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ABSTRACT 

 

 

 

DETECTION OF ATTENTION DEFICIT HYPERACTIVITY DISORDER BY 

USING EEG SIGNALS AND DEEP LEARNING 

 

 

 

Coşmaz, Efe Utku 

 

 

 

Master’s Program in Electrical and Electronics Engineering 

 

Advisor: Prof. Dr. Aydın AKAN 

 

January, 2024 

 

Attention deficit hyperactivity disorder (ADHD) is a neurological disorder generally 

seen in children, and early diagnosis is extremely important. Electroencephalography 

(EEG) signals are used extensively to diagnose ADHD. In this study, resting state EEG 

signals from ADHD patients and healthy control subjects in the same age group were 

recorded at the Izmir Katip Celebi University, Department of Neurology, and 

analyzed. Intrinsic mode functions (IMF) were extracted by the Empirical Mode 

Decomposition (EMD) method. Then, short-term Fourier transform spectrograms of 

IMFs as well as the EEG signals were calculated and saved as colored images. Finally, 

the spectrogram images were classified by training two-dimensional Convolutional 

Neural Networks (2D-CNN) using different brain regions or the whole brain. In our 

simulations, almost 92% classification accuracy was achieved with the CNN structure 

designed in the Python environment, and 96.526% classification accuracy was 

achieved with the ResNet50 architecture. 
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ÖZET 

 

 

 

DİKKAT EKSİKLİĞİ HİPERAKTİVİTE BOZUKLUĞUNUN EEG SİNYALLERİ 

VE DERİN ÖĞRENMEYLE TESPİTİ 

 

 

 

Coşmaz, Efe Utku 

 

 

 

Elektrik ve Elektronik Mühendisliği Yüksek Lisans Programı 

 

Tez Danışmanı: Prof. Dr. Aydın AKAN 

 

Ocak, 2024 

 

Dikkat eksikliği hiperaktivite bozukluğu (DEHB) genelikle çocuklarda görülen, 

nörolojik bir hastalıktır. Bu hastalık yaşam kalitesini düşürdüğü için erken teşhis son 

derece önemlidir. Elektroensefalografi (EEG) bir nörogörüntüleme tekniği olup 

DEHB teşhisinde yoğun olarak kullanılmaktadır. Bu çalışmada aynı yaş grubundaki 

DEHB tanısı konmuş bireyler ve sağlıklı kontrol bireylerden dinlenme durumu EEG 

sinyaleri İzmir Katip Çelebi Üniversitesi, Nöroloji Kliniğinde kayıt edilmiştir. Görgül 

Kip Ayrışım (GKA: EMD) yöntemi ile içkin kip fonksiyonları (IMF) elde edilmiştir. 

Daha sonra IMF’ler ve EEG sinyallerinin kısa süreli Fourier dönüşümü yardımı ile 

spektrogramları hesaplanmış ve renkli imgeler olarak kaydedilmiştir. Daha sonra 

spektrogram imgeleri beynin farklı bölgeleri ve bütünü bir arada kullanılarak iki 

boyutlu Evrişimsel Sinir Ağları (2D-CNN) eğitilerek sınıflandırılmıştır. Yapılan 

testlerde Python ortamında tasarlanmış olan CNN yapısı ile yaklaşık %92, ResNet50 

mimarisi ile % 96.526 sınıflandırma doğruluğuna ulaşılmıştır. 
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CHAPTER 1: INTRODUCTION 

 

Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental problem 

generally seen in very young children and during childhood. It can affect children as 

young as four years old (Andreasen et al., 2023). Children affected by ADHD have 

deficiencies in their emotional, cognitive and social development, entailing difficulties 

in their future education, their academic work and social life (Nazari et al., 2023). They 

have difficulty in performing daily activities and they suffer from forgetfulness as well 

concerning their behavior in their social environment, failures at work or school are 

common (Alberola-López et al., 2023). Five percent of the children in the world have 

ADHD (Li et al., 2021). In order to be diagnosed with ADHD, the child must be under 

12 years old. In addition, symptoms of the disease must have lasted for about 6 months.  

One way to diagnose ADHD are brain signals. Brain signaling studies can be used as 

a diagnosis based on quantitative data (Cura, Atli and Akan, 2023). The 

electroencephalography (EEG) signal provides information on the changes of 

electrical potential in   the human brain. Information is obtained through signals 

coming from electrodes placed on the patient's scalp. Apart from psychological 

observation and interviews, there are different technical approaches to the diagnosis 

of ADHD, including functional neuroimaging techniques, magnetic resonance 

imaging, and neurophysiological signal analysis (Bakhtyari and Mirzaei, 2022). 

Trying to diagnose ADHD using only psychological observations or clinical interviews 

provides low reliability (Cura, Atli and Akan, 2023). Functional neuroimaging and 

magnetic resonance imaging techniques are expensive. Both methods are time-

consuming. The above stated method of using electroencephalogram (EEG) signals to 

detect brain activity is effective and low-cost. Therefore, the EEG is widely used 

(Jahed et al., 2022). 

In this study, intrinsic mode functions (IMFs) of EEG signals were obtained using 

empirical mode decomposition (EMD). The first 5 IMFs were used in this study. These 

obtained IMFs were converted into RGB images using the spectrogram method. Then, 

these images were classified with convolutional neural network (CNN) with the help 

of deep learning method. Three different architectures were used in this classification 

process. Two of these architectures were designed in Python programming language. 
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Spider was used as the integrated development environment (IDE). The last CNN 

architecture used is the ResNet50 architecture in the Matlab environment. 
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CHAPTER 2: BACKGROUND 

 

This chapter includes information on those processes of the brain, which are the 

primary source of neurological diseases. In addition, the chapter informs about the 

epidemiology and clinical history of ADHD and includes a review of the pertinent 

literature. Finally, the EEG recording method will be discussed, which is widely used 

in the clinical and the academic field, and on which this study focuses. 

 

2.1 The Structure and Function of the Human Brain  

The brain, which weighs approximately 1.5 kg in an adult human, is the most important 

part of the Central Nervous System (CNS). There are, on average, 84 billion neurons 

in the brain and it consists of trillions of glials. Although it constitutes only 2% of the 

total body mass, 20% of the total energy is consumed by the brain. The brain controls 

the limbs based on the sensory information it receives from the spinal cord and nerves 

(Lewis et al., 2023) 

The brain has three main parts: the forebrain, midbrain, and hindbrain. The forebrain 

performs tasks such as problem-solving and information processing. The hindbrain has 

functions such as regulating autonomic functions, directing sensory information, and 

maintaining balance. The midbrain has functions such as organizing and processing 

auditory and visual information. 

The brain is an extremely complex organ. The working areas are often dispersed across 

multiple regions. The parts of the brain are as in Figure 1. 

 

 

 

 



4 

 

 

Figure 1. Parts of the human brain (Source: Eid, 2023). 

 

2.1.1 Left Temporal Region 

The temporal lobe of the brain is on both sides of the brain. The left temporal region 

is on the left side of the head. The left temporal region plays a major role in processing 

auditory information. It is also crucial for memory and emotional tasks. Generally, in 

right-handed people, the left temporal region is responsible for speech and 

comprehension tasks. If the left temporal region is damaged, there is a high probability 

of impairment in abilities such as speaking, understanding, reading, and writing. 

 

2.1.2 Right Temporal Region 

The part of the temporal lobe on the right side of the brain is called the right temporal 

region. It also plays an important role in processing auditory information, memory 

formation, and emotional information as well as facial recognition. 
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2.1.3 Anterior Region 

It is located in the front of the brain and is a part of the frontal lobe. The integration of 

internal and autonomic data with emotional, cognitive, and motivational processes is 

facilitated by the anterior region. 

 

2.1.4 Cental Region 

It is used to describe the middle, anterior, and posterior regions of the brain. The brain, 

which is a very complex structure, does not have a single center. 

 

2.1.5 Posterior Region 

It is a term used for the back side of the brain. It has many important structures. 

Processing visual information received from the eye by interpreting the visual stimuli 

is its most important task. 

 

2.2 EEG 

The Electroencephalogram (EEG) is a method for recording the electrical activity of 

the human brain using electrodes placed on the human scalp. The German psychiatrist 

Hans Berger was the first to record the electrical field of the human brain and he 

invented the EEG. The EEG has been helping with the diagnosis of many neurological 

diseases for many years. The low cost of the EEG was one of the main reasons that 

made it a popular and widespread technique (Shamsi et al., 2022). In a healthy brain, 

EEG coherence decreases as the distance between recording electrodes increases 

(Comi et al. 1998). This is important for the early diagnosis of neurological diseases 

amongst them ADHD. Many methods are used to evaluate EEG signals. In academic 

studies, EEG signals have been used for the classification of neurological diseases. 

Deep learning and machine learning methods were also used in this work of 

classification.       

The EEG calculates the potential difference of electricity in the brain.  Small electrodes 

are placed on either side of the scalp, by sticking them through a conductive material 
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called "paste". It transmits different frequency subbands such as delta (δ), theta (θ), 

alpha (α), beta (β), and gamma (γ), as shown in table1.  

 

Table1. The frequency bands of EEG signals (Source: Oon, Saidatul and Ibrahim, 

2018)

 

 

2.3 Literature Review 

Classically ADHD diagnosis with the help of the EEG is done by neurologists but their 

method is very time-consuming because they study the EEG signal for a long period. 

Unfortunately, that method has been proven to give incorrect results with a high 

probability. The literature discusses various signal-processing methods to solve this 

problem concerning the diagnosis of ADHD or other neurological diseases such as 

epilepsy, dementia, etc.  Various signal-processing techniques have also been used in 

the literature for ADHD classification. One of the most popular of these is the Fourier 

Transform (FT). FT is ideal when the signal is stationary. If the signal is non-stationary, 

FT assumes the signal is stationary. But neither signals from the real world nor EEG 

signals are stationary. This approach constitutes a huge disadvantage of the FT. In 

addition, FT does not contain time-relevant information. This is why other methods 

were developed, for example, the Short-Time Fourier Transform (STFT) which uses 

only one filter. Another method uses various filters with different bandwidths named 

the Wavelet Transform (WT). The approach of WT offers multiresolution. WT uses a 
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window containing all signals. In the first step, it subtracts low frequencies. The result 

is then converted and scaled again to extract high-frequency information. Despite all 

these advantages, the main disadvantage of WT is its lack of simultaneously improved 

time and frequency resolutions. To overcome this problem, the Empirical Mode 

Decomposition (EMD) algorithm was developed. EMD is an alternative method to 

analyze non-linear and non-stationary signals by producing a limited number of 

amplitude and frequency-modulated oscillations called intrinsic mode functions 

(IMFs) (Amado-Caballero et al., 2023). When you add up all the IMFs that were 

generated, the signal itself can be reproduced. Compared to WT, which analyzes the 

signal as a whole and is based on predetermined filter scales, EMD has the advantages 

of adaptable scales, data-driven oscillation separation, and local multi-resolution 

analysis. 

The Intrinsic time-scale decomposition (ITD) algorithm is used for ADHD 

classification. ITD is used for the analysis of non-linear signals. Using the ITD 

algorithm, ITD modes called Proper Rotation Components (PRCs) are created. 

Machine learning techniques were developed, that use different combinations of PRCs 

for the classification of ADHD.   These machine learning methods are the so-called 

Decision trees (DT), the Naive Bayes (NB), the Support vector machine (SVM), and 

the k-nearest Neighbor (KNN). In this study, 88.06% and 99.06% accuracy was 

achieved (Cura, Atli and Akan, 2023). Another study classified ADHD patients using 

the Douglas–Peucker Algorithm (Akan et al., 2022). In that study, 91.01% accuracy 

was obtained. In another ADHD classification, classification was made with the help 

of convolutional neural network (CNN) using EEG feature maps and classification 

was also made with certain machine learning algorithms. Additionally, the Long Short-

Term Memory (LSTM) algorithm was used obtaining an accuracy between 84.99% 

and 99.75% (Akan et al., 2023). In most academic studies, the One-dimensional 

convolutional neural network (1D CNN) is used to classify raw EEG data but as long 

as no additional signal processing technique supported the findings, the accuracy was 

low.  In some studies, densely layered 1D CNN was used. Even using raw data in this 

study, good results were obtained, averaging, an accuracy rate of 95.83% (Jahed et al., 

2022). In another study, the Dynamic frequency warping (DFW) algorithm was used 

to classify ADHD. By extracting certain features and classifying them using KNN and 

SVM machine learning techniques 99.17% accuracy was obtained (Shamsi et al., 
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2022). In another study, the resting state of a patient was classified with the help of 

4D-CNN using functional magnetic resonance imaging (rs-fMRI) obtaining 71.3% 

accuracy (Yue et al., 2019). With certain exceptions in academic studies, using 1D-

CNN in ADHD classification achieved no high accuracy. Better results were often 

obtained as a result of applying certain signal processing techniques to the EEG signal. 

Therefore, using raw EEG data will result in a lower accuracy. 

In this study, certain noises were removed by Butterworth filtering the EEG signals 

taken from ADHD patients. Then the signal was decomposed into 5-second windows 

and the first five IMFs of the signal were obtained with the help of the EMD algorithm. 

Spectrograms of these 5-second signals were taken. This process was applied to the 

EEG signals of all patients and control group in the data set. Then, all these images 

were classified with two different 2D-CNN architectures developed in the Python 

environment. In addition, the ready-made architecture of Matlab was also classified 

with ResNet-50. In addition, while creating the data set in this study, EEG signals were 

taken from the anterior region, left temporal region, right temporal region, central 

region, and posterior region of the brain. The data received from these regions are 

classified among themselves. In this way, it was determined which part of the brain 

was more suitable for ADHD classification. 

 

2.4 ADHD 

ADHD as a neurological disease causes psychiatric disorders at a rate of approximately 

70% (Tor et al., 2021). These psychiatric disorders include behavioral difficulties, 

depression, and anxiety. Due to all these difficulties, patients’ quality of life decreases. 

ADHD patients are unsuccessful in their adult academic and business lives. The 

disease usually lasts throughout the whole life. Their families carry a long-term 

burden. Therefore, early diagnosis of the disease is very important.  Between 5% and 

7% of the children worldwide suffer from ADHD. Among adults, the percentage 

decreases to approximately 2.5% (Amado-Caballero et al., 2023). It is estimated that 

between 3.3% and 4.4% of US adults have ADHD (Kenter, Lundervold and 

Nordgreen, 2021). This rate is the ratio of reported patients to the entire population. 

Research shows that ADHD is more common in childhood boys than in childhood 

girls. The prevalence rate of this disease among men and women in adulthood is 
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approximately 50%. Once the disease is diagnosed, usually drug treatment ensues. 

However, since some patients are intolerant to medications and also suffer from side 

effects such as decreased sleep and appetite, psychological methods are also part of 

the treatment from time to time. It can be said, that ADHD is conducive to both 

pharmacological and psychological treatment methods (Yaghoobi Karimu and Azadi, 

2018). However, the pharmacological method is preferred. 

Since the method of machine learning has become popular for classification in recent 

years and graphics processing units (GPUs) have become stronger and cheaper, the 

classification of neurological diseases can be more easily made. Using deep learning, 

a sub-branch of machine learning, for these classification processes has increased. 

Especially nowadays, as GPUs become more powerful and easy to access, the 

classification of neurological diseases with the help of a deep learning technique is no 

longer a time-consuming process. For all these reasons, it should be obligatory to use 

deep learning techniques in the classification of neurological diseases. In this thesis 

study, classification is performed with 2D-CNN, which is a deep learning architecture. 
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CHAPTER 3: MATERIAL and METHOD 

 

In this section, the EMD algorithm used for signal analysis and the 2D CNN 

architecture used for classification are introduced. 

 

3.1 Empirical Mode Decomposition 

In this thesis, Empirical Mode Decomposition (EMD), an advanced signal processing 

method, is used. EMD is used for biomedical data analysis. It was introduced in 1998 

by Huang et al (Huang et al., 1998). Thanks to EMD, EEG segments are distinguished. 

Intrinsic Mode Functions (IMF) are obtained using EMD. IMFs are used in linear and 

non-stationary cases. It has a noise reduction feature. It brings out features in its 

applications. The sum of all IMFs gives the original signal (Mert and Akan, 2014). To 

ensure the IMF position, first of all, the number of extrema and zero crossings should 

either vary by one or be equal. The second condition is that the average value of the 

upper and lower envelopes must be zero. The IMF extraction process is shown in 

Algorithm 1. As in Figure 2, signals from IMF 1 to IMF 5 are visible, and the EEG 

signal is also visible. Figure 2 is taken from the patient group. Figure 3 is taken from 

the control group and the signals from IMF1 to IMF 5 are visible as in figure 2, and 

the EEG signal is also visible. Figure 4 is the FFT version of the signals in Figure 2. 

Figure 5 is the FFT version of the signals in Figure 3. 
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Figure 2. 5-second EEG signal and IMFs taken from the patient 
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Figure 3. 5-second EEG signal and IMFs taken from the control 
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Algorithm 1: EMD 
 

1. Local minima 𝐿𝑚𝑖, 𝑖 = 1, 2, … and Local maxima 𝐿𝑥𝑗 , 𝑗 = 1, 2, … are found using 

input signal 𝑥[𝑛]. 
 

2. Calculate 𝑈𝑒[𝑛] and 𝐿𝑒[𝑛] which upper and lower envelopes respectively, using cubic 

interpolation. 
3. Mean of envelopes value is found. 

 

4. Compute 𝑑1[𝑛] = 𝑥[𝑛] − 𝑀𝑒[𝑛]. If 𝑑1[𝑛] satisfies the condition of 𝐼𝑀𝐹, 

𝑑 1[𝑛] = 𝐼𝑀𝐹1[𝑛]. Else go to step 1 and repeat every processes using  𝑑1[𝑛] instead of 𝑥[𝑛]. 

5. After obtaining 𝐼𝑀𝐹1[𝑛] calculate the residue 𝑅1[𝑛] = 𝑥[𝑛] − 𝐼𝑀𝐹1[𝑛]. If this 

residue has more than a zero-cross, return step 1 and calculate again new 𝐼𝑀𝐹. 

This process will continue until last residue  𝑅𝐿[𝑛] which has no zero cross is obtained and 

all necessary conditions are satisfied. 

We can reconstruct the original signal 𝑥[𝑛] using the following formulation: 

𝑥[𝑛] = (∑ 𝐼𝑀𝐹𝑙[𝑛]

𝐿

𝑙=1

) + 𝑅𝐿[𝑛] 

Here, L is the number of  𝐼𝑀𝐹𝑠 and  𝑅𝐿[𝑛] is the residue. 
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Figure 4. 5-second EEG and IMFs FTFT taken from the patient 
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Figure 5. 5-second EEG and IMFs FFT taken from the control 

 

3.2 Spectrogram 

Short-time Fourier transform (STFT) is the most widely used method for examining 

non-stationary signals (Cura and Akan, 2021). When performing STFT, it divides the 

signal into small time segments and Fourier determines the frequencies present in that 

segment. The integrity of such spectra shows how the spectrum changes over time. A 

spectrogram is a two-dimensional plot in which the horizontal axis represents the 

frequency range of the spectral content and the vertical axis represents time. It is a 

visual representation of the frequency spectrum of the signal. The signal displayed 

must be a time-varying signal. The spectrogram plot is always represented as a 3D 

plot. Spectrograms are used in many areas. Some examples are linguistics, seismology, 

speech processing, sonar, and radar. A spectrogram is displayed as a heat map. In the 

Figures 6 to 17 shown, red represents the densest parts and blue represents the least 

dense parts. It is two-dimensional as in Figures 6 to 17. One axis represents time and 

the other represents frequency. The third dimension, the dimension indicating 

amplitude, is represented by colors. There is more than one plotted version of the 
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spectrogram. Creating a spectrogram using STFT is a digital process. Continuous-time 

STFT is as given in equation 1. Discrete time is as given in STFT equation 2. The 

spectrogram is as given in equation 3. Figure 17 shows the spectrogram of the EEG 

signal taken from the control data set. IMFs of the same signal are seen in the images 

from Figures 6 to 10. As in Figure 6, the red lines are above because the IMF1 contains 

the highest frequencies of the EEG signal. In the later IMF2, the red levels go down a 

little more. Each figure exhibits a gradual decrease in its distinguished frequencies. 

Finally, IMF5 contains the lowest frequencies. Figure 16 shows the spectrogram of the 

EGG signal taken from the patient data set. The pictures from Figure 11 to Figure 15 

are IMFs of the same signal. 

(1) 

 

(2) 

(3) 
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Figure 6. IMF1 spectrogram example from the control data set 

 

 

Figure 7. IMF2 spectrogram example from the control data set 
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Figure 8. IMF3 spectrogram example from the control data set 

 

Figure 9. IMF4 spectrogram example from the control data set 
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Figure 10. IMF5 spectrogram example from the control data set 

 

Figure 11. IMF1 spectrogram example from the patient data set 
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Figure 12. IMF2 spectrogram example from the patient data set 

 

Figure 13. IMF3 spectrogram example from the patient data set 
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Figure 14. IMF4 spectrogram example from the patient data set 

 

Figure 15. IMF5 spectrogram example from the patient data set 
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Figure 16. EEG spectrogram example from the patient data set 

 

 

Figure 17. EEG spectrogram example from the control data set 
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3.3 Deep learning 

Deep learning, which started with Artificial Neural Network (ANN), is a very old 

concept. Deep learning was not a popular field before. But today, it has become a 

popular field thanks to the fact that Graphics processing units (GPU) are becoming 

more powerful and cheap. These developments have made deep learning a very 

important field of research. Its working system is similar to the human nervous system. 

Deep learning is a sub-branch of machine learning. Deep learning, also known as deep 

neural networks, has many layers. Neural networks can learn and represent 

hierarchical features. Today, deep learning is used in many areas such as image and 

speech recognition, natural language processing, medical diagnosis, and autonomous 

vehicles. Convolutional Neural Network (CNN), which is the most used deep learning 

architecture today, performs classification. Additionally, CNNs are widely used in 

biomedical and medical fields today. CNNs are specialized neural networks designed 

to process grid-like data such as images. A typical CNN architecture includes input 

and output layers, as well as three main hidden layer structures: convolutional, pooling, 

and fully connected layers. CNN is a deep learning algorithm based on artificial neural 

network structures. The input layer is the size of the data. The output layer is equal to 

the number of classes. If the number of classes is 2, the number of output layers can 

be 1. The structure is inspired by the brain's working system, which contains many 

hidden layers. Neurons enable feature detection from input data.  

CNNs are used in many areas such as image and video recognition, recommendation 

systems, image classification, image segmentation, medical image analysis, natural 

language processing, and brain-computer interfaces. A Convolutional Neural Network 

is also known as ConvNet. Digital images consist of pixels. Each pixel has a 

mathematical equivalent. CNNs can also classify audio and signal data.  

 

3.3.1 Convolution Layer 

In convolution there is a small set of numbers called a kernel. Usually, it is 3 x 3. It is 

also used in 5 x 5 and 7 x 7 studies. A sequence of numbers called a tensor is applied 

across the input. The values of the tensor and the kernel are multiplied and the resulting 

values are added. The result becomes our output value. Convolutional layers convolve 

the input and pass its result to the next layer. Convolution is a linear operation.  
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3.3.2 Nonlinear Activation Function 

A non-linear activation function is the next operation after convolution. The most 

popular nonlinear activation function today is the rectified linear unit (ReLU). There 

are also non-linear activation functions such as sigmoid or hyperbolic tangent (tanh) 

function. ReLU has high adaptability to the training set. It has a huge impact on the 

performance of large models trained on large datasets.  

 

3.3.3 Max Pooling 

Max pooling is a commonly used subsampling process in convolutional neural 

networks (CNN). It is applied after the convolution layer. Generally, 2 x 2 is an ideal 

window for Max pooling. It is used to reduce computational complexity and control 

overfitting.  

 

3.3.4 Flatten 

Flatten is used to convert multidimensional data into a one-dimensional array. It is 

used to convert 2D arrays into a single long continuous linear vector. 

 

3.3.5 Dropout 

It is an editing technique used in CNN. It is also used in other deep learning models. 

It exists to prevent memorization. Overfitting indicates that a model performs well on 

training data, however, it cannot be successful when tested with new data. Dropout is 

used to prevent overfitting. 

 

3.3.6 Fully Connected Layer 

It is often used at the end of network architecture to make predictions based on high-

level features. When there are more than 2 classes, softmax is used for the activation 

function. When there are 2 classes, the sigmoid function is generally used.  
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3.4 Description of the EEG Dataset 

In this study, 30-channel EEG data recorded with the Brain Vision EEG recording 

system at Izmir Katip Çelebi University using a sampling frequency of 1 kHz was 

used. The dataset was recorded from 2 different groups: control and patient. The 

control group is healthy people. The patient group is ADHD patients. The average age 

of the patient group is 12. It consists of 8 girls and 7 boys. There are 15 ADHD patients 

in total. The average age of the control group is 13. It consists of 14 girls and 4 boys 

in total. It consists of 18 people in total. 30 seconds of EEG data are recorded from 

each participant during an eyes-open resting state. There are 32 channels in total in the 

data set, but the last two channels are eye movement. That's why the first 30 channels 

were used. The sampling frequency of the Control dataset is 1000 Hz. The patient 

dataset is 2500 Hz. 

The longitudinal and transverse channel pairs evaluated are as follows: There are 12 

transverse channel pairs (FP1-FP2, F7-F8, F3-F4, FC3-FC4, FT7-FT8, T3-T4, C3-C4, 

CP3-CP4, TP7 - TP8, T5-T6, P3-P4 and O1-O2) and 20 longitudinal channel pairs 

(FP1-O1, F7-T5, F7-O1, FT7-TP7, FT7-O1, F3-O1, F3-P3, FC3- CP3, FC3-O1, FZ-

OZ, FCZ-PZ, FP2-O2, F8-T6, F8-O2, FT8-TP8, FT8-O2, F4-O2, F4-P4, FC4-CP4 

and FC4-O2). Transverse and longitudinal channel pairs are as in Figure 18. Izmir 

Katip Çelebi University Clinical Research Ethics Committee guaranteed ethical 

approval dated 11.07.2019 and numbered 76 for the collection of EEG data used in 

this study. The ethical approval form is given in Appendix B. The channels are placed 

on the hairy part of the scalp. The region of the brain where the channels receive data 

is shown in Figure 19 
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Figure 18. 30-channel brain electrode mapping (Source: Cura, Atli and Akan, 2023). 

 

 

 

 

Figure 19. Channel positions at different brain regions. 

 

3.5 Preprocessing of the EEG Dataset 

First, the Butterworth filter, which is widely used in signal processing, was applied to 

all channels in the dataset to eliminate unwanted noise. Filter values were set at 0.6–
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48 Hz. This filter was first used by the British engineer and physicist Stephen 

Butterworth in 1930. 

Down-sampling is performed on the filtered dataset for the Patient Data. The reason 

for this is that the Patient data have a frequency of 2500 Hz and the Control data have 

a frequency of 1000 Hz. The Patient Data frequency was reduced to 1250 Hz. 

Downsampling is a digital signal processing technique. It preserves the signal's basic 

information but the data size is reduced. It is generally applied to audio and video 

processing. Productivity may increase at the end of the process. Since the frequency 

in the control data is 1000 Hz, they needed no downsampling. 

After downsampling, the signal was decomposed into 5-second segments. There is no 

overlap in each 5-second window. Each 5-second sample was inserted into the EMD 

function. At the end of the process, the first 5 IMFs were acquired. Spectrograms of 

all IMFs and each signal passed through the filters were taken. The Hanning window 

was used while performing the spectrogram process. A total of 27420 images were 

created in the control dataset.  In the Patient data set the same procedure was applied 

and it produced 21900 images. There are 49320 images in total for the entire dataset. 

Total data numbers for patients and controls are as in Figure 23, and the percentage 

distribution is as in Figure 22. 

 

Figure 20. IMF1 spectrogram example from control data set for Deep Learning 
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Figure 21. IMF1 spectrogram example from control data set for Deep Learning after 

Re-Size 

 

 

 

 

Figure 22. Distribution of total data as patient and control 

 

Distribution of Total Data as Patient and Control

Control Patient
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Figure 23. Numbers of total data as patient and control 

 

 As in Figure 20, the size of each image is 683 x 539 x 3. The dimensions are 683 

columns and 539 rows, and since the images are RGB, there are 3 channels. In total, 

there are about 1104411 pixels for each image. Considering the size of the total data 

set, this presents a large data set for CNN. Powerful hardware is needed to process this 

data set. Unfortunately, there is no powerful enough hardware available to process this 

dataset. Therefore, the images needed to be resized. Resize is the redimensioning of 

images or photographs. Images with a size of 683 x 539 x 3 have been reduced to 64 

x 64 x 3 as in Figure 21. Unfortunately, in this case, a lot of data is lost, but in the 

absence of this process, classification with 2D-CNN is impossible with the available 

hardware. Images of size 64 x 64 x 3 were classified with 2D-CNN.  

There are a total of 11508 images in the data set taken from the Anterior Region (AR). 

6398 of these pictures belong to the control group and 5110 belong to the patient group. 

There are 6576 images resulting from the Left Temporal Region (LTR) and Right 

Temporal Region (RTR), 3656 of which belong to the control group and 2920 to the 

patient group. The Central Region (CR) yielded 9864 images. 5484 of these belong to 

the control group and 4380 to the patient group. There are 14796 images attributable 

to the Posterior Region. 8226 of these images belong to the Control Group and 6570 

to the Patient group. The Patient Control distribution of the data set is the same in all 

trials. 44% of the total data set is Patient and 56% is Control as in Figure 22. The 
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Posterior Region covers the largest area in the data set, 30% of the total data consists 

of data taken from the Posterior Region. It is followed by the Anterior Region with 

23%. 20% of the total data consists of data received from the Central Region. The Left 

Temporal Region and Right Temporal Region cover 13%. The percentage distribution 

of the regions in the data set is shown in Figure 25. The number of data by region is 

shown in Figure 24 

 

 

Figure 24. Number of data by region 

 

 

Figure 25. Percentage distribution of regions in the data set 
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3.6 Hardware of the Computers Used in the Study 

In this study, 2 different computers were used. One of the computers used is a desktop. 

There is an AMD Ryzen5 5600x Central Process Unit (CPU), AMD Radeon™ RX 

6700 XT Graphics Card, 16 gigabytes (GB) of 3600 (Megatransfers per second) 

Random Access Memory (RAM) in dual channel and finally a 2 terabyte Solid-state 

drive (SSD). Since the GPU does not support deep learning, only the processor is used 

in this computer. Therefore, it is more important to use a GPU with artificial 

intelligence (AI) support. The reason for this is that the data in this study is very large. 

The second computer used is a laptop. The laptop Dell G5 15 5587 used in this 

experiment has the following hardware components: Intel Core i7-8750H CPU and 

Nvidia GTX 1060 Max-Q (6GB GDDR5) GPU are cooled with the stock cooler and 

Thermal Grizzly Conductonaut Liquid Metal is used as the thermal interface material 

to prevent any kind of thermal throttling. Also, the laptop has 16 GB of 2666 MT/s 

RAM in dual channel. The CPU is undervolved by 128 mV to prevent power throttling 

as much as possible. The clock speeds of 3.4 GHz for the CPU were maintained 

throughout this experiment. The graphics card in this computer has artificial 

intelligence support. 

An area of approximately 182 GB is required for this work. The total size of all data 

covers approximately 182 GB. The largest amount of CNN's input data at a time is 

approximately 369 MB. These images are resized to 64 x 64 x 3 size. If the images are 

not resized, the space occupied by the input is approximately 7 GB. Since there was 

not enough hardware to process this data, the images were resized. 
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CHAPTER 4: EXPERIMENTAL RESULTS 

 

In this part of the study, information about the experimental results is given. First, the 

EEG signals were passed through the Butterworth filter and then divided into 5-second 

non-overlapping windows. Later, the 1D data became 2D with the Spectrogram 

method. The signals were converted into images using the spectrogram method. In this 

case, correctly classifying the Patient and Control classes and which parts of the brain 

are more prone to ADHD classification are discussed in this part of the thesis. In this 

study, data from 5 different parts of the brain were classified separately with 3 different 

CNN architectures. Two of these architectures were designed in the Python 

environment. The last used CNN legacy is the Resnet-50 architecture, which is 

available in the Matlab environment. Today, many ready-made CNN architectures are 

used for the classification of neurological diseases. To give examples of these 

architectures, there are many ready-made architectures such as SqueezeNet, 

GoogLeNet, ResNet-50, EfficientNet-b0, Xception, Places365-GoogLeNet, Mobile-

v2, DenseNet-201, VGG-16 and, AlexNet. In this study, experiments were made with 

all these CNN architectures. As a result of this study, only ResNet-50 achieved good 

accuracy. The others were not included in the study because their accuracy values were 

too low. In this thesis study, there are results about ResNet-50 and 2 different CNN 

architectures. Data taken from 5 different regions of the brain were classified among 

themselves, and classification was made using all the data. In this study, the 

spectrograms of the first 5 IMFs and the spectrograms of the original signal were 

classified separately. The dimensions of the images are 64 x 64 x 3 as mentioned in 

the previous sections. 

 

4.1Performance Evaluation Metrics 

The success rate of the classification can be understood thanks to the Confusion matrix. 

The confusion matrix consists of true positive (TP), true negative (TN), false positive 

(FP), and false negative (FN) values. Since there are 2 classes in this thesis study, the 

Confusion matrix is a 2 x 2 matrix. If there were 3 classes, the matrix would be 3x3. 

This matrix ratio goes linearly. In this study, 2 x 2 confusion matrix results are available 
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in the experimental results section. The confusion matrix example is shown in Table 

2.  

Table 2. Confusion matrix 

 Positive (P) Negative (N) 

Positive (P) True Positive (TP) False Negative (FN) 

Negative (N) False Positive (FP) True Negative (TN) 
 

TP is the correctly predicted part of the positives. FP is normally negative, but it is the 

part that is incorrectly predicted by the machine learning algorithm and thought to be 

positive. FN is the part that is normally positive but is incorrectly predicted by the 

machine learning algorithm and thought to be negative. TN is negative and is the part 

that the machine learning algorithm predicted correctly. Positive(P) is the sum of TP 

and FN. Negative(N) is the sum of FP and TN. Using all these values, it is calculated 

how successful the machine learning algorithm is. As a result of these calculations, the 

system's values such as accuracy (ACC), sensitivity (SEN), specificity (SPE), false 

discovery rate (FDR), and precision (PRE) are learned.  

When calculating ACC, TP and TN are added and the result is divided by the sum of 

P and N. Other known names for sensitivity are recall, hit rate, or true positive rate. 

When calculating SEN, TP is divided by P. Specificity can also be called selectivity or 

true negative rate. When calculating SPE, TN is divided by N. When calculating FDR, 

FP is divided by the sum of FN and TN. Precision is also known as positive predictive 

value. When calculating PRE, TP is divided by the sum of TP and FP. 

In this thesis study, TP is correctly defined as ADHD patients. TN represents the 

number of correctly identified healthy people. FP represents healthy people who are 

misidentified. FN represents the number of misidentified ADHD patients. 

 

4.2 CNN Architectures 

Designed CNN architectures and ResNet50 are included in this section. 
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4.2.1 Design1 

First of all, the Dataset is divided into 70% train, 15% test, 15% validation. Input shape 

is 64 x 64 x 3. These pictures are the same size as their resized version. This designed 

2D-CNN architecture is referred to as Design1 in this thesis study. In Design1, the 

convolutional layer comes first. As in Table 3, Layer parameters are (32, (3, 3)). ReLU 

is used as the activation function. Then comes the pooling process in 2x2 size. After 

this process, the convolutional layer comes again. In this study, ReLU was used as the 

activation function in all intermediate layers. After the pooling process, a 

convolutional layer comes again. The dimensions of the pooling operation are all (2, 

2). The size of the convolutional layer is (64, (3, 3)). After this process, Flatten comes 

and then Dense comes in size 64. The activation function is ReLU. Finally, since there 

are 2 classes, there is a layer. Sigmoid was used as the activation function. Then there 

are the arguments of the model. These arguments are optimizer, loss, metrics, and 

learning rate. Kerasin's default values are used for other arguments. In this architecture 

the optimizer is Adam. Loss is binary_crossentropy. Accuracy is used for metrics. The 

default value of 0.001 was used for the learning rate. The reason for this is that the 

highest accuracy was achieved with these values. Also, the number of epochs is 10. 

batch size is 16. Figure 26 shows the block diagram of Design1.  

Table 3. Summary of Design1 architecture. 

Type Layer Parameters Output Size Param Activation 

Conv2D (32, (3, 3)) (None,62,62,32) 896               ReLU 

MaxPooling2D (2, 2) 

(None, 31, 31, 

32)         0 

 

Conv2D (64, (3,3)) 

(None, 29, 29, 

64)         18496           ReLU 

MaxPooling2D (2, 2) 

(None, 14, 14, 

64)         0 

 

Conv2D (64, (3, 3) 

(None, 12, 12, 

64) 36928           ReLU 

Flatten  (None, 512) 0  

Dense 64 (None, 64) 589888         ReLU 

Dense 1 (None,1) 65                 Sigmoid 
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Figure 26. Block diagram of the Design1 

 

4.2.2 Design2 

First of all, this 2nd designed 2D-CNN architecture is named Design2. As in Dataset 

Design1, it is divided into 70% train, 15% test, and 15% validation. Input shape is 64 

x 64 x 3. In Design2, the convolutional layer comes first. Layer parameters are (32, (3, 

3)). Relu is used as the activation function. Then comes the pooling process in 2x2 

size. Then the convolutional layer comes again and its size is (64, (3, 3)). After this 

process, pooling comes again. The size is 2 x 2 like previous pooling. After this 

process, the convolutional layer comes and its size is (128, (3, 3)). Then, the pooling 

process is redone. The size of the pooling used in this CNN architecture is 2 x 2. After 

pooling, the convolutional layer comes again and its size is (256, (3, 3)). After the 

convolutional layer, the pooling process comes. After Pooling, there is the Flatten 

operation. After the Flatten operation, there come Dense layers. Its size is 512 and its 

activation function is ReLU. After Dense layers, there comes the Dropout operation, 

by doing so, half of the issued units are the Dropout operation. After the Dropout 

operation, there come Dense layers. Its size is 256 and its activation function is ReLU. 

After Dense layers, the Dropout operation is redone. The Dropout operation parameter 

is 0.3. Finally, since there are 2 classes, there is one last Dense layer with one layer. 
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Sigmoid was used as the activation function. Then, there are the arguments of the 

model. These arguments are optimizer, loss, metrics, and learning rate. Keras’ default 

values are used for other arguments. In this architecture, the optimizer is Adam. Loss 

is binary_crossentropy. Accuracy is used for metrics. The default value of 0.001 was 

used for the learning rate. The reason for this is that the highest accuracy was achieved 

with these values. Also, the number of epochs is 10, and batch size is 16. The 

architectural summary of Design2 is as in Table 4. The block diagram of Design2 is 

shown in Figure 27. 

Table 4. Summary of Design2 architecture. 

Type Layer Parameters Output Size Param Activation  

Conv2D (32, (3, 3)) (None,62,62,32) 896 ReLU 

MaxPooling2D (2, 2) 

(None, 31, 31, 

32)         0  

Conv2D (64,(3,3)) 

(None, 31, 31, 

32)         18496 ReLU 

MaxPooling2D (2, 2) 

(None, 14, 14, 

64)         0  

Conv2D (128, (3, 3) 

(None, 12, 12, 

128) 73856 ReLU 

MaxPooling2D (2, 2) 

(None, 6, 6, 

128) 0  

Conv2D (256, (3, 3) 

(None, 4, 4, 

256)          295168 ReLU 

MaxPooling2D (2, 2) 

(None, 2, 2, 

256)          0  

Flatten  (None, 1024)               0  

Dense 512 (None, 512) 524800 ReLU 

Dropout 0.5 (None, 512) 0  

Dense 256 (None, 256)                131328 ReLU 

Dropout 0.3 (None, 256)                0  

Dense 1 (None,1) 257 Sigmoid 
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Figure 27. Block diagram of the Design2 

 

4.2.3 ResNet-50 

ResNet-50 is a pre-trained neural network. It is a CNN architecture. In this study, 

ResNet-50 was used in the Matlab environment. The input values of the original 

version are 224 x 224 x 3. Therefore, the input layer was changed in this study. 

Additionally, the size values are made 64 x 64 x 3. Since ResNet-50 has 1000 classes 

in its original form, the output size in the fully connected layer is 1000. Since there are 

2 classes in this study, the output size of the fullyconnectedlayer is changed to 2. The 

last layer of ResNet-50 is the ClassificationLayer. The output size of this is 1000. In 

this study, the output size was changed to auto. Other values and parameters of ResNet-

50 are used in their original form. ResNet-50's training options are as shown in Figure 

28. 
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Figure 28. Training options of ResNet-50 

 

4.3 2D-CNN Results with the IMFs in All Regions 

In this thesis study, TP is correctly defined for ADHD patients. TN represents the 

number of correctly identified healthy people. FP represents healthy people who are 

misidentified. FN represents the number of misidentified ADHD patients.   

In this part of the study, there are classification results with 3 different CNN 

architectures. These are IMFs obtained with the help of the EMD function as input. 

The first 5 IMFs were used in this thesis. Also, The first 3 IMFs are given as input in 

different combinations used in this thesis. The results are given in Table 5 and Table 6. 
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Table 5. Results of IMFs in all regions 

CNN 

Model 

IMF Learning 

Rate 

Validation 

Accuracy 

Sensitivity Precision F1 

Score           

Design1 IMF1 0.001 0.81185 0.78413  0.79087 0.78748 

Design1 IMF2 0.001 0.76819 0.68105 0.77082 0.72317 

Design1 IMF3 0.001 0.74318 0.75343 0.69471 0.72289 

Design1 IMF4 0.001 0.68276 0.51810 0.69100 0.59219 

Design1 IMF5 0.001 0.67288 0.59166 0.64373 0.61660 

Design2 IMF1 0.001 0.76913 0.65917 0.78694 0.71745 

Design2 IMF2 0.001 0.76751 0.81788 0.70586 0.75775 

Design2 IMF3 0.001 0.74210 0.70964 0.71007 0.70986 

Design2 IMF4 0.001 0.70235 0.55487 0.71205 0.62371 

Design2 IMF5 0.001 0.69329 0.46579 0.74951 0.57453 

ResNet-50 IMF1 0.001 0.82387 0.79315 0.80690 0.79996 

ResNet-50 IMF1 0.010 0.84995 0.84231 0.82375 0.83293 

ResNet-50 IMF1 0.100 0.76345 0.88097 0.68046 0.76641 

ResNet-50 IMF2 0.001 0.75810 0.68538 0.73735 0.71042 

ResNet-50 IMF2 0.010 0.78366 0.74718 0.76120 0.75412 

ResNet-50 IMF2 0.100 0.75811 0.68812 0.74714 0.71642 

ResNet-50 IMF3 0.001 0.75540 0.71537 0.72879 0.72202 

ResNet-50 IMF3 0.010 0.77994 0.73378 0.76185 0.74755 

ResNet-50 IMF3 0.100 0.76399 0.82815 0.69720 0.75706 

ResNet-50 IMF4 0.001 0.66822 0.62039 0.62794 0.62414 

ResNet-50 IMF4 0.010 0.68396 0.63729 0.64614 0.64168 

ResNet-50 IMF4 0.100 0.70417 0.55844 0.71311 0.62637 

ResNet-50 IMF5 0.001 0.66524 0.57899 0.63495 0.60568 

ResNet-50 IMF5 0.010 0.69386 0.61019 0.67062 0.63898 

ResNet-50 IMF5 0.100 0.70640 0.57305 0.70984 0.63415 

 

As in Table 5, the highest Validation Accuracy obtained for Design1 is 0.81185. This 

result is achieved with IMF1 as the input. 

Considering these results, the prediction rate of healthy people is higher than the 

prediction rate of sick people. That's why sensitivity and precision values are lower 

than Validation Accuracy. Sensitivity values are very important in this study. Because 

mistakenly classifying a sick person as healthy can be life-threatening. In this study, 

FP values were tried to be reduced as much as possible. The most successful results 

were obtained for Design1 when the input was IMF1. There is no big difference 
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between Validation Accuracy values when the input for Design1 is IMF2 and IMF3. 

But there is a huge difference between Sensitivity results. When the input is IMF2, the 

Validation Accuracy value is slightly higher than the value when the input is IMF3. 

However, when the input is IMF3, the Sensitivity value is much higher than the value 

when the input is IMF2. When looking at the Validation Accuracy for Design1, it can 

be seen that IMF2 was more successful than IMF3. However, when looking at 

Sensitivity, the situation is exactly the opposite. If there is not a big difference between 

Validation Accuracies, it makes sense to look at Sensitivity to interpret which system 

is more successful. For Design1, IMF3 is better than IMF2. It cannot be said that the 

system is successful for IMF4 and IMF5. Especially when looking at the Sensitivity 

value of IMF4, it is seen that it was very close to 50%. The worst rate for a machine 

learning algorithm is 50%. For example, a rate of 10% is a successful rate, and by 

taking it inversely, a rate of 90% is reached. At rates of 50% and close to 50%, it is 

concluded that the system cannot classify. When classifying ADHD, the first three 

IMFs gave better results when Design1 was used.  

Design 2 used more layers than Design1. When the results of Design2 were analyzed, 

it can be seen that results almost similar to the results of Design 1 were obtained. 

However, when IMF1 is taken as input, Design1 is better than Design2. The IMF2 

classification for Design2 has been the most successful. Because, although the 

Validation Accuracy values are close for the first 3 IMFs, the sensitivity value of IMF2 

increases perceptibly. That's why IMF2 achieved the best result in classification. There 

is no big difference between IMF3 and IMF1. IMF4 and IMF5 also fail as in Design1. 

When you look at the validation accuracy in Design2, the order of success is IMF1, 

IMF2, IMF3, IMF4, and IMF5 respectively. According to sensitivity values, the most 

successful input was IMF2. The order of success is IMF3, IMF1, IMF4, and IMF5 

respectively. For IMF5, by subtracting the sensitivity values of 0.46579 from 1, the 

value of 0.53421 is reached. The sensitivity value of IMF5 can be said to be 0.53421.  

When IMFs are given in different combinations as input, as in Table 6, the accuracy 

rate decreases. In this table, the highest accuracy was obtained in Desing1 when IMF1 

and IMF2 were given together. When IMF1 and IMF3 were given together for 

Design2, the highest Accuracy rate was obtained for Design2. When IMF1, IMF2, and 

IMF3 were given together, Desing1 was more successful than Desing2. 
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Table 6. The first 3 IMFs are used as input with different combinations. 

CNN 

Model 

Input Validation 

Accuracy 

Sensitivity Precision F1 Score           

Design1 IMF1, 

IMF2 

0.78859 0.63210 0.85450 0.72666 

Design1 IMF1, 

IMF3 

0.56001 0.0 0.0 0.0 

Design1 IMF2, 

IMF3 

0.56001 0.0 0.0 0.0 

Design1 IMF1, 

IMF2, 

IMF3 

0.70379 0.64434 0.67778 0.66064 

Design2 IMF1, 

IMF2 

0.56001 0.0 0.0 0.0 

Design2 IMF1, 

IMF3 

0.74763 0.64331 0.74785 0.69165 

Design2 IMF2, 

IMF3 

0.56001 0.0 0.0 0.0 

Design2 IMF1, 

IMF2, 

IMF3 

0.66342 0.79830 0.59186 0.67975 

 

4.4 2D-CNN Results with the IMFs in Right Temporal Regions 

This section contains the results in the Right Temporal region. In regional studies, only 

Design1 and Design2 were tested. ResNet-50 is not used in this section. 

The results in the Right Temporal and Anterior regions have a higher accuracy than 

the results in other regions. Looking at the results in the Right Temporal region, 

Design2 was slightly more successful than Design1, as shown in Table 7. Considering 

these results, the use of more layers and the use of extra pooling and Dropout increased 

Accuracy. When the sensitivity values are examined, the highest value is reached when 

the input is IMF3. In this case, IMF3 was more successful in classifying the Control 

dataset. When looking at Validation Accuracy, the order of success for Design2 is 

IMF1, IMF2, IMF3, IMF4, and IMF5. The order of success for Design1 is IMF1, 

IMF2, IMF3, IMF5, and IMF4. When the input is IMF2, the Sensitivity value for 

Design1 is the same as IMF3. The Validation Accuracy value is approximately 0.02 

percent higher. In this case, IMF2 is slightly more successful than IMF3. For Design2, 

the highest Sensitivity value was reached with IMF3. However, the highest Validation 

Accuracy value is with IMF1. Considering all the results, the first three IMFs are more 

successful. 
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Table 7. Results in the Right Temporal region 

CNN 

Model 

IMF Learning 

Rate 

Validation 

Accuracy 

Sensitivity Precision F1 

Score           

Design1 IMF1 0.001 0.79107 0.63103  0.85139 0.72751 

Design1 IMF2 0.001 0.78093 0.73210 0.76019 0.74588 

Design1 IMF3 0.001 0.76876 0.73210 0.73892 0.73549 

Design1 IMF4 0.001 0.69979 0.67436 0.65324 0.66363 

Design1 IMF5 0.001 0.72413 0.62124 0.71352 0.66419 

Design2 IMF1 0.001 0.81541 0.68822 0.86376 0.76606 

Design2 IMF2 0.001 0.81135 0.79676 0.77878 0.78767 

Design2 IMF3 0.001 0.76572 0.82217 0.69803 0.75503 

Design2 IMF4 0.001 0.72718 0.74133 0.67154 0.70472 

Design2 IMF5 0.001 0.67545 0.76212 0.60329 0.67346 
 

4.5 2D-CNN Results with the IMFs in Cental Regions 

This section contains the results in the Cental region. In regional studies, only Design1 

and Design2 were tested. ResNet50 is not used in this section. The highest Sensitivity 

value was obtained with IMF1 for Design1 in the Cental region. The same situation 

applies to Design2. Therefore, when IMF1 is used as the input, the most decisive 

region for the Control dataset is the Cental region. In Validation Accuracy, using 

Design2, the highest value is in the Cental region. It has almost the same Validation 

Accuracy value as the value with IMF1 in the Right Temporal Region. Other results in 

the central region are also decent. The values of Design2 are better than Design1. 

Therefore, the extra layer, pooling, and dropout sections were decisive for the Central 

region. As in other parts, the first three IMFs have higher Accuracy. The results in the 

Cental region are as in Table 8. 

Table 8. Results in the Cental region 

CNN 

Model 

IMF Learning 

Rate 

Validation 

Accuracy 

Sensitivity Precision F1 

Score           

Design1 IMF1 0.001 0.77972 0.83493  0.70026 0.76169 

Design1 IMF2 0.001 0.77770 0.67948 0.76672 0.72042 

Design1 IMF3 0.001 0.74256 0.73237 0.68107 0.70579 

Design1 IMF4 0.001 0.67229 0.63942 0.60546 0.62197 

Design1 IMF5 0.001 0.69594 0.68910 0.62682 0.65658 

Design2 IMF1 0.001 0.81486 0.78685 0.77689 0.78184 

Design2 IMF2 0.001 0.80769 0.80769 0.74777 0.77657 

Design2 IMF3 0.001 0.76081 0.70352 0.72203 0.71266 

Design2 IMF4 0.001 0.68986 0.64583 0.62870 0.63715 

Design2 IMF5 0.001 0.69324 0.61538 0.64214 0.62847 
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4.6 2D-CNN Results with the IMFs in Anterior Regions 

This section contains the results in the Anterior Region. In regional studies, only 

Design1 and Design2 were tested. ResNet50 is not used in this section. When the input 

for Design1 was IMF1, the highest Validation Accuracy value was reached in the 

Anterior Region. When the input was IMF1, IMF2, and IMF5; the Design1Validation 

Accuracy value was higher than Design2. Therefore, the extra layer, pooling, and 

dropout parts reduced the accuracy for the Anterior region. It has relatively lower 

values than the Right Temporal Region and the Cental Region. They have higher 

Validation Accuracy values than the Posterior Region and the Left Temporal Region. 

As in other regions, the Validation Accuracy of the first 3 IMFs is much higher than 

the last 2 IMFs. The results in the Anterior region are as in Table 9. 

Table 9. Results in the Anterior region 

CNN 

Model 

IMF Learning 

Rate 

Validation 

Accuracy 

Sensitivity Precision F1 

Score           

Design1 IMF1 0.001 0.79669 0.78303  0.76199 0.77237 

Design1 IMF2 0.001 0.77230 0.76712 0.71519 0.74025 

Design1 IMF3 0.001 0.71031 0.64383 0.66197 0.65277 

Design1 IMF4 0.001 0.66628 0.58767 0.60937 0.59832 

Design1 IMF5 0.001 0.67786 0.56712 0.63302 0.59826 

Design2 IMF1 0.001 0.77636 0.69041 0.75903 0.72309 

Design2 IMF2 0.001 0.74971 0.78493 0.67570 0.72623 

Design2 IMF3 0.001 0.76940 0.69315 0.74411 0.71773 

Design2 IMF4 0.001 0.69988 0.55068 0.67905 0.60816 

Design2 IMF5 0.001 0.66628 0.69315 0.58974 0.63727 

 

4.7 2D-CNN Results with the IMFs in Posterior Regions 

This section contains the results in the Posterior Region. In regional studies, only 

Design1 and Design2 were tested. ResNet50 is not used in this section. The Posterior 

Region has lower Validation Accuracy than the Cental Region, the Anterior Region, 

and the Right Temporal Region. However, it has higher Validation Accuracy than the 

Left Temporal Region. There is almost no difference between Validation or Sensitivity 

values for Design1 and Design2. Therefore, the extra layer, pooling, and dropout 

sections did not have much effect on accuracy. 2D-CNN with fewer layers can be used 

for classification. As in other regions, the accuracy of the first three IMFs is higher. 

The last two IMFs are lower in accuracy. Although the Posterior Region is not very 

good for ADHD classification, it can be classified at an average level. The results in 
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the Posterior region are as in Table 10. 

Table 10. Results in the Posterior region 

CNN 

Model 

IMF Learning 

Rate 

Validation 

Accuracy 

Sensitivity Precision F1 

Score           

Design1 IMF1 0.001 0.74222 0.72945  0.70679 0.71794 

Design1 IMF2 0.001 0.70301 0.69238 0.66251 0.67711 

Design1 IMF3 0.001 0.72149 0.73146 0.67592 0.70259 

Design1 IMF4 0.001 0.65164 0.63126 0.60869 0.61977 

Design1 IMF5 0.001 0.67282 0.59819 0.64750 0.62187 

Design2 IMF1 0.001 0.74673 0.70741 0.72336 0.71529 

Design2 IMF2 0.001 0.73366 0.66132 0.72289 0.69073 

Design2 IMF3 0.001 0.70166 0.71643 0.65564 0.68355 

Design2 IMF4 0.001 0.67237 0.60621 0.64430 0.62467 

Design2 IMF5 0.001 0.65209 0.63927 0.60761 0.62304 

 

4.8 2D-CNN Results with the IMFs in the Left Temporal Region 

This section contains the results in the Left Temporal Region. In regional studies, only 

Design1 and Design2 were tested. ResNet50 is not used in this section. The Left 

Temporal Region has the lowest Validation Accuracy compared to other regions. The 

classification success rate for ADHD is low with data from this field. In particular, no 

classification could be made for IMF5. When Design1 and Design2 were compared in 

the classification made in this region, Design2 was more successful than Design1. 

Therefore, the extra layer, pooling, and dropout sections had a great impact on 

accuracy. In the case of classification for data taken from the Left Temporal Area, a 

more complex CNN needs to be designed. As in Table 10, the most interesting ratio is 

the ratio with Design2 and IMF3 as its input. This rate is the highest compared to other 

regions. Although it is less successful with other inputs, it has the most successful 

classification for IMF3 in the Left Temporal region. Especially when a complex CNN 

is designed and the input is IMF3 with the correct parameter values, the success rate 

is going to increase. The results in the Left Temporal region are as in Table 11. 
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Table 11. Results of CNN models in the Left Temporal region with IMFs 

CNN 

Model 

IMF Learning 

Rate 

Validation 

Accuracy 

Sensitivity Precision F1 

Score           

Design1 IMF1 0.001 0.67139 0.59815  0.63325 0.61520 

Design1 IMF2 0.001 0.68965 0.58891 0.66579 0.62500 

Design1 IMF3 0.001 0.68356 0.61893 0.64578 0.63207 

Design1 IMF4 0.001 0.65314 0.56581 0.61403 0.58894 

Design1 IMF5 0.001 0.56085 0.00000 0.00000 0.00000 

Design2 IMF1 0.001 0.73022 0.59815 0.73789 0.66071 

Design2 IMF2 0.001 0.71196 0.54272 0.73208 0.62334 

Design2 IMF3 0.001 0.77079 0.70438 0.75682 0.72966 

Design2 IMF4 0.001 0.67951 0.66974 0.62634 0.64732 

Design2 IMF5 0.001 0.56085 0.00000 0.00000 0.00000 

 

 

4.9 2D-CNN Results with EEG Signal 

In this section, classification was made in the data set by taking the spectrogram of the 

EEG signal. There is no big difference between Validation Accuracies when Design1 

and Design2 are used, both have a success rate of over 90%. Design1 is slightly better 

than Design2 in classification. ResNet-50 has been the most successful in its 

operations in this classification. It has the highest validation accuracy when the 

learning rate is 0.01. This type of order of success continues with 0.1 and 0.001 as the 

learning rate. Since all Validation accuracy rates are above 92%, all Learning Rate 

values are successful. If preferred, 0.01 would give the best result because the 

Sensitivity rate came out to be 96.742% and the Accuracy rate was 96.526%. The 

accuracy rates in this section are close to the rates in other ADHD classifications 

studied in the literature. As in Table 12, ResNet-50 gave the highest Accuracy rate of 

96.526%, especially when the learning rate was 0.01. When compared to other studies 

on the ADHD data set in Table 13, almost the best Accuracy rate was achieved. 

When viewed regionally, the highest accuracy rate for Design1 belongs to the Posterior 

Region. After the Posterior Region, the region with the highest accuracy is the Cental 

Region. Following this, the highest accuracy rate belongs to the Anterior Region. Next 

comes the Left Temporal Region accuracy rate. Finally, the region with the lowest 

accuracy rate is the Right Temporal Region. 

This order is different for Design2. The Anterior Region has the most succes rate. The 

Right Temporal Region comes second. It has the lowest accuracy rate for Design1. In 
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this case, designing a more complex CNN for the Right Temporal Region increases 

the accuracy rate. The Cental Region comes third. The Left Temporal Region comes 

fourth. Finally, the least successful region is the Posterior Region. In this case, it is 

necessary to design a simpler CNN when classifying with data from the Posterior 

Region. 

Considering all these situations, the reason for the lower accuracy rate in regional 

classification is that there is less data. In this case, data augmentation is recommended 

to increase the data in regional studies. Over 96% accuracy was achieved in all 

experiments in this section. This is a quite successful situation for ADHD 

classification. 
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Table 12. Results of CNN models with EEG signal 

CNN 

Model 

Region Learning 

Rate 

Validation 

Accuracy 

Sensitivity Precision F1 Score           

Design1 All 0.001 0.91916 0.93675 0.88764 0.91153 

Design2 All 0.001 0.90565 0.91638 0.87692 0.89622 

ResNet-

50 

All 0.001 0.92160 0.93471 0.93508 0.93891 

ResNet-

50 

All 0.01 0.96526 0.96742 0.95492 0.96113 

ResNet-

50 

All 0.1 0.94430 0.95371 0.92362 0.93828 

Design1 Posterior 

Region 

0.001 0.90179 0.91505 0.88869 0.90169 

Design2 Posterior 

Region 

0.001 0.86983 0.81859 0.91908 0.86618 

Design1 Cental 

Region 

0.001 0.88783 0.88177 0.89256 0.88714 

Design2 Cental 

Region 

0.001 0.89633 0.91260 0.88062 0.89634 

Design1 Left 

Temporal 

Region 

0.001 0.88269 0.86843 0.89537 0.88171 

 

Design2 Left 

Temporal 

Region 

0.001 0.87814 0.88869 0.86774 0.87810 

Design1 Anterior 

Region 

0.001 0.88619 0.86831 0.90251 0.88511 

Design2 Anterior 

Region 

0.001 0.91011 0.90628 0.91362 0.90994 

Design1 Right 

Temporal 

Region 

0.001 0.82991 0.91447 0.76905 0.83603 

Design2 Right 

Temporal 

Region 

0.001 0.90362 0.91631 0.89127 0.90363 
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Table 13. Comparison between the accuracy of this method with some state-of-the-art 

studies in this area. 

Work Year Participants Accuracy (%) 

Bakhtyari and Mirzaei 2022 46 ADHD/45 CS 99.75 

Johnstone et al. 2021 53 ADHD/161 

CS 

81.20 

Ghaderyan and et al. 2022 14 ADHD/19 CS 99.17 

Altınkaynak et al. 2020 23 ADHD/23 CS 91.30 

Güney et al. 2021 27 ADHD/38 CS 98.40 

Vahid et al. 2019 100 ADHD/44 

CS 

83.00 

Dubreuil-Vall, Ruffini and 

Camprodon 

2020 20 ADHD/20 CS 88.00 

Ahmadi et al. 2021 25 ADHD/14 CS 99.46 

Moghaddari, Lighvan and 

Danishvar 

2020 30 ADHD/31 CS 99.06 

Chen et al. 2019 50 ADHD/58 CS 84.59 

Rezaeezadeh, Shamekhi and 

Shamsi 

2020 12 ADHD/12 CS 99.58 

Khoshnoud Nazari and 

Shamsi 

2018 12 ADHD/12 CS 83.33 

Boroujeni, Rastegari and 

Khodadadi 

2019 50 ADHD/26 CS 96.05 

Yaghoobi Karimu and 

Azadi 

2018 20 ADHD/20 CS 98.07 

Cura, Atli and Akan 2023 15 ADHD/18 CS 99.06 

Akan et al 2022 15 ADHD/18 CS 91.01 

Akan et al 2023 15 ADHD/18 CS 99.75 

This study 2023 15 ADHD/18 CS 96.53 
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CHAPTER 5: CONCLUSION and DISCUSSION 

 

Early diagnosis is very important to improve the life standards of ADHD patients and 

to reduce future problems. In this thesis study, a deep learning model with EMD was 

designed for accurate classification. The classification was made with the IMFs 

obtained from the EMD function. Also, classification was made with the original 

signal. When the classification was made by using IMFs, an accuracy value of almost 

85 percent was reached at most. Almost 97% accuracy value was reached in the 

classification process made with EEG signal. This rate is much higher than what could 

be achieved with the IMFs. In addition, it is close to other ADHD classification studies 

in literature or has a higher accuracy percentage than them. The reason why this is 

higher than IMFs is that the original signal contains more information than IMFs when 

the spectrogram is taken. Therefore, 2D-CNN was more successful in classification. 

To increase the success rate of classification with IMFs, CNN's parameter values can 

be selected in a more optimized way. Additionally, the first three IMFs can be 

combined and turned into a volume and classified with 3D-CNN. By doing so, the 

amount of data can be increased, and a more successful classification can be achieved. 

Additionally, accuracy can be increased with data augmentation methods. For good 

measure, other advanced signal processing techniques other than EMD can be used. 

For example, the intrinsic time-scale decomposition (ITD) is an option. The results 

obtained are comparable to EMD. Also, derivatives of EMD, the Ensemble Empirical 

Mode Decomposition (EEMD), and the Multivariate Empirical Mode Decomposition 

(MEMD) are appropriate alternatives. The results obtained can be compared with 

EMD. Combining the results of all these, the best advanced signal processing 

technique for ADHD classification can be accomplished. Most importantly, more 

powerful hardware is a must to work with larger datasets. 
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APPENDICES 

 

Appendix A. 

 

Algorithm 1: EMD 
 

6. Local minima 𝐿𝑚𝑖, 𝑖 = 1, 2, … and Local maxima 𝐿𝑥𝑗 , 𝑗 = 1, 2, … are found using 

input signal 𝑥[𝑛]. 
 

7. Calculate 𝑈𝑒[𝑛] and 𝐿𝑒[𝑛] which upper and lower envelopes respectively, using cubic 

interpolation. 
8. Mean of envelopes value is found. 

 

9. Compute 𝑑1[𝑛] = 𝑥[𝑛] − 𝑀𝑒[𝑛]. If 𝑑1[𝑛] satisfies the condition of 𝐼𝑀𝐹, 

𝑑 1[𝑛] = 𝐼𝑀𝐹1[𝑛]. Else go to step 1 and repeat every processes using  𝑑1[𝑛] instead of 𝑥[𝑛]. 

10. After obtaining 𝐼𝑀𝐹1[𝑛] calculate the residue 𝑅1[𝑛] = 𝑥[𝑛] − 𝐼𝑀𝐹1[𝑛]. If this 

residue has more than a zero-cross, return step 1 and calculate again new 𝐼𝑀𝐹. 

This process will continue until last residue  𝑅𝐿[𝑛] which has no zero cross is obtained and 

all necessary conditions are satisfied. 

We can reconstruct the original signal 𝑥[𝑛] using the following formulation: 

𝑥[𝑛] = (∑ 𝐼𝑀𝐹𝑙[𝑛]

𝐿

𝑙=1

) + 𝑅𝐿[𝑛] 

Here, L is the number of  𝐼𝑀𝐹𝑠 and  𝑅𝐿[𝑛] is the residue. 
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Appendix B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix Figure B-1 The First Page of The Ethical Approval Form 
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Appendix Figure B-2 The Second Page of The Ethical Approval Form 
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Appendix Figure B-3 The Last Page of The Ethical Approval Form 
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