Kavithraashree et al., 2022).

Calcium precipitation and C. vulgaris harvesting by flocculation

showed a significant correlation. When the pH of the medium was

adjusted to 11 for C. vulgaris harvesting, it was noticed that both

calcium and magnesium were precipitated, and these precipitates can

be utilized for further applications (Vandamme et al., 2012). Hence,

the issue of pH dependency in microalgae harvesting (flocculation)

can be employed or “invested” for biocement production or other

applications related to calcium and/or magnesium. From what has

been mentioned above, it can be considered that C. vulgaris as a

promising candidate in civil engineering as well, and it would be more

practical to treat wastewater that contains calcium ions and

eventually utilize the biomass for different products, as mentioned

previously. Prometheus Materials Inc. has unleashed the production

of biocement from biomineralizing (the method through which living

things’ matrix absorbs mineral crystals) cyanobacteria and it was

claimed that this cement is an alternative to Portland cement

(Dreith, 2022). Biocement mortars have a 90% lower thermal

conductivity compared to conventional mortars, resulting in higher

energy efficiency in buildings, reducing lifetime costs and CO2

emissions associated with heating and cooling (Edwards, 2022).

Pyrolysis of the biomass was also suggested to improve the

efficiency, and the addition of certain salts was suggested to be

commercially beneficial (Maroušek et al., 2023). Yet, the optimization

and biocement production by C. vulgaris needs to be investigated

further in terms of calcium carbonate precipitation, the addition of

the biomass effect into the produced biocement, and producing

biocement by charring the biomass before and after oil extraction in

two steps of biocement–biodiesel production. Finally, the price of the

process must be investigated due to the lack of information

4.5 | Biodegradable bioplastics

4.5.1 | Polyhydroxyalkanoates

PHAs are biodegradable polyesters produced by bacteria

(Kourmentza et al., 2017), microalgae (Costa et al., 2019), cyano-

bacteria (Afreen et al., 2021), and genetically engineered yeast (Gao

et al., 2015). They serve as carbon and energy storage without toxic
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waste (Amstutz et al., 2019) and are fully recyclable. PHAs can be

produced from various feedstocks, including wastes (Li &

Wilkins, 2020). However, microalgal biomass is considered the best

due to its lower cost (Rahman et al., 2014). Chlorella fusca (Cassuriaga

et al., 2018), Chlorella pyrenoidosa (Das et al., 2018), Tetradesmus

obliquus (Páblo Eugênio da Costa e & Laureen Michelle, 2022),

Synechococcus subsalsus and Spirulina sp. (Costa et al., 2018) were

reported for PHAs production, and it relays on the growth conditions,

utilized media, CO2 concentration, and nitrogen and phosphorus

deficiency. For example, PHAs were produced by Synechococcus

elongates; the production was 17% and 7% (w/w dry biomass) with

nitrogen and phosphorus deficiency, respectively (Mendhulkar &

Shetye, 2017). Nostoc muscorum was also investigated under

different growth conditions; PHAs production was 69% under

phosphorus deficiency (Bhati & Mallick, 2015) and 31% (w/w dry

biomass) with acetate and propionate addition (Mallick et al., 2007). It

was shown that C. vulgaris has the potential to produce PHAs by

utilizing agro‐industry residue corn steep liquor (Páblo Eugênio da

Costa e & Laureen Michelle, 2022). However, there is neither data

about the exact concentration and productivity nor yield of PHAs.

The most recent trend in PHA production by Chlorella sp. is the

utilization of de‐oiled or de‐fatted biomass in the fermentation

process to obtain the PHAs by microorganisms. Paracoccus sp. LL1

was employed to ferment glucose and Chlorella biomass to compare

the produced PHAs along with carotenoids. Impressively, the

obtained concentrations of PHAs and carotenoids were higher when

the biomass was fermented; the concentrations that were obtained

from biomass and sugar fermentation were 3.62 g L‐1 PHAs and

11.7 mg L‐1 carotenoids and 1.48 g L‐1 PHAs and 6.08mg L‐1 carot-

enoids, respectively (Khomlaem et al., 2020). Moreover, the produc-

tion of PHAs was improved when Chlorella biomass was fermented

by Cupriavidus necator KCTC 2649, and Haloferax mediterranei DSM

1411. The highest PHAs production was found in C. necator KCTC

2649 with 7.51 ± 0.20 g L‐1, 75% of dry cell weight, followed by

3.79 ± 0.03 g L‐1, 56% of dry cell weight in H. mediterranei DSM 1411.

However, the carotenoids amount was decreased, and the maximum

carotenoid content was 1.80 ± 0.16mg L‐1 produced by H. mediterra-

nei DSM 1411 (Khomlaem et al., 2021). Despite the data available

about de‐oiled biomass utilization to produce PHAs, the literature still

lacks critical information about specifying the strain of Chlorella that

has been grown to produce the biomass because the composition of

the biomass is different. Moreover, specifying the strain of micro-

algae will be useful in biorefinery applications according to the

desired final product such as biodiesel‐PHAs‐wastewater treatment

simultaneously.

Polyhydroxybutyrate (PHB) is another polyester that belongs to

the PHAs family and is produced by bacteria (McAdam et al., 2020)

and microalgae (Robert & Iyer, 2018a). However, PHA has better

chemical and physical properties and is comparable to petroleum‐

based plastics, whereas PHB has less elasticity, is very brittle, and its

thermal properties are unsuitable for rigid products (Singh et al., 2015).

PHB is a cost‐effective, eco‐friendly thermoplastic with similar

properties to commercial polypropylene. It is less flexible than

traditional plastics and is completely biodegradable. PHB can be

produced using algae, offering economic efficiency and low costs.

Many microalgae species were investigated for PHB production; for

instance, the maximum yield of PHB was 30% from 0.94 g L−1 of C.

sorokiniana biomass (Kumari et al., 2022), while it was up to

145.1mg L‐1 (17% of cell dry weight) under phosphate deficiency

and limited CO2 supply using N. muscorum (Haase et al., 2012).

Moreover, Spirulina sp. was described as a good candidate for PHB

production; the yield was 21% of the cell dry weight in 15 days

(Martins et al., 2017). Recently, PHB was detected in C. vulgaris by its

extraction from the biomass using hot chloroform (Robert &

Iyer, 2018) and it was quantified in a different study from 0.6 g of

C. vulgaris biomass using mechanical (sonication) and chemical

(NaClO) cell disruption methods, and the best yield was 37%

(Setyorini & Dianursanti, 2021). Furthermore, C. vulgaris can be

utilized in multiple production processes to make the process more

sustainable and economical by utilizing the algal biomass completely

without any production of algal waste. Recently, C. vulgaris was

utilized to produce biodiesel and PHB by using a biorefinery; the

microalgae were cultivated in wastewater, which makes the process

more economical and sustainable by utilizing the algal biomass

completely and without the production of any waste or residues. The

authors utilized the biomass to extract the oil and then the de‐oiled

biomass to produce PHB. The maximum lipid and PHB yield were

28wt%, and 0.41 g g−1, respectively (Arun et al., 2022).

4.5.2 | Polylactic acid

PLA, an FDA‐approved thermoplastic monomer (Pines et al., 2008), is

widely used in food handling (Marano et al., 2022), 3D printing

(Marșavina et al., 2022) and promising for 4D printing (Lin et al., 2022)

and medical applications (Schätzlein et al., 2022). PLA is not toxic in

solid form nor carcinogenic in the human body (Rogers, 2015). When

introduced into the human body, PLA hydrolyzes to alpha‐hydroxy

acid then processed into the tricarboxylic acid cycle and excreted

(Konta et al., 2017). However, PLA can be toxic, if it is inhaled or

absorbed into the skin or eyes as a vapor or liquid (Rogers, 2015). PLA

can be derived from renewable sources like corn starch

(Rogers, 2015), different microorganisms (Mehmood et al., 2023)

including microalgae (Bussa et al., 2019). The free‐lipid biomass from

Nannochloropsis salina was utilized as a feedstock for Lactobacillus

pentosus in fermentation process to produce lactic acid, and the

results showed that lactic acid yield was 93% from 3 to 25 g L−1 sugar

(Talukder et al., 2012). In addition to that, lactic acid production by

microalgal biomass fermentation was indicated to be practical on

large scales when lactic acid was produced by Hydrodictyon reticulum

fermentation which was carried out by Lactobacillus paracasei LA104.

With a final concentration of 37.11 g L−1 and a productivity of

1.03 g L−1 h−, the yield was 46 g/100 g H. Reticulum dry material

(Nguyen et al., 2012). The potential of C. vulgaris to be utilized as a

feedstock for fermentation was also studied. The results showed that

C. vulgaris biomass contains a high source of carbohydrates, which
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can be utilized for lactic acid production (Agwa et al., 2022).

Furthermore, it was noticed that C. vulgaris could change the

enzymatic activity of Lactobacillus sp. When they were cocultured.

The results showed higher production of L‐lactic acid and lower D‐

lactic acid production, and this characteristic could be used to

determine the final product (Ścieszka & Klewicka, 2020). However,

more studies are required to understand the yield and productivity.

The degradation rate of PLA depends on factors such as molecular

weight, crystallinity, and stereochemistry (Tokiwa & Calabia, 2006).

Thermal degradation, which occurs when 5% of the polymer is lost at

325°C and leaves no residue at 500°C (Sin et al., 2013), is not eco‐

friendly due to the emission of volatile compounds (Wojtyła

et al., 2017). Enzymatic degradation, which takes several weeks to

24 months, is also possible by enzymes found in microorganisms such

as protease (Seok et al., 2022), lipase (Satti et al., 2019), esterase

(Mistry et al., 2022), and cutinase‐like enzyme (Masaki et al., 2005),

whereas other types of plastics take approximately 500 years

(Kaushal et al., 2021). The rate of degradation is influenced by the

polymer's structure and composition as well. D‐PLA degrading faster

than L‐PLA (da Silva et al., 2018) and the addition of algal biomass to

PLA accelerates the biodegradation of PLA‐based polymers (Kalita

et al., 2021). However, there is no characterization of PLA/C. vulgaris

in terms of biopolymer optimization and biodegradation analysis.

4.5.3 | PLA market size and share

PLA is relatively inexpensive when compared to other types of

biodegradable bioplastics and has various mechanical advantages

over others, making it a popular material. In 2019, the production

capacity of PLA was around 290,000 tons (Fortune Business

Insights, 2021), and the global PLA market value was USD 1 billion

in 2021 growing at CAGR of 12% from 2021 to 2026 (Markets and

Markets, 2022), and expected to reach USD 2,306,708.2 thousand by

2028 (Fortune Business Insights, 2021). In 2020, biodegradable

plastics occupied 58% of the total plastic production globally, and

among them, PLA had the largest share since its production capacity

reached 19% and is expected to be 20% in 2025 from the total

capacity of biodegradable plastic which is estimated to be 63% from

plastic production (De Guzman, 2020). NatureWorks is the first

company and the largest that produces PLA on a commercial scale in

the world; it started in 2002, and in 2013, expanded its business and

started to produce 150,000 metric tons annually. Furthermore, it has

constructed a new facility in Thailand and is expected to be open in

2024; the facility will have an annual capacity of 75,000 tons of

Ingeo® biopolymer (NatureWorks, 2021). In line with NatureWorks

company, Futerro also plans to set up an integrated factory in France

to produce and recycle PLA with 75,000‐ton capacity as an annual

production (Futerro, 2022). Some companies that produce PLA are

mentioned inTable 2 below. Packaging is the main application of PLA

for consumer‐packaged goods, food service, and supermarket

packaging. According to European Bioplastic, packaging accounted

for 59% of biodegradable plastics produced in 2019. A fraction of this

represents 0.5% of the total plastic packaging produced in

biodegradable packaging. By the end of 2017, 164,000 biodegradable

tons of packaging for food and food items were produced (Jia, 2020).

China is considered the largest PLA consumer, and it is expected to

remain the world's largest PLA consumer over 2020‐2035, driven by

new domestic capacity addition in the country, and also export

demands (NexanTECA, 2021).

TABLE 2 A list of PLA products by different companies.

Company Brand/trade name Country Product References

RTP Company, Inc. RTP‐PLA compounds USA Covers, toys, medical devices, furniture Renewable Carbon News (2012)

FkuR Kunststoff GmbH Bio‐Flex® Germany Packaging Chinh and Hoang (2022)

NatureWorks® LLC Ingeo™ USA. Thailand Ingeo fibers for medical applications,
agriculture, packaging, household,
construction, electronics, and 3D printing

Maazouz and Lamnawar (2011);
NatureWorks (2023)

UNITIKA Plastics Division TERRAMAC Japan Shock absorbance materials like containers Sudesh and Iwata (2008)

Kanebo Gohsen Ltd. Lactron® Japan fabric Sudesh and Iwata (2008)

NaturePLAST Natureplast PLE 005 France rubber Agrobiobase (2013)

Flexible packaging: film, textile fiber

NaturePLAST n.d. France Heat‐resistant PLA resins Guzman (2015)

Hycail bv HYCAIL® Netherlands n.d. Kowalczyk et al. (2011)

Kareline Oy Ltd. Kareline® Finland Fiber‐reinforced, thermoplastic composite MaterialDistrict (2009)

FUTERRO n.d. Belgium Food packaging, films, foams, textile fibers,
3D filaments, cases

Bioplastics Magazine (2020)

Abbreviations: n.d., referring to no data; PLA, polylactic acid.
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4.5.4 | Plastic blends

Microalgae‐produced bioplastics have similar properties to

petroleum‐based plastics, making them suitable for existing applica-

tions. They are biodegradable, making them eco‐friendly (Rahman &

Miller, 2017). Chlorella sp. Can be utilized to produce bioplastic

because they have a high breaking strength due to their dense cell

wall and high thermal stability (Cinar et al., 2020). Both compatibilizer

and biomass treatment are effective for Chlorella‐based plastics.

When the homogenizer was used for Chlorella powder treatment

before mixing it with PVA, the results indicated that the treatment

improved the tensile strength and elongation by 15.3 kgf/cm2 and

100%, respectively (Sabathini et al., 2018). Maleic anhydrates (MAs)

compatibilizer showed tensile strength, elongation, elasticity, and

homogeneity improvements, when it was incorporated with PVA‐

Chlorella plastic‐based (Dianursanti & Khalis, 2018). Another compo-

sition was synthesized by blending Chlorella sp. with polyethylene

(PE) through chemical modification of PE with MA. The result showed

improved tensile strength by 40 wt % (Otsuki et al., 2004). However,

PE is not biodegradable. Therefore, biodegradable bioplastics like

PLA are preferred. Although PLA has many benefits, as previously

discussed, it also has significant disadvantages, including brittleness

and low tear resistance (Kim et al., 2020). Therefore, there were

many efforts including the incorporation of PLA with other plastics

(Pivsa‐Art et al., 2016), plant biomass (Yoksan et al., 2022), or algal

biomass (Liao et al., 2023) to improve the mechanical and thermal

properties. Duckweed plant was incorporated with PLA/thermoplas-

tic cassava starch (PLA/TPS) blend and the results showed improved

Young's modulus, hardness, and tensile strength (Yoksan et al., 2022).

PLA/algae blend was also investigated, and the results showed

improved Young's modulus when macroalgae were incorporated with

PLA. However, the strain and the tensile strength were decreased

(Bulota & Budtova, 2015). Furthermore, cell disruption effect

microalgae, namely spirulina sp. Blend with PLA was investigated as

well, and it was demonstrated that the tensile strength was increased

by 25% compared to raw spirulina (Liao et al., 2023). Therefore, new

investigations are required in terms of PLA/C. vulgaris blend along

with chemical composition analysis and biomass treatment impact

the mechanical, thermal, and degradation properties of the bio-

polymer (bio‐blend) since C. vulgaris was indicated for biorefinery

application which leads to an economical process. Finally, a summary

of overall C. vulgaris applications is mentioned in Figure 3.

The process of producing bioplastics is expensive and, being a

relatively new technology, less competitive than that of fossil‐based

plastics (Shah & Gangadeen, 2023). That being said, given a stable

price for fossil fuel, the price gap is anticipated to close considerably

by 2030, considering a stable price of fossil fuel, and the price of

fossil‐based plastics will be higher in a case of higher fossil fuel costs

(Horvat et al., 2018).

5 | CONCLUSION

C. vulgaris, easily cultivated and isolated from various sources, is a

promising candidate for various bioprocesses and food supple-

ments. Studying its unique extracts and their potential impact on

human health could potentially boost its market, as consumer

recognition directly influences its growth. Biodiesel production in

industrial scale is the most feasible application, but several

techno‐economic bottlenecks hinder its commercialization. These

bottlenecks are linked to algae production and require processing

as a side branch of a complex biorefinery process. Nontechnical

factors like global fossil fuel costs, exchange rates, investor

decisions, and governmental policies also affect biodiesel produc-

tion and price, necessitating addressing these to improve green

energy production. C. vulgaris has the potential for biohydrogen

and biocement production; however, challenges related to

hydrogen safety, operational cost, storage, and delivery hinder

scaling. However, biocement and biomineralizing processes

involving biomass and other biomaterials have not been exten-

sively investigated. Microalgae‐based polymers are uncompetitive

with fossil‐based. Probably, by valorization of de‐oiled biomass

for biopolymer will be more practical if it is produced as a

byproduct of other applications.

F IGURE 3 Chlorella vulgaris applications. Bio‐
H2, bio‐hydrogen; CaCO3, Calcium carbonate;
PHA, polyhydroxyalkanoate; PLA, polylactic acid;
W.W, wastewater.
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