'.) Check for updates

Received: 16 June 2023 Revised: 8 February 2024 Accepted: 15 February 2024

DOI: 10.1002/alz.13788

Alzheimer’s & Dementia®

RESEARCH ARTICLE THE JOURNAL OF THE ALZHEIMER’S ASSOCIATION

Viscous dynamics associated with hypoexcitation and
structural disintegration in neurodegeneration via generative
whole-brain modeling

Carlos Coronel-Oliveros®%3* | Raul GénzalezGomez'®> | Kamalini Ranasinghe® |
Agustin Sainz-Ballesteros' | Agustinalegaz’ @ | Sol Fittipaldi®%37 |
Josephine Cruzat® | RubénHerzog® | GorsevYener®® | MarioParra'® |

David Aguillon'* | Francisco Lopera!® | Hernando Santamaria-Garcia'>*® |
Sebastian Moguilner” | Vicente Medel>!4%> | Patricio Orio*'® | Robert Whelan?® |
Enzo Tagliazucchi®'’ | Pavel Prado™'® | Agustinlbafnez’%37%?

Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibafiez, Pefalolén, Santiago, Chile

2Global Brain Health Institute (GBHI), University of California San Francisco (UCSFA), San Francisco, California, USA

3Trinity College Dublin, Dublin, Ireland

4Centro Interdisciplinario de Neurociencia de Valparaiso (CINV), Universidad de Valparaiso, Valparaiso, Chile

5Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibafiez, Santiago, Chile

6Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, California, USA

7Cognitive Neuroscience Center (CNC), Universidad de San Andrés, Provincia de Buenos Aires, Victoria, Argentina

81zmir University of Economics, Faculty of Medicine, Fevzi Cakmak, Balcova/izmir, Sakarya, Turkey

?Dokuz Eyliil University, Brain Dynamics Multidisciplinary Research Center, Konak, Alsancak, Turkey

10School of Psychological Sciences and Health, University of Strathclyde, Glasgow, Scotland

11Neuroscience Research Group, University of Antioquia, Bogota, Colombia

12pontificia Universidad Javeriana, PhD Program of Neuroscience, Bogota, Colombia

13Hospital Universitario San Ignacio, Center for Memory and Cognition Intellectus, Bogot4, Colombia

14Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia

15Department of Neuroscience, Universidad de Chile, Independencia, Santiago, Chile

16|nstituto de Neurociencia, Facultad de Ciencias, Universidad de Valparaiso, Playa Ancha, Valparaiso, Chile

17Buenos Aires Physics Institute and Physics Department, University of Buenos Aires, Intendente Giiiraldes 2160 - Ciudad Universitaria, Buenos Aires, Argentina
18Escuela de Fonoaudiologia, Facultad de Odontologia y Ciencias de la Rehabilitacion, Universidad San Sebastian, Regién Metropolitana, Santiago, Chile

19Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland

Correspondence
Agustin Ibafez, Latin American Brain Health Abstract
Insitute (BrainLat), Universidad Adolfo Ibanez, . s . . .

) ) INTRODUCTION: Alzheimer’s disease (AD) and behavioral variant frontotemporal
Diagonal Las Torres, Penanolen, Santiago,

Chile. dementia (bvFTD) lack mechanistic biophysical modeling in diverse, underrepre-

Email: in.ib bhi.
mail: agustin banez@gbhi.org sented populations. Electroencephalography (EEG) is a high temporal resolution,

[Correction added on April 10, 2024, after first online publication: Affiliations for coauthor Patricio Orio have been corrected to remove affiliation 3 and add affiliation 4.]

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any
medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2024 The Authors. Alzheimer’s & Dementia published by Wiley Periodicals LLC on behalf of Alzheimer’s Association.

3228 wileyonlinelibrary.com/journal/alz Alzheimer’s Dement. 2024;20:3228-3250.


https://orcid.org/0000-0001-6758-5101
mailto:agustin.ibanez@gbhi.org
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://wileyonlinelibrary.com/journal/alz
http://crossmark.crossref.org/dialog/?doi=10.1002%2Falz.13788&domain=pdf&date_stamp=2024-03-19

CORONEL-OLIVEROS ET AL.

Alzheimer’s &Dementia® | a9

Pavel Prado, Escuela de Fonoaudiologia,
Facultad de Odontologiay Ciencias de la
Rehabilitacion, Universidad San Sebastian,
Ricardo Cumming 40, 8340593, Region
Metropolitana, Santiago, Chile.

Email: pavel.prado@uss.cl

Funding information

National Institutes of Aging, Grant/Award
Numbers: R01AG057234, R01AG075775,
RO1AG021051, RO1AG083799; Alzheimer’s
Association, Grant/Award Number:
SG-20-725707; Rainwater Charitable
Foundation; ANID/FONDECYT Regular,
Grant/Award Numbers: 1210195, 1210176,
1220995; ANID/FONDAP, Grant/Award
Number: 15150012

THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION

cost-effective technique for studying dementia globally, but lacks mechanistic models
and produces non-replicable results.

METHODS: We developed a generative whole-brain model that combines EEG source-
level metaconnectivity, anatomical priors, and a perturbational approach. This model
was applied to Global South participants (AD, bvFTD, and healthy controls).

RESULTS: Metaconnectivity outperformed pairwise connectivity and revealed more
viscous dynamics in patients, with altered metaconnectivity patterns associated with
multimodal disease presentation. The biophysical model showed that connectome
disintegration and hypoexcitability triggered altered metaconnectivity dynamics and
identified critical regions for brain stimulation. We replicated the main results in a sec-
ond subset of participants for validation with unharmonized, heterogeneous recording
settings.

DISCUSSION: The results provide a novel agenda for developing mechanistic model-
inspired characterization and therapies in clinical, translational, and computational

neuroscience settings.
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1 | BACKGROUND

The global challenge of dementia is exacerbated by limited brain-
phenotype associations and dynamic mechanisms in diverse
populations.28 By 2050, a 4-fold increase in dementia is expected
in the Global South, where 71% of dementia cases will come from
underserved regions and developing countries.2?1% The lack of
robust mechanistic explanations of whole-brain dynamics?? and
adequate biomarkers make these underserved popualtions even

more vulnerable.!?

Non-generalizable brain-phenotype associ-
ations require mechanistically oriented models for population
heterogeneity.»13 Tailored brain-phenotype biomarkers and robust
computational approaches are critically needed to face global
dementia challenges.

Alzheimer’s disease (AD) and behavioral variant frontotemporal
dementia (bvFTD)*15 are two common subtypes of dementia asso-
ciated with cognitive decline, reduced life expectancy, family bur-
den, and an overload of health-care systems.'® Mainstream demen-
tia frameworks rely on pathological biomarkers such as amyloid
beta (AB) and tau proteins, quantified through positron emission
tomography (PET)—especially in AD.1” However, these biomarkers
present caveats for global settings. PET is not widely available
(i.e., the percentage of PET access for patients in Latin America
is < 1%'27) or cost effective,’® and does not provide a conclu-
sive diagnosis'? or discriminate very well against FTD variants.2°
Fluid biomarkers, such as plasma, show promise,2! but are not yet
widely accessible. Plasma biomarkers lack systematic validation in
diverse and non-stereotypical populations.” Additionally, their influ-
ence on whole-brain dynamics and brain-phenotype mechanisms

connectivity, neurodegeneration, structural connectivity, whole-brain modeling

across heterogeneous settings is unknown. These limitations call for
additional strategies for developing biomarkers in non-stereotypical
samples.

Scalable and cost-effective biomarkers for dementia in global con-
texts can be provided by high temporal resolution methods such
as electroencephalography (EEG).22 High-density EEG can poten-
tially identify the changes ascribed to neurodegenerative diseases
across diverse settings due to its low cost, non-invasiveness, porta-

h.23-27

bility, and wide availability in clinical researc| Despite progress,

spectral and connectivity analyses often yield unclear results due to
small sample sizes and variable metrics,2® requiring large samples for
reproducible results.’® Generative brain activity models!! may allow

more robust results with moderate sample sizes,2?-31

)32735

provide causal
mechanisms (biophysical-inspired , and brain stimulation poten-
tial targets by in silico perturbations.'33637 By generating EEG-like
signals based on the biophysical properties of local and mesoscale cir-
cuits these models can provide mechanistic interpretations and test
more focused hypotheses.38-42

EEG dementia research has traditionally focused on pairwise func-
tional connectivity and spectral analysis.1#244344 Beyond this tra-
ditional approach, the assessment of high-order interactions allows
the characterization of emergent properties of brain networks*’
reflecting more biologically plausible approaches to complex brain
dynamics in healthy aging,*%” cognition,*® and dementia.*’ Meta-
connectivity tackles third and fourth functional interactions between
brain regions®>! and has been used to characterize aging pro-
cesses, with a shift toward more viscous (uncoordinated) brain
dynamics in older adult subjects.>>2 Although little tested in

dementia research,”® combining high-order metaconnectivity with
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whole-brain mechanistic models and perturbational approaches!
enables us to explore and predict whole-brain dynamics in neurode-
generation.

We developed a novel approach using generative whole-brain semi-
empirical modeling with source space metaconnectivity, anatomical
priors, and a perturbational approach, to investigate brain dynam-
ics of dementia in a sample of underrepresented patients from the
Global South. We explored how metaconnectivity patterns changed
across EEG frequency bands in dementia, and if metaconnectivity
was associated with multimodal disease severity. Then, we tested
two possible mechanisms ascribed to neurodegeneration to repro-
duce the altered metaconnectivity in dementia: structural connec-

tivity disintegration®*->¢

and alterations in the excitatory/inhibitory
(E/1) balance.>”=0 Third, we used in silico perturbations through the
model to induce transitions between the pathological and healthy
states (and vice versa) and to identify possible therapeutic targets
for brain stimulation. Finally, we replicated our core results in a
second subset of participants, validating our results in an unharmo-
nized and more heterogeneous setting. Through the simultaneous
testing of these hypotheses, this novel computational framework has
the potential to identify novel markers of metaconnectivity dynam-
ics in dementia subtypes, associated with specific mechanisms of
hypoexcitation and structural disintegration. This framework can also
help identify the transitions between healthy and pathological brain
states.

2 | METHODS
2.1 | Participants
2.1.1 | Full sample

The full sample comprised 332 participants recruited from clini-
cal centers in Argentina (CNC, Universidad de San Andrés), Chile
(GERO/CMYN, Universidad de Chile), Colombia (Pontificia Univer-
sidad Javeriana), and Turkey, as part of the Multi-Partner Consor-
tium to Expand Dementia Research in Latin America (ReD-Lat),162
BrainLat,?¢ and EuroLad.®* Data from Turkey were collected from the
cohort of Brain Dynamics Multidisciplinary Research Center, Dokuz
Eylal University, Izmir. Among the participants, 141 patients met the
National Institute of Neurological and Communicative Disorders and
Stroke-Alzheimer’s Disease and Related Disorders Association crite-
ria for typical AD,6>¢¢ while 44 patients met the revised criteria for
probable bvFTD.” All patients were in the early/mild stages of the
disease. A total of 147 with preserved cognition conformed to the
healthy controls group (CN). None of the participants had a history of
substance abuse, psychiatric disorders, or other neurological illnesses.
Demographic data for the whole sample are reported in Table 1. The
study was approved by the institutional ethics committee of each cen-
ter. All participants provided written informed consent following the

Declaration of Helsinki.

RESEARCH IN CONTEXT

1. Systematic review: Electroencephalography (EEG)
constitutes a cost-effective method for characterizing
dementia globally. However, the lack of mechanisms
and non-replicable results in the field hinder dementia
research. This problem is of special concern in non-
stereotypical, underrepresented, and heterogenous
populations, like patients in the Global South. We pro-
posed novel metaconnectivity biomarkers, which tackled
high-order interactions, with a mechanistic hypothesis
tested in computational models.

2. Interpretation: We discovered robust biomarkers for
characterizing dementia using metaconnectivity, and
altered metaconnectivity patterns predicted the disease’s
progression. Through computational modeling, we found
that the structural disintegration of the human connec-
tome and a shift to hyperexcitation in brain dynamics trig-
gered the altered metaconnectivity patterns observed in
patients. We also proposed critical brain regions that can
be used as therapeutic targets for brain stimulation. Our
results are robust to more heterogeneous EEG settings
and populations, as confirmed in a validation of the core
results with additional datasets.

3. Future directions: Our results proposed novel biomark-
ers that can be used for dementia screening and pro-
vide open-source semi-empirical modeling tools for the
neuroscience community. Our work will inspire new
experiments and settings for testing therapeutical tar-
gets in dementia. Future work will validate our results
using large sample sizes and comparing stereotypical and
non-stereotypical patients to test the generalization and

specificity of our findings.

2.1.2 | Initial subsample (harmonized dataset)

A first subsample of participants was used to identify the metacon-
nectivity alterations in patients, fit the whole-brain model to empirical
data, and test connectome and stimulation perturbations. This sub-
sample comprised 95 subjects from Argentina and Chile from the
ReD-Lat consortium.6262 Of these, 31 AD patients presented memory
deficits and showed middle-temporal/hippocampal and posterior atro-
phy among other regions commonly affected by this condition (Section
1 in Table S1, Figure S1A in supporting information). Another 18
bvFTD patients presented changes in personality and social behavior
according to caregivers and showed fronto-temporo-insular atrophy
(Table S2, Figure S1B in supporting information). The remaining 46 CN
participants had preserved cognition and served as healthy controls.
All participants underwent a comprehensive battery of neurologi-
cal, neuropsychiatric, and neuropsychological assessments following
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TABLE 1 Demographics (full sample and subsamples).
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Full sample CN (N =147) AD (N =141) bvFTD (N = 44)
22 test
Sex (M/F) 53/94 66/75 35/9 ADvs.CN bvFTD vs.CN
x? =7.07,P=0.008 x?=17.01,P <0.0001
Student t test
Age (years) 67 +8.3 74+ 6.2 69.5+8.0 ADvs.CN bvFTD vs.CN
t=7.56,P <0.0001 t=1.87,P=0.0630
Student t test
Education (years) 13.2+4.5 10.2+4.9 13.1+5.3 ADvs.CN bvFTD vs.CN
t=-5.66,P <0.001 t=-0.73,P=0.4688
Sample 1 CN (N =45) AD (N =31) bvFTD (N = 18)
x2 test
Sex (M/F) 17/29 14/17 13/5 ADvs.CN bvFTD vs.CN
x?=0,P=1 x%=10.74,P=0.001
Student t test
Age (years) 71+7.2 76 +7.5 68+9.9 ADvs.CN bvFTD vs.CN
t=2.70,P=0.008 t=-1.25P=022
Student t test
Education (years) 147 + 4 9.9+4.9 15.4+4.8 ADvs.CN bvFTD vs.CN
t=-4.63,P<0.001 t=0.57,P=0.57
Sample 2 CN (N=101) AD (N =110) bvFTD (N = 26)
x? test
Sex (M/F) 36/65 53/58 26/10 ADvs.CN bvFTD vs.CN
x?=7.09,P=0.008 x?=7.09,P<0.0048
Student t test
Age (years) 65.6 +8.2 733+5.7 704 + 6.3 ADvs.CN bvFTD vs.CN
t=28.09,P<0.0001 t=2.98,P=0.0034
Student t test
Education (years) 126 +4.5 10.3+4.9 11.7+5.0 ADvs.CN bvFTD vs.CN

t=-3.74,P=0.0002 t=-1.34,P=0.1826

Notes: Values constituted by proportion (sex) and mean + standard deviation (age and education). Categorical variables were analyzed with Pearson chi-

squared (y?) test. Continuous variables were analyzed through Student t tests.

Abbreviations: AD, Alzheimer’s disease; bvFTD, behavioral variant of frontotemporal dementia; CN, healthy controls.

harmonized procedures.’-72 A multidisciplinary team established
clinical diagnoses following a formal criterion and ReD-Lat standard-
ized diagnostic procedures®’%2 to prevent potential biases in diagnos-
tic evaluation. Cognitive functioning was assessed with the Montreal
Cognitive Assessment (MoCA) (Section 2 in supporting information).
Demographic and cognitive data for the whole sample are reported
in Table 1 and Table S3 in supporting information. Additionally, we
included a subsample matched by age, education, and sex for further
analysis (Table 2), which was selected using the PsmPy package for
Python’2 (pypi.org/project/psmpyy/).

2.1.3 | Second subsample (non-harmonized dataset)

A second subsample was used to validate the metaconnectivity
features and mechanisms previously characterized using the ini-
tial subsample. The dataset comprised 237 subjects from Chile,
Colombia, and Turkey from ReD-Lat®%¢2 and EuroLad consortiums.®*
The subsample included 110 AD patients, 26 bvFTD patients,
and 101 healthy controls. Demographic data and cognitive assess-
ment for this subsample are presented in Table 1 and supporting

information.
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TABLE 2 Demographics of the matched subsample.

ADvs.CN bvFTD vs.CN
Matched sample CN (N =22) AD (N=31) CN (N =18) bvFTD (N = 18)
x? test
Sex (M/F) 11/11 14/17 12/6 13/5 ADvs.CN bvFTD vs.CN
x?>=029,P=0.59 x?>=025P=0.62
Student t test
Age (years) 735+32 757 +7.5 69.7+7.6 68.2+9.9 ADvs.CN bvFTD vs.CN
t=-1.27,P=021 t=0.50,P=0.62
Student t test
Education (years) 11.9+4.0 9.8+4.0 16.2+3.9 154 +4.8 ADvs.CN bvFTD vs.CN
t=1.60,P=0.12 t=0.52,P=0.61

Notes: Values constituted by proportion (sex) and mean + standard deviation (age and education). Categorical variables were analyzed with Pearson chi-

squared (y2) test. Continuous variables were analyzed through Student t tests.

Abbreviations: AD, Alzheimer’s disease; bvFTD, behavioral variant of frontotemporal dementia; CN, healthy controls.

2.2 | Magnetic resonance imaging acquisition and
analysis

Magnetic resonance imaging (MRI) was used to estimate the brain
atrophy in patients from the first subsample, recorded at various
centers (see details in supporting information). Images were prepro-
cessed using the DARTEL Toolbox for SPM12 (https://www.fil.ion.ucl.
ac.uk/spm/software/spm12/)’4 running in MATLAB. The preprocess-
ing pipeline included segmentation into gray matter, white matter,
and cerebrospinal fluid. Those images were used to estimate the total
intracranial volume. Then, a template based on gray and white matter
segmentations was created for the complete data set (default param-
eters) to improve between-subject alignment. This template was used
to affine transformation into Montreal Neurological Institute space to
all individual gray matter images. Finally, images were modulated by
Jacobian determinants and smoothed with a full-width half-maximum
kernel of 10 mm. The gray matter maps were used to characterize the
atrophy patterns of patients, compared to healthy controls, and to find
associations between atrophy and metaconnectivity (see Section 1 in

supporting information).

2.3 | Diffusion-weighted imaging acquisition and
preprocessing

Structural connectivity was used as priors of our whole-brain model,
for simulating the EEG-like dynamics specific to AD, bvFTD, and CN.
Structural connectivity matrices were obtained by applying diffusion
tensor imaging (DTI) to diffusion-weighted imaging (DWI) record-
ings. Data preprocessing was then performed using FSL BEDPOSTX
(Bayesian Estimation of Diffusion Parameters Obtained using Sampling
Techniques toolbox)”? (see Section 4 in supporting information). After
preprocessing, a matrix with 90 x 90 components was obtained per
subject, representing the connectivity between automated anatomical

labeling (AAL) region pairs. Finally, the structural connectivity matrices
for each group were obtained by taking the average of the matrices of
the CN, AD, and bvFTD participants separately.

2.4 | EEG acquisition and preprocessing
24.1 | Initial subsample

Participants sat in a comfortable chair inside an electromagnetically
shielded EEG room and were instructed to remain still, awake, and
with their eyes closed. Following previous works of our team,®%¢2
we analyzed 10-minute resting-state EEG (rsEEG) using a Biosemi
ActiveTwo 128-channel acquisition system. For recording eye blinks
and eye movements, electrodes were also placed in periocular zones.
Reference electrodes were placed on linked mastoids, and signals were

sampled at arate of 1024 Hz.

2.4.2 | Second subsample

Participants across all sites were instructed to sit comfortably in an
electromagnetically shielded EEG chamber, remaining still, awake, and
with their eyes closed. Although data acquisition instructions were
consistent across all sites, each location used its protocols. The Chilean
site used a Biosemi ActiveTwo 128-channel acquisition system, sam-
pling signals at 1024 Hz. The Bogota site operated an ANT Neuro
128-channel acquisition system, with signal sampling at 512 Hz. In
Medellin, an ANT Neuro 64-channel acquisition system was used, sam-
pling signals at 1000 Hz. Finally, the Turkish site used a BrainAmp
32-channel DC system, sampling signals at 512 Hz. All reference points
were standardized and set to the average during preprocessing. Sig-
nals were resampled at 512 Hz during preprocessing and subjected to
a high-pass filter of 40 Hz and a low-pass filter of 0.5 Hz.
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2.4.3 | EEG preprocessing

The rsEEG was preprocessed offline using standard procedures
described elsewhere.”® The analog filters were adjusted to a range of
0.03 and 100 Hz. Recordings were band-pass filtered at 0.5 to 40 Hz
and re-referenced to the average of all channels. Malfunctioning chan-
nels were identified and replaced using statistically weighted spherical
interpolation (based on neighbor sensors).”” Independent component
analysis’® and a visual inspection protocol’?-82 were used to correct

blink artifacts and eye movements.

2.5 | Source space functional connectivity and
metaconnectivity estimation

Brain sources of the rsEEG were estimated using the standardized low-
resolution brain electromagnetic tomography analysis (SLORETA).83
The sLORETA estimates the standardized current densities for a grid
of 6242 predefined virtual sensors (voxel size 5 x 5 x 5 mm) located
in the cortical gray matter and hippocampus of a reference brain (MNI
305, Brain Imaging Centre, Montreal Neurologic Institute). Voxels were
grouped in N = 82 brain areas defined by the AAL parcellation®*
(Figure 1A and Table S4 in supporting information). The time series for
each brain compartment was obtained by vector averaging across vox-
els the current densities calculated at each time point, resulting in a
time x regions matrix.

The rsEEG time series were band-pass filtered in the common EEG
bands: 6 (0.5-4 Hz), 6 (4-8 Hz), a (8-13 Hz), 8 (13-30 Hz), and y (30-
40 Hz; Figure 1B). Functional connectivity matrices were built using
the pairwise Pearson correlation between the filtered time series in
both empirical and simulated data (simulation described below). Meta-
connectivity matrices were built using the sliding windows method,
as described in Arbabyazd et al.> (Figure 1C). Windows of 8 seconds
length with 80% overlap were used to compute the time-resolved func-
tional connectivity (the rationale behind windows’ length is provided
in Figure S2 in supporting information). Then, functional connectivity
matrices were vectorized, taken from their upper triangular, and con-
catenated into the dynamic functional connectivity matrix (Figure 1D)
of dimension Q x Q (Q connectivity pairs, w time windows). Time series
within the dynamic functional connectivity matrix were correlated
(using Pearson r) against each other, and the outcome corresponded
to the metaconnectivity matrix of dimension Q x Q (Figure 1E). These
matrices capture high-order interactions.’ Finally, we computed the
absolute value of the average sum of the negative values of the meta-
connectivity matrices, called dynamics viscosity (Figure 1F). A higher

viscosity is a dynamical signature of a less integrated brain activity.>*
2.6 | Dimensionality reduction
We used linear discriminant analysis (LDA)®® to reduce the set of

selected metaconnectivity features (see subsection 2.8) to single com-

ponents. For empirical data, the LDA was used independently for

THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION

discriminating AD or bvFTD from CN using the best features obtained
through machine learning. For simulated data, the same features based
on metaconnectivity were used for LDA and validated on empirical
data. This time, we combined the three groups (CN, AD, and bvFTD)
and fitted LDA to empirical data. Then, we projected the simulated data
using the fitted LDA model to represent it in a two-dimensional space
(two LDA components). The centroids of the groups in the reduced
space by LDA correspond (in the model) to different “brain states” (CN-,
AD-, and bvFTD-like states).

2.7 | Whole-brain modeling and perturbations
2.7.1 | Neural mass model description

We used a modified®®8” Jansen and Rit neural mass model®® to model
whole-brain source networks (Figure 2). Each brain area was composed
of two subpopulations of neural masses (Figure 2A), each tuned to
oscillate in the a and y frequency bands (around 10 and 45 Hz, respec-
tively; Figure 2A). The contribution of each subpopulation in generating
the postsynaptic potential (PSP) of pyramidal neurons was weighted by
the parameter r%, as defined in Otero et al.8” The model’s parameters
are summarized in Table S5 in supporting information. Macroscopically,
each brain areaiwas connected to another areaj using a structural con-
nectivity matrix M (DTI; Figure 3B). We used the average connectome
across subjects, leading to group-specific CN, AD, and bvFTD struc-
tural connectivity matrices. The strength of the coupling was scaled
by a global coupling parameter K. Considering that long-range pro-
jections are mainly excitatory,8%?° connections between brain areas
involved only pyramidal neurons. Each region received background
input, whose values were randomly sampled from a normal distribution
with amean (p(t)) = 220 Hz and a standard deviation o, = 31 (similar
values used in Otero et al.8”). The complete system of equations for the
a subpopulation consisted of

dxg; (t) .
g = Yoi
dygd; (t)
Zt = A% a%S (X4 (t) — X, (t)) — 2a° vo; () = a"‘zxg". ()
dx‘;‘,,. (t) .
PR TR
dyf ()
Zt = A% a% (p; (t) + C2S (Cyxo, (1))
N 2
+ KC Z M;iS (x4 (t) = x5 (t)) — 2a"‘y‘i"i (t) — a* x‘{‘. (t)
j=1#
dx;‘i (t) .
= Ve (t)
dyg ()
2 = BB (CaS (Caxo, (6)) — 2b%5, (6 — b=, (1
S(v) = $max

T 14 exp(—r(v—vy)
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FIGURE 1 Pipeline for metaconnectivity dynamics estimation. A, Source reconstruction (sSLORETA) was used to extract the regional time
series (82 ROls, brain regions, of the AAL parcellation). B, Signals were bandpass filtered in the common EEG frequency bands to compute
functional connectivity and metaconnectivity. C, Time-resolved functional connectivity was characterized using the sliding windows method, in
which functional connectivity was estimated using fixed (8 seconds) and overlapped (80%) time windows. The procedure was performed for all
frequency bands. The results of the 8 band are presented as an example. D, Dynamic functional connectivity matrix was built using the vectorized
upper triangular of functional connectivity matrices. E, By correlating the connectivity pairs’ time series across time windows, the
metaconnectivity matrices can be estimated. These matrices capture high-order correlations (between three and four pairs of brain regions). In
the example, the matrices in the 8 band of EEG are shown for CN, AD, and bvFTD patients. F, Dynamics viscosity is defined as the absolute sum of
the negative values within the metaconnectivity matrices. 8 band viscosity was higher in AD and bvFTD with respect to CN. *|D| > 0.5, **|D| > 0.8,
***|D| > 1.2. Data points in violin plots correspond to subjects. Box plots were built using the first and third quartiles, the median, and the maximum
and minimum values of distributions. AAL, automated anatomical labeling; AD, Alzheimer’s disease; bvFTD, behavioral variant frontotemporal
dementia; CN, healthy control; EEG, electroencephalography; ROI, region of interest; sSLORETA, standardized low-resolution brain

electromagnetic tomography analysis.

where A% (B%) and a* (b%) corresponded to the excitatory (inhibitory)
postsynaptic potentials’ maximal amplitude and inverse characteris-
tic time constant, respectively. The first pair of equations represents
the excitatory feedback loop, the second represents the outputs from

pyramidal neurons, and the third represents the inhibitory feedback

loop. Populations of neurons were connected through constants Cy,
Cy, C3, and Cy; all of them scaled with a common local connectiv-
ity constant C. The postsynaptic potentials, v, were transformed into
firing rates through a sigmoid function S(v), with a maximal output,

slope, and threshold given by ¢y, I, and vy, . The equations for the
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FIGURE 2 Description of the whole-brain computational model. A

EEG-like signals
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, The original Jansen and Rit neural mass model for one single cortical

column (brain region) involving three populations of neurons: pyramidal neurons (blue), excitatory (orange), and inhibitory (green) interneurons. In
the model, long-range projections from and toward other cortical regions involved only pyramidal neurons. B, In our modified version of the model,
we coupled two subpopulations of cortical columns (one oscillating in «, and the other in y). The combined subpopulations formed a single cortical
column. Our model also incorporates inhibitory synaptic plasticity. C, Brain areas were connected through a human empirical structural

connectivity matrix (in this figure, the CN structural connectivity matri

x averaged across subjects), parcellated in 82 brain regions using the AAL

parcellation. This matrix is weighted and undirected (symmetric). D, Whole-brain neural mass model simulating EEG-like signals at the source level.

The model’s EEG power spectrum fitted to the CN (through functional

connectivity matrices) shows two different peaks at the o and y frequency

bands. AAL, automated anatomical labeling; CN, healthy control; EEG, electroencephalography.

subpopulations are identical, except for the y superscript. Further
details of the model can be found in supporting information (Section 5).
The model’s final output corresponded to EEG-like signals in the source
space (Figure 3C,D).

2.7.2 | Synaptic plasticity

|91

Following Abeysuriya et a we incorporated within our model

inhibitory synaptic plasticity as an additional differential equation:

Cy (t Cy (t Camin g
T;t() = Cinh (t)(gpyr(t)_P) (%_ 4’C )

The plasticity updates the feedback inhibition to control the firing
rate of pyramidal neurons, preventing the full saturation of their sig-
moid function. In the equation, 7 represents the inverse of the learning
rate; {inn(t) and ¢p,(t) the firing rates of the inhibitory interneurons and

pyramidal neurons at time t, respectively; p the target firing rate; and
a bounding exponent that controls the convergence to Cy4 i = O (for
avoiding non-plausible negative connectivity values). We used 8 = 1
(soft-bound), but other choices are possible.”? The two critical param-
eters for plasticity are the learning rate t and the target firing rate p.
We chose valuesof r = 2sandp = 2.5Hz.94%3

2.7.3 | Model fitting, data augmentation, and
model’s observables

We ran simulations with the same time length as the empirical data
(610 seconds discarding the first 10 seconds) using different random
seeds for model fitting (100 seeds), data augmentation (300 seeds),
and model perturbation (50 seeds). The details of the simulations are
presented in the supporting information (Section 6). From the simu-

lated data, we extracted the same features based on metaconnectivity
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FIGURE 3 Spatiotemporal characterization and validation of viscosity (metaconnectivity) in AD and bvFTD. A, The area under the curve of the
ROC curve was used to evaluate the performance of the classifier. Higher values (near 1) allow a good classification of healthy controls from
patients. The first and second columns correspond to the features based on functional connectivity and metaconnectivity, respectively. At the left,
features ranked using MRMR were added one by one, and model performance was assessed using the AUC. The minimal set of features
guaranteeing the highest AUC values consisted of the optimal number of features for classification. At the right, the ROC curves for a fixed number
of features (the best ones highlighted by the dotted lines). B, Confusion matrices using metaconnectivity (first row) and functional connectivity
(second row). C, D, Brain regions characterized using metaconnectivity, projected on the brain’s surface for AD and bvFTD. Colors indicate if the
regions are involved in hypo or hyper patterns of metaconnectivity (based just on the sign of the Cohen D effect sizes). E, A trend of LDA
component to be positively correlated with cognition (MoCA scores) was found, but not with (G) years with disease. G, LDA component was
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of the empirical data, including functional connectivity and metacon-
nectivity matrices in each frequency band. The features extracted
from simulated data were reduced to two LDA components using
the LDA fitted to empirical data (see subsection 2.6). The fitting pro-
cedure consisted of minimizing the distance between the simulated
data and the empirical centroids of CN, AD, and bvFTD groups, to
reproduce the empirical metaconnectivity features. In addition, we
also explored the more traditional fitting to the functional connec-
tivity matrices using the structural similarity index (SSIM).?495 The
SSIM is a method for measuring the similarity between two images.
In the context of functional connectivity, it constitutes a trade-off
between Pearson correlation and Euclidean distance, that is, for SSIM
both the pattern of connectivity and the mean functional connectiv-
ity matter. The SSIM has been widely used in the field of whole-brain

modeling.3%7°

2.74 | Connectome perturbation

To test the hypothesis that alterations in structural connectivity may
lead to functional disturbances in AD and bvFTD,?*~>¢ we performed
in silico perturbations of the healthy connectome (CN). Our analysis
was based on the participation coefficient, PC%, and modularity, Q",
measures of integration and segregation, respectively.”® We obtained
the modular structure of the connectomes using a combination of
the Louvain algorithm and consensus clustering. We then classified
nodes according to their nodal participation coefficient, PC}"’.% Next,
we produced iteratively altered connectomes decreasing the connec-
tivity between nodes with the highest PC}”, while preserving the nodal
strength and the original modular organization of the connectome. This
perturbation changed the topological properties of structural connec-
tivity toward segregation. Simulations were performed for K = 0.25
(CN) using the perturbed connectomes. The complete procedure is
described in supporting information.

2.7.5 | Insilico perturbation

To investigate the transitions from the pathological to the healthy state
and vice versa, we implemented two different perturbation protocols
to pairs of homotopic nodes3”?7 by changing the magnitude of the
background input p by an amount +Ap (excitatory protocol) or —Ap
(inhibitory protocol). For each pair of homotopic nodes, we swept Ap
from O to 600 Hz in steps of 30 Hz.

THE JOURNAL OF THE ALZHEIMER'S ASSOCIATION

2.7.6 | Modeling E/I balance disturbances

We also simulated a possible effect of E/I imbalance triggered by
neurodegeneration®’~>? by directly decreasing or increasing the target
firing rate p of synaptic plasticity. The rationale behind this was similar
to that of the perturbation protocols: increasing (decreasing) p moves
the model toward hyperexcitation (hypoexcitation). Starting from the
model fitted to the CN condition, we searched the best global coupling,
K, and target firing rate, p, parameters to adjust the model to AD and
bvFTD groups. We repeated the inverse procedure from AD or bvFTD
to CN, starting from the model fitted to the pathological conditions.

2.8 | Data analysis
2.8.1 | Empirical data

We used independent sample Student t tests to compare pairwise dif-
ferences between CN versus AD or bvFTD, and Cohen D effect size
was reported. Pearson correlation was used to assess the relation-
ship between empirical features (LDA and viscosity scores), MoCA
scores, and years of disease. We validated our empirical features
using surface-based morphometry through a regression between LDA
and cortical thickness with the Cat12 toolbox (https://neuro-jena.
github.io/cat/) in MATLAB 2018A. Cortical thickness was regressed
out with LDA to validate the metrics of the model using surface-based
morphometry (see Section 3 in supporting information for further
details). All P values were corrected for multiple comparisons (CN vs.
AD or bvFTD) across frequency bands and for all correlations using
the Benjamini-Hochberg method,”® for decreasing the probability of
making type | errors (false positives).

2.8.2 | Simulated data

For simulated data, we computed Cohen D to report the results in
terms of effect size,?” as P values can be artificially inflated by sam-
ple size computing additional model realizations.”” We also used the
Euclidean distance between centroids in the reduced latent space
(through LDA®?) to assess the proximity between different brain states
(e.g.,AD vs.CN, or between a trajectory and a target centroid). To inves-
tigate the relationship between viscosity and the degree of integration
(PC%) of the perturbed connectomes, we calculated the Spearman

correlation between the average viscosity and PCY.

positively correlated with cognition, and (H) negatively correlated with years with disease. |, J, Model’s scores validation through surface-based
morphometry. LDA values were associated with cortical thickness using a linear regression for every clinical group individually joined with healthy
controls. To correct for multiple comparisons, a TFCE correction was used. *P < 0.05, P ~ 0.1. AD, Alzheimer’s disease; AUC, area under the curve;
bvFTD, behavioral variant frontotemporal dementia; CN, healthy control; EEG, electroencephalography; LDA, linear discriminant analysis; MoCA,
Montreal Cognitive Assessment; MRMR, minimal redundancy maximum relevance; ROC, receiver operating characteristic; ROI, region of interest;

TFCE, threshold-free cluster enhancement.

85U80|7 SUOWIWIOD 811D 8|qeot|dde sy Aq pausenoh ae sspie YO ‘88N J0 S8|ni 1oy Ariq1T 8UIIUO AB|IAA UO (SUORIPUOD-PUR-SWLIBH WD A8 |IMAe1q 1 U1 [UO//:SANY) SUORIPUOD pue SWB | 83U} 89S *[7202/S0/TE] U0 AriqI]8uluO 3|1 ‘SS1ISIBAIUN IWOUOMT 4iwZ| Aq 88/ET Z[/200T OT/I0p/0D A8 imAe1q1 Ul |UO'S eUINO [-Z [e//Sdny Wouy pepeojumod ‘S ‘vZ0g ‘6.252SST


https://neuro-jena.github.io/cat/
https://neuro-jena.github.io/cat/

wss | Alzheimer’s &Dementia’

CORONEL-OLIVEROS ET AL.

THE JOURNAL OF THE ALZHEIMER’S ASSOCIATION

2.8.3 | Validation of the features based on
metaconnectivity

We compared pairwise and high-order features based on functional
connectivity and metaconnectivity to discriminate patients from CN.
Features consisted of functional connectivity and metaconnectivity
links (connectivity values within matrices). Features were pre-selected
by ranking them according to the absolute value of the Cohen D
effect size (AD or bvFTD vs. CN) in each frequency band. The best
and least redundant 100 features were selected using the minimal
redundancy maximum relevance (MRMR) feature selection algorithm
in Python (https://github.com/smazzanti/mrmr). For classification, we
used a Gaussian Naive Bayes classifier to discriminate between AD
or bvFTD and CN (GaussianNB function from Python sklearn library).
The Naive Bayes classifiers are highly efficient, quickly trained, and
make accurate predictions even with large datasets. They have only
one hyperparameter, a smoothing parameter, that is usually used when
working with categorical variables to avoid zero probabilities. Because
that is not our case, we set the smoothing parameter to 0. Then we
split the dataset into training and test sets (80% vs. 20%, respectively)
using a 5-fold cross-validation. Features were added one by one from
the MRMR ranking. In each step, we evaluated the performance of the
model through (1) confusion matrices, (2) model accuracy, (3) the area
under the curve (AUC) of the receiver operating characteristic curve
(false positives vs. true positives rates), (4) F1 score, (5) sensitivity, and
(6) specificity. To avoid artificial inflation of P values due to sample size,
we computed Cohen D to report the results in terms of effect size. The
performance of the model was assessed 300 times using different ran-
dom seeds, and we computed the averaged performance across folds in
each iteration.

2.9 | Data and code availability

The scripts for all simulations and data analysis are available at
the following GitHub repository: https://github.com/carlosmig/EEG-
Dementias.git. The Brain Connectivity Toolbox for Python (https://
github.com/fiuneuro/brainconn)?® was used for graph analysis, and
BrainNet Viewer toolbox'%° was used for visualization of brain plots.
Data are available upon request from the corresponding authors, and a

formal data-sharing agreement must be established.

3 | RESULTS

3.1 | Dementia is better characterized by higher
viscous dynamics than by functional connectivity

We investigated the characterization of dementia by using meta-
connectivity®! to capture high-order interactions in each frequency
band. Unlike functional connectivity, metaconnectivity matrices cap-
tured third- and fourth-order correlations among different brain areas.
At the global level, B-band metaconnectivity matrices had more nega-

tive entries, indicating less coordinated brain dynamics (Figure 1E,F).
We observed higher viscosity, that is, the absolute value of the aver-
aged sum of negative metaconnectivity values,>>°! in both AD and
bvFTD in 8 compared to the CN (P =0.00374,t = 3.45, D = 0.80 for AD
vs. CN; P =0.00021, t = 4.65, D = 1.29 for bvFTD vs. CN). In bvFTD,
an increment in viscosity was observed in a (P = 0.00633, t = 3.21,
D =0.89) and y (P =0.02158, t = 2.69, D = 0.75) bands, as well in the
across bands average (P =0.00061,t=4.15,D = 1.15; Figure S3 in sup-
porting information). Therefore, uncoordinated viscous brain dynamics
characterized AD and bvFTD, particularly in higher frequency bands,
and the effect was stronger in bvFTD compared to AD compared to
CN. The increment in viscosity reflects a change in the global brain
dynamics of patients beyond the alterations at the level of individual
metaconnectivity interactions. However, individual metaconnectivity
values can be used to discriminate between patients and controls, as
addressed below.

The validation of viscosity/metaconnectivity involved a comparison
with classical connectivity metrics using the best features. The top
metaconnectivity values considering all frequency bands with the high-
est Cohen D absolute values were ranked using an MRMR algorithm,
and the resulting ordered vector was used as input for a Gaussian
Naive Bayes classifier (Figure 3A). The AUC values reached a maximum
(0.999 AD or bvFTD vs. CN) using the first 12 features for AD versus
CN, and for bvFTD versus CN. In contrast, using pairwise connectiv-
ity values resulted in lower AUC values (of 0.855 for AD versus CN,
and 0.850 for bvFTD versus CN) than the viscosity metrics. Table S6 in
supporting information contains brain regions belonging to the top 12
best metaconnectivity features, and Table S7 in supporting information
all statistical analyses. The confusion matrices are shown in Figure 3B.
To verify whether the selected features were the best discriminators,
we re-classified subjects using random partitions of features (up to 12
features) 10,000 times, generating surrogate distributions for AUC and
accuracy. Both AUC and accuracy were higher when using the original
features for AD (P = 0.0047 for AUC, and P = 0.0008 for accuracy) and
bvFTD (P = 0.0468 for accuracy, and P = 0.0570 for AUC), compared
to randomly selected features (Figure S4 in supporting information).
These results were replicated with a harmonized and matched sample
(Figure S5 in supporting information). Tables S7 and S8 in supporting
information summarize all metrics.

Brain regions associated with viscous dynamics are reported in
Figure 3C,D. To facilitate visualization, we grouped the regions in
“slow-like” (8 + 6) and “fast-like” oscillations (a + 8 + 7). The colors
in Figure 3C,D indicate whether the brain region contributes to an
increase or decrease of the metaconnectivity values, based on the
sign of Cohen D effect sizes while discarding the magnitude. Across
AD and bvFTD, we found regions involved in both increased and
decreased metaconnectivity. Further, the faster the frequency bands,
the decreased metaconnectivity was more pronounced, especially in
bvFTD. In AD, decreased metaconnectivity in faster frequencies was
observed in the calcarine fissure and the amygdala, while increased
metaconnectivity in the slower bands was seen in frontal areas (supe-
rior/inferior frontal gyrus, olfactory cortex, Rolandic operculum). In

bvFTD, faster oscillations involved decreased metaconnectivity in
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frontal areas (middle and inferior frontal gyrus), insula, and amygdala.
In contrast, increased metaconnectivity in the slower bands was found
in the precentral area, hippocampus, superior parietal gyrus, and infe-
rior parietal gyrus. Thus, the most affected brain regions in AD and
bvFTD were pattern specific in terms of oscillations, connectivity, and
anatomy.

Finally, we used metaconnectivity to provide discrimination
between patients in the harmonized dataset. In this new scenario,
metaconnectivity showed the great capability of differentiating bvFTD
from AD, reaching AUC values close to 0.99 (Figure S6 and Table S9 in
supporting information). We observed decreased metaconnectivity in
the bands for several brain regions, including the left superior frontal
gyrus (dorsolateral and orbital parts), the right parahippocampal gyrus,
the right superior temporal gyrus, among others (Table S10 in support-
ing information). Consequently, metaconnectivity not only provides an
accurate classification between patients and healthy controls but also
is sensitive to discrimination between different dementia subtypes
(bvFTD vs. AD).

3.2 | Metaconnectivity predicts multimodal disease
presentation

We investigated the relationship between metaconnectivity and cogni-
tive scores (MoCA scores), years with the disease, and regional atrophy
in patients with AD and bvFTD. Using LDA, we independently built a
composited variable for the AD- and bvFTD-specific features. LDA sep-
arated AD patients from CN (Figure 3E), and a trend was observed for
the LDA component to be positively correlated with cognitive impair-
ment in AD (P = 0.1074, r = 0.360), but not with years with disease
(P=0.2358,r = —0.227, Figure 3G). In bvFTD, LDA also distinguished
patients from CN (Figure 3F) and correlated positively with cognitive
impairment (P = 0.0493, r = 0.526) and negatively with years with
disease (P =0.0493,r = —0.520; Figure 3H).

Furthermore, we found an association between atrophy (measured
in terms of cortical thickness) and metaconnectivity (LDA compo-
nents) using a linear regression model with threshold-free cluster
enhancement correction (TFCE), as shown in supporting information
3. In AD, an anatomic-specific temporo-posterior metaconnectivity-
atrophy association was observed, while in bvFTD, a fronto-temporal
metaconnectivity-atrophy association was observed (Figure 3lI,J).
Thus, metaconnectivity was associated with cognitive impairment (in
both conditions, but at a trend level in AD), age of disease (bvFTD), and
specific brain atrophy patterns (AD, bvFTD).

3.3 | Hypoexcitation and structural disintegration
explain metaconnectivity dynamics in
neurodegeneration

We used a modified version of the Jansen and Rit neural mass model®8
to study the metaconnectivity dynamics in neurodegeneration, by sim-

ulating potential disruptions in structural connectivity and E/I balance.
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To ensure the accuracy of our simulations, we first characterized the
model with synaptic plasticity through parameter explorations, which
resulted in a good fit for empirical data. Specifically, we used functional
connectivity fitting in healthy subjects and demonstrated the efficacy
of our approach in Figures S7, S8, and S9 in supporting information.

We fitted the model to CN, AD, and bvFTD groups, using the empiri-
cal structural connectivity matrices specific to each group. The global
coupling parameter, K, and the target firing rate of pyramidal neu-
rons, p, were swept while the proportion of the a generator neurons
within a single brain region was fixed in r* = 0.5, based on our previ-
ous explorations. We extracted the same features from simulated data
based on metaconnectivity as those characterized in empirical data
and projected them onto the two-dimensional LDA space, using the
LDA trained with the empirical features. The optimization function was
the distance between the simulated data and the CN, AD, and bvFTD
centroids in the LDA space. Figure 4 shows the fitting results, where
lower distance values indicate a better fit of the model to empirical
data. We used the notation Ap to represent the deviation from the
default target firing rate value (2.5 Hz); positive values of Ap move
the model toward hyperexcitation, and negative ones toward hypoex-
citation. Our results suggest that lower K values (compared to AD
and bvFTD) and near-zero values of Ap best reproduce the empiri-
cal features in CN (Figure 4A, with a blue dot indicating the pairs of
parameters associated with the lowest distance, equivalent of highest
goodness of fit). However, the best fit of the model to patients’ empiri-
cal data was obtained by increasing K and decreasing Ap (Figure 4B,C,
with red and green dots for AD and bvFTD best parameters). This sug-
gests that, to simulate the specific empirical LDA-metaconnectivity,
the brain dynamics must be shifted toward hypoexcitation. Further-
more, lower values of Ap should be used for fitting the model to bvFTD
data compared to AD. For visualization purposes, we compared the
projected empirical data (Figure 4D) to the simulated data (Figure 4E)
and found a good correspondence indicating that the fitted model
captured the empirical features. Finally, we measured the distance
between each point in the simulated LDA space and the CN cen-
troid to test the capability of the model in characterizing patients and
healthy controls (Figure 4F). Our results show that our model produces
a good discrimination between AD versus CN (Cohen D = 4.89) and
bvFTD versus CN (Cohen D = 7.70). Overall, to reproduce empirical
metaconnectivity patterns in AD and bvFTD, the brain dynamics must
be shifted toward hypoexcitation, especially in bvFTD, and pushed to
greater global coupling values indicating higher connectivity strength,
compared to healthy subjects.

Based on the empirical results shown in Figure 1F, simulated data
indicated an increase in 8 band viscosity as illustrated in Figure 4G.
The altered viscosity and metaconnectivity can be explained by two
mechanisms: structural disintegration and/or E/I balance disturbances.
The patients’ PCY was reduced, with bvFTD exhibiting lower values,
as represented by the color dots in Figure 4H. To establish a robust
link between the structural integration and the functional features of
the data (viscosity and LDA measures of metaconnectivity), we used
the model that was fitted to the CN and performed simulations with

perturbed versions of the connectome. The perturbations involved
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iteratively reducing the healthy connectome PCY (integration), as illus-
trated in Figure 4H. When PC% was reduced, viscosity increased and
a negative correlation between PCY and viscosity was found (Spear-
man ry, = —0.94, p < 0.00001). Surprisingly, the measurements for
CN and AD were close to the curve. Therefore, these results suggested
that structural disintegration (reduced integration) may be responsi-
ble for the increase in viscosity in AD and, to some extent, in bvFTD.
The distance between the bvFTD point and the curve might indicate
that both structural disintegration and hypoexcitation contribute to
the increase in dynamic viscosity in this condition.

In the simulations with the perturbed connectomes, we projected
the data using LDA with the same coefficients as empirical data. In
Figure 41, a trajectory from the CN centroid is observed that diverges
from the healthy brain state as the PC"¥ is sequentially reduced. Mov-
ing in the direction of the trajectory reduces the distance from the
original position (CN centroid) to both AD and bvFTD. Thus, the per-
turbed connectome moves the model, in the low dimensional space
toward brain dynamics resembling the states in AD and bvFTD. As
shown in Figure S10 in supporting information, we repeated the fitting
procedure using functional connectivity matrices instead of metacon-
nectivity. Adequate fitting to empirical connectivity matrices (SSIM
values > 0.6 for CN, AD, and bvFTD) reproduced the increase in
dynamic viscosity in both AD and bvFTD compared to CN. When per-
turbating the healthy connectome, we obtained comparable results to
the original ones using metaconnectivity for model fitting (Figure S10).
However, compared to metaconnectivity, the model fitted using func-
tional connectivity was not capable of reproducing the specific features
extracted from empirical data.

Different pathophysiological pathways can be involved in brain
disorders!0! affecting both structural connectivity®#-26102-104 gnd
E/I balance.>’% In our model, the inclusion of inhibitory synaptic
plasticity (Figure 2A) allows us to directly control the firing rates of
pyramidal neurons in simulations, moving the model toward excitation-
or inhibition-dominated regimes of activity. This model enabled us to
test the hypothesis that alterations in E/I balance produce transitions
between healthy and pathological states and vice versa. We fitted the
model to the CN condition to analyze what combinations of K and Ap
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parameters increased the goodness of fit to the AD and bvFTD groups.
Results showed that an increase in K alongside a decrease in Ap better
reproduces the brain dynamics in AD and bvFTD (Figure 4JK), using
the healthy participant’s connectome from CN parameters. In the last
row of Figure 4, trajectories from the centroids in the LDA space are
drawn, in addition to the initial (CN) and final (AD or bvFTD) parame-
ters. The opposite transitions from AD or bvFTD to CN (Figure 4L,M),
require decreasing K and increasing Ap. Thus, for moving the brain
dynamics to the ones observed in AD and bvFTD from CN, the model
must be pushed toward hypoexcitation, and vice versa for the opposite

transition (from hypoexcitation to balanced E/I).

34 Perturbational landscapes identify the
transitions to healthy and pathological states

Perturbational landscapes, that is, the models’ trajectories during per-
turbations in the LDA-reduced dimensional space, reveal potential
therapeutic targets for healthy and pathological brain states. As whole-
brain models have the potential to inspire novel therapies, 133637 we
explored in silico perturbations of homotopic brain regions?” with
excitatory and inhibitory protocols (Figure 5) to identify potential
therapeutic targets. In Figure 5A,B, we perturbated single pairs of
brain regions, with the magnitude of the perturbation defining the
observed trajectories in the reduced dimensional space. For bvFTD,
inhibitory perturbations led to transitions from pathological to healthy
states, while excitatory perturbations led to the opposite transitions.
To summarize the results, we presented the distance between the best
trajectories and the target centroids in Figure 5C. The results for in
silico perturbation in bvFTD were consistent with previous sections,
in which a shift toward hypoexcitation (inhibitory perturbation) was
required to drive the dynamics from the healthy to pathological states,
and vice versa. In contrast, for AD both inhibitory and excitatory proto-
cols led to transitions from CN to AD state, although the brain regions
involved differed. We included a null case that represented the dis-
tance from the initial to the target centroid. All perturbation protocols
were efficient in deviating the model from the null case (|D| > 1.2,

FIGURE 4 Fitting of the model to empirical metaconnectivity features. A-C, The two parameters of the model (global coupling, K, and change
in target firing rate, Ap) were fitted to empirical data using features based on metaconnectivity and LDA. Red values, which indicate a lower
distance of the simulated features to the target empirical centroids, are a hallmark of a better fit to empirical data. D, E, Empirical and simulated
data (data augmentation up to 300 models’ realizations) projected using LDA. F, Distance from each simulated data point to the CN centroid. G,
The simulated data showed an increment of 8 band dynamics viscosity in AD and bvFTD, similar to the empirical results. H, Modeling of structural
alterations in neurodegeneration. Healthy connectome disintegration (reducing structural integration), from right to left, is related to more viscous
brain dynamics. Colored dots corresponded to the measurements of each group (simulated data). |, Trajectories from the healthy state (CN, high
PCY) to pathological conditions. Each point in the trajectory corresponds to simulations where the connectome was sequentially perturbed
decreasing its PC". J, K, The transition from the healthy condition (CN) to the pathological ones (AD or bvFTD) involved an increment of global
coupling, K, and a negative change in firing rates, Ap, which moves the model toward hypoexcitation. In the second row, the trajectories in the LDA
space corresponded to the paths marked by the black arrows in the (K, Ap) parameter space. The initial and final combination of parameters were
drawn near their respective centroids. The opposite transition in (L, M) involved a decrease in K and an increase in Ap. *|D| > 0.5, **|D| > 0.8,
***|D| > 1.2. Data points in violin plots correspond to different model realizations (random seeds). Box plots were built using the first and third
quartiles, the median, and the maximum and minimum values of distributions. Confidence intervals were built using the mean + standard
deviation. Correlations were computed using Spearman’s rg,. AD, Alzheimer’s disease; bvFTD, behavioral variant frontotemporal dementia; CN,

healthy control; E/I, excitatory/inhibitory; LDA, linear discriminant analysis.
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used to produce transitions from AD or bvFTD to CN and vice versa. These consisted of perturbating single pairs of homotopic regions, producing
trajectories that corresponded to different perturbation magnitudes. C, Evaluation of protocols’ performance by measuring the distance from the
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the transitions, for each perturbation protocol. AD, Alzheimer’s disease; bvFTD, behavioral variant frontotemporal dementia; CN, healthy control;

LDA, linear discriminant analysis.

Figure 5C), but only for the CN — bvFTD transition (and vice versa) did
the perturbation protocol influence the distance to the target centroid
(ID] > 1.2, Figure 5C). These findings suggest that targeted excita-
tory and inhibitory perturbations of specific brain regions may have
therapeutic potential for the treatment of neurodegenerative diseases.

Finally, we identified the top five pairs of homotopic brain regions,
which are associated with the trajectories that most reduce the dis-
tance to the target condition, in mediating the different transitions
(Figure 5 and Table S11 in supporting information). In the case of
AD, we identified a subnetwork of frontoparietal and temporal brain
regions, using both protocols, including the superior frontal gyrus, the
superior and middle temporal gyrus, and the precuneus. For bvFTD,

the characterized network consisted of several frontotemporal brain

areas, such as the middle temporal gyrus, frontal gyrus (middle and
inferior), and the precuneus. Overall, our in silico brain perturbation
approach allows us to identify key brain regions involved in the patho-
logical trajectories, which can be proposed as therapeutic targets for
real-life perturbation protocols (e.g., transcranial magnetic stimulation,

and deep brain stimulation).

3.5 | Out-of-sample validation of metaconnectivity
and mechanisms

We conducted an out-of-sample validation to evaluate the robust-

ness of our approach and its generalizability to more heterogeneous

5UB0| SUOLUILIOD SAITERID 3 [edljdde aU) Ag PeUBAOB 32 A1 YO 85N J0 S9N 0} ARIGIT BUIIUO AB]IAM UO (SUO 1 IPUOD-PLE-SUWLBILLI0Y" A3 1 Ae.q 1 PUIIUO//SIY) SUOIIPUOD PUE SIS | 81 89S *[7Z0Z/G0/TE] U0 AReiq172UIIUO AB1IA ‘SIS AN IIOUOE 11wz AQ 88/ET Z[/200T OT/10p/W00" B IM AReIq b lUO'S IO |-z [e//SdNy LI PBPROIUMO G ‘VZ0Z ‘6L2529ST



CORONEL-OLIVEROS ET AL.

Alzheimer’s &Dementia® | s

contexts. To achieve this, we used a second subsample of participants
(CN =101, AD = 110, bvFTD = 26) and replicated key analyses from
our original dataset. These analyses included altered metaconnectivity
and increased viscosity in neurodegeneration, model fitting by manipu-
lating global coupling and E/I balance, and connectome disintegration,
which are all associated with the model’s mechanisms for simulating
altered metaconnectivity in AD and bvFTD. For validation purposes,
we first used the same metaconnectivity-based features (normalized
to match the range of the first dataset) as inputs for the machine learn-
ing classifier. Then, we projected the data using the LDA trained with
the original dataset. Next we conducted model fitting by sweeping
the global coupling and target firing rate parameters while compar-
ing the model’s output to the new features in the reduced-dimensional
space through LDA. Last, we replicated the connectome perturba-
tion analysis using the model fitted to the CN group of the validation
dataset to explore the relationship between viscosity and structural
disintegration.

Using the same classifier, we found good discrimination values
between AD (AUC = 0.883) and bvFTD (AUC = 0.957) patients and
healthy controls (Figure 6A,B). These results demonstrate the robust-
ness of metaconnectivity as a biomarker for dementias, with better
performance than pairwise functional connectivity in previous find-
ings (Figure 3). In the new dataset, we again found a similar pattern of
increased 8 band viscosity in AD (P = 0.00011, t = 3.94, D = 0.55) and
bvFTD (P < 0.00001, t = 6.07, D = 1.36), suggesting again a shift to a
more uncoordinated or viscous brain dynamics in patients (Figure 6C).
The data were then projected into a two-dimensional space using LDA
(Figure 6D), and while the overlap between groups was slightly higher
than in previous results (Figure 4E), metaconnectivity still achieved
good discrimination of CN from AD (P < 0.00001, t = 12.13,D = 1.68)
and bvFTD (P < 0.00001, t = 10.00, D = 2.22) using LDA (Figure 6E).

The whole-brain model was re-fitted using the new data projected
using LDA. Although the parameters were different from the origi-
nal ones (Figure 4A-C), we observed the same original pattern: fitting
the model to AD and bvFTD conditions required a higher global cou-
pling and a shift to hypoexcitation, compared to CN (Figure 6F). The
simulated data showed a similar pattern of increased 8 band vis-
cosity in AD (D = 1.63) and bvFTD (D = 3.58) with respect to CN
(Figure 6H). Using data projection with LDA (Figure 6l), the model
showed good discrimination between AD (D = 2.34) and bvFTD
(D = 2.89) from CN (Figure 6J). Finally, using the same perturba-
tional procedure of connectome disintegration, we found again a link
between structural integration and dynamic viscosity (Spearmanr,, =
—0.87, P < 0.00001; Figure 6G). Thus, by using an external dataset
with large heterogenous sources, we validated and generalized the
whole-brain metaconnectivity mechanisms (structural disintegration

and hypoexcitability) in neurodegeneration.

4 | DISCUSSION

We applied whole-brain semi-empirical modeling to brain data and

causal mechanistic explanations for the transition from brain health
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to disease (and vice versa) in neurodegeneration. Results showed
increased dynamic viscosity in AD and bvFTD compared to healthy
controls, along with altered metaconnectivity across all frequency
bands. The metaconnectivity-based features outperformed pairwise
interactions, and partially predicted disease severity. These high-order
interactions also discriminated between patient groups. The compu-
tational modeling reproduced the metaconnectivity-based features
extracted from empirical data and identified the mechanisms explain-
ing the viscosity/metaconnectivity patterns in patients, supporting the
hypothesis of reduced structural integration?7:195.106 and alterations in
E/I balance®”-¢° linked to AD and bvFTD. We also identified key brain
regions using a perturbational approach that mediates the transitions
from pathological states to the healthy state and vice versa. Over-
all, our work provides novel and theoretically supported EEG-based
biomarkers for characterizing dementias in underrepresented, diverse,
and non-stereotypical populations.

Our study shows that metaconnectivity outperformed pairwise
functional connectivity as a biomarker for dementia classification.

Results resemble previous works of our team,*’

using a differ-
ent approach to high-order interactions in AD and bvFTD. The
altered metaconnectivity patterns observed in our study overlapped
with previously identified brain regions affected in both AD°7 and
bvFTD1>108.109 including frontoparietal, temporal, and frontotem-
poral brain regions. We found that while patterns of increased
and decreased metaconnectivity were observed in all frequency
bands,*? reduced metaconnectivity was mainly associated with faster
oscillatory regimes such as beta and gamma, which is consistent
with the widely supported slowing of EEG rhythms reported in
dementia,2427:28105110.111 3nd previous results using information
theory.*? Our results also demonstrated that these metaconnectiv-
ity features predicted severity and disease presentation, especially
in bvFTD. However, weaker correlations were observed between
metaconnectivity and disease severity in AD, possibly due to the
more advanced stage of the pathology in terms of years with the
disease, lower MoCA scores, and advanced atrophy. As brain dam-
age is widespread at these stages, functional measurements are
less powered to predict the disease stage. Our findings highlight
the robustness of high-order interactions beyond pairwise functional

connectivity45-49.112

and support the growing body of evidence sug-
gesting that complex brain dynamics should be better characterized by
simultaneous interactions,*>~48:112 dementia included among them.
We enhanced our empirical analysis by incorporating computa-
tional semi-empirical modeling, which provided causal mechanisms
linking altered viscosity and metaconnectivity patterns. Our findings
showed that disrupting the structural brain hubs (connectome disinte-
gration) led to increased viscosity in AD and bvFTD. Considering that
(1) higher viscosity is a signature of an uncoordinated (less integrated)

505251 and (2) brain hubs are essential for orches-

113-116

brain dynamics,

trating brain activity104

and promoting integrated brain states,
compromising the brain’s structural hubs would impair functional inte-
gration (increasing viscosity) in patients with dementia. These hubs
are very susceptible to excitotoxicity and damage,!** and are com-

promised in neurogenerative diseases.”* Our model suggests that
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Out of sample validation (empirical data)
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FIGURE 6 Out-of-sample validation of whole-brain metaconnectivity and mechanisms. A, ROC curves and AUC values for AD and bvFTD. B,
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on metaconnectivity and LDA. Red values, which indicate a lower distance of the simulated features to the target empirical centroids, are a
hallmark of a better fit to empirical data. G, Healthy connectome disintegration (reducing structural integration) from right to left is related to
more viscous brain dynamics. Colored dots corresponded to the measurements of each group (simulated data). H, The simulated data showed an
increment of 8 band dynamics viscosity in AD and bvFTD, similar to the empirical results. |, Simulated data (data augmentation up to 300 models’
realizations) projected using LDA. J, Distance from each simulated data point to the CN centroid. *|D| > 0.5, **|D| > 0.8, ***|D| > 1.2. Data points in
violin plots correspond to different model realizations (random seeds) and subjects. Box plots were built using the first and third quartiles, the
median, and the maximum and minimum values of distributions. Confidence intervals were built using the mean + standard deviation. Correlations
were computed using Spearman r,. AD, Alzheimer’s disease; bvFTD, behavioral variant frontotemporal dementia; CN, healthy control; LDA, linear
discriminant analysis; ROC, receiver operating characteristic.
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disrupting the rich-club organization of the human connectome may
be a possible pathway to generate AD- and bvFTD-like brain dynam-
ics. We explored a second mechanism in the model based on E/I
balance. Specifically, a shift toward hypoexcitation was necessary to
recover the metaconnectivity observed in empirical data and to pro-
duce a transition from healthy to pathological states. Overall, our
results are in line with the dual profile of E/I balance in neurode-
generative diseases.’” Both human and animal studies suggest that
in preclinical stages, dementia is characterized by hyperexcitation,
due to the accumulation of A and tau aggregates.’’~>? As the dis-
ease progresses, hyperexcitability leads to neuronal loss, producing a
shift toward hypoexcitation, hypometabolism, and the slowing of EEG
rhythms.24:27,57-59,105.110.117-122 Thys our results provide the first
semi-empirical modeling support for two different but complementary
pathways triggering the functional disturbances in neurodegenerative
diseases.

The perturbational approach identified key brain regions that could
be targeted for stimulation in therapies such as transcranial magnetic
stimulation or deep brain stimulation.123-125 Data-driven approaches
suggested that the precuneus, compromised in AD'2¢ and proposed
as a therapeutic target for stimulation?®; and the frontal gyrus
(superior, and middle) and temporal poles, structures impaired in
bvFTD,108.109.127 could be effective targets. Similar results were found
in a previous functional MRI study from our team,3? in which the best
stimulation targets were posterior (AD) and frontotemporal (bvFTD)
brain regions. Interestingly, in our work, the best protocol for produc-
ing the transition from bvFTD to CN corresponded to the excitatory
protocol, which is consistent with our previous results in which increas-
ing the model’s excitability mediates the transition from bvFTD to
a brain state that most resembles healthy controls. Another avenue
for future research involves simulating in silico pharmacological ther-
apies to restore healthy brain function.133>3% Based on our results
indicating hypoexcitation, whole-brain models informed with neuro-
transmitters and neuromodulator receptor expression could be used to
test pharmacological interventions that may restore a healthy E/I bal-
ance in patients. Possible candidates include cholinergic drugs'07:128
and psychedelics,’?? which have been found to restore normal brain
function in other disorders. 30

From a more methodological perspective, our work provides valu-
able computational tools for studying whole-brain dynamics in both
health and disease,!! and we have made these tools publicly available
alongside this publication. Compared to other biophysical or purely
phenomenological computational works,3>131 our model can repro-
duce functional connectivity in a wide range of the EEG spectrum.
As a biophysical-inspired model, it can answer more specific ques-
tions directly, for example, how E/I balance, neuromodulators, and
local connectivity impact whole-brain activity. Other brain models sug-
gested a shift toward hyperexcitation for explaining the slowing of the
EEG rhythms in AD,3235 which may seem contradictory to our find-
ings. However, that is more likely to occur in the preclinical and early
stages of dementia, during which a shift toward brain hypometabolism
predominates in the middle and advanced stages.®”118-121 More-

over, both hyperxcitation and hypoexcitation can coexist in AD, with
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some brain regions exhibiting increased or decreased excitability.3234
Further, our work is unigue in combining metaconnectivity with whole-
brain modeling, which differs from other modeling studies that have
reproduced empirical observables using theoretical models without
previously addressing how well these features characterize neurode-
generative diseases.

Our approach was effectively generalized through out-of-sample
validation, which incorporated more heterogeneous, diverse, and non-
harmonized datasets. Using data from various countries, EEG configu-
rations, channel quantities, and diverse demographics, we successfully
replicated previous findings based on harmonized data. In the second
subsample, metaconnectivity continued to demonstrate its robustness
in distinguishing patients from healthy controls. Notably, the impaired
metaconnectivity dynamics (viscosity) were observed in both AD and
bvFTD groups even with comparable effect sizes and directionality
(bvFTD > AD > controls). The compromised mechanisms identified by
the model also accounted for the empirical dynamics in the out-of-
sample validation. These findings support the generalization of both
metaconnectivity alterations and biophysical mechanisms attributed
to these deficits. Expanding model generalization to underrepresented,
non-stereotypical, and diverse samples is crucial for understanding
brain-phenotype associations.! 863 While future research should con-
sider validations using harmonized datasets, our findings underscore
the strength of our results when applied to complex and variable data
sources.

There are important limitations that should be addressed in future
work. First, although comparable or larger than similar studies,32-34117
our results should be confirmed with more participants from the Global
North and South. Still, the theoretical framework based on biophys-
ical modeling may allow us to make better use of small datasets
and improve the understanding of brain function by linking empiri-
cal features with biophysical mechanisms.?° We have validated our
results with diverse samples from the Global South, which are crucial
for better representation in global research.:12 Nevertheless, future
works should compare stereotypical versus non-stereotypical patients
to test the generalizability and specificity of our findings and should
account for the differences between the Global North and South.
More specifically, we suggest including differences such as structural

inequalities®”:132

such as the Gini coefficient, socioeconomic dispari-
ties (social determinants of health, socioeconomic status), educational
differences, and varied genetic admixtures, with a higher degree in
Latin America. Environmental factors like pollution levels also distin-
guish these regions. Incorporating these elements as parameters in
generative models!! could significantly enhance region-specific analy-
ses. Second, we used averaged empirical priors for model fitting, while
personalized whole-brain models are gaining acceptance for character-
izing brain dynamics in many brain conditions and disorders.*33 Such
personalized models could lead to individualized therapies for restor-

ing healthy brain function,32134

which is particularly relevant given the
high heterogeneity among dementia patients.’3> Further, the current
group-level atrophy assessments should be expanded to individualized
approaches using weighted matrices and functional connectivity met-

rics, offering more personalized brain analysis. Therefore, we plan to
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expand our model to perform single-subject characterization in future
work. Finally, the model could be further improved by incorporating
other empirical priors,3233:39:101.35136 g ch as metabolic Ag and tau
brain aggregates, and neurogenetic maps, among others.!! This could
improve the precision of our model in reproducing AD- and bvFTD-like
phenotypes.

Our results provide a well-rounded characterization of AD and
bvFTD brain phenotypes using a novel whole-brain semi-empirical
modeling framework. The findings establish a comprehensive compu-
tational framework and a multilevel research roadmap for advancing
dementia characterization, encompassing early stages, longitudinal
investigations, diverse dementia subtypes, and individualized trajec-

tory evaluations in clinical trials.
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