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Abstract
Coherent systems and Marshall-Olkin run shock models are combined. Coherent systems consisting
of n components receive some kind of shocks from n + 1 different sources similar to Marshall-Olkin
type. More precisely, when the component j receive k consecutive fatal shocks from the source j or k
consecutive fatal shocks from the source n+1, it fails, j = 1, . . . ,n. When the interarrival time of shocks has
phase-type distribution, reliability, mean time to failure (MTTF) and mean residual life (MRL) function of
the coherent systems are studied. Numerical examples and graphical representations are provided.
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1. Introduction
In the studies of Marshall-Olkin shock models, n component system receive some shocks coming from n+ 1

different sources at a random time. According to this model, a shock coming from the jth source affects the jth
component, j = 1, . . . , n. On the other hand, a shock belonging the n + 1th source affects all components in the
system. If Sj and Tj denote respectively the lifetime of the jth component and the time of the jth shock, then
Sj = min(Tj , Tn+1) [1]. In recent years, Marshall-Olkin shock models have been of great interest. A Marshall–Olkin
type distribution including effect of shock magnitude was introduced by [2]. [3] considered Marshall–Olkin type
shock model in Coherent systems. Marshall-Olkin type copulas produced by a common shock were researched by
[4]. [5] generalizes the linear consecutive k-out-of-r-from-n: G system to multi-state case. Recently, [6] combined
and studied run shock and Marshall–Olkin models.

Complex (n−m+1)-out-of-n: G systems are very important in the reliability of technical systems. An (n−m+1)-
out-of-n: G system comprises of n components, functions if and only if at least (n−m+ 1) components function.
In the present paper, an (n −m + 1)-out-of-n: G system, subject to Marshall-Olkin type shocks produced from
(n+ 1) sources at random time and affecting components of the system is studied. According to this model, run
shock models are taken into account in the Marshall–Olkin shock models. A shock produced by source j only
affects component j while the shock produced by source (n+ 1) may affect all components. We assume that all
shocks produced from sources are fatal shocks. If the component receive k consecutive fatal shocks produced from
the same source then it fails. Because of being useful and suitable in terms of practical applications, interarrival
times are supposed to have phase-type distributions [7-8]. There are numerous papers dealing with phase-type
distributions such as [9-12].

Present paper is structured as follows. Some important properties of phase-type distributions are provided
in Section 2. Also some examples with phase-type distributions and graphs are given. In Section 3 we study the
computation of reliability and MTTF of the (n−m+ 1)-out-of-n: G system exposed to Marshall-Olkin type shocks.
Coherent systems with given Samaniego’s signatures and structure functions are considered, and the reliability and
MTTF of the system are studied in Section 4. In Section 5, the formula for MRL of the mentioned system is derived.
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2. The Phase-type distributions

Consider a continuous random variable T . In a finite state continuous time Markov chain including one
absorbing state and m transient states, if the random variable T is the distribution of the time til absorption, then its
distribution can be considered as phase-type. If a Markov chain has at least one absorbing state and also in one or
more steps it may go to an abosrbing state, the Markov chain is absorbing. For a continuous random variable T
defined on [0,∞), cumulative distribution function (CDF) can be described as

P (T ≤ t) = 1− α exp(At)e′

where the matrix A having m×m dimension with negative diagonal elements, non-negative off-diagonal entries,
and all elements of the column vector e are one (e1×m). α = (α1, . . . , αm) represents the row vector whose elements
are non-negative , where

∑m
i=1 αi = 1. T ∼ PHc(α,A) will be used to represent having a continuous phase-type

distribution. Some important continuous phase-type distributions are Erlang, exponential, Coxian and generalized
Erlang distributions.
Similarly, a discrete Phase-type random variable N has the distribution of the time of absorbing Markov chain. The
probability mass function (PMF) of phase-type random variable N is represented as

P (N = n) = aQn−1u
′

for n ∈ N, where the matrix Q =(qij)m×m includes the transition probabilities from m transient states, where the
vector u′ = (I−Q)e

′
includes the transient probabilities from transient states to the absorbing state. In addtion, I

denotes the identity matrix [7]. The matrix I-Q must be non-singular. N ∼ PHd(a,Q) will be used to represent
having a discrete phase-type distribution.

Under various operations, the phase-type distributions have closure property under some operations. Two
phase-type closure properties are given in the following two propositions which are important in our study. For the
proofs, other important properties and applications, we refer to [8].

Proposition 2.1. Consider two independent phase-type random variables represented respectively as X ∼ PHc(α,A) and
Y ∼ PHc(β,B) Another random variable min(X,Y ) has also phase-type distribution represented asPHc(α⊗ β,A⊗ I + I⊗B),
where ⊗ denotes Kronecker product.

Proposition 2.2. Assume that X1, X2, . . . are independent and Xi ∼ PHc(α,A) and N ∼ PHd(a,Q) with αe′ = 1,

ae′ = 1, i = 1, 2, . . . , then another random variable
N∑
i=1

Xi has a phase-type distribution with representation

N∑
i=1

Xi ∼ PHc(α⊗ a,A⊗ I + (a
0
α)⊗Q)

where a0 = −Ae′.

3. Reliability of an (n−m+ 1)-out-of-n : G system

Consider an (n − m + 1)-out-of-n: G system that functions if and only if at least (n − m + 1) components
function. [3] proposed the reliability of the (n−m+ 1)-out-of-n: G system subjected to classical Marshall-Olkin
type shocks. Pursuant to the classical Marshall-Olkin type shock model, the shock arrived from the source j affects
only component j and the shock arrived from the source (n+ 1) affects all components simultaneously. According
to proposed model, failure of component j can be occured either k consecutive fatal shocks which are provided
from same source or source n + 1, j = 1, . . . ,n. More precisely, if k consecutive fatal shocks are provided by the
same source, then corresponding component(s) fail(s). If S1, S2 . . . , Sn denote the lifetime of the components of
mentioned system, then the lifetimes of component j is defined as

Sj = min(Tj(k), Tn+1(k)) (3.1)

where

Tj(k) =

Nj(k)∑
i=1

Xji (3.2)
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for j = 1, 2, ...n. Nj(k) represents total number of shocks up to occurance of k consecutive fatal shocks. In 2015, [13]
presented phase representation Nj(k) ∼ PHd(a,Qj) which is also known as the geometric distribution of order k
with a = (1, 0, . . . , 0)1×k and

Qj =


1− pj pj 0 . . . 0
1− pj 0 pj . . . 0

...
...

...
. . .

...
1− pj 0 0 . . . 0


k×k

. (3.3)

The matrix elements pj denote the probability of the occurance of the shock coming from corresponding source is
fatal, j = 1, 2, ...n.

When the interarrival times Xj1, Xj2, . . . have a phase-type distribution with Xji ∼ PHc(αj ,Aj), j = 1, 2, ..., n,
and i = 1, 2, .... [6] derived the individual lifetime random variable Sj as

Sj ∼ PHc (vj ⊗ vn+1,Zj ⊗ I + I⊗ Zn+1) (3.4)

where vj = (αj ⊗ a) and vn+1 = (αn+1 ⊗ a) , j = 1, 2, ...n.
The next Lemma will be useful in this study.

Lemma 3.1. [Due to [14]] Let T1, T2, ..., Tn be exchangeable random variables, and Tn+1 is statistically independent of the
random vector (T1, T2, ..., Tn). The random variables S1 = min(T1, Tn+1), S2 = min(T2, Tn+1), and Sn = min(Tn, Tn+1)

are exchangeable, i.e., (S1, S2, ..., Sn)
d
= (Si1 , Si2 , ..., Sin) for all n! permutations i1, i2, ..., in) of 1,2,..., n, where d

= stands
for equality in the distributions.

In the following theorem, survival function of the related system is derived.

Theorem 3.1. Let R be the lifetime of an (n−m+ 1)-out-of-n : G system subject to random shocks as Marshall-Olkin run
shock model. The survival function of the system is

P (R > u) = P (Sm:n > u)

= (αn+1⊗a) exp
[(

(An+1⊗I) + ((−An+1e
′)αn+1⊗Qn+1)

)
u
]
e′ ×

n∑
j=n−m+1

(
n

j

) n−j∑
i=0

(−1)i
(
n− j
i

)
[(α1⊗a) exp [((A1⊗I) + ((−A1e

′)α1⊗Q1))u] e′]
j+i

Proof. It is a well-known fact that the lifetime of an (n −m + 1)-out-of-n : G system corresponds to mth order
statistic Sm:n constructed from the random variables S1, S2, ..., Sn, where S1:n ≤ S2:n ≤ · · · ≤ Sn:n. The survival
function of Sm:n can be formulated as

P (Sm:n > u) =

n∑
j=n−m+1

(
n

j

)
P (S1 > u, ..., Sj > u, Sj+1 ≤ u, ..., Sn ≤ u) (3.5)

When random variables are exchangeable, from [15], S1, S2, ..., Sn

P (S1 > u, ..., Sj > u, Sj+1 ≤ u, ..., Sn ≤ u) =

n−j∑
i=0

(−1)i
(n− j

i

)
P (S1 > u, S2 > u, ..., Sj+i > u). (3.6)

Using (3.6) in (3.5), one has

P (R > u) = P (Sm:n > u)

=

n∑
j=n−m+1

(
n

j

)
n−j∑
i=0

(−1)i
(
n− j

i

)
P (S1 > u, S2 > u, ..., Sj+i > u)

=
n∑

j=n−m+1

(
n
j

) n−j∑
i=0

(−1)i
(
n−j
i

)
P (min(T1(k), Tn+1(k)) > u,min(T2(k),n+1 (k)) > u, ...,min(Tj+i(k),n+1 (k)) > u)

=

n∑
j=n−m+1

(
n

j

)
n−j∑
i=0

(−1)i
(
n− j

i

)
j+i∏
l=1

P (Tl(k) > u)P (Tn+1(k) > u)

= P (Tn+1(k) > u)

n∑
j=n−m+1

(
n

j

)
n−j∑
i=0

(−1)i
(
n− j

i

)
P (T1(k) > u)j+i
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Using Proposition 2, one can easiliy derive

P (R > u) = (αn+1⊗a) exp
[(

(An+1⊗I) + ((−An+1e
′)αn+1⊗Qn+1)

)
u
]
e′ ×

n∑
j=n−m+1

(
n

j

) n−j∑
i=0

(−1)i
(
n− j
i

)
[(α1⊗a) exp [((A1⊗I) + ((−A1e

′)α1⊗Q1))u] e′]
j+i

Example 3.1. Let Xji denotes the times between fatal shocks coming from source j. Assume that Xji has Erlang
distribution with parameters mj = 2, j = 1, 2, . . . , (n + 1), and λj = 1, j = 1, 2, . . . n,with λn+1 = 2. That is,

Xji ∼ PHc(αj ,Aj), with αj = (0, . . . , 0, 1) and Aj =


−λj 0 . . . 0
λj −λj 0
...

. . . . . .
...

0 . . . λj −λj


mj×mj

.

We plot the graph of the survival function of 3-out-of-5: G system under proposed model for different values of k in
Fig.1. From the Fig.1, we observed that the survival function increases when k increases.

Figure 1. The graph of the survival function of 3-out-of-5: G system

In Table 1, the MTTF values of the 3-out-of-5 system are computed. An increase in k cause an increase in the
MTTF values. As expected, when k is increased from 2 to 3, there is a significant difference between MTTF values.
Also, if the probability of occurrence of fatal shocks increases, then MTTF values decreases.
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k System pj , j = 1, 2, 3, 4, 5 p∗ MTTF
2 3-out-of-5 0.1 0.25 14.8339

0.1 0.2 22.6380
0.2 0.2 14.8454
0.2 0.25 11.1149

3 3-out-of-5 0.1 0.25 79.3038
0.1 0.2 147.9109
0.2 0.2 104.7768
0.2 0.25 68.0610

Table 1. MTTF values of the 3-out-of-5 systems

In Table 2, for particular points u, different values of k and probability of occurrence of fatal shocks p, some
numerical values of reliability functions are provided . It is observed that for all value of u, k and p, 4-out-of-5:
G system is more reliable than the 5-out-of-5: G system, 3-out-of-5: G system is more reliable than 4-out-of-5:
G system. Similarly, one can easily see that 5-out-of-5: G series system has the lowest reliability. For all systems, the
increase of the point u or in the rate of occurance p results in a reduction in the reliability. However, the expansion
in k brings about an expansion in the reliability.

P (R > u)
k pj , j = 1, 2, 3, 4, 5 p∗ u 5-out-of-5:G 4-out-of-5:G 3-out-of-5:G 2-out-of-5:G 1-out-of-5:G
2 0.1 0.15 10 0.3644 0.6297 0.7070 0.7183 0.7191

0.1 0.15 15 0.2939 0.5471 0.6343 0.6493 0.6506
0.2 0.15 15 0.0771 0.2821 0.5003 0.6165 0.6474
0.1 0.25 15 0.1669 0.3106 0.3601 0.3686 0.3693

3 0.1 0.15 10 0.9010 0.9558 0.9571 0.9571 0.9571
0.1 0.15 15 0.8780 0.9415 0.9433 0.9434 0.9434
0.2 0.15 15 0.6577 0.9037 0.9405 0.9433 0.9434
0.1 0.25 15 0.8069 0.8069 0.8069 0.8053 0.7510

Table 2. P(R>u) values of m-out-of-5 systems for m=1,...,5.

4. Reliability of Coherent Systems

Let R be the lifetime of a any coherent system having independent and identical n components whose lifetimes
are S1,S2,...,Sn. [16] proved that the survival function of such a system can be written as

F̄R(u) ≡ P (R > u) =

n∑
i=1

piP (Si:n > t), (4.1)

where Si:n is the ith smallest among S1,...,Sn. The vector p = (p1, p2, ..., pn) is called the system signature. More
explicitly,

pi =
mi

n!
,

where mi is the number of orders for which failure of the ith component causes system failure, i = 1, 2, ..., n.
Samaniego’s signature vector of the system is represented by p = (p1, p2, . . . , pn) [17]. Since the lifetimes
S1, S2, . . . , Sn are exchangeable, the equality (4.1) also holds [18].
Consider the system with n components which is mentioned above. That is, component i is exposed to random
shocks and fails when consecutively r fatal shocks produced by source i occur or consecutively r fatal shocks
produced by source (n+ 1) occur. Under this arrangement, the lifetime of the component i can be determined using
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(3.1). According to [18] and also From Theorem 6, the survival function of a coherent system can be found as

F̄R(u) ≡ P (R > u) =

n∑
i=1

piP (Si:n > u)

= F̄Sn+1
(u)

n∑
i=1

pi

n∑
j=n−i+1

(
n

j

) n−j∑
z=0

(−1)z
(
n− j
z

)
F̄ j+z
S1

(u).

(4.2)

k Structure function Signature Reliability MTTF
2 R = min(S1, S2, S3, S4, S5) p = [1, 0, 0, 0, 0] 0.3644 7.1304

R = max(S1, S2, S3, S4, S5) p = [0, 0, 0, 0, 1] 0.7191 15.4917
R = max(min(S1, S2, S3,max(S4, S5)),min(S1, S4, S5,max(S2, S3)),max(S2, S3, S4, S5)) p = [0, 1, 0, 0, 0] 0.6297 12.6346
R = max(min(S1, S2,max(S3, S4)),min(S3, S4, S5,max(S1, S2))) p = [0, 4/5, 1/5, 0, 0] 0.6452 13.0745
R = max(min(S1, S2,max(S3, S4)),min(S3, S4, S5)) p = [0, 7/10, 3/10, 0, 0] 0.6529 13.2944
R = max(min(S1, S2,max(S3, S4, S5)),min(S3, S4, S5)) p = [0, 3/5, 2/5, 0, 0] 0.6606 13.5143
R = max(min(S1, S2,max(S3, S4, S5)),min(S3, S4,max(S1, S5))) p = [0, 1/2, 1/2, 0, 0] 0.6684 13.7342
R = max(min(S1, S2,max(S3, S4, S5)),min(S1, S3, S4),min(S2, S3, S5),min(S3, S4, S5)) p = [0, 2/5, 3/5, 0, 0] 0.6761 13.9542
R = max(min(S1, S2,max(S3, S4, S5),min(S1, S3,max(S4, S5)),min(S2, S3,max(S4, S5)),min(S2, S3, S4, S5)) p = [0, 1/10, 9/10, 0, 0] 0.6993 14.6140
R = max(min(S1,max(S2, S3)),min(S4, S5,max(S2, S3)) p = [0, 3/10, 1/2, 1/5, 0] 0.6861 14.2868

3 R = min(S1, S2, S3, S4, S5) p = [1, 0, 0, 0, 0] 0.9010 64.7009
R = max(S1, S2, S3, S4, S5) p = [0, 0, 0, 0, 1] 0.9571 79.4995
R = max(min(S1, S2, S3,max(S4, S5)),min(S1, S4, S5,max(S2, S3)),max(S2, S3, S4, S5)) p = [0, 1, 0, 0, 0] 0.9558 77.5418
R = max(min(S1, S2,max(S3, S4)),min(S3, S4, S5,max(S1, S2))) p = [0, 4/5, 1/5, 0, 0] 0.9560 77.8942
R = max(min(S1, S2,max(S3, S4)),min(S3, S4, S5)) p = [0, 7/10, 3/10, 0, 0] 0.9562 78.0704
R = max(min(S1, S2,max(S3, S4, S5)),min(S3, S4, S5)) p = [0, 3/5, 2/5, 0, 0] 0.9563 78.2466
R = max(min(S1, S2,max(S3, S4, S5)),min(S3, S4,max(S1, S5))) p = [0, 1/2, 1/2, 0, 0] 0.9564 78.4228
R = max(min(S1, S2,max(S3, S4, S5)),min(S1, S3, S4),min(S2, S3, S5),min(S3, S4, S5)) p = [0, 2/5, 3/5, 0, 0] 0.9566 78.5990
R = max(min(S1, S2,max(S3, S4, S5),min(S1, S3,max(S4, S5)),min(S2, S3,max(S4, S5)),min(S2, S3, S4, S5)) p = [0, 1/10, 9/10, 0, 0] 0.9570 79.1276
R = max(min(S1,max(S2, S3))),min(S4, S5,max(S2, S3)) p = [0, 3/10, 1/2, 1/5, 0] 0.9567 78.8117)

Table 3. Signatures of some coherent systems

In Table 3, using (4.2) we calculate the reliability and MTTF of some systems for k = 2, 3 and probability of
occurrence of fatal shocks pi = 0.1, i = 1, 2, . . . , n and p∗ = 0.15 when u = 10.

5. Mean residual lifetime
The mean residual life (MRL) function of the coherent system is of special importance in reliability engineering.

Let T denotes the lifetime function then the function E(T − t|T > t) is called MRL function of the system. For more
details on MRL function, we refer to [19-22].

Consider an (n−m+ 1)-out-of-n system whose lifetimes are S1, S2, ..., Sn and suppose at least n− r + 1 of its
components function at time t. MRL function of this system is defined as follows:

hm,r = E(Sm:n − t|Sr:n > t), (5.1)

where Si:n, denotes ith order statistic among S1, S2, . . . , Sn and 1 ≤ r < m ≤ n.
Since the lifetime random variable Si is already defined as Si = min(Ti, Tn+1), i = 1, 2, ..., n, using Proposition 2

together with Lemma 3 of [23], one can easily derive the following Lemma.

Lemma 5.1.

P (Sr:n > t, Sm:n > t+ x)

= (αn+1⊗a) exp
[(

(An+1⊗I) + ((−An+1e
′)αn+1⊗Qn+1)

)
(t+ x)

]
e′ ×

n∑
i=n−r+1

i∑
j=n−m+1

n!

j!(i− j)!(n− i)!
[

i−j∑
l=0

(−1)l
(
i− j
l

) n−i∑
z=0

(−1)
z

(
n− i
z

)
×

F̄ i−j+z−l
T1

(t)]

((α1⊗a) exp [((A1⊗I) + ((−A1e
′)α1⊗Q1)) (t+ x)] e′)

j+l ×
((α1⊗a) exp [((A1⊗I) + ((−A1e

′)α1⊗Q1)) (t)] e′)
i−j+z−l

where 1≤ r < m ≤ n.



On the Coherent Systems Subject to Marshall-Olkin Type Shocks 191

Theorem 5.1. MRL function of the above mentioned system can be defined as

hm,r = E(Sm:n − t|Sr:n > t) =

1

FSr:n(t)

n∑
i=n−r+1

i∑
j=n−m+1

n!

j!(i− j)!(n− i)!

i−j∑
l=0

(−1)l
(
i− j
l

)
×

n−i∑
z=0

(−1)z
(
n− i
z

)
F

i−j+z−l
T1(k) (t)

∫ ∞
t

FTn+1(k)(x)F
j+l

T1(k)(x)dx,

where

FSr:n(u) = (αn+1⊗a) exp
[(

(An+1⊗I) + ((−An+1e
′)αn+1⊗Qn+1)

)
u
]
e′ ×

n∑
j=n−m+1

(
n

j

) n−j∑
i=0

(−1)i
(
n− j
i

)
[(α1⊗a) exp [((A1⊗I) + ((−A1e

′)α1⊗Q1))u] e′]
j+i

and

FTn+1(k)(u) = (αn+1⊗a) exp
[(

(An+1⊗I) + ((−An+1e
′)αn+1⊗Qn+1)

)
u
]
e′

FT1(k)(u) = (α1⊗a) exp [((A1⊗I) + ((−A1e
′)α1⊗Q1))u] e′.

Proof. From the definiton of the MRL function of the (n−m+ 1)-out-of-n :G system, for t>0 we have

hm,r = E(Sm:n − t|Sr:n > t), ,

=
1

P (Sr:n > t)

∫ ∞
t

P (Sr:n > t, Sm:n > x)dx.

After taking into account Theorem 6 and Lemma 8, we obtain the desired result.

Conclusion. In this paper, we have combined Marshall–Olkin shock models and coherent systems. Reliability
and some important characteristics of the (n−m+1)-out-of-n: G system subject to Marshall-Olkin type shocks have
been investigated. We assumed that the interarrival times between shocks follow phase-type distributions which
have several advantages such as simplicity in calculations. Coherent systems with given Samaniego’s signatures or
structure function are also considered.

References
[1] Marshall, A. W., Olkin, I.: A multivariate exponential distribution. J. Amer. Stat. Assoc. 62, 30-44 (1967).

[2] Ozkut, M., Bayramoglu,I.: On Marshall–Olkin type distribution with effect of shock magnitude. J. Comput. Appl.
Math. 271, 150-162 (2014).

[3] Bayramoglu, I., M. Ozkut: The reliability of coherent systems subjected to Marshall-Olkin type shocks. IEEE Trans.
Rel. 64, 435-443 (2015).

[4] Durante, F., Girard, S., Mazo, G.: Marshall–Olkin type copulas generated by a global shock. J. Comput. Appl. Math.
296 638-648 (2016).

[5] Habib,A., Al-Seedy, R.O., Radwan,T.: Reliability evaluation of multi-state consecutive k-out-of-r-from-n: G system.
Applied Mathematical Modelling 31, 2412-2423 (2007).

[6] Ozkut, M., Eryilmaz, S.: Reliability analysis under Marshall–Olkin run shock model. J. Comput. Appl. Math. 349,
52-59 (2019).

[7] Neuts, M.F., Meier, K.S.: On the use of phase-type distributions in reliability modeling of systems with two components.
OR Spektrum 2, 227-234 (1981).



192 M. Ozkut & C. Kan

[8] He, Q.M.: Fundamentals of matrix-analytic methods, New York. Springer, (2014).

[9] Pérez-Ocón, R., Segovia, M.C.: Shock models under a markovian arrival process. Math Comput Model 50, 879-884
(2009).

[10] Segovia, M.C., Labeau, P.E.: Reliability of a multi-state system subject to shocks using phase-type distributions. Appl
Math Model 37 4883-4904 (2013).

[11] Zhao, X., Guo, X., Wang, X.: Reliability and maintenance policies for a two-stage shock model with self-healing
mechanism. Reliab Eng Syst Saf 172, 185-194 (2018).

[12] Cui, L., Wu, B.: Extended phase-type models for multistate competing risk systems. Reliab Eng Syst Saf 181, 1-16
(2018).

[13] Tank, F., Eryilmaz, S.: The distributions of sum, nima and maxima of generalized geometric random variables. Statist.
Papers 56, 1191-1203 (2015).

[14] Bayramoglu, I., Ozkut, M.: The reliability of coherent systems subjected to Marshall–Olkin type shocks. IEEE Trans.
Reliab. 64(1) 434-443 (2015).

[15] Bairamov, I., Parsi, S.: Order statistics from mixed exchangeable random variables. J. Computat. Appl.Math., 235
4629-4638 (2011).

[16] F. J. Samaniego: On closure of the IFR class under formation of coherent systems. IEEE Trans. Rel., 34 (1) 1508-1527
(1985).

[17] Kochar, S., Mukerjee, H., Samaniego, F. J.: The "signature" of a coherent system and its application to comparisons
among systems. Naval Res. Logistics 46, 507-523 (1999).

[18] Navarro, J., Rychlik, T.: Reliability and expectation bounds for coherent systems with exchangeable components. J.
Multivariate Anal. 98, 102-113 (2007).

[19] Eryilmaz, S.: The number of failed components in a coherent system with exchangeable components. IEEE Trans. Reliab.
61, 203-207 (2012).

[20] Nama, M.K., Asadi, M.: Stochastic properties of components in a used coherent system. Methodol. Comput. Appl.
Probab. 16, 675-691 (2014).

[21] Navarro, J., Hernandez, P.J.: Mean residual life functions of finite mixtures, order statistics and coherent systems.
Metrika 67, 277-298 (2008).

[22] Ucer, B., Gurler, S.: On the mean residual lifetime at sys-tem level in two-component parallel systems for the FGM
distribution. J Math Stat 41, 139-145 (2012).

[23] Bayramoglu, I., Ozkut, M.: Mean residual life and inactivity time of a coherent system subjected to Marshall–Olkin
type shocks. J. Comput. Appl. Math 298, 190-200 (2016).

Affiliations

MURAT OZKUT
ADDRESS: Izmir University Economics, Dept. of Mathematics, 35330, Izmir-Turkey.
E-MAIL: murat.ozkut@ieu.edu.tr
ORCID ID:0000-0002-0699-892X

CIHANGIR KAN
ADDRESS: Xi’an Jiaotong-Liverpool University, Dept. of Mathematical-Sciences, 215123, Suzhou-China.
E-MAIL: Cihangir.Kan@xjtlu.edu.cn
ORCID ID:0000-0002-3642-9509


	Introduction
	The Phase-type distributions
	Reliability of an (n-m+1)-out-of-n:G system
	Reliability of Coherent Systems
	Mean residual lifetime

