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ABSTRACT 
 

 

 

INCREASING TREATMENT EFFICACY BY DRUG REPOSITIONING IN 

ACUTE LYMPHOBLASTIC LEUKEMIA 

 

 

 

Tükel, Ezgi Yağmur 

 

 

 

Master’s Program in Bioengineering 

 

Advisor: Asst. Prof. Dr. Yağmur Kiraz Durmaz 

 

Janurary, 2024 

 

Acute lymphoblastic leukemia (ALL) is recognized for its heterogeneity, and diverse 

genetic abnormalities contributing to disease progression. The predominant subtype, 

high-risk and aggressive Philadelphia positive ALL (Ph+ ALL), is characterized by 

BCR/ABL translocation. Imatinib mesylate, a tyrosine kinase inhibitor (TKI), has been 

pivotal in treating Ph+ ALL. However, achieving sustainable therapeutic success is 

made difficult by TKI resistance. Therefore, there is an urgent need to identify targets 

that offer alternative ALL treatments. This thesis aims to propose a novel treatment 

strategy through drug repositioning, using a comprehensive analysis of transcriptome 

datasets of ALL and Ph(+) ALL to identify DEGs associated with disease progression. 

The research revealed Maytansine and Isoprenaline for ALL, and Glipizide and 

Desipramine for Ph(+) ALL as potential candidates for therapeutic intervention. MTT 

and Trypan blue assays were performed to confirm the cytotoxic effects of these drugs 

on both ALL (Jurkat) and Ph+ ALL (SUP-B15) cell lines. Additionally, the apoptotic 
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effects of these drugs have been determined using Annexin/FITC dual staining. 

Furthermore, tests were conducted on Imatinib-resistant SUP-B15/R cells to determine 

the impact of Imatinib resistance on the cytotoxic and apoptotic effects of Desipramine 

and Glipizide. According to results, all the drugs have exhibited cytotoxic and 

apoptotic effects on the cells. Additionally, synergistic doses with Imatinib were 

obtained in both SUP-B15 and SUP-B15/R cells. As such, the repositioned drugs, 

whose cytotoxic and apoptotic effects have been detected, may pave the way to 

increase the survival rate by increasing the treatment effectiveness in both Ph (-) ALL 

and Ph (+) ALL patients. 

 

Keywords: Acute lymphoblastic leukemia, Philadelphia chromosome, drug resistance, 

imatinib, drug repurposing 
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ÖZET 
 

 

 

Akut Lenfoblastik Lösemilerde İlaç Yeniden Konumlandırma Ile Tedavi Etkinliğinin 

Artırılması 

 

 

 

 

Tükel, Ezgi Yağmur 

 

 

 

Biyomühendislik Yüksek Lisans Programı 

 

Tez Danışmanı: Dr. Öğr.Üyesi Yağmur Kiraz Durmaz 

 

Ocak, 2024 

 

Akut lenfoblastik lösemi (ALL), hastalığın ilerlemesine katkıda bulunan çeşitli genetik 

anormalliklerle işaretlenmiş, önemli ölçüde heterojenliği ile tanınmaktadır. Baskın alt 

tip olan Philadelphia pozitif ALL (Ph+ ALL), BCR/ABL translokasyonu ile 

karakterize olup hastalığı yüksek riskli ve agresif hale getirir. İmatinib mesilat, tirozin 

kinaz inhibitörü (TKI) olarak, Ph+ ALL'nin tedavisinde etkili olmuştur. Fakat, dikkate 

değer etkisine rağmen, sürdürülebilir terapötik başarıya ulaşması, TKI direncinin 

ortaya çıkması nedeniyle zorlaşmaktadır. Bu nedenle, ALL tedavisi için alternatif 

sunabilecek  hedeflerin belirlenmesi konusunda acil bir ihtiyaç bulunmaktadır. Bu tez, 

ilaçların yeniden konumlandırılması yoluyla yenilikçi ve etkili bir tedavi stratejisi 

önermeyi amaçlamaktadır. Çalışma, hastalık ilerlemesi ile ilişkilendirilen DEG'leri 

belirlemek amacıyla ALL ve Ph (+) ALL ile ilgili transkriptom veri setlerinin kapsamlı 

bir analizini içermektedir. Araştırma ALL için Maytansin ve İzoprenalin, Ph(+) ALL 
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için Glipizid ve Desipramin’in terapötik müdahale için potansiyel adaylar olduğu 

belirlenmiştir. Seçilen ilaçların hem ALL (Jurkat) hem de Ph(+) ALL (SUP-B15) 

hücre hatları üzerindeki in vitro sitotoksik etkilerini doğrulamak için MTT ve Trypan 

blue deneyleri yapılmıştır. Ayrıca sitotoksik aktiviteye sahip olduğu belirlenen 

ilaçların hücreler üzerindeki apoptotik etkileri Annexin/FITC ikili boyama yöntemi 

kullanılarak belirlenmiştir. Bununla birlikte, Imatinib dirençli SUP-B15/R 

hücrelerinde Imatinib direncinin Desipramin ve Glipizid'in sitotoksik ve apoptotik 

aktiviteleri üzerineki etkisi belirlenmiştir. Deney sonuçlarına göre, belirlenen tüm 

ilaçların hücreler üzerinde sitotoksik ve apoptotik etkiler gösterdiği görülmüştür. 

Ayrıca, hem SUP-B15 hem de SUP-B15/R hücrelerinde İmatinib ile  sinerjik dozlar 

elde edilmiştir. Sonuç olarak, sitotoksik ve apoptotik etkileri belirlenen yeniden 

konumlandırılmış ilaçların, hem Ph (-) ALL hem de Ph (+) ALL hastalarında tedavi 

etkinliğini artırarak sağkalım oranını artırma yolunu açabileceği düşünülmektedir. 

 

Anahtar Kelimeler: Akut Lenfoblastik Lösemil, Philadelphia kromozomu,ilaç 

direnci,imatinib, ilaç yeniden konumlandırma 
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CHAPTER 1: INTRODUCTION 
 

1.1. Leukemia and Leukemia Classification  

It is an established fact that leukemias are lethal disorders that originate from the bone 

marrow and blood. Types of leukemias can affect every segment of population from 

children to the elderly, at disparate degrees (Juliusson and Hough, 2016). The term 

'leuk' (white) combined with 'emia' (blood) denotes the color of the blood in leukemia, 

which becomes whitish due to the accumulation of a high number of white blood cells 

(Sell, 2005). Leukemias encompass a diverse array of conditions resulting from the 

excessive growth of immature hematopoietic cells that become arrested at an early 

developmental stage, unable to mature into fully functional blood cells. These 

accumulated cell clones tend to occupy the bone marrow and can also migrate into the 

bloodstream. Analyzing the peripheral blood offers insights into identifying the 

specific cell lineage involved (Lightfoot et al., 2017). Leukemias can exhibit diverse 

courses of progression. They may present as rapidly advancing conditions with limited 

survival prospects in the absence of treatment, referred to as acute leukemia. 

Alternatively, these diseases can manifest as slow-growing forms, allowing patients to 

lead relatively long lives even without intervention, categorized as chronic leukemia. 

Beyond this chronic/acute distinction, leukemias are further categorized based on their 

cellular lineage. Myeloid leukemia pertains to leukemic cells originating from the bone 

marrow lineage, which causes granulocytes, macrophages, red blood cells, and 

platelets. In contrast, lymphoid leukemia involves leukemic cells derived from the 

lymphocyte lineage (Sabath, 2013). The most prevalent leukemia subtypes include 

acute myeloid leukemia (AML) and chronic myeloid leukemia (CML), which are 

associated with the myeloid lineage, as well as acute lymphoblastic leukemia (ALL) 

and chronic lymphocytic leukemia (CLL), which pertain to the lymphoid lineage. 

There are also less common variations, like mature B and T-cell leukemias, along with 

NK cell-related leukemias, among others, originating from mature white blood cells. 

Notably, in 2016, the World Health Organization (WHO) updated its classification due 

to identification of various biomarkers and resulting in significant alterations to the 

traditional categorization. In table 1, ALL classifications were given(Wang and He, 

2016). The etiology of leukemia remains a subject of ongoing debate within the 

https://paperpile.com/c/8RkzGg/1mq4o
https://paperpile.com/c/8RkzGg/u2Ehf
https://paperpile.com/c/8RkzGg/Ppieq
https://paperpile.com/c/8RkzGg/vJsbM
https://paperpile.com/c/8RkzGg/pn8jV
https://paperpile.com/c/8RkzGg/pn8jV
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scientific community. Presently, three factors have garnered significant attention in 

connection to leukemia development, specifically ionizing radiation, benzene 

exposure, and alkylating agents. Nevertheless, the established risk factors can account 

for only a limited subset of patients, leaving the pathogenesis of the majority of cases 

yet to be fully understood. Recent research suggests that smoking, exposure to 

electromagnetic fields, the use of hair dyes, contact with organic solvents, and viral 

infections may also present potential risk factors for leukemia (Guo et al., 2022) 

Table 1. Who (2016) ALL Classification (Source: Wang and He, 2016)   

 
 

1.2. Acute Lymphoblastic Leukemia 

Acute lymphoblastic leukemia (ALL) represents a diverse spectrum of lymphoid 

conditions that arise from the uncontrolled growth of immature lymphoid cells in the 

bone marrow, bloodstream, and various other organs. Enhanced comprehension of the 

underlying biological mechanisms driving ALL has prompted revisions in its 

pathological categorization, the introduction of novel therapeutic approaches, and the 

implementation of treatment strategies tailored to individual risk profiles (Jacobson et 

https://paperpile.com/c/8RkzGg/47BjE
https://paperpile.com/c/8RkzGg/pn8jV
https://paperpile.com/c/8RkzGg/MxLQa
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al., 2016). Clinically, ALL is considered an infrequent ailment, with nearly 6.000 new 

instances identified in the USA in 2019, constituting only 0.3% of all cancer cases. 

ALL have revealed it to be a genetically diverse disease, resulting in the emergence of 

various genetic subtypes that have refined our ability to assess risk. While most 

instances of ALL are detected among the pediatric population, the incidence exhibits 

a distinct pattern, with two notable peaks: One in those under 5 years old, and another 

around the age of 50 (DeAngelo et al., 2020). In the case of pediatric ALL, there is a 

comparatively favorable prognosis upon diagnosis, with approximately 80% of 

children experiencing extended periods of event-free survival. In stark contrast, adults 

diagnosed with ALL tend to face significantly less promising prospects for long-term 

outcomes(Jacobson et al., 2016). The distinction in outcomes primarily arises from 

risk-tailored therapeutic approaches that have evolved and fine-tuned chemotherapy 

dosages and schedules over the last four decades for pediatric patients. Conversely, 

equivalent treatment modalities have resulted in survival rates for adults in the long 

term around %40. This discrepancy is partly attributed to a higher incidence of co-

morbidities and the presence of other high-risk characteristics upon diagnosis in adult 

ALL patients, rendering them less tolerant to chemotherapy and more resistant to its 

effects(Rafei et al., 2019). Furthermore, in adults diagnosed with ALL, there is notably 

a greater prevalence of unfavorable genetic subtypes, and wider array of mutations and 

epigenetic modifications compared to their pediatric ALL. These factors collectively 

contribute to the observed divergence in benefits of treatment between age groups (Liu 

et al., 2016). The development of ALL entails the aberrant multiplication and 

maturation of a lymphoid cells. Within the pediatric patients, research has uncovered 

certain syndromes that associated with a minority of ALL cases, including conditions 

like ataxia telangiectasia, Fanconi anemia, Down syndrome, and Bloom syndrome. 

Additional contributing factors encompass exposure to specific solvents, viral 

infections (like Epstein-Barr Virus), pesticides, or  ionizing radiation. However, in 

most cases, ALL seems to emerge as a new malignancy in individuals who were in 

good health in the past.(Terwilliger and Abdul-Hay, 2017).  

 

1.2.1. T‐lineage ALL  

ALL is separated into two broad categories T‐lineage ALL (T‐ALL) and B‐lineage 

ALL (B‐ALL). T-ALL is an uncommon and aggressive type of leukemia arising from 
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the cancerous transformation of T-lineage progenitor cells at different points in their 

development. Out of the estimated 6,660 new ALL diagnoses in the United States in 

2022, T-ALL in adult patients constitutes approximately 10% to 25% of these cases. 

T-ALL primarily affects the adolescent and young adult population. Clinical features 

linked to T-ALL encompass conditions like hyperleukocytosis and extramedullary 

involvement, which may manifest as lymphadenopathy, a mediastinal mass, 

hepatosplenomegaly, and an increased occurrence of central nervous system 

participation, occurring in roughly 10% of adult patients at the point of 

diagnosis(O’Dwyer, 2022). The origin of T-ALL remains evasive and is currently the 

subject of thorough investigation, much like every single hematological cancer. The 

isolation of primitive tumor stems or initiating cells has proven pivotal in advancing 

our comprehension of leukemia's inception and pathobiology. Furthermore, the diverse 

clinical, molecular, and biological aspects of leukemia underscore the presence of 

multi-clonal diversity, underscoring its intricate and multifaceted origins (Vadillo et 

al., 2018). T-ALL emerges from a complex sequence of circumstances, involving the 

accumulation of genetic changes that collectively disrupt critical oncogenic, tumor 

suppressor, and developmental pathways governing the conventional regulation of cell 

growth, replication, viability, and differentiation throughout thymocyte development 

(Mullighan, 2009). T-ALL mutations can be categorized into two group, based on their 

reciprocal distribution and their effects when deregulated. One of them, lead to the 

overexpression of transcription factors crucial to T-cell development. These 

occurrences define specific subgroups, such as, NKX2-1/2-2, HOXA, TLX3 and 

TAL/LMO enabling the molecular categorization of about 70% of T-ALL occurrence, 

with distinctions observed between pediatric and adult populations. In contrast, the 

other one include abnormalities encompass genes coding for various protein families, 

including signaling pathway proteins ,tyrosine kinases, ribosomal proteins, and 

epigenetic factors.(Bardelli et al., 2021).The complex interaction among key 

regulators in the initial stages of T cell development and the signals leading to 

oncogenesis associated with T-ALL revolves significantly around NOTCH1. 

NOTCH1 serves as a pivotal factor in both T cell fate determination and thymocyte 

development.  At least, 60% of T-ALL, this factor becomes stimulated through gain-

of-function mutations. In tandem with these NOTCH1 mutations, Frequently, there is 

a concurrent deletion of the cyclin-dependent kinase inhibitor 2A locus, which encodes 
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the tumor suppressor genes p14ARF and p16INK4A. These occurrences often align 

with chromosomal rearrangements, culminating in the aberrant expression of various 

T cell-specific transcription factors that may acquire oncogenic functions.(Belver and 

Ferrando, 2016).  

 

1.2.2. B‐lineage ALL  

As previously mentioned, ALL can manifest as either B or T cell phenotypic subtypes. 

B-cell acute lymphoblastic leukemia (B-ALL) represents a hematological malignancy 

typified by the unrestrained expansion of precursor B cells within the bone marrow 

(Safarzadeh Kozani et al., 2021) This disorder obstructs the development of B 

lymphoid cells, preventing their maturation at an immature stage, in the progenitor 

phase. Subsequently, it triggers an uncontrolled proliferation of leukemia blasts in the 

bone marrow, followed by their migration from the marrow to infiltrate various vital 

organs, including the liver, central nervous system, spleen,  lymph nodes, and thymus. 

This dominance of the hematopoietic system by leukemia blasts also interferes with 

the generation of crucial blood cell types responsible for blood clotting and oxygen 

transport. Consequently, the patient's systems suffer significant deficiencies, 

ultimately leading to a fatal outcome. Early indications of this condition encompass 

symptoms like weariness, diminished appetite, bone discomfort, abdominal 

enlargement due to an enlarged liver and  spleen and  also swelling of lymph nodes. 

Acute leukemia follows a swift and aggressive disease progression, often taking mere 

weeks in contrast to the more gradual course of chronic leukemia, which unfolds over 

months (Malouf and Ottersbach, 2018). Yet in the adult population, the B-cell 

phenotype comprises more than two-thirds of all cases. ALL encompasses a broad age 

range, affecting all age groups with distinctive treatment results within each age 

bracket. Notably, more than half of recently discovered B-cell ALL cases emerge in 

the pediatric cases, while a secondary peak in incidence is observed in individuals aged 

over 60 years (Franquiz and Short, 2020). In pediatric patients diagnosed with B-ALL, 

contemporary chemotherapy protocols have demonstrated the ability to achieve 

prolonged overall survival rates ranging from 80% to 90%. Conversely, this level of 

success has not been replicated in adult patients. Despite an initial high rate of 

complete response to treatment, typically between 80% and 90%, a significant 

majority of adult individuals eventually experience relapse characterized by resistance 
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to chemotherapy. The long-term overall survival for adults diagnosed with B-ALL 

hovers within a range of 30% to 50%. The prognosis for individuals with relapsed or 

refractory ALL is even more discouraging, with a mere 5-year overall survival rate 

(Wei et al., 2017). B-ALL displays consistent and distinct chromosomal abnormalities 

that has a crucial effect in foreseeing how the disease progresses and personalizing 

treatment strategies. These genetic irregularities like non-random chromosomal 

rearrangements, gene deletions, amplifications, and aneuploidy frequently interfere 

with genes that oncogenes or cause essential proteins in the development of leukemia. 

Some of these specific genetic anomalies could be explored as hopeful targets for new 

treatment approaches (Reshmi et al., 2017). Genetic irregularities serve as crucial 

markers for diagnosis, prognosis, and treatment guidance, helping in the early 

identification of the disease, risk assessment, and therapeutic direction. Advances in 

technology, specifically the utilization of techniques like next-generation sequencing 

encompassing comprehensive approaches such as transcriptome sequencing, deletion-

duplication analysis and  whole exome sequencing, have facilitated the definition of 

twenty three distinct genetic subcategories of  B-ALL (Gu et al., 2019).  Some of these 

subtypes are seen more infrequently than abundant types.  Hyperdiploidy can be given 

as an example of significant abnormalities. Hyperdiploidy can be categorized into two 

specific subgroups: high hyperdiploidy, defined by the existence of 51 to 65 

chromosomes and low hyperdiploidy, defined by the range of 47 to 50 chromosomes 

(Lejman et al., 2022).High hyperdiploidy is regarded as a positive prognostic element, 

manifesting around 30% in children and 10% in adults individuals diagnosed with B-

ALL. Chromosomal gain is predominantly viewed with chromosomes 4, 6, 10, 14, 17, 

18, 21, and X, whereas chromosomes 1, 2, and 3 exhibit a lower frequency of such 

alterations. Generally, the comprehensive prognosis is brilliant. Despite that, the 

presence of additional copies of specific chromosomes carries distinct prognostic 

implications. An increase in the number of chromosomes 4, 6, 10, and 17 is indicative 

of a positive prognosis, while the presence of an extra chromosome 5 or 

isochromosome 17 is associated with a less favorable outlook within this cohort 

(Zhang et al., 2017). Mutations affecting genes responsible for modifying histones and 

those within the RTK-RAS pathway like KRAS and FLT3, are prevalent in individuals 

with high hyperdiploidy (Paulsson et al., 2015). Low hyperdiploidy represents an 

adverse prognostic indicator in the context of B-ALL, manifesting in around 10% of 

https://paperpile.com/c/8RkzGg/JfSrr
https://paperpile.com/c/8RkzGg/bz7Af
https://paperpile.com/c/8RkzGg/PYgN2
https://paperpile.com/c/8RkzGg/MWYlC
https://paperpile.com/c/8RkzGg/FPL4A
https://paperpile.com/c/8RkzGg/3jg6w


 

 

7 

pediatric cases and 15% of adult cases, with its prevalence increasing in older age 

groups. Research findings indicate that individuals with LHyper tend to experience 

diminished  survival rate compared to normal karyotypes or various chromosomal 

abnormalities (Groeneveld-Krentz et al., 2019). 

Hypodiploidy, an uncommon cytogenetic aberration in ALL, is the loss of one or more 

chromosomes. Children and adults with B-ALL have hypodiploid karyotypes that are 

less than 7% (Lejman et al., 2022). The condition can be subcategorized into distinct 

groups based on chromosomal content: high hypodiploidy, low hypodiploidy ,and near 

haploidy. As the number of chromosomes decreases, the patient's prognosis gradually 

worsens. (Harrison et al., 2004). Individuals with low hypodiploidy often exhibit 

deletions in the IKZF2 gene and frequent TP53 sequence mutations, which are often 

inherited. This subtype is notably rare among children, constituting less than 1% of 

cases, but its prevalence increases significantly with age. It is associated with an 

exceedingly unfavorable prognosis. Near-haploid ALL is characterized by the 

presence of Ras-activating mutations and alterations in the IKZF3 gene. It is relatively 

uncommon, comprising approximately 2% of childhood ALL cases, and even less 

frequent in adults, constituting less than 1% of cases in these age groups (Roberts, 

2018).  

The fusion gene known as ETV6-RUNX1 is one of the predominant genetic anomalies 

that trigger the development of B-cell lymphoblastic leukemia. This fusion arises from 

a concealed translocation event, denoted as t(12;21)(p13.2;q22.1), and has been 

documented in around 30% of cases in pediatric B-ALL and 4% of cases in adults. 

ETV6 acts as a transcriptional repressor and operates as a tumor suppressor. RUNX1 

emerges as the most prevalent partner in B-ALL (Zhang et al., 2022). RUNX1 may 

become a transcriptional repressor when the ETV6-RUNX1 protein interferes with the 

expression of genes that are controlled by RUNX1. Erythropoietin receptor 

overexpression and JAK-STAT signaling activation are also brought on by ETV6-

RUNX1(Mullighan, 2012). 

A further subtype of B-ALL is ETV6-RUNX1 fusion-like B-ALL. While lacking the 

fusion gene, this subtype of ALL is very similar to ETV6-RUNX1 with 

immunophenotypic profiles. Children make up around 3% of ETV6-RUNX1-like 

instances, which account for more than 80% of pediatric B-ALL cases (Lilljebjörn et 

al., 2016). 
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More than 90 translocation partners have been found in the KMT2A gene, which is 

mutated in more than 80% of infant B-ALL and nearly 9% of adult B-ALL (Ghazavi 

et al., 2015). Translocations associated with leukemia that affect the 11q23 region 

result in KMT2A fusion with over 90 different partner genes. Among these partner 

genes, AFF1 is most commonly observed, particularly in cases with the KMT2A-

AFF1 fusion, which is associated with a particularly lower overall survival (Lejman et 

al., 2022). 

The genetic alteration TCF3-PBX1, is found in approximately 5% of pediatric cases 

and around 3 % of adults. Although previously categorized as a Although previously 

considered a high-risk subtype, it is currently linked to a positive response to 

contemporary ALL treatments. Conversely, the TCF3-HLF fusion gene defines an 

uncommon subtype of ALL occurring in less than 1% of cases across all age groups. 

This subtype typically leads to relapse and mortality within two years of diagnosis. 

Intriguingly, primary leukemic cells carrying Patients with the TCF3-HLF mutation 

have demonstrated responsiveness to the Bcl2 inhibitor, venetoclax, presenting a 

potential innovative treatment approach for this deadly type.(Roberts, 2018). 

Ph-like ALL, a form of leukemia, exhibits gene expression patterns and characteristics 

resembling those of Ph+ ALL. However, it distinguishes itself by the absence of the 

BCR-ABL1 fusion gene. Its occurrence varies from approximately 12% in pediatric 

cases to 20-27% in adults. Ph-like ALL can manifest across different age groups and 

is consistently linked with an unfavorable prognosis. CRLF2 is rearranged in a 

significant portion of BCR-ABL1-like ALL cases, accounting for up to 50% (Zhang 

et al., 2022). However, until recently, the underlying factors responsible for activating 

kinases in the remaining cases remained unidentified. By employing advanced 

sequencing methods, including and whole genome sequencing and mRNA sequencing 

on BCR-ABL1-like ALL cases, researchers have detected various rearrangements, 

sequence mutations, and DNA copy number alterations that trigger kinase signaling in 

all these cases. These genetic alterations encompass rearrangements involving genes 

such as PDGFRB, ABL1, JAK2, and EPOR, in addition to deletions or mutations 

affecting SH2B3 and IL7R. Significantly, a number of these genetic changes have been 

demonstrated to activate downstream signaling pathways like JAK/STAT. 

Furthermore, experimental evidence has shown that the transformation of cells can be 

reduced with inhibitors targeting JAK or ABL1/PDGFRB (Mullighan, 2012). 
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Another significant subtype is BCR-ABL Fusion. Information on this specific subtype 

is provided in section 1.3. 

All of the sup types of  B‐lineage ALL provided at figure 1 .(Lejman et al., 2022) 

 
Figure 1. Illustrative representation genetic biomarkers associated with B-

ALL.(Source: Lejman et al., 2022) 

 

1.3. Philadelphia Chromosome  

The Philadelphia (Ph) chromosome, denoted as a shortened chromosome 22, results 

from a reciprocal exchange of genetic material between chromosomes 9 and 22. This 

genetic event combines the Breakpoint Cluster Region (BCR) gene from chromosome 

22 with the Abelson (ABL) gene on chromosome 9 (Figure 2). The resultant fusion 

gene, BCR-ABL, possesses an elevated tyrosine kinase activity, leading to the 

persistent activation of various downstream signaling pathways like 

AKT/mTOR,PI3K, RAS, NF-κB and JAK/STAT that promote cell proliferation and 

survival. Consequently, this genetic alteration is a key factor in the development of 
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leukemia. In adults diagnosed with ALL, the Ph chromosome stands as the most 

common cytogenetic abnormality, affecting approximately 20% to 30% of adult 

patients. However, its occurrence is less frequent in pediatric cases, found in about 5% 

of children with this condition. The likelihood of this genetic anomaly increases with 

age, and it is present in roughly 50% of patients who are older than 50 years (Ravandi 

and Kebriaei, 2009).In individuals with Ph+ ALL, the most prevalent simultaneous 

genetic anomalies involve the removal of specific genes, namely IKZF1, PAX5, and 

EBF1. These genetic alterations are detected in approximately 80%, 50%, and 14% of 

Ph+ ALL patients, respectively. Additionally, the deletion of CDKN2A/2B is also a 

recurring occurrence in this patient group, with an occurrence rate of roughly 50% 

(Lejman et al., 2022).BCR-ABL serves as a vital biomarker in Ph+ ALL diagnosis and 

is a target for tyrosine kinase inhibitors (TKIs). Nevertheless, it is widely recognized 

that this translocation has the potential to generate resistance to therapeutic 

drugs.(Leoni and Biondi, 2015). 

 
Figure 2. Formation of Philadelphia chromosome  

 

1.4. Treatment Strategies for ALL and Ph (+) ALL 

In contrast to the more than 90% cure rate typically achieved in pediatric ALL, the 

prognosis for adult ALL has historically been quite grim. Cure rates in adults have 

lingered at less than 40%, largely owing to the existence of high-risk disease 

characteristics within this age range and the considerable toxicity associated with 

chemotherapy. Among the cases of ALL, B-cell ALL, which approximately 75% of 

https://paperpile.com/c/8RkzGg/zfiVY
https://paperpile.com/c/8RkzGg/zfiVY
https://paperpile.com/c/8RkzGg/MWYlC
https://paperpile.com/c/8RkzGg/UluhZ


 

 

11 

instances, has traditionally exhibited inferior treatment outcomes when compared to 

T-cell ALL. More specifically, prior to the introduction of TKIs, Ph (+) ALL within 

the B-cell subset was notably associated with highly unfavorable prognoses (Samra et 

al., 2020). The understanding that ALL comprises diverse subtypes has influenced 

treatment strategies tailored to the specific characteristics of each patient, including 

the leukemia's phenotype, genotype, and associated risks. Consequently, mature B-cell 

ALL is the sole subtype managed with brief, aggressive chemotherapy regimens. In 

contrast, other patients follow distinct treatment protocols that consistently prioritize 

initial therapy to induce remission, subsequent intensification therapy, followed by 

continuous treatment to eliminate any remaining leukemia cells(Pui and Evans, 2006). 

 

 1.4.1. Treatment Strategies for ALL 

Typically, the management of ALL in adult patients involves initiating a phase focused 

on achieving remission, which is then followed by consolidation or intensification 

phases. Subsequently, patients may receive ongoing maintenance therapy or undergo 

hematopoietic stem cell transplantation (HCT) (Ram et al., 2010). 

Initial Phase 

The initial phase of treatment, known as induction therapy for adult ALL, efforts to 

eliminate the disease burden and restore normal hematopoiesis. A chemotherapeutic 

cocktail used for induction commonly includes L-asparaginase, anthracyclines., 

glucocorticoids, L-asparaginase, and vincristine. Notably, there is a shift from 

prednisone to dexamethasone in response to pediatric research demonstrating reduced 

central nervous system relapse rates and improved overall survival. It's important to 

exercise caution when determining the dexamethasone dosage regimen, as sustained 

use of higher doses may result in long-term complications like avascular bone necrosis 

and an elevated risk of morbidity and mortality due to infections (Gökbuget and 

Hoelzer, 2006). The commonly utilized anthracycline is daunorubicin. One 

randomized study revealed a disease-free survival rate of 36% when DNR was used. 

In the majority of ongoing adult ALL investigations, asparaginase is incorporated into 

the induction therapy, although the cumulative doses administered are notably lower 

than those in pediatric trials. During induction, asparaginase is often administered in 

parallel with steroids to patients experiencing cytopenia, potentially inducing 

unforeseen complications like coagulation abnormalities and liver issues. These 
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adverse effects are challenging to predict. Consequently, the use of asparaginase may 

result in treatment delays and can impact the treatment intensity on an individual basis. 

Supportive care plays an increasingly vital role during the induction phase(Gökbuget 

and Hoelzer, 2006). 

Consolidation Phase 

Consolidation marks the second phase of the treatment plan, comprising a series of 

brief, consecutive chemotherapy courses spaced every two weeks. Typically, this 

involves the use of, asparaginase, high-dose methotrexate, cytarabine, glucocorticoids 

and vincristine, spanning a 12-week timeframe. Following this, a subsequent 

intensification phase, commonly known as reinduction therapy, is implemented, 

utilizing a comparable combination of drugs employed in the initial induction therapy. 

(Malard and Mohty, 2020). 

Maintenance Therapy 

Maintenance therapy involves the daily administration of mercaptopurine and weekly 

doses of methotrexate, which may or may not include vincristine, along with periodic 

glucocorticoid pulses occurring every 1 to 3 months. This maintenance regimen is 

typically continued for a period of 2 to 3 years following the initial induction phase, 

and no added benefits have been observed beyond this timeframe. While tioguanine, 

like mercaptopurine, obstructs the synthesis of new purines, it demonstrates higher 

lymphoblast cytotoxicity in vitro. As a result, mercaptopurine remains the established 

standard for maintenance therapy (Malard and Mohty, 2020).  

Allogeneic hematopoietic stem cell transplantation 

HCT remains an essential component of adult ALL therapy and is recommended as an 

integral part of the initial treatment for adults with high-risk ALL (Faderl et al., 2010). 

However, the definition of high-risk ALL that warrants early HCT has evolved beyond 

conventional clinical factors like patient age and initial white blood cell counts. It now 

encompasses factors related to molecular and genetic characteristics and minimal 

residual disease dynamics following the commencement of therapy, especially when 

employing pediatric-inspired treatment regimens. Most experts concur that allogeneic 

HCT is advisable for adults who have undergone adequate therapy and exhibit high-

risk cytogenetic features (MLL gene rearrangements, complex karyotypes, 

Philadelphia chromosome-positive, hypodiploidy, particularly those with low 

hypodiploidy and near-haploidy), persistent MRD, and potentially high-risk molecular 
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traits like Ph-like ALL. Conversely, allogeneic HCT serves as the sole curative option 

for advanced ALL, encompassing cases of relapsed and refractory disease. 

Consequently, the evolution of transplantation in ALL has paralleled advancements in 

chemotherapy. New transplantation modalities have been developed to address prior 

challenges related to aspects like transplantation in elderly patients, donor selection, 

and transplantation for chemo-refractory ALL (Pui and Evans, 2006). 

 

1.4.2.  Treatment Strategies for Ph (+) ALL 

The management of Ph (+) ALL can be divided into two distinct periods: the era 

predating the introduction of TKIs and the era subsequent to their incorporation. 

Before the usage of TKIs, complete response was less common Ph (+) ALL cases 

compared to those with Ph (-) ALL. Complete response rates were below 70%, and 

long-term overall survival remained under 20%, with varying outcomes depending on 

the post-remission treatment. The most favorable results were observed in individuals 

who underwent HSCT, with long-term survival around 45% (Saleh et al., 2022). 

Patients with Ph (+) ALL exhibit a less favorable prognosis when treated exclusively 

with chemotherapy. Standard chemotherapy regimens yield complete remission in 

only about two-thirds of Ph (+) ALL patients. The 5-year overall survival rate is 

disappointingly low, typically around 10%. In a specific study involving 229 

individuals newly diagnosed with ALL, induction therapy employing doxorubicin, 

vincristine, l-asparaginase, cyclophosphamide, and prednisone led to a complete 

response rate of 51% among Ph (+) ALL patients, in contrast to an 83% complete 

response rate in Ph (–) ALL patients. Consequently, the 6-year overall survival rate for 

Ph(+) ALL patients was significantly inferior, standing at 5%, compared to 39% for 

Ph– ALL patients (Yilmaz et al., 2018). The use of chemotherapy regimens, such as 

doxorubicin, vincristine, and dexamethasone showed promise by achieving a high 

complete response rate of 92% in a study. Nevertheless, due to a significant recurrence 

rate and fatalities related to treatment, the 5-year overall survival rate remained 

modest, standing at only 12%. This corresponds to survival rates documented in 

various clinical trials investigating different chemotherapy protocols.(Thomas and 

Heiblig, 2016a). 

The incorporation of TKIs alongside chemotherapy has brought about a transformative 

shift in the treatment of individuals diagnosed with Ph (+) ALL and has become the 
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established standard for treatment. The primary objective in managing Ph (+) ALL is 

not solely to attain and sustain a complete clinical response but also to promptly 

achieve a comprehensive molecular response during the early phases of treatment 

(Samra et al., 2020).  

TKIs are small oral substances that competitively hinder the interaction between ATP 

and the ATP-binding domain of BCR-ABL, thereby reducing downstream signal 

transduction pathways. Imatinib marked the advent of TKIs, paving the way for the 

subsequent emergence of second-generation TKIs which are bosutinib, nilotinib, and  

dasatinib and third-generation TKIs which is ponatinib, characterized by their 

heightened and expedited efficacy in antagonizing BCR-ABL. Second and third 

generation TKIs have demonstrated their prowess in circumventing various ABL 

mutations, pivotal in mediating resistance to treatment and relapse. Notably, 

contemporary advances have led to the inception of monoclonal antibodies such as 

blinatumomab, instigating the development of regimens devoid of chemotherapy. 

These innovations have yielded exceptionally promising outcomes, coupled with an 

impressive level of patient tolerability (Saleh et al., 2022). Each of the TKIs, including 

imatinib, Dasatinib, nilotinib, and ponatinib, exhibits clinical efficacy in the treatment 

of Ph (+) ALL. It is worth noting that a head-to-head comparison of these various TKIs 

has yet to be undertaken in a clinical trial. The selection of a specific TKI may be 

influenced by considerations such as toxicity profiles, dosing regimens, concomitant 

medical conditions, drug availability, and cost. However, the amalgamation of 

available data indicates that all these TKIs demonstrate activity in the context of Ph+ 

ALL, with distinctions between them that are generally minimal in nature (Horowitz 

and Rowe, 2019). The prevailing consensus within the academic community 

underscores the widespread recommendation for the incorporation of a TKI into the 

therapeutic strategy for all recently diagnosed Ph+ ALL patients. This integration is 

designed to accomplish several key objectives, including enhancing the rate of 

complete remission, extending the duration until relapse occurs, augmenting eligibility 

for HCT, and enhancing leukemia-free survival. Following the achievement of 

complete remission, it is considered advisable to sustain the TKI treatment course until 

the emergence of disease progression or the occurrence of HCT (Forghieri et al., 2015) 
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Given the thesis's primary emphasis on the use of imatinib in the treatment of Ph+ 

ALL, it was considered pertinent to provide a more in-depth elucidation of imatinib as 

one of the TKIs. 

 

1.4.2.1. Imatinib 

A prominent compound initially identified through a screen for inhibitors of protein 

kinase C underwent subsequent modifications, ultimately demonstrating robust 

inhibitory effects against a highly specific set of kinases in laboratory settings. 

Notably, these targeted kinases included ABL and the receptor tyrosine kinases KIT 

and PDGFR. Given the central role played by BCR-ABL kinase activity in the 

pathogenesis of CML, there was a concerted effort to delve deeper into the potential 

of the ABL kinase domain for its potential. This intensive focus on medicinal 

chemistry optimization culminated in the creation of STI-571, which was subsequently 

bestowed with the name "Imatinib" (Lamontanara et al., 2013). The remarkable 

tolerability and outstanding efficacy demonstrated during the phase I and II clinical 

trials led to the swift approval of Imatinib by the US Food and Drug Administration in 

2001, followed by subsequent recognition from the European Medicines Agency. 

Consequently, imatinib marked the pioneering instance of a kinase inhibitor being 

routinely employed in cancer patients. Recently, imatinib has evolved into a 

paradigmatic treatment. Its introduction has profoundly transformed this once grimly 

prognosticated cancer into a manageable chronic condition, affording the majority of 

patients the potential to approach a normal lifespan and enjoy an enhanced quality of 

life. Today, imatinib serves as the primary therapeutic approach for patients with Ph(+) 

ALL, CML and also gastrointestinal stromal tumors, and a select range of other 

medical conditions (Ottmann and Pfeifer, 2009). Imatinib functions by occupying the 

nucleotide-binding pocket within the BCR-ABL protein, effectively obstructing ATP. 

This inhibition mechanism prevents tyrosine autophosphorylation and, consequently, 

associated substrates phosphorylation. As a result, downstream signaling pathways 

crucial for the promotion of leukemogenesis are deactivated. Imatinib's impact extends 

to the kinase activity of various other targets(Thomas and Heiblig, 2016b). Early 

preclinical investigations demonstrated that imatinib exerts robust inhibitory effects 

on the growth of Ph (+) leukemias, both in laboratory settings and in live subjects. 

These encouraging findings swiftly prompted the initiation of clinical trials. The 
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introduction of imatinib in combination with conventional chemotherapy regimens in 

the initial treatment phase marked the onset of a transformative era. This combination 

exhibited a generally favorable safety profile and yielded impressive complete 

remission rates ranging from around 95%. For instance, it attained a 50% overall 5-

year survival rate, which was unparalleled. In a recently updated phase 2 trial 

conducted at a single institution, where imatinib was combined with Adriamycin, 

dexamethasone vincristine, hyperfractionated cyclophosphamide, and vincristine, 

chemotherapy, 54 older patients, were treated. The trial yielded a remarkable Complete 

remission rate of 93%, with a notable 45% achieving complete molecular remission 

within three months. Despite a relatively modest proportion of patients undergoing 

subsequent HCT during their first remission, the 5-year Overall survival reached 43%, 

a notably improved outcome compared to historical control groups (Abou Dalle et al., 

2019). Usage Imatinib into the therapeutic approach for Ph+ ALL has heralded 

significant progress in the management of this formidable ailment. Nevertheless, 

despite the substantial therapeutic strides achieved, patients have, in some instances, 

developed resistance to imatinib. This resistance has underscored the imperative need 

to explore novel treatment modalities for Ph+ ALL, consequently driving the quest for 

the subsequent generation of TKIs (Abou Dalle et al., 2019). As a result of this 

situation, newer generation of TKI were generated. 

 

1.5. Imatinib Resistance on Acute Lymphoblastic Leukemia 

Imatinib resistance- in patients with Ph(+) ALL can occur due to acquired or intrinsic 

factors. Acquired resistance may be caused by BCR-ABL dependent factors, such as 

increased expression of BCR-ABL or point mutations within the kinase domains. It 

can also result from BCR-ABL independent factors, like changes in drug metabolism 

that reduce imatinib levels in Ph (+) cells. Furthermore, the initiation of alternative 

signaling pathways, like those associated with Src kinases, might play a role in 

developing resistance. (Ravandi and Kebriaei, 2009). Point mutations give rise to 

amino acid substitutions within the kinase domain of BCR-ABL, a phenomenon 

capable of conferring resistance to imatinib. These mutations exert their resistance by 

impeding imatinib's entry into the ATP-binding pocket of BCR-ABL, consequently 

thwarting its inhibitory effect. Initially, mutations were predominantly reported in 

cases of relapsing Ph(+)ALL. The two most prevalent mutations are T315I, which 
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blocks imatinib binding. The second common mutation type pertains to P-loop 

mutations in the phosphate-binding region (Thomas and Heiblig, 2016b). Certain 

mutations exhibit varying levels of resistance to drugs, with some causing only slight 

resistance. However, mutations like T315I indicate a very high level of resistance to 

both imatinib and second-generation TKIs. P-loop domain alterations cause the 

structural stability to be so upset that the kinase domain is unable to assume the inactive 

conformation which is necessary for the binding of Imatinib.(Eiring and Deininger, 

2014). Researchers have recently discovered a new mechanism of resistance to TKIs 

in patients with Ph(+) ALL. This mechanism involves the expression of alternative 

spliced isoforms of IKAROS family zinc finger 1, which is an important regulator in 

the development of normal lymphocytes. One specific isoform, called Ik6, lacks four 

N-terminal zinc fingers responsible for DNA binding. Interestingly, this Ik6 isoform 

was found in 91% of Ph(+) ALL patients who exhibited resistance to Dasatinib or 

Imatinib. The Ik6 expression are also associated to the levels of BCR-ABL transcripts. 

These findings suggest that targeting and restoring the IKZF1 function could be a 

promising approach to addressing TKI resistance in the future (Lee et al., 2011). 

 

1.6. Computational Approaches in Life Sciences 

Over the past twenty years, technology has made remarkable strides, leading to an 

unprecedented increase in data related to biology. Gene and RNA sequencing, 

proteomics, metabolomics, lipidomics, and microbiome investigations have flourished 

alongside the- integration of clinical data through computational methods. 

Consequently, researchers have had to employ increasingly sophisticated analytical 

techniques to derive valuable insights. The adoption of systems biology methodologies 

now allows scientists to analyze vast datasets and conduct comprehensive studies that 

span both experimental and theoretical models (Joshi et al., 2021). Systems biology is 

a multidisciplinary approach that uses computational methods to critically analyze a 

wide range of biological phenomena, particularly those related to disease (Pandita et 

al., 2022). Medical sciences have great potential to influence the field rather than 

intellectually down to individual molecules alone, systems biology aims to unveil the 

interactions of many components of biological processes in order to achieve a 

comprehensive understanding (Turanli et al., 2021). In pharmacology, systems biology 

techniques are used to investigate the biomolecular interactions of drugs and their 
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targets in the cellular environment. Combined with wet lab experiments, systems 

chemistry can be computerized methods that have successfully quantified biological 

agents, prove valuablity for new drug discovery targets and therapeutic molecules, 

facilitating the design of effective therapies for patients. Furthermore, systems 

chemistry-based methods explore drug-target interactions, predict drug-target 

interactions or interactions, assess potential side effects of drugs, and enable 

rehabilitation opportunities (Zou et al., 2013) 

 

1.6.1. System Biology 

The heart of systems biology lies in the quest to fully grasp the complex web of 

interactions and connections between the molecular building blocks of a biological 

system, which ultimately give rise to its overall behavior (Sobie et al., 2011). A 

defining aspect of systems biology is its focus on exploring the interconnections 

among numerous components, going beyond the conventional method of examining 

singular molecular traits. With its diverse range of computational tools, systems 

biology plays a pivotal role in generating hypotheses that can be further tested through 

experiments. This method hinges on seamless collaboration between hands-on 

experiments that encompass the tracking of multiple cellular elements and 

sophisticated computational methods that can interpret a wide range of datasets. From 

this process, the generation of precise experimental data not only enhances but also 

refines the computational model, ultimately leading to a more accurate depiction of 

the biological system being studied (Zou et al., 2013). 

Two main computational methods are used in systems biology: data-driven methods 

(top-down method) and hypothesis-driven methods (bottom-up approach).  Bottom-up 

approach are often used in systems with less molecules. The main challenge with this 

approach is the lack of accurate quantitative information on these interactions. 

Consequently, it is necessary to formulate hypothetical equations that describe these 

relationships and then calculate the corresponding parameter values. Dynamic 

modeling, a basic method of hypothesis, is employed to clarify the connection between 

molecules and the resulting reactions resulting from interactions (Faratian et al., 2009). 

Each of these complements other data-driven methods that involve the acquisition of 

extensive omics datasets and are subsequently analyzed using mathematical modeling 

methods. In conventional data-driven methods, the use of network structures gains 
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prominence and provides valuable insight into complex interactions between many 

molecules, often hundreds or thousands (Zou et al., 2013).  Technological advances 

since the human genome was cloned and sequenced have made it easier to obtain a 

wide variety of molecular data in tissues or cells. This new technology can be used to 

capture biological processes in biological systems with a broad overview and is widely 

known as “omics”. Numerous realms of scientific inquiry fall under the omics 

umbrella. Instances include proteomics, epigenomics, genomics, lipidomics, 

metabolomics, and transcriptomics, each of comprehensive examinations of proteins, 

RNA, genes, metabolites, lipids, and methylated DNA respectively.  Omics research 

is driven by various objectives, with one prevalent aim being the attainment of an 

exhaustive comprehension of the biological system under investigation (Micheel et al., 

2012). Transcriptomics serves as a potent tool for elucidating the roles of significant 

genes and for comparing gene expression across diverse stress conditions. It achieves 

this by conducting high-throughput microarray analysis. In a distinct vein, 

metabolomics is defined as the investigation of alterations in endogenous metabolites 

within biological systems, encompassing, cells, tissues or biofluids in response to 

various stressors. In parallel, lipidomics stands as a subfield of metabolomics, with a 

specific focus on the study of lipids and their roles in these biological responses (Maan 

et al., 2023). Another frequent objective of omics investigations is the correlation of 

omics-derived molecular data with specific clinical outcomes of interest. The 

underlying rationale is that by harnessing omics-based measurements, there exists the 

potential to formulate a more precise predictive or prognostic model for a given 

condition or disease (Micheel et al., 2012). 

 

1.6.2. Analyses Used in Systems Biology Studies 

The distinctive and diverse gene expression patterns observed in ALL necessitate the 

application of non-conventional biomolecular techniques to unravel its pathogenesis. 

Among these approaches, gene expression profile chips emerge as an optimal method 

for investigating the molecular mechanisms at play in ALL, given their ability to gauge 

the expression levels of a multitude of genes. Over the past few years, there has been 

a growing supply of gene expression profile data, igniting a compelling wave of 

research exploring the use of bioinformatics for analysis. 
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In this particular thesis, the research adopts bioinformatics methodologies to analyze 

gene expression profile data to discern the genes whose expression differs significantly 

between ALL and normal B cells. This pursuit aims to provide fresh insights into the 

exploration of ALL's pathogenesis. To this end, a myriad of analyses was used during 

the study, the data for these was accessed from the NCBI Gene Expression Omnibus 

database (GEO) (Edgar et al., 2002). GEO functions as a public database for an 

extensive array of experimental data. This dataset encompasses various types of 

experiments, such as single and dual-channel microarray-based assessments 

measuring protein levels, genomic DNA and mRNA  along with non-array techniques. 

Presently, GEO hosts an extensive collection, including almost 140,000 samples and 

above 3,000 distinct microarray platforms. GEO's organizational structure is built 

upon four fundamental components. The first three elements, namely Sample, Series 

and Platform,, are contributed by users, while the fourth component, the dataset, is 

compiled and curated by GEO personnel using the data submitted by users.This 

platform files offer insights into the layout and contents of microarrays, while GEO 

samples provide information about the actual outcomes of individual hybridizations. 

The complete experiment, including information on all hybridizations and their 

respective platform descriptions, is available as a GEO series. Subsequently, The data 

within GEO is accessible in a proprietary format termed SOFT (Davis and Meltzer, 

2007).  

Once the relative or absolute expression levels of all transcripts have been evaluated, 

the subsequent phase involves the examination of statistical hypotheses. These 

hypotheses generally revolve around distinctions between two biological conditions, 

such as healthy versus diseased tissues or modified versus unaltered cells. A primary 

objective of these tests is to pinpoint the genes that predominantly contribute to the 

variation between the studied biological states, commonly referred to as differentially 

expressed genes (DEG) (Clark et al., 2014). Genes don't operate in solitariness; they're 

integral components of a complex network with regulatory and functional 

interconnections which often result in significant correlations between their 

expression. One of the most accepted differential expression analysis method is the 

Linear Models for Microarray Data (limma) , Significance Analysis of Microarrays 

(Tusher et al., 2001), and Welsh's t-test,  (Smyth, 2004) (Clark et al., 2014). 
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The limma package plays a central role in Bioconductor, an open-source software 

development project for statistical genomics based on the R programming language. It 

has gained widespread popularity for analyzing data derived from various 

experimental platforms, including polymerase chain reaction, microarrays and arrays, 

and others. One of its notable features is its adaptability, allowing for a consistent 

analysis workflow across diverse technologies after initial data preprocessing and 

normalization (Ritchie et al., 2015). With its use of advanced computational 

techniques, the software provides a complete solution for data analysis and guarantees 

reliable performance even with large datasets. It improves user-friendliness and data 

handling by using object-oriented principles to describe expressive data and simplify 

the user interface. 

Subsequently, determining DEGs the next step is Gene Set Enrichments Analysis 

(GSEA). However, before applying this analysis the prob names came form limma 

function should be uploaded into an annotation tool such as DAVID tool (Jiao et al., 

2012). 

Enrichment analysis is a systematic and statistically sound approach for examining 

and elucidating extensive gene lists by drawing upon pre-existing knowledge. It 

evaluates whether there is an excessive or insufficient occurrence of a defined set of 

genes within the given gene list. If a statistically significant proportion of genes from 

this predefined set is found in the list, it can suggest the involvement of the associated 

biological pathway in the studied biological condition. This analytical process is 

replicated for numerous available gene sets, which could encompass a vast number 

(Merico et al., 2010). To this end, an enrichment analysis tool called Metascape (Zhou 

et al., 2019) selected.   

Metascape is specifically developed for researchers, enabling them to leverage robust 

computational analysis pipelines for the examination and comprehension of extensive 

datasets. To ensure that the information it offers remains up-to-date, a novel pipeline 

for knowledgebase synchronization has been implemented. Metascape combines gene 

membership analysis, gene annotation and multi-gene-list meta-analysis. Researchers 

can directly assess their data to uncover new mechanisms of action, therapeutic targets 

or deeper insights into diseases. In summary, Metascape stands as an user-friendly  

web tool designed to streamline the analysis and interpretation of multi-platform 

OMICs data for the research community (Zhou et al., 2019). 
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Furthermore, the subsequent stage involves the establishment of a protein-protein 

interaction (PPI) network involving the proteins encoded by the DEGs. PPIs has 

significance in many biological processes, including cell-cell communication, as well 

as in the regulation of metabolic and developmental pathways. In systems biology, 

proteins and protein interaction studies have emerged as a major focus. These 

interactions are based on noncovalent interactions between amino acid residues in the 

side chains, which are key driving forces for protein folding, aggregation, and the 

establishment of protein-protein interactions and other mechanisms (Rao et al., 2014). 

Consequently, PPI networks allows for a deeper understanding of disease mechanisms, 

disease-related genes or proteins, and their associations. Employing network science, 

characterized by nodes (components) and edges (interactions), offers a systematic 

approach to addressing complex biological issues. This network-centric perspective 

plays a significant role in elucidating the functions of proteins within cells. By 

leveraging PPI networks to unravel the underpinnings of disease mechanisms 

associated with biological processes, it becomes possible to identify drug targets and 

biomarkers for these diseases (Fiscon et al., 2018).In this regard, BioGRID database 

(Chatr-Aryamontri et al., 2017) was used. The BioGRID is an openly available 

database  that contains protein and genetic interactions from various species.This 

valuable resource contains approximately 1.93 million meticulously curated 

interactions, offering the opportunity to construct intricate networks that can 

significantly support discoveries in biomedicine, particularly concerning human health 

and diseases (Oughtred et al., 2021). 

Subsequently, it is essential to visualize protein-protein interaction (PPI) networks and 

compute various topological characteristics, including local and global measures. For 

this purpose, this thesis employed Cytoscape(Shannon et al., 2003) in conjunction with 

the CytoHubba plug-in (Chin et al., 2014). Cytoscape is a free, open-source software  

used to visualization of molecular interaction networks originating from the analysis 

of high-throughput data. It merges biological pathways with gene annotations, 

expression profiles, and information extracted from literature, aiming to offer 

comprehensive insights into system changes(Shannon et al., 2003). Within Cytoscape, 

proteins or genes are represented as nodes, and their pairwise interactions are denoted 

by edges. Both nodes and edges can be linked with data attributes that define the 

characteristics of the proteins or interactions. Remarkably, Cytoscape enables the 
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customization of visual elements for nodes and edges.This attribute-to-visual mapping 

empowers biologists to simultaneously visualize diverse data types within a network 

framework (Cline et al., 2007). Furthermore, users can enhance Cytoscape's 

functionality by developing or downloading supplementary software modules referred 

to as 'plugins' such as CytoHubba plug-in. The Cytoscape plugin known as cytoHubba 

is employed for the prioritization of nodes within a network according to their 

network-related characteristics. cytoHubba offers a comprehensive selection of 11 

topological analysis techniques (Chin et al., 2014). In this thesis, Degree and 

Betweenness, were used. 

 

1.6.3. Drug Repurposing 

The biopharmaceutical industry encounters significant challenges in the process of 

research and development for drug discovery. The process of drug development 

typically spans approximately 13 years. This extended period encompasses various 

stages, including drug design, and production, as well as the essential evaluation of the 

drug's potential toxicity, effectiveness, also pharmacokinetic and pharmacodynamic 

characteristics through in vitro and animal studies. Importantly, the journey of 

introducing a new drug from laboratory research to practical clinical application is not 

only lengthy but also costly, with estimated expenses ranging from USD 2 to 3 billion 

for bringing a new chemical entity to market (Zhang et al., 2020). A mandatory stage 

in drug development involves assessing the drug effectiveness and safety in the human 

body through a series of clinical trials, typically consisting of four phases. Phase I, 

mark the initial testing of the new drug in a small group of individuals usually up to 

80, primarily to evaluate its safety to use. Subsequently, in Phase II, the intervention 

is studied among a wider population , usually involving several hundred participants, 

to assess both its effectiveness and further examine its safety profile. Phase III studies 

then focus on evaluating effectiveness in even larger groups, ranging from hundred to 

thousand individuals. These trials also closely monitor adverse effects and gather 

additional data to ensure the safe use of the intervention. Following the marketing of 

the drug, Phase IV studies come into play (Zhang et al., 2020). This type of researches 

conduct to observe  the intervention's effectiveness on the people and gather adverse 

effects that may arise during widespread, extended usage. Generally, if the drug proves 

to be effective in Phase III trials, it secures FDA approval.  FDA approval is a relatively 
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rare outcome, with only about one in 5,000 to 10,000 potential anticancer agents 

successfully obtaining this status (Paul et al., 2010). This process is characterized by 

its time-consuming, resource-intensive nature and is associated with inherent risks 

related to the efficacy and safety of new drug candidates. The pharmaceutical sector is 

grappling with productivity issues attributed to escalating costs, competition from 

generic drugs, and stringent regulatory requirements. As a result of these existing 

circumstances, drug developers have been compelled to seek innovative approaches 

for identifying new therapeutic applications for existing drugs. This innovative 

concept is commonly referred to as drug repurposing. It presents numerous benefits, 

especially for drug candidates with well-established formulations, comprehensive 

pharmacokinetic data, toxicity profiles, clinical trial histories, and post-marketing 

surveillance safety records (Turanli et al., 2021). Over the past decade, the concept of 

drug repositioning has gained significant therapeutic importance, attracting attention 

not only within academic research but also in the biopharmaceutical industry. Up to 

the present, numerous instances of drugs successfully repurposed have come to light. 

The first and most renowned example of drug repositioning was serendipitous in 

nature. Sildenafil, generated for treating a coronary disease, encountered setbacks 

during phase 2 trials. However, its side effect of inducing penile erections led to its 

redirection for the treatment of erectile dysfunction. Several other drugs, such as 

minoxidil, everolimus, thalidomide, nelfinavir, and much more, have also 

demonstrated efficacy in treating conditions different from their originally intended 

indications (Turanli et al., 2018). Additionally, many of these initiatives have 

harnessed in silico drug repositioning methods to generate hypotheses (Hodos et al., 

2016). Examples of repurposing studies applied to leukemia are also available in the 

literature. For instance, Niclosamide that's been approved by the FDA for treating 

tapeworm infections. Interestingly, it has shown potential in the fight against cancer. 

In cancer cells, Niclosamide appears to block certain signaling pathways, like NF-kB, 

and even induces a process called apoptosis by generating something called reactive 

oxygen species. In particular, it seems to slow down the growth of leukemia cells by 

interfering with CREB-dependent pathways. Its is remarkable because CREB is often 

overactive in leukemia and linked to a poor prognosis. In preclinical studies, 

Niclosamide extended the survival of AML patient-derived xenograft mice. It also 

appears to work well in combination with other chemotherapy drugs like cytarabine 
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and daunorubicin. These promising findings position Niclosamide as a strong 

candidate for early-phase clinical trials (Hamdoun et al., 2017). Another anthelmintic 

named Mebendazole is a drug commonly used to treat intestinal worm infections by 

interfering with tubulin, a protein involved in microtubule assembly. But, in the 

context of AML, it shows a different side. In AML models, mebendazole throws a 

wrench in the works of the heat shock protein 70 chaperone system, which results in 

the breakdown of a crucial transcription factor called c-MYB in AML cells.  In 

laboratory tests, mebendazole not only reduced the viability of human cells but also 

extended the lifespan of mice with MLL-AF9 xenografts. The potential of 

mebendazole isn't limited to AML. There are currently six studies registered with the 

National Institutes of Health's Clinicaltrials.gov, exploring mebendazole as a treatment 

for various cancers, including colorectal and glioma (Guerini et al., 2019). 

Furthermore, Verteporfin received FDA approval for photodynamic therapy, 

specifically for eliminating abnormal blood vessels associated with macular 

degeneration. Beyond this primary use, its potential extends to the field of ALL. 

Researchers have examined its anti-leukemic properties while assessing its minimal 

impact on normal hematopoiesis. In a study by Xiu et al., verteporfin was employed 

to treat AML cells. Their findings showed that it effectively inhibited cell growth in 

laboratory conditions and delayed the progression of the disease in vivo, underlining 

its promise as a therapeutic agent for AML (Xiu et al., 2018). Another example of 

repurposed drug for leukemia is Fidaxomicin, a medication primarily employed for 

managing diarrhea associated with Clostridium difficile infection, which demonstrated 

notable effects in the context of MLL-rearranged HSC cells. When utilized in vitro, 

fidaxomicin effectively inhibited cell growth. The remarkable synergy between 

fidaxomicin and conventional chemotherapy in reducing tumor burden within the 

animal models suggests the potential of repurposing fidaxomicin to target ABCC3 in 

leukemia. This approach can enhance the efficacy of standard chemotherapy and 

address chemoresistance concerns in MLL-rearranged leukemia (Zeisig et al., 2021).  

Based on a recent study from  Zazuli et al., claimed that chlorprothixene, sirolimus, 

dihydroergocristine, papaverine, and tamoxifen could be candidates for possible 

repurposing for ALL (Zazuli et al., 2022). Moreover, as reported by Bonnet et al., three 

candidates, which are bioactive molecules authorized by the FDA, namely alpha-

estradiol, nordihydroguaiaretic acid, and prochlorperazine dimaleate, have exhibited 
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the induction of apoptotic cell death across a spectrum of T-ALL cell lines. These 

candidates have also been found to trigger a response related to DNA damage and 

impede the persistent activation of mTORC1 as well as the expression of c-MYC.In 

light of these findings, researchers posited that these molecules might be well-suited 

for repurposing studies (Bonnet et al., 2020). As can be seen, studies in this field have 

attracted attention, especially in recent years. However, there remains a notable 

scarcity of drug repositioning studies focusing on acute lymphoblastic leukemias 

within the existing literature. 

The primary challenge in drug repositioning revolves around identifying new 

associations between drugs and diseases. To tackle this challenge, an array of methods 

has been created, encompassing computational techniques, biological experiments, 

and hybrid methodologies. Novel applications for a drug candidate may arise by 

chance or can be pursued through systematic and logic-driven methods. Hypothesis 

driven methods for drug repositioning encompass both computational and 

experimental approaches, offering significant potential for gaining deeper insights into 

the mechanisms and pathways implicated in disease development (Parvathaneni et al., 

2019). Experimental repositioning methods consist of binding assays and phenotypic 

screening techniques. These methods help uncover interactions between ligands and 

assay components, as well as identify promising lead compounds from extensive 

compound libraries (Pushpakom et al., 2019). Computational strategies can be 

classified into various categories, such as knowledge-based, target based and 

signature-based etc. These approaches are cost-effective and hold great promise for 

the discovery of new therapeutic agents. Importantly, computational methods enhance 

drug discovery by effectively harnessing the fields of bioinformatics, and systems 

biology and network biology,  (Jin and Wong, 2014). 

Target-based involves the investigation of a drug using a biological target, such as a 

receptor or protein, to assess its impact on a biological reaction. This identifies novel 

applications for a drug by establishing connections between the drug and a specific 

disease, primarily based on the drug's interactions with protein targets (Sawada et al., 

2015). The identification of novel uses for a drug can stem from its primary target as 

well as its interactions with off-target proteins. Target repositioning occurs when a 

drug is newly applied to interact with the same target protein identified beforehand. 
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Remarkably, around 80 percent of drug repurposing initiatives have been driven by 

target-based method(Parvathaneni et al., 2019). 

Knowledge-based techniques use bioinformatics methods to integrate a wide range of 

data, including details about drugs, and its interactions, formulations of drugs etc. Also 

includes clinical trials. However, the information contained in blind and target-based 

methods may sometimes be insufficient to unveil novel mechanisms that extend 

beyond the established drug targets. In contrast, knowledge-based methods incorporate 

existing information to forecast previously unidentified mechanisms, such as emerging 

drug targets, subtle similarities between drugs, and new disease biomarkers. By 

infusing substantial existing knowledge into the drug repositioning process, these 

methods aim to enhance the accuracy of their predictions (Kulkarni et al., 2023). 

Utilizing target-based and cell-based methods constitutes a signature-based approach 

in the realm of drug repositioning studies (Iorio et al., 2013). Approaches to drug 

repurposing based on signatures hinge on utilizing genes extracted from omics data 

associated with diseases, both with and without treatment. These methods aim to 

unveil undiscovered off-targets or unidentified disease mechanisms. With the 

progression of next-generation sequencing technologies and microarray there is a 

substantial accumulation of genomics data relevant to drug repurposing studies. This 

wealth of data can be leveraged to identify gene signatures, particularly from databases 

like NCBI-GEO, facilitating the exploration of previously unknown disease-altering 

pathways (Jin and Wong, 2014). While signature-based approaches involve challenges 

such as cost, time, labor, and dependence on specialized equipment, they offer several 

advantages. These include their efficacy when creating intricate diagrams illustrating 

the links between diseases and the actions of drugs. Consequently, the biological 

significance of signature-based drug data extends beyond the discovery of new 

candidates to the experimental evaluation of candidates predicted through 

computational methods (Turanli et al., 2021). As the effectiveness of a drug is 

influenced by individual gene signatures, the utilization of a gene signature database 

proves beneficial in the drug repurposing process through computational means. 

Methods based on signatures uncover previously unknown mechanisms of drug action, 

including altered gene and protein expression. Techniques like Connectivity Map 

(CMap) (Subramanian et al., 2017), and Library of Integrated Network-Based Cellular 

https://paperpile.com/c/8RkzGg/cry4Z
https://paperpile.com/c/8RkzGg/goj78
https://paperpile.com/c/8RkzGg/p3oU2
https://paperpile.com/c/8RkzGg/h946i
https://paperpile.com/c/8RkzGg/02eDR
https://paperpile.com/c/8RkzGg/EBGoq
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Signatures (LINCS) and weighted gene co-expression network analysis (Langfelder 

and Horvath, 2008) are employed in this context (Parvathaneni et al., 2019). 

In the systems biology, networks play a crucial role by furnishing a comprehensive 

framework to amalgamate both quantitative and qualitative and connections among 

biological entities, encompassing gene expressions, their correlations, and the 

existence of interactions. Molecular networks, for drug disease and target 

combinations, and co-expression signaling, transcriptional regulatory, and metabolic 

and, protein-protein interactions,  find diverse usage in the field of systems 

pharmacology(Azuaje, 2013). Network-based models have been employed to discern 

elucidate molecular mechanisms and pinpoint diagnostic biomarkers in a range of 

diseases, spanning metabolic disorders to cancers. Despite being in the early stages in 

pharmacology, network modeling is already shedding light on drug targets, 

interactions, and potential drug candidates for treating numerous diseases, along with 

predicting drug side effects. Additionally, network modeling serves as a primary 

approach in computational drug repositioning, commonly employed to construct a 

disease,gene and drug triangle, where nodes represent drugs, diseases, or gene 

products, and edges signify the interactions between them(Turanli et al., 2021). 

Specifically, transcriptomic  and  clinical genomic data have been subjected to a 

comprehensive and  systematic network study for in silico drug repositioning, utilizing 

gene expression data that is accessible to the public Additionally, the development of 

bioinformatics tools has facilitated researchers in efficiently conducting drug 

repositioning studies, with examples like geneXpharma (Turanli et al., 2017), 

PROMISCUOUS (von Eichborn et al., 2011), PharmDB (Lee et al., 2012), DrugMAP 

central (Fu et al., 2013) and others. This approach, for instance, aids in identifying and 

prioritizing novel drug targets. These networks aid in the discovery of potential 

therapeutic targets as well as the repurposing of drug candidates and evaluation of their 

effects on cell models (Turanli et al., 2021). 

In this thesis, a network-based approach was applied for repurposing analyses. For this 

purpose, LINCS and genexpharma systems were used as the last step of bioinformatics 

analysis, after the establishment of protein-protein interactions.  

LINCS, funded by the NIH Common Fund, aims to create an extensive repository of 

response signatures. This involves employing a variety of array of disturbances such 

as genetic, disease and chemical states. Also includes model systems like variety of 

https://paperpile.com/c/8RkzGg/yckqB
https://paperpile.com/c/8RkzGg/yckqB
https://paperpile.com/c/8RkzGg/cry4Z
https://paperpile.com/c/8RkzGg/1muW4
https://paperpile.com/c/8RkzGg/02eDR
https://paperpile.com/c/8RkzGg/hZxE0
https://paperpile.com/c/8RkzGg/kNOTp
https://paperpile.com/c/8RkzGg/LcW1v
https://paperpile.com/c/8RkzGg/W9mjo
https://paperpile.com/c/8RkzGg/02eDR
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cell lines. Moreover, involves types of assay including epigenetic modification, protein 

and gene expression and also imaging (Stathias et al., 2020). An economical genome-

wide transcriptomics assay named L1000, utilizing Luminex bead technology, has 

been developed. Data from LINCS-L1000 is accessible, providing information on the 

reactions of approximately 50 human cells to around 20,000 molecules at various 

concentrations, leading to more than one million experiments. The computational 

extraction of RNA expression data, like LINCS-L1000 data, can be achieved through 

diverse statistical approaches. Presently, signatures derived from LINCS-L1000 data 

are computed utilizing the regulated Z-score method (Duan et al., 2016). Recent 

research indicates that employing the characteristic direction method for processing 

L1000 data, through distinct intrinsic and extrinsic benchmarking schemes, 

significantly enhances signal-to-noise in comparison to the currently utilized Z-score  

method for computing L1000 signatures. In light of this, the characteristic direction 

processed L1000 signatures are made available through an advanced L1000CDS2 is 

an online search engine application. Thousands of small chemical signatures and their 

paired combinations can be prioritized with this tool, which also predicts the likelihood 

that they will either imitate or reverse an input gene expression signature using two 

different approaches. Additionally, for all small compounds profiled by the processed 

L1000 assay, the L1000CDS2 program predicts drug targets. (Duan et al., 2016).  

Furthermore, another pharmaceutical search tool developed by Turanlı et al. called 

GeneXpharma was utilized for drug repurposing. GeneXpharma offers potential drug 

candidates for 48 diseases derived from repositioning analyses based on gene 

expression. The analyses leverage extensive drug-gene association data sourced from 

the Drug Gene Interaction Database, which encompasses 15 different databases. The 

process incorporates 118 gene expression profiling datasets specific to 48 diseases, 

and it includes statistical assessments for both drug-disease connections and gene-

disease (Turanli et al., 2017). GeneXpharma showcases 50,304 interactions between 

drugs and genes, encompassing 4,344 genes and 11,939 drugs in total (Rahman et al., 

2019). 

 

2.  The Aim of Study 

In light of all the aforementioned information about both leukemia and its treatment 

options, the primary aim of this thesis is to investigate the repositioning of FDA-

https://paperpile.com/c/8RkzGg/PjDDk
https://paperpile.com/c/8RkzGg/LGCRg
https://paperpile.com/c/8RkzGg/LGCRg
https://paperpile.com/c/8RkzGg/hZxE0
https://paperpile.com/c/8RkzGg/4imBH
https://paperpile.com/c/8RkzGg/4imBH
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approved drugs to address diverse medical conditions. The focus is on establishing 

their potential as therapeutic agents across various scenarios characterized by low 

treatment efficacy. Furthermore, attention is directed towards Ph+ ALL, the 

predominant clinically encountered subtype identified as a high-risk group. The 

objective is to discover alternative treatment options for addressing the challenge of 

imatinib resistance. Through this methodology, the ultimate goal is to enhance 

treatment effectiveness and propose a new therapeutic approach for a leukemia 

subtype with a notably weak clinical response. Additionally, important objectives 

involve implementing more comprehensive projects using the acquired data and 

eventually subjecting the project outcomes to clinical testing through a translational 

approach. 
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CHAPTER 2: METHODS 
 

2.1. Computational Studies 

 

2.1.1. Obtaining transcriptome (gene expression) data sets 

Selected transcriptomic datasets were chosen in accordance with the objectives of the 

study emphasizing the presence of gene expression data from healthy individuals 

alongside diseased samples or samples categorized based on the presence or absence 

of drug resistance. Furthermore, considering qualitative differences that contribute to 

heterogeneity, such as disease subtype, sample type, cancer stage, etc., the samples 

will be classified. Adult mRNA gene expression datasets for ALL and Ph+ ALL were 

acquired from GEO. Differentially expressed genes analysis was performed on eight 

datasets for ALL (GSE26530, GSE12995, GSE635, GSE26865, GSE66004, 

GSE79533, GSE56449, and GSE66002) and four datasets for Ph+ ALL (GSE66004, 

GSE79533, GSE66792, and GSE66002). In the absence of control samples in seven 

datasets for ALL and four datasets for Ph+ ALL, control samples from the GSE26725 

and GSE22529 datasets were chosen based on their experimental platform. The details 

of the selected GEO datasets are provided in Table 2. 

 

Table 2. The table comprises GEO datasets utilized within the study's framework, 

encompassing ALL, Ph+ ALL, B-CLL, and CLL 

Disease 
Accession 

No 
Platform 

Sample Size 

Pubmed ID Disease 

(n) 

Control 

(n) 

ALL GSE26530 GPL9115 28 8 22173241(Nordlund et 

al., 2012) 

ALL GSE12995 GPL96 175 - 19129520(Mullighan, 

Su, et al., 2009) 

ALL GSE635 GPL96 173 - 15295046(Holleman et 

al., 2004) 
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Table 2. (Continued) The table comprises GEO datasets utilized within the study's 

framework, encompassing ALL, Ph+ ALL, B-CLL , and CLL 

ALL GSE26865 GPL570 12 - 22173241(Nordlund et al., 

2012) 

ALL GSE66004 GPL96 109 - 27561722(Herold et al., 2017) 

ALL GSE79533 GPL570 229 - 27634205(Hirabayashi et al., 

2017) 

ALL GSE56449 GPL570 32 - 25515960(Schinnerl et al., 

2015) 

ALL GSE66002 GPL570 98 - 27561722(Herold et al., 2017) 

Ph+ 

ALL 

GSE66004 GPL96 42 - 27561722(Herold et al., 2017) 

Ph+ 

ALL 

GSE79533 GPL570 17 - 27634205(Hirabayashi et al., 

2017) 

Ph+ 

ALL 

GSE66792 GPL19883 15 - 25775523(McClellan et al., 

2015) 

Ph+ 

ALL 

GSE66002 GPL570 30 - 27561722(Herold et al., 2017) 

B-CLL GSE26725 GPL570 - 5 21296997(Vargova et al., 2011) 

CLL GSE22529 GPL96 - 11 20595513(Gutierrez et al., 

2010) 

 

 

2.1.2. Identifying Differentially Expressed Genes at the mRNA Level  

Each dataset for both ALL and its Philadelphia-positive subtype underwent 

independent analysis to identify DEGs, employing the principle of comparing gene 

expression levels between disease and healthy samples. In datasets lacking a control 

group, specifically GSE56449, GSE79533, GSE66002, GSE66792, and GSE26865, 
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analyses utilized control samples from GSE26725, while GSE12995, GSE635, and 

GSE66004 datasets were analyzed with control samples from GSE22529. Raw data 

underwent normalization using the Robust Multiarray Average (RMA)(Bolstad et al., 

2003), and gene expressions were subjected to statistical comparison using the 

LIMMA(Ritchie et al., 2015) method under the R/Bioconductor platform(version 

Rx64 4.2.1)(Gentleman et al., 2004) for DEG analysis. Correction of p-values in 

multiple hypothesis tests employed the False Discovery Rate (FDR) method. 

Statistical significance was assessed on dual criteria: a p-value < 0.05 and 2-fold 

changes (FC). Furthermore, RRA analysis was done  by using R/Robustrankaggreg. 

The direction of DEGs was ascertained as up-regulated if FC > 2 or down-regulated if 

FC < 2. Gene nomenclature was organized using the bioDBnet platform(Mudunuri et 

al., 2009). Given the analysis of multiple datasets for both ALL and Ph+ ALL, the 

mean fold changes of DEGs were statistically calculated using the 

R/Robustrankaggreg platform(Kolde et al., 2012) with a p-value < 0.05 criteria. 

 

2.1.3. Functional Enrichment of Gene Sets 

GSEA were undertaken to elucidate the functional roles of the identified DEGs. 

Metascape(Zhou et al., 2019), a bioinformatics tool, was employed to determine the 

involvement of DEGs in biological processes, molecular pathways, intracellular 

localizations, and associated diseases.In these analyses, information was extracted for 

the relevant genes using KEGG(Kanehisa, 2019) and Gene Ontology (GO) (Thomas 

et al., 2022) resources. In the GSEA analyses, significance was attributed to p-values 

below 0.01. 

 

2.1.4. Establishing Protein-Protein Interaction Networks 

The BioGRID database (version 3.5.184) (Chatr-Aryamontri et al., 2017) , 

encompassing 44,219 PPIs involving 14,373 distinct proteins, was utilized to discern 

physical associations among proteins associated with DEGs in ALL and Ph+ ALL. 

Cytoscape software 3.10.0(Shannon et al., 2003), along with the CytoHubba plug-

in(Chin et al., 2014), was employed for the visualization of PPI networks and the 

computation of both local and global topological features, including degree and 

betweenness. 

 

https://paperpile.com/c/8RkzGg/Jna6b
https://paperpile.com/c/8RkzGg/Jna6b
https://paperpile.com/c/8RkzGg/x5TsG
https://paperpile.com/c/8RkzGg/xHqB6
https://paperpile.com/c/8RkzGg/EoBCe
https://paperpile.com/c/8RkzGg/EoBCe
https://paperpile.com/c/8RkzGg/xlP50
https://paperpile.com/c/8RkzGg/SnhPK
https://paperpile.com/c/8RkzGg/1hTuT
https://paperpile.com/c/8RkzGg/6eLmX
https://paperpile.com/c/8RkzGg/6eLmX
https://paperpile.com/c/8RkzGg/iMtJI
https://paperpile.com/c/8RkzGg/hn4eZ
https://paperpile.com/c/8RkzGg/KMJNh
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2.1.5. Drug Repositioning for Candidate Drug Identification 

The L1000CDS2 platform (Duan et al., 2016) houses a repository containing 30,000 

drug expression profiles sourced from the Library of Integrated Network-based 

Cellular Signatures (LINCS)-L1000 dataset (Campillos et al., 2008). Its primary 

purpose is to facilitate the identification of potential drug candidates for repositioning 

by analyzing the expression patterns of up-regulated and down-regulated DEGs 

specific to a given disease. Additionally, a network-centric approach was incorporated 

through the genexpharma tool (Turanli et al., 2017), utilizing hub proteins as drug 

targets. This tool encompasses an extensive compendium of 50,304 documented drug-

gene interactions. This comprehensive approach augments the accuracy and 

thoroughness of drug repositioning initiatives, consequently elevating the likelihood 

of uncovering innovative therapeutic interventions. 

 

2.2. Cell Culture 

In order to assess the in vitro efficacy of drugs determined in vivo, human cell lines 

were employed. Within the thesis scope, drugs were identified for the treatment of both 

ALL and its subtype, Ph(+) ALL. Consequently, cell lines specific to these types were 

utilized for testing the identified drugs for both ALL variants. Towards this objective, 

the Jurkat cell line was employed for ALL, while the SUP-B15 cell line was used for 

Ph(+) ALL.In the course of these experiments, drugs found efficacious in Ph(+) and 

Ph(-) ALL cell lines will undergo testing on HUVEC cells, serving as the healthy 

control cell line. This process aims to identify drugs that exhibit minimal impact on 

healthy cells. 

Jurkat cells were cultured, in accordance with the literature, in RPMI-1640 

supplemented with 10% Fatal Bovine Serum (FBS) and 1% penicillin/streptomycin 

(Guo et al., 2019). Also, SUP-B15 cells were  cultured in again RPMI-1640  

supplemented with 1% penicillin/streptomycin however for these cells the ratio of  

FBS supplement was determined as 20 % for better proliferation (Wang et al., 2014). 

Furthermore, a healthy cell line, HUVEC, was cultured in DMEM supplemented with 

10% Fatal Bovine Serum (FBS) and 1% penicillin/streptomycin(Chiew et al., 2015). 

 

https://paperpile.com/c/8RkzGg/LGCRg
https://paperpile.com/c/8RkzGg/PT1Rw
https://paperpile.com/c/8RkzGg/hZxE0
https://paperpile.com/c/8RkzGg/WICDp
https://paperpile.com/c/8RkzGg/eyjkX
https://paperpile.com/c/8RkzGg/nKaVD
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2.2.1. Thawing Frozen Cells 

After obtaining the cell lines Jurkat, SUP-B15, and HUVEC, the cells were thawed in 

a 37°C water bath and promptly moved into 5 ml of pre-warmed media for 

centrifugation. Afterwards, SUP-B15 cells underwent centrifugation at 300 g for 5 

minutes, Jurkat cells at 900 rpm for the same duration and finally, HUVEC cells at 

500g for the same duration to remove the supernatant containing DMSO. The resulting 

pellet was reconstituted in fresh pre-warmed required media and then transferred into 

T25 culture flasks for SUP-B15 and Jurkat, T75 culture flasks for HUVEC. 

 

2.2.2. Subculturing of Cells 

Prior to commencing cell passage, cellular vitality and confluency were scrutinized 

through microscopic observation (Olympus, CKX53SE). Subsequently, the cells were 

transferred to Falcon tubes and subjected to centrifugation (400 g for SUPB15, 900 

RPM for JURKAT). Following centrifugation, supernatants were carefully decanted, 

and the resultant pellets were dissolved in 3 ml of required culture media. Further, a 

dilution to a 1/3 ratio was performed, nearly 5 X 105 cell/mL viable cells were then 

seeded into T25 flasks. Subsequently, the passaged cells were incubated in an 

incubator at 37 degrees and 5% CO2 in air atmosphere, and this process was repeated 

every 3 days for SUPB15 cells and every 2 days for Jurkat cells. For HUVEC cell, 

Firstly media was removed from the flasks then cells were washed with PBS twice 

then  3 ml of trypsin was added to cells to unadhere the cells. Then cells were incubated 

for 5 minutes. Afterwards, 5 ml of media was added to stop the activity of trypsin. 

Then, cells were collected in a falcon tube and subject to centrifugation (500 g,5 

minutes) Further, a dilution to a 1/2 ratio was performed, nearly 1 X 106  cell/mL viable 

cells were then seeded into T75 flasks. 

 

2.2.3. Freezing Cells 

Earlier in the experiments, cells were frozen for subsequent use in further studies. 

Approximately 2x106 cells were gathered through centrifugation, and the resulting 

pellet was reconstituted with 1.5 ml of freezing media comprising 70% FBS and RPMI 

1640 media with 10% DMSO. Thorough mixing of the cells and freezing media 

occurred, and 1.5 ml of the cell suspension was dispensed into individual cryogenic 
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vials, followed by incubation at -80°C. This freezing step was repeated every 3-4 

weeks. 

 

2.2.4. Cell Counting 

The number of cultured cells was determined using a hemocytometer to maintain 

uniform cell quantities for each procedure and also passage. The cells were gathered 

in Falcon tubes and subsequently centrifuged for 5 minutes at varied g or rpm settings 

based on the cell types. The supernatant was carefully decanted from the centrifuged 

Falcon tube. The resulting pellet was reconstituted in 3 mL of medium, and 1 mL of 

cells was aliquoted into an Eppendorf tube. Subsequently, 30 μL of cells were 

transferred from this primary Eppendorf to a secondary Eppendorf tube. Afterwards, 

cells were diluted 1:1 (v/v) with 0.4% Trypan Blue staining solution. Live cells, 

possessing an intact membrane, exhibited a bright white appearance and did not uptake 

the blue dye. Count the number of viable (seen as bright cells) cells in 4 squares and 

calculate the total number of cells via the formula below (1) 

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝐶𝑒𝑙𝑙/𝑚𝐿 = ("#$%&'	)*	+)#,-&.	+&//0	)
4

𝑥	𝐷𝑖𝑙𝑢𝑡𝑖𝑜𝑛	𝐹𝑎𝑐𝑡𝑜𝑟	𝑥	104	(1) 

 

2.2.5. Establishing an Imatinib-Resistant Cell Line Ph (+) ALL 

There are several ways to generate a resistant cell line. In this thesis, a gradually 

increasing method was used to develop drug resistance. The generation of the 

Imatinib-resistant cell line involved exposing the sensitive SUP-B15 cell line to 

gradually increasing concentrations of imatinib. Imatinib exposure began at 0.2 μM, 

with increments of 0.2 μM every 7 days, contingent on viability exceeding 70% in 

culture, as determined by the trypan blue exclusion method. If viability fell between 

30% and 70%, the imatinib concentration remained unchanged; however, if viability 

dropped to 30% or less, imatinib was withdrawn, a process termed rescue. The duration 

of rescue periods depended on recovery times. Imatinib was reintroduced at 50% of 

the last attained level when viability reached 90% in the culture. The Imatinib-resistant 

cell line SUP-B15/RI was harvested and evaluated when the imatinib concentration 

reached up to 4 μM (Xing et al., 2012). After achieving the ability to grow in the 

presence of 4 μM imatinib, the cells were designated as SUPB15/R, and the drug 

concentration was maintained at a constant level of 4 μM throughout the research. At 

https://paperpile.com/c/8RkzGg/ef0xw
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each dosage administration, the resistant cell group from the preceding step and the 

corresponding controls of that group were frozen at -80°C and archived as backups.  

 

 
Figure 3. Generation of Imatinib resistant SUP-B15/R cell line by gradually exposing 

the cells to increasing concentrations of Imatinib over an extended period. 

 

2.2.6. Validating Imatinib Resistance with MTT Assay 

The examination of resistance development in SUPB15/R cells, exposed to a 

progressively escalating drug regimen, was carried out using the Thiazolyl blue 

tetrazolium bromide (MTT) assay. Following one passage without exposure to the 

drug, the cells underwent centrifugation at 400 g for 5 minutes to eliminate the drug. 

Upon confirming the viability and count of the collected cells using trypan blue, they 

were seeded in a 96-well plate at a density of 1x104cells per well in 100 µL of RPMI 

media and exposed to imatinib for 72h. Following that, 15 μl of MTT solution (5 

μg/ml) was introduced into the wells and allowed to incubate for 4 hours at 37°C in a 

CO2 incubator. Subsequently, the cells were pelleted through centrifugation at 250 g 

for 10 minutes, and the medium was aspirated from each well. Then, 100 μl of DMSO 

was added and incubated for 30 minutes on a light-protected shaker. Measurements 

were conducted using a spectrophotometer at a wavelength of 570 nm. 

 

2.2.7. Validating Imatinib Resistance with Growth Curve 

To demonstrate the development of resistance, both SUP-B15 and SUP-B15/R cells 

were cultured in two different 6-well plates at a density of 500,000 cells per ml in 3 



 

 

38 

ml volumes. Three wells served as controls, while the remaining three were exposed 

to an IC50 drug concentration. Trypan blue cell counting was performed at 48 and 72 

hours on both control and treated wells, with the results being documented. Upon 

completion of the experiment at the 72nd hour, a growth curve was constructed based 

on the obtained data. 

 

2.2.8. Validating Imatinib Resistance with Flow Cytometry  

To assess drug resistance via flow cytometry, both SUPB15 and SUPB15/R cells were 

cultured in 6-well plates and exposed to imatinib for 48h and 72h. Subsequently, 1x 

106 cells were collected, PBS-washed twice, and re-suspended in 100 μl of binding 

buffer. Following this, 5 μl of Annexin V-FITC was introduced, and after a 10-minute 

interval, 10 μl of PI was added. The cells were then incubated in darkness at room 

temperature for 15 minutes, followed by the addition of 400 μl of binding buffer. The 

stained cells were subjected to analysis using a flow cytometer. 

 

2.3. Evaluating the Cytotoxic Activity of Drug Candidates for Ph (-) ALL on Jurkat 

Cell Line 

 

2.3.1. Determination of Anti-Proliferative Effects of Drugs on Ph (-) ALL                                  

Cells with MTT Assay 

Maytansine and Isoprenaline were identified as the chosen drug candidates for Ph (-) 

ALL. Additionally, Doxorubicin was employed as a positive control for these drugs. 

To assess their cytotoxic potential on the Jurkat cell line, an MTT assay was executed. 

Initially, Jurkat cells underwent centrifugation at 900 rpm for 5 minutes. Subsequent 

to this, their count and viability were determined using Trypan Blue. Following the 

enumeration, Jurkat cells were seeded onto a 96-well plate at a density of 2x 104, and 

individual treatments with Maytansine (0-2nM) and Isoprenaline (0-50 μM) were 

administered. Following a 48-hour incubation period, 15 μL of MTT solution was 

introduced to the wells, and the plate was incubated for an additional 4 hours without 

exposure to light. Upon removal of the media from the wells, 100 μL of DMSO was 

added, and the plate was incubated for 30 minutes on a light-protected shaker.  
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2.3.2.  Assessment of Cytotoxic Effects of Drugs Possessing Established       

Anti-Proliferative Properties on Ph (-) ALL Cells with Trypan Blue Assay 

To substantiate the cytotoxic efficacy of Maytansine and Isoprenaline, the Trypan Blue 

Assay was employed. For this purpose, Jurkat cells were seeded at a density of 5x105 

across two distinct 6-well plates, where one plate was designated for Maytansine, and 

the other for Isoprenaline. Wells were categorized into control, IC50, and IC80 

concentrations of the respective drugs. Cell counts were performed using trypan blue 

at both 24, 48, and 72. hours for each well. The data obtained from the counts were 

utilized to construct a growth curve. 

 

 
Figure 4. Schematic representation of the 6-well plate arrangement for the Trypan Blue 

experiment. 

 

2.4. Estimation of the Cytotoxic Effects of Drugs, Both Individually and in 

Combination with Imatinib, on Imatinib-Sensitive and Resistant Ph+ ALL Cells.   

 

2.4.1. Determination of Cytotoxic Effects of Drugs on Both Sensitive and   Imatinib 

Resistant Ph (+) ALL Cells with MTT Assay 

Desipramine and Glipizide were selected as the preferred drug candidates for Ph (+) 

ALL. To evaluate their cytotoxic potential on the SUP-B15 and SUP-B15/R cell lines, 

an MTT assay was conducted. Initially, cells were centrifuged at 400 g for 5 minutes. 

Subsequently, their count and viability were assessed using Trypan Blue. After 

enumeration, both cell lines were seeded onto a 96-well plate at a density of 2x104, 

and individual treatments with Desipramine (0-25 μM) and Glipizide (0-80 μM) were 
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administered. After a 72-hour incubation period, 15 μL of MTT solution was added to 

the wells, and the plate was incubated for an additional 4 hours without exposure to 

light. Following the aspiration of media from the wells, 100 μL of DMSO was added, 

and the plate was incubated for 30 minutes on a light-protected shaker. 

 

2.4.2. Determination of the Cytotoxic Effect of Drugs Given in Combination with 

Imatinib by MTT Assay. 

To comprehend the additive, synergistic & antagonistic effects of imatinib and Ph (+) 

drugs, a combined MTT assay was employed on imatinib-resistant SUP-B15/R cells. 

The experimental design included wells treated with only imatinib IC20, only the drug 

(Desipramine or Glipizide), and a combination of both. In the combination wells, 

imatinib concentration remained stable at IC20, while the required drug concentration 

was increased. This experiment was repeated separately for both Desipramine and 

Glipizide. 

 

 
Figure 5. Representation of combination MTT assays with selected drugs on a 96-well 

plate. 

 

2.4.3. Confirmation of Cytotoxic Activity of Selected Synergistic Doses Using Trypan 

Blue Exclusion Assay 

Upon identification of synergistic doses using computational tools, a trypan blue 

staining assay was employed to validate the impact of these dosages. In pursuit of this, 
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SUP-B15 and SUP-B15/R cells were harvested and seeded onto 6-well plates, where 

the determined synergistic dosages were administered to the respective wells, 

alongside a control well. Cell counting was conducted at 48 hours and 72 hours, and 

the acquired data were utilized to construct a growth curve. 

 

2.5.  Assessment of the Apoptotic Effects of Synergic Doses of the Selected Drugs 

Determined to Have Potent Cytotoxic Effects on the Cells. 

 

2.5.1.   Determination of Apoptotic Cell Population via Annexin/FITC dual staining 

The apoptotic effects of two drugs, which have been determined to exhibit strong 

cytotoxic activity among the tested drugs, will be assessed on cells using the 

Annexin/FITC dual staining method. Based on flow cytometry analyses resulting from 

Annexin and FITC staining, cells with dual positivity will be classified as "late 

apoptotic/dead," Annexin-positive and FITC-negative cells as "early apoptotic," 

Annexin-negative and FITC-positive cells as "necrotic," and cells negative for both 

Annexin and FITC as "healthy." Furthermore, apoptotic activations will be determined 

in Ph (-) Jurkat cells exposed to IC20 and IC50 concentrations, calculated based on 

MTT assay results, during the specified combination or individual applications of 

drugs for 48 and 72 hours, as well as in Ph (+) imatinib-sensitive SUP-B15 cells and 

imatinib-resistant SUP-B15/R cells. Jurkat, SUPB15, and SUPB15/R cells were 

cultured in 6-well plates and treated with required dosages of drugs for 48h and 72h. 

Subsequently, 1x106 cells were harvested, washed twice with PBS, and re-suspended 

in 100 μl of binding buffer. Following this, 5 μl of Annexin V-FITC was added, and 

after a 10-minute incubation, 10 μl of PI was introduced. The cells were then incubated 

in darkness at room temperature for 15 minutes, followed by the addition of 400 μl of 

binding buffer. The stained cells underwent analysis using a flow cytometer. 

 

2.6.1. Confirmation of Cytotoxic Activity of Selected Drugs on HUVEC Cells Using 

Trypan Blue Exclusion Assay 

HUVECs were seeded in 6-well plates at a concentration of 5 x104. After 24 hours of 

adhesion, the media was removed from the 6-well plates. Then, the drugs were added 

to the 6-well plates with fresh media at the IC50 dose that was determined. After 48 
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hours of incubation, the cells were counted using trypan blue, and the cytotoxic effect 

of the drugs on the HUVEC cell line was determined. 
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CHAPTER 3: RESULTS 
 

3.1.  Determination of the Drugs to be Repositioned 

The identification of DEGs in eight datasets related to ALL and four datasets related 

to Ph+ ALL was performed using the LIMMA R package. Figures 6A and 6B present 

the counts of DEGs, up-regulated DEGs, and down-regulated DEGs for both diseases. 

R/Robustrankaggreg, a statistical approach combining data from multiple datasets, 

was employed to enhance the statistical robustness of the DEGs. This method assigned 

a ranking to each gene in each dataset and computed the mean FC with a significance 

threshold of p-value <0.05. The analysis revealed a total of 799 DEGs in ALL, with 

386 up-regulated genes and 413 down-regulated genes. For Ph(+) ALL, 295 DEGs 

were identified, consisting of 132 up-regulated and 163 down-regulated genes. Among 

the top 20 up-regulated and down-regulated DEGs based on their FC illustrated in 

Figure 7, ADA and HBD were notably highlighted as up-regulated DEGs in the top 

20 DEGs for ALL, while these genes did not exhibit differential expression in Ph+ 

ALL. Conversely, SPATS2L was identified as an up-regulated DEG in Ph(+) ALL but 

did not show significant differential expression in ALL. 

 

Figure 6. Number of DEGs in the result of DEG analysis of each dataset A) in ALL 

and B) in Ph+ ALL.  
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Figure 7. Representation of R/Robustrankaggreg analysis results with heatmap 

diagram of fold changes (logFC) of the top 20 genes with increased and decreased 

expression in the ALL (A) and Ph (+) ALL data sets (B). 

 

3.1.1. Identification of HUB Proteins 

In the course of the investigation, a total of 3031 PPIs associated with protein coding 

DEGs were identified in cases of ALL, whereas 519 PPIs were recognized in Ph+ 

ALL. Following this, an analysis of the top 20 proteins, considering both degree and 

betweenness centrality, was conducted using the CytoHubba package for both disease 

categories. The hub proteins for each respective condition were designated as the set 

union of proteins identified as top-degree and top-betweenness. 

As a result, in ALL, a total of 24 hub proteins were determined, encompassing AGR2, 

CBX5, CDC42, CDC5L, CDK1, CDKN1A, EGFR, EZH2, HSP90AA1, HSP90AB1, 

HSPD1, JUN, MYC, PCNA, PIK3R1, RAC1, RANBP9, SMARCA4, SNCA, 

TNFAIP3, TRAF3, YWHAB, YWHAE, and ZBTB16. Moreover, 33 hub proteins 

were identified for Ph (+) ALL, including ATM, ATP2B1, BIRC3, CCND2, CDK6, 

CDKN2A, CDKN2C, CTBP2, DSP, GNAI1, GRB10, HDAC6, HIPK2, IL6ST, INSR, 

IQGAP1, KIAA1429, KRAS, LCK, LEF1, LGALS3BP, LYN, MYB, MYH10, 

RAI14, RANBP9, SAP30, SMAD1, SYK, SYNCRIP, TRAF5, TRAPPC10, and 

YES1. 
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Remarkably, an overlap was noted where 16 hub proteins were identified as common 

in both ALL and 7 hub proteins were shared in the case of Ph (+) ALL found by degree 

and betweenness to depict the interactions among these hub proteins visually, a 

network visualization was created using Cytoscape (Figure 8). 

 

 

Figure 8. A) The interaction network illustrating the connections of hub proteins 

(depicted by blue octagons) with other proteins in ALL. B) The interaction network 

showcasing the links of hub proteins (depicted by red octagons) with other proteins in 

Ph+ ALL. 

 

3.1.2. Gene Enrichment Analysis 

Through comparative gene set enrichment analysis, it was determined that 11 

pathways were shared between both diseases out of the 20 significant pathways 

associated with DEGs. These pathways included cellular response to cytokine 

stimulus, hematopoietic cell lineage, hemostasis, inflammatory response, negative 

regulation of cell activation, negative regulation of the immune system process, 

positive regulation of cell death, positive regulation of cytokine production, positive 

regulation of the immune response, regulation of immune effector process, and 

response to bacterium. In addition to these, cell cycle, cytokine signaling in the 

immune system, neutrophil degranulation, regulation of B cell activation, signaling by 

Rho GTPases, Miro GTPases, and RHOBTB3 were notable pathways observed in 
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ALL. B cell activation, enzyme-linked receptor protein signaling pathway, and 

regulation of the MAPK cascade pathways were also significant pathways in Ph+ 

ALL. 

 
 

 

 
 

 

Figure 9. Pathways/biological processes activated by genes exhibiting differential 

gene expression in ALL (A). Pathways/biological processes activated by genes 

exhibiting differential gene expression in Ph-positive ALL (B). 

 

3.1.3. Selected Repositioned Drugs 

Two different approaches were used in the research to investigate drug repositioning 

techniques for ALL and its Ph+ subtype: the discovery of DEGs as viable drug targets 
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that have the ability to reverse gene expression patterns, and the targeting of hub 

proteins as potential drug targets. Using L1000CDS2, a medication repositioning 

technique, it was possible to find 39 distinct drugs for Ph+ ALL and 40 distinct drugs 

for up-regulated and down-regulated DEGs in ALL. notably, a subset of six 

medications Dasatinib, NVP-BGT226, Parthenolide, Selamectin, Selumetinib, and 

Tyrphostin AG 1478 that are shared by both disorders were discovered. Dasatinib is 

currently used as a first-line treatment for Ph+ ALL in adult patients(Wieduwilt, 2022). 

Selamectin, on the other hand, is an antiparasitic drug that interacts with various 

targets, including multidrug resistance protein, Akt/mTOR, and WNT-TCF 

pathway(Juarez et al., 2018). Tyrphostin, tested in mice, is an active EGFR inhibitor 

recommended for individuals with mutations in human pre-B acute lymphoblastic 

leukemia. When these drugs are examined, drugs such as Dasatinib, already prioritized 

in the clinic for ALL treatment, or drugs recommended for ALL treatment, such as 

Parthenolide and Tyrphostin AG 1478, have been identified(Lee and Rhee, 2017). The 

presence of drugs from the literature that is already used in the clinic or have 

therapeutic effects in our study is also evidence that the gene sets used in the study 

accurately reflect the disease. From the 24 core proteins identified for ALL, 13 of them 

have formed a network with a total of 123 interactions involving 99 drugs. In the case 

of Ph+ ALL, 19 out of 33 core proteins have constituted a network with a total of 289 

interactions involving 203 drugs. Conclusively, within the scope of the thesis, the 

drugs that could be effective from many data sets were compiled as the first two drugs 

for each of the two diseases using different methods. These include Maytansine and 

Isoprenaline for ALL and Desipramine and Glipizide for Ph (+) ALL.  

 

Table 3. The first two drugs targeting core proteins in ALL disease 

 

https://paperpile.com/c/8RkzGg/XbVLX
https://paperpile.com/c/8RkzGg/lz7U2
https://paperpile.com/c/8RkzGg/Uj2KL
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Table 4.  The first two drugs targeting core proteins in Ph (+) ALL disease 

Name of Drug 

 

p-value Target Hub 

Protein 

Information of Drug 

DESIPRAMINE 3.65995E-08 KRAS Desipramine is a tricyclic 

antidepressant used in the 

treatment of depression. 

GLIPIZIDE 0.000131224 CDKN2A,GRB

10,CDKN2A 

Glipizide is an anti-

diabetic medication 

belonging to the 

sulfonylurea class, used in 

the treatment of type 2 

diabetes. 

 

3.2. Generation of Imatinib Resistant Cell Line 

 

3.2.1. Results of MTT assays 

Within the framework of this thesis, a central objective was the examination of 

cytotoxic effects induced by repurposed drugs on imatinib-resistant SUP-B15 cell 

lines. Emphasis was placed on meticulous observation of the mechanisms through 

Name of Drug p-value Target Hub 

Protein 

Information of Drug 

MAYTANSINE 0.000227 HSP90AA1 Maytansine is a cytotoxic 

agent that binds to the 

rhizoxin-binding site, 

preventing the assembly 

of microtubules by 

binding to tubulin. 

ISOPRENALINE 0.000247 PIK3R1 Isoprenaline is a 

medication used for the 

treatment of bradycardia, 

heart block, and 

occasionally asthma. 
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which these drugs could potentially mitigate imatinib resistance. To this end, 

increasing dosages of Imatinib were given to parental cells for 6 months. This process 

was continued to reach 4 μM of resistance. To confirm the resistance in developed 

imatinib-resistant SUP-B15/R cells, an MTT assay was conducted, wherein cells were 

exposed to increasing doses of imatinib and cell viability was measured after 72 hours 

using the MTT test. The results of the MTT assays indicated that while the IC50 value 

for imatinib in sensitive parental SUP-B15 cells was approximately 2.8 μM, the IC50 

value for the developed imatinib-resistant SUP-B15/R cells was observed almost 20 

μM. Thus, it was determined that the resistant cells exhibited resistance to imatinib of 

7-fold compared to the sensitive parental cells (Figure 10). 

 

 
Figure 10. Determination of the viability of SUP-B15 and SUP-B15/R cells with 

imatinib treatment. Imatinib application was carried out for 72 hours, and viability 

analysis was performed using the MTT test. The experiments were repeated three 

times. Error bars indicate the standard deviation. 

 

3.2.2. Representation of Growth Curve for Validating Imatinib Resistance 

After performing MTT analysis, a growth curve analysis was executed to assess 

imatinib resistance in SUP-B15/R cells. Utilizing parental and imatinib-resistant cells 

from two different 6-well plates, in each 6-well plate, three wells functioned as 

controls, while the remaining three were subjected to a 4μM drug concentration. 
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Trypan blue cell counting occurred at 48 and 72 hours for both control and treated 

wells. Consequently, the variance in proliferation between parental cells and imatinib-

resistant cells was observed. As observed in Figure 11, the untreated parental cell line 

and untreated SUP-B15/R exhibited similar proliferation, whereas a notable difference 

was evident between the proliferation of the parental cell line treated with 4μM 

imatinib and the SUP-B15/R treated with the same concentration. While significant 

cell death was observed in the drug-treated parental cell line, the resistant group 

displayed a proliferation similar to its untreated state under 4μM drug exposure. 

 

 
Figure 11. Representative growth curve created with data obtained from the trypan 

blue experiment on SUP-B15 and SUP-B15/R. Imatinib application was carried out 

for 72 hours, and viability analysis was performed using the MTT test. The 

experiments were repeated three times. Error bars indicate the standard deviation. 

 

3.2.3. Flow cytometry for determining resistance 

To demonstrate the developed Imatinib resistance in SUP-B15/R cells, Imatinib 

treatment was applied to both SUP-B15 and SUP-B15/R cells, and apoptotic cells were 

detected using the Annexin/PI staining method. The experiment lasted for 72 hours, 

with measurements taken at 48 and 72 hours using flow cytometry, and graphs were 

generated accordingly. According to the results of the Annexin/PI staining, the 

apoptotic cell count observed in Imatinib-resistant SUP-B15/R cells remained 

unchanged following the application of the IC50 Imatinib dose (Figure 12). In contrast, 

a significant increase in apoptotic cell count, particularly at 72 hours, was evident in 

Imatinib-sensitive SUP-B15 cells treated with the IC50 Imatinib dose. Cells that did 
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not receive treatment did not exhibit a notable change in apoptotic cell count. 

Consequently, the resistance of SUP-B15/R cells to Imatinib, as confirmed by both 

MTT tests and trypan blue staining applications, has been reaffirmed. 

 

 

 
Figure 12. Representation of apoptotic cells identified in SUP-B15 and SUP-B15/R 

cells treated with IC50 Imatinib dose using Annexin/PI staining. Imatinib application 

was carried out for 72 hours, and viability analysis was performed using the MTT test. 

The experiments were repeated three times. Error bars indicate the standard deviation 
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3.3. Cytotoxic Effects of Maytansine and Isoprenaline on Ph (-) ALL cell line  

 

3.3.1. Ascertainment of Anti-Proliferative Effects of Maytansine and Isoprenaline 

With MTT Assay 

To assess the cytotoxic effects of the two drugs, Maytansine and Isoprenaline, 

identified through bioinformatic analyses for Ph (-) ALL, separate MTT assays were 

conducted on JURKAT cell lines, a cell line representative of ALL. Additionally, 

Doxorubicin was employed as a positive control for these drugs. In the Jurkat cell line, 

the IC50, IC20, and IC10 doses for Maytansine were determined to be 439 pM, 200 

pM, and 120 pM, respectively (Figure 13A). The results of the MTT assay indicated 

that the Jurkat cell line exhibited high sensitivity to Maytansine, with potent cytotoxic 

effects observed even at picomolar concentrations. Furthermore, IC50, IC20, and IC10 

doses for Isoprenaline were found to be 15.33 μM, 7.92 μM and 5.21 μM respectively. 

(Figure 13B).  

 

 
Figure 13. Determination of the viability of Jurkat cells treated with Maytansine (A) 

and Isoprenaline (B). Both treatment was conducted for 48 hours, and viability analysis 

was performed using the MTT test. The experiments were repeated three times. Error 

bars indicate standard deviation. 

 

Additionally, the MTT assay test results revealed that in the Jurkat cell line, the IC50, 

IC20, and IC10 values for Doxorubicin hydrochloride were determined as 27.88 nM, 

13.16 nM, and 12.2 nM, respectively (figure 14). Upon examination of the MTT results 

for Doxorubicin hydrochloride used as a control, as well as Maytansine and 
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Isoprenaline identified through analyses, it was discerned that the Jurkat cell line 

exhibits significantly greater sensitivity to Maytansine. 

 

 
Figure 14. Determination of the viability of Jurkat cells treated with Doxorubicin. 

treatment was conducted for 48 hours, and viability analysis was performed using the 

MTT test. The experiments were repeated three times. Error bars indicate standard 

deviation. 
 

3.3.2. Results of Trypan Blue Staining on Ph (-) ALL cell line after Drug 

Administrations 

The trypan blue staining method was employed to determine the cytotoxic effects of 

drugs with identified anti-proliferative activity on Ph (-) ALL cells. Cell counts were 

conducted at 24, 48 and 72. hours were used to construct a proliferation graph based 

on the obtained data. 

As a result of this experiment, the cytotoxic effects of Maytansine and Isoprenaline on 

Jurkat cell line have been confirmed. While the group without drug treatment and used 

as control exhibited a linear increase over the course of 3 days, the proliferation in the 

group treated with the IC50 dose was significantly slower compared to the control. At 

the IC80 dose, a linear decrease was observed, leading to a substantial reduction in the 

number of viable cells on the third day (Figure 15). 
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Figure 15. Determination of the cytotoxic effects of Maytansine (A) and Isoprenaline 

(B) on Jurkat cells based on the trypan blue staining results obtained from the 

assessment of their anti-proliferative activity. The experiment was repeated three 

times. Error bars indicate standard deviation. 

 

3.4. Assessment of the Cytotoxic Impact of Glipizide and Desipramine, Both 

Individually and in Conjunction with Imatinib, on Ph (+) ALL Cells 
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3.4.1. MTT Assay Results for Antiproliferative Effects Induced by Glipizide and 

Desipramine in Ph (+) ALL Cells 

Desipramine and Glipizide, identified as effective drugs for Ph (+) ALL through 

bioinformatic analyses, were individually subjected to MTT analyses to determine 

their cytotoxic effects on both parental SUP-B15 and Imatinib-resistant SUP-B15 cell 

lines. The MTT assay was established, taking into account a duplication period of 72 

hours. According to the MTT results, the IC50, IC20, and IC10 values for Desipramine 

in parental SUP-B15 cells were determined to be 22.04 μM, 9.27 μM, and 8.89 μM, 

respectively (Figure 16). For Imatinib-resistant SUP-B15/R, the IC50 dose was found 

to be the same as Imatinib-sensitive SUP-B15. Despite SUP-B15/R cells being 7 times 

more resistant to Imatinib compared to SUP-B15, Imatinib resistance did not alter the 

IC50 dose for Desipramine. From this result, it is evident that Imatinib resistance does 

not lead to any decrease in the anti-proliferative effect of Desipramine. 

 

 

 
Figure 16. Determination of the viability of SUP-B15 (A) and SUP-B15/R (B) cells 

treated with Desipramine. Desipramine treatment was carried out for 72 hours, and 

viability analysis was conducted using the MTT test. The experiments were repeated 

three times. Error bars indicate standard deviation. 

In addition, the second identified drug, Glipizide, exhibited IC50, IC20, and IC10 

doses of 68.02 μM, 25.2 μM, and 12.68 μM, respectively, in parental SUP-B15 cells. 

For Imatinib-resistant SUP-B15/R cells, the IC50, IC20, and IC10 doses were 

determined to be 116.93 μM, 30.38 μM, and 25.15 μM, respectively (Figure 17). When 

comparing the IC50 values of Imatinib-resistant SUP-B15/R and Imatinib-sensitive 
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SUP-B15, it is evident that the IC50 value of the resistant group is approximately 2 

times higher than the drug-sensitive group. This result clearly indicates that Imatinib 

resistance has led to a reduction of approximately 2 times in the anti-proliferative 

effect of Glipizide. In other words, cells showing resistance to Imatinib have developed 

cross-resistance to the drug Glipizide.  

 

 

 
Figure 17. Determination of the viability of SUP-B15 (A) and SUP-B15/R (B) cells 

treated with Glipizide. Glipizide treatment was carried out for 72 hours, and viability 

analysis was conducted using the MTT test. The experiments were repeated three 

times. Error bars indicate standard deviation. 

In addition to all of these, Dasatinib was used as a positive control for SUP-B15 and 

SUP-B15/R cells. According to MTT results IC50, IC20 and IC10 dosages of 

Dasatinib on SUP-B15 cells were 15.96 nM, 2.02 nM, and 1.01 nM respectively. 

Additionally, SUP-B15/R cells have demonstrated similar values (Figure 18). 

According to these results, SUP-B15 and SUP-B15/R were more sensitive to Dasatinib 

compared to Desipramine and Glipizide. 
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Figure 18. Determination of the viability of SUP-B15 (A) and SUP-B15/R (B) cells 

treated with Dasatinib. Dasatinib treatment was carried out for 72 hours, and viability 

analysis was conducted using the MTT test. The experiments were repeated three 

times. Error bars indicate standard deviation. 

 

3.4.2. MTT Assay outcomes obtained with Glipizide and Desipramine combinations 

in conjunction with Imatinib administration on Ph (+) ALL Cells Respectively 

The drugs with identified efficacy were applied in combination with Imatinib to both 

sensitive SUP-B15 and resistant SUP-B15/R cells. This allowed for the testing of the 

impact of repositioned drugs on the effectiveness of Imatinib. Experimental groups for 

determining the anti-proliferative effect were established as follows: control; Imatinib 

alone; drug alone; Imatinib and drug combination. During these combination 

treatments, the concentration of Imatinib was kept constant at IC20, while the 

identified drugs were applied in escalating doses. According to the results of the MTT 

assay applied to SUP-B15 and SUP-B15/R cells for the combination of Desipramine 

and Imatinib, the IC50 value of the drug Desipramine on SUP-B15 cells, which is 

22.04 μM, was determined to be 15.41 μM when combined with IC20 Imatinib. 

Additionally, the IC50 dose of Desipramine on SUP-B15/R is quite similar to that on 

SUP-B15 cells (Figure 19). 
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Figure 19. Determination of the viability of SUP-B15 (A) and SUP-B15/R (B) cells 

treated with Imatinib (IC20), Desipramine, and Imatinib (IC20) plus Desipramine 

combination. All treatments were carried out for 72 hours, and viability analysis was 

conducted using the MTT test. The experiments were repeated three times. Error bars 

indicate standard deviation. 

Furthermore, in the investigation conducted using the Compusyn system to determine 

potential synergistic, additive, or antagonist relationships between the drugs, a 

synergistic effect was observed in combination doses of Desipramine at 10μM, 20μM, 

and 25μM with Imatinib in parental SUP-B15 cells. However, it was determined that 

only the dose of Desipramine at 35μM shows a synergistic relationship with Imatinib 

in SUP-B15/R cells. (Figure 19) 

Moreover, for another Ph (+) ALL drug, Glipizide, a combination experiment was set 

up on both parental SUP-B15 and Imatinib-resistant SUP-B15/R cells. While keeping 

Imatinib at a constant IC20 dose, Glipizide was administered in increasing doses. In 

light of the MTT assay results conducted on SUP-B15 and SUP-B15/R cells to assess 

the combination of Glipizide and Imatinib, the IC50 value of Glipizide for SUP-B15 

cells, which is 68.02 μM, determined to be 53 μM when combined with IC20 Imatinib. 

Additionally, the IC50 dose of Glipizide on SUP-B15/R which is 116.93 μM, was 

determined to be 56.17 μM when combined with IC20 Imatinib. Moreover, the inquiry 

utilizing the Compusyn system to discern potential synergistic, additive, or 

antagonistic interactions among the drugs revealed a synergistic effect at combination 

doses of Glipizide at 10 μM, 25 μM,50 μM and 80 μM with Imatinib in parental SUP-

B15 cells. Moreover, the synergistic effect at combination doses of Glipizide at 10 μM, 

50 μM, 80 μM and 100 μM with Imatinib in SUP-B15/R cells. 
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Figure 20. Determination of the viability of SUP-B15 (A) and SUP-B15/R (B) cells 

treated with Imatinib (IC20), Glipizide and Imatinib (IC20) plus Glipizide 

combination. All treatments were carried out for 72 hours, and viability analysis was 

conducted using the MTT test. The experiments were repeated three times. Error bars 

indicate standard deviation. 
 

3.4.3. Findings from Trypan Blue Staining at the Selected Synergistic Doses on 

Ph(+) ALL Cells 

The cytotoxic impacts of synergic drug doses of Imatinib, Desipramine and Glipizide 

on SUP-B15 and SUP-B15/R cells were assessed using the trypan blue staining 

method. Proliferation graphs were constructed based on cell counts performed at 48 

and 72 hours using the collected data. As a result of the experiment, the cytotoxic 

activities of selected combination dose of Desipramine and Imatinib, which were 10 

μM, have been determined on SUP-B15 cell line. The statistical analyses performed 

for both the Desipramine 10μM and the combination group of Desipramine 10μM with 

Imatinib IC20 revealed a noteworthy and statistically significant difference between 

these groups at both 48 and 72 hours. Moreover, this significant difference was 

observed to further intensify at the 72-hour time point.  Additionally, when the cell 

death rates are examined, it has been demonstrated that the combination group of 

Desipramine 10 μM and IC20 Imatinib dose creates more antiproliferative effect than 

the sum of these doses in the cell. (Figure 21)  
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Figure 21. Determination of the cytotoxic effects of IC20 Imatinib, Desipramine 10 

μM,  and their combinations on SUP-B15 cells based on the trypan blue staining results 

obtained from the assessment of their anti-proliferative activity. The experiment was 

repeated three times. Error bars indicate standard deviation. 

Furthermore, Glipizide and Imatinib, which were 10 μM and 80 μM, have been 

confirmed on SUP-B15 cell line. The statistical analyses conducted for the Glipizide 

10μM and Glipizide 10μM with Imatinib IC20 combination groups indicated a 

statistically significant difference between these groups at both 48 and 72 hours. This 

significant difference further increased at 72 hours (Figure 22). 

 
Figure 22. Determination of the cytotoxic effects of IC20 Imatinib, Glipizide 10 μM,  

and their combinations on SUP-B15 cells based on the trypan blue staining results 

obtained from the assessment of their anti-proliferative activity. The experiment was 

repeated three times. Error bars indicate standard deviation. 
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Additionally, the same analyses were repeated for the   Glipizide 80μM and Glipizide 

80μM plus Imatinib 20 combination. Accordingly, a statistically significant difference 

was again found between these groups at both 48 and 72 hours. However, in this case, 

the significance does not increase over time. (Figure 23) 

 

 

 
Figure 23. Determination of the cytotoxic effects of IC20 Imatinib, Glipizide 80 μM, 

and their combinations on SUP-B15 cells based on the trypan blue staining results 

obtained from the assessment of their anti-proliferative activity. The experiment was 

repeated three times. Error bars indicate standard deviation. 

Furthermore, same combination analyses were conducted on SUP-B15/R cells to 

understand the cytotoxic activity of synergistic dosages on Imatinib resistance. 

Following the experiment, the cytotoxic effects of specific combined doses, namely 

50 μM, of Glipizide and Imatinib were evaluated on the SUP-B15/R cell line. 

Statistical analyses conducted on both the Glipizide 50 μM group and the combined 

Glipizide 50 μM with Imatinib IC10 group demonstrated a significant and notable 

difference between these sets at the 72-hour mark (Figure 24). 
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Figure 24.  Determination of the cytotoxic effects of IC10 Imatinib, Glipizide 50μM,  

and their combinations on SUP-B15/R cells based on the trypan blue staining results 

obtained from the assessment of their anti-proliferative activity. The experiment was 

repeated three times. Error bars indicate standard deviation.  

 

3.5. Evaluation of Apoptotic Effects of Selected Drugs on ALL Cells. 

 

3.5.1 Determination of Apoptotic Effects of Maytansine and Isoprenaline on Jurkat 

Cells  

The Annexin/PI staining method was employed to determine the apoptotic effects of 

the selected drugs, Maytansine and Isoprenaline, on Jurkat, a Ph(-) ALL cell line. The 

experiment lasted a total of 48 hours, and measurements were taken every 24 hours 

using a flow cytometry device. During the experiment, Jurkat cells were treated with 

the IC20 and IC50 doses of Maytansine and Isoprenaline separately at the specified 

time intervals. Based on Annexin/PI staining, the IC20 and IC50 doses of Maytansine 

and Isoprenaline (Figure 25) have led to progressively increasing apoptosis. 

Furthermore, these experimental results have substantiated the accuracy of the doses 

obtained from the MTT assay. 
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Figure 25. Determination of Apoptotic effects of Maytansine (A) and Isoprenaline (B) 

on Jurkat cell line based on the Annexin/PI double staining results. The experiment 

was repeated three times. Error bars indicate standard deviation.  

 

 3.5.2. Determination of Apoptotic Effects of Glipizide and Desipramine on SUP-15 

and SUP-B15/R cells 

The apoptotic effects of combined doses of Imatinib, Glipizide, and Desipramine on 

SUP-B15 and SUP-B15/R cells were evaluated through Annexin/PI staining. 

Apoptotic cell graphs were generated to illustrate the apoptotic cell population at both 
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48 and 72 hours. The experiment confirmed the apoptotic effects of the selected 

combination doses of Glipizide (10 and 80μM) (Figure 26), Desipramine (10μM) 

(Figure 27) and Imatinib on the SUP-B15 cell line. For Desipramine the acquired 

apoptosis level is near synergistic. For Glipizide a higher level of apoptosis has been 

observed in the synergistic combination doses of the drugs compared to their 

individual administration.  

 
Figure 26. Determination of the Apoptotic effects of IC20 Imatinib, Glipizide 10 μM 

and their combinations (A) and IC20 Imatinib, Glipizide 80 μM and their combinations 

(B) on SUP-B15 cells based on the Annexin/PI double staining experiment. The 

experiment was repeated three times. Error bars indicate standard deviation. 
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Figure 27. Determination of the Apoptotic effects of IC20 Imatinib, Desipramine 10 

μM and their combinations on SUP-B15 cells based on the Annexin/PI double staining 

experiment. The experiment was repeated three times. Error bars indicate standard 

deviation. 

Furthermore, the same combination experiment was performed for SUP-B15/R cells 

with the selected doses of Glipizide (50 μM) (Figure 28) and Desipramine (10 μM) 

(Figure 29) and IC10 Imatinib on the SUP-B15/R cells to understand the combination 

effects on Imatinib resistance. According to results, synergistic doses of both Glipizide 

and Desipramine have potentially significant apoptotic effects on Imatinib resistant 

SUP-B15/R cells. 

 

 
Figure 28. Determination of the Apoptotic effects of IC10 Imatinib, Glipizide 50 μM 

and their combinations on SUP-B15/R cells based on the Annexin/PI double staining 
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experiment. The experiment was repeated three times. Error bars indicate standard 

deviation. 

 

 

 
Figure 29.  Determination of the Apoptotic effects of IC10 Imatinib, Desipramine 15 

μM and their combinations on SUP-B15/R cells based on the Annexin/PI double 

staining experiment. The experiment was repeated three times. Error bars indicate 

standard deviation. 

 

3.6. Findings from Trypan Blue Staining at the Selected Drugs on HUVEC Cells 

The trypan blue staining method was employed to determine the cytotoxic effects of 

drugs with identified anti-proliferative activity on Ph (-) ALL and Ph (+) cells. Cell 

counts were conducted at 48 hours were used to construct a cytotoxic effect graph 

based on the obtained data. 

As a result of this experiment, the cytotoxic effects of Maytansine, Isoprenaline 

(Figure 30), Glipizide and Desipramine (Figure 31) on HUVEC cell line have been 

confirmed. According to the results of the experiment, the cytotoxic effects of the 

drugs on the relevant cell lines and HUVECs were compared. It was concluded that 

the cytotoxic effect of the drugs on the healthy control HUVEC cell line was lower 

than that on the relevant cell lines. 
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Figure 30.  Determination of the cytotoxic effects of Maytansine (A) and Isoprenaline 

(B) on HUVEC and Jurkat cells based on the trypan blue staining results obtained from 

the assessment of their anti-proliferative activity. The experiment was repeated three 

times. Error bars indicate standard deviation.  

 

 

 



 

 

68 

 

 

Figure 31. Determination of the cytotoxic effects of Glipizide (A) and Desipramine 

(B) on HUVEC and SUP-B15 cells based on the trypan blue staining results obtained 

from the assessment of their anti-proliferative activity. The experiment was repeated 

three times. Error bars indicate standard deviation. 
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CHAPTER 4: DISCUSSION 
This thesis conducts a thorough comparative evaluation of ALL and Ph (+) ALL at 

various molecular levels, encompassing transcriptomics, proteomics, and 

metabolomics. Despite the significant diversity observed in ALL, its origin involves a 

range of distinct genetic abnormalities. The most prevalent among these is the Ph+ 

ALL subtype, characterized by the BCR/ABL translocation, which stands out as the 

most aggressive and high-risk variant within the spectrum of ALL subtypes. Notably, 

the presence of drug resistance, particularly imatinib resistance, in Ph (+) ALL poses 

a significant challenge, creating a formidable obstacle in its therapeutic management. 

In addressing these challenges, this research aims to provide a new avenue for 

optimism in treating these conditions through the application of drug repositioning. It's 

worth noting that, to the best of our knowledge, no previous studies have undertaken 

a comparative transcriptomic analysis between ALL and Ph+ ALL. Furthermore, this 

study pioneers the use of the robust rank aggregation method to identify DEGs 

associated with diseases related to ALL. Differentially expressed transcripts associated 

with diseases were identified through the analysis of 8 ALL and 4 Ph+ ALL datasets. 

A total of 799 DEGs for ALL and 295 DEGs for Ph+ ALL were found to be statistically 

significant. Commonly, 154 down-regulated DEGs and 110 up-regulated DEGs were 

observed in both diseases, with down-regulated genes outnumbering up-regulated 

genes in ALL diseases. The PPI network of both ALL and Ph+ ALL was reconstructed. 

Hub proteins were determined based on the union of the top 20 proteins according to 

degree, indicating the number of interactions of a protein, and betweenness, signifying 

the number of connections that a protein establishes with other proteins in the shortest 

path, and were accepted as such. The role of disease-associated genes in various 

pathways aids in unraveling the molecular mechanisms underlying diseases. In ALL, 

statistically significant pathways predominantly involve immune-related pathways 

(such as positive regulation of immune response and regulation of immune effector 

process) and cell cycle-related pathways (such as cellular response to cytokine 

stimulus, positive regulation of cell death, and regulation of B cell activation). 

Additionally, signaling pathways like signaling by Rho GTPases, Miro GTPases, 

RHOBTB3, and cytokine signaling are present. The development of Ph+ ALL also 

involves immune response and cellular response pathways, including pathways like 
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the adaptive immune system and regulation of cell-cell adhesion, which differ from 

those observed in ALL. Hub proteins in ALL are mainly associated with MAPK family 

signaling cascades, gastrin signaling pathway, cellular response to oxidative stress, 

kinase maturation complex 1, NOD-like receptor signaling pathway, etc. Similarly, 

hub proteins in Ph (+) ALL are primarily enriched in pathways such as DNA damage 

response, response to growth factor, signaling by receptor tyrosine kinases, FoxO 

signaling pathway, etc. 

The identification of potential drugs for the treatment of ALL and Ph (+) ALL was 

facilitated using L1000CDS2 and genexpharma tools. Upon examining the drugs 

identified through these two analyses, 39 and 99 drugs were recommended for ALL, 

and 40 and 203 drugs were recommended for Ph (+) ALL by L1000CDS2 and 

genexpharma, respectively. The original indications for in vitro testing of these drugs 

were then investigated. The consideration included determining whether these drugs 

were utilized for hematologic cancers or other diseases. Notably, drugs utilized for 

solid tumors, hematologic cancers, neurodegenerative, and psychiatric diseases 

emerged as prominent candidates. In the process of determining drugs for in vitro 

testing, priority was given to selecting drugs not employed as cancer medications and 

those previously used in treating other human diseases but not tested for ALL or Ph 

(+) ALL. Subsequently, the decision was made to conduct in vitro testing on 2 drugs 

which were Maytansine and Isoprenaline for ALL and 2 drugs which were 

Desipramine and Glipizide for Ph (+) ALL. Maytansine is recognized as a heterocyclic 

organic compound with the ability to bind to the rhizoxin binding sites of tubulin, 

thereby impeding the assembly of microtubules, leading to their disassembly and 

subsequent inhibition of cell division (mitosis). Additionally, its cytotoxic properties 

have been observed against various cancer cell lines, effectively hindering the growth 

and proliferation of cancer in vivo. However, during human clinical trials for cancer 

treatment, Maytansine exhibited a limited therapeutic window due to its toxic side 

effects on the gastrointestinal tract and nervous system(Zafar et al., 2023). To address 

this challenge, an antibody-drug conjugate has been formulated, aiming to enhance 

Maytansine's therapeutic potential while minimizing its toxic side effects through 

selective targeting and destruction of cancer cells. In this targeted delivery approach, 

Maytansine, serving as a cytotoxic payload, is attached to an antibody with specificity 

for a particular cancer cell antigen, connected by a chemical linker molecule. Upon 

https://paperpile.com/c/8RkzGg/zW2M8
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binding to its specific receptor, the conjugate enters the cell via endocytosis, where the 

Maytansine payload is cleaved from the antibody, and the free Maytansine alters the 

microtubule dynamics(Bauzon et al., 2019). Beyond its cytotoxic effects in cancer 

cells, Maytansine sourced from plants and microbes also exhibits antimicrobial 

properties(Newman and Cragg, 2020). In the scope of this thesis, Maytansine targets 

the HSP90AA1 hub protein, which was found to be overexpressed in ALL compared 

to healthy samples. HSP90 is likely the most well recognized group of heat shock 

proteins implicated into leukemia types(Cabaud-Gibouin et al., 2023). To this end, 

despite its toxic side effects, through the application of recently developed techniques, 

the prospect for utilizing Maytansine as a therapeutic agent in ALL appears promising. 

The second drug for ALL was Isoprenaline. Isoprenaline, a β-agonist, is employed to 

induce cardiomyopathy, a condition that can be mitigated by reducing the expression 

of proinflammatory cytokines (IL-6, IL-10, and TNFα) and apoptotic markers 

(caspase-3 and Bax), while increasing the levels of the anti-apoptotic protein Bcl2. 

Phenylephrine and clonidine are recognized as α1 and α2 adrenergic receptor agonists 

with known effects on blood pressure, leading to an increase or decrease, 

respectively(Uchida et al., 2019). However, a recent investigation reported that 

Isoprenaline induced the secretion of vascular endothelial growth factor (VEGF) in 

gastric cancer cells. These results imply that isoprenaline induces the secretion of 

VEGF, leading to the subsequent upregulation of plexin-A1 and VEGFR2 expression 

in gastric cancer cells. This positive impact contributes to the promotion of tumor 

angiogenesis (Lu et al., 2017). In the context of this research, Isoprenaline focuses on 

the elevated hub protein PIK3R1 in ALL compared to healthy samples.PIK3R1 is 

responsible for producing the p85 regulatory protein in the PI3K/AKT pathway, a 

crucial pathway for cellular migration, proliferation and apoptosis(Bhattacharya et al., 

2023). In light of this, although Isoprenaline targets the hub protein mentioned in the 

study, the findings highlighted in the gastric cancer research (Lu et al., 2017) cast a 

shadow on the potential utility of Isoprenaline, particularly in metastatic ALL. As a 

result of the repurposing study conducted for ALL, these two drugs (Maytansine and 

Isoprenaline) obtained were used in in vitro experiments. MTT tests, Trypan blue 

staining for determining cytotoxicity, and Annexin/PI staining applications for 

identifying apoptotic cells were performed on Ph (-) ALL cells, specifically Jurkat 

cells. After analyzing the MTT results for selected drugs, including Doxorubicin 

https://paperpile.com/c/8RkzGg/JpmTQ
https://paperpile.com/c/8RkzGg/fsv1h
https://paperpile.com/c/8RkzGg/Ufkl2
https://paperpile.com/c/8RkzGg/hZl8I
https://paperpile.com/c/8RkzGg/Rfjwi
https://paperpile.com/c/8RkzGg/41oom
https://paperpile.com/c/8RkzGg/41oom
https://paperpile.com/c/8RkzGg/Rfjwi
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hydrochloride as a positive control, it was observed that the Jurkat cell line 

demonstrates significantly higher sensitivity to Maytansine. This effect was further 

confirmed through trypan blue staining. Finally, Annexin/PI staining conducted to 

observe apoptotic effects indicated that the IC20 and IC50 doses determined by MTT 

for the drugs yielded results consistent with both MTT and trypan blue staining in 

Jurkat cells. Considering the wet lab experiments conducted, among the identified 

drugs for ALL, Maytansine stands out due to both its demonstrated cytotoxic effect 

and the potential for in vivo testing facilitated by newly developed techniques. 

However, this doesn't necessarily imply that the potential use of Isoprenaline cannot 

be realized. With appropriate patient selection and metastasis examination, it is 

believed that Isoprenaline could also be effective in the context of ALL. Furthermore, 

For Ph (+) ALL Desipramine and Glipizide were determined for further in vitro 

analysis. Desipramine, an antidepressant medication, is clinically utilized as a 

supplementary treatment for cancer patients. A pathological examination revealed its 

ability to inhibit the proliferation of HCC Hep3B cells through the induction of 

apoptosis, activation of MAPK signaling, and elevation of intracellular Ca2+ 

levels(Yang and Kim, 2017). Additionally, desipramine induced autophagy in glioma 

cells through PI3K-Akt-mTOR(Ma et al., 2013). Depending on the type of human 

colon carcinoma cell, desipramine induced cell death and apoptosis through both the 

mitochondrial and non-mitochondrial(Arimochi and Morita, 2008). Furthermore, it 

triggered apoptosis in human prostate cancer PC3 cells by activating the JNK kinase 

and caspase-3 pathways and increasing Ca2+ concentration(Chang et al., 2008). 

Evidence also suggests that desipramine augmented apoptosis induced by TRAIL,  in 

lung cancer cells by upregulating TRAIL receptor-2 expression and inhibiting 

autophagic flux(Song et al., 2022). In this thesis, Desipramine targets the KRAS hub 

protein for Ph+ ALL. KRAS is a protein, which is a part of the RAS/MAPK pathway 

and intriguingly, the effects of Desipramine on MAPK signaling were previously 

determined, enforcing our hypothesis of Desipramine as a KRAS inhibitor. As seen in 

the literature, the use of desipramine as an anticancer agent is established on various 

cancer cell lines; however, this effect has not been previously observed in Ph(+) ALL. 

Therefore, testing this drug on Ph (+) ALL cells, as obtained from bioinformatic 

analyses, has not only contributed to the literature but also revealed the potential use 

of desipramine as a therapeutic agent for Ph(+) ALL. The second drug for Ph (+) ALL 

https://paperpile.com/c/8RkzGg/h7cQA
https://paperpile.com/c/8RkzGg/A7iWh
https://paperpile.com/c/8RkzGg/B2fxZ
https://paperpile.com/c/8RkzGg/EmR3A
https://paperpile.com/c/8RkzGg/pJixF
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was Glipizide. Glipizide, developed in the 1950s as a second-generation oral 

hypoglycemic drug for treating type II diabetes, stands out for its ability to selectively 

stimulate insulin secretion from β-cells. Recent investigations have unveiled an 

intriguing connection between diabetes and an elevated risk of various types of tumors. 

Notably, epidemiological studies have suggested that the prolonged use of certain anti-

diabetic medications, including glipizide, might mitigate the risk of cancer 

development (Qi et al., 2014). A recent investigation discovered that glipizide has the 

potential to trigger TRAIL-mediated apoptotic cell death in human lung 

adenocarcinoma cells. Pretreatment with glipizide resulted in decreased levels of p-

Akt and p-mTOR at various concentrations. Glipizide treatment also significantly 

reduced p62 expression levels in a dose-dependent manner. These observations 

suggest that glipizide induces autophagy flux in human lung cancer cells. 

Consequently, these findings propose that glipizide, by inhibiting Akt/mTOR, 

enhances TRAIL-induced tumor cell death through the activation of autophagy flux. 

Moreover, it suggests that glipizide might serve as a potential combined therapeutic 

target with TRAIL protein, especially in TRAIL-resistant cancer cells (Nazim et al., 

2017). In the scope of this study, Glipizide targets CDKN2A and GRB10 hub proteins 

in Ph+ ALL. CDKN2A is already a crucial protein in Ph (+) ALL. To this end, 

targeting this hub gene with Glipizide can have significant potential to be used as an 

anticancer agent for ALL. Furthermore, the other hub gene targeted by Glipizide was 

GRB10, particularly noteworthy is that Glipizide, which has known effects on m/TOR 

signaling, further supports our hypothesis of its role as a GRB10 inhibitor, given its 

involvement in the mTOR pathway.  As evident from the provided examples in the 

articles, the utilization of Glipizide as an anticancer agent has been proposed before. 

However, there is no existing research of this nature for Ph (+) ALL, similar to 

Desipramine. After the repurposing studies for Ph (+) ALL, the identified drugs 

(Desipramine and Glipizide) were employed in in vitro experiments. MTT tests, 

Trypan blue staining to determine cytotoxicity, and Annexin/PI staining applications 

to identify apoptotic cells were conducted on Ph (+) ALL cells, specifically SUP-B15 

cells. Additionally, the drugs were tested on Imatinib-resistant SUP-B15 cells to 

observe their impact on a significant issue for Ph (+) ALL, which is Imatinib 

resistance. In line with this goal, Imatinib resistance was initially developed in parental 

SUP-B15 cells. To assess the developed resistance, MTT assay, growth curve analysis, 

https://paperpile.com/c/8RkzGg/O6oR6
https://paperpile.com/c/8RkzGg/eeTVl
https://paperpile.com/c/8RkzGg/eeTVl
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and Annexin/PI staining were employed. As depicted in Figure 10, the IC50 value of 

resistant cells is significantly higher compared to parental cells. Furthermore, the 

growth curve analysis (Figure 11) revealed that the drug-treated SUP-B15 cells 

exhibited much lower proliferation than drug-treated SUP-B15/R cells. Additionally, 

this growth curve analysis showed a relatively modest growth rate difference between 

the untreated control and SUP-B15/R cells. This observation was also evident in the 

Annexin/PI staining, where this difference decreased to a minimum with increasing 

hours. It is speculated that the disparity in growth rates may be attributed to the 

differences in passage numbers. In conclusion, these tests provide evidence that 

parental cells demonstrate resistance to Imatinib. Afterward, among the two drugs 

tested in both SUP-B15 and SUP-B15/R cell lines, Desipramine exhibited a higher 

antiproliferative effect at lower doses compared to Glipizide. However, the 

antiproliferative effect of Dasatinib used as a positive control, was higher at low doses 

than both selected drugs. Another crucial point is the observed cross-resistance 

phenomenon in the Imatinib-resistant SUP-B15/R cell line. The IC50 values 

demonstrated by Glipizide in SUP-B15 and SUP-B15/R are strikingly different from 

each other (Figure 17). When examining the IC50 values between Imatinib-resistant 

SUP-B15/R and Imatinib-sensitive SUP-B15, it becomes apparent that the IC50 value 

in the resistant group is roughly 2 times greater than that of the drug-sensitive group. 

This finding unequivocally suggests that the development of Imatinib resistance has 

resulted in an approximately 2 -fold reduction in the anti-proliferative impact of 

Glipizide. In simpler terms, cells exhibiting resistance to Imatinib have concurrently 

acquired resistance to the drug Glipizide. However, such an effect has not been 

observed with Desipramine. Moreover, the drugs were tested on both SUP-B15 and 

Imatinib-resistant SUP-B15/R cells to determine the combined effect they would 

exhibit when administered in conjunction with Imatinib. In the combination 

experiments conducted, the goal was to identify doses of Desipramine and Glipizide 

that synergistically work with Imatinib in both SUP-B15 and SUP-B15/R cells. 

According to the experiment results, doses were discovered where both Desipramine 

and Glipizide synergistically work with Imatinib. Subsequently, to validate these 

doses, trypan blue experiments were conducted, growth curves were created, and thus, 

synergistic cytotoxic effects were demonstrated. Finally, Annexin/PI staining was 

performed for the selected synergistic doses, comparing the effects of individual and 
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combined drugs on apoptotic cells. The results obtained from all these experiments 

showed that the combination of 10 μM Desipramine with IC20 Imatinib increased 

cytotoxic effects and apoptotic cells in SUP-B15 cells. Furthermore, combination of 

10 μM and 80 μM of Glipizide with IC20 Imatinib showed same effects on SUP-B15 

cells. Moreover, same experiments were conducted to SUP-B15/R to evaluate the 

effects of the synergistic dosages on Imatinib resistance. According to results, 

combination of 15 uM Desipramine with IC10 Imatinib increased cytotoxic effects 

and apoptotic cells. Also, combination of 50 μM of Glipizide and IC10 Imatinib 

showed the same effect on SUP-B15/R cells. Experimental results show that the 

combination of these drugs can achieve promising results on both non-resistant and 

Imatinib resistant cells in the clinic. Furthermore, all of the selected drugs were tested 

on healthy cell line, which was HUVEC, to evaluate their cytotoxic effects on non-

cancerous cells. The results were showed that all drugs have significantly lower 

cytotoxic effects on HUVEC compared to relative cell lines (Figure 30 and Figure 31). 

This suggests that the drugs could be safe for use in clinics, as they are not as likely to 

damage healthy cells. In this respect, the repurposing of all selected drugs in the clinic 

may be promising. 
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CHAPTER 5: CONCLUSION 
This thesis can be fundamentally divided into two separate components: the first 

involves computational studies, while the second entails laboratory experiments 

conducted to determine the effects of the drugs obtained from these studies. 

In the first part, datasets for both ALL and Ph (+) were obtained using the GEO 

database. Subsequently, these datasets were analyzed for differential expression levels 

using the Limma package, revealing 799 diseases related DEGs for ALL and 295 for 

Ph+ ALL. BioGRID database was then utilized to establish protein-protein interactions 

among these DEGs. Cytoscape software, along with the CytoHubba plug-in, was 

employed to visualize PPI networks and compute local and global topological features 

such as degree and betweenness. This analysis identified 24 hub proteins for ALL and 

33 for Ph (+) ALL. To elucidate the functional roles of the identified DEGs, functional 

enrichment analysis was conducted using the Metascape tool. According to this 

analysis, hub proteins of ALL were primarily involved in MAPK family signaling 

cascades, gastrin signaling pathway, cellular response to oxidative stress, kinase 

maturation complex 1, and NOD-like receptor signaling pathway. Additionally, for 

Ph+ ALL, the enriched pathways included DNA damage response, response to growth 

factor, signaling by receptor tyrosine kinases, and FoxO signaling pathway. 

The final step of this part involved drug repurposing using The L1000CDS2 platform 

and genexpharma tool. The study revealed that, out of the 24 core proteins identified 

for ALL, 13 formed a network with a total of 123 interactions involving 99 drugs. 

Moreover, in the case of Ph+ ALL, 19 out of 33 core proteins constituted a network 

with a total of 289 interactions involving 203 drugs. As a result, considering various 

criteria, the drugs named for Maytansine and Isoprenaline for ALL and Desipramine 

and Glipizide for Ph (+) ALL, were determined, which will move to the second stage 

in this thesis. 

In the second part of the thesis, the drugs identified in the first part were tested for their 

cytotoxic and apoptotic effects on relevant cells. For this purpose, the cytotoxic effects 

of Maytansine and Isoprenaline were initially determined using MTT and trypan blue 

staining methods, and both drugs showed cytotoxic effects on Jurkat cell line. 

Additionally, the apoptotic effect of the drugs was assessed using the Annexin/PI 

double staining method, and it was observed that the drugs induced apoptotic effects 
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in Jurkat cell line. The drugs identified for Ph (+) ALL, Glipizide and Desipramine, 

were tested on both parental SUP-B15 and Imatinib-resistant SUP-B15/R cells to 

observe their effects on Imatinib-resistant cells. For this purpose, an Imatinib-resistant 

cell line was developed, and the resistance was confirmed through both MTT tests and 

trypan blue staining methods. Furthermore, to confirm the developed resistance, the 

apoptotic cell ratio was determined by adding Imatinib treatment at the determined 

IC50 dose to both parental SUP-B15 and Imatinib-resistant SUP-B15/R cells, using 

Annexin/PI staining. The results of this experiment confirm the developed Imatinib 

resistance. Afterward, the cytotoxic effects of Desipramine and Glipizide were tested 

on both SUP-B15 and SUP-B15/R cells using the MTT test, and IC50, IC20, and IC10 

doses were determined. Subsequently, the apoptotic effects of the selected drugs were 

also confirmed using the Annexin/PI test. Finally, to observe the combined effects of 

the identified drugs in combination with Imatinib on SUP-B15 and SUP-B15/R cells, 

drugs were administered to cells in combination with the IC20 Imatinib dose for SUP-

B15, IC10 Imatinib dose for SUP-B15/R . The MTT assay was again used for cytotoxic 

effects. The results obtained from the tests were examined using the CompuSyn 

program to determine the synergistic, additive, or antagonistic relationships between 

the drugs. Then, growth curves were obtained using the trypan blue method to 

determine the cytotoxic effects of the identified synergistic doses. Additionally, the 

apoptotic effects of these selected synergistic doses were determined using 

Annexin/PI. Furthermore, HUVEC cells were included in the study as a healthy control 

to evaluate cytotoxic effects of the selected drugs. Results indicate that, Maytansine, 

Isoprenaline, Glipizide and Desipramine showed lower cytotoxic activity on healthy 

cells compared to relevant cell lines.  

In conclusion, based on both computational results and the anti-proliferative effects in 

cell lines, this thesis suggests that Maytansine and Isoprenaline could be potential to 

repositioned for ALL treatment. For Ph (+) ALL, considering the anti-proliferative 

effects in parental SUP-B15 cells, as well as the synergistic doses identified to work 

in combination with Imatinib, Glipizide, and Desipramine, it is believed that the 

repositioning of both drugs could have a positive impact on ALL treatment. Moreover, 

using both Desipramine and Glipizide in Imatinib resistant SUP-B15/R cell line is 

promising due to the synergistic effects they exhibited.  
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