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ABSTRACT

INCREASING TREATMENT EFFICACY BY DRUG REPOSITIONING IN
ACUTE LYMPHOBLASTIC LEUKEMIA

Tiikel, Ezgi Yagmur

Master’s Program in Bioengineering

Advisor: Asst. Prof. Dr. Yagmur Kiraz Durmaz

Janurary, 2024

Acute lymphoblastic leukemia (ALL) is recognized for its heterogeneity, and diverse
genetic abnormalities contributing to disease progression. The predominant subtype,
high-risk and aggressive Philadelphia positive ALL (Ph+ ALL), is characterized by
BCR/ABL translocation. Imatinib mesylate, a tyrosine kinase inhibitor (TKI), has been
pivotal in treating Ph+ ALL. However, achieving sustainable therapeutic success is
made difficult by TKI resistance. Therefore, there is an urgent need to identify targets
that offer alternative ALL treatments. This thesis aims to propose a novel treatment
strategy through drug repositioning, using a comprehensive analysis of transcriptome
datasets of ALL and Ph(+) ALL to identify DEGs associated with disease progression.
The research revealed Maytansine and Isoprenaline for ALL, and Glipizide and
Desipramine for Ph(+) ALL as potential candidates for therapeutic intervention. MTT
and Trypan blue assays were performed to confirm the cytotoxic effects of these drugs

on both ALL (Jurkat) and Ph+ ALL (SUP-B15) cell lines. Additionally, the apoptotic
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effects of these drugs have been determined using Annexin/FITC dual staining.
Furthermore, tests were conducted on Imatinib-resistant SUP-B15/R cells to determine
the impact of Imatinib resistance on the cytotoxic and apoptotic effects of Desipramine
and Glipizide. According to results, all the drugs have exhibited cytotoxic and
apoptotic effects on the cells. Additionally, synergistic doses with Imatinib were
obtained in both SUP-B15 and SUP-B15/R cells. As such, the repositioned drugs,
whose cytotoxic and apoptotic effects have been detected, may pave the way to
increase the survival rate by increasing the treatment effectiveness in both Ph (-) ALL

and Ph (+) ALL patients.

Keywords: Acute lymphoblastic leukemia, Philadelphia chromosome, drug resistance,

imatinib, drug repurposing



OZET

Akut Lenfoblastik Lésemilerde Ilag Yeniden Konumlandirma Ile Tedavi Etkinliginin

Artirilmasi

Tiikel, Ezgi Yagmur

Biyomiihendislik Yiiksek Lisans Programi

Tez Danigmani: Dr. Ogr.Uyesi Yagmur Kiraz Durmaz

Ocak, 2024

Akut lenfoblastik I6semi (ALL), hastaligin ilerlemesine katkida bulunan g¢esitli genetik
anormalliklerle igaretlenmis, 6nemli dlcilide heterojenligi ile taninmaktadir. Baskin alt
tip olan Philadelphia pozitif ALL (Ph+ ALL), BCR/ABL translokasyonu ile
karakterize olup hastalig1 yiiksek riskli ve agresif hale getirir. Imatinib mesilat, tirozin
kinaz inhibitorii (TKI) olarak, Ph+ ALL'nin tedavisinde etkili olmustur. Fakat, dikkate
deger etkisine ragmen, siirdiiriilebilir terapotik basariya ulasmasi, TKI direncinin
ortaya ¢ikmasi nedeniyle zorlasmaktadir. Bu nedenle, ALL tedavisi i¢in alternatif
sunabilecek hedeflerin belirlenmesi konusunda acil bir ihtiya¢ bulunmaktadir. Bu tez,
ilaclarin yeniden konumlandirilmasi yoluyla yenilik¢i ve etkili bir tedavi stratejisi
onermeyi amaclamaktadir. Caligsma, hastalik ilerlemesi ile iliskilendirilen DEG'leri
belirlemek amaciyla ALL ve Ph (+) ALL ile ilgili transkriptom veri setlerinin kapsaml
bir analizini icermektedir. Arastirma ALL i¢in Maytansin ve Izoprenalin, Ph(+) ALL
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icin Glipizid ve Desipramin’in terapdtik miidahale i¢in potansiyel adaylar oldugu
belirlenmistir. Secilen ilaglarin hem ALL (Jurkat) hem de Ph(+) ALL (SUP-BI5)
hiicre hatlar1 tizerindeki in vitro sitotoksik etkilerini dogrulamak i¢in MTT ve Trypan
blue deneyleri yapilmistir. Ayrica sitotoksik aktiviteye sahip oldugu belirlenen
ilaclarin hiicreler iizerindeki apoptotik etkileri Annexin/FITC ikili boyama ydntemi
kullanilarak belirlenmistir. Bununla birlikte, Imatinib direngli SUP-B15/R
hiicrelerinde Imatinib direncinin Desipramin ve Glipizid'in sitotoksik ve apoptotik
aktiviteleri lizerineki etkisi belirlenmistir. Deney sonuglarina gore, belirlenen tim
ilaglarin hiicreler iizerinde sitotoksik ve apoptotik etkiler gosterdigi goriilmiistiir.
Ayrica, hem SUP-B15 hem de SUP-B15/R hiicrelerinde Imatinib ile sinerjik dozlar
elde edilmistir. Sonug olarak, sitotoksik ve apoptotik etkileri belirlenen yeniden
konumlandirilmis ilaglarin, hem Ph (-) ALL hem de Ph (+) ALL hastalarinda tedavi

etkinligini artirarak sagkalim oranini artirma yolunu agabilecegi diistiniilmektedir.

Anahtar Kelimeler: Akut Lenfoblastik Losemil, Philadelphia kromozomu,ilag

direnci,imatinib, ila¢ yeniden konumlandirma
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CHAPTER 1: INTRODUCTION

1.1. Leukemia and Leukemia Classification

It is an established fact that leukemias are lethal disorders that originate from the bone
marrow and blood. Types of leukemias can affect every segment of population from
children to the elderly, at disparate degrees (Juliusson and Hough, 2016). The term
'leuk' (white) combined with 'emia' (blood) denotes the color of the blood in leukemia,
which becomes whitish due to the accumulation of a high number of white blood cells
(Sell, 2005). Leukemias encompass a diverse array of conditions resulting from the
excessive growth of immature hematopoietic cells that become arrested at an early
developmental stage, unable to mature into fully functional blood cells. These
accumulated cell clones tend to occupy the bone marrow and can also migrate into the
bloodstream. Analyzing the peripheral blood offers insights into identifying the
specific cell lineage involved (Lightfoot et al., 2017). Leukemias can exhibit diverse
courses of progression. They may present as rapidly advancing conditions with limited
survival prospects in the absence of treatment, referred to as acute leukemia.
Alternatively, these diseases can manifest as slow-growing forms, allowing patients to
lead relatively long lives even without intervention, categorized as chronic leukemia.
Beyond this chronic/acute distinction, leukemias are further categorized based on their
cellular lineage. Myeloid leukemia pertains to leukemic cells originating from the bone
marrow lineage, which causes granulocytes, macrophages, red blood cells, and
platelets. In contrast, lymphoid leukemia involves leukemic cells derived from the
lymphocyte lineage (Sabath, 2013). The most prevalent leukemia subtypes include
acute myeloid leukemia (AML) and chronic myeloid leukemia (CML), which are
associated with the myeloid lineage, as well as acute lymphoblastic leukemia (ALL)
and chronic lymphocytic leukemia (CLL), which pertain to the lymphoid lineage.
There are also less common variations, like mature B and T-cell leukemias, along with
NK cell-related leukemias, among others, originating from mature white blood cells.
Notably, in 2016, the World Health Organization (WHO) updated its classification due
to identification of various biomarkers and resulting in significant alterations to the
traditional categorization. In table 1, ALL classifications were given(Wang and He,

2016). The etiology of leukemia remains a subject of ongoing debate within the


https://paperpile.com/c/8RkzGg/1mq4o
https://paperpile.com/c/8RkzGg/u2Ehf
https://paperpile.com/c/8RkzGg/Ppieq
https://paperpile.com/c/8RkzGg/vJsbM
https://paperpile.com/c/8RkzGg/pn8jV
https://paperpile.com/c/8RkzGg/pn8jV

scientific community. Presently, three factors have garnered significant attention in
connection to leukemia development, specifically ionizing radiation, benzene
exposure, and alkylating agents. Nevertheless, the established risk factors can account
for only a limited subset of patients, leaving the pathogenesis of the majority of cases
yet to be fully understood. Recent research suggests that smoking, exposure to
electromagnetic fields, the use of hair dyes, contact with organic solvents, and viral
infections may also present potential risk factors for leukemia (Guo et al., 2022)

Table 1. Who (2016) ALL Classification (Source: Wang and He, 2016)

B-cell lymphoblastic leukemia/lymphoma — not otherwise specified

B-cell lymphoblastic leukemia/lymphoma, with recurrent genetic abnormalities

B-cell lymphoblastic leukemia/lymphoma with hypodiploidy

B-cell lymphoblastic leukemia/lymphoma with hyperdiploidy

B-cell lymphoblastic leukemia/lymphoma with 1(9;22)(q34,;q11.2)[BCR-ABLI]
B-cell lymphoblastic leukemia/lymphoma with t(v;11q23)[MLL rearranged]
B-cell lymphoblastic leukemia/lymphoma with t(12;21)(p13;422)[ETV6-RUNX1]

B-cell lymphoblastic leukemia/lymphoma with t(1;19)(q23,p13.3)[TCF3-PBX1] B-cell
lymphoblastic leukemia/lymphoma with t(5,;14)(q31;432)[IL3-IGH]

B-cell lymphoblastic leukemia/lymphoma with intrachromosomal amplification of
chromosome 21 (iAMP21)

B-cell lymphoblastic leukemia/lymphoma with translocations involving tyrosine kinases or
cytokine receptors (BCR-ABLI1-like ALL)

T-cell lymphoblastic leukemia/lymphomas

Early T-cell precursor lymphoblastic leukemia

1.2. Acute Lymphoblastic Leukemia

Acute lymphoblastic leukemia (ALL) represents a diverse spectrum of lymphoid
conditions that arise from the uncontrolled growth of immature lymphoid cells in the
bone marrow, bloodstream, and various other organs. Enhanced comprehension of the
underlying biological mechanisms driving ALL has prompted revisions in its
pathological categorization, the introduction of novel therapeutic approaches, and the

implementation of treatment strategies tailored to individual risk profiles (Jacobson et
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al., 2016). Clinically, ALL is considered an infrequent ailment, with nearly 6.000 new
instances identified in the USA in 2019, constituting only 0.3% of all cancer cases.
ALL have revealed it to be a genetically diverse disease, resulting in the emergence of
various genetic subtypes that have refined our ability to assess risk. While most
instances of ALL are detected among the pediatric population, the incidence exhibits
a distinct pattern, with two notable peaks: One in those under 5 years old, and another
around the age of 50 (DeAngelo et al., 2020). In the case of pediatric ALL, there is a
comparatively favorable prognosis upon diagnosis, with approximately 80% of
children experiencing extended periods of event-free survival. In stark contrast, adults
diagnosed with ALL tend to face significantly less promising prospects for long-term
outcomes(Jacobson et al., 2016). The distinction in outcomes primarily arises from
risk-tailored therapeutic approaches that have evolved and fine-tuned chemotherapy
dosages and schedules over the last four decades for pediatric patients. Conversely,
equivalent treatment modalities have resulted in survival rates for adults in the long
term around %40. This discrepancy is partly attributed to a higher incidence of co-
morbidities and the presence of other high-risk characteristics upon diagnosis in adult
ALL patients, rendering them less tolerant to chemotherapy and more resistant to its
effects(Rafei et al., 2019). Furthermore, in adults diagnosed with ALL, there is notably
a greater prevalence of unfavorable genetic subtypes, and wider array of mutations and
epigenetic modifications compared to their pediatric ALL. These factors collectively
contribute to the observed divergence in benefits of treatment between age groups (Liu
et al., 2016). The development of ALL entails the aberrant multiplication and
maturation of a lymphoid cells. Within the pediatric patients, research has uncovered
certain syndromes that associated with a minority of ALL cases, including conditions
like ataxia telangiectasia, Fanconi anemia, Down syndrome, and Bloom syndrome.
Additional contributing factors encompass exposure to specific solvents, viral
infections (like Epstein-Barr Virus), pesticides, or ionizing radiation. However, in
most cases, ALL seems to emerge as a new malignancy in individuals who were in

good health in the past.(Terwilliger and Abdul-Hay, 2017).

1.2.1. T-lineage ALL
ALL is separated into two broad categories T-lineage ALL (T-ALL) and B-lineage
ALL (B-ALL). T-ALL is an uncommon and aggressive type of leukemia arising from
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the cancerous transformation of T-lineage progenitor cells at different points in their
development. Out of the estimated 6,660 new ALL diagnoses in the United States in
2022, T-ALL in adult patients constitutes approximately 10% to 25% of these cases.
T-ALL primarily affects the adolescent and young adult population. Clinical features
linked to T-ALL encompass conditions like hyperleukocytosis and extramedullary
involvement, which may manifest as lymphadenopathy, a mediastinal mass,
hepatosplenomegaly, and an increased occurrence of central nervous system
participation, occurring in roughly 10% of adult patients at the point of
diagnosis(O’Dwyer, 2022). The origin of T-ALL remains evasive and is currently the
subject of thorough investigation, much like every single hematological cancer. The
isolation of primitive tumor stems or initiating cells has proven pivotal in advancing
our comprehension of leukemia's inception and pathobiology. Furthermore, the diverse
clinical, molecular, and biological aspects of leukemia underscore the presence of
multi-clonal diversity, underscoring its intricate and multifaceted origins (Vadillo et
al., 2018). T-ALL emerges from a complex sequence of circumstances, involving the
accumulation of genetic changes that collectively disrupt critical oncogenic, tumor
suppressor, and developmental pathways governing the conventional regulation of cell
growth, replication, viability, and differentiation throughout thymocyte development
(Mullighan, 2009). T-ALL mutations can be categorized into two group, based on their
reciprocal distribution and their effects when deregulated. One of them, lead to the
overexpression of transcription factors crucial to T-cell development. These
occurrences define specific subgroups, such as, NKX2-1/2-2, HOXA, TLX3 and
TAL/LMO enabling the molecular categorization of about 70% of T-ALL occurrence,
with distinctions observed between pediatric and adult populations. In contrast, the
other one include abnormalities encompass genes coding for various protein families,
including signaling pathway proteins ,tyrosine kinases, ribosomal proteins, and
epigenetic factors.(Bardelli et al., 2021).The complex interaction among key
regulators in the initial stages of T cell development and the signals leading to
oncogenesis associated with T-ALL revolves significantly around NOTCHI.
NOTCHI serves as a pivotal factor in both T cell fate determination and thymocyte
development. At least, 60% of T-ALL, this factor becomes stimulated through gain-
of-function mutations. In tandem with these NOTCH1 mutations, Frequently, there is

a concurrent deletion of the cyclin-dependent kinase inhibitor 2A locus, which encodes
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the tumor suppressor genes pl4ARF and p16INK4A. These occurrences often align
with chromosomal rearrangements, culminating in the aberrant expression of various
T cell-specific transcription factors that may acquire oncogenic functions.(Belver and

Ferrando, 2016).

1.2.2. B-lineage ALL

As previously mentioned, ALL can manifest as either B or T cell phenotypic subtypes.
B-cell acute lymphoblastic leukemia (B-ALL) represents a hematological malignancy
typified by the unrestrained expansion of precursor B cells within the bone marrow
(Safarzadeh Kozani et al., 2021) This disorder obstructs the development of B
lymphoid cells, preventing their maturation at an immature stage, in the progenitor
phase. Subsequently, it triggers an uncontrolled proliferation of leukemia blasts in the
bone marrow, followed by their migration from the marrow to infiltrate various vital
organs, including the liver, central nervous system, spleen, lymph nodes, and thymus.
This dominance of the hematopoietic system by leukemia blasts also interferes with
the generation of crucial blood cell types responsible for blood clotting and oxygen
transport. Consequently, the patient's systems suffer significant deficiencies,
ultimately leading to a fatal outcome. Early indications of this condition encompass
symptoms like weariness, diminished appetite, bone discomfort, abdominal
enlargement due to an enlarged liver and spleen and also swelling of lymph nodes.
Acute leukemia follows a swift and aggressive disease progression, often taking mere
weeks in contrast to the more gradual course of chronic leukemia, which unfolds over
months (Malouf and Ottersbach, 2018). Yet in the adult population, the B-cell
phenotype comprises more than two-thirds of all cases. ALL encompasses a broad age
range, affecting all age groups with distinctive treatment results within each age
bracket. Notably, more than half of recently discovered B-cell ALL cases emerge in
the pediatric cases, while a secondary peak in incidence is observed in individuals aged
over 60 years (Franquiz and Short, 2020). In pediatric patients diagnosed with B-ALL,
contemporary chemotherapy protocols have demonstrated the ability to achieve
prolonged overall survival rates ranging from 80% to 90%. Conversely, this level of
success has not been replicated in adult patients. Despite an initial high rate of
complete response to treatment, typically between 80% and 90%, a significant

majority of adult individuals eventually experience relapse characterized by resistance


https://paperpile.com/c/8RkzGg/2pFrV
https://paperpile.com/c/8RkzGg/2pFrV
https://paperpile.com/c/8RkzGg/4f3GI
https://paperpile.com/c/8RkzGg/lVzVN
https://paperpile.com/c/8RkzGg/Qbl1S

to chemotherapy. The long-term overall survival for adults diagnosed with B-ALL
hovers within a range of 30% to 50%. The prognosis for individuals with relapsed or
refractory ALL is even more discouraging, with a mere 5-year overall survival rate
(Weietal., 2017). B-ALL displays consistent and distinct chromosomal abnormalities
that has a crucial effect in foreseeing how the disease progresses and personalizing
treatment strategies. These genetic irregularities like non-random chromosomal
rearrangements, gene deletions, amplifications, and aneuploidy frequently interfere
with genes that oncogenes or cause essential proteins in the development of leukemia.
Some of these specific genetic anomalies could be explored as hopeful targets for new
treatment approaches (Reshmi et al., 2017). Genetic irregularities serve as crucial
markers for diagnosis, prognosis, and treatment guidance, helping in the early
identification of the disease, risk assessment, and therapeutic direction. Advances in
technology, specifically the utilization of techniques like next-generation sequencing
encompassing comprehensive approaches such as transcriptome sequencing, deletion-
duplication analysis and whole exome sequencing, have facilitated the definition of
twenty three distinct genetic subcategories of B-ALL (Gu et al., 2019). Some of these
subtypes are seen more infrequently than abundant types. Hyperdiploidy can be given
as an example of significant abnormalities. Hyperdiploidy can be categorized into two
specific subgroups: high hyperdiploidy, defined by the existence of 51 to 65
chromosomes and low hyperdiploidy, defined by the range of 47 to 50 chromosomes
(Lejman et al., 2022).High hyperdiploidy is regarded as a positive prognostic element,
manifesting around 30% in children and 10% in adults individuals diagnosed with B-
ALL. Chromosomal gain is predominantly viewed with chromosomes 4, 6, 10, 14, 17,
18, 21, and X, whereas chromosomes 1, 2, and 3 exhibit a lower frequency of such
alterations. Generally, the comprehensive prognosis is brilliant. Despite that, the
presence of additional copies of specific chromosomes carries distinct prognostic
implications. An increase in the number of chromosomes 4, 6, 10, and 17 is indicative
of a positive prognosis, while the presence of an extra chromosome 5 or
isochromosome 17 is associated with a less favorable outlook within this cohort
(Zhang et al., 2017). Mutations affecting genes responsible for modifying histones and
those within the RTK-RAS pathway like KRAS and FLT3, are prevalent in individuals
with high hyperdiploidy (Paulsson et al., 2015). Low hyperdiploidy represents an

adverse prognostic indicator in the context of B-ALL, manifesting in around 10% of
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pediatric cases and 15% of adult cases, with its prevalence increasing in older age
groups. Research findings indicate that individuals with LHyper tend to experience
diminished survival rate compared to normal karyotypes or various chromosomal
abnormalities (Groeneveld-Krentz et al., 2019).

Hypodiploidy, an uncommon cytogenetic aberration in ALL, is the loss of one or more
chromosomes. Children and adults with B-ALL have hypodiploid karyotypes that are
less than 7% (Lejman et al., 2022). The condition can be subcategorized into distinct
groups based on chromosomal content: high hypodiploidy, low hypodiploidy ,and near
haploidy. As the number of chromosomes decreases, the patient's prognosis gradually
worsens. (Harrison et al., 2004). Individuals with low hypodiploidy often exhibit
deletions in the IKZF2 gene and frequent TP53 sequence mutations, which are often
inherited. This subtype is notably rare among children, constituting less than 1% of
cases, but its prevalence increases significantly with age. It is associated with an
exceedingly unfavorable prognosis. Near-haploid ALL is characterized by the
presence of Ras-activating mutations and alterations in the IKZF3 gene. It is relatively
uncommon, comprising approximately 2% of childhood ALL cases, and even less
frequent in adults, constituting less than 1% of cases in these age groups (Roberts,
2018).

The fusion gene known as ETV6-RUNXI1 is one of the predominant genetic anomalies
that trigger the development of B-cell lymphoblastic leukemia. This fusion arises from
a concealed translocation event, denoted as t(12;21)(p13.2;q22.1), and has been
documented in around 30% of cases in pediatric B-ALL and 4% of cases in adults.
ETV6 acts as a transcriptional repressor and operates as a tumor suppressor. RUNX1
emerges as the most prevalent partner in B-ALL (Zhang et al., 2022). RUNX1 may
become a transcriptional repressor when the ETV6-RUNXI protein interferes with the
expression of genes that are controlled by RUNXI. Erythropoietin receptor
overexpression and JAK-STAT signaling activation are also brought on by ETV6-
RUNX1(Mullighan, 2012).

A further subtype of B-ALL is ETV6-RUNXI fusion-like B-ALL. While lacking the
fusion gene, this subtype of ALL is very similar to ETV6-RUNXI1 with
immunophenotypic profiles. Children make up around 3% of ETV6-RUNXI-like
instances, which account for more than 80% of pediatric B-ALL cases (Lilljebjorn et

al., 2016).
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More than 90 translocation partners have been found in the KMT2A gene, which is
mutated in more than 80% of infant B-ALL and nearly 9% of adult B-ALL (Ghazavi
et al., 2015). Translocations associated with leukemia that affect the 11923 region
result in KMT2A fusion with over 90 different partner genes. Among these partner
genes, AFF1 is most commonly observed, particularly in cases with the KMT2A-
AFF1 fusion, which is associated with a particularly lower overall survival (Lejman et
al., 2022).

The genetic alteration TCF3-PBX1, is found in approximately 5% of pediatric cases
and around 3 % of adults. Although previously categorized as a Although previously
considered a high-risk subtype, it is currently linked to a positive response to
contemporary ALL treatments. Conversely, the TCF3-HLF fusion gene defines an
uncommon subtype of ALL occurring in less than 1% of cases across all age groups.
This subtype typically leads to relapse and mortality within two years of diagnosis.
Intriguingly, primary leukemic cells carrying Patients with the TCF3-HLF mutation
have demonstrated responsiveness to the Bcl2 inhibitor, venetoclax, presenting a
potential innovative treatment approach for this deadly type.(Roberts, 2018).

Ph-like ALL, a form of leukemia, exhibits gene expression patterns and characteristics
resembling those of Ph+ ALL. However, it distinguishes itself by the absence of the
BCR-ABLI fusion gene. Its occurrence varies from approximately 12% in pediatric
cases to 20-27% in adults. Ph-like ALL can manifest across different age groups and
is consistently linked with an unfavorable prognosis. CRLF2 is rearranged in a
significant portion of BCR-ABLI1-like ALL cases, accounting for up to 50% (Zhang
et al., 2022). However, until recently, the underlying factors responsible for activating
kinases in the remaining cases remained unidentified. By employing advanced
sequencing methods, including and whole genome sequencing and mRNA sequencing
on BCR-ABLI1-like ALL cases, researchers have detected various rearrangements,
sequence mutations, and DNA copy number alterations that trigger kinase signaling in
all these cases. These genetic alterations encompass rearrangements involving genes
such as PDGFRB, ABLI1, JAK2, and EPOR, in addition to deletions or mutations
affecting SH2B3 and IL7R. Significantly, a number of these genetic changes have been
demonstrated to activate downstream signaling pathways like JAK/STAT.
Furthermore, experimental evidence has shown that the transformation of cells can be

reduced with inhibitors targeting JAK or ABL1/PDGFRB (Mullighan, 2012).
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Another significant subtype is BCR-ABL Fusion. Information on this specific subtype
is provided in section 1.3.

All of the sup types of B-lineage ALL provided at figure 1 .(Lejman et al., 2022)

Genetic
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Figure 1. Illustrative representation genetic biomarkers associated with B-

ALL.(Source: Lejman et al., 2022)

1.3. Philadelphia Chromosome

The Philadelphia (Ph) chromosome, denoted as a shortened chromosome 22, results
from a reciprocal exchange of genetic material between chromosomes 9 and 22. This
genetic event combines the Breakpoint Cluster Region (BCR) gene from chromosome
22 with the Abelson (ABL) gene on chromosome 9 (Figure 2). The resultant fusion
gene, BCR-ABL, possesses an elevated tyrosine kinase activity, leading to the
persistent activation of various downstream signaling pathways like
AKT/mTOR,PI3K, RAS, NF-«B and JAK/STAT that promote cell proliferation and

survival. Consequently, this genetic alteration is a key factor in the development of
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leukemia. In adults diagnosed with ALL, the Ph chromosome stands as the most
common cytogenetic abnormality, affecting approximately 20% to 30% of adult
patients. However, its occurrence is less frequent in pediatric cases, found in about 5%
of children with this condition. The likelihood of this genetic anomaly increases with
age, and it is present in roughly 50% of patients who are older than 50 years (Ravandi
and Kebriaei, 2009).In individuals with Ph+ ALL, the most prevalent simultaneous
genetic anomalies involve the removal of specific genes, namely IKZF1, PAXS, and
EBF1. These genetic alterations are detected in approximately 80%, 50%, and 14% of
Ph+ ALL patients, respectively. Additionally, the deletion of CDKN2A/2B is also a
recurring occurrence in this patient group, with an occurrence rate of roughly 50%
(Lejman et al., 2022).BCR-ABL serves as a vital biomarker in Ph+ ALL diagnosis and
is a target for tyrosine kinase inhibitors (TKIs). Nevertheless, it is widely recognized
that this translocation has the potential to generate resistance to therapeutic

drugs.(Leoni and Biondi, 2015).
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Figure 2. Formation of Philadelphia chromosome

1.4. Treatment Strategies for ALL and Ph (+) ALL

In contrast to the more than 90% cure rate typically achieved in pediatric ALL, the
prognosis for adult ALL has historically been quite grim. Cure rates in adults have
lingered at less than 40%, largely owing to the existence of high-risk disease
characteristics within this age range and the considerable toxicity associated with

chemotherapy. Among the cases of ALL, B-cell ALL, which approximately 75% of
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instances, has traditionally exhibited inferior treatment outcomes when compared to
T-cell ALL. More specifically, prior to the introduction of TKIs, Ph (+) ALL within
the B-cell subset was notably associated with highly unfavorable prognoses (Samra et
al., 2020). The understanding that ALL comprises diverse subtypes has influenced
treatment strategies tailored to the specific characteristics of each patient, including
the leukemia's phenotype, genotype, and associated risks. Consequently, mature B-cell
ALL is the sole subtype managed with brief, aggressive chemotherapy regimens. In
contrast, other patients follow distinct treatment protocols that consistently prioritize
initial therapy to induce remission, subsequent intensification therapy, followed by

continuous treatment to eliminate any remaining leukemia cells(Pui and Evans, 2006).

1.4.1. Treatment Strategies for ALL

Typically, the management of ALL in adult patients involves initiating a phase focused
on achieving remission, which is then followed by consolidation or intensification
phases. Subsequently, patients may receive ongoing maintenance therapy or undergo
hematopoietic stem cell transplantation (HCT) (Ram et al., 2010).

Initial Phase

The initial phase of treatment, known as induction therapy for adult ALL, efforts to
eliminate the disease burden and restore normal hematopoiesis. A chemotherapeutic
cocktail used for induction commonly includes L-asparaginase, anthracyclines.,
glucocorticoids, L-asparaginase, and vincristine. Notably, there is a shift from
prednisone to dexamethasone in response to pediatric research demonstrating reduced
central nervous system relapse rates and improved overall survival. It's important to
exercise caution when determining the dexamethasone dosage regimen, as sustained
use of higher doses may result in long-term complications like avascular bone necrosis
and an elevated risk of morbidity and mortality due to infections (Gokbuget and
Hoelzer, 2006). The commonly utilized anthracycline is daunorubicin. One
randomized study revealed a disease-free survival rate of 36% when DNR was used.
In the majority of ongoing adult ALL investigations, asparaginase is incorporated into
the induction therapy, although the cumulative doses administered are notably lower
than those in pediatric trials. During induction, asparaginase is often administered in
parallel with steroids to patients experiencing cytopenia, potentially inducing

unforeseen complications like coagulation abnormalities and liver issues. These
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adverse effects are challenging to predict. Consequently, the use of asparaginase may
result in treatment delays and can impact the treatment intensity on an individual basis.
Supportive care plays an increasingly vital role during the induction phase(Gokbuget
and Hoelzer, 2006).

Consolidation Phase

Consolidation marks the second phase of the treatment plan, comprising a series of
brief, consecutive chemotherapy courses spaced every two weeks. Typically, this
involves the use of, asparaginase, high-dose methotrexate, cytarabine, glucocorticoids
and vincristine, spanning a 12-week timeframe. Following this, a subsequent
intensification phase, commonly known as reinduction therapy, is implemented,
utilizing a comparable combination of drugs employed in the initial induction therapy.
(Malard and Mohty, 2020).

Maintenance Therapy

Maintenance therapy involves the daily administration of mercaptopurine and weekly
doses of methotrexate, which may or may not include vincristine, along with periodic
glucocorticoid pulses occurring every 1 to 3 months. This maintenance regimen is
typically continued for a period of 2 to 3 years following the initial induction phase,
and no added benefits have been observed beyond this timeframe. While tioguanine,
like mercaptopurine, obstructs the synthesis of new purines, it demonstrates higher
lymphoblast cytotoxicity in vitro. As a result, mercaptopurine remains the established
standard for maintenance therapy (Malard and Mohty, 2020).

Allogeneic hematopoietic stem cell transplantation

HCT remains an essential component of adult ALL therapy and is recommended as an
integral part of the initial treatment for adults with high-risk ALL (Faderl et al., 2010).
However, the definition of high-risk ALL that warrants early HCT has evolved beyond
conventional clinical factors like patient age and initial white blood cell counts. It now
encompasses factors related to molecular and genetic characteristics and minimal
residual disease dynamics following the commencement of therapy, especially when
employing pediatric-inspired treatment regimens. Most experts concur that allogeneic
HCT is advisable for adults who have undergone adequate therapy and exhibit high-
risk cytogenetic features (MLL gene rearrangements, complex Kkaryotypes,
Philadelphia chromosome-positive, hypodiploidy, particularly those with low
hypodiploidy and near-haploidy), persistent MRD, and potentially high-risk molecular
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traits like Ph-like ALL. Conversely, allogeneic HCT serves as the sole curative option
for advanced ALL, encompassing cases of relapsed and refractory disease.
Consequently, the evolution of transplantation in ALL has paralleled advancements in
chemotherapy. New transplantation modalities have been developed to address prior
challenges related to aspects like transplantation in elderly patients, donor selection,

and transplantation for chemo-refractory ALL (Pui and Evans, 2006).

1.4.2. Treatment Strategies for Ph (+) ALL

The management of Ph (+) ALL can be divided into two distinct periods: the era
predating the introduction of TKIs and the era subsequent to their incorporation.
Before the usage of TKIs, complete response was less common Ph (+) ALL cases
compared to those with Ph (-) ALL. Complete response rates were below 70%, and
long-term overall survival remained under 20%, with varying outcomes depending on
the post-remission treatment. The most favorable results were observed in individuals
who underwent HSCT, with long-term survival around 45% (Saleh et al., 2022).
Patients with Ph (+) ALL exhibit a less favorable prognosis when treated exclusively
with chemotherapy. Standard chemotherapy regimens yield complete remission in
only about two-thirds of Ph (+) ALL patients. The 5-year overall survival rate is
disappointingly low, typically around 10%. In a specific study involving 229
individuals newly diagnosed with ALL, induction therapy employing doxorubicin,
vincristine, l-asparaginase, cyclophosphamide, and prednisone led to a complete
response rate of 51% among Ph (+) ALL patients, in contrast to an 83% complete
response rate in Ph (—) ALL patients. Consequently, the 6-year overall survival rate for
Ph(+) ALL patients was significantly inferior, standing at 5%, compared to 39% for
Ph— ALL patients (Yilmaz et al., 2018). The use of chemotherapy regimens, such as
doxorubicin, vincristine, and dexamethasone showed promise by achieving a high
complete response rate of 92% in a study. Nevertheless, due to a significant recurrence
rate and fatalities related to treatment, the 5-year overall survival rate remained
modest, standing at only 12%. This corresponds to survival rates documented in
various clinical trials investigating different chemotherapy protocols.(Thomas and
Heiblig, 2016a).

The incorporation of TKIs alongside chemotherapy has brought about a transformative

shift in the treatment of individuals diagnosed with Ph (+) ALL and has become the
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established standard for treatment. The primary objective in managing Ph (+) ALL is
not solely to attain and sustain a complete clinical response but also to promptly
achieve a comprehensive molecular response during the early phases of treatment
(Samra et al., 2020).

TKIs are small oral substances that competitively hinder the interaction between ATP
and the ATP-binding domain of BCR-ABL, thereby reducing downstream signal
transduction pathways. Imatinib marked the advent of TKIs, paving the way for the
subsequent emergence of second-generation TKIs which are bosutinib, nilotinib, and
dasatinib and third-generation TKIs which is ponatinib, characterized by their
heightened and expedited efficacy in antagonizing BCR-ABL. Second and third
generation TKIs have demonstrated their prowess in circumventing various ABL
mutations, pivotal in mediating resistance to treatment and relapse. Notably,
contemporary advances have led to the inception of monoclonal antibodies such as
blinatumomab, instigating the development of regimens devoid of chemotherapy.
These innovations have yielded exceptionally promising outcomes, coupled with an
impressive level of patient tolerability (Saleh et al., 2022). Each of the TKIs, including
imatinib, Dasatinib, nilotinib, and ponatinib, exhibits clinical efficacy in the treatment
of Ph (+) ALL. It is worth noting that a head-to-head comparison of these various TKIs
has yet to be undertaken in a clinical trial. The selection of a specific TKI may be
influenced by considerations such as toxicity profiles, dosing regimens, concomitant
medical conditions, drug availability, and cost. However, the amalgamation of
available data indicates that all these TKIs demonstrate activity in the context of Ph+
ALL, with distinctions between them that are generally minimal in nature (Horowitz
and Rowe, 2019). The prevailing consensus within the academic community
underscores the widespread recommendation for the incorporation of a TKI into the
therapeutic strategy for all recently diagnosed Ph+ ALL patients. This integration is
designed to accomplish several key objectives, including enhancing the rate of
complete remission, extending the duration until relapse occurs, augmenting eligibility
for HCT, and enhancing leukemia-free survival. Following the achievement of
complete remission, it is considered advisable to sustain the TKI treatment course until

the emergence of disease progression or the occurrence of HCT (Forghieri et al., 2015)
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Given the thesis's primary emphasis on the use of imatinib in the treatment of Ph+
ALL, it was considered pertinent to provide a more in-depth elucidation of imatinib as

one of the TKIs.

1.4.2.1. Imatinib

A prominent compound initially identified through a screen for inhibitors of protein
kinase C underwent subsequent modifications, ultimately demonstrating robust
inhibitory effects against a highly specific set of kinases in laboratory settings.
Notably, these targeted kinases included ABL and the receptor tyrosine kinases KIT
and PDGFR. Given the central role played by BCR-ABL kinase activity in the
pathogenesis of CML, there was a concerted effort to delve deeper into the potential
of the ABL kinase domain for its potential. This intensive focus on medicinal
chemistry optimization culminated in the creation of STI-571, which was subsequently
bestowed with the name "Imatinib" (Lamontanara et al., 2013). The remarkable
tolerability and outstanding efficacy demonstrated during the phase I and II clinical
trials led to the swift approval of Imatinib by the US Food and Drug Administration in
2001, followed by subsequent recognition from the European Medicines Agency.
Consequently, imatinib marked the pioneering instance of a kinase inhibitor being
routinely employed in cancer patients. Recently, imatinib has evolved into a
paradigmatic treatment. Its introduction has profoundly transformed this once grimly
prognosticated cancer into a manageable chronic condition, affording the majority of
patients the potential to approach a normal lifespan and enjoy an enhanced quality of
life. Today, imatinib serves as the primary therapeutic approach for patients with Ph(+)
ALL, CML and also gastrointestinal stromal tumors, and a select range of other
medical conditions (Ottmann and Pfeifer, 2009). Imatinib functions by occupying the
nucleotide-binding pocket within the BCR-ABL protein, effectively obstructing ATP.
This inhibition mechanism prevents tyrosine autophosphorylation and, consequently,
associated substrates phosphorylation. As a result, downstream signaling pathways
crucial for the promotion of leukemogenesis are deactivated. Imatinib's impact extends
to the kinase activity of various other targets(Thomas and Heiblig, 2016b). Early
preclinical investigations demonstrated that imatinib exerts robust inhibitory effects
on the growth of Ph (+) leukemias, both in laboratory settings and in live subjects.

These encouraging findings swiftly prompted the initiation of clinical trials. The
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introduction of imatinib in combination with conventional chemotherapy regimens in
the initial treatment phase marked the onset of a transformative era. This combination
exhibited a generally favorable safety profile and yielded impressive complete
remission rates ranging from around 95%. For instance, it attained a 50% overall 5-
year survival rate, which was unparalleled. In a recently updated phase 2 trial
conducted at a single institution, where imatinib was combined with Adriamycin,
dexamethasone vincristine, hyperfractionated cyclophosphamide, and vincristine,
chemotherapy, 54 older patients, were treated. The trial yielded a remarkable Complete
remission rate of 93%, with a notable 45% achieving complete molecular remission
within three months. Despite a relatively modest proportion of patients undergoing
subsequent HCT during their first remission, the 5-year Overall survival reached 43%,
a notably improved outcome compared to historical control groups (Abou Dalle et al.,
2019). Usage Imatinib into the therapeutic approach for Ph+ ALL has heralded
significant progress in the management of this formidable ailment. Nevertheless,
despite the substantial therapeutic strides achieved, patients have, in some instances,
developed resistance to imatinib. This resistance has underscored the imperative need
to explore novel treatment modalities for Ph+ ALL, consequently driving the quest for
the subsequent generation of TKIs (Abou Dalle et al., 2019). As a result of this

situation, newer generation of TKI were generated.

1.5. Imatinib Resistance on Acute Lymphoblastic Leukemia

Imatinib resistance- in patients with Ph(+) ALL can occur due to acquired or intrinsic
factors. Acquired resistance may be caused by BCR-ABL dependent factors, such as
increased expression of BCR-ABL or point mutations within the kinase domains. It
can also result from BCR-ABL independent factors, like changes in drug metabolism
that reduce imatinib levels in Ph (+) cells. Furthermore, the initiation of alternative
signaling pathways, like those associated with Src kinases, might play a role in
developing resistance. (Ravandi and Kebriaei, 2009). Point mutations give rise to
amino acid substitutions within the kinase domain of BCR-ABL, a phenomenon
capable of conferring resistance to imatinib. These mutations exert their resistance by
impeding imatinib's entry into the ATP-binding pocket of BCR-ABL, consequently
thwarting its inhibitory effect. Initially, mutations were predominantly reported in

cases of relapsing Ph(+)ALL. The two most prevalent mutations are T3151, which
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blocks imatinib binding. The second common mutation type pertains to P-loop
mutations in the phosphate-binding region (Thomas and Heiblig, 2016b). Certain
mutations exhibit varying levels of resistance to drugs, with some causing only slight
resistance. However, mutations like T315I indicate a very high level of resistance to
both imatinib and second-generation TKIs. P-loop domain alterations cause the
structural stability to be so upset that the kinase domain is unable to assume the inactive
conformation which is necessary for the binding of Imatinib.(Eiring and Deininger,
2014). Researchers have recently discovered a new mechanism of resistance to TKIs
in patients with Ph(+) ALL. This mechanism involves the expression of alternative
spliced isoforms of IKAROS family zinc finger 1, which is an important regulator in
the development of normal lymphocytes. One specific isoform, called 1k6, lacks four
N-terminal zinc fingers responsible for DNA binding. Interestingly, this k6 isoform
was found in 91% of Ph(+) ALL patients who exhibited resistance to Dasatinib or
Imatinib. The Ik6 expression are also associated to the levels of BCR-ABL transcripts.
These findings suggest that targeting and restoring the IKZF1 function could be a

promising approach to addressing TKI resistance in the future (Lee et al., 2011).

1.6. Computational Approaches in Life Sciences

Over the past twenty years, technology has made remarkable strides, leading to an
unprecedented increase in data related to biology. Gene and RNA sequencing,
proteomics, metabolomics, lipidomics, and microbiome investigations have flourished
alongside the- integration of clinical data through computational methods.
Consequently, researchers have had to employ increasingly sophisticated analytical
techniques to derive valuable insights. The adoption of systems biology methodologies
now allows scientists to analyze vast datasets and conduct comprehensive studies that
span both experimental and theoretical models (Joshi et al., 2021). Systems biology is
a multidisciplinary approach that uses computational methods to critically analyze a
wide range of biological phenomena, particularly those related to disease (Pandita et
al., 2022). Medical sciences have great potential to influence the field rather than
intellectually down to individual molecules alone, systems biology aims to unveil the
interactions of many components of biological processes in order to achieve a
comprehensive understanding (Turanli et al., 2021). In pharmacology, systems biology

techniques are used to investigate the biomolecular interactions of drugs and their
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targets in the cellular environment. Combined with wet lab experiments, systems
chemistry can be computerized methods that have successfully quantified biological
agents, prove valuablity for new drug discovery targets and therapeutic molecules,
facilitating the design of effective therapies for patients. Furthermore, systems
chemistry-based methods explore drug-target interactions, predict drug-target
interactions or interactions, assess potential side effects of drugs, and enable

rehabilitation opportunities (Zou et al., 2013)

1.6.1. System Biology

The heart of systems biology lies in the quest to fully grasp the complex web of
interactions and connections between the molecular building blocks of a biological
system, which ultimately give rise to its overall behavior (Sobie et al., 2011). A
defining aspect of systems biology is its focus on exploring the interconnections
among numerous components, going beyond the conventional method of examining
singular molecular traits. With its diverse range of computational tools, systems
biology plays a pivotal role in generating hypotheses that can be further tested through
experiments. This method hinges on seamless collaboration between hands-on
experiments that encompass the tracking of multiple cellular elements and
sophisticated computational methods that can interpret a wide range of datasets. From
this process, the generation of precise experimental data not only enhances but also
refines the computational model, ultimately leading to a more accurate depiction of
the biological system being studied (Zou et al., 2013).

Two main computational methods are used in systems biology: data-driven methods
(top-down method) and hypothesis-driven methods (bottom-up approach). Bottom-up
approach are often used in systems with less molecules. The main challenge with this
approach is the lack of accurate quantitative information on these interactions.
Consequently, it is necessary to formulate hypothetical equations that describe these
relationships and then calculate the corresponding parameter values. Dynamic
modeling, a basic method of hypothesis, is employed to clarify the connection between
molecules and the resulting reactions resulting from interactions (Faratian et al., 2009).
Each of these complements other data-driven methods that involve the acquisition of
extensive omics datasets and are subsequently analyzed using mathematical modeling

methods. In conventional data-driven methods, the use of network structures gains
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prominence and provides valuable insight into complex interactions between many
molecules, often hundreds or thousands (Zou et al., 2013). Technological advances
since the human genome was cloned and sequenced have made it easier to obtain a
wide variety of molecular data in tissues or cells. This new technology can be used to
capture biological processes in biological systems with a broad overview and is widely
known as “omics”. Numerous realms of scientific inquiry fall under the omics
umbrella. Instances include proteomics, epigenomics, genomics, lipidomics,
metabolomics, and transcriptomics, each of comprehensive examinations of proteins,
RNA, genes, metabolites, lipids, and methylated DNA respectively. Omics research
is driven by various objectives, with one prevalent aim being the attainment of an
exhaustive comprehension of the biological system under investigation (Micheel et al.,
2012). Transcriptomics serves as a potent tool for elucidating the roles of significant
genes and for comparing gene expression across diverse stress conditions. It achieves
this by conducting high-throughput microarray analysis. In a distinct vein,
metabolomics is defined as the investigation of alterations in endogenous metabolites
within biological systems, encompassing, cells, tissues or biofluids in response to
various stressors. In parallel, lipidomics stands as a subfield of metabolomics, with a
specific focus on the study of lipids and their roles in these biological responses (Maan
et al., 2023). Another frequent objective of omics investigations is the correlation of
omics-derived molecular data with specific clinical outcomes of interest. The
underlying rationale is that by harnessing omics-based measurements, there exists the
potential to formulate a more precise predictive or prognostic model for a given

condition or disease (Micheel et al., 2012).

1.6.2. Analyses Used in Systems Biology Studies

The distinctive and diverse gene expression patterns observed in ALL necessitate the
application of non-conventional biomolecular techniques to unravel its pathogenesis.
Among these approaches, gene expression profile chips emerge as an optimal method
for investigating the molecular mechanisms at play in ALL, given their ability to gauge
the expression levels of a multitude of genes. Over the past few years, there has been
a growing supply of gene expression profile data, igniting a compelling wave of

research exploring the use of bioinformatics for analysis.
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In this particular thesis, the research adopts bioinformatics methodologies to analyze
gene expression profile data to discern the genes whose expression differs significantly
between ALL and normal B cells. This pursuit aims to provide fresh insights into the
exploration of ALL's pathogenesis. To this end, a myriad of analyses was used during
the study, the data for these was accessed from the NCBI Gene Expression Omnibus
database (GEO) (Edgar et al., 2002). GEO functions as a public database for an
extensive array of experimental data. This dataset encompasses various types of
experiments, such as single and dual-channel microarray-based assessments
measuring protein levels, genomic DNA and mRNA along with non-array techniques.
Presently, GEO hosts an extensive collection, including almost 140,000 samples and
above 3,000 distinct microarray platforms. GEO's organizational structure is built
upon four fundamental components. The first three elements, namely Sample, Series
and Platform,, are contributed by users, while the fourth component, the dataset, is
compiled and curated by GEO personnel using the data submitted by users.This
platform files offer insights into the layout and contents of microarrays, while GEO
samples provide information about the actual outcomes of individual hybridizations.
The complete experiment, including information on all hybridizations and their
respective platform descriptions, is available as a GEO series. Subsequently, The data
within GEO is accessible in a proprietary format termed SOFT (Davis and Meltzer,
2007).

Once the relative or absolute expression levels of all transcripts have been evaluated,
the subsequent phase involves the examination of statistical hypotheses. These
hypotheses generally revolve around distinctions between two biological conditions,
such as healthy versus diseased tissues or modified versus unaltered cells. A primary
objective of these tests is to pinpoint the genes that predominantly contribute to the
variation between the studied biological states, commonly referred to as differentially
expressed genes (DEG) (Clark et al., 2014). Genes don't operate in solitariness; they're
integral components of a complex network with regulatory and functional
interconnections which often result in significant correlations between their
expression. One of the most accepted differential expression analysis method is the
Linear Models for Microarray Data (limma) , Significance Analysis of Microarrays

(Tusher et al., 2001), and Welsh's t-test, (Smyth, 2004) (Clark et al., 2014).
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The limma package plays a central role in Bioconductor, an open-source software
development project for statistical genomics based on the R programming language. It
has gained widespread popularity for analyzing data derived from various
experimental platforms, including polymerase chain reaction, microarrays and arrays,
and others. One of its notable features is its adaptability, allowing for a consistent
analysis workflow across diverse technologies after initial data preprocessing and
normalization (Ritchie et al., 2015). With its use of advanced computational
techniques, the software provides a complete solution for data analysis and guarantees
reliable performance even with large datasets. It improves user-friendliness and data
handling by using object-oriented principles to describe expressive data and simplify
the user interface.

Subsequently, determining DEGs the next step is Gene Set Enrichments Analysis
(GSEA). However, before applying this analysis the prob names came form limma
function should be uploaded into an annotation tool such as DAVID tool (Jiao et al.,
2012).

Enrichment analysis is a systematic and statistically sound approach for examining
and elucidating extensive gene lists by drawing upon pre-existing knowledge. It
evaluates whether there is an excessive or insufficient occurrence of a defined set of
genes within the given gene list. If a statistically significant proportion of genes from
this predefined set is found in the list, it can suggest the involvement of the associated
biological pathway in the studied biological condition. This analytical process is
replicated for numerous available gene sets, which could encompass a vast number
(Merico et al., 2010). To this end, an enrichment analysis tool called Metascape (Zhou
etal., 2019) selected.

Metascape is specifically developed for researchers, enabling them to leverage robust
computational analysis pipelines for the examination and comprehension of extensive
datasets. To ensure that the information it offers remains up-to-date, a novel pipeline
for knowledgebase synchronization has been implemented. Metascape combines gene
membership analysis, gene annotation and multi-gene-list meta-analysis. Researchers
can directly assess their data to uncover new mechanisms of action, therapeutic targets
or deeper insights into diseases. In summary, Metascape stands as an user-friendly
web tool designed to streamline the analysis and interpretation of multi-platform

OMICs data for the research community (Zhou et al., 2019).
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Furthermore, the subsequent stage involves the establishment of a protein-protein
interaction (PPI) network involving the proteins encoded by the DEGs. PPIs has
significance in many biological processes, including cell-cell communication, as well
as in the regulation of metabolic and developmental pathways. In systems biology,
proteins and protein interaction studies have emerged as a major focus. These
interactions are based on noncovalent interactions between amino acid residues in the
side chains, which are key driving forces for protein folding, aggregation, and the
establishment of protein-protein interactions and other mechanisms (Rao et al., 2014).
Consequently, PPI networks allows for a deeper understanding of disease mechanisms,
disease-related genes or proteins, and their associations. Employing network science,
characterized by nodes (components) and edges (interactions), offers a systematic
approach to addressing complex biological issues. This network-centric perspective
plays a significant role in elucidating the functions of proteins within cells. By
leveraging PPI networks to unravel the underpinnings of disease mechanisms
associated with biological processes, it becomes possible to identify drug targets and
biomarkers for these diseases (Fiscon et al., 2018).In this regard, BioGRID database
(Chatr-Aryamontri et al., 2017) was used. The BioGRID is an openly available
database that contains protein and genetic interactions from various species.This
valuable resource contains approximately 1.93 million meticulously curated
interactions, offering the opportunity to construct intricate networks that can
significantly support discoveries in biomedicine, particularly concerning human health
and diseases (Oughtred et al., 2021).

Subsequently, it is essential to visualize protein-protein interaction (PPI) networks and
compute various topological characteristics, including local and global measures. For
this purpose, this thesis employed Cytoscape(Shannon et al., 2003) in conjunction with
the CytoHubba plug-in (Chin et al., 2014). Cytoscape is a free, open-source software
used to visualization of molecular interaction networks originating from the analysis
of high-throughput data. It merges biological pathways with gene annotations,
expression profiles, and information extracted from literature, aiming to offer
comprehensive insights into system changes(Shannon et al., 2003). Within Cytoscape,
proteins or genes are represented as nodes, and their pairwise interactions are denoted
by edges. Both nodes and edges can be linked with data attributes that define the

characteristics of the proteins or interactions. Remarkably, Cytoscape enables the
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customization of visual elements for nodes and edges.This attribute-to-visual mapping
empowers biologists to simultaneously visualize diverse data types within a network
framework (Cline et al., 2007). Furthermore, users can enhance Cytoscape's
functionality by developing or downloading supplementary software modules referred
to as 'plugins' such as CytoHubba plug-in. The Cytoscape plugin known as cytoHubba
is employed for the prioritization of nodes within a network according to their
network-related characteristics. cytoHubba offers a comprehensive selection of 11
topological analysis techniques (Chin et al., 2014). In this thesis, Degree and

Betweenness, were used.

1.6.3. Drug Repurposing

The biopharmaceutical industry encounters significant challenges in the process of
research and development for drug discovery. The process of drug development
typically spans approximately 13 years. This extended period encompasses various
stages, including drug design, and production, as well as the essential evaluation of the
drug's potential toxicity, effectiveness, also pharmacokinetic and pharmacodynamic
characteristics through in vitro and animal studies. Importantly, the journey of
introducing a new drug from laboratory research to practical clinical application is not
only lengthy but also costly, with estimated expenses ranging from USD 2 to 3 billion
for bringing a new chemical entity to market (Zhang et al., 2020). A mandatory stage
in drug development involves assessing the drug effectiveness and safety in the human
body through a series of clinical trials, typically consisting of four phases. Phase I,
mark the initial testing of the new drug in a small group of individuals usually up to
80, primarily to evaluate its safety to use. Subsequently, in Phase II, the intervention
is studied among a wider population , usually involving several hundred participants,
to assess both its effectiveness and further examine its safety profile. Phase III studies
then focus on evaluating effectiveness in even larger groups, ranging from hundred to
thousand individuals. These trials also closely monitor adverse effects and gather
additional data to ensure the safe use of the intervention. Following the marketing of
the drug, Phase IV studies come into play (Zhang et al., 2020). This type of researches
conduct to observe the intervention's effectiveness on the people and gather adverse
effects that may arise during widespread, extended usage. Generally, if the drug proves

to be effective in Phase IlI trials, it secures FDA approval. FDA approval is a relatively
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rare outcome, with only about one in 5,000 to 10,000 potential anticancer agents
successfully obtaining this status (Paul et al., 2010). This process is characterized by
its time-consuming, resource-intensive nature and is associated with inherent risks
related to the efficacy and safety of new drug candidates. The pharmaceutical sector is
grappling with productivity issues attributed to escalating costs, competition from
generic drugs, and stringent regulatory requirements. As a result of these existing
circumstances, drug developers have been compelled to seek innovative approaches
for identifying new therapeutic applications for existing drugs. This innovative
concept is commonly referred to as drug repurposing. It presents numerous benefits,
especially for drug candidates with well-established formulations, comprehensive
pharmacokinetic data, toxicity profiles, clinical trial histories, and post-marketing
surveillance safety records (Turanli et al., 2021). Over the past decade, the concept of
drug repositioning has gained significant therapeutic importance, attracting attention
not only within academic research but also in the biopharmaceutical industry. Up to
the present, numerous instances of drugs successfully repurposed have come to light.
The first and most renowned example of drug repositioning was serendipitous in
nature. Sildenafil, generated for treating a coronary disease, encountered setbacks
during phase 2 trials. However, its side effect of inducing penile erections led to its
redirection for the treatment of erectile dysfunction. Several other drugs, such as
minoxidil, everolimus, thalidomide, nelfinavir, and much more, have also
demonstrated efficacy in treating conditions different from their originally intended
indications (Turanli et al.,, 2018). Additionally, many of these initiatives have
harnessed in silico drug repositioning methods to generate hypotheses (Hodos et al.,
2016). Examples of repurposing studies applied to leukemia are also available in the
literature. For instance, Niclosamide that's been approved by the FDA for treating
tapeworm infections. Interestingly, it has shown potential in the fight against cancer.
In cancer cells, Niclosamide appears to block certain signaling pathways, like NF-kB,
and even induces a process called apoptosis by generating something called reactive
oxygen species. In particular, it seems to slow down the growth of leukemia cells by
interfering with CREB-dependent pathways. Its is remarkable because CREB is often
overactive in leukemia and linked to a poor prognosis. In preclinical studies,
Niclosamide extended the survival of AML patient-derived xenograft mice. It also

appears to work well in combination with other chemotherapy drugs like cytarabine
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and daunorubicin. These promising findings position Niclosamide as a strong
candidate for early-phase clinical trials (Hamdoun et al., 2017). Another anthelmintic
named Mebendazole is a drug commonly used to treat intestinal worm infections by
interfering with tubulin, a protein involved in microtubule assembly. But, in the
context of AML, it shows a different side. In AML models, mebendazole throws a
wrench in the works of the heat shock protein 70 chaperone system, which results in
the breakdown of a crucial transcription factor called c-MYB in AML cells. In
laboratory tests, mebendazole not only reduced the viability of human cells but also
extended the lifespan of mice with MLL-AF9 xenografts. The potential of
mebendazole isn't limited to AML. There are currently six studies registered with the
National Institutes of Health's Clinicaltrials.gov, exploring mebendazole as a treatment
for various cancers, including colorectal and glioma (Guerini et al., 2019).
Furthermore, Verteporfin received FDA approval for photodynamic therapy,
specifically for eliminating abnormal blood vessels associated with macular
degeneration. Beyond this primary use, its potential extends to the field of ALL.
Researchers have examined its anti-leukemic properties while assessing its minimal
impact on normal hematopoiesis. In a study by Xiu et al., verteporfin was employed
to treat AML cells. Their findings showed that it effectively inhibited cell growth in
laboratory conditions and delayed the progression of the disease in vivo, underlining
its promise as a therapeutic agent for AML (Xiu et al., 2018). Another example of
repurposed drug for leukemia is Fidaxomicin, a medication primarily employed for
managing diarrhea associated with Clostridium difficile infection, which demonstrated
notable effects in the context of MLL-rearranged HSC cells. When utilized in vitro,
fidaxomicin effectively inhibited cell growth. The remarkable synergy between
fidaxomicin and conventional chemotherapy in reducing tumor burden within the
animal models suggests the potential of repurposing fidaxomicin to target ABCC3 in
leukemia. This approach can enhance the efficacy of standard chemotherapy and
address chemoresistance concerns in MLL-rearranged leukemia (Zeisig et al., 2021).
Based on a recent study from Zazuli et al., claimed that chlorprothixene, sirolimus,
dihydroergocristine, papaverine, and tamoxifen could be candidates for possible
repurposing for ALL (Zazuli et al., 2022). Moreover, as reported by Bonnet et al., three
candidates, which are bioactive molecules authorized by the FDA, namely alpha-

estradiol, nordihydroguaiaretic acid, and prochlorperazine dimaleate, have exhibited
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the induction of apoptotic cell death across a spectrum of T-ALL cell lines. These
candidates have also been found to trigger a response related to DNA damage and
impede the persistent activation of mTORC]1 as well as the expression of c-MYC.In
light of these findings, researchers posited that these molecules might be well-suited
for repurposing studies (Bonnet et al., 2020). As can be seen, studies in this field have
attracted attention, especially in recent years. However, there remains a notable
scarcity of drug repositioning studies focusing on acute lymphoblastic leukemias
within the existing literature.

The primary challenge in drug repositioning revolves around identifying new
associations between drugs and diseases. To tackle this challenge, an array of methods
has been created, encompassing computational techniques, biological experiments,
and hybrid methodologies. Novel applications for a drug candidate may arise by
chance or can be pursued through systematic and logic-driven methods. Hypothesis
driven methods for drug repositioning encompass both computational and
experimental approaches, offering significant potential for gaining deeper insights into
the mechanisms and pathways implicated in disease development (Parvathaneni et al.,
2019). Experimental repositioning methods consist of binding assays and phenotypic
screening techniques. These methods help uncover interactions between ligands and
assay components, as well as identify promising lead compounds from extensive
compound libraries (Pushpakom et al., 2019). Computational strategies can be
classified into various categories, such as knowledge-based, target based and
signature-based etc. These approaches are cost-effective and hold great promise for
the discovery of new therapeutic agents. Importantly, computational methods enhance
drug discovery by effectively harnessing the fields of bioinformatics, and systems
biology and network biology, (Jin and Wong, 2014).

Target-based involves the investigation of a drug using a biological target, such as a
receptor or protein, to assess its impact on a biological reaction. This identifies novel
applications for a drug by establishing connections between the drug and a specific
disease, primarily based on the drug's interactions with protein targets (Sawada et al.,
2015). The identification of novel uses for a drug can stem from its primary target as
well as its interactions with off-target proteins. Target repositioning occurs when a

drug is newly applied to interact with the same target protein identified beforehand.
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Remarkably, around 80 percent of drug repurposing initiatives have been driven by
target-based method(Parvathaneni et al., 2019).

Knowledge-based techniques use bioinformatics methods to integrate a wide range of
data, including details about drugs, and its interactions, formulations of drugs etc. Also
includes clinical trials. However, the information contained in blind and target-based
methods may sometimes be insufficient to unveil novel mechanisms that extend
beyond the established drug targets. In contrast, knowledge-based methods incorporate
existing information to forecast previously unidentified mechanisms, such as emerging
drug targets, subtle similarities between drugs, and new disease biomarkers. By
infusing substantial existing knowledge into the drug repositioning process, these
methods aim to enhance the accuracy of their predictions (Kulkarni et al., 2023).
Utilizing target-based and cell-based methods constitutes a signature-based approach
in the realm of drug repositioning studies (Iorio et al., 2013). Approaches to drug
repurposing based on signatures hinge on utilizing genes extracted from omics data
associated with diseases, both with and without treatment. These methods aim to
unveil undiscovered off-targets or unidentified disease mechanisms. With the
progression of next-generation sequencing technologies and microarray there is a
substantial accumulation of genomics data relevant to drug repurposing studies. This
wealth of data can be leveraged to identify gene signatures, particularly from databases
like NCBI-GEO, facilitating the exploration of previously unknown disease-altering
pathways (Jin and Wong, 2014). While signature-based approaches involve challenges
such as cost, time, labor, and dependence on specialized equipment, they offer several
advantages. These include their efficacy when creating intricate diagrams illustrating
the links between diseases and the actions of drugs. Consequently, the biological
significance of signature-based drug data extends beyond the discovery of new
candidates to the experimental evaluation of candidates predicted through
computational methods (Turanli et al., 2021). As the effectiveness of a drug is
influenced by individual gene signatures, the utilization of a gene signature database
proves beneficial in the drug repurposing process through computational means.
Methods based on signatures uncover previously unknown mechanisms of drug action,
including altered gene and protein expression. Techniques like Connectivity Map

(CMap) (Subramanian et al., 2017), and Library of Integrated Network-Based Cellular
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Signatures (LINCS) and weighted gene co-expression network analysis (Langfelder
and Horvath, 2008) are employed in this context (Parvathaneni et al., 2019).

In the systems biology, networks play a crucial role by furnishing a comprehensive
framework to amalgamate both quantitative and qualitative and connections among
biological entities, encompassing gene expressions, their correlations, and the
existence of interactions. Molecular networks, for drug disease and target
combinations, and co-expression signaling, transcriptional regulatory, and metabolic
and, protein-protein interactions, find diverse usage in the field of systems
pharmacology(Azuaje, 2013). Network-based models have been employed to discern
elucidate molecular mechanisms and pinpoint diagnostic biomarkers in a range of
diseases, spanning metabolic disorders to cancers. Despite being in the early stages in
pharmacology, network modeling is already shedding light on drug targets,
interactions, and potential drug candidates for treating numerous diseases, along with
predicting drug side effects. Additionally, network modeling serves as a primary
approach in computational drug repositioning, commonly employed to construct a
disease,gene and drug triangle, where nodes represent drugs, diseases, or gene
products, and edges signify the interactions between them(Turanli et al., 2021).
Specifically, transcriptomic and clinical genomic data have been subjected to a
comprehensive and systematic network study for in silico drug repositioning, utilizing
gene expression data that is accessible to the public Additionally, the development of
bioinformatics tools has facilitated researchers in efficiently conducting drug
repositioning studies, with examples like geneXpharma (Turanli et al., 2017),
PROMISCUOUS (von Eichborn et al., 2011), PharmDB (Lee et al., 2012), DrugMAP
central (Fu et al., 2013) and others. This approach, for instance, aids in identifying and
prioritizing novel drug targets. These networks aid in the discovery of potential
therapeutic targets as well as the repurposing of drug candidates and evaluation of their
effects on cell models (Turanli et al., 2021).

In this thesis, a network-based approach was applied for repurposing analyses. For this
purpose, LINCS and genexpharma systems were used as the last step of bioinformatics
analysis, after the establishment of protein-protein interactions.

LINCS, funded by the NIH Common Fund, aims to create an extensive repository of
response signatures. This involves employing a variety of array of disturbances such

as genetic, disease and chemical states. Also includes model systems like variety of
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cell lines. Moreover, involves types of assay including epigenetic modification, protein
and gene expression and also imaging (Stathias et al., 2020). An economical genome-
wide transcriptomics assay named L1000, utilizing Luminex bead technology, has
been developed. Data from LINCS-L1000 is accessible, providing information on the
reactions of approximately 50 human cells to around 20,000 molecules at various
concentrations, leading to more than one million experiments. The computational
extraction of RNA expression data, like LINCS-L1000 data, can be achieved through
diverse statistical approaches. Presently, signatures derived from LINCS-L1000 data
are computed utilizing the regulated Z-score method (Duan et al., 2016). Recent
research indicates that employing the characteristic direction method for processing
L1000 data, through distinct intrinsic and extrinsic benchmarking schemes,
significantly enhances signal-to-noise in comparison to the currently utilized Z-score
method for computing L1000 signatures. In light of this, the characteristic direction
processed L1000 signatures are made available through an advanced L1000CDS?2 is
an online search engine application. Thousands of small chemical signatures and their
paired combinations can be prioritized with this tool, which also predicts the likelihood
that they will either imitate or reverse an input gene expression signature using two
different approaches. Additionally, for all small compounds profiled by the processed
L1000 assay, the L1I000CDS2 program predicts drug targets. (Duan et al., 2016).

Furthermore, another pharmaceutical search tool developed by Turanl et al. called
GeneXpharma was utilized for drug repurposing. GeneXpharma offers potential drug
candidates for 48 diseases derived from repositioning analyses based on gene
expression. The analyses leverage extensive drug-gene association data sourced from
the Drug Gene Interaction Database, which encompasses 15 different databases. The
process incorporates 118 gene expression profiling datasets specific to 48 diseases,
and it includes statistical assessments for both drug-disease connections and gene-
disease (Turanli et al., 2017). GeneXpharma showcases 50,304 interactions between
drugs and genes, encompassing 4,344 genes and 11,939 drugs in total (Rahman et al.,

2019).

2. The Aim of Study
In light of all the aforementioned information about both leukemia and its treatment

options, the primary aim of this thesis is to investigate the repositioning of FDA-
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approved drugs to address diverse medical conditions. The focus is on establishing
their potential as therapeutic agents across various scenarios characterized by low
treatment efficacy. Furthermore, attention is directed towards Ph+ ALL, the
predominant clinically encountered subtype identified as a high-risk group. The
objective is to discover alternative treatment options for addressing the challenge of
imatinib resistance. Through this methodology, the ultimate goal is to enhance
treatment effectiveness and propose a new therapeutic approach for a leukemia
subtype with a notably weak clinical response. Additionally, important objectives
involve implementing more comprehensive projects using the acquired data and
eventually subjecting the project outcomes to clinical testing through a translational

approach.
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CHAPTER 2: METHODS

2.1. Computational Studies

2.1.1. Obtaining transcriptome (gene expression) data sets

Selected transcriptomic datasets were chosen in accordance with the objectives of the
study emphasizing the presence of gene expression data from healthy individuals
alongside diseased samples or samples categorized based on the presence or absence
of drug resistance. Furthermore, considering qualitative differences that contribute to
heterogeneity, such as disease subtype, sample type, cancer stage, etc., the samples
will be classified. Adult mRNA gene expression datasets for ALL and Ph+ ALL were
acquired from GEO. Differentially expressed genes analysis was performed on eight
datasets for ALL (GSE26530, GSE12995, GSE635, GSE26865, GSE66004,
GSE79533, GSE56449, and GSE66002) and four datasets for Ph+ ALL (GSE66004,
GSE79533, GSE66792, and GSE66002). In the absence of control samples in seven
datasets for ALL and four datasets for Ph+ ALL, control samples from the GSE26725
and GSE22529 datasets were chosen based on their experimental platform. The details
of the selected GEO datasets are provided in Table 2.

Table 2. The table comprises GEO datasets utilized within the study's framework,
encompassing ALL, Ph+ ALL, B-CLL, and CLL

Sample Size

Accession
Disease No Platform Disease Control Pubmed ID
(n) (n)
ALL GSE26530 GPL9115 28 8 22173241 (Nordlund et
al., 2012)
ALL GSE12995 GPL96 175 - 19129520(Mullighan,

Su, et al., 2009)

ALL GSE635 GPL96 173

15295046(Holleman et
al., 2004)
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Table 2. (Continued) The table comprises GEO datasets utilized within the study's
framework, encompassing ALL, Ph+ ALL, B-CLL , and CLL

ALL GSE26865 GPL570 12 - 22173241 (Nordlund et al.,
2012)

ALL GSE66004 GPL96 109 - 27561722(Herold et al., 2017)

ALL GSE79533 GPL570 229 - 27634205(Hirabayashi et al.,
2017)

ALL GSE56449  GPL570 32 - 25515960(Schinnerl et al.,
2015)

ALL GSE66002  GPL570 98 - 27561722(Herold et al., 2017)

Ph+ GSE66004 GPL96 42 - 27561722(Herold et al., 2017)

ALL

Ph+ GSE79533 GPL570 17 - 27634205(Hirabayashi et al.,

ALL 2017)

Ph+ GSE66792 GPL19883 15 - 25775523(McClellan et al.,

ALL 2015)

Ph+ GSE66002  GPL570 30 - 27561722(Herold et al., 2017)

ALL

B-CLL  GSE26725 GPL570 - 5 21296997(Vargova et al., 2011)

CLL GSE22529 GPL96 - 11 20595513(Gutierrez et al.,

2010)

2.1.2. Identifying Differentially Expressed Genes at the mRNA Level
Each dataset for both ALL and its Philadelphia-positive subtype underwent
independent analysis to identify DEGs, employing the principle of comparing gene

expression levels between disease and healthy samples. In datasets lacking a control

group, specifically GSE56449, GSE79533, GSE66002, GSE66792, and GSE26865,
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analyses utilized control samples from GSE26725, while GSE12995, GSE635, and
GSE66004 datasets were analyzed with control samples from GSE22529. Raw data
underwent normalization using the Robust Multiarray Average (RMA)(Bolstad et al.,
2003), and gene expressions were subjected to statistical comparison using the
LIMMA(Ritchie et al., 2015) method under the R/Bioconductor platform(version
Rx64 4.2.1)(Gentleman et al., 2004) for DEG analysis. Correction of p-values in
multiple hypothesis tests employed the False Discovery Rate (FDR) method.
Statistical significance was assessed on dual criteria: a p-value < 0.05 and 2-fold
changes (FC). Furthermore, RRA analysis was done by using R/Robustrankaggreg.
The direction of DEGs was ascertained as up-regulated if FC > 2 or down-regulated if
FC < 2. Gene nomenclature was organized using the bioDBnet platform(Mudunuri et
al., 2009). Given the analysis of multiple datasets for both ALL and Ph+ ALL, the
mean fold changes of DEGs were statistically calculated using the

R/Robustrankaggreg platform(Kolde et al., 2012) with a p-value < 0.05 criteria.

2.1.3. Functional Enrichment of Gene Sets

GSEA were undertaken to elucidate the functional roles of the identified DEGs.
Metascape(Zhou et al., 2019), a bioinformatics tool, was employed to determine the
involvement of DEGs in biological processes, molecular pathways, intracellular
localizations, and associated diseases.In these analyses, information was extracted for
the relevant genes using KEGG(Kanehisa, 2019) and Gene Ontology (GO) (Thomas
et al., 2022) resources. In the GSEA analyses, significance was attributed to p-values

below 0.01.

2.1.4. Establishing Protein-Protein Interaction Networks

The BioGRID database (version 3.5.184) (Chatr-Aryamontri et al., 2017) ,
encompassing 44,219 PPIs involving 14,373 distinct proteins, was utilized to discern
physical associations among proteins associated with DEGs in ALL and Ph+ ALL.
Cytoscape software 3.10.0(Shannon et al., 2003), along with the CytoHubba plug-
in(Chin et al., 2014), was employed for the visualization of PPI networks and the
computation of both local and global topological features, including degree and

betweenness.
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2.1.5. Drug Repositioning for Candidate Drug Identification

The L1000CDS2 platform (Duan et al., 2016) houses a repository containing 30,000
drug expression profiles sourced from the Library of Integrated Network-based
Cellular Signatures (LINCS)-L1000 dataset (Campillos et al., 2008). Its primary
purpose is to facilitate the identification of potential drug candidates for repositioning
by analyzing the expression patterns of up-regulated and down-regulated DEGs
specific to a given disease. Additionally, a network-centric approach was incorporated
through the genexpharma tool (Turanli et al., 2017), utilizing hub proteins as drug
targets. This tool encompasses an extensive compendium of 50,304 documented drug-
gene interactions. This comprehensive approach augments the accuracy and
thoroughness of drug repositioning initiatives, consequently elevating the likelihood

of uncovering innovative therapeutic interventions.

2.2. Cell Culture

In order to assess the in vitro efficacy of drugs determined in vivo, human cell lines
were employed. Within the thesis scope, drugs were identified for the treatment of both
ALL and its subtype, Ph(+) ALL. Consequently, cell lines specific to these types were
utilized for testing the identified drugs for both ALL variants. Towards this objective,
the Jurkat cell line was employed for ALL, while the SUP-B15 cell line was used for
Ph(+) ALL.In the course of these experiments, drugs found efficacious in Ph(+) and
Ph(-) ALL cell lines will undergo testing on HUVEC cells, serving as the healthy
control cell line. This process aims to identify drugs that exhibit minimal impact on
healthy cells.

Jurkat cells were cultured, in accordance with the literature, in RPMI-1640
supplemented with 10% Fatal Bovine Serum (FBS) and 1% penicillin/streptomycin
(Guo et al., 2019). Also, SUP-B15 cells were cultured in again RPMI-1640
supplemented with 1% penicillin/streptomycin however for these cells the ratio of
FBS supplement was determined as 20 % for better proliferation (Wang et al., 2014).
Furthermore, a healthy cell line, HUVEC, was cultured in DMEM supplemented with
10% Fatal Bovine Serum (FBS) and 1% penicillin/streptomycin(Chiew et al., 2015).
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2.2.1. Thawing Frozen Cells

After obtaining the cell lines Jurkat, SUP-B15, and HUVEC, the cells were thawed in
a 37°C water bath and promptly moved into 5 ml of pre-warmed media for
centrifugation. Afterwards, SUP-B15 cells underwent centrifugation at 300 g for 5
minutes, Jurkat cells at 900 rpm for the same duration and finally, HUVEC cells at
500g for the same duration to remove the supernatant containing DMSO. The resulting

pellet was reconstituted in fresh pre-warmed required media and then transferred into

T25 culture flasks for SUP-B15 and Jurkat, T75 culture flasks for HUVEC.

2.2.2. Subculturing of Cells

Prior to commencing cell passage, cellular vitality and confluency were scrutinized
through microscopic observation (Olympus, CKX53SE). Subsequently, the cells were
transferred to Falcon tubes and subjected to centrifugation (400 g for SUPB15, 900
RPM for JURKAT). Following centrifugation, supernatants were carefully decanted,
and the resultant pellets were dissolved in 3 ml of required culture media. Further, a
dilution to a 1/3 ratio was performed, nearly 5 X 10° cell/mL viable cells were then
seeded into T25 flasks. Subsequently, the passaged cells were incubated in an
incubator at 37 degrees and 5% CO2 in air atmosphere, and this process was repeated
every 3 days for SUPBIS5 cells and every 2 days for Jurkat cells. For HUVEC cell,
Firstly media was removed from the flasks then cells were washed with PBS twice
then 3 ml of trypsin was added to cells to unadhere the cells. Then cells were incubated
for 5 minutes. Afterwards, 5 ml of media was added to stop the activity of trypsin.
Then, cells were collected in a falcon tube and subject to centrifugation (500 g,5
minutes) Further, a dilution to a 1/2 ratio was performed, nearly 1 X 10° cell/mL viable

cells were then seeded into T75 flasks.

2.2.3. Freezing Cells

Earlier in the experiments, cells were frozen for subsequent use in further studies.
Approximately 2x10° cells were gathered through centrifugation, and the resulting
pellet was reconstituted with 1.5 ml of freezing media comprising 70% FBS and RPMI
1640 media with 10% DMSO. Thorough mixing of the cells and freezing media

occurred, and 1.5 ml of the cell suspension was dispensed into individual cryogenic
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vials, followed by incubation at -80°C. This freezing step was repeated every 3-4

weeks.

2.2.4. Cell Counting

The number of cultured cells was determined using a hemocytometer to maintain
uniform cell quantities for each procedure and also passage. The cells were gathered
in Falcon tubes and subsequently centrifuged for 5 minutes at varied g or rpm settings
based on the cell types. The supernatant was carefully decanted from the centrifuged
Falcon tube. The resulting pellet was reconstituted in 3 mL of medium, and 1 mL of
cells was aliquoted into an Eppendorf tube. Subsequently, 30 puL of cells were
transferred from this primary Eppendorf to a secondary Eppendorf tube. Afterwards,
cells were diluted 1:1 (v/v) with 0.4% Trypan Blue staining solution. Live cells,
possessing an intact membrane, exhibited a bright white appearance and did not uptake
the blue dye. Count the number of viable (seen as bright cells) cells in 4 squares and

calculate the total number of cells via the formula below (1)

__ (Number of counted cells)

Number of Cell/mL = y x Dilution Factor x 10% (1)

2.2.5. Establishing an Imatinib-Resistant Cell Line Ph (+) ALL

There are several ways to generate a resistant cell line. In this thesis, a gradually
increasing method was used to develop drug resistance. The generation of the
Imatinib-resistant cell line involved exposing the sensitive SUP-B15 cell line to
gradually increasing concentrations of imatinib. Imatinib exposure began at 0.2 pM,
with increments of 0.2 pM every 7 days, contingent on viability exceeding 70% in
culture, as determined by the trypan blue exclusion method. If viability fell between
30% and 70%, the imatinib concentration remained unchanged; however, if viability
dropped to 30% or less, imatinib was withdrawn, a process termed rescue. The duration
of rescue periods depended on recovery times. Imatinib was reintroduced at 50% of
the last attained level when viability reached 90% in the culture. The Imatinib-resistant
cell line SUP-B15/RI was harvested and evaluated when the imatinib concentration
reached up to 4 uM (Xing et al., 2012). After achieving the ability to grow in the
presence of 4 uM imatinib, the cells were designated as SUPB15/R, and the drug

concentration was maintained at a constant level of 4 uM throughout the research. At
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each dosage administration, the resistant cell group from the preceding step and the

corresponding controls of that group were frozen at -80°C and archived as backups.

Parental Cell Line Resistant Cell Line

SUP-B15 SUP-B15/R

Figure 3. Generation of Imatinib resistant SUP-B15/R cell line by gradually exposing

the cells to increasing concentrations of Imatinib over an extended period.

2.2.6. Validating Imatinib Resistance with MTT Assay

The examination of resistance development in SUPBI15/R cells, exposed to a
progressively escalating drug regimen, was carried out using the Thiazolyl blue
tetrazolium bromide (MTT) assay. Following one passage without exposure to the
drug, the cells underwent centrifugation at 400 g for 5 minutes to eliminate the drug.

Upon confirming the viability and count of the collected cells using trypan blue, they

were seeded in a 96-well plate at a density of 1x70”cells per well in 100 uL of RPMI
media and exposed to imatinib for 72h. Following that, 15 pl of MTT solution (5
pg/ml) was introduced into the wells and allowed to incubate for 4 hours at 37°C in a
CO: incubator. Subsequently, the cells were pelleted through centrifugation at 250 g
for 10 minutes, and the medium was aspirated from each well. Then, 100 pl of DMSO
was added and incubated for 30 minutes on a light-protected shaker. Measurements

were conducted using a spectrophotometer at a wavelength of 570 nm.

2.2.7. Validating Imatinib Resistance with Growth Curve
To demonstrate the development of resistance, both SUP-B15 and SUP-B15/R cells

were cultured in two different 6-well plates at a density of 500,000 cells per ml in 3
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ml volumes. Three wells served as controls, while the remaining three were exposed
to an IC50 drug concentration. Trypan blue cell counting was performed at 48 and 72
hours on both control and treated wells, with the results being documented. Upon
completion of the experiment at the 72nd hour, a growth curve was constructed based

on the obtained data.

2.2.8. Validating Imatinib Resistance with Flow Cytometry

To assess drug resistance via flow cytometry, both SUPB15 and SUPB15/R cells were
cultured in 6-well plates and exposed to imatinib for 48h and 72h. Subsequently, 1x
10 cells were collected, PBS-washed twice, and re-suspended in 100 pl of binding
buffer. Following this, 5 pl of Annexin V-FITC was introduced, and after a 10-minute
interval, 10 pl of PI was added. The cells were then incubated in darkness at room
temperature for 15 minutes, followed by the addition of 400 pl of binding buffer. The

stained cells were subjected to analysis using a flow cytometer.

2.3. Evaluating the Cytotoxic Activity of Drug Candidates for Ph (-) ALL on Jurkat
Cell Line

2.3.1. Determination of Anti-Proliferative Effects of Drugs on Ph (-) ALL
Cells with MTT Assay

Maytansine and Isoprenaline were identified as the chosen drug candidates for Ph (-)
ALL. Additionally, Doxorubicin was employed as a positive control for these drugs.
To assess their cytotoxic potential on the Jurkat cell line, an MTT assay was executed.
Initially, Jurkat cells underwent centrifugation at 900 rpm for 5 minutes. Subsequent
to this, their count and viability were determined using Trypan Blue. Following the
enumeration, Jurkat cells were seeded onto a 96-well plate at a density of 2x 10%, and
individual treatments with Maytansine (0-2nM) and Isoprenaline (0-50 uM) were
administered. Following a 48-hour incubation period, 15 puL. of MTT solution was
introduced to the wells, and the plate was incubated for an additional 4 hours without
exposure to light. Upon removal of the media from the wells, 100 uL. of DMSO was

added, and the plate was incubated for 30 minutes on a light-protected shaker.
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2.3.2. Assessment of Cytotoxic Effects of Drugs Possessing Established
Anti-Proliferative Properties on Ph (-) ALL Cells with Trypan Blue Assay

To substantiate the cytotoxic efficacy of Maytansine and Isoprenaline, the Trypan Blue
Assay was employed. For this purpose, Jurkat cells were seeded at a density of 5x10°
across two distinct 6-well plates, where one plate was designated for Maytansine, and
the other for Isoprenaline. Wells were categorized into control, IC50, and IC80
concentrations of the respective drugs. Cell counts were performed using trypan blue
at both 24, 48, and 72. hours for each well. The data obtained from the counts were

utilized to construct a growth curve.

Maytansine Isoprenaline
1 2 3 1 2 3
A(CT IC50 | | IC80 Al cT IC50 | [ 1C80
BlcT IC50 | | IC80 Bl{ cT IC50 ) | IC80

Figure 4. Schematic representation of the 6-well plate arrangement for the Trypan Blue

experiment.

2.4. Estimation of the Cytotoxic Effects of Drugs, Both Individually and in

Combination with Imatinib, on Imatinib-Sensitive and Resistant Ph+ ALL Cells.

2.4.1. Determination of Cytotoxic Effects of Drugs on Both Sensitive and Imatinib
Resistant Ph (+) ALL Cells with MTT Assay

Desipramine and Glipizide were selected as the preferred drug candidates for Ph (+)
ALL. To evaluate their cytotoxic potential on the SUP-B15 and SUP-B15/R cell lines,
an MTT assay was conducted. Initially, cells were centrifuged at 400 g for 5 minutes.
Subsequently, their count and viability were assessed using Trypan Blue. After
enumeration, both cell lines were seeded onto a 96-well plate at a density of 2x10%,

and individual treatments with Desipramine (0-25 uM) and Glipizide (0-80 uM) were
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administered. After a 72-hour incubation period, 15 pL of MTT solution was added to
the wells, and the plate was incubated for an additional 4 hours without exposure to
light. Following the aspiration of media from the wells, 100 uL of DMSO was added,

and the plate was incubated for 30 minutes on a light-protected shaker.

2.4.2. Determination of the Cytotoxic Effect of Drugs Given in Combination with
Imatinib by MTT Assay.

To comprehend the additive, synergistic & antagonistic effects of imatinib and Ph (+)
drugs, a combined MTT assay was employed on imatinib-resistant SUP-B15/R cells.
The experimental design included wells treated with only imatinib IC20, only the drug
(Desipramine or Glipizide), and a combination of both. In the combination wells,
imatinib concentration remained stable at [C20, while the required drug concentration
was increased. This experiment was repeated separately for both Desipramine and

Glipizide.
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Figure 5. Representation of combination MTT assays with selected drugs on a 96-well

plate.

2.4.3. Confirmation of Cytotoxic Activity of Selected Synergistic Doses Using Trypan
Blue Exclusion Assay
Upon identification of synergistic doses using computational tools, a trypan blue

staining assay was employed to validate the impact of these dosages. In pursuit of this,
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SUP-B15 and SUP-BI15/R cells were harvested and seeded onto 6-well plates, where
the determined synergistic dosages were administered to the respective wells,
alongside a control well. Cell counting was conducted at 48 hours and 72 hours, and

the acquired data were utilized to construct a growth curve.

2.5. Assessment of the Apoptotic Effects of Synergic Doses of the Selected Drugs
Determined to Have Potent Cytotoxic Effects on the Cells.

2.5.1. Determination of Apoptotic Cell Population via Annexin/FITC dual staining
The apoptotic effects of two drugs, which have been determined to exhibit strong
cytotoxic activity among the tested drugs, will be assessed on cells using the
Annexin/FITC dual staining method. Based on flow cytometry analyses resulting from
Annexin and FITC staining, cells with dual positivity will be classified as "late
apoptotic/dead,"” Annexin-positive and FITC-negative cells as "early apoptotic,"”
Annexin-negative and FITC-positive cells as "necrotic," and cells negative for both
Annexin and FITC as "healthy." Furthermore, apoptotic activations will be determined
in Ph (-) Jurkat cells exposed to IC20 and IC50 concentrations, calculated based on
MTT assay results, during the specified combination or individual applications of
drugs for 48 and 72 hours, as well as in Ph (+) imatinib-sensitive SUP-B15 cells and
imatinib-resistant SUP-B15/R cells. Jurkat, SUPB15, and SUPBI15/R cells were
cultured in 6-well plates and treated with required dosages of drugs for 48h and 72h.
Subsequently, 1x10° cells were harvested, washed twice with PBS, and re-suspended
in 100 pl of binding buffer. Following this, 5 pl of Annexin V-FITC was added, and
after a 10-minute incubation, 10 pl of PI was introduced. The cells were then incubated
in darkness at room temperature for 15 minutes, followed by the addition of 400 pl of

binding buffer. The stained cells underwent analysis using a flow cytometer.

2.6.1. Confirmation of Cytotoxic Activity of Selected Drugs on HUVEC Cells Using
Trypan Blue Exclusion Assay

HUVECs were seeded in 6-well plates at a concentration of 5 x10%. After 24 hours of
adhesion, the media was removed from the 6-well plates. Then, the drugs were added

to the 6-well plates with fresh media at the IC50 dose that was determined. After 48
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hours of incubation, the cells were counted using trypan blue, and the cytotoxic effect

of the drugs on the HUVEC cell line was determined.
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CHAPTER 3: RESULTS

3.1. Determination of the Drugs to be Repositioned

The identification of DEGs in eight datasets related to ALL and four datasets related
to Ph+ ALL was performed using the LIMMA R package. Figures 6A and 6B present
the counts of DEGs, up-regulated DEGs, and down-regulated DEGs for both diseases.
R/Robustrankaggreg, a statistical approach combining data from multiple datasets,
was employed to enhance the statistical robustness of the DEGs. This method assigned
a ranking to each gene in each dataset and computed the mean FC with a significance
threshold of p-value <0.05. The analysis revealed a total of 799 DEGs in ALL, with
386 up-regulated genes and 413 down-regulated genes. For Ph(+) ALL, 295 DEGs
were identified, consisting of 132 up-regulated and 163 down-regulated genes. Among
the top 20 up-regulated and down-regulated DEGs based on their FC illustrated in
Figure 7, ADA and HBD were notably highlighted as up-regulated DEGs in the top
20 DEGs for ALL, while these genes did not exhibit differential expression in Ph+
ALL. Conversely, SPATS2L was identified as an up-regulated DEG in Ph(+) ALL but
did not show significant differential expression in ALL.
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Figure 6. Number of DEGs in the result of DEG analysis of each dataset A) in ALL
and B) in Ph+ ALL.
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Figure 7. Representation of R/Robustrankaggreg analysis results with heatmap
diagram of fold changes (logFC) of the top 20 genes with increased and decreased
expression in the ALL (A) and Ph (+) ALL data sets (B).

3.1.1. Identification of HUB Proteins

In the course of the investigation, a total of 3031 PPIs associated with protein coding
DEGs were identified in cases of ALL, whereas 519 PPIs were recognized in Ph+
ALL. Following this, an analysis of the top 20 proteins, considering both degree and
betweenness centrality, was conducted using the CytoHubba package for both disease
categories. The hub proteins for each respective condition were designated as the set
union of proteins identified as top-degree and top-betweenness.

As aresult, in ALL, a total of 24 hub proteins were determined, encompassing AGR2,
CBX5, CDC42, CDC5L, CDK1, CDKNI1A, EGFR, EZH2, HSP90AA1, HSP90ABI,
HSPDI1, JUN, MYC, PCNA, PIK3R1, RACI, RANBP9, SMARCA4, SNCA,
TNFAIP3, TRAF3, YWHAB, YWHAE, and ZBTB16. Moreover, 33 hub proteins
were identified for Ph (+) ALL, including ATM, ATP2B1, BIRC3, CCND2, CDKaS,
CDKN2A, CDKN2C, CTBP2, DSP, GNAII, GRB10, HDAC6, HIPK?2, IL6ST, INSR,
IQGAPI1, KIAA1429, KRAS, LCK, LEF1, LGALS3BP, LYN, MYB, MYHI0,
RAI14, RANBP9, SAP30, SMADI, SYK, SYNCRIP, TRAF5, TRAPPC10, and
YESI.
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Remarkably, an overlap was noted where 16 hub proteins were identified as common
in both ALL and 7 hub proteins were shared in the case of Ph (+) ALL found by degree
and betweenness to depict the interactions among these hub proteins visually, a

network visualization was created using Cytoscape (Figure 8).

Figure 8. A) The interaction network illustrating the connections of hub proteins
(depicted by blue octagons) with other proteins in ALL. B) The interaction network
showcasing the links of hub proteins (depicted by red octagons) with other proteins in

Ph+ ALL.

3.1.2. Gene Enrichment Analysis

Through comparative gene set enrichment analysis, it was determined that 11
pathways were shared between both diseases out of the 20 significant pathways
associated with DEGs. These pathways included cellular response to cytokine
stimulus, hematopoietic cell lineage, hemostasis, inflammatory response, negative
regulation of cell activation, negative regulation of the immune system process,
positive regulation of cell death, positive regulation of cytokine production, positive
regulation of the immune response, regulation of immune effector process, and
response to bacterium. In addition to these, cell cycle, cytokine signaling in the
immune system, neutrophil degranulation, regulation of B cell activation, signaling by

Rho GTPases, Miro GTPases, and RHOBTB3 were notable pathways observed in
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ALL. B cell activation, enzyme-linked receptor protein signaling pathway, and
regulation of the MAPK cascade pathways were also significant pathways in Ph+
ALL.
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Figure 9. Pathways/biological processes activated by genes exhibiting differential
gene expression in ALL (A). Pathways/biological processes activated by genes

exhibiting differential gene expression in Ph-positive ALL (B).
3.1.3. Selected Repositioned Drugs

Two different approaches were used in the research to investigate drug repositioning

techniques for ALL and its Ph+ subtype: the discovery of DEGs as viable drug targets
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that have the ability to reverse gene expression patterns, and the targeting of hub
proteins as potential drug targets. Using L1000CDS2, a medication repositioning
technique, it was possible to find 39 distinct drugs for Ph+ ALL and 40 distinct drugs
for up-regulated and down-regulated DEGs in ALL. notably, a subset of six
medications Dasatinib, NVP-BGT226, Parthenolide, Selamectin, Selumetinib, and
Tyrphostin AG 1478 that are shared by both disorders were discovered. Dasatinib is
currently used as a first-line treatment for Ph+ ALL in adult patients(Wieduwilt, 2022).
Selamectin, on the other hand, is an antiparasitic drug that interacts with various
targets, including multidrug resistance protein, Akt/mTOR, and WNT-TCF
pathway(Juarez et al., 2018). Tyrphostin, tested in mice, is an active EGFR inhibitor
recommended for individuals with mutations in human pre-B acute lymphoblastic
leukemia. When these drugs are examined, drugs such as Dasatinib, already prioritized
in the clinic for ALL treatment, or drugs recommended for ALL treatment, such as
Parthenolide and Tyrphostin AG 1478, have been identified(Lee and Rhee, 2017). The
presence of drugs from the literature that is already used in the clinic or have
therapeutic effects in our study is also evidence that the gene sets used in the study
accurately reflect the disease. From the 24 core proteins identified for ALL, 13 of them
have formed a network with a total of 123 interactions involving 99 drugs. In the case
of Ph+ ALL, 19 out of 33 core proteins have constituted a network with a total of 289
interactions involving 203 drugs. Conclusively, within the scope of the thesis, the
drugs that could be effective from many data sets were compiled as the first two drugs
for each of the two diseases using different methods. These include Maytansine and

Isoprenaline for ALL and Desipramine and Glipizide for Ph (+) ALL.

Table 3. The first two drugs targeting core proteins in ALL disease

47


https://paperpile.com/c/8RkzGg/XbVLX
https://paperpile.com/c/8RkzGg/lz7U2
https://paperpile.com/c/8RkzGg/Uj2KL

Name of Drug p-value Target Hub Information of Drug

Protein

MAYTANSINE 0.000227 HSP90AA1 Maytansine is a cytotoxic
agent that binds to the
rhizoxin-binding site,
preventing the assembly
of microtubules by

binding to tubulin.

ISOPRENALINE 0.000247 PIK3R1 Isoprenaline is a
medication used for the
treatment of bradycardia,
heart block, and

occasionally asthma.

Table 4. The first two drugs targeting core proteins in Ph (+) ALL disease

Name of Drug p-value Target Hub Information of Drug
Protein
DESIPRAMINE 3.65995E-08 KRAS Desipramine is a tricyclic

antidepressant used in the
treatment of depression.

GLIPIZIDE 0.000131224 CDKN2A,GRB | Glipizide is an anti-
10,CDKN2A diabetic medication

belonging to the
sulfonylurea class, used in
the treatment of type 2

diabetes.

3.2. Generation of Imatinib Resistant Cell Line

3.2.1. Results of MTT assays
Within the framework of this thesis, a central objective was the examination of
cytotoxic effects induced by repurposed drugs on imatinib-resistant SUP-B15 cell

lines. Emphasis was placed on meticulous observation of the mechanisms through
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which these drugs could potentially mitigate imatinib resistance. To this end,
increasing dosages of Imatinib were given to parental cells for 6 months. This process
was continued to reach 4 uM of resistance. To confirm the resistance in developed
imatinib-resistant SUP-B15/R cells, an MTT assay was conducted, wherein cells were
exposed to increasing doses of imatinib and cell viability was measured after 72 hours
using the MTT test. The results of the MTT assays indicated that while the IC50 value
for imatinib in sensitive parental SUP-B15 cells was approximately 2.8 uM, the IC50
value for the developed imatinib-resistant SUP-B15/R cells was observed almost 20
uM. Thus, it was determined that the resistant cells exhibited resistance to imatinib of

7-fold compared to the sensitive parental cells (Figure 10).
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Figure 10. Determination of the viability of SUP-B15 and SUP-B15/R cells with
imatinib treatment. Imatinib application was carried out for 72 hours, and viability
analysis was performed using the MTT test. The experiments were repeated three

times. Error bars indicate the standard deviation.

3.2.2. Representation of Growth Curve for Validating Imatinib Resistance

After performing MTT analysis, a growth curve analysis was executed to assess
imatinib resistance in SUP-B15/R cells. Utilizing parental and imatinib-resistant cells
from two different 6-well plates, in each 6-well plate, three wells functioned as

controls, while the remaining three were subjected to a 4uM drug concentration.
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Trypan blue cell counting occurred at 48 and 72 hours for both control and treated
wells. Consequently, the variance in proliferation between parental cells and imatinib-
resistant cells was observed. As observed in Figure 11, the untreated parental cell line
and untreated SUP-B15/R exhibited similar proliferation, whereas a notable difference
was evident between the proliferation of the parental cell line treated with 4uM
imatinib and the SUP-B15/R treated with the same concentration. While significant
cell death was observed in the drug-treated parental cell line, the resistant group

displayed a proliferation similar to its untreated state under 4uM drug exposure.
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Figure 11. Representative growth curve created with data obtained from the trypan
blue experiment on SUP-B15 and SUP-B15/R. Imatinib application was carried out
for 72 hours, and viability analysis was performed using the MTT test. The

experiments were repeated three times. Error bars indicate the standard deviation.

3.2.3. Flow cytometry for determining resistance

To demonstrate the developed Imatinib resistance in SUP-B15/R cells, Imatinib
treatment was applied to both SUP-B15 and SUP-B15/R cells, and apoptotic cells were
detected using the Annexin/PI staining method. The experiment lasted for 72 hours,
with measurements taken at 48 and 72 hours using flow cytometry, and graphs were
generated accordingly. According to the results of the Annexin/PI staining, the
apoptotic cell count observed in Imatinib-resistant SUP-B15/R cells remained
unchanged following the application of the IC50 Imatinib dose (Figure 12). In contrast,
a significant increase in apoptotic cell count, particularly at 72 hours, was evident in

Imatinib-sensitive SUP-B15 cells treated with the IC50 Imatinib dose. Cells that did
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not receive treatment did not exhibit a notable change in apoptotic cell count.
Consequently, the resistance of SUP-B15/R cells to Imatinib, as confirmed by both
MTT tests and trypan blue staining applications, has been reaffirmed.
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Figure 12. Representation of apoptotic cells identified in SUP-B15 and SUP-B15/R
cells treated with IC50 Imatinib dose using Annexin/PI staining. Imatinib application
was carried out for 72 hours, and viability analysis was performed using the MTT test.

The experiments were repeated three times. Error bars indicate the standard deviation
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3.3. Cytotoxic Effects of Maytansine and Isoprenaline on Ph (-) ALL cell line

3.3.1. Ascertainment of Anti-Proliferative Effects of Maytansine and Isoprenaline
With MTT Assay

To assess the cytotoxic effects of the two drugs, Maytansine and Isoprenaline,
identified through bioinformatic analyses for Ph (-) ALL, separate MTT assays were
conducted on JURKAT cell lines, a cell line representative of ALL. Additionally,
Doxorubicin was employed as a positive control for these drugs. In the Jurkat cell line,
the IC50, 1C20, and IC10 doses for Maytansine were determined to be 439 pM, 200
pM, and 120 pM, respectively (Figure 13A). The results of the MTT assay indicated
that the Jurkat cell line exhibited high sensitivity to Maytansine, with potent cytotoxic
effects observed even at picomolar concentrations. Furthermore, IC50, IC20, and IC10
doses for Isoprenaline were found to be 15.33 pM, 7.92 uM and 5.21 puM respectively.
(Figure 13B).
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Figure 13. Determination of the viability of Jurkat cells treated with Maytansine (A)
and Isoprenaline (B). Both treatment was conducted for 48 hours, and viability analysis
was performed using the MTT test. The experiments were repeated three times. Error

bars indicate standard deviation.

Additionally, the MTT assay test results revealed that in the Jurkat cell line, the IC50,
1C20, and IC10 values for Doxorubicin hydrochloride were determined as 27.88 nM,
13.16 nM, and 12.2 nM, respectively (figure 14). Upon examination of the MTT results

for Doxorubicin hydrochloride used as a control, as well as Maytansine and

52



Isoprenaline identified through analyses, it was discerned that the Jurkat cell line

exhibits significantly greater sensitivity to Maytansine.
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Figure 14. Determination of the viability of Jurkat cells treated with Doxorubicin.
treatment was conducted for 48 hours, and viability analysis was performed using the
MTT test. The experiments were repeated three times. Error bars indicate standard

deviation.

3.3.2. Results of Trypan Blue Staining on Ph (-) ALL cell line after Drug
Administrations

The trypan blue staining method was employed to determine the cytotoxic effects of
drugs with identified anti-proliferative activity on Ph (-) ALL cells. Cell counts were
conducted at 24, 48 and 72. hours were used to construct a proliferation graph based
on the obtained data.

As a result of this experiment, the cytotoxic effects of Maytansine and Isoprenaline on
Jurkat cell line have been confirmed. While the group without drug treatment and used
as control exhibited a linear increase over the course of 3 days, the proliferation in the
group treated with the IC50 dose was significantly slower compared to the control. At
the IC80 dose, a linear decrease was observed, leading to a substantial reduction in the

number of viable cells on the third day (Figure 15).
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Figure 15. Determination of the cytotoxic effects of Maytansine (A) and Isoprenaline
(B) on Jurkat cells based on the trypan blue staining results obtained from the
assessment of their anti-proliferative activity. The experiment was repeated three

times. Error bars indicate standard deviation.

3.4. Assessment of the Cytotoxic Impact of Glipizide and Desipramine, Both
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3.4.1. MTT Assay Results for Antiproliferative Effects Induced by Glipizide and
Desipramine in Ph (+) ALL Cells

Desipramine and Glipizide, identified as effective drugs for Ph (+) ALL through
bioinformatic analyses, were individually subjected to MTT analyses to determine
their cytotoxic effects on both parental SUP-B15 and Imatinib-resistant SUP-B15 cell
lines. The MTT assay was established, taking into account a duplication period of 72
hours. According to the MTT results, the IC50, IC20, and IC10 values for Desipramine
in parental SUP-B15 cells were determined to be 22.04 uM, 9.27 uM, and 8.89 uM,
respectively (Figure 16). For Imatinib-resistant SUP-B15/R, the IC50 dose was found
to be the same as Imatinib-sensitive SUP-B15. Despite SUP-B15/R cells being 7 times
more resistant to Imatinib compared to SUP-B15, Imatinib resistance did not alter the
IC50 dose for Desipramine. From this result, it is evident that Imatinib resistance does

not lead to any decrease in the anti-proliferative effect of Desipramine.
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Figure 16. Determination of the viability of SUP-B15 (A) and SUP-B15/R (B) cells
treated with Desipramine. Desipramine treatment was carried out for 72 hours, and
viability analysis was conducted using the MTT test. The experiments were repeated
three times. Error bars indicate standard deviation.

In addition, the second identified drug, Glipizide, exhibited IC50, 1C20, and IC10
doses of 68.02 uM, 25.2 uM, and 12.68 uM, respectively, in parental SUP-B15 cells.
For Imatinib-resistant SUP-B15/R cells, the IC50, I1C20, and IC10 doses were
determined to be 116.93 uM, 30.38 uM, and 25.15 puM, respectively (Figure 17). When

comparing the IC50 values of Imatinib-resistant SUP-B15/R and Imatinib-sensitive
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SUP-B15, it is evident that the IC50 value of the resistant group is approximately 2
times higher than the drug-sensitive group. This result clearly indicates that Imatinib
resistance has led to a reduction of approximately 2 times in the anti-proliferative
effect of Glipizide. In other words, cells showing resistance to Imatinib have developed

cross-resistance to the drug Glipizide.
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Figure 17. Determination of the viability of SUP-B15 (A) and SUP-B15/R (B) cells
treated with Glipizide. Glipizide treatment was carried out for 72 hours, and viability
analysis was conducted using the MTT test. The experiments were repeated three
times. Error bars indicate standard deviation.

In addition to all of these, Dasatinib was used as a positive control for SUP-B15 and
SUP-B15/R cells. According to MTT results IC50, IC20 and IC10 dosages of
Dasatinib on SUP-B15 cells were 15.96 nM, 2.02 nM, and 1.01 nM respectively.
Additionally, SUP-BI5/R cells have demonstrated similar values (Figure 18).
According to these results, SUP-B15 and SUP-B15/R were more sensitive to Dasatinib

compared to Desipramine and Glipizide.
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Figure 18. Determination of the viability of SUP-B15 (A) and SUP-B15/R (B) cells
treated with Dasatinib. Dasatinib treatment was carried out for 72 hours, and viability
analysis was conducted using the MTT test. The experiments were repeated three

times. Error bars indicate standard deviation.

3.4.2. MTT Assay outcomes obtained with Glipizide and Desipramine combinations
in conjunction with Imatinib administration on Ph (1) ALL Cells Respectively

The drugs with identified efficacy were applied in combination with Imatinib to both
sensitive SUP-B15 and resistant SUP-B15/R cells. This allowed for the testing of the
impact of repositioned drugs on the effectiveness of Imatinib. Experimental groups for
determining the anti-proliferative effect were established as follows: control; Imatinib
alone; drug alone; Imatinib and drug combination. During these combination
treatments, the concentration of Imatinib was kept constant at IC20, while the
identified drugs were applied in escalating doses. According to the results of the MTT
assay applied to SUP-B15 and SUP-B15/R cells for the combination of Desipramine
and Imatinib, the IC50 value of the drug Desipramine on SUP-B15 cells, which is
22.04 puM, was determined to be 15.41 pM when combined with IC20 Imatinib.
Additionally, the IC50 dose of Desipramine on SUP-B15/R is quite similar to that on
SUP-BI15 cells (Figure 19).
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Figure 19. Determination of the viability of SUP-B15 (A) and SUP-B15/R (B) cells
treated with Imatinib (IC20), Desipramine, and Imatinib (IC20) plus Desipramine
combination. All treatments were carried out for 72 hours, and viability analysis was
conducted using the MTT test. The experiments were repeated three times. Error bars
indicate standard deviation.

Furthermore, in the investigation conducted using the Compusyn system to determine
potential synergistic, additive, or antagonist relationships between the drugs, a
synergistic effect was observed in combination doses of Desipramine at 10uM, 20uM,
and 25uM with Imatinib in parental SUP-B15 cells. However, it was determined that
only the dose of Desipramine at 35uM shows a synergistic relationship with Imatinib
in SUP-B15/R cells. (Figure 19)

Moreover, for another Ph (+) ALL drug, Glipizide, a combination experiment was set
up on both parental SUP-B15 and Imatinib-resistant SUP-B15/R cells. While keeping
Imatinib at a constant IC20 dose, Glipizide was administered in increasing doses. In
light of the MTT assay results conducted on SUP-B15 and SUP-B15/R cells to assess
the combination of Glipizide and Imatinib, the IC50 value of Glipizide for SUP-B15
cells, which is 68.02 uM, determined to be 53 uM when combined with IC20 Imatinib.
Additionally, the IC50 dose of Glipizide on SUP-B15/R which is 116.93 uM, was
determined to be 56.17 uM when combined with IC20 Imatinib. Moreover, the inquiry
utilizing the Compusyn system to discern potential synergistic, additive, or
antagonistic interactions among the drugs revealed a synergistic effect at combination
doses of Glipizide at 10 uM, 25 uM,50 uM and 80 uM with Imatinib in parental SUP-
B15 cells. Moreover, the synergistic effect at combination doses of Glipizide at 10 uM,
50 uM, 80 uM and 100 uM with Imatinib in SUP-B15/R cells.
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Figure 20. Determination of the viability of SUP-B15 (A) and SUP-B15/R (B) cells
treated with Imatinib (IC20), Glipizide and Imatinib (IC20) plus Glipizide
combination. All treatments were carried out for 72 hours, and viability analysis was
conducted using the MTT test. The experiments were repeated three times. Error bars

indicate standard deviation.

3.4.3. Findings from Trypan Blue Staining at the Selected Synergistic Doses on
Ph(+) ALL Cells

The cytotoxic impacts of synergic drug doses of Imatinib, Desipramine and Glipizide
on SUP-B15 and SUP-B15/R cells were assessed using the trypan blue staining
method. Proliferation graphs were constructed based on cell counts performed at 48
and 72 hours using the collected data. As a result of the experiment, the cytotoxic
activities of selected combination dose of Desipramine and Imatinib, which were 10
uM, have been determined on SUP-B15 cell line. The statistical analyses performed
for both the Desipramine 10uM and the combination group of Desipramine 10uM with
Imatinib IC20 revealed a noteworthy and statistically significant difference between
these groups at both 48 and 72 hours. Moreover, this significant difference was
observed to further intensify at the 72-hour time point. Additionally, when the cell
death rates are examined, it has been demonstrated that the combination group of
Desipramine 10 uM and IC20 Imatinib dose creates more antiproliferative effect than

the sum of these doses in the cell. (Figure 21)
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Figure 21. Determination of the cytotoxic effects of IC20 Imatinib, Desipramine 10
uM, and their combinations on SUP-B15 cells based on the trypan blue staining results
obtained from the assessment of their anti-proliferative activity. The experiment was
repeated three times. Error bars indicate standard deviation.

Furthermore, Glipizide and Imatinib, which were 10 uM and 80 uM, have been
confirmed on SUP-B15 cell line. The statistical analyses conducted for the Glipizide
10uM and Glipizide 10uM with Imatinib IC20 combination groups indicated a
statistically significant difference between these groups at both 48 and 72 hours. This

significant difference further increased at 72 hours (Figure 22).
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Figure 22. Determination of the cytotoxic effects of IC20 Imatinib, Glipizide 10 puM,
and their combinations on SUP-BI15 cells based on the trypan blue staining results
obtained from the assessment of their anti-proliferative activity. The experiment was

repeated three times. Error bars indicate standard deviation.
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Additionally, the same analyses were repeated for the Glipizide 80uM and Glipizide
80uM plus Imatinib 20 combination. Accordingly, a statistically significant difference
was again found between these groups at both 48 and 72 hours. However, in this case,

the significance does not increase over time. (Figure 23)
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Figure 23. Determination of the cytotoxic effects of IC20 Imatinib, Glipizide 80 puM,
and their combinations on SUP-BI15 cells based on the trypan blue staining results
obtained from the assessment of their anti-proliferative activity. The experiment was
repeated three times. Error bars indicate standard deviation.

Furthermore, same combination analyses were conducted on SUP-BI15/R cells to
understand the cytotoxic activity of synergistic dosages on Imatinib resistance.
Following the experiment, the cytotoxic effects of specific combined doses, namely
50 uM, of Glipizide and Imatinib were evaluated on the SUP-B15/R cell line.
Statistical analyses conducted on both the Glipizide 50 pM group and the combined
Glipizide 50 uM with Imatinib IC10 group demonstrated a significant and notable
difference between these sets at the 72-hour mark (Figure 24).
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Figure 24. Determination of the cytotoxic effects of IC10 Imatinib, Glipizide 50uM,
and their combinations on SUP-B15/R cells based on the trypan blue staining results
obtained from the assessment of their anti-proliferative activity. The experiment was

repeated three times. Error bars indicate standard deviation.

3.5. Evaluation of Apoptotic Effects of Selected Drugs on ALL Cells.

3.5.1 Determination of Apoptotic Effects of Maytansine and Isoprenaline on Jurkat
Cells

The Annexin/PI staining method was employed to determine the apoptotic effects of
the selected drugs, Maytansine and Isoprenaline, on Jurkat, a Ph(-) ALL cell line. The
experiment lasted a total of 48 hours, and measurements were taken every 24 hours
using a flow cytometry device. During the experiment, Jurkat cells were treated with
the IC20 and IC50 doses of Maytansine and Isoprenaline separately at the specified
time intervals. Based on Annexin/PI staining, the IC20 and IC50 doses of Maytansine
and Isoprenaline (Figure 25) have led to progressively increasing apoptosis.
Furthermore, these experimental results have substantiated the accuracy of the doses

obtained from the MTT assay.
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Figure 25. Determination of Apoptotic effects of Maytansine (A) and Isoprenaline (B)
on Jurkat cell line based on the Annexin/PI double staining results. The experiment

was repeated three times. Error bars indicate standard deviation.

3.5.2. Determination of Apoptotic Effects of Glipizide and Desipramine on SUP-15
and SUP-B15/R cells

The apoptotic effects of combined doses of Imatinib, Glipizide, and Desipramine on
SUP-B15 and SUP-BI5/R cells were evaluated through Annexin/PI staining.

Apoptotic cell graphs were generated to illustrate the apoptotic cell population at both
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48 and 72 hours. The experiment confirmed the apoptotic effects of the selected
combination doses of Glipizide (10 and 80uM) (Figure 26), Desipramine (10uM)
(Figure 27) and Imatinib on the SUP-B15 cell line. For Desipramine the acquired
apoptosis level is near synergistic. For Glipizide a higher level of apoptosis has been
observed in the synergistic combination doses of the drugs compared to their

individual administration.
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Figure 26. Determination of the Apoptotic effects of IC20 Imatinib, Glipizide 10 pM
and their combinations (A) and IC20 Imatinib, Glipizide 80 uM and their combinations
(B) on SUP-B15 cells based on the Annexin/PI double staining experiment. The

experiment was repeated three times. Error bars indicate standard deviation.
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uM and their combinations on SUP-B15 cells based on the Annexin/PI double staining
experiment. The experiment was repeated three times. Error bars indicate standard
deviation.

Furthermore, the same combination experiment was performed for SUP-B15/R cells
with the selected doses of Glipizide (50 uM) (Figure 28) and Desipramine (10 pM)
(Figure 29) and IC10 Imatinib on the SUP-B15/R cells to understand the combination
effects on Imatinib resistance. According to results, synergistic doses of both Glipizide

and Desipramine have potentially significant apoptotic effects on Imatinib resistant

SUP-B15/R cells.
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Figure 28. Determination of the Apoptotic effects of IC10 Imatinib, Glipizide 50 pM
and their combinations on SUP-B15/R cells based on the Annexin/PI double staining
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experiment. The experiment was repeated three times. Error bars indicate standard

deviation.
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Figure 29. Determination of the Apoptotic effects of IC10 Imatinib, Desipramine 15
uM and their combinations on SUP-B15/R cells based on the Annexin/PI double
staining experiment. The experiment was repeated three times. Error bars indicate

standard deviation.

3.6. Findings from Trypan Blue Staining at the Selected Drugs on HUVEC Cells
The trypan blue staining method was employed to determine the cytotoxic effects of
drugs with identified anti-proliferative activity on Ph (-) ALL and Ph (+) cells. Cell
counts were conducted at 48 hours were used to construct a cytotoxic effect graph
based on the obtained data.

As a result of this experiment, the cytotoxic effects of Maytansine, Isoprenaline
(Figure 30), Glipizide and Desipramine (Figure 31) on HUVEC cell line have been
confirmed. According to the results of the experiment, the cytotoxic effects of the
drugs on the relevant cell lines and HUVECs were compared. It was concluded that
the cytotoxic effect of the drugs on the healthy control HUVEC cell line was lower

than that on the relevant cell lines.
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Figure 30. Determination of the cytotoxic effects of Maytansine (A) and Isoprenaline
(B) on HUVEC and Jurkat cells based on the trypan blue staining results obtained from
the assessment of their anti-proliferative activity. The experiment was repeated three

times. Error bars indicate standard deviation.
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Figure 31. Determination of the cytotoxic effects of Glipizide (A) and Desipramine
(B) on HUVEC and SUP-BI15 cells based on the trypan blue staining results obtained
from the assessment of their anti-proliferative activity. The experiment was repeated

three times. Error bars indicate standard deviation.
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CHAPTER 4: DISCUSSION

This thesis conducts a thorough comparative evaluation of ALL and Ph (+) ALL at
various molecular levels, encompassing transcriptomics, proteomics, and
metabolomics. Despite the significant diversity observed in ALL, its origin involves a
range of distinct genetic abnormalities. The most prevalent among these is the Ph+
ALL subtype, characterized by the BCR/ABL translocation, which stands out as the
most aggressive and high-risk variant within the spectrum of ALL subtypes. Notably,
the presence of drug resistance, particularly imatinib resistance, in Ph (+) ALL poses
a significant challenge, creating a formidable obstacle in its therapeutic management.
In addressing these challenges, this research aims to provide a new avenue for
optimism in treating these conditions through the application of drug repositioning. It's
worth noting that, to the best of our knowledge, no previous studies have undertaken
a comparative transcriptomic analysis between ALL and Ph+ ALL. Furthermore, this
study pioneers the use of the robust rank aggregation method to identify DEGs
associated with diseases related to ALL. Differentially expressed transcripts associated
with diseases were identified through the analysis of 8 ALL and 4 Ph+ ALL datasets.
A total of 799 DEGs for ALL and 295 DEGs for Ph+ ALL were found to be statistically
significant. Commonly, 154 down-regulated DEGs and 110 up-regulated DEGs were
observed in both diseases, with down-regulated genes outnumbering up-regulated
genes in ALL diseases. The PPI network of both ALL and Ph+ ALL was reconstructed.
Hub proteins were determined based on the union of the top 20 proteins according to
degree, indicating the number of interactions of a protein, and betweenness, signifying
the number of connections that a protein establishes with other proteins in the shortest
path, and were accepted as such. The role of disease-associated genes in various
pathways aids in unraveling the molecular mechanisms underlying diseases. In ALL,
statistically significant pathways predominantly involve immune-related pathways
(such as positive regulation of immune response and regulation of immune effector
process) and cell cycle-related pathways (such as cellular response to cytokine
stimulus, positive regulation of cell death, and regulation of B cell activation).
Additionally, signaling pathways like signaling by Rho GTPases, Miro GTPases,
RHOBTB3, and cytokine signaling are present. The development of Ph+ ALL also

involves immune response and cellular response pathways, including pathways like
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the adaptive immune system and regulation of cell-cell adhesion, which differ from
those observed in ALL. Hub proteins in ALL are mainly associated with MAPK family
signaling cascades, gastrin signaling pathway, cellular response to oxidative stress,
kinase maturation complex 1, NOD-like receptor signaling pathway, etc. Similarly,
hub proteins in Ph (+) ALL are primarily enriched in pathways such as DNA damage
response, response to growth factor, signaling by receptor tyrosine kinases, FoxO
signaling pathway, etc.

The identification of potential drugs for the treatment of ALL and Ph (+) ALL was
facilitated using L1000CDS2 and genexpharma tools. Upon examining the drugs
identified through these two analyses, 39 and 99 drugs were recommended for ALL,
and 40 and 203 drugs were recommended for Ph (+) ALL by L1000CDS2 and
genexpharma, respectively. The original indications for in vitro testing of these drugs
were then investigated. The consideration included determining whether these drugs
were utilized for hematologic cancers or other diseases. Notably, drugs utilized for
solid tumors, hematologic cancers, neurodegenerative, and psychiatric diseases
emerged as prominent candidates. In the process of determining drugs for in vitro
testing, priority was given to selecting drugs not employed as cancer medications and
those previously used in treating other human diseases but not tested for ALL or Ph
(+) ALL. Subsequently, the decision was made to conduct in vitro testing on 2 drugs
which were Maytansine and Isoprenaline for ALL and 2 drugs which were
Desipramine and Glipizide for Ph (+) ALL. Maytansine is recognized as a heterocyclic
organic compound with the ability to bind to the rhizoxin binding sites of tubulin,
thereby impeding the assembly of microtubules, leading to their disassembly and
subsequent inhibition of cell division (mitosis). Additionally, its cytotoxic properties
have been observed against various cancer cell lines, effectively hindering the growth
and proliferation of cancer in vivo. However, during human clinical trials for cancer
treatment, Maytansine exhibited a limited therapeutic window due to its toxic side
effects on the gastrointestinal tract and nervous system(Zafar et al., 2023). To address
this challenge, an antibody-drug conjugate has been formulated, aiming to enhance
Maytansine's therapeutic potential while minimizing its toxic side effects through
selective targeting and destruction of cancer cells. In this targeted delivery approach,
Maytansine, serving as a cytotoxic payload, is attached to an antibody with specificity

for a particular cancer cell antigen, connected by a chemical linker molecule. Upon
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binding to its specific receptor, the conjugate enters the cell via endocytosis, where the
Maytansine payload is cleaved from the antibody, and the free Maytansine alters the
microtubule dynamics(Bauzon et al., 2019). Beyond its cytotoxic effects in cancer
cells, Maytansine sourced from plants and microbes also exhibits antimicrobial
properties(Newman and Cragg, 2020). In the scope of this thesis, Maytansine targets
the HSP9OA A1 hub protein, which was found to be overexpressed in ALL compared
to healthy samples. HSP90 is likely the most well recognized group of heat shock
proteins implicated into leukemia types(Cabaud-Gibouin et al., 2023). To this end,
despite its toxic side effects, through the application of recently developed techniques,
the prospect for utilizing Maytansine as a therapeutic agent in ALL appears promising.
The second drug for ALL was Isoprenaline. Isoprenaline, a B-agonist, is employed to
induce cardiomyopathy, a condition that can be mitigated by reducing the expression
of proinflammatory cytokines (IL-6, IL-10, and TNFa) and apoptotic markers
(caspase-3 and Bax), while increasing the levels of the anti-apoptotic protein Bcl2.
Phenylephrine and clonidine are recognized as ol and a2 adrenergic receptor agonists
with known effects on blood pressure, leading to an increase or decrease,
respectively(Uchida et al., 2019). However, a recent investigation reported that
Isoprenaline induced the secretion of vascular endothelial growth factor (VEGF) in
gastric cancer cells. These results imply that isoprenaline induces the secretion of
VEGF, leading to the subsequent upregulation of plexin-A1l and VEGFR2 expression
in gastric cancer cells. This positive impact contributes to the promotion of tumor
angiogenesis (Lu et al., 2017). In the context of this research, Isoprenaline focuses on
the elevated hub protein PIK3R1 in ALL compared to healthy samples.PIK3R1 is
responsible for producing the p85 regulatory protein in the PI3K/AKT pathway, a
crucial pathway for cellular migration, proliferation and apoptosis(Bhattacharya et al.,
2023). In light of this, although Isoprenaline targets the hub protein mentioned in the
study, the findings highlighted in the gastric cancer research (Lu et al., 2017) cast a
shadow on the potential utility of Isoprenaline, particularly in metastatic ALL. As a
result of the repurposing study conducted for ALL, these two drugs (Maytansine and
Isoprenaline) obtained were used in in vitro experiments. MTT tests, Trypan blue
staining for determining cytotoxicity, and Annexin/PI staining applications for
identifying apoptotic cells were performed on Ph (-) ALL cells, specifically Jurkat

cells. After analyzing the MTT results for selected drugs, including Doxorubicin
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hydrochloride as a positive control, it was observed that the Jurkat cell line
demonstrates significantly higher sensitivity to Maytansine. This effect was further
confirmed through trypan blue staining. Finally, Annexin/PI staining conducted to
observe apoptotic effects indicated that the IC20 and IC50 doses determined by MTT
for the drugs yielded results consistent with both MTT and trypan blue staining in
Jurkat cells. Considering the wet lab experiments conducted, among the identified
drugs for ALL, Maytansine stands out due to both its demonstrated cytotoxic effect
and the potential for in vivo testing facilitated by newly developed techniques.
However, this doesn't necessarily imply that the potential use of Isoprenaline cannot
be realized. With appropriate patient selection and metastasis examination, it is
believed that Isoprenaline could also be effective in the context of ALL. Furthermore,
For Ph (+) ALL Desipramine and Glipizide were determined for further in vitro
analysis. Desipramine, an antidepressant medication, is clinically utilized as a
supplementary treatment for cancer patients. A pathological examination revealed its
ability to inhibit the proliferation of HCC Hep3B cells through the induction of
apoptosis, activation of MAPK signaling, and elevation of intracellular Ca2+
levels(Yang and Kim, 2017). Additionally, desipramine induced autophagy in glioma
cells through PI3K-Akt-mTOR(Ma et al., 2013). Depending on the type of human
colon carcinoma cell, desipramine induced cell death and apoptosis through both the
mitochondrial and non-mitochondrial(Arimochi and Morita, 2008). Furthermore, it
triggered apoptosis in human prostate cancer PC3 cells by activating the JNK kinase
and caspase-3 pathways and increasing Ca2+ concentration(Chang et al., 2008).
Evidence also suggests that desipramine augmented apoptosis induced by TRAIL, in
lung cancer cells by upregulating TRAIL receptor-2 expression and inhibiting
autophagic flux(Song et al., 2022). In this thesis, Desipramine targets the KRAS hub
protein for Ph+ ALL. KRAS is a protein, which is a part of the RAS/MAPK pathway
and intriguingly, the effects of Desipramine on MAPK signaling were previously
determined, enforcing our hypothesis of Desipramine as a KRAS inhibitor. As seen in
the literature, the use of desipramine as an anticancer agent is established on various
cancer cell lines; however, this effect has not been previously observed in Ph(+) ALL.
Therefore, testing this drug on Ph (+) ALL cells, as obtained from bioinformatic
analyses, has not only contributed to the literature but also revealed the potential use

of desipramine as a therapeutic agent for Ph(+) ALL. The second drug for Ph (+) ALL
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was Glipizide. Glipizide, developed in the 1950s as a second-generation oral
hypoglycemic drug for treating type II diabetes, stands out for its ability to selectively
stimulate insulin secretion from [-cells. Recent investigations have unveiled an
intriguing connection between diabetes and an elevated risk of various types of tumors.
Notably, epidemiological studies have suggested that the prolonged use of certain anti-
diabetic medications, including glipizide, might mitigate the risk of cancer
development (Qi et al., 2014). A recent investigation discovered that glipizide has the
potential to trigger TRAIL-mediated apoptotic cell death in human lung
adenocarcinoma cells. Pretreatment with glipizide resulted in decreased levels of p-
Akt and p-mTOR at various concentrations. Glipizide treatment also significantly
reduced p62 expression levels in a dose-dependent manner. These observations
suggest that glipizide induces autophagy flux in human lung cancer cells.
Consequently, these findings propose that glipizide, by inhibiting Akt/mTOR,
enhances TRAIL-induced tumor cell death through the activation of autophagy flux.
Moreover, it suggests that glipizide might serve as a potential combined therapeutic
target with TRAIL protein, especially in TRAIL-resistant cancer cells (Nazim et al.,
2017). In the scope of this study, Glipizide targets CDKN2A and GRB10 hub proteins
in Ph+ ALL. CDKN2A is already a crucial protein in Ph (+) ALL. To this end,
targeting this hub gene with Glipizide can have significant potential to be used as an
anticancer agent for ALL. Furthermore, the other hub gene targeted by Glipizide was
GRBI10, particularly noteworthy is that Glipizide, which has known effects on m/TOR
signaling, further supports our hypothesis of its role as a GRB10 inhibitor, given its
involvement in the mTOR pathway. As evident from the provided examples in the
articles, the utilization of Glipizide as an anticancer agent has been proposed before.
However, there is no existing research of this nature for Ph (+) ALL, similar to
Desipramine. After the repurposing studies for Ph (+) ALL, the identified drugs
(Desipramine and Glipizide) were employed in in vitro experiments. MTT tests,
Trypan blue staining to determine cytotoxicity, and Annexin/PI staining applications
to identify apoptotic cells were conducted on Ph (+) ALL cells, specifically SUP-B15
cells. Additionally, the drugs were tested on Imatinib-resistant SUP-B15 cells to
observe their impact on a significant issue for Ph (+) ALL, which is Imatinib
resistance. In line with this goal, Imatinib resistance was initially developed in parental

SUP-BI15 cells. To assess the developed resistance, MTT assay, growth curve analysis,
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and Annexin/PI staining were employed. As depicted in Figure 10, the IC50 value of
resistant cells is significantly higher compared to parental cells. Furthermore, the
growth curve analysis (Figure 11) revealed that the drug-treated SUP-B15 cells
exhibited much lower proliferation than drug-treated SUP-B15/R cells. Additionally,
this growth curve analysis showed a relatively modest growth rate difference between
the untreated control and SUP-B15/R cells. This observation was also evident in the
Annexin/PI staining, where this difference decreased to a minimum with increasing
hours. It is speculated that the disparity in growth rates may be attributed to the
differences in passage numbers. In conclusion, these tests provide evidence that
parental cells demonstrate resistance to Imatinib. Afterward, among the two drugs
tested in both SUP-B15 and SUP-B15/R cell lines, Desipramine exhibited a higher
antiproliferative effect at lower doses compared to Glipizide. However, the
antiproliferative effect of Dasatinib used as a positive control, was higher at low doses
than both selected drugs. Another crucial point is the observed cross-resistance
phenomenon in the Imatinib-resistant SUP-B15/R cell line. The IC50 values
demonstrated by Glipizide in SUP-B15 and SUP-B15/R are strikingly different from
each other (Figure 17). When examining the IC50 values between Imatinib-resistant
SUP-B15/R and Imatinib-sensitive SUP-B15, it becomes apparent that the IC50 value
in the resistant group is roughly 2 times greater than that of the drug-sensitive group.
This finding unequivocally suggests that the development of Imatinib resistance has
resulted in an approximately 2 -fold reduction in the anti-proliferative impact of
Glipizide. In simpler terms, cells exhibiting resistance to Imatinib have concurrently
acquired resistance to the drug Glipizide. However, such an effect has not been
observed with Desipramine. Moreover, the drugs were tested on both SUP-B15 and
Imatinib-resistant SUP-B15/R cells to determine the combined effect they would
exhibit when administered in conjunction with Imatinib. In the combination
experiments conducted, the goal was to identify doses of Desipramine and Glipizide
that synergistically work with Imatinib in both SUP-B15 and SUP-BI15/R cells.
According to the experiment results, doses were discovered where both Desipramine
and Glipizide synergistically work with Imatinib. Subsequently, to validate these
doses, trypan blue experiments were conducted, growth curves were created, and thus,
synergistic cytotoxic effects were demonstrated. Finally, Annexin/PI staining was

performed for the selected synergistic doses, comparing the effects of individual and
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combined drugs on apoptotic cells. The results obtained from all these experiments
showed that the combination of 10 pM Desipramine with IC20 Imatinib increased
cytotoxic effects and apoptotic cells in SUP-B15 cells. Furthermore, combination of
10 uM and 80 puM of Glipizide with IC20 Imatinib showed same effects on SUP-B15
cells. Moreover, same experiments were conducted to SUP-BI5/R to evaluate the
effects of the synergistic dosages on Imatinib resistance. According to results,
combination of 15 uM Desipramine with IC10 Imatinib increased cytotoxic effects
and apoptotic cells. Also, combination of 50 uM of Glipizide and IC10 Imatinib
showed the same effect on SUP-BI15/R cells. Experimental results show that the
combination of these drugs can achieve promising results on both non-resistant and
Imatinib resistant cells in the clinic. Furthermore, all of the selected drugs were tested
on healthy cell line, which was HUVEC, to evaluate their cytotoxic effects on non-
cancerous cells. The results were showed that all drugs have significantly lower
cytotoxic effects on HUVEC compared to relative cell lines (Figure 30 and Figure 31).
This suggests that the drugs could be safe for use in clinics, as they are not as likely to
damage healthy cells. In this respect, the repurposing of all selected drugs in the clinic

may be promising.

75



CHAPTER 5: CONCLUSION

This thesis can be fundamentally divided into two separate components: the first
involves computational studies, while the second entails laboratory experiments
conducted to determine the effects of the drugs obtained from these studies.

In the first part, datasets for both ALL and Ph (+) were obtained using the GEO
database. Subsequently, these datasets were analyzed for differential expression levels
using the Limma package, revealing 799 diseases related DEGs for ALL and 295 for
Ph+ ALL. BioGRID database was then utilized to establish protein-protein interactions
among these DEGs. Cytoscape software, along with the CytoHubba plug-in, was
employed to visualize PPI networks and compute local and global topological features
such as degree and betweenness. This analysis identified 24 hub proteins for ALL and
33 for Ph (+) ALL. To elucidate the functional roles of the identified DEGs, functional
enrichment analysis was conducted using the Metascape tool. According to this
analysis, hub proteins of ALL were primarily involved in MAPK family signaling
cascades, gastrin signaling pathway, cellular response to oxidative stress, kinase
maturation complex 1, and NOD-like receptor signaling pathway. Additionally, for
Ph+ ALL, the enriched pathways included DNA damage response, response to growth
factor, signaling by receptor tyrosine kinases, and FoxO signaling pathway.

The final step of this part involved drug repurposing using The L1000CDS2 platform
and genexpharma tool. The study revealed that, out of the 24 core proteins identified
for ALL, 13 formed a network with a total of 123 interactions involving 99 drugs.
Moreover, in the case of Ph+ ALL, 19 out of 33 core proteins constituted a network
with a total of 289 interactions involving 203 drugs. As a result, considering various
criteria, the drugs named for Maytansine and Isoprenaline for ALL and Desipramine
and Glipizide for Ph (+) ALL, were determined, which will move to the second stage
in this thesis.

In the second part of the thesis, the drugs identified in the first part were tested for their
cytotoxic and apoptotic effects on relevant cells. For this purpose, the cytotoxic effects
of Maytansine and Isoprenaline were initially determined using MTT and trypan blue
staining methods, and both drugs showed cytotoxic effects on Jurkat cell line.
Additionally, the apoptotic effect of the drugs was assessed using the Annexin/PI

double staining method, and it was observed that the drugs induced apoptotic effects
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in Jurkat cell line. The drugs identified for Ph (+) ALL, Glipizide and Desipramine,
were tested on both parental SUP-B15 and Imatinib-resistant SUP-B15/R cells to
observe their effects on Imatinib-resistant cells. For this purpose, an Imatinib-resistant
cell line was developed, and the resistance was confirmed through both MTT tests and
trypan blue staining methods. Furthermore, to confirm the developed resistance, the
apoptotic cell ratio was determined by adding Imatinib treatment at the determined
IC50 dose to both parental SUP-B15 and Imatinib-resistant SUP-B15/R cells, using
Annexin/PI staining. The results of this experiment confirm the developed Imatinib
resistance. Afterward, the cytotoxic effects of Desipramine and Glipizide were tested
on both SUP-B15 and SUP-B15/R cells using the MTT test, and IC50, IC20, and IC10
doses were determined. Subsequently, the apoptotic effects of the selected drugs were
also confirmed using the Annexin/PI test. Finally, to observe the combined effects of
the identified drugs in combination with Imatinib on SUP-B15 and SUP-B15/R cells,
drugs were administered to cells in combination with the IC20 Imatinib dose for SUP-
B15,IC10 Imatinib dose for SUP-B15/R . The MTT assay was again used for cytotoxic
effects. The results obtained from the tests were examined using the CompuSyn
program to determine the synergistic, additive, or antagonistic relationships between
the drugs. Then, growth curves were obtained using the trypan blue method to
determine the cytotoxic effects of the identified synergistic doses. Additionally, the
apoptotic effects of these selected synergistic doses were determined using
Annexin/PI. Furthermore, HUVEC cells were included in the study as a healthy control
to evaluate cytotoxic effects of the selected drugs. Results indicate that, Maytansine,
Isoprenaline, Glipizide and Desipramine showed lower cytotoxic activity on healthy
cells compared to relevant cell lines.

In conclusion, based on both computational results and the anti-proliferative effects in
cell lines, this thesis suggests that Maytansine and Isoprenaline could be potential to
repositioned for ALL treatment. For Ph (+) ALL, considering the anti-proliferative
effects in parental SUP-B15 cells, as well as the synergistic doses identified to work
in combination with Imatinib, Glipizide, and Desipramine, it is believed that the
repositioning of both drugs could have a positive impact on ALL treatment. Moreover,
using both Desipramine and Glipizide in Imatinib resistant SUP-B15/R cell line is
promising due to the synergistic effects they exhibited.
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