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ABSTRACT 

 

 

 

Determination of Differentially Expressed Genes and Possible Inhibitors Against 

Chemoresistant Subtypes of Acute Lymphoblastic Leukemia Through in Silico 

Methods  

 

 

 

Özay, Başak 

 

 

 

Master’s Program in Bioengineering 

 

Advisor: Asst. Prof. Dr. Yağmur Kiraz Durmaz 

 

January, 2024 

 

Acute lymphoblastic leukemia is a malignancy of lymphocyte origin. Although it has 

high survival rates among children, relapse and drug resistance are still obstacles in 

treatment. As such, identifying novel genes associated with chemoresistance against 

first-line treatment drugs and determining possible inhibitors remains crucial. As such, 

this study utilized a GEO dataset, GSE635, containing gene expression data of 

asparaginase, prednisolone, daunorubicin and vincristine resistant and sensitive ALL 

patients, GSE22529 with expression data of eleven healthy subjects, and GSE19143 

for validation. Using RMA normalization and LIMMA, the files were analyzed for 

differentially expressed genes, pathway, and protein-protein interactions. Two proteins 

selected from this analysis went through molecular docking. Molecular dynamics 

simulations were done on GROMACS for further validation. 1294 upregulated 

differentially expressed genes, 25 hub genes, and 12 common genes were identified in 

resistant ALL types. Among KEGG pathways, PI3K-Akt and pathways in cancer were 
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significantly enriched. 3556 small molecules were screened against two proteins and 

following ADMET analysis, three possible inhibitor candidates emerged. MD analysis 

against one of the proteins corroborated the findings, and while results were similar 

across all three, they pointed to Eltrombopag having better potential. Additional 

cytotoxic analyses on Ph+ ALL cell line SUP-B15 and Ph- ALL cell line Jurkat 

demonstrated similar effects, and analysis on HUVEC cells revealed the drugs had 

significantly less anti-proliferative effects on healthy cells. This study reveals potential 

common target genes for chemoresistant ALL as well as other novel genes for 

diagnostic screening, and proposes three potential inhibitors through drug repurposing.   

 

Keywords: Acute lymphoblastic leukemia, drug resistance, differentially expressed 

genes, in silico screening, drug repurposing, molecular dynamics. 
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ÖZET 

 

 

 

Akut Lenfoblastik Löseminin Kemorezistan Alt Tiplerine Karşı Diferansiyel 

Eksprese Edilen Genlerin ve Olası İnhibitörlerin in Silico Yöntemleriyle 

Belirlenmesi 

 

 

 

Özay, Başak 

 

 

 

Biyomühendislik Yüksek Lisans Programı 

 

Tez Danışmanı: Dr. Öğretim Üyesi Yağmur Kiraz Durmaz 

 

Ocak, 2024 

 

Akut lenfoblastik lösemi, lenfosit kökenli bir malignitedir. Hayatta kalma oranı yüksek 

olmasına rağmen nüks ve ilaca direnç tedavide engel teşkil etmektedir. Bu nedenle, 

kemoterapi ilaçlarına karşı direnç ile ilişkili yeni genlerin tanımlanması ve bu direncin 

üstesinden gelebilecek olası inhibitörlerin belirlenmesi hayati önem taşımaktadır. Bu 

çalışma, asparaginaz, prednizolon, daunorubisin ve vinkristin dirençli ve hassas ALL 

hastalarının gen ekspresyon verilerini içeren GEO veri seti GSE635’in yanı sıra, onbir 

sağlıklı bireyin ekspresyon verilerini içeren GSE22529’u ve doğrulama seti olarak 

GSE19143'ü kullanmıştır. RMA normalizasyonu ve LIMMA kullanılarak dosyalar 

diferansiyel olarak eksprese edilen genler açısından analiz edilmiştir ve bu analizden 

seçilen iki protein, moleküler yerleştirme işleminden geçirildikten sonra bulunan olası 

inhibitörlerin GROMACS üzerinde moleküler dinamik simülasyonları yapılmıştır. 

Bunun sonucunda 1294 tane ekspresyonu anlamlı derecede artmış gen ve 25 merkez 

gen bulunmakla birlikte, 12 gen dört dirençli tipte ortak çıkmıştır. KEGG yolakları 
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arasında PI3K-Akt ve kanserdeki yolaklarda önemli ölçüde zenginleşmiş gen olduğu 

görülmüştür. 3556 küçük molekülün iki proteine karşı taranması ve düşük bağlanma 

enerjili moleküllerin ADMET analizi ile incelenmesinin ardından üç inhibitör adayı 

ortaya çıkmıştır. Proteinlerden birine karşı MD analizi bağlanma bulgularını 

doğrulamak için kullanmış ve Eltrombopag'ın daha iyi bir inhibitör olma potansiyeli 

olduğunu göstermiştir. Ek olarak, Ph+ ALL hücresi SUP-B15 ve Ph- ALL hücresi 

Jurkat üzerin yapılan sitotoksik analizler benzer etkiler göstermiş ve ayrıca HUVEC 

hücreleri üzerinde yapılan analizler, ilaçların sağlıklı hücreler üzerinde önemli ölçüde 

daha az anti-proliferatif etkiye sahip olduğunu ortaya çıkarmıştır. Bu çalışma, 

kemorezistan ALL için potansiyel ortak hedef genleri ortaya çıkarmakta ve ilacın 

yeniden kullanılması yoluyla üç potansiyel inhibitör önermektedir. 

 

Anahtar Kelimeler: Akut lenfoblastik lösemi, anlamlı gen ifadesi, ilaç direnci, in siliko 

analiz, ilaç yeniden konumlandırılması, moleküler dinamik. 
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CHAPTER 1: INTRODUCTION 

1.1. Acute Lymphoblastic Leukemia 

Throughout the world, cancer is among the leading causes of death and a 

significant issue that any person of all ages can face. The United States National Center 

of Health Statistics expects near 2 million new cancer cases and around 600.000 cancer 

deaths to arise in the US (Siegel et al., 2023). Similarly, trend-based predictions using 

data from the International Agency for the Research on Cancer (IARC), anticipates 

global cancer incidence to double by 2070 (Soerjomataram and Bray, 2021). As such, 

identifying novel genes and mechanisms related to cancer progression and discovering 

new treatments is necessary to lower the global burden. Amongst cancer types, 

leukemias have the highest incidence rate in children and adolescents. According to 

GLOBOCAN statistics, in 2020 there were 474,519 new leukemia cases worldwide, 

of which 7,023 were seen in Türkiye (Sung et al., 2021). There are four main types of 

leukemia: acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), 

chronic lymphocytic leukemia (CLL), and chronic myeloid leukemia (CML) (Pejovic 

and Schwartz, 2002). While ALL is a rarer type of cancer in general, seen in 1.3 per 

100,000 people (Pejovic and Schwartz, 2002), with a 25% incidence rate it is the most 

common cancer for those under 15 years old (Kakaje et al., 2020) and notably, 

constitutes 97% of childhood leukemias (Carroll and Bhatla, 2016).  

ALL is a hematological malignancy that emerges from the aberrant and 

excessive proliferation of immature cells of lymphoid lineage, and can spread to 

extramedullary sites, blood, and bone marrow (Malard and Mohty, 2020). It can 

mainly be categorized into two types by lineage: T-lymphoblastic leukemia and B-

lymphoblastic leukemia (Iacobucci and Mullighan, 2017), both of which can be further 

classified into various subgroups. The exact cause of ALL is unknown still, as most 

patients are healthy individuals before the outset of the disease (Terwilliger and Abdul-

Hay, 2017). Nonetheless, assorted studies show ALL can be related to genetic 

predisposition and environmental factors. Disorders such as ataxia-telangiectasia and 

Down syndrome have been associated with increased rates of T-ALL and B-ALL, 

respectively (Inaba and Mullighan, 2020). Additionally, Bloom syndrome and 

neurofibromatosis type I, as well as Li-Fraumeni syndrome, DNA repair syndromes 

https://paperpile.com/c/XLwPcu/XjNCP
https://paperpile.com/c/XLwPcu/ZTUgM
https://paperpile.com/c/XLwPcu/vB3Vz
https://paperpile.com/c/XLwPcu/aYG8u
https://paperpile.com/c/XLwPcu/aYG8u
https://paperpile.com/c/XLwPcu/aYG8u
https://paperpile.com/c/XLwPcu/7T31p
https://paperpile.com/c/XLwPcu/gcTuU
https://paperpile.com/c/XLwPcu/gCKMb
https://paperpile.com/c/XLwPcu/T40Zo
https://paperpile.com/c/XLwPcu/vrPdw
https://paperpile.com/c/XLwPcu/vrPdw
https://paperpile.com/c/XLwPcu/CU9a0
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such as Nijmegen breakage, and constitutional mismatch repair deficiency syndrome 

are related to a higher risk of disease occurrence (Inaba and Mullighan, 2020; Onciu, 

2009). Moreover, some viral infections, such as human immunodeficiency virus (HIV) 

(Bacci et al., 2013) and human T-cell leukemia virus-1 (HTLV-1) (Vadillo et al., 

2018), along with environmental factors such as pesticide exposure and ionizing 

radiation (Malard and Mohty, 2020; Onciu, 2009) have been associated with the 

development of ALL.  

 

1.1.1. Classification of ALL  

ALL can be classified in various ways: cytochemical features, morphological 

characteristics, immunological traits, and cytogenic and molecular characteristics, 

which was developed by the World Health Organization (WHO) (Carroll and Bhatla, 

2016). According to the French-American-British (FAB) classification based on light 

microscopy results, ALL can be separated into types L1, L2, and L3. In the most 

common FAB1 L1 subtype, ALL cells have sizes ranging between small and medium, 

have condensed nuclear chromatin, a sparse amount of cytoplasm, and barely 

perceptible or no nucleoli. If cells are larger, with thinly distributed chromatin, a 

middling amount of pale basophilic cytoplasm, and notable nucleoli, they are classified 

into FAB L2. In the rarest FAB L3 subtype, the cells are large, with roughly clustered 

nuclear chromatin, irregularly notable nucleoli, and a hefty amount of basophilic and 

sometimes vacuolated cytoplasm (Onciu, 2009). Later on, following the need for a 

classification model that focused on the functionality of cellular differentiation and 

maturation, the morphology-immunology-cytogenetics (MIC) (First MIC Cooperative 

Study Group, 1986) classification was developed. According to MIC, B-ALL has four 

major immunologic subtypes: early B‐precursor ALL, common ALL, pre‐B‐ALL, and 

mature B‐cell ALL, whereas T-ALL is categorized into two as early T‐precursor ALL 

and T‐ALL (Harrison and Johansson, 2015). A more comprehensive classification was 

created by the WHO and updated in 2016, which classified ALL into three main 

categories: T-cell lymphoblastic leukemia/lymphomas, B-cell lymphoblastic 

leukemia/lymphoma, and B-cell lymphoblastic leukemia/lymphoma with recurrent 

genetic abnormalities (Terwilliger and Abdul-Hay, 2017), which will be explained in 

further detail in the following text. 

https://paperpile.com/c/XLwPcu/6gcpW+CU9a0
https://paperpile.com/c/XLwPcu/6gcpW+CU9a0
https://paperpile.com/c/XLwPcu/8oh6J
https://paperpile.com/c/XLwPcu/Axxk1
https://paperpile.com/c/XLwPcu/Axxk1
https://paperpile.com/c/XLwPcu/6gcpW+gCKMb
https://paperpile.com/c/XLwPcu/gcTuU
https://paperpile.com/c/XLwPcu/gcTuU
https://paperpile.com/c/XLwPcu/6gcpW
https://paperpile.com/c/XLwPcu/7WpKZ
https://paperpile.com/c/XLwPcu/7WpKZ
https://paperpile.com/c/XLwPcu/076r2
https://paperpile.com/c/XLwPcu/vrPdw
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T-lymphoblastic ALL 

T-ALL is seen in 15% of childhood ALL and 25% of adult ALL patients. It is 

a more aggressive, high-risk risk, and considerably heterogeneous type with a more 

unfavorable prognosis (Harrison and Johansson, 2015). In recent years, early T-cell 

progenitor ALL (ETP-ALL) has been discovered as a more aggressive, infiltrative 

type, taking the name from its similarities to the transcriptional and phenotypical 

profiles of early T-cell progenitors (Vadillo et al., 2018), which are cells that have 

recently moved from the bone marrow to the thymus with a high level of multilineage 

pluripotency (Jain et al., 2016). ETP-ALL is determined with a specific 

immunophenotype (CD1a negative, CD8 negative, CD5 negative, and myeloid or stem 

cell marker positive)(Morita et al., 2021). T-ALL itself emerges from the abnormal 

growth and transformation of T-cell precursors. Based on the intrathymic 

differentiation stages, The European Group for the Immunologic Classification of 

Leukemia separates T-ALL into pro-T (cCD31, sCD32, CD1a2, CD21, CD52, CD71, 

CD342 ), pre-T/immature (cCD31,sCD32, CD1a2, CD21, CD51, CD71, CD342), 

cortical-T (cCD31, sCD31 /2, CD1a1, CD21, CD51, CD71, CD342), and mature-T 

(cCD31, sCD31, CD1a2, CD21, CD51, CD71, CD342) (Szczepański et al., 2003). 

However, the prognostic value of the differentiation stages changes according to 

studies, and the modern chemotherapy and minimal residual diseases (MRD) based 

risk stratification has led to further loss of prognostic value for this classification 

(Raetz and Teachey, 2016). 

Although T-ALL is a greatly diverse disease, its lesions can be separated into 

two types: those that have mutations and deletions that alter the cell cycle or signaling, 

and those with chromosomal translocations related to specific gene expression (Raetz 

and Teachey, 2016). The malignant transformation of T-cells involves various 

alterations of cell growth, propagation, and differentiation pathways of thymocyte 

development, the most notable being the constitutive activation of Notch signaling 

(Van Vlierberghe and Ferrando, 2012). In over 70% of T-ALL cases, the p16/INK4A 

and p14/ARF suppressor genes are deleted (Aifantis et al., 2008), which, along with 

Notch activity, establishes the root of T-ALL pathogenesis and oncogenic 

programming (Van Vlierberghe and Ferrando, 2012). One of the hallmarks of cancer, 

the deregulation of cell cycle is an issue in T-ALL that is also related to the loss of 

https://paperpile.com/c/XLwPcu/076r2
https://paperpile.com/c/XLwPcu/Axxk1
https://paperpile.com/c/XLwPcu/rEv44
https://paperpile.com/c/XLwPcu/g7eNs
https://paperpile.com/c/XLwPcu/a1iHe
https://paperpile.com/c/XLwPcu/5evvS
https://paperpile.com/c/XLwPcu/5evvS
https://paperpile.com/c/XLwPcu/5evvS
https://paperpile.com/c/XLwPcu/8UEWB
https://paperpile.com/c/XLwPcu/RJSdg
https://paperpile.com/c/XLwPcu/8UEWB


4 

p16/INK4A and p14/ARF, which arrest cells at the G1 phase by the inactivation of 

cyclin D-CDK4 and CKD6 complexes and inhibit MDM2, a negative P53 regulator, 

due to cellular stress related cell cycle arrest and apoptosis, respectively (Kamijo et al., 

1998). Additionally, 15% of T-ALL cases have a loss of function of retinoblastoma 1 

(Van Vlierberghe et al., 2013), 12% have deletions on the gene that encodes for 

p27/KIP1, a cyclin E-CDK2 and cyclin D-CDK4 complex inhibitor (Remke et al., 

2009), and 3% have t(12;14)(p13;q11) and t(7;12)(q34;p13) translocations that are 

related to increased cyclin D2 (CCND2) expression, which is normally downregulated 

during the differentiation of T-cells (Clappier et al., 2006). Asides from these, 

abnormal expressions of transcription factors, such as oncogenes bHLH, LMO, and 

HOX family genes, and MYC, as well as tumor suppressors RUNX1, ETV6, and WT1 

are prevalent in T-ALL (Belver and Ferrando, 2016).  

 

B-lymphoblastic ALL 

Much more common when compared to T-ALL, B-ALL is seen in around 75% 

of adult and 85% of childhood ALL cases (Cobaleda and Sánchez-García, 2009). 

Diagnosed in 26% of children between ages 0-14, B-ALL is among the most common 

childhood cancers (Malouf and Ottersbach, 2018). Typical clinical symptoms of B-

ALL include bone marrow failure and cytopenia, sometimes with leukocytosis 

(Loghavi et al., 2015). It’s a disease with a variety of genetic subtypes, depending on 

chromosomal alterations or rearrangements. According to the International Consensus 

Classification, there are over 20 B-ALL subtypes (Figure 1) (Duffield et al., 2023). 

Identification of the subtypes present in a given patient is a very important part of 

diagnosis due to this abundance of genetic aberrations.  

 

https://paperpile.com/c/XLwPcu/eR7H5
https://paperpile.com/c/XLwPcu/eR7H5
https://paperpile.com/c/XLwPcu/sSzx2
https://paperpile.com/c/XLwPcu/GaO95
https://paperpile.com/c/XLwPcu/GaO95
https://paperpile.com/c/XLwPcu/kSQq9
https://paperpile.com/c/XLwPcu/AJui5
https://paperpile.com/c/XLwPcu/xoMRi
https://paperpile.com/c/XLwPcu/sIrVa
https://paperpile.com/c/XLwPcu/bHIJv
https://paperpile.com/c/XLwPcu/olphK
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Figure 1. Biomarkers of B-ALL separated based on chromosomal alterations, 

chromosomal rearrangements and genetic alterations. Adapted from (Lejman et al., 

2022).  

 

B-ALL subtypes generally depend on the first genetic hit, commonly either 

aneuploidy or chromosomal translocations such as ETV6-RUNX1, with additional 

mutations and rearrangements that follow (Malouf and Ottersbach, 2018), 

predominantly involving genes such as tyrosine kinases, cytokine receptors, and 

transcription factors (Iacobucci and Mullighan, 2017). Aneuploidy in ALL presents as 

either hypodiploidy or hyperdiploidy (Lejman et al., 2022). The most common B-ALL 

genetic aberration, seen in over 35% of childhood cases, hyperdiploidy can be 

separated into several categories depending on the the presence of extra copies of 

chromosome 21, as hyperdiploid (47 to 58 chromosomes), hypotriploid (59 to 68 

chromosomes) and hypertriploid (70 to 80 chromosomes) (Haas and Borkhardt, 2022). 

Seen in around 30% of childhood B-ALL cases, the ETV6-RUNX1 translocation 

t(12;21)(q13;q22) is related with a more favorable prognosis, with higher 5-year 

survival rates and better treatment response (Wang et al., 2018). Another one of the 

https://paperpile.com/c/XLwPcu/fEjM8
https://paperpile.com/c/XLwPcu/fEjM8
https://paperpile.com/c/XLwPcu/sIrVa
https://paperpile.com/c/XLwPcu/T40Zo
https://paperpile.com/c/XLwPcu/fEjM8
https://paperpile.com/c/XLwPcu/Biaux
https://paperpile.com/c/XLwPcu/Qfjkt
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common B-ALL subtypes contains the BCR-ABL fusion gene, also referred to as 

Philadelphia positive or Ph+ B-ALL, that is created through the translocation of 

chromosomes 9 and 22, with t(9;22)(q34:q11.2) on chromosome 22 being the most 

commonly seen abnormality among that subtype (Wieduwilt, 2022). BCR-ABL fusion 

is seen in up to 30% of adult patients, and 5% of children (Loghavi et al., 2015), and 

is known for its worse prognosis: lower 5-year survival rates or overall survival 

(Moorman et al., 2007), and a higher change of chemoresistance to traditional 

cytotoxic drugs (Wieduwilt, 2022). The secondary mutations that follow the 

aforementioned subtype determining ones can be acquired during disease progression 

and therapy. Typically, these mutations are seen in lymphoid transcription factors such 

as PAX5, IKZF1, ETV6, tumor suppressors such as TP53 and RB1, lymphoid 

signaling regulators such as CD200 and BTLA and, RAS pathway proteins such as 

KRAS and NRAS, and chromatin modifiers such as CREBBP and SETD2 (Roberts 

and Mullighan, 2020) . 

 

Other Lymphoblastic Abnormalities  

In addition to T- and B-ALL, there are two smaller subtypes of ALL: Mixed 

Phenotype Acute Leukemia (MPAL) and natural killer cell ALL (NK-ALL). Seen in 

less than 4% of patients (Vardiman et al., 2009), MPAL refers to leukemias of unclear 

cell lineage, that can have T and B-cell populations as well as monocytic or myeloid 

cells, one type of blast cells with B- or T-cell antigens with myeloid antigens, and/or 

monocytic antigens (Chiaretti et al., 2014). NK-ALL is an even rarer subtype, seen in 

around 3% of adult patients (Vardiman et al., 2009), presenting with CD56, one of the 

NK cell differentiation markers, and early T-cell antigens such as CD2, CD5, CD7 

(Chiaretti et al., 2014).  

 

 

 

https://paperpile.com/c/XLwPcu/FzyqC
https://paperpile.com/c/XLwPcu/bHIJv
https://paperpile.com/c/XLwPcu/6VpqA
https://paperpile.com/c/XLwPcu/FzyqC
https://paperpile.com/c/XLwPcu/bwMvY
https://paperpile.com/c/XLwPcu/bwMvY
https://paperpile.com/c/XLwPcu/bZUzm
https://paperpile.com/c/XLwPcu/5Xiam
https://paperpile.com/c/XLwPcu/bZUzm
https://paperpile.com/c/XLwPcu/5Xiam
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1.1.2. Treatment of ALL 

The chemotherapy treatment of ALL takes around two to three years and 

consists of three stages: remission induction, consolidation, and maintenance, as well 

as intermittent central nervous system (CNS) prophylaxis (Terwilliger and Abdul-Hay, 

2017). The induction stage uses a glucocorticoid (either prednisone or 

dexamethasone), vincristine, and asparaginase, in some cases anthracycline is given as 

well, and takes around four to six weeks to induce complete remission in nearly 98% 

of pediatric ALL patients (Inaba and Mullighan, 2020). In the consolidation phase, 

patients are administered cyclophosphamide, cytarabine,  and  mercaptopurine. It was 

found that, for B-ALL patients, if MRD is negative when both induction and 

consolidation phases end, the 5-year event-free survival (EFS) is 92.3%. However, if 

MRD is positive and less than 10-3 or over 10-3 at the end of consolidation, the EFS 

falls down to 77.6% and 50.1%, respectively (Conter et al., 2010). After the 

consolidation stage, drugs similar to those in the induction and consolidation stages 

are administered to both standard- and high-risk patients as reinduction therapy (Inaba 

and Mullighan, 2020), a crucial part of ALL treatment that lowers the chance of relapse 

in standard-risk patients (Schrappe et al., 2018). This is followed by the maintenance 

stage, which lasts at least one year, with daily mercaptopurine and weekly 

methotrexate administration, which can be supplemented with vincristine and steroid 

(Inaba and Mullighan, 2020). 

 

Figure 2. Types of ALL treatments, adapted from (Malczewska et al., 2022). 

https://paperpile.com/c/XLwPcu/vrPdw
https://paperpile.com/c/XLwPcu/vrPdw
https://paperpile.com/c/XLwPcu/CU9a0
https://paperpile.com/c/XLwPcu/MAIg5
https://paperpile.com/c/XLwPcu/CU9a0
https://paperpile.com/c/XLwPcu/CU9a0
https://paperpile.com/c/XLwPcu/nbfxu
https://paperpile.com/c/XLwPcu/CU9a0
https://paperpile.com/c/XLwPcu/rJ45E
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Besides chemotherapy, radiotherapy, targeted therapy such as proteasome and 

JAK inhibitors, and immunotherapy are alternative treatment methods for ALL (Figure 

2) (Terwilliger and Abdul-Hay, 2017). Currently, three types of immunotherapy drugs 

are in use for pediatric ALL: CAR-T cells, bispecific antibodies such as blinatumomab, 

and antibody-drug conjugates such as inotuzumab (Sotillo et al., 2015). Among 

targeted therapy drugs, bortezomib, a proteasome inhibitor, wasn’t found effective by 

itself in relapsed ALL patients (Cortes et al., 2004), although  a phase 2 study with 

children with relapsed pre-B-ALL shows its combined use with vincristine, 

doxorubicin, dexamethasone and pegylated asparaginase results improved response in 

80% patients (Messinger et al., 2012). Recent clinical study results show that while 

the addition of bortezomib to the induction and reinduction phases was linked to 

improved 3-year-EFS in standard- and intermediate-risk T-ALL patients, it was linked 

to worse outcomes for high-risk patients (Teachey et al., 2020). Other proteasome 

inhibitors, such as ixazomib and carfilzomib are currently being studied for ALL 

(Inaba and Pui, 2021). Similarly, other targeted therapy drugs, such as tyrosine kinase 

inhibitors are used in combination with standard chemotherapy in order to increase 

effectiveness. ABL1 inhibitors such as imatinib, nilotinib, dasatinib and ponatinib are 

used in the treatment of BCR/ABL+ ALL and ABL1-class fusions in BCR/ABL like 

ALL and T-ALL (Slayton et al., 2020; Tasian et al., 2017). Nonetheless, at present, 

targeted therapy can be used in only around 10% of pediatric ALL patients (Inaba and 

Pui, 2021). As such, gaining a further understanding of ALL etiology and pathology, 

and identifying target genes is necessary for developing new inhibitory drugs. 

This thesis is mainly related to the chemotherapy drugs asparaginase, 

daunorubicin, prednisolone, and vincristine, and as such further information on these 

four will be provided in the following text.  

 

Asparaginase 

Asparagine is a nonessential amino acid necessary for the synthesis of DNA, 

RNA, and proteins (Kawedia and Rytting, 2014). While healthy cells can synthesize it 

using asparagine synthetase, ALL cells are unable to make this amino acid due to 

hypermethylation on the promoter of asparagine synthetase, rendering asparagine an 

https://paperpile.com/c/XLwPcu/vrPdw
https://paperpile.com/c/XLwPcu/t53Bi
https://paperpile.com/c/XLwPcu/awJmx
https://paperpile.com/c/XLwPcu/WRBcc
https://paperpile.com/c/XLwPcu/xzLTx
https://paperpile.com/c/XLwPcu/YFgXW
https://paperpile.com/c/XLwPcu/XS4yP+yJ3lU
https://paperpile.com/c/XLwPcu/YFgXW
https://paperpile.com/c/XLwPcu/YFgXW
https://paperpile.com/c/XLwPcu/rtP8E
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essential amino acid that they must get from the serum (Ren et al., 2004; Worton et 

al., 1991). As such, the possibility of using asparaginase, an enzyme required to 

hydrolyze asparagine to aspartic acid in the serum, therefore stopping cancer cells from 

using it, emerges with using asparaginase in humans back in the early 1960s, followed 

by larger clinical trials in the 1970s, that illuminated the enzyme’s benefit for ALL 

patients (Egler et al., 2016).  

 

Daunorubicin 

Daunorubicin is a type of anthracycline antibiotic that was first used as a 

treatment method for AML (Gewirtz, 1999), but has later begun to be used in various 

cancers such as small lung cancer and breast cancer, and is currently still a part of first-

line ALL treatment (Shandilya et al., 2021). Its anti-neoplastic effects work through 

inhibiting DNA and RNA transcription of cancer cells, although its specific pathways 

have not reached a consensus (Samosir et al., 2021). Clinical trials have reported that 

in combination with prednisone and vincristine, daunorubicin increases the complete 

remission of pediatric ALL (Willemze et al., 1975). Due to recent studies that link 

Daunorubicin with cardiotoxicity, several studies are underway to determine 

analogues in its place (Shandilya et al., 2021).  

 

Prednisolone 

Prednisolone is a glucocorticoid and the active form of prednisone, and its first 

clinical trial for ALL treatment was done in 1971 by the Cancer and Leukemia Group 

B (CALGB) with 493 children (Inaba and Pui, 2010). The mechanisms of actions of 

glucocorticoids is dependent on binding the glucocorticoid receptor to stop growth and 

cause apoptosis (Pufall, 2015). They work predominantly through the AP-1 and NfkB 

pathways (Inaba and Pui, 2010).  

 

 

https://paperpile.com/c/XLwPcu/tQ864+Y0VfB
https://paperpile.com/c/XLwPcu/tQ864+Y0VfB
https://paperpile.com/c/XLwPcu/fEL2a
https://paperpile.com/c/XLwPcu/Qbtba
https://paperpile.com/c/XLwPcu/ZtQ7W
https://paperpile.com/c/XLwPcu/LFuVM
https://paperpile.com/c/XLwPcu/nzE8D
https://paperpile.com/c/XLwPcu/ZtQ7W
https://paperpile.com/c/XLwPcu/m90l1
https://paperpile.com/c/XLwPcu/Ff1Fk
https://paperpile.com/c/XLwPcu/m90l1
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Vincristine 

In use against cancer since the 1960s, vincristine is still among the most 

common and effective drugs in childhood cancers (Moore and Pinkerton, 2009). Its 

mechanism of action is based on its obstruction of microtubule formation, and 

intracellular transport, eventually leading to apoptosis (Gidding et al., 1999).  

 

1.1.3. Drug Resistance in B-cell AL 

Drug resistance emerges as a combination of various different pathways and 

mechanisms, and effects different drugs. Cancer cells in general are able to develop 

drug resistance throughout or after treatment, through more mutations or metabolic 

changes, or have more mutations related to resistance at diagnosis (Housman et al., 

2014). In ALL, although the survival rates in high income countries are over 90% for 

pediatric patients, the remaining are deemed incurable, and the relapse rate is around 

20% (Jędraszek et al., 2022). Resistance in ALL arises through different ways, at 

diagnosis patients may already have minor relapse initiating subclones, or may develop 

mutations in genes such as PRPS1 and NT5C2 during therapy, or have increased 

mutations after relapse, such as CREBBP and SETD2, which are known to have 

increased mutations at B-ALL relapse (Inaba and Mullighan, 2020). CELSR2 decrease 

has been linked to increased BCL2 expression and glucocorticoid resistance in ALL 

cells, and PI3K-Akt and mTOR pathways are known to be associated with 

chemoresistance in ALL. Furthermore, epigenetic modifications, such as DNA 

methylation and histone modifications have been found to be related to drug resistance 

and relapse in ALL as well (Inaba and Pui, 2021). Several studies also point to hypoxia 

as a cause of resistance (Petit et al., 2016). Another driver of drug resistance in 

leukemia is the loss of IKZF1, which disrupts cell adhesion, metabolic pathways, and 

the target gene regulators of glucocorticoid receptors, as well as PI3K and mTOR, 

leading to glucocorticoid resistance (Aberuyi et al., 2019). The RAS pathway has also 

been linked to drug resistance in various cancers including ALL. Resistance to targeted 

therapy and immunotherapy is also an issue, such as loss of CD19, which causes 

resistance against both CAR-T and blinatumomab (Inaba and Pui, 2021).  

 

https://paperpile.com/c/XLwPcu/nzJnO
https://paperpile.com/c/XLwPcu/glN8S
https://paperpile.com/c/XLwPcu/nL3DQ
https://paperpile.com/c/XLwPcu/nL3DQ
https://paperpile.com/c/XLwPcu/vpEqj
https://paperpile.com/c/XLwPcu/CU9a0
https://paperpile.com/c/XLwPcu/YFgXW
https://paperpile.com/c/XLwPcu/JU9NL
https://paperpile.com/c/XLwPcu/wVHqj
https://paperpile.com/c/XLwPcu/YFgXW
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1.2. Computational Approaches in Cancer 

Researching and gaining new insights against cancer, its pathology, the 

mechanisms and pathways it uses to escape cell death, and to develop drug resistance,  

is important to discover ways to prevent, diagnose, and cure this complicated disease. 

To this end, computational and bioinformatics approaches have been becoming more 

and more popular. 

 

1.2.1. Microarray Analysis 

Microarrays can be used for the analysis of proteins, mRNA, DNA or other 

biological material (Wu et al., 2008). In this thesis, the microarrays chosen for analysis 

contain gene expression profiles of a given cell or patient data, what is essentially a 

snapshot of all transcriptional activity, which enables a straightforward analysis of a 

substantial amount of genes in concert with each other, instead of the more 

conventional single genes approach or a small group of gene studies (Slonim and 

Yanai, 2009). This global approach has expedited the determination of new disease 

subtypes, novel genes, and mechanisms related to the disease progression or drug 

resistance. Gene expression microarray technology has evolved in recent years to 

concurrently measure all mRNA transcripts (transcriptome) (Masuda and Yamada, 

2015), with recent microarrays containing over a hundred thousand DNA probes. The 

technology behind this depends on base-pair hybridization: the mRNA is extracted 

from tissue or cell lines, complementary RNA is produced, labeled with fluorescent 

dyes, and hybridized to a DNA sequence, and the color intensities of probes is 

determined with a laser scanner utilizing a software specifically designed for 

microarrays (Tao et al., 2017). The R programming language is designed for statistical 

analysis, and through Bioconductor (https://www.bioconductor.org/), an open-source 

software, packages can be used to analyze microarray data.  

One of the types of microarray analysis is classification studies. Previous 

research shows that microarrays can be used to identify genes that increase survival in 

early-stage lung carcinoma (Beer et al., 2002) and to determine patient subgroups of 

AML based on molecular signatures (Bullinger et al., 2004; Valk et al., 2004). More 

recently, microarray analysis has been used to analyze biomarkers related to the 

https://paperpile.com/c/XLwPcu/pR5BC
https://paperpile.com/c/XLwPcu/99xrw
https://paperpile.com/c/XLwPcu/99xrw
https://paperpile.com/c/XLwPcu/I8mWj
https://paperpile.com/c/XLwPcu/I8mWj
https://paperpile.com/c/XLwPcu/GyrwD
https://paperpile.com/c/XLwPcu/DHKHX
https://paperpile.com/c/XLwPcu/0S8MM+oxXko
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prognosis and treatment response of cervical cancer (Lin et al., 2019) and identify 

microRNA biomarkers for stage two colorectal cancer (Gungormez et al., 2019). In 

recent years, microarray analysis of differentially expressed genes (DEGs) has started 

to be done either separately or with integrated RNA-Seq analyses of various cancers 

and diseases (Chen et al., 2017; Nisar et al., 2021; Wolff et al., 2018). Although 

researchers can develop the microarrays they will use for DEG analysis themselves, 

existing microarray studies can be accessed for analysis as well. Established in 2000, 

Gene Expression Omnibus (Edgar et al., 2002), GEO for short, is a free, international 

archive that contains data from various types of experiments, such as high-throughput 

sequencing, or microarrays, of gene expression, genome occupancy, single nucleotide 

polymorphism or protein profiles (Clough and Barrett, 2016). Since its establishment, 

researchers and institutions across the world have uploaded raw and processed data 

that can be accessed by anyone wishing to utilize it for a different research topic, 

abiding by journal or grant rules that ask for their data to be uploaded to a publicly 

available database (Barrett et al., 2005). The data uploaded to GEO is stored in three 

types: Platform, Series, and Sample. Platform depicts which elements, such as 

antibodies, oligonucleotide probes, cDNAs, etc., are assayed at the particular 

experiment. Sample provides an abundance measurement of each element and 

indicates the Platform, and Series compiles the affiliated samples of an experiment 

(Edgar et al., 2002). According to GEO’s statistics, at the time of this thesis, the archive 

holds 212.544 public Series and 6.800.397 Samples. The various data in GEO come 

in different file formats depending on the experiment type. Some of these files can 

only be accessed using the R program, and Bioconductor packages such as “affy” 

(Gautier et al., 2004) and “oligo” (Carvalho and Irizarry, 2010). After accessing and 

normalizing the microarray data, Linear Models for Microarray Data, or the “LIMMA” 

package (Smyth, 2005) is seen as the golden standard for the analysis of microarrays 

(Caiazzo et al., 2011; Ritchie et al., 2015). LIMMA utilizes a combination of several 

statistical methods to perform large-scale expression studies (Zhang et al., 2009). In 

LIMMA analysis, a matrix is made containing expression values in rows, and probes 

in columns and a linear model is fit to every row. Its most characteristic method is 

using linear models to analyze the data as a whole, therefore making it easier to 

determine correlations that can be present for several reasons, such as repeated 

measures (Ritchie et al., 2015). LIMMA uses statistical methods that can enable 

information borrowing via empirical Bayesian methods (Casella, 1992) to tolerate data 

https://paperpile.com/c/XLwPcu/wVnUS
https://paperpile.com/c/XLwPcu/zoHOh
https://paperpile.com/c/XLwPcu/U0aYn+g1OYz+aMOLd
https://paperpile.com/c/XLwPcu/KKpSQ
https://paperpile.com/c/XLwPcu/uOWAn
https://paperpile.com/c/XLwPcu/FWPA9
https://paperpile.com/c/XLwPcu/KKpSQ
https://paperpile.com/c/XLwPcu/iaL4T
https://paperpile.com/c/XLwPcu/MvZyT
https://paperpile.com/c/XLwPcu/cTRz6
https://paperpile.com/c/XLwPcu/ILDML+EKum3
https://paperpile.com/c/XLwPcu/MoMQp
https://paperpile.com/c/XLwPcu/EKum3
https://paperpile.com/c/XLwPcu/0krUG
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quality differences, facilitating variance modeling for the adjustment of biological and 

technical heterogeneity and pre-processing to lessen the noise (Ritchie et al., 2015). At 

the end of LIMMA analysis of microarrays, a list of DEGs, both upregulated and 

downregulated is generated.  

 

1.2.1.1 Gene Ontology and Enrichment Analysis 

After the popularization of genome-wide studies, enrichment analysis has been 

developed to determine whether the set of DEGs discovered from microarray analysis 

is involved in specific pathways or functional groups, which have been characterized 

by gene ontology (GO): particularly molecular function (MF), cellular component 

(CC) and biological process (BP) (Ashburner et al., 2000). MF is predominantly 

related to molecular actions, such as catalytic behavior, and focuses on the actions 

themselves, whereas although similar, BP is centered more on assemblies of 

molecules, such as signal transduction. And lastly, CC describes the locations of 

genetic products, such as the nucleus (Gupta et al., 2021). Enrichment analysis, also 

referred to as pathway analysis, while similar to GO analysis, delivers a profound grasp 

of the mechanisms of diseases (Wang et al., 2007), calculating disease phenotype 

associations of pathways, and describing gene interactions in a reliable way that has 

made it valuable for researchers (Curtis et al., 2005). Several methods are used for 

pathway analysis: namely, functional class scoring (FCS), overrepresentation analysis 

(ORA), and pathway topology-based analysis (PTB) (Gupta et al., 2021). In the last 

two decades, various tools have been generated for GO and pathway enrichment 

analysis, such as DAVID (Huang et al., 2007), Enrichr (Kuleshov et al., 2016), 

ShinyGO (Ge et al., 2020) and FunCluster (Henegar et al., 2006). Out of these, due to 

its user-friendly interface, and ease of use, ShinyGo was selected as the annotation and 

pathway analysis tool.  

 

1.2.1.2 Protein-Protein Interaction Networks 

Upon receiving an annotated gene list, the next step in microarray analysis is 

to develop a PPI network. This analysis is important for determining the function of a 

https://paperpile.com/c/XLwPcu/EKum3
https://paperpile.com/c/XLwPcu/3C292
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https://paperpile.com/c/XLwPcu/EFAKu
https://paperpile.com/c/XLwPcu/hC8Fy
https://paperpile.com/c/XLwPcu/lcf4T
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set of proteins and drug ability of small molecules (Rao et al., 2014). PPIs show an 

extensive reaction network of a given set of proteins depending on an existing database 

and can also be referred to as the interactome (Garland et al., 2013). They are related 

to almost all processes, especially in higher organisms, and determining PPIs are 

crucial in understanding cancer and identifying target genes. To this end, several 

databases have been made available, including String (Szklarczyk et al., 2023), 

MatrixDB (Chautard et al., 2011), MPDI (Goll et al., 2008). This thesis uses String 

V11 to develop a PPI network, due to its ease of use, and its comprehensive list of 

databases (Szklarczyk et al., 2019). The network generated by String can be exported 

into Cytoscape, which can be used to visualize the network and determine hub genes 

using plug-ins (Shannon et al., 2003). One plug-in, Cytohubba (Chin et al., 2014), can 

be used to find hub genes, which are genes that are believed to be capable of regulating 

networks, with some proposing that they are responsible for the entire network’s 

functionality (Farber and Mesner, 2016).  

 

1.2.2. Druggability and Pocket Analysis 

Cavities within or on the surface of proteins are termed binding pockets, and 

the substrate binds to what is generally the biggest pocked, termed the active site 

(Liang et al., 1998). If a molecule binds to a different pocket than the active site and 

causes conformational changes, it can regulate a number of cell processes such as gene 

regulation and signaling (Lu et al., 2014). This can be referred to as allosteric 

regulation, and is the most direct method of protein function regulation (Du et al., 

2016). Thus, in recent years, it has become an attractive target for drug discovery 

(Nussinov and Tsai, 2014). Some of the benefits of allosteric drugs include enhanced 

selectivity and increased efficiency of competitive inhibitors (W. Huang et al., 2017). 

For instance, GNF2, an allosteric inhibitor of BCR-ABL, was found to have additive 

inhibitory effects when combined with imatinib in CML (Zhang et al., 2010). To date, 

several allosteric modulators have been approved by the FDA, such as cinacalcet and 

plerixafor (Müller et al., 2012). With this popularity, several protein structure 

prediction softwares were developed to identify binding pockets and analyze them 

based on druggability which is the affinity for of target to therapeutic agents, and it is 

key for the early steps of drug discovery, as near 60% of projects have failed in the 
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https://paperpile.com/c/XLwPcu/pNULo
https://paperpile.com/c/XLwPcu/iwyeu
https://paperpile.com/c/XLwPcu/9Z8oq
https://paperpile.com/c/XLwPcu/Df7wF
https://paperpile.com/c/XLwPcu/mEf8T
https://paperpile.com/c/XLwPcu/kgXih
https://paperpile.com/c/XLwPcu/5L8cp
https://paperpile.com/c/XLwPcu/kUZuA
https://paperpile.com/c/XLwPcu/vchpr
https://paperpile.com/c/XLwPcu/oIqNJ
https://paperpile.com/c/XLwPcu/oIqNJ
https://paperpile.com/c/XLwPcu/vN4uJ
https://paperpile.com/c/XLwPcu/Rz8cj
https://paperpile.com/c/XLwPcu/LXfBo
https://paperpile.com/c/XLwPcu/9GwSr


15 

past for being undruggable (Cheng et al., 2007). The druggability of binding pockets 

is contingent on several factors; hydrophobicity, the composition of aminoacid 

residues, electrostatistics, and overall geometry (Stank et al., 2016). In recent years, 

several bioinformatics tools have been developed for the assessment of druggable 

pockets. In this study, DogSiteScorer (Volkamer et al., 2012), a web-tool found in 

ProteinPlus, was selected for druggability analysis. This tool detects binding pockets 

based on protein atom coordinates, and outputs volume, surface, depth, and drug scores 

of the determined pockets based on these calculations (Volkamer et al., 2012). The 

steps of druggability analysis can be seen in Figure 3. 

 

Figure 3. Workflow of druggability analysis steps and tools.  

 

1.2.3. In Silico Screening Methods 

Conventional drug discovery is a process that is long and high-cost. On 

average, it takes fifteen years for a single drug to be developed, approved, and 

marketed, costing around 2.6 billion dollars (Mohs and Greig, 2017). As nine out of 
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ten drugs fail clinical trials (Sun et al., 2022), reducing the time and cost of the drug 

discovery process is key. To this end, computer aided drug discovery (CADD) 

methods have become increasingly popular. In fact, a 2015 report asserts that CADD 

methods had been used for half of twenty new molecules in phase I clinical trials at 

the time (Rognan, 2017). Moreover, CADD methods have been used to effectively 

establish novel drugs to the market for various diseases, such as HIV1 inhibitors: 

saquinavir, ritonavir, and atazanavir; antibiotics: norfloxacin; and anti-cancer drugs: 

raltitrexed (Shaker et al., 2021). One of the CADD methods utilized in the drug 

discovery process is in silico screening. In this method, molecules from large drug 

libraries are virtually screened against macromolecules to determine pharmacological 

activity (Lin et al., 2020). This is also referred to as drug repurposing: investigating 

the different therapeutic potentials of pre-existing drugs and small molecules. There 

are two types of in silico screening methods: structure-based and ligand-based.   

 

1.2.3.1. Ligand-based Pharmacophore Screening  

In ligand-based drug screening, the structure of the protein is unknown. 

Instead, in this method novel drug molecules are determined based on chemical, 

physical, and structural characteristics of existing drugs, using similarity search, 

pharmacophore modeling, and quantitative structure-activity relationships (QSAR) 

modeling (Shaker et al., 2021). This method has some limitations to be considered: 

firstly, ligand stereochemistry is disregarded although ligand recognition generally 

depends on stereospecificity, and secondly, chemical similarity and biological 

similarity are not always interdependent, and structurally similar compounds may have 

significantly different potencies (Rognan, 2017). 

 

1.2.3.2. Structure-based Virtual Screening 

Unlike ligand-based screening, structure-based virtual screening works by 

calculating the binding affinity of ligands upon binding the crystal structure of the 

target protein through 3D characteristics, such as bruiedness, polarity, volume, 

hydrophobicity and curvature, of the ligand-bound pockets (Rognan, 2017). 
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Saquinavir and amprenavir are among the first FDA-approved drugs that were 

designed using structure-based virtual screening methods (Shaker et al., 2021). For 

this method, the ligands can be accessed from a compound library, such as DrugBank 

(Wishart et al., 2008), ZINC15 (Sterling and Irwin, 2015), ChEMBL (Gaulton et al., 

2012), or ChemBridge. The target structure may be accessed from the publicly 

available archive, Protein Data Bank, or if it is not available, may be generated using 

homology modeling tools. Once it is downloaded, it often goes through preprocessing 

to get ready for molecular docking, which can be performed using programs such as 

PyMol or UCSF Chimera  (Pettersen et al., 2004). Over sixty types of commercial and 

academic tools and softwares have been generated to perform the molecular docking 

simulations (Pagadala et al., 2017); such as AutoDock (Morris et al., 2009), AutoDock 

Vina (Trott and Olson, 2010), and UCSF Dock (Allen et al., 2015). Docking 

simulations work through two processes: a search algorithm, and a scoring function 

(Li and Shah, 2017). For each molecular docking program, the search algorithm that 

works to analyze the ligand and the binding pocket of the macromolecule is different, 

varying from shape-based algorithms, incremental construction approaches, and 

systematic search methods to Monte Carlo Simulations (Pagadala et al., 2017). The 

scoring function assesses all the possible binding poses and gives a score based on 

force-field, empirical and knowledge-based algorithms (Li and Shah, 2017). In 

AutoDock Vina, one of the most commonly used molecular docking programs, as well 

as the majority of programs, the macromolecule is treated as rigid while the ligand is 

flexible (Agu et al., 2023).  

In this thesis, the molecular docking program was selected as PyRx, a publicly 

available in silico screening software. It combines various softwares including 

OpenBabel, to convert ligands to the .pdbqt format necessary for the docking process, 

and AutoDock Vina for molecular docking (Dallakyan and Olson, 2015).  

 

1.2.4. Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) 

Analysis 

After a list of molecules with suitable binding affinities are selected from 

molecular docking, the next important step is the analysis of absorption, distribution, 

https://paperpile.com/c/XLwPcu/nIlx1
https://paperpile.com/c/XLwPcu/DO4se
https://paperpile.com/c/XLwPcu/rNM65
https://paperpile.com/c/XLwPcu/vdZTr
https://paperpile.com/c/XLwPcu/vdZTr
https://paperpile.com/c/XLwPcu/tmykb
https://paperpile.com/c/XLwPcu/P2TFh
https://paperpile.com/c/XLwPcu/LjCW8
https://paperpile.com/c/XLwPcu/r8xLT
https://paperpile.com/c/XLwPcu/smbDp
https://paperpile.com/c/XLwPcu/EEYuS
https://paperpile.com/c/XLwPcu/P2TFh
https://paperpile.com/c/XLwPcu/EEYuS
https://paperpile.com/c/XLwPcu/msVd1
https://paperpile.com/c/XLwPcu/qPOYh
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metabolism, excretion and toxicity (ADMET) parameters. One of the biggest reasons 

for novel drugs to fail in clinical trials is because of inadequate bioavailability as a 

result of high toxicity, and unsuitable pharmacodynamic and pharmacokinetic 

properties (Kar and Leszczynski, 2020). As such, analyzing these properties is 

necessary to determine the most ideal  of the possible drug candidates. For this 

purpose, there are various easily accessible web-tools available. In this thesis, two such 

tools were used: SwissADME (Daina et al., 2017) and AdmetSAR (Yang et al., 2019). 

Both tools work based on structural analysis, and canonical SMILES notation of each 

molecule is used as the input. SwissADME analyzes physicochemical properties, 

lipophilicity, solubility, pharmacokinetics, and druglikeness of a given molecule. 

Using OpenBabel to measure physicochemical properties, SwissADME employs 

various models from previous research to calculate lipophilicity and solubility (Daina 

et al., 2017). In this thesis, SwissADME was used primarily for the drug-likeness 

results, meaning the possibility of a molecule being an oral drug. The determination of 

this quality depends on the physicochemical and structural analysis of molecules that 

are considered drug candidates. SwissADME uses five filters for this parameter: the 

Lipinski, Muegge, Veber, Egan, and Ghose filters (Daina et al., 2017). Among these 

filters, Lipinski (Lipinski et al., 2001) and Muegge (Muegge et al., 2001) are among 

the criterion of pharmacokinetics for drug-likeness (Benet et al., 2016), and the other 

filters were adapted to SwissADME for further validation and comparison of this 

feature. According to Lipinski’s rule of five, an orally active molecule should have 

hydrogen bond acceptors ≤ 10, hydrogen bond donors ≤ 5, molecular weight less than 

500 Da, and LogP (The logarithm of Octanol-water partition coefficient) ≤ 5 (Lipinski 

et al., 2001). In the Muegge filter, the numbers of hydrogen bond acceptors and donors 

are the same as in Lipinski but additionally, it states that the molecular weight must be 

between 200 and 600 Da, XLogP -2 to 5, topological polar surface area (TPSA) less 

than 150, and rotatable bonds less than 15 for a molecule to successfully be a drug 

molecule (Muegge et al., 2001). In this thesis, in addition to Lipinski and Muegge 

filters, the Ghose filter was used as a consensus filter and states that a drug molecule 

should have LogP between -0.4 and 5.6, molecular weight between 160 and 480, the 

total number of atoms between 20 and 70, and molar refractivity between 40 and 130 

(Ghose et al., 1999). Another score of interest from this tool was the Abbot 

Bioavailability Score (Martin, 2005), which calculates the possibility of a compound 

having 10% oral bioavailability in rats at the minimum or determinable CaCO2 

https://paperpile.com/c/XLwPcu/v2kzn
https://paperpile.com/c/XLwPcu/k6QML
https://paperpile.com/c/XLwPcu/PIbDP
https://paperpile.com/c/XLwPcu/k6QML
https://paperpile.com/c/XLwPcu/k6QML
https://paperpile.com/c/XLwPcu/k6QML
https://paperpile.com/c/XLwPcu/mpL7m
https://paperpile.com/c/XLwPcu/SLq7H
https://paperpile.com/c/XLwPcu/Nvx9k
https://paperpile.com/c/XLwPcu/mpL7m
https://paperpile.com/c/XLwPcu/mpL7m
https://paperpile.com/c/XLwPcu/SLq7H
https://paperpile.com/c/XLwPcu/K1iez
https://paperpile.com/c/XLwPcu/ae4n5
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permeability, depending on the violations of Lipinski filters, TPSA, and total charge 

of the molecules (Daina et al., 2017). Moreover, AdmetSar is used for the further 

analysis of pharmacokinetics and drug-likeness, as well as toxicity. Giving out 

biological and chemical information and ADMET predictions, the webtool contains 

210.000 experimental data of 96000 molecules and 27 computational models (Yang et 

al., 2019). Similarly to SwissADME, LogP, TPSA, molecular weight, and hydrogen 

bond donors and acceptors are calculated with OpenBabel. Using 22 qualitative 

classification models and five quantitative regression models, SwissADME calculates 

blood-brain barrier penetration, CaCO2 permeability, human intestinal absorption, rat 

acute toxicity, and many other factors (Cheng et al., 2012). Thus enabling researchers 

to gain a better understanding of ADMET properties, saving time and resources in the 

drug discovery process. 

 

1.3. Molecular Dynamics 

First used to analyze proteins in the 1970s (McCammon et al., 1977), molecular 

dynamics (MD) simulations are used to investigate the kinetics of a given system of 

particles (Karplus and Petsko, 1990). Since its origin, MD has become an 

indispensable tool for the analysis of macromolecular structures and protein-ligand or 

protein-protein interaction analysis. At the present, MD simulations are used for three 

main reasons: to gain an understanding of a structure’s natural dynamics in various 

timeframes, to measure fluid properties and free energy changes of mechanisms such 

as ligand binding, and to analyze conformational changes of a protein or complexes in 

docking simulations (Hansson et al., 2002). In the last five to ten years, MD 

simulations have been used extensively in areas such as structural analysis and drug 

design. Especially in neuroscience and drug development for the nervous system 

(Dawe et al., 2016; Manglik et al., 2016; McCorvy et al., 2018), as well as drug 

discovery in various cancers (Morshed et al., 2023; Opo et al., 2021; Yoda et al., 2018; 

Zhang et al., 2017), MD has been a popular tool to validate protein-ligand binding. 

Based on the molecular configurations of the atoms of a system, such as a protein in 

water and the atomic interactions, the force of all atoms on each atom can be measured, 

and Newton’s laws of motion can be utilized to infer the location of each atom in space 

as a function of time to calculate a trajectory which characterizes the system at all time 

https://paperpile.com/c/XLwPcu/k6QML
https://paperpile.com/c/XLwPcu/PIbDP
https://paperpile.com/c/XLwPcu/PIbDP
https://paperpile.com/c/XLwPcu/yYuzQ
https://paperpile.com/c/XLwPcu/GDaQ0
https://paperpile.com/c/XLwPcu/YxnJn
https://paperpile.com/c/XLwPcu/UaBnG
https://paperpile.com/c/XLwPcu/MwnoW+iypbF+7OrU4
https://paperpile.com/c/XLwPcu/Wn65j+5PUnz+PkmMj+FnP4R
https://paperpile.com/c/XLwPcu/Wn65j+5PUnz+PkmMj+FnP4R
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steps of a selected interval (Hollingsworth and Dror, 2018). To apply the theory to 

practice, several MD simulation softwares are available such as AMBER (Case et al., 

2005), CHARMM (Brooks et al., 1983), GROMACS (Berendsen et al., 1995), and 

LAMMPS (Plimpton, 1995).  

In this thesis, based on easy access, speed of simulation and user support, the 

MD software was selected as GROMACS 2021.2, which is among the most popular 

MD simulation softwares (Hospital, A et al., 2015). The next important step after 

selecting a software is to determine which force field to use. In broad terms, force 

fields are equations that define how a system's energy depends on its own particle 

coordinates (González, 2011). In MD simulations, the force field is reliant on quantum 

mechanical calculations as well as experimental data (Hollingsworth and Dror, 2018). 

Several force fields are available for MD simulations, typically AMBER (Lindorff-

Larsen et al., 2010), CHARMM (J. Huang et al., 2017) or OPLS (Harder et al., 2016), 

each with several different versions best utilized for different types of analyses. For 

the analysis in this study, the selected force field was CHARMM27 (Bjelkmar et al., 

2010). After the force field is decided, a solvent must be selected that fits the protein 

complex and the force field (Hollingsworth and Dror, 2018). TIP3P water molecules 

are typically utilized when CHARMM force fields are selected (Bjelkmar et al., 2010). 

Once the simulation is performed and trajectory data is obtained, essential parameters 

of structural analysis, such as root mean square deviation (RMSD), radius of gyration 

(Rg), root mean square fluctuation (RMSF), and the formation of hydrogen bonds can 

be inspected through GROMACS. 

RMSD analysis is among the most basic methods of structure analysis. The 

RMSD of the structure is calculated through computing the mean displacement of each 

particle throughout the trajectory (Grossfield and Zuckerman, 2009). Through this, the 

conformational change the protein goes through can be determined based on the 

RMSD levels. RMSF calculates the fluctuations of each residue on the protein 

backbone based on their displacement from their mean position at all instances of the 

simulation (Saxena et al., 2009). As such, through this value the flexibility of the 

polypeptide backbone and how much of a conformational change occurs upon ligand 

binding can be extrapolated. Rg values assess the root mean square distance of each 

atom within the protein from the axis of rotation, usually at the center of mass of the 

https://paperpile.com/c/XLwPcu/wLK2F
https://paperpile.com/c/XLwPcu/PqJ5z
https://paperpile.com/c/XLwPcu/PqJ5z
https://paperpile.com/c/XLwPcu/mrm3h
https://paperpile.com/c/XLwPcu/yK93V
https://paperpile.com/c/XLwPcu/LtzHa
https://paperpile.com/c/XLwPcu/TiSeU
https://paperpile.com/c/XLwPcu/3lOqD
https://paperpile.com/c/XLwPcu/wLK2F
https://paperpile.com/c/XLwPcu/FYkTO
https://paperpile.com/c/XLwPcu/FYkTO
https://paperpile.com/c/XLwPcu/JPMEh
https://paperpile.com/c/XLwPcu/0W4ts
https://paperpile.com/c/XLwPcu/dUWMa
https://paperpile.com/c/XLwPcu/dUWMa
https://paperpile.com/c/XLwPcu/wLK2F
https://paperpile.com/c/XLwPcu/dUWMa
https://paperpile.com/c/XLwPcu/DHV55
https://paperpile.com/c/XLwPcu/LfWfB
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protein (Sneha and George Priya Doss, 2016). Through this value, it is possible to gain 

insight into the compactness of the protein, and again judge the conformational 

changes upon ligand binding depending on its results and stability based on its overall 

fluctuations throughout the simulation. Finally, hydrogen-bonds are calculated to 

determine the stability of the structure, and have been found to be related to better 

binding affinity and drug efficacy (Sneha and George Priya Doss, 2016). 

In brief, MD simulations are a valuable tool to determine the stability and 

conformational changes of the protein upon ligand binding, through calculating several 

parameters, in order to further validate the results of molecular docking analysis. 

 

1.4. Aim of the Study 

Although ALL has a high survival rate for children at 90%, 20% of those are 

known to relapse. Additionally, the remaining 10% are deemed incurable once they 

don’t respond to treatment (Jędraszek et al., 2022). With the current chemotherapy 

approaches reaching their maximum effectiveness, what is left for traditional ALL 

treatment is to determine novel genes related to chemoresistance, gain further 

understanding of drug resistance mechanisms and pathways, and utilize drug 

repurposing to discover inhibitors, or to drive inspiration to develop new inhibitors 

from these small molecules.   

As such, this thesis aims to identify DEGs that are upregulated in Asp, Dnr, 

Pred, and Vcr resistant ALL patients, perform GO and PPI analysis to investigate 

pathways related to these genes, determine DEGs that are common in all four resistant 

subtypes, and consequently discover potential inhibitors to overcome drug resistance 

in ALL through docking methods and drug repurposing.  

 

 

 

https://paperpile.com/c/XLwPcu/xJpnP
https://paperpile.com/c/XLwPcu/xJpnP
https://paperpile.com/c/XLwPcu/vpEqj
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CHAPTER 2: METHODS 

 

 

 

Figure 4. Graphical representation of the workflow of the study.  

 

This study employs a bioinformatics approach to finding DEGs, and identifies 

potential inhibitors through in silico screening and molecular docking, using MD 

simulations for the validation of the binding of the potential drugs (Figure 4). In the 

following sections, a detailed explanation will be given for each step.  

 

2.1. Datasets 

Gene Expression Omnibus (GEO) is a public archive that contains data of 

various high-throughput gene expression and genomic hybridization research in 

different formats, one of which being microarrays (Edgar et al., 2002). The database 

enables free distribution and access to high-quality data for researchers across the 

world. Each unique object in GEO has an accession number which has a different 

prefix if the record is a GEO Platform (GPL), Sample (GSM), or Series (GSE) (Barrett 

et al., 2005). Any data within GEO is available for public use and most datasets make 

raw patient data available for all.  

https://paperpile.com/c/XLwPcu/KKpSQ
https://paperpile.com/c/XLwPcu/FWPA9
https://paperpile.com/c/XLwPcu/FWPA9
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In this thesis, three datasets were selected for analysis after a thorough search 

of the GEO database. The raw microarray files were obtained in the .CEL file format, 

which contain probe intensities and are created directly by the array scanner software 

(Klaus and Reisenauer, 2016).  

 

2.1.1. Healthy B-cell Data  

Healthy B-cell data was acquired from a different dataset as there was none in 

the dataset of interest used in this study and no other resistant ALL dataset with healthy 

data was available. The gene expression data of eleven healthy individuals was 

accessed from the GSE22529 dataset (Gutierrez et al., 2010).  

 

2.1.2. ALL Datasets 

Acute lymphoblastic leukemia datasets were investigated for those containing 

sufficient patient data and were related to drug resistance. GSE635 (Holleman et al., 

2004) was chosen as it contained expression data of patients (a total of 173) resistant 

and sensitive to common chemotherapy drugs, asparaginase, daunorubicin, vincristine 

and prednisolone. Containing prednisolone sensitive data, GSE19143 (Stam et al., 

2010) was selected for validation purposes.  

 

Table 1. List of GEO datasets utilized in the study and their characteristics. 

Datasets Disease Types Sample 

Size 

Platform Reference 

GSE22529 Healthy B-

cells 

Control 11  GLP96 Gutierrez et al., 

2010 

GSE635 ALL  Drug 

resistance 

173  GLP96 Holleman et 

al., 2004 

GSE19143 ALL Drug 

resistance 

52  GPL96 Stam et al., 

2010 

https://paperpile.com/c/XLwPcu/fIm6s
https://paperpile.com/c/XLwPcu/rbkdU
https://paperpile.com/c/XLwPcu/7XW04
https://paperpile.com/c/XLwPcu/7XW04
https://paperpile.com/c/XLwPcu/dNgOk
https://paperpile.com/c/XLwPcu/dNgOk
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2.2. Microarray Data Analysis 

As mentioned, the raw data from the aforementioned datasets was downloaded 

in the CEL file format from GEO. To access the raw data files and in all the consequent 

steps, RStudio was the main program and Bioconductor packages “oligo”(Carvalho 

and Irizarry, 2010), “LIMMA” (Smyth, 2005), “EnhancedVolcano”(Blighe, 2018) and 

“VennDiagram” (Chen and Boutros, 2011) were utilized for accession, analysis and 

visualization.  

 

2.2.1. Normalization of the Raw Microarray Data 

To determine the differentially expressed genes between healthy and resistant 

data, the resistant samples from GSE635 were separated into four categories depending 

on which drug they are resistant to. Each subgroup was normalized separately 

alongside the control group. Additionally, to eliminate the genes that increase due to 

ALL but are unrelated to the development of drug resistance, the same normalization 

process was performed on drug sensitive data, and on GSE19143 for further validation.  

Robust Multi-array Average (RMA) normalization was elected as the method 

for this process (Bolstad et al., 2003). The RMA normalization function is found within 

the oligo package, which was downloaded to RStudio using Bioconductor. With this 

function, background correction, quantile normalization, and summarization of the list 

of probes can be performed for the DEG analysis to be achieved. A confirmation of 

normalization was done by visualizing the expression levels of probes prior to and 

after normalization (Figure 5, Section 3.1.1). 

 

2.2.2. Differential Gene Expression (DEG) Analysis 

To determine the DEGs, the method used was based on the empirical Bayesian 

algorithm, and this process was done utilizing LIMMA and its built-in functions. The 

Benjamini-Hochberg method was used to control the false discovery rate (FDR) and 

after that adjustment on the p value, the adj.P value was selected as 0.05 (Benjamini 

and Hochberg, 1995). Then, the results of the resistant data of each group were 

https://paperpile.com/c/XLwPcu/MvZyT
https://paperpile.com/c/XLwPcu/MvZyT
https://paperpile.com/c/XLwPcu/cTRz6
https://paperpile.com/c/XLwPcu/fmOkl
https://paperpile.com/c/XLwPcu/SMDRR
https://paperpile.com/c/XLwPcu/rbQrE
https://paperpile.com/c/XLwPcu/sT0zj
https://paperpile.com/c/XLwPcu/sT0zj
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compared to the sensitive data of their counterparts, and those that were upregulated 

in both groups were eliminated. For example, the upregulated probes of the 

asparaginase resistant group were compared with those of the asparaginase sensitive 

group, and any that were in both were eliminated from the list of DEGs. A similar 

process was done using the pred sensitive data of GSE19143 for validating the pred 

group.  

In the end, DEGs were selected as probes that were upregulated only in the 

resistant subtypes of GSE635. Volcano plots of the four subtypes were drawn using 

the “EnhancedVolcano” package (Blighe, 2018) for visualization of the variation of 

gene expression between the healthy and resistant subjects (Figure 6, Section 3.1.2 ). 

Heatmaps depicting 100 upregulated and 20 downregulated genes of each resistant 

type against their sensitive counterparts were also generated using the Heatmapper 

web-tool (Babicki et al., 2016). Additionally, a venn diagram of each DEG list from 

each resistant group was drawn using the “VennDiagram” package (Chen and Boutros, 

2011) in order to determine and visualize genes that were found in common in all four 

types (Figure 8, Section 3.1.2). 

 

2.2.3. Gene Ontology and Enrichment Analysis   

After the upregulated DEGs were determined, the list of probes obtained from 

R was put into ShinyGO V0.77 (http://bioinformatics.sdstate.edu/go/), a web-based 

tool containing an exhaustive annotation and pathway database. It utilizes the Ensembl 

database for annotation and a compilation of various other sources, such as KEGG and 

STRING for pathway analysis, determining gene enrichment concerning different 

pathways using hierarchical clustering, and analyzing chromosomal distributions, GC 

content, and length of genes (Ge et al., 2020). In this analysis, the FDR corrected p-

value cutoff was selected as 0.05, and after this process the probes that contained no 

gene information were removed from the list. 

 

https://paperpile.com/c/XLwPcu/fmOkl
https://paperpile.com/c/XLwPcu/rNLDX
https://paperpile.com/c/XLwPcu/SMDRR
https://paperpile.com/c/XLwPcu/SMDRR
http://bioinformatics.sdstate.edu/go/
https://paperpile.com/c/XLwPcu/hC8Fy
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2.2.4. Protein-Protein Interaction Analysis 

In this step, STRING V12.0 (https://string-db.org/) was used to investigate the 

interactions between the upregulated DEGs (Szklarczyk et al., 2019). The minimum 

required interaction score was selected as 0.4. Then, after downloading the network, 

CytoScape (Shannon et al., 2003) and CytoHubba (Chin et al., 2014) were used to 

visualize the protein-protein interaction (PPI) network and hub genes. Two sets of 10 

hub genes were determined based on betweenness and degree. 

 

2.3.  In silico Screening for Drug Repurposing 

The two proteins used in this step were determined previously, from amongst 

the DEGs found in common in all resistant subtypes. The following in silico screening 

and molecular docking analyses were done utilizing PyRx V.0.8, a virtual screening 

software (Dallakyan and Olson, 2015) and the ZINC15 drug library (Sterling and 

Irwin, 2015). 

 

2.3.1. Crystal Structure and Drug Library Acquisition 

The drug library for the screening was downloaded from the ZINC15 database. 

The selective tags were “named”, “for sale”, and “in trial”, in order to only screen 

drugs that would be easily available for sale and that had been or are currently being 

investigated. As a result, 3556 small molecules, including those that were approved by 

the FDA, were downloaded in the mol2 format.  

The crystal structures for the proteins CLDN9 and HS3ST3A1 were accessed 

from the Protein Data Bank (PDB) (Berman et al., 2000). For CLDN9, the crystal 

structure 6OV2 (Vecchio and Stroud, 2019) and for HS3ST3A1, the crystal structure 

1T8U (Moon et al., 2004) were downloaded in the .pdb format.  

 

https://string-db.org/
https://paperpile.com/c/XLwPcu/Df7wF
https://paperpile.com/c/XLwPcu/mEf8T
https://paperpile.com/c/XLwPcu/kgXih
https://paperpile.com/c/XLwPcu/qPOYh
https://paperpile.com/c/XLwPcu/rNM65
https://paperpile.com/c/XLwPcu/rNM65
https://paperpile.com/c/XLwPcu/7C4J1
https://paperpile.com/c/XLwPcu/ZTbvS
https://paperpile.com/c/XLwPcu/ktrB8
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2.3.2. Preparation of the Crystal Structures and the Drug Library 

The drug library was uploaded to PyRX as a list. The energies of the small 

molecules were then minimized using the program according to its default parameters. 

Finally, before the screening could take place, the drugs were converted to .pdbqt file 

format using Open Babel, which is built into PyRX to convert chemical files into 

formats suitable for the docking process (Dallakyan and Olson, 2015). 

Before the crystal structures could be used for docking, they were preprocessed 

using USCF Chimera (Pettersen et al., 2004). In this step, all water molecules and any 

extra solvents were removed from the environment using UCSF Chimera’s DockPrep 

tool, and then prepared for docking. Afterwards, both of the preprocessed structures 

were validated using two online tools: ProSA (Wiederstein and Sippl, 2007) and 

PROCHECK (Laskowski et al., 1996). Additionally, DogSiteScorer (Volkamer et al., 

2012) was used to determine binding pockets and assess their druggability for both of 

the structures. 

 

2.3.3. Molecular Docking Screen 

Once the drug library and the crystal structures were prepared for docking, the 

location of the grid box, where the drug molecules will bind, was determined by 

calculating the center of mass of the selected binding pocket. For CLDN9, the grid box 

was calculated with the coordinates X: 4.53, Y: -15.33, Z: -18.72 and with dimensions 

26 Å x 26 Å x 26 Å, for HS3ST3A1 the coordinates were X: 35.12, Y: 32.53, Z: 35.21 

with dimensions 20 Å x 20 Å x 20 Å. Autodock Vina, built-in to PyRX, was utilized 

for the molecular docking step. After the docking was completed for each of the 3556 

small molecules against both of the crystal structures, the binding energy threshold 

was determined as -8.0 kcal/mol for CLDN9 and -9.0 kcal/mol for HS3ST3A1, as the 

latter demonstrated better binding this was necessary to limit the number of molecules 

obtained in this step. Additionally, only molecules that satisfied both thresholds with 

an RMSD value of 0 were selected for the next step.  

 

https://paperpile.com/c/XLwPcu/qPOYh
https://paperpile.com/c/XLwPcu/tmykb
https://paperpile.com/c/XLwPcu/9ErKd
https://paperpile.com/c/XLwPcu/kI0dk
https://paperpile.com/c/XLwPcu/reWdk
https://paperpile.com/c/XLwPcu/reWdk
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2.3.4. ADMET Analysis 

Here, ADMET analysis was performed using the online tools SwissADME 

(Daina et al., 2017) and AdmetSAR (Yang et al., 2019). Smiles notations of the 

molecules that were selected with docking were accessed from the ZINC database and 

uploaded first to SwissADME and afterwards to AdmetSAR for further analysis. In 

the first step, the Lipinski (Lipinski et al., 2001), Muegge (Muegge et al., 2001), and 

Ghose (Ghose et al., 1999) filters were the selective criteria and the molecules that had  

< 2 violations for each were selected for the next step of analysis. The molecules that 

passed these filters were evaluated based on human intestinal absorption, human oral 

bioavailability, and acute oral toxicity ( < 2.5 ). Subsequently, the three molecules that 

satisfied these criteria were put into molecular dynamics simulations to validate their 

binding with HS3ST3A1.  

 

2.4.  Molecular Dynamics Simulations 

Upon determining three small molecules (Flunarizine, Eltrombopag, and 

Talniflumate) that satisfied the binding affinity thresholds for both proteins and had 

favorable ADMET scores according to both SwissADME and AdmetSAR, MD 

simulations were performed on all three against HS3ST3A1. The main goal of MD 

analysis is to validate the findings of molecular docking to enable a more thorough and 

sophisticated assessment. In this study, MD simulations were done utilizing the 

GROMACS 2021.2 software (Abraham et al., 2015). For this protein, CHARMM27 

was chosen as the force field (Bjelkmar et al., 2010). SwissParam was used to build 

ligand topology and conditions (Zoete et al., 2011), where the conditions of each atom 

were added into the topology of the system and packed into complex topology files. 

TIP3P water molecules were used to solvate the protein-ligand complexes inside a 

cubic space (Price and Brooks, 2004). The particle-mesh Ewald (PME) method was 

selected to maintain long-range electrostatic interactions, and Cl- and Na+ ions were 

used instead of solvent molecules in order for the system to be an electrically neutral 

simulated system (Fadrná et al., 2005). Before the simulation started, the system went 

through 50.000 steps of energy minimization. Subsequently, the simulations were done 

with NPT, constant number of particles, system pressure and temperature, and NVT, 

https://paperpile.com/c/XLwPcu/k6QML
https://paperpile.com/c/XLwPcu/PIbDP
https://paperpile.com/c/XLwPcu/mpL7m
https://paperpile.com/c/XLwPcu/SLq7H
https://paperpile.com/c/XLwPcu/K1iez
https://paperpile.com/c/XLwPcu/YB37a
https://paperpile.com/c/XLwPcu/dUWMa
https://paperpile.com/c/XLwPcu/MI0CU
https://paperpile.com/c/XLwPcu/rZM3C
https://paperpile.com/c/XLwPcu/NEhob
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constant number of particles, system volume respectively, and temperature, for 100 

nanoseconds, with a constant 300 K temperature and 1 bar pressure (Chen et al., 2023). 

Every 10-picosecond, the trajectory data of the system was taken, which was later 

analyzed for essential structural assessment values; RMSD, RMSF, Rg and H-bond 

formation using GROMACS and XQuartz (https://www.xquartz.org/).  

 

2.5. Cell Culture and Subculture 

2.5.1. SUP-B15 Cell Line 

SUP-B15 cells are a cell line of Ph+ ALL cells. They were maintained in RPMI 

medium with 20% fetal bovine serum (FBS) and 1% penicillin/streptomycin and 

incubated at 37°C and %5 CO2. The cells were subcultured every three days, with 400 

g centrifuge speed for five minutes and diluted to ⅓.  

 

2.5.2. Jurkat Cell Line 

The Jurkat cell line consists of T-ALL cells. This line was maintained in RPMI 

medium with 10% FBS and 1% penicillin/streptomycin and incubated at 37°C and %5 

CO2. The cells were subcultured every two days, with 900 RPM for five minutes, and 

diluted to ⅓.  

 

2.5.3. HUVEC Cell Line 

HUVEC cell line is a healthy cell line consisting of human umbilical vein 

endothelial cells. These cells were maintained in DMEM medium, with 10% FBS and 

1%  penicillin/streptomycin and incubated at 37°C and %5 CO2. They were 

subcultured every two days, using trypsin and incubated for five minutes, then 

centrifuged at 500 g for five minutes and diluted to ½.  

https://paperpile.com/c/XLwPcu/2idoQ
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2.6. Analysis of The Cytotoxic Effects of The Three Selected Drugs on Cancer Cell 

Lines 

2.6.1. Cytotoxicity Analysis on the SUP-B15 Cell Line 

The anti-proliferative effects of Eltrombopag, Talniflumate and Flunarizine 

were determined on SUP-B15 cell lines via MTT assays. 3 x 104 cells were seeded in 

each well in 96-well plates for each drug in triplicates and incubated for 72 h. Then 15 

ul of MTT (5 mg / ml) was added to each well and after a 4-hour waiting period, 100 

ul of DMSO was added and the plates were incubated for 30 minutes. The optical 

density (OD) was measured at 570 nm.  

 

2.6.2. Cytotoxicity Analysis on the Jurkat Cell Line 

The anti-proliferative effects of Eltrombopag, Talniflumate and Flunarizine 

were determined on Jurkat cell lines via MTT assays. 1 x 104 cells were seeded in each 

well in 96-well plates for each drug in triplicates and incubated for 48 h. Then 10 ul of 

MTT (5 mg / ml) was added to each well and after a 4-hour waiting period, 100 ul of 

DMSO was added and the plates were incubated for 30 minutes. The optical density 

(OD) was measured at 570 nm.  

 

2.7. Analysis of the Selected Drugs on the HUVEC Cell Line 

The IC50 values obtained from SUP-B15 cells for each drug was administered 

to HUVEC cells and their cytotoxic effects were determined by Trypan Blue assays. 5 

x 104 cells were seeded in a 6-well plate and incubated for 24 h until they were attached 

to the wells, Consequently, the media of each well was changed, and IC50 doses for 

each drug was administered. 48 h proceeding this, each well was counted using Trypan 

Blue.  
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CHAPTER 3: RESULTS 

3.1. DEG Analysis 

3.1.1. Normalization of the Raw Data  

As mentioned previously in Section 2.2.1, the “oligo” package of Bioconductor 

was used to access the raw data of GSE635, GSE19143 and GSE22529 datasets. 

Normalization of the gene expression data was done based on the RMA method, again 

utilizing a function of the “oligo” package. For each of the resistant groups, healthy 

and patient data were normalized together. In the GSE635 dataset, the asparaginase 

resistant group had the expression data 40 B-ALL patients, daunorubicin had 23 

patients, prednisolone had 20 patients and vincristine had 29 patients.  

To validate the normalization process in this step, a box plot visualization of 

the expression data from before and after RMA normalization was employed. 

 

Figure 5. Gene expression levels of each resistant group from GSE635 before and after 

the normalization step.  

As can be seen in Figure 5, RMA normalization was performed successfully 

across all of the four resistant subtypes. For each of the expression sets, the RMA 
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reduced background noise, variation and any batch effects that may have occurred 

from the different datasets for each of the samples, bringing their expression values to 

a cohesive set in each resistant group. Although not pictured here, the same process 

was done for the sensitive samples. In the following steps of DEG analysis, the 

normalized values were used for all samples.  

 

3.1.2. Determination of the DEGs in GSE635 

Once the normalized gene expression levels were obtained, LIMMA was used 

for the DEG analysis step (Section 2.2.2). To determine the DEGs, the list of 

upregulated and downregulated probes of resistant groups were compared to the 

sensitive groups. Those that were upregulated in both the resistant and sensitive groups 

of a single group (such as asparaginase resistant against asparaginase sensitive) were 

eliminated from the list of DEGs. Similarly, the results of the Pred resistant group were 

compared to the prednisolone sensitive patient data of GSE19143 for further 

validation. As such, only those that were uniquely upregulated for the resistant groups 

were selected as upregulated DEGs, and a similar process was done with 

downregulated DEGs. Using the “EnhancedVolcano” package, volcano plots were 

generated for all four resistant groups to visualize the DEG variation of resistant 

against healthy groups (Figure 6).  
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Figure 6. Volcano plots of Asp resistant (A) Pred resistant (B) Dnr resistant (C) and 

Vcr resistant groups. Blue indicates p-value < 0.00001, purple indicates Log2FC < -1 

and > 1, and red indicates both. Gray depicts insignificant genes. 

 

According to Figure 6, each of the resistant groups possessed a higher degree 

of downregulated genes, and overall they all had a high number of DEGs that satisfied 

the p-value of less than 0.00001, selected for the purpose of better visualization. 

Additionally, heatmaps of each resistant group were generated using Heatmapper 

(www.heatmapper.ca) (Babicki et al., 2016) to illustrate 100 upregulated and 20 

downregulated DEGs compared to their sensitive counterparts (Figure 7).  

https://paperpile.com/c/XLwPcu/rNLDX
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Figure 7.  Heatmaps of asparaginase (A), daunorubicin (B), prednisolone (C), and 

vincristine (D) resistant subtypes. Red depicts upregulated genes with blue depicting 

downregulated genes, whereas white indicates no significant changes in expression. 

 

Separately, 660 upregulated probes were detected in the asparaginase resistant, 

565 in the daunorubicin resistant, 613 in prednisolone resistant and 589 in vincristine 

resistant groups. A venn diagram was drawn to visualize the commonality found in the 

upregulated probes of each resistant group using the “VennDiagram” package (Chen 

and Boutros, 2011). Although sixteen probes were determined to be upregulated in all 

of the four resistant groups, after annotation some of these were discovered to have no 

gene IDs or were mapped to the same genes, and removing these left twelve genes in 

common (Figure 8).  

https://paperpile.com/c/XLwPcu/SMDRR
https://paperpile.com/c/XLwPcu/SMDRR
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Figure 8. Venn diagram of the number of probes found to be upregulated in each 

resistant subtype, separately and in common.  

 

The full list of common genes was obtained after using ShinyGo for annotation. 

This list can be seen in Table 2, along with each of the genes’ probe and ENSEMBL 

IDs.  

 

Table 2. Twelve genes found in common in all four resistant groups, with probe and 

ENSEMBL IDs. 

Probe ID Gene Name ENSEMBL ID 

215295_AT DTNB ENSG00000138101 

207450_S_AT POU6F2 ENSG00000106536 

205425_AT HIP1 ENSG00000127946 

203559_S_AT AOC1 ENSG00000002726 

http://www.ensembl.org/id/ENSG00000138101
http://www.ensembl.org/id/ENSG00000106536
http://www.ensembl.org/id/ENSG00000127946
http://www.ensembl.org/id/ENSG00000002726
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Table 2 (Continued). Twelve genes found in common in all four resistant groups, 

with probe and ENSEMBL IDs. 

204529_S_AT TOX ENSG00000198846 

213858_AT ZNF250 ENSG00000196150 

221891_X_AT HSPA8 ENSG00000109971 

215384_S_AT MAP1A ENSG00000166963 

214635_AT CLDN9 ENSG00000213937 

219985_AT HS3ST3A1 ENSG00000153976 

210037_S_AT NOS2 ENSG00000007171 

210960_AT ADRA1D ENSG00000171873 

 

3.1.3. Gene Ontology and Pathway Analysis  

Also referred to as gene enrichment analysis, this process is mainly performed 

to ascertain whether a set of genes identified via genomic analysis had genes from 

distinct pathways or functional categories using statistical methods (Ge et al., 2020). 

As mentioned in Section 2.2.3, GO and pathway analysis was performed using the 

ShinyGo V0.77 webtool. The list of probes were put into ShinyGo and a list of 

annotated upregulated DEGs were obtained. 

 

http://www.ensembl.org/id/ENSG00000198846
http://www.ensembl.org/id/ENSG00000196150
http://www.ensembl.org/id/ENSG00000109971
http://www.ensembl.org/id/ENSG00000166963
http://www.ensembl.org/id/ENSG00000213937
http://www.ensembl.org/id/ENSG00000153976
http://www.ensembl.org/id/ENSG00000007171
http://www.ensembl.org/id/ENSG00000171873
https://paperpile.com/c/XLwPcu/hC8Fy
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Figure 9. Pie chart of the types of upregulated DEGs, as obtained from the ShinyGO 

annotation.  

 

As can be seen in Figure 9, ShinyGO mapped the upregulated probes to several 

types of genes. A total of 1338 probes were mapped by ShinyGO. Among these, there 

were 38 lncRNAs, 3 miRNAs, 29 processed pseudogenes and 1294 protein coding 

genes. The other section contained 23 several types of genes, including transcribed 

processed pseudogenes and unprocessed pseudogenes. 
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Figure 10. Results of Kegg Pathway Enrichment analysis. The lollipop chart of KEGG 

pathway enrichment with an FDR-corrected p-value threshold of 0.05, with colors 

illustrating the number of genes, and size -log10(FDR) (A). Network diagram of Kegg 

enrichment with FDR-corrected p-value and edge cutoff thresholds at 0.05 and 0.1, 

respectively (B). Each node is a pathway, significantly enriched genes are shown in 
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more intense colors and node size changes depending on the number of genes found 

in the pathway. Two nodes are linked if they share over 20% genes.  

 

First pathway that was checked through ShinyGO was the KEGG pathways, 

which illustrated that the upregulated DEGs showed the most significant enrichment 

in the PI3K-Akt and pathways in cancer, which according to the KEGG database, 

includes oncogenic pathways such as WNT, VEGF, cAMP, mTOR, TGF-Beta and 

several more. Additionally, microRNAs in cancer, the JAK-STAT pathway, Hippo 

and Ras pathways were among the enriched pathways (Figure 10). In addition to 

having high fold enrichments, the PI3K-Akt pathway and pathways in cancer also 

contained a higher number of genes, as can be inferred from both Figure 10A and 10B. 

The genes in each of the enriched oncogenic pathways can be seen in Table 3.  

 

Table 3. Genes that belong to the oncogenic pathways obtained from KEGG 

enrichment, alongside their FDR-corrected p-values and fold enrichment levels. 

Pathway FDR 
Fold 

Enrichment 
Genes 

JAK-

STAT 

8.4E-

04 

2.6 CREBBP  IL20RA  PIAS2  IL11  IL23A  GHR  IL4  

STAM2  LEPR  CCND2  PDGFRA  CSH1  IL10  

STAM  AOX1  IFNA16  IL6R  LEP  IFNW1  SOCS3  

EPOR  PDGFA  CSF2RA  GH1 

AMPK 7.3E-

03 

2.5 PPP2R3A  SIRT1  RAB2A  CPT1A  CAMKK2  LEPR  

STK11  FOXO3  ADRA1A  PFKFB2  PCK1  

PRKAA1  PPP2R1B  LEP  RPS6KB2  ADIPOQ  

PPP2R2A 
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Table 3. (Continued) Genes that belong to the oncogenic pathways obtained from 

KEGG enrichment, alongside their FDR-corrected p-values and fold enrichment 

levels. 

PIK3-Akt 4.2E-

07 

2.5 BRCA1  LPAR2  PKN2  FGF22  PPP2R3A  GNB1  

ANGPT2  FLT1  CDC37  PIK3CG  ITGB8  FGF6  

VEGFA  GHR  IL4  FGF1  FN1  STK11  FOXO3  

CCND2  TEK  PCK1  GNG13  PRKAA1  PDGFRA  

MDM2  CSH1  PPP2R1B  THBS1  COL2A1  ERBB2  

ITGA9  CREB5  IFNA16  NTRK2  ITGB1  IL6R  

COL6A3  COL1A2  YWHAZ  PTK2  LAMB2  

RPS6KB2  EFNA5  CSF1  EPOR  MAGI2  PDGFA  

PPP2R2A  GH1 

HIPPO 4.5E-

03 

2.4 DVL2  WWTR1  CTNNA2  FGF1  WNT5A  CCND2  

TGFB3  PARD6B  DLG4  APC  PPP2R1B  CSNK1D  

SMAD4  FZD7  FZD5  YWHAZ  FZD6  SOX2  

WNT7B  BMPR2  PPP2R2A 

Pathways 

in Cancer 

2.6E-

06 

2.1 DVL2  CREBBP  NOS2  DAPK2  LPAR2  CTNNA2  

FGF22  NOTCH3  RARB  NFKB2  GNB1  GNAS  

ESR1  ABL1  CRKL  CBL  IL23A  FGF6  VEGFA  

MSH3  IL4  FGF1  KNG1  WNT5A  HES1  FN1  

NFE2L2  CCND2  TGFB3  PAX8  GNG13  PDGFRA  

APC  HEY2  MDM2  EDNRB  ADCY3  ESR2  PML  

SMAD4  ERBB2  IFNA16  NOTCH1  ITGB1  

EDNRA  FZD7  IL6R  ADCY9  FZD5  FZD6  PTK2  

CXCL8  PTGER4  LAMB2  RPS6KB2  CALML5  

JAG2  PTCH1  EPOR  WNT7B  DAPK1  PDGFA  

CSF2RA 

Ras 5.3E-

03 

2.1 RASGRF1  FGF22  GNB1  ANGPT2  ABL1  PAK5  

FLT1  GAB1  FGF6  VEGFA  FGF1  PLA2G4A  TEK  

PLA2G5  GNG13  AFDN  PDGFRA  PAK6  NTRK2  

SHC1  PLA2G1B  CALML5  EFNA5  CSF1  PLA2G6  

NF1  PDGFA 

 

Next, the upregulated DEGs were analyzed for GO pathways. All three were 

rich in number of genes, although had lower fold enrichments compared to the KEGG 

pathways. For BP (Figure 11A), CC (Figure 11B) and MF (Figure 11C), the pathways 
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that showed the most enrichment with statistically significant p-values were 

anatomical structure morphogenesis, cell adhesion, and cell junction, respectively.  

 

Figure 11. The lollipop charts of GO enrichment of BP (A) CC (B) MF (C) pathways, 

with an FDR-corrected p-value threshold of 0.05, colors illustrating the number of 

genes, and size -log10(FDR). 
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3.1.4. Protein-Protein Interaction Networks 

Explained in further detail in Section 2.2.4, the annotated list of upregulated 

protein coding genes, obtained from ShinyGo was first put into String V12 (Szklarczyk 

et al., 2019), a total of 1294 genes, and the network file obtained from the website was 

uploaded to CytoScape (Shannon et al., 2003) to visualize the PPI network and 

determine hub genes using CytoHubba (Chin et al., 2014). The entire PPI network had 

1207 nodes (proteins) and 7778 edges (interactions).  

 

Figure 12. Two networks of twenty hub genes calculated through betweenness (A) and 

degree (B) ranking methods of Cytohubba.  

 

A plug-in of Cytoscape, Cytohubba can be used to determine the hub genes of 

a biological network based on eleven node ranking methods, including degree and 

betweenness, as well as several others (Chin et al., 2014). In this thesis, two sets of 

hub genes were generated depending on betweenness (Figure 12A) and degree (Figure 

12B). Each set contained 20 genes, with 15 found in common in both sets, resulting in 

a total of 25 hub genes identified. In both of the sets, CDH1, FN1, H3-3B and ESR1 

had consistently intense color, related to their high scores in both calculations.  

 

 

 

https://paperpile.com/c/XLwPcu/Df7wF
https://paperpile.com/c/XLwPcu/Df7wF
https://paperpile.com/c/XLwPcu/mEf8T
https://paperpile.com/c/XLwPcu/kgXih
https://paperpile.com/c/XLwPcu/kgXih
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3.2. In Silico Screening 

3.2.1. Validation of the Crystal Structures 

As described in Section 2.3.2, Procheck and Prosa were used to validate the 

crystal structures of CLDN9 and HS3ST3A1 that were preprocessed using UCSF 

Chimera (Pettersen et al., 2004). Using PROCHECK (Laskowski et al., 1996), 

Ramachandran plots of the 3D structures were generated, and ProsA (Wiederstein and 

Sippl, 2007) was utilized to calculate the z-scores of both structures, which is 

processed by comparing the target model with publicly available similar PDB models 

(Wiederstein and Sippl, 2007).  

 

Figure 13. Validation of the preprocessed crystal structure of CLDN9 and HS3ST3A1. 

Ramachandran validation of CLDN9 (A) via PROCHECK and its z-score(B) via 

PROSA along with the Ramachandran validation (C) and z-score of HS3ST3A1 (D). 

https://paperpile.com/c/XLwPcu/tmykb
https://paperpile.com/c/XLwPcu/kI0dk
https://paperpile.com/c/XLwPcu/9ErKd
https://paperpile.com/c/XLwPcu/9ErKd
https://paperpile.com/c/XLwPcu/9ErKd
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First discovered in the 1960s, the Ramachandran plot is one of the roots of 

macromolecular structural analysis and crystallography (Hollingsworth and Karplus, 

2010). The plot works by calculating the psi and phi angles of aminoacid residues and 

especially in the last thirty years, it’s been one of the go-to methods of validation for 

3D protein structures generated through crystallography, NMR spectroscopy, and 

recently popular computational modeling (Carugo and Djinovic-Carugo, 2013). The 

ProSA web server is another popular tool for the validation of crystal structures. The 

z-scores of a given structure are calculated based on comparison with crystal structures 

of other similar native proteins (Wiederstein and Sippl, 2007). In this thesis, for 

CLDN9 86. 9% and 11.9% of residues were found in the most favored regions and 

additionally allowed regions, respectively, with 1.2% of the residues in the generously 

allowed regions (Figure 13A). The crystal structure also had a z-score of -5.03 (Figure 

13B). Whereas HS3ST3A1 had 91.3% of residues in the most favored regions and the 

remaining 8.7% in the additional allowed regions (Figure 13C), the structure also had 

a z-score of -8.99 (Figure 13D). For both of the crystal structures, the z-score 

calculated by ProSA are within the range of scores found for similarly sized native 

proteins.  

 

3.2.2. Structure based ligand screening and molecular docking 

Structure based drug repurposing is based on developing affinity estimations 

of docking simulations of a 3D structure and its potential ligands (Vyas et al., 2008). 

As can be read in further detail in Section 2.3.3, PyRx, and its docking program 

AutoDock Vina, was the preferred program to perform this step in this thesis. The 

proteins CLDN9 and HS3ST3A1 were obtained from the results seen in Section 3.1.2, 

both among the proteins found in common in all four resistant groups.  

https://paperpile.com/c/XLwPcu/OwZkj
https://paperpile.com/c/XLwPcu/OwZkj
https://paperpile.com/c/XLwPcu/u7gro
https://paperpile.com/c/XLwPcu/9ErKd
https://paperpile.com/c/XLwPcu/hYmxC
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Figure 14. Druggable binding pockets determined by DogSiteScorer (Volkamer et al., 

2012). CLDN9 (A) and HS3ST3A1 (B). 

 

After preprocessing, the 3D structures were uploaded to DogSiteScorer to 

determine binding pockets (Volkamer et al., 2012). Figure 14A shows the selected 

binding pocket for CLDN9, with a drug score of 0.81, found in its extracellular 

domain. Figure 14B shows the selected binding pocket for HS3ST3A1, with a drug 

score of 0.81. Once the binding pockets were identified, both proteins were docked 

against a drug library of 3556 molecules obtained from ZINC15 (Figure 15), and the 

results of this process were analyzed based on the binding affinity and RMSD of the 

binding poses of each drug and protein.  

 

Figure 15. Docking in PyRx. Docking simulation of CLDN9 (A) and HS3ST3A1 (B) 

in AutoDock Vina. 

 

 

https://paperpile.com/c/XLwPcu/reWdk
https://paperpile.com/c/XLwPcu/reWdk
https://paperpile.com/c/XLwPcu/reWdk
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Previous research has proved that negative binding affinities are associated 

with better interactions between proteins and ligands (Dallakyan and Olson, 2015). As 

such, with the results of both CLDN9 and HS3ST3A1 taken into consideration, the 

binding thresholds were selected as -8.0 kcal/mol and -9.0 kcal/mol, respectively, to 

limit the number of molecules for the following MD simulations as setting the binding 

threshold of HS3ST3A1 resulted in over three hundred extra molecules. Additionally, 

the molecules with RMSD values of 0 that also satisfied the binding thresholds of both 

proteins in this step were selected for the ADMET analysis. The list of small molecules 

with the best twenty binding affinities can be seen below in Table 4. 

 

Table 4. Top 20 list of small molecules obtained by docking and their binding energies, 

ranked by the binding energy of CLDN9. 

Zinc ID Compound name 

Binding energy (kcal/mol) 

CLDN9 HS3ST3A1 

ZINC3978005 Dihydroergotamine -9.6 -9.2 

ZINC18710085 Chir-265 -9.6 -9.1 

ZINC43208634 Omipalisib -9.3 -10.5 

ZINC1612996 Irinotecan -9.3 -9.2 

ZINC11679756 Eltrombopag -9.1 -9.0 

ZINC59676426 Implitapide -9.0 -9.4 

ZINC1844627 Talniflumate -8.7 -10.2 

ZINC13831810 Mizolastine -8.6 -10.2 

 

 

https://paperpile.com/c/XLwPcu/qPOYh


47 

Table 4. (Continued) Top 20 list of small molecules obtained by docking and their 

binding energies, ranked by the binding energy of CLDN9. 

ZINC95493347 Efonidipine -8.6 -9.6 

ZINC537805 Diabeta -8.6 -9.5 

ZINC3775812 Pagoclone -8.5 -9.9 

ZINC1542146 Pranlukast -8.5 -9.5 

ZINC12503187 Conivaptan -8.5 -9.1 

ZINC100016063 Tivantinib -8.4 -11.1 

ZINC1494900 Enzastaurin -8.4 -10.3 

ZINC1482077 Gliquidone -8.4 -9.1 

ZINC896717 Accolate  -8.3 -10.2 

ZINC52509366 Zelboraf -8.3 -9.7 

ZINC68267814 Rimegepant -8.2 -10.3 

ZINC19360739 Flunarizine -8.2 -10.2 

 

3.2.3. ADMET analysis 

In this step, as explained in detail in Section 2.3.4, the selected molecules were 

analyzed to further investigate their efficacy, drug-likeness and safety. SwissADME 

and AdmetSAR, two popular online analysis tools, were used for this analysis. 

SwissADME was used first, and the selective parameters were chosen as 
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bioavailability ≥ 0.55 (Martin, 2005), Ghose, Lipinski and Muegge filters, which are 

related to pharmacokinetic principles a molecule needs to have to be counted as a 

potential drug candidate, such as rotatable bonds, molecular weight and lipophilicity 

(Benet et al., 2016).  

Once the list of twelve molecules with acceptable SwissADME scores were 

obtained, they were put into AdmetSar to analyze for toxicity and drug efficacy. In this 

step the selective parameters were oral toxicity scores < 2.5 (Zhu et al., 2009), human 

intestinal absorption and human oral bioavailability, important factors for the efficacy 

of oral drugs. This analysis resulted in four molecules with suitable AdmetSAR scores, 

and three were selected: Flunarizine, Talniflumate and Eltrombopag. The list of 

ADMET scores of the twelve molecules can be seen in Table 5. 

 

Table 5. ADMET properties of candidate molecules obtained from both SwissADME 

and AdmetSAR, with abbreviations Bio. (Bioavailability), H. Oral Bio. (Human oral 

bioavailability), H. Int. Abs. (Human intestinal absorption) and A. Oral Tox. (Acute 

oral toxicity). 

Zinc ID 
Compound 

Name 
Lipinski Muegge Ghose  Bio. 

H. 

Oral 

Bio. 

H. 

Int. 

Abs. 

A. 

Oral 

Tox. 

ZINC53

7877 

Ketanserin 0 0 0 55 + - 2.41 

ZINC59

6951 

Sr-2640 0 1 0 85 + + 2.51 

ZINC77

5812 

Pagoclone 0 0 0 55 + - 1.82 

ZINC14

81805 

Balaglitazone 0 0 0 55 + + 2.32 

ZINC53

7928 

Loperamide 1 1 1 55 + - 3.22 

ZINC11

681534 

Nebivolol 0 0 0 55 + - 3.73 

https://paperpile.com/c/XLwPcu/ae4n5
https://paperpile.com/c/XLwPcu/Nvx9k
https://paperpile.com/c/XLwPcu/bpkyS
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Table 5. (Continued) ADMET properties of candidate molecules obtained from both 

SwissADME and AdmetSAR, with abbreviations Bio. (Bioavailability), H. Oral Bio. 

(Human oral bioavailability), H. Int. Abs. (Human intestinal absorption) and A. Oral 

Tox. (Acute oral toxicity). 

ZINC13

831810 

Mizolastine 0 0 0 55 + + 2.59 

ZINC19

360739 

Flunarizine 1 1 0 55 + + 2.05 

ZINC53

8194 

Pirenperone 0 0 0 55 + + 2.82 

ZINC18

44627 

Talniflumate 0 1 1 55 + + 2.12 

ZINC11

679756 

Eltrombopag 0 0 1 56 + + 2.15 

ZINC10

0016063 

Tivantinib 0 0 0 55 + + 3.33 

 

3.3. Molecular Dynamics 

In broad terms, MD simulations are computational techniques that are used to 

analyze the dynamic behaviors of atoms and molecules. As such, MD simulations were 

performed to elucidate the stability, flexibility and bond strength of the three small 

molecules, Flunarizine, Eltrombopag and Talniflumate, obtained in the previous 

sections, against the protein HS3ST3A1 using GROMACS 2021.2. As was explained 

in further detail in Section 2.4, during the simulations the temperature was 300 K and 

pressure was 1 bar throughout all 100 ns, and the trajectory data was captured every 

10 ps.  
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Figure 16. Results of thorough MD analysis of HS3ST3A1 and its potential inhibitors. 

RMSD values according to the backbone of HS3ST3A1 upon ligand binding against 

simulation time (A). RMSD values of ligands after binding to protein against 

simulation time (B). RMSF values upon ligand binding  against residues (C). Radius 

of Gyration of potential inhibitors after binding (D).  

 

RMSD, RSMF, Rg values and H-bond formation were all analyzed as a result 

of this simulation (Figure 16). The RMSD value denotes the net of the movements 

each atom makes at each time interval (Taghizadeh et al., 2022) and a lower RMSD is 

linked to better stability of the complex (Esmaili and Shahlaei, 2015). In light of this, 

the RMSD of the HS3ST3A1 backbone atoms upon three separate ligand bindings, 

and the RMSD of the ligands themselves were inspected to analyze conformational 

changes. The backbone RMSD upon binding is similar in all three drug molecules 

(Figure 16A). RMSD of Eltrombopag and Talniflumate are in similar ranges, although 

Eltrombopag has more fluctuations, while Flunarizine dramatically increases between 

25 and 50 ns before reaching a stabler pattern (Figure 16B). The RMSF values of the 

C-alpha atoms of the protein were calculated to gain insight into its flexibility 

throughout the simulation (Saxena et al., 2009). Upon the binding of all three 

https://paperpile.com/c/XLwPcu/ucv49
https://paperpile.com/c/XLwPcu/2xCwX
https://paperpile.com/c/XLwPcu/LfWfB
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molecules, the RMSF was in close range and showed peaks in the same residues 

(Figure 16C). The Rg values are calculated to gain an understanding of the 

compactness and stability of the protein complex (Sneha and George Priya Doss, 

2016). Although molecules lead to Rg values in similar ranges, Talniflumate exhibited 

the smallest Rg, with it and Flunarizine mostly stable, whereas Eltrombopag showed 

fluctuation until 40 ns, before steadying (Figure 16D).  

 

Figure 17. Number of hydrogen bonds that form between HS3ST3A1 and the three 

ligands: Eltrombopag (A) Flunarizine (B) Talniflumate (C). 

 

Furthermore, investigations into H-bonding of each molecule with HS3ST3A1 

was performed to gain insight into the stability of the complex (Sneha and George 

Priya Doss, 2016). Eltrombopag had a substantially higher number of H-Bonds, with 

a mean 3.254 (Figure 17A), whereas Flunarizine (17B) and Talniflumate (17C) had 

0.620 and 0.415, respectively.  

 

 

 

 

 

https://paperpile.com/c/XLwPcu/xJpnP
https://paperpile.com/c/XLwPcu/xJpnP
https://paperpile.com/c/XLwPcu/xJpnP
https://paperpile.com/c/XLwPcu/xJpnP
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3.4. Cytotoxicity Assays  

3.4.1. Cytotoxicity Analysis on SUP-B15 Cell Lines 

 

 

Figure 18. Results of cytotoxicity analysis of SUP-B15 after administering (A) 

Datasanib, (B) Eltrombopag, (C) Flunarizine and (D) Talniflumate.  

 

The three drugs that were identified from the previous molecular docking and 

dynamics analyses were tested on Ph+ ALL cells, SUP-B15 to determine their 

cytotoxic activities. To this end, each drug was administered to the cell line separately 

and incubated for 72 h, then analyzed using MTT assays. For additional comparison, 

Dasatinib was used as a control drug as it is a known targeted therapy agent used for 

Ph+ ALL (Figure 18A). The results demonstrated that, when compared to the other 

two candidates, Eltrombopag (Figure 18B) was more effective, and its IC50 dose was 
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determined as 1.78 uM, whereas Talniflumate had an IC50 of 15.36 uM (Figure 18C) 

and Flunarizine of 4.5 uM (Figure 18D). 

 

3.4.2. Cytotoxicity Analysis on Jurkat Cell Lines 

 

 

Figure 19. Results of cytotoxicity analysis of Jurkat cells after administering (A) 

Doxorubicin, (B) Eltrombopag, (C) Flunarizine  and (D) Talniflumate. 

 

The drugs were further tested on T-ALL cell line Jurkat using to test their cytotoxic 

effects on Ph- cells.  Each drug was administered separately and incubated for 48h. 

The analysis was done using MTT assays. Doxorubicin was used as a control, as it is 

a known chemotherapy drug used in ALL treatment (Figure 19A). Eltrombopag was 

again more effective compared to the other two drugs, with an IC50 of 7.5 uM (Figure 

19B), whereas Flunarizine had IC50 of 8.65 uM (Figure 19C) and Talniflumate of 16.6 

uM  (Figure 19D).  
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3.5. Antiproliferative effects on HUVEC Cell lines 

 

Figure 20. Results of Trypan Blue analysis on HUVEC cells of (A) Eltrombopag and 

(B) Talniflumate compared to SUP-B15. 

 

Lastly, all of the candidate drugs were administered to the healthy cell line 

HUVEC, to determine cytotoxic activity on healthy cells. The cells were administered 

the drugs separately; they were given 1.78 uM Eltrombopag (Figure 20A), 4.5 uM 

Flunarizine (Figure 20B) and 16.36 uM Talniflumate (Figure 20C). The results showed 

that all of the drugs, showed a significantly lesser degree of anti-proliferative effect on 

healthy cells compared to SUP-B15 cells with Eltrombopag once again shining 

through as a comparatively better candidate.  
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CHAPTER 4: DISCUSSION  

Although the survival rates of childhood ALL in high-income countries is 

around 90%, the remaining patients are deemed incurable due to being unresponsive 

to treatment, and 20% of those that do respond end up relapsing, typically two years 

after treatment (Jędraszek et al., 2022). As targeted therapy is not yet viable for 90% 

of the pediatric ALL population (Inaba and Pui, 2021) and both immunotherapy and 

targeted therapy are too high-priced to be feasibly used for all patients (Sleire et al., 

2017), overcoming drug resistance towards first-line chemotherapy drugs is still a 

must. This study focuses on four essential drugs used in chemotherapy treatment of 

childhood ALL, and aims to identify novel genes that are related to the development 

of resistance against these drugs by determining possible inhibitors through in silico 

methods and drug repurposing. To this end, drug repurposing can be used as a critical 

tool, a much more cost-effective and time-saving method compared to the classical 

drug discovery process (Jourdan et al., 2020). As such, we obtained gene expression 

data of Asp, Pred, Dnr and Vcr resistant patients from the GEO dataset GSE635, and 

upon thorough DEG and pathway analysis, identified 1294 upregulated protein-coding 

DEGs, twenty five hub genes, and twelve DEGs found in common across the four 

resistant subgroups. The pathway analysis revealed that, among KEGG pathways, the 

DEGs showed significant enrichment in the PI3K-Akt pathway, which previous 

studies showed to be related to drug resistance in various cancers (Rascio et al., 2021). 

Other oncogenic pathways such as Jak-Stat, Hippo and RAS, the latter found in 

relation to relapse in B-ALL (Irving et al., 2014), were among those enriched. 

Additional GO analysis also pointed to anatomical structure morphogenesis, cell 

adhesion, and cell junction as the most significantly enriched pathways of BP, CC, 

MF, respectively.  

A protooncogene that blocks TP53, MDM2 was found among the hub genes 

as a result of PPI network analysis. Recent studies suggest that it’s involved in drug 

resistance in several types of cancer (Hou et al., 2019), including multiple myeloma 

and CLL (Faruq et al., 2022). CREBBP has already been associated with relapse in 

ALL (Inaba and Mullighan, 2020). IL-10 and IL-4 are both cytokines, a part of the 

blood marrow microenvironment which plays a role in differentiation, proliferation 

and drug resistance (Jones et al., 2016). In both sets of hub genes that were determined 

https://paperpile.com/c/XLwPcu/vpEqj
https://paperpile.com/c/XLwPcu/YFgXW
https://paperpile.com/c/XLwPcu/B7OGQ
https://paperpile.com/c/XLwPcu/B7OGQ
https://paperpile.com/c/XLwPcu/4Zcl9
https://paperpile.com/c/XLwPcu/bB2dZ
https://paperpile.com/c/XLwPcu/k0vds
https://paperpile.com/c/XLwPcu/0ZOdT
https://paperpile.com/c/XLwPcu/iH985
https://paperpile.com/c/XLwPcu/CU9a0
https://paperpile.com/c/XLwPcu/HAFEr


56 

based on the betweenness and degree parameters, fifteen were found in common. Out 

of these fifteen, CDH1, FN1, H3-3B and ESR1 were found consistently in high rank. 

CDH1, cadherin-1 or E-cadherin, is a member of the cadherin family, which are 

transmembrane glycoproteins that work in calcium dependent adhesion (Shenoy, 

2019). Recent studies correlated CDH1 overexpression with bladder cancer, and it was 

suggested as an oncogene in breast cancer (Fan et al., 2022; Xie et al., 2022), although 

no study of CDH1 has been done for ALL. FN1, or fibronectin 1, is associated with 

proliferation and migration, as well as both healthy and malignant extracellular matrix 

changes through integrins (Cai et al., 2018). A previous study on cerebrospinal fluid 

analysis of ALL patients has pointed to FN1 as a possible prognostic marker (Guo et 

al., 2019), though no further research has been done as of yet. HSPA8 was found both 

among the hub genes and common genes. A member of the heat shock protein 70 

family, increased HSPA8 was found to be related with adverse outcomes in AML (Li 

and Ge, 2021), and past studies point to its relation to increased chemoresistance and 

proliferation of cancer cells in CML (José-Enériz et al., 2008; Liu et al., 2021).  

CLDN9 was also found among the common genes, and it is a member of the 

claudin family of proteins, with specific expression patterns in different cells. A 

transmembrane protein found in tight junctions, CLDN9 itself is a poorly researched 

protein, and its expression in normal tissue is much lower while it is overexpressed in 

various cancers (Liu et al., 2019; Sharma et al., 2016), with a recent study indicating 

it as a biomarker of endometrial cancer (Endo et al., 2022). Other members of its 

family have been found upregulated in various cancers and related to metastasis and 

invasion, with some evidence pointing to their association with drug resistance (Kwon, 

2013; Singh et al., 2010). Another one of the common genes, HS3ST3A1 is a member 

of the heparan sulfate modifying enzyme family, and it is also a protein that has little 

research. Again, studies on its family show that its enzyme activity may be associated 

with elevated drug resistance and proliferation of cancer cells both in vivo and in vitro 

in MM (Baert et al., 2023). Due to both genes having the potential to be compelling, 

novel targets of chemoresistance in ALL, they were selected as the drug repositioning 

targets of this thesis.  

 Drug repurposing is an area that has been gaining more popularity over the 

years, especially with the outbreak of SARS-CoV-2 and the urgent treatment needs 

https://paperpile.com/c/XLwPcu/h9kVg
https://paperpile.com/c/XLwPcu/h9kVg
https://paperpile.com/c/XLwPcu/YW7hB+sGpsQ
https://paperpile.com/c/XLwPcu/UfKV5
https://paperpile.com/c/XLwPcu/EAyQK
https://paperpile.com/c/XLwPcu/EAyQK
https://paperpile.com/c/XLwPcu/Ov5JS
https://paperpile.com/c/XLwPcu/Ov5JS
https://paperpile.com/c/XLwPcu/WMmIL+k8Okw
https://paperpile.com/c/XLwPcu/ZU5K0+834Fb
https://paperpile.com/c/XLwPcu/8nIrF
https://paperpile.com/c/XLwPcu/mGzga+IKAPz
https://paperpile.com/c/XLwPcu/mGzga+IKAPz
https://paperpile.com/c/XLwPcu/ztHLZ
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that arose from it, and several drugs were suggested as treatment (Chakraborty et al., 

2022). Since the estimated number of cancer patients increases every year 

(Soerjomataram and Bray, 2021), the need for effective cancer treatment rises 

accordingly. Although the drug discovery process is lengthy and high-cost, in recent 

years the number of approved drugs has been getting lower, with the approval rate of 

cancer drugs to phase I trials going down to 5% (Sleire et al., 2017). One of the biggest 

drug repurposing successes is lenalidomide, which was derived from a sedative that 

was taken out of the market due to its side effects in pregnant women, and was later 

found successful in MM treatment (Pushpakom et al., 2019). As such, we performed 

in silico screening of a small compound library containing drugs that are both FDA-

approved and in trials in order to determine potential inhibitors for CLDN9 and 

HS3ST3A1. To this end, we used PyRx and its docking tool AutoDock Vina, and 

identified a number of molecules which were then tested for their ADMET properties. 

Consequently, three molecules passed these analyses: Eltrombopag, Flunarazine and 

Talniflumate. These drugs then went through further analysis using MD simulations, 

as it can be used as a superior binding validation tool.  

The initial MD analysis was performed against HS3ST3A1, as it had better 

binding affinities with the drug molecules. According to the MD results, RMSD 

backbone values are similar across the three complexes (Figure 16A Section 3.3), 

pointing to the comparable stability of the protein upon ligand binding in all three 

cases. In comparison, Figure 16B, Section 3.3 shows that the RMSD ligand value of 

Flunarizine has a sharp increase between 25 to 50 ns, before it stabilizes, whereas the 

other two ligands, Eltrombopag and Talniflumate, were similar, with lower RMSD 

values. Considering that lower RMSD values confer better stability of the complex, 

(Taghizadeh et al., 2022), Flunarizine’s RMSD of 2 nM signifies much less stability 

of the molecule when compared to Eltrombopag and Talniflumate. Additionally, the 

complex was analyzed based on its RMSF values upon three separate bindings. 

Increased RMSF values are related to higher flexibility, while low RMSF suggests a 

more rigid movement of the residues during the simulation. Similarly to Figure 16A, 

RMSF results seen in Figure 16C Section 3.3, indicate that all three molecules have 

similar fluctuations and have peaks in generally the same residues to approximately 

the same degree, such as in residues 250 to 270 or 340 to 375. The increased flexibility 

in these regions might be due to the fact that these are residues of HS3ST3A1 that are 

https://paperpile.com/c/XLwPcu/0MS4O
https://paperpile.com/c/XLwPcu/0MS4O
https://paperpile.com/c/XLwPcu/ZTUgM
https://paperpile.com/c/XLwPcu/B7OGQ
https://paperpile.com/c/XLwPcu/4mnFw
https://paperpile.com/c/XLwPcu/ucv49
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known to form B-strands, which are reported to be more flexible compared to other 

secondary structures (Kopeć et al., 2019). Rg analysis of the three complexes 

illustrated that while all three molecules exhibited Rg values within close range of each 

other, Eltrombopag and Flunarizine showed more similarity, although the former 

displayed more fluctuations (Figure 16D, Section 3.3). Increased Rg indicates that the 

molecules of the outermost areas are further away from the center of mass, implying a 

structure that is more loosely folded, thereby suggesting reduced compactness 

(Taghizadeh et al., 2022). As such, it can be said that the protein complex doesn’t 

exhibit differing structural changes upon ligand binding across three different 

molecules. Moreover, hydrogen bonding between each molecule and HS3ST3A1 was 

investigated to determine the strength and stability of binding, as hydrogen bond 

formations have been associated with better binding affinities and drug efficacy (Sneha 

and George Priya Doss, 2016). However, although Figure 17 Section 3.3 shows that 

Eltrombopag had a considerably higher number of hydrogen bonds with an average of 

3.254 compared to Flunarizine and Talniflumate with averages 0.620 and 0.415, 

respectively, its binding affinity with HS3ST3A1 is comparatively less than the other 

two at -9.0 kcal/mol to the -10.2 kcal/mol of the other two molecules. As such, it must 

be considered that Flunarazine and Talniflumate may have increased hydrophobic and 

elevated Van der Waals interactions that might have led to their elevated affinities. In 

consideration with all the MD results, while all molecules exhibit similar results, 

Eltrombopag might be more a promising inhibitor of HS3ST3A1 due to having a high 

number of hydrogen bonds and the lowest RMSD ligand values.  

 In light of  the MD results, further analysis into the three drugs was made to 

investigate their use in literature. Eltrombopag is a thrombopoietin receptor agonist, 

and works through the activation of the JAK-STAT and MAPK pathways to promote 

platelet differentiation (Bussel and Pinheiro, 2011). Used for chronic idiopathic 

thrombocytopenic purpura, it’s in being clinically investigated for thrombocytopenia 

related to chemotherapy and chronic liver disease, and hepatitis C treatment, 

Eltrompobag was recently investigated for its effects on AML and T-cell leukemia, 

resulting in reduced proliferation (Erickson-Miller et al., 2010). An anti-inflammatory 

drug, Talniflumate binds to GCNT3, a mucin type transferase, to inhibit the production 

of mucin and its glycosylation (Walker et al., 2006). Although it was originally 

intended to be used against cystic fibrosis, asthma and chronic pulmonary issues, 

https://paperpile.com/c/XLwPcu/r351j
https://paperpile.com/c/XLwPcu/ucv49
https://paperpile.com/c/XLwPcu/xJpnP
https://paperpile.com/c/XLwPcu/xJpnP
https://paperpile.com/c/XLwPcu/IZqjp
https://paperpile.com/c/XLwPcu/TIE9A
https://paperpile.com/c/XLwPcu/TtogQ
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recent studies suggest its possible use in Parkinson’s and pancreatic cancer (Liu et al., 

2023; Rao et al., 2016). One study in particular shines a light on Talniflumate’s effect 

on mucin-specific O-Glycosylation, which was found to be associated with increased 

proliferation, and demonstrates that the use of Talniflumate reduces the immune 

escape of pancreatic cancer cells (Agostini et al., 2023). Additionally, GCNT3 was 

suggested to lower survival and increased chemoresistance in ovarian and colon 

cancers (Fernández et al., 2018). The last potential inhibitor, Flunarizine, is used 

against migraines, vertigo and occasionally in epilepsy treatment regimens. It is a 

selective Ca+ entry blocker, and works through calmodulin binding and blocks 

histamine and dopamine D2 (Chen et al., 2021). Past studies on its potential in drug 

repurposing have shown that it shows promise in lymphoma and MM cells (Schmeel 

et al., 2015), as well as T-cell leukemia and glioblastoma cells (Chen et al., 2021; 

Conrad et al., 2010). Interestingly, Flunarizine was found to degrade NRAS through 

the autophagy mechanism in basal like breast cancer (Zheng et al., 2018). NRAS is 

related to a number of oncogenic pathways such as PI3K-Akt, MAPK and RAF-MEK-

ERK, and RAS mutations were found to be related to increased relapse in pediatric 

ALL (Qian et al., 2022). In summary, all three molecules show potential against 

various cancers in in vitro studies, although none of them have been studied in B-cell 

leukemia, nor were they analyzed for their effectiveness against ALL chemotherapy 

resistance.  

To this end, the three candidates were tested on three cell lines; SUP-B15, 

Jurkat and HUVEC. The analysis showed that Eltrombopag was significantly reduced 

in cytotoxic activity in Jurkat cells, with its IC50 increasing from 1.78 uM (Figure 

18B)  to 7.45 uM (Figure 19B). Similarly, Flunarizine lost effectives as well, its IC50 

increased from 4.5 uM in SUP-B15 (Figure 18C) to 8.65 uM in Jurkat cells (Figure 

19C). Talniflumate did not show a significant difference in IC50 values, and its 15.36 

uM IC50 in SUP-B15 (Figure 18D) cells was increased to 16.57 uM in Jurkat Figure 

19D). Considering that SUP-B15 is a Ph+ ALL cell line with potentially increased 

chemoresistance (Wieduwilt, 2022), it is possible that the three candidate inhibitors, 

especially Eltrombopag and Flunarizine, may be able to sensitize chemoresistant cells 

to cytotoxic drugs considering that they work more efficiently in SUP-B15 cells. 

Although further tests are necessary for confirmation of this hypothesis. 

https://paperpile.com/c/XLwPcu/udOMW+8S8tN
https://paperpile.com/c/XLwPcu/udOMW+8S8tN
https://paperpile.com/c/XLwPcu/uIYJS
https://paperpile.com/c/XLwPcu/GBFa8
https://paperpile.com/c/XLwPcu/wVgKT
https://paperpile.com/c/XLwPcu/ypXOE
https://paperpile.com/c/XLwPcu/ypXOE
https://paperpile.com/c/XLwPcu/DrlIW+wVgKT
https://paperpile.com/c/XLwPcu/DrlIW+wVgKT
https://paperpile.com/c/XLwPcu/Nv8yx
https://paperpile.com/c/XLwPcu/3bYCH
https://paperpile.com/c/XLwPcu/FzyqC


60 

Trypan Assay was employed to determine the cytotoxic effects of each drug in 

healthy cells, and HUVEC cells were administered the IC50 doses determined in SUP-

B15 cells. Each of the drugs, Eltrombopag (Figure 20A), Flunarizine (Figure 20B) and 

Talniflumate (Figure 20C) showed significantly lowered cytotoxic effects in HUVEC 

cells when compared to SUP-B15, displaying their potential as inhibitors. In line with 

the bioinformatics results, Eltrombopag’s cytotoxic effects shine through among the 

three candidates in both ALL cell lines, but specifically in SUP-B15, as Eltrombopag 

has the Eltrombopag has the lowest IC50 doses in both cell lines. Additionally, it has 

the least antiproliferative effect in healthy HUVEC cells, making it an even more 

attractive inhibitor candidate.  
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CHAPTER 5: CONCLUSION 

The aim of this thesis was to analyze asparaginase, vincristine, prednisolone 

and daunorubicin resistant ALL data for DEGs related specifically to resistance, in 

order to determine genes that were common in all four types, and then, using the 

common genes, offer possible inhibitors that could be used to overcome resistance 

regardless of the drug type. To this end, resistant and sensitive ALL data was acquired 

from GEO, and DEG analysis was performed using LIMMA, comparing both resistant 

and sensitive data with healthy expression data. The resulting sensitive and resistant 

DEGs were compared to one another, and those that were found in common were 

eliminated as disease but not resistance related. At the end of DEG analysis, 1294 

DEGs were found in total, and twelve of these were common in the four resistant 

subtypes. The majority of DEGs were protein coding, with 38 lncRNAs and 3 

miRNAs. Subsequent KEGG pathway analysis revealed that pathways such as PIK-

Akt, oncogenic pathways such as WNT, mTOR, cAMP, as well as JAK-STAT, and 

RAS were enriched. GO analysis showed high enrichment in pathways related to cell 

adhesion and morphology. PPI network analysis revealed 25 hub genes, including 

CREBBP, FN1 and HSPA8, along with IL4 and IL10. Among the common genes, 

CLDN9 and HS3ST3A1 were selected for in silico screening due to their novelty in 

cancer research and recent studies associating their gene families with resistance in 

various cancers. Their crystal structures were obtained from PDB and preprocessed 

with USCF Chimera, and they were docked against a small molecule library of 3556 

acquired from ZINC15. The molecules with the lowest binding affinities in both 

analyses were selected and further investigated based on their ADMET properties, 

specifically absorption and toxicity. The three molecules that satisfied these 

constraints, Eltrombopag, Talniflumate and Flunarizine, were investigated with MD 

simulations for further validation. According to MD, all three molecules exhibited 

similar results, with Eltrombopag showing comparatively better potential as an 

inhibitor. Additional cytotoxicity analysis on ALL cell lines SUP-B15 and Jurkat, as 

well as healthy cell line HUVEC demonstrate again that among all three drugs, 

Eltrombopag has the potential to be most effective in ALL treatment with its low IC50 

values, especially in SUP-B15.  
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While further in vitro and in vivo analyses of the effectiveness of these drugs 

and the transcription and protein expression levels of the genes are necessary to 

corroborate the findings, this study reveals novel genes associated with 

chemoresistance in ALL and points to three potential inhibitors in order to overcome 

the current relapse and chemoresistance rates.  
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