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A B S T R A C T

This paper addresses the capacitated lot-sizing and scheduling problem on parallel machines with eligibility 
constraints, sequence-dependent setup times, and costs. The objective is to find a production plan that minimizes 
production, setup, and inventory holding costs while meeting the demands of products for each period without 
delay for a given planning horizon. Since the studied problem is NP-hard, we proposed metaheuristic ap-
proaches, Variable Neighborhood Search, Variable Neighborhood Descent, and Reduced Variable Neighborhood 
Search algorithms to analyze their performance on the problem. Initially, we presented an initial solution 
generation method to satisfy each period’s demand. Then, we defined insert, swap, and fractional insert moves 
for generating neighborhood solutions. We employed an adaptive constraint handling technique to enlarge the 
search space by accepting infeasible solutions during the search. Lastly, we performed computational experi-
ments over the benchmark instances. The computational results show the effectiveness of the proposed solution 
approaches, compared to existing solution techniques in the literature, and the improvements in various problem 
instances compared to the best-known results.

Introduction

Lot-sizing problems are usually classified as small and large bucket 
problems. While small bucket problems consist of small-time periods that 
usually allow one product or setup per period and machine, big bucket 
problems contain fewer and longer periods and typically have no restriction 
on the number of products or setups per period and machine. A production 
schedule cannot be directly concluded from a solution with large bucket 
models since the sequence of products is not determined within each period. 
The Capacitated Lot-Sizing Problem (CLSP) provides a standard mathema-
tical formulation for large bucket lot-sizing problems with a single machine 
for a specified number of periods and the known demand for each period. In 
this study, the CLSP is integrated into scheduling decisions. Moreover, the 
lot-sizing and scheduling decisions are given in the presence of parallel 
machines and sequence-dependent setups. Many practical cases of the 
Parallel Machine Capacitated Lot-Sizing and Scheduling Problem 
(PM_CLSP) exist in the real world [24].

As Hansen et al. [21] reported, Variable Neighborhood Search 
(VNS)-based heuristics have proven to be the leading heuristics for 
many NP-hard optimization problems. In recent years, many variants of 
this metaheuristic have been successfully applied to a wide variety of 
optimization problems. These performances indicate that developing 
VNS heuristics to address other NP-hard optimization issues will lead to 
a promising avenue of research. These algorithms’ simplicity, ease of 
use, and high performance on various scheduling problems are also 
stated in [16,21,42]. Therefore, in this study, we employed the VNS and 
its variants, Variable Neighborhood Descent (VND), and Reduced 
Variable Neighborhood Search (RVNS) algorithms to solve the 
PM_CLSP, which have not been employed before in the solution of this 
problem. Other contributions of our study include the use of the 
adaptive constraint-handling technique, the adaptation of neighbor-
hood solution generation schemes previously defined for the single- 
machine case in Almada-Lobo et al. [2] for the parallel-machine case, 
and the proposal of an additional new neighborhood scheme.
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The remainder of the paper is organized as follows. Section 2 pre-
sents the literature review on the PM_CLSP. The mathematical for-
mulation of the PM_CLSP is given in Section 3. Section 4 describes the 
initial solution generation procedure, proposed VNS, VND, and RVNS 
solution approaches, and neighborhood schemes used. Finally, the 
computational results and concluding remarks are presented in Sections 
5 and 6, respectively.

Literature review

The standard CLSP is defined in Quadt and Kuhn [37] as follows. In each 
period, more than one product with deterministic and discrete demand 
quantities should be produced. Each product occupies a portion of the 
machine’s capacity, and the setup cost occurs with each change in the set of 
products occupying the machines. Additionally, unique inventory holding 
costs are incurred when a product unit has been produced in the previous 
periods. The objective is to find an optimal production plan to minimize 
setup and inventory costs and find optimal lot sizes for each period and each 
product to satisfy each period’s demand.

An extension of the CLSP discussed in this study is the one with 
parallel machines. The parallel machine CLSP (PM_CLSP) can be seen in 
various industries, such as chemicals, electronics, food, and textiles 
[37,34,39,48]. The complexity of the problem increases with this ex-
tension since a decision must be made on which machine to produce a 
product and how many machines to use in parallel for each product in 
each period [37].

Setup carryover is another extension of the CLSP. Carrying over a 
setup between periods is observed in many industries; for instance, in 
the semiconductor industry, production runs 24 h a day and seven days 
a week [36]. Setup carryover means that a machine’s setup state can be 
preserved between two consecutive periods, requiring no extra setup. 
As Quadt and Kuhn [37] stated, in the standard CLSP, a setup is made 
for each product produced per period (and machine), whereas, with the 
setup carryover, the final product per period can be produced without 
any additional setup incurred in the following period. Haase’s study 
(1998) has denoted that the solutions become significantly different 
when setup carryover is considered. Quadt and Kuhn [37] claim that if 
setup carryover is accounted for with parallel machines, a lot-for-lot 
policy can substantially reduce the number of setup operations. Car-
rying over a setup state makes the problem more complicated because a 
decision must be made for each machine as to which product should be 
the first and the last in a period. Gopalakrishnan et al. [17] developed a 
model for the CLSP problem with constant setup times and setup car-
ryovers and noted the complexity of the proposed model. Suerie and 
Stadtler [45] presented a different mathematical model with sequence- 
independent setup costs and times. They used the idea of the standard 
facility location formulation and proposed new sets of variables and 
constraints to model the setup carryover.

A complete sequence of all products on each machine must be 
conducted when sequence-dependent setup times and/or costs are 
present. Bitran and Yanasse [6] show that the CLSP is NP-hard even 
without setup times. When sequence-dependent setups are also con-
sidered, the CLSP becomes NP-complete implying that it is hard to find 
a feasible solution Maes and Van Wassenhove [29]. The CLSP with 
sequence-dependent setup times is similar to the TSP and the vehicle 
routing problem (VRP) [27,26]. More specifically, the setup cost matrix 
in the CLSP is similar to the distance matrix in the TSP or VRP. How-
ever, solving the multi-period CLSP is equivalent to solving multiple- 
dependent TSPs.

Haase and Kimms [20] studied the CLSP with sequence-dependent 
setups. They introduced a model where the efficient product sequences 
are predetermined. As a solution approach, they used a tailor-made 
branch-and-bound method. In the study of Gupta and Magnusson [19], 
they initially developed an exact formulation of the single machine 
CLSP with sequence-dependent setup costs, non-zero setup times, and 
setup carryover as a Mixed Integer Programming (MIP) model. For 

large problem instances, they proposed a heuristic for a solution. The 
heuristic generates an initial feasible solution, assuming setup carry-
overs are used in each period. Then, setups are sequenced in each 
period in a greedy way. The final step starts with the last period, and 
unused capacity is searched in preceding periods. Then, setup and 
holding costs are checked to determine whether production may be 
moved to an earlier period with sufficient slack capacity and the overall 
cost is reduced. This step proceeds until all opportunities for moving 
production have been exhausted. Zhu and Wilhelm [52] conducted a 
literature review on the CLSP with sequence-dependent setup times on 
single and parallel machines.

Almada-Lobo et al. [2] presented two new linear MIP models for 
the single machine CLSP with sequence-dependent setup times and 
costs and setup carryover. No backlogging is allowed, i.e., each 
product’s demand should be fully satisfied for each period. To keep 
track of schedules, they introduced a TSP-influenced constraint to 
simplify their formulations concerning others in the literature. Fur-
thermore, they proposed a five-step heuristic for finding feasible 
solutions. Similarly, Sarin et al. [41] presented a high-multiplicity 
TSP in which the traditional TSP is enhanced by allowing multiple 
visits to the nodes, and a polynomial length formulation of the pro-
blem has been achieved with flow-based sub-tour elimination con-
straints. de Armas and Laguna, [4] proposed an MIP model for a pipe 
insulation company to obtain a lower bound for the total production 
maximization objective with a sequence-independent version of the 
problem. The solution obtained from the MIP model is used in a post- 
processing sequencing heuristic to create the best-performing se-
quence of products with sequence dependency.

In this paper, we conducted literature research on the PM_CLSP, 
considering several operational characteristics and the deployed solu-
tion methods, and showed them in Table 1. MIP-based heuristics are 
commonly selected solution approaches for the PM_CLSP. James and 
Almada-Lobo [23] studied the PM_CLSP with sequence-dependent 
setups, setup carryover, and machine eligibility restrictions among 
products. They proposed an MIP-based iterative neighborhood search 
heuristic, divided the problem into many sub-MIPs, and solved them 
randomly. The stochasticity of the solution algorithm arises from the 
idea of the selection of the sub-MIPs.

In Xiao et al.’s (2013) study, the PM_CLSP is studied with se-
quence-dependent setup times and costs, setup carryover, and 
backlogging. Similar to the study of James and Almada-Lobo [23], 
they also considered machine eligibility restrictions. Moreover, they 
have included soft machine preference constraints, the violation of 
which is penalized in the objective function. To find high-quality 
solutions, they proposed MIP-based Relax-and-Fix and Fix-and-Op-
timize heuristics, where the binary decision variables related to the 
assignment of machines are first fixed using the randomized least 
flexible machine rule, and the rest of the decision variables are set-
tled by a MIP solver. Similarly, Beraldi et al. [5] proposed rolling- 
horizon and Fix-and-Relax heuristics, while Carvalho and Nasci-
mento [7] used the Relax-and-Fix and Fix-and-Optimize heuristics 
with different search strategies, such as path relinking and kernel 
search. Larroche et al. [28] proposed a hybrid heuristic method to 
obtain feasible solutions while considering lost sales, overtime, 
safety stock, and sequence-dependent setups on the unrelated PM_ 
CLSP. The proposed method uses the clustering technique to ap-
proximate the sequence-dependent setup times while using the setup 
times within the relax-and-fix and fix-and-optimize heuristics. In a 
study by Mateus et al. [32], a hybrid strategy was proposed where 
the lot-sizing problem was solved with integer programming, and the 
scheduling problem was solved with the GRASP heuristic.

Güngör et al. [18] proposed an MIP-based heuristic approach for the 
identical machine PM_CLSP while minimizing the required setups and 
teardowns. Marinelli et al. [31] proposed a heuristic approach to relax 
the lower bounds of the problem and suggested a decomposition 
method for their MIP model.
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Several studies have included the non-triangular setup times to the 
PM_CLSP, where the production of a certain product may cause con-
tamination for another product, which is commonly observed in the 
food and beverage, oil, and feed industries Clark et al. [8]. The po-
tential time to clean the contamination during the setup times is 
eliminated by producing item l right after item i instead of item j since 
item l can clean the contamination during the production period, par-
ticularly in the abovementioned industries. Carvalho and Nascimento 
[7] proposed a matheuristic approach to solving the unrelated parallel 
machine CLSP with sequence-dependent and non-triangular setup times 
to minimize the operational costs in the food industry. The proposed 
model enables a product to be produced multiple times with various 
sequences during a period. In a different study by Mahdeih et al. 
(2018), non-triangular setup times were considered while analyzing the 
identical PM_CLSP with sequence-dependent setups and setup carryover 
characteristics. This study has proposed a flexible MIP approach to 
tackle this problem by incorporating the setup carryover and setup 
overlapping features into their model.

Recent studies have included the setup carryovers and sequence- 
dependent setups in the PM_CLSP and proposed heuristic methods to 
overcome the complexity of the problem with these extensions 
Carvalho and Nascimento [7,16]. In a study by Silva and Magalhaes 
[43], the unrelated parallel machine discrete lot-sizing problem was 
solved with a due date-based heuristic method to minimize the total 
number of tool changeovers.

Sambasivan and Yahya [40] and Fiorotto and de Araujo [14] used 
the Lagrangian Relaxation to approximate the optimal solution. Simi-
larly, Fiorotto et al. (2014) proposed a Lagrangian Heuristic that ap-
plied to the demand constraints, and the relaxed problem was decom-
posed per period and machine decomposition. A primal heuristic, based 
on production transfers, was designed to generate feasible solutions. 
Dolgui et al. [11] proposed a Greedy Heuristic and compared its per-
formance with the Genetic Algorithm (GA) and exact solution methods, 
stating that the proposed algorithm performed better.

The exact solution strategies proposed in the PM_CLSP are MIP- 
based exact solutions conducted with various problem characteristics 
and objectives. Mahdieh et al. [30] proposed a novel flexible MIP 
model to minimize the operational costs on identical PM_CLSP with 
the non-triangular sequence-dependent setup costs and times with 
setup carryovers, backlog, and backorder allowances and branch and 
cut search with period overlapping property to relax the limitations 
of physical separation between the periods. In a different study, both 
the general lot-sizing and scheduling problem and the capacitated 
lot-sizing and scheduling problem have been studied, and different 
novel MIP solutions have been proposed to minimize operational 
costs [3]. In 2011, Ibarra-Rojas et al. proposed a decomposition- 
based approach where they constructed two MILPs, one of which 
determines the lot size, and the other searches for a feasible schedule 
for the machines. Ferreira et al. [13] proposed a TSP solution to the 
PM_CLSP with sequence-dependent characteristics, backorder, and 
backlog allowances possessing a remarkable performance. They 
compared the results obtained from their TSP-based method with the 
branch and cut method with limited execution times. Another study 
was conducted on the Proportional Lot-sizing and Scheduling Pro-
blem (PLSP) with identical machines using an MIP model to mini-
mize the operational costs where the binary variables are replaced 
with integer variables that describe the number of machines enabling 
better performance [25].

As observed in Table 1, these exact solution strategies lack some of 
the mentioned characteristics due to a possible increase in the com-
plexity and computation time ([3]; Mahdeih et al., 2018). This situation 
led the researchers to develop heuristics to tackle the complexity of the 
problem.

Besides the exact solution strategies, commonly used metaheuristics 
are used to solve the PM_CLSP in the literature. Qin et al. [35] used Ant 

Colony Optimization; Xiao et al. [50] and Radhakrishnan and Ventura 
[38] both used Simulated Annealing for their problems. Besides the 
mentioned metaheuristic methods, metaheuristics with different search 
strategies are introduced. Vincent et al. [47] constructed a population- 
based metaheuristic and used a path-linking strategy to strengthen their 
diversification procedure. Seeanner et al. [42] combined the variable 
neighborhood search metaheuristic with the Fix-Optimize heuristic to 
solve the unrelated PM_CLSP to minimize operational costs. Zhang et al. 
[51] proposed a metaheuristic method to improve the initial solution 
generated with a branching and selection procedure.

Matheuristics are other commonly used solution approaches in the 
literature for both the single and the PM_CLSP. The goal of matheur-
istics is to combine metaheuristics with mathematical programming 
techniques. The studies that deployed matheuristics as solution strate-
gies are listed in Table 1.

Regarding the related literature, no study employs the VNS, VND, 
and RVND algorithms to solve the PM_CLSP. Given the simplicity, ease 
of use, and high performance of these algorithms on various scheduling 
problems [16,21,42], this paper proposes solution approaches based on 
the VNS, VND, and RVND algorithms for solving the PM_CLSP with 
unrelated parallel machines, sequence-dependent setups, machine 
eligibility restrictions, and setup carryovers to minimize the overall 
inventory and setup costs.

Mathematical formulation of the PM_CLSP

We consider a set of products i j N, processed on m M un-
related machines with eligibility and capacity constraints over a dis-
crete planning horizon with t T periods. Due to the sequence-de-
pendency of setups in a product changeover, lot-sizing and sequencing 
decisions for products are simultaneously tackled. The objective is to 
find a strategy that satisfies demands and minimizes both setup and 
holding costs. James and Almada-Lobo previously modeled the 
PM_CLSP with sequence-dependent setups and setup carryover (2011).

The parameters and decision variables necessary for the mathema-
tical formulation of the problem can be listed as follows:

Parameters

dit= demand of product i in period t.
smij = setup time incurred when a setup occurs from product i to j on 

machine m.
cmij = setup cost incurred when a setup occurs from product i to j on 

machine m.
hi= unit inventory holding cost for product i from one period to the 

next.
pmi= processing time of one unit of product i on machine m.
Cmt= capacity of machine m available in period t.
Gmit= upper bound on the production quantity of product i in period 

t on machine m.
Ami= product i’s capability of machine m.

Decision Variables

Xmit= quantity of product i produced in period t on machine m.
Iit= inventory level of product i at the end of period t.
Vmit= an auxiliary variable that assigns product i to machine m in 

period t.
Tmijt = 1 if a setup occurs from product i to j on machine m in period 

t.
Ymit = 1 if machine m is set up for product i at the beginning of 

period t.
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The objective function (1) minimizes the overall inventory and setup 
costs. Constraint (2) enforces production and inventory balance, whereas 

Constraint (3) sets the initial inventory level of each product to zero. The 
available capacity of the machines limiting the total production and setup 
time of each machine is set by Constraint (4). Constraint (5) imposes that a 
setup is made each time a different product is scheduled on a machine, 
while Constraint (6) ensures the setup carryover for two consecutive per-
iods. Constraint (7) states that each machine should be set up for one 
product at the beginning of each period. Constraint (8) eliminates dis-
connected subtours. In other words, this Constraint works whenever a 
subtour occurs in a period, forcing the respective machine to be set up at the 
beginning of that period to a product that is part of the subtour. Constraint 

(9) indicates each machine’s eligibility to produce a product, and Constraint 
(10) is for the nonnegativity and integrality of the decision variables.

Proposed solution approaches

This section describes the basic VNS and VND, the initial solution 
generation procedure, the neighborhood generation schemes, and the 
VNS solution methods developed.

Basic variable neighborhood search

VNS is a common approach to enhance solution quality with systematic 
neighborhood changes within a local search [33]. The algorithm involves 
iterative exploration of larger and larger neighborhoods for a given local 
optimum unless there is an improvement, and then the search is repeated. In 
VNS, this systematic neighborhood change is both deterministic and sto-
chastic, whereas, in VND, only the deterministic part of VNS is used.

The basic procedure of VNS is as follows: start with an initial so-
lution i and set as the incumbent solution. Following, select a 
random solution 1 from the kth neighborhood of ( N ( ))k1 in the 
Shaking Phase (SP), and find an improving solution 2 (if any) in the kth 

neighborhood of 1 ( N ( ))k2 1 , using the Local Search (LS). If there is 
an improvement, i.e., (f ( 2)  <  f (π)), set 2 as the new incumbent 
solution, continue the search with the 1st neighborhood; otherwise, 
move to the next neighborhood. The search continues as long as 
k kmax ; otherwise, an iteration of the algorithm is completed, and the 
neighborhood structure is reset to the 1st neighborhood structure. The 
procedure stops when a stopping condition is fulfilled. The VNS pro-
cedure is presented in Algorithm 1.

Basic variable neighborhood descent

In basic VND, the change in neighborhoods is performed in a de-
terministic way. Starting with an initial solution i and setting as the 
incumbent solution, an improving solution (if any) is searched in N ( )k
using LS. If there is an improvement, 1 is set as the new incumbent 
solution, and the search continues with the 1st neighborhood; other-
wise, it is moved to the next neighborhood. The search stops when all 
neighborhoods are tried, and no improvement is found. The basic VND 
procedure is given in Algorithm 2.
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Initial solution generation

An initial solution should be provided before the proposed algorithms 
are applied. Starting from the last period, for each period, a product on 
demand is chosen randomly and allocated to one of the eligible machines 
with the largest capacity unused. If the demand for the chosen product 
cannot be produced due to the insufficient capacity of the machine, only a 
part of the demand corresponding to the remaining capacity is allocated. 
The rest is produced one period earlier on the same machine. Note that the 
advantage of the setup carryover between the periods is considered in that 
case; on the other hand, this allocation results in inventory holding costs 
for one period. If there is not enough capacity left on this machine, the 
capacity violation in the corresponding period is calculated for the ma-
chine. Therefore, the objective function consists of sequence-dependent 
setup costs allowing setup carryover allowance between consecutive per-
iods, inventory holding costs, and capacity violation penalties. The initial 
solution algorithm stops when the demand for all products for each period 
is allocated to the machines. Obtaining a feasible initial solution is un-
necessary since we have used constraint-handling techniques in the de-
veloped solution approaches.

Neighborhood schemes

Three different types of moves previously defined by Almada-Lobo 
and James [1] for the single machine case have been adapted to our 
parallel machine case. These moves can be explained as follows.

In the Insert Move (IM), the product lot is chosen randomly and 
inserted before another product randomly. Unlike the single-machine 
case, this move can be made on the same machine or other eligible 
machines. However, the IM is always possible in this study since ca-
pacity violations of machines are allowed.

In the Swap Move (SM), two product lots chosen randomly from 
different machines, either in the same period or different periods, are 
swapped without considering any capacity violations of machines on 
the condition that the eligibility of these machines to produce the 
swapped product lots is satisfied. However, similar to the insert move, 
two product lots on the same machine, whether in the same period or 
not, can also be swapped. Due to constraint violation techniques, it 
would not be prohibited even if a swap move results in infeasible so-
lutions in capacity, demand satisfaction, or upper-bound production 
quantity.

The Fractional Insert Move (FIM) is similar to the IM; however, it 
allows splitting a product lot into two lots, where the total quantity 
produced is the same as the original lot. One of these new lots is left in 
the same position as the original lot, while the second part is randomly 
inserted into a new location on a randomly selected eligible machine. 
This move must occur on the selected machine for the same production 
period as the selected product lot. Therefore, the quantity moved is 

dictated by the available capacity of the machine during the period it is 
moved. Moreover, the capacity violation is not permitted in the FIM . If 
there is enough capacity, the complete lot will be moved; if not, only 
the amount that can fit in the period will be moved. All locations within 
the period are tested as the capacity available will vary depending on 
the new lot’s position, the lots surrounding it, and the sequence-de-
pendent setup times.

Objective function calculations

The objective function calculation differs from the standard calcu-
lation, where only setup and inventory holding costs are incurred. 
Infeasible solutions involving constraint violations have been accepted 
as candidate solutions during the search because the optimal solution 
can be found at the boundaries of the feasible region. Deb [10] proposes 
the following three criteria while deciding on the Superiority of Solu-
tions. 

1. Any feasible solution is preferred over an infeasible solution.
2. Among two feasible solutions, the one with a better objective 

function value is preferred.
3. Among two infeasible solutions, one with a smaller constraint vio-

lation is preferred.

In the initial solution generation phase, since the assignment of 
product lots is done in the period demanded or one period earlier, 
without considering machine capacity constraints, the total violation of 
constraints for the initial solution is calculated as the sum of only the 
capacity violations for machines. However, this situation is different for 
solutions generated after infeasible moves. For example, when two 
products are swapped from different periods, there is no guarantee that 
the demand for one or both will be satisfied. Thus, in addition to the 
capacity violation amount, the unsatisfied demand and the excess of the 
upper bound production levels of each product on each machine for 
each period should also be included in the calculation of the total vio-
lation.

An adaptive constraint handling method, known as Near-Feasible 
Threshold (NFT ) [44,46], has been adopted for the proposed VNS and 
VND algorithms during the search. It handles the violation of con-
straints considering the search duration and the distance from the 
feasibility. NFT is computed for each constraint in the penalized ob-
jective function. It is defined as the threshold distance from the feasible 
region. With the penalty function, the algorithm is encouraged to ex-
plore the feasible region and the NFT neighborhood of the feasible 
region. In other words, searches that exceed the threshold are dis-
couraged. The penalized objective function f x t( , )p is given below, 
where f x( ) is the unpenalized objective function: 
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As stated in Equation (11), F t( )all denotes the unpenalized value of the 
best solution yet found, and F t( )feas denotes the value of the best feasible 
solution yet found. The F t( )all and F t( )feas terms serve several purposes. 
However, di denotes the violation amount of constraint i, where there are 
m constraints in total. First, they provide adaptive scaling of the penalty 
based on the search results. Second, they combine it with the NFTi term to 
provide a search-specific and constraint-specific penalty.

The general form of  is as follows. 

=
+

NFT NFT
1i

0
12 

According to the proposed 12(12), NFT0 is an upper bound of NFT . 
is a dynamic search parameter that updates NFT considering the 

entire search period. has been defined as a function of the iteration 
number (t), i.e., = =f x t( ) (Baeck et al., 1995). Moreover, Gen and 
Cheng (2000) noted that the adaptive term might lead to zero or over- 
penalty. For instance, if F t( )feas and F t( )all are identical, the penalty 
would be zero, resulting in unpenalized infeasible solutions. For this 
reason, only the dynamic part of the penalty function with the NFT
threshold is used [9].

Proposed VNS for the CLSP_PM

In the proposed VNS and VND approaches, the Best Improvement 
Local Search (LS_BI) procedure, given in Algorithm 3, is employed, using 
either IM or SM based neighborhoods N( k), since it entirely explores the 
search space. The FIM cannot be used in the LS_BSI because the 
transferred quantity of the product lot would change in each move, and 
thus, there will be infinite possible moves when the entire search is 
explored.

The pseudocode of the developed VNS algorithm is presented in 
Algorithm 4. We use the LS_BI procedure in the Local Search Phase using 
either IMor SM neighborhoods, whereas we use the FIM in the Shaking 
Phase (SP) since it changes the structure of the problem by changing 

both the sequence and the lot sizes in the problem, and hence provides 
diversification to the search.

The notation in the following algorithms can be explained as fol-
lows; b, the incumbent solution, which is also the best solution found 
so far; fb, the best objective function value found so far; and tvb, the 
minimum total amount for constraint violations encountered so far. 
Initially, =b i, =f fb i and =tv tvb i, where i, the initial solution; fi, 
the objective function value of the initial solution, and tvi, the total 
minimum amount for constraint violations of the initial solution (lines 
3–5, Algorithm 4).

The VNS algorithm first selects a random solution from the neigh-
borhood of b by the FIM for diversification, using the Shaking function 
SP(N (fim b)). Then, the local search phase starts, where an entire 
search is done within the kth neighborhood, Nk, using the LS_BI(π, Nk) 
function (line 9, Algorithm 4). A local optimum solution m is found 
among all solutions of this neighborhood, and its fm value is com-
pared with the fb value of the incumbent solution, b, using the 
compare function described in Algorithm 5. In the compare function, 
these two solutions b and m are compared using the Superiority of 
Feasible Solutions and NFT values (lines 2–24, Algorithm 5) described in 
Section 3.5. According to the Superiority of Feasible Solutions, if both 
solutions are feasible and fb <  f ,m b requires no updating (lines 3–5, 
Algorithm 5); otherwise, b is updated as ,m and fb and tvb are up-
dated accordingly (lines 6–9, Algorithm 5). However, if b is feasible 
and m is infeasible, b remains the same (lines 10–11, Algorithm 5). If 

b is infeasible and m is feasible, then b is updated as m, and fb and tvb
are updated accordingly (lines 12–15, Algorithm 5). Lastly, if both so-
lutions are infeasible, NFT values for b and m are calculated, and if 
NFTb >  NFTm, then b is updated as ,m and fb and tvb are updated 
accordingly (lines 16–20, Algorithm 5); otherwise, b remains the same 
(lines 21–23, Algorithm 5).

If an improvement in b (imprv = 1) has been detected with the 
compare function, and, fb, b and tvb (if necessary) have been updated as 
mentioned above, the neighborhood structure remains the same, and it 

is turned back to the SP(N (fim b)) procedure. This part of the search 
continues until =k 2, and no improved solution in the 2nd neighbor-
hood is reached (imprv = 0), corresponding to one iteration of the al-
gorithm (lines 8–18, Algorithm 4).
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When an iteration is completed, the algorithm takes b as the in-
cumbent solution and initializes =k 1 and continues with the next 
iteration. More specifically, the proposed VNS algorithm repeats the 
same steps until a predetermined maximum CPU time is reached (lines 
6–19, Algorithm 4).

We applied two versions of the VNS algorithm, where the FIM is 
used in the Shaking Phase in both versions, while the LS_BI uses IM as 
the 1st neighborhood structure and SM as the 2nd one in the first 
version and vice versa in the second version.

Proposed VND for the CLSP_PM

The main difference between the proposed VNS and VND algorithms 
is that the VND algorithm does not have a Shaking Phase. Also, the al-
gorithm stops when the k value reaches two, and there is no improve-
ment in the incumbent solution. In this paper, two different VND al-
gorithms have been tested. The first one adopts = =N IM N SM, ,1 2 and 
the second one adopts = =N SM N IM,1 2 . The pseudocode of the VND 
algorithm is given in detail in Algorithm 6.

Proposed RVNS for the CLSP_PM

The pseudocode of the RVNS algorithm is presented in Algorithm 7. 
Different from VNS, RVNS consists of Shaking Phase only. Starting with 
the initial solution, let = ,b i =f fb i, and =tv tvb i be the best values so 
far. The VNS algorithm first selects a random solution from the 
neighborhood of b using the Shaking function SP(N ( b1 )). The results 
were compared with the incumbent solution using compare function. If 
there is an improvement, the search continues within the 1st neigh-
borhood; otherwise, a move to the 2nd neighborhood is done. If there is 
no improvement in the 2nd neighborhood, the algorithm starts over 
searching from the 1st neighborhood and repeats all these steps, taking 
the best-so-far solution b obtained from the last iteration as the input 
until the maximum number of iterations is achieved. Six different RVNS 
algorithms were tested in this study. Pairwise combinations of the 
moves, SM , IM, and FIM , are used as the 1st and 2nd neighborhood 
structures.
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Computational study

To assess the performance of the proposed VNS, VND, and RVNS 
algorithms, we tested them on benchmark instances used in the lit-
erature and compared their solutions with those developed by James 
and Almada-Lobo [23].

Problem instances tested

The benchmark instances were generated by James and Almada- 
Lobo [23] based on different problem types. They have represented the 
problem types as follows: 

M N T Cut MProb MBal

Where M denotes the number of machines, N denotes the number of 
products, T denotes the number of periods, Cut denotes the capacity 
usage per period. Moreover, indicates the setup cost per unit of time, 
and MProb represents the total number of possible product-machine 
allocations, i.e., when MProb increases, the problem becomes harder to 
solve. Lastly, MBal indicates the balance of products across the ma-
chines. For each problem type, there are ten benchmark instances. A 
total of 100 instances are solved with each proposed algorithm.

Comparison with the existing solution algorithms

The existing solution algorithms by James and Almada-Labo (2011) 
use the Relax-and-Fix heuristic for the initial solution generation in all 
but different search strategies in the local search phase. They are ab-
breviated as follows for the local search strategies:

XPHRF: XPH (Quantity (X) Period (P) Heuristic (H)) in the local 
search.

INSRF: MIP-based iterative neighborhood search heuristic in the 
local search.

FOHRF9: Fix-and-Optimize improvement heuristic with an MIP so-
lution tolerance of 10−9 in the local search.

For each developed algorithm, the average percentage deviations 
from the lower bounds for each of the ten different problem types were 
calculated over ten problem instances and compared with the results of 
the XPHRF, INSRF, and FOHRF9 solution methods. The average per-
centage deviation from the lower bound is calculated using the fol-
lowing formula, 

=
×

10
i

best so far Lower Bound
Lower Bound1

10 ( ) 100

13 

The lower bound values were taken from James and Almada-Labo’s 
(2011) study, which is based on a plant-location reformulation of their 
model and is known to produce tighter bounds. They have run this 
model for a one-hour limit to obtain the lower bounds. All computa-
tional experiments were performed on Intel (R) Core (TM) i-5 2430 M 
CPU:2.40 GHz with 4 GB RAM, and the algorithms were coded in 
MATLAB R2010A. After the preliminary test results, the NFT para-
meters were identified as the following: NFT0 0.001 and : 0.4.

As mentioned before, we applied two versions of the VNS and VND 
algorithms, while the LS_BI uses IM as the 1st neighborhood structure 
and SM as the 2nd one in the first version and vice versa in the second 
version. Both versions of the VNS algorithm (VNS(1), VNS(2)) were run 
under the 3600-second time limit. As shown in Table 2, they improved 
the results of six problem types, and VNS(2) achieved a better overall 
average deviation than the known best-performing XPHRF.

Table 3 indicates the average percentage deviations from the lower 
bound values for both versions of the VND algorithm (VND(1) and VND 
(2)). As can be seen, the average solution values were improved for 
three problem types, and both VND(1) and VND(2) achieved a better 
overall average deviation.

The findings for all RVNS versions are presented in Table 4. The 
average solution values for each problem type were improved with one 
of the RVNS versions. The overall average deviations, except RVNS(2) 
and RVNS(3), are the best among all proposed and existing solution 
approaches, with RVNS(6) resulting in the best value of 6.23 %.

S.T. Yildiz, S. Ozcan and N. Cevik                                                                                                                                     Journal of Engineering Research xxx (xxxx) xxx–xxx

10



Conclusion

This study considers the solution of the Parallel Machine 
Capacitated Lot-Sizing and Scheduling Problem (PM_CLSP) with ma-
chine eligibility restrictions, sequence-dependent setup times and costs, 
setup carryover, different production capacities for each machine, and 
upper bound production limitations for products. It is the first time here 
that solution approaches based on Variable Neighborhood Search 
(VNS), Variable Neighborhood Descent (VND), and Reduced Variable 
Neighborhood Search (RVNS) methods are developed for the PM_CLSP.

As neighborhood strategies, we adapted three different moves from 
the single-machine case proposed by Almada-Lobo & James (2011). We 
also employed the constraint-handling techniques to accept infeasible 
solutions during the search with constraint violations such as capacity 
violation, unsatisfied demand, and violation of upper bound production 
quantity are penalized by the Near-Feasible Threshold (NFT) approach 
[44,46]. Also, the Superiority of Feasible Solutions (SFS) has been used to 
select solutions [10].

According to the computational results over the 100 benchmark 
problems that consist of 10 instances for six problem types, both VNS 
algorithms worked well in almost every problem type and have improved 
the best-known solutions in six problem types. Another variant of VNS, 
VND, has also worked well since we improved over the best-known so-
lutions in three problem types. The performance quality of VNS is better 
than VND when the overall average solution values are considered. 
Lastly, six RVNS variants with different neighborhood structures were 
also tested. Most RVNS variants have obtained the best results, and 
nearly all the best-known solutions for each problem type have been 
improved. Finally, since the solution approaches in the literature are 
MIP-based, the solution complexity will increase when the problem size 
increases, making it more difficult to solve large-size problems. In this 
respect, this study shows that simple heuristics such as VNS, VND, and 
RVNS, in which there is no need to optimize parameters, can provide 
satisfactory results. For future work, algorithms presented in this study 
can be applied to various lot-sizing and scheduling problems in the lit-
erature with optional features such as backordering, backlogging, safety 

Table 2 
Comparison of average percentage deviations from the lower bound values for the VNS algorithm. 

Problem Type M N T Cut MProb MBal VNS (1) k IM k SM: , :1 2 VNS (2) k SM k IM: , :1 2 XPHRF INSRF FOHRF9

2–15–5–0.8–50–80–20 1.36 1.52 1.49 1.47 2.03
2–15–10–0.8–50–80–20 2.55 2.59 2.60 2.92 3.06
2–15–10–0.8–100–80–20 8.11 7.08 7.10 8.24 7.84
2–15–10–0.8–100–80–20 6.27 4.94 5.90 5.06 5.19
2–15–10–0.8–100–60–20 6.17 6.59 6.02 6.01 7.13
2–20–10–0.8–100–80–10 7.60 6.86 6.98 8.03 7.68
3–15–5–0.8–50–80–20 9.33 6.74 10.78 6.93 6.63
3–15–10–0.6–100–80–20 4.51 4.28 4.37 5.13 4.64
3–15–10–0.8–50–60–20 13.02 12.97 12.86 14.29 14.31
3–15–10–0.8–100–60–20 8.02 9.40 8.00 9.31 9.78
Overall Average 6.69 6.30 6.61 6.74 6.83

Table 3 
Comparison of average percentage deviations from the lower bound values for the VND algorithms. 

Problem Type M N T Cut MProb MBal VND (1) k IM k SM: , :1 2 VND (2) k SM k IM: , :1 2 XPHRF INSRF FOHRF9

2–15–5–0.8–50–80–20 2.01 1.71 1.49 1.47 2.03
2–15–10–0.8–50–80–20 2.71 2.52 2.60 2.92 3.06
2–15–10–0.8–100–80–20 6.96 7.07 7.10 8.24 7.84
2–15–10–0.8–100–80–20 5.12 5.09 5.90 5.06 5.19
2–15–10–0.8–100–60–20 6.11 6.38 6.02 6.01 7.13
2–20–10–0.8–100–80–10 6.74 6.88 6.98 8.03 7.68
3–15–5–0.8–50–80–20 7.58 7.49 10.78 6.93 6.63
3–15–10–0.6–100–80–20 5.21 5.17 4.37 5.13 4.64
3–15–10–0.8–50–60–20 14.38 14.42 12.86 14.29 14.31
3–15–10–0.8–100–60–20 9.14 9.26 8.00 9.31 9.78
Overall Average 6.60 6.60 6.61 6.74 6.83

Table 4 
Comparison of average percentage deviations from the lower bound values for the RVND algorithms. 

Problem Type  
M N T Cut MProb MBal

RVNS (1) 
k IM k SM: , :1 2

RVNS (2) 
k SM k IM: , :1 2

RVNS (3) 
k IM k FIM: , :1 2

RVNS (4) 
k SM k FIM: , :1 2

RVNS (5) 
k FIM k SM: , :1 2

RVNS (6) 
k FIM k IM: , :1 2

2–15–5–0.8–50–80–20 1.62 1.66 1.57 1.51 1.43 1.45
2–15–10–0.8–50–80–20 2.38 2.63 2.64 2.45 2.51 2.56
2–15–10–0.8–100–80–20 7.26 6.93 6.92 7.08 7.12 7.04
2–15–10–0.8–100–80–20 5.14 6.15 5.10 5.03 5.08 5.12
2–15–10–0.8–100–60–20 7.18 6.33 5.88 6.34 5.86 6.01
2–20–10–0.8–100–80–10 6.89 6.50 6.90 6.91 6.84 6.85
3–15–5–0.8–50–80–20 6.59 8.94 8.42 7.23 8.26 7.14
3–15–10–0.6–100–80–20 4.33 5.44 9.69 4.36 4.81 5.07
3–15–10–0.8–50–60–20 12.81 12.91 17.24 13.14 13.40 12.91
3–15–10–0.8–100–60–20 10.14 11.75 11.49 9.20 7.96 8.14
Overall Average 6.33 6.92 6.76 6.33 6.33 6.23
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stock, and lost sales with more challenging problem sizes. Implementing 
the proposed algorithms to the stochastic version of the PM_CLSP can be 
a promising future research avenue.
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