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Abstract
In the field of music information retrieval, the detection of global key in both popular and classical music 
has been studied extensively, but local key detection has been studied to a lesser extent, even though 
modulation is an important component of compositional style. It is particularly challenging to identify key 
change boundaries correctly. We modeled this task as an optimization problem, that of finding out how 
to divide a piece into sections in different keys taking into consideration both the quality of the fit between 
the key and the section and the number of sections. We determined the optimal assignment of key to 
section using the Krumhansl–Schmuckler algorithm with a slightly modified version of the Krumhansl 
and Kessler key profile. We included a regularization algorithm in the formulation of our problem to 
balance the number of sections and avoid superfluous modulations. Using a dataset of 80 randomly 
chosen pieces of music in a variety of genres and levels of complexity, we compared our algorithm with a 
hidden Markov model (HMM) to determine which method is better for identifying local key. Our approach 
yielded significantly more accurate results and suggests future avenues of research.
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Researchers have explored music perception extensively from various perspectives. One 
approach is to construct computational models aimed at approximating human beings’ percep-
tion of  discrete musical elements. Key is one element that has been explored in this way, as it 
establishes the primary set of  plausible pitches and thus provides a reference point for listeners 
to interpret relationships between pitches (Chew, 2002). Pitch relationships are essential for 
the organization of  a piece, particularly in Western music (Krumhansl & Kessler, 1982). 
Consequently, tonal analysis and automatic key detection are relevant to both musicologists 
and music listeners, and constitute a central task in music information retrieval (MIR) research 
(Schreiber et  al., 2020). Key detection presents a multidimensional classification challenge, 
which typically employs chroma vectors derived from a musical segment as input (Birajdar & 
Patil, 2020; Fujishima, 1999), and estimates the key of  the excerpt in the form of  either a single 
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label (global key) or a key information timeline (local key). The Music Information Retrieval 
Evaluation eXchange (MIREX) (Downie et al., 2008) hosts an annual competition for evaluat-
ing advances in this area.

Changes of  key, or modulations, shift the tonal context to an entirely new space in which 
every pitch class assumes a new role (Chew, 2002). This shift changes the way pitches are 
organized by composers and perceived by listeners. How composers change key is an important 
component of  their compositional style. Thus, computational models that can reflect shifts in 
tonal space and identify local key contexts are potentially valuable. The practical applications 
of  local key detection in particular include, but are not limited to, music automation applica-
tions (e.g., automatic composition tools) and digital audio workstations, facilitating the work of  
composers and producers. As we have observed in the annual competitions hosted by MIREX, 
however, most research on key detection focuses on global key and, as a result, often misrepre-
sents modulating sections. One way of  solving this problem is to divide an excerpt into seg-
ments and analyze each segment separately, revealing distinct local key patterns (Temperley, 
2001). The nature of  composition is such that this approach can lead to misclassifications, as 
Temperley points out. Many segments may appear to be in a single key but are in fact part of  a 
larger section in a different key. This is especially apparent in the presence of  tonicized chords 
that alter the perception of  key in a small number of  measures that are not modulating to 
another key. While probabilistic methods have been introduced in attempts to mitigate such 
errors (Pauwels & Martens, 2010), our regularization approach can be used to obtain more 
accurate results, as reported below.

Many key detection tasks have shortcomings that stem from imprecise signal processing 
mechanisms applied to audio input; other shortcomings are related to particular artificial intel-
ligence processes. We aimed to address the latter type of  shortcoming by using a symbolic repre-
sentation as our input. We chose MIDI (Musical Instrument Digital Interface) from the 
representations available because data are easily accessible, but our algorithm can be readily 
adapted to different media, including audio (see Technical approach and implementation). This 
would require signal processing measurements for obtaining reasonably accurate pitch class 
distributions and adequate parameter tuning, however. These warrant separate research and 
are beyond the scope of  this article.

The key profiles on which most key-finding algorithms are based derive from an experiment 
by Krumhansl and Kessler (1982) in which participants with at least five years of  formal musi-
cal training rated how well certain probe tones better fit a tone context (e.g., they rated how 
well C# fits a IV-V-I chord progression in A major). This approach produced key profiles in the 
form of  12-bin vectors (the salience value of  every chromatic tone) for each of  the 24 keys. Key 
profiles for C major and C minor keys are presented in Figure 1 as a bar chart and normalized 
between 0 and 1 for clarity. According to the Krumhansl–Schmuckler key-finding algorithm, 
these key profiles are matched with pitch class vectors taken from musical excerpts, and the key 
yielding the highest correlation is designated as the one for the excerpt (Krumhansl, 1990). 
This key-finding method is available in many MIR-based toolboxes and is preferred in much 
research involving key estimation, although with slight modifications in certain studies; for 
example, Albrecht and Shanahan (2013) favored a Euclidean distance metric over correlation. 
This can be viewed as an instance of  MLE (maximum likelihood estimation)-type learning 
(Luque-Fernandez et al., 2018; Myung, 2003) to determine the hypothesis that best fits the 
data.

The Krumhansl–Schmuckler algorithm measures the number of  times a pitch class occurs 
in a segment and the duration of  each occurrence. This approach can overemphasize repeated 
notes. Consider a segment consisting of  a C major triad followed by a series of  repeated Es. The 
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system would presumably favor E minor in this case rather than C major, the correct choice. 
Temperley (2001) suggests a modification (the flat input-weighted key method) where the 12-bin 
chroma vectors derived from the excerpt would simply use 1 to signify the presence and 0 the 
absence of  each pitch class. The algorithm would use the same correlation-based procedure, 
again using the weighted key profiles illustrated above. This method goes some way toward 
solving the problem but may be suboptimal in the context of  longer excerpts.

Further key profiles have been proposed since those derived from Krumhansl and Kessler’s 
probe-tone experiment. Aarden (2003) calculated pitch class distributions from a collection of  
songs from the Essen folksong collection. Bellmann (2006) derived a model from Budge’s 
(1943) study of  the frequencies of  chords used in the works of  18th- and 19th-century com-
posers. Albrecht and Shanahan (2013) trained a key profile using 982 works from the 
Humdrum database. Temperley (2007) created a key profile by analyzing 46 short harmonic 
excerpts selected from the textbook of  Kostka et  al. (1994). Sapp (2011) suggested simple 
weightings (2 for tonic and dominant, 1 for other diatonic pitch classes, and 0 for non-diatonic 
pitch classes). These studies offer unique perspectives on modeling pitch class distributions, 
but—as observed by Sapp (2011)—each model has the potential for misclassification; for 
example, if  Krumhansl and Kessler’s weights are used, the dominant is likely to be identified as 
the tonic.

All the key profiles described above share the same structure of  12-element vectors, each 
corresponding to the weight of  a pitch class. The Spiral Array (Chew, 2002) is an alternative 
structure for defining key profiles, a model created in the form of  a three-dimensional spiral by 
rolling up the Harmonic Network, or Tonnetz, described in a range of  contexts by Cohn (1997, 
1998), Lewin (2007), Longuet-Higgins (1987), and Longuet-Higgins and Steedman (1971). 
In this three-dimensional space, pitch classes correspond to coordinates on the spiral. The three 
pitch classes of  a triad therefore form a triangle representing chord profiles. Finally, tonic, domi-
nant, and subdominant chord profiles are mapped onto trios of  triangles representing key pro-
files. It is thus possible to identify the key closest to the coordinate representing the aggregate of  
all the pitch classes in the section, each weighted by their total duration in that section. Chew 
(2002) examines each possible section of  every given excerpt exhaustively, albeit with slight 
optimizations, to determine the optimal key boundaries. This method of  exhaustive examina-
tion mirrors our approach of  identifying sections in different keys.

Figure 1.  Key profiles for C major and C minor.
Source: Data retrieved from the work of Krumhansl and Kessler (1982).
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The Krumhansl–Schmuckler key-finding algorithm was initially used for global key detec-
tion, although there were variations in the ways in which it was used. For example, Krumhansl 
(1990) considered the first four notes of  each of  the 48 preludes of  Bach’s Well-Tempered 
Clavier, while Albrecht and Shanahan (2013) used the first and last eight measures of  each 
piece in their dataset. Most such attempts to predict global key understandably aimed to disre-
gard ambiguous or modulating passages. This made it difficult to identify such passages, which 
are considered “a vital part of  tonal music” (Temperley, 2001, p. 187). Temperley proposed 
dividing an excerpt into segments of  arbitrary length, usually less than a second, whereby each 
segment would be assigned a key based on its local content. Sapp (2005) applied this approach 
to excerpts from classical music by experimenting with a variety of  segment lengths and 
reported the resulting local key outputs. This produced a visualization for each excerpt in the 
form of  a two-dimensional keyscape in which the sizes of  segments increase and the number of  
segments decrease toward the top of  the visualization. Global key is thus indicated at the very 
top of  the keyscape, with lower sections indicating local key content. Although this visualiza-
tion displays an approximate estimate of  modulating passages, it does not indicate definite key 
boundaries. The task of  developing a method for automatic local key detection, via the use of  
explicit segmentation and labeling, remained to be carried out. As can be observed in the work 
of  Sapp (2005), smaller segment sizes produce frequent and unwarranted modulations. 
Anticipating these issues, Temperley (2002) suggested penalties if  the key of  one segment dif-
fered from that of  the previous segment. These ideas triggered further research on detecting 
local key accurately.

One important approach to improving the accuracy of  local key detection builds on the 
probabilistic approach of  Temperley (2000) by representing the problem as a hidden Markov 
model (HMM). HMM states correspond to keys; HMM observations correspond to the distribu-
tions of  pitch classes in each segment of  a piece, and emission probability distributions corre-
spond to the key profiles described above. Transition probabilities from one state to another 
differ across studies. For example, Cho and Bello (2014) employ a uniform probability distribu-
tion except for notably high self-transition probabilities, while López et al. (2019) introduced a 
key distance metric to compute transition probabilities. Here, López et al. separated the 24 keys 
into nine distinct groups, formed based on their Euclidean distance from a reference point on a 
matrix of  neighboring keys. Each group was sequentially further away from the reference 
point, and the distance from one group to another was controlled by a ratio parameter. Once the 
parameters of  an HMM have been defined, Viterbi decoding is used to predict a key label for 
every segment. These labels denote the local key output (Chai & Vercoe, 2005; López et  al., 
2019; Mearns et al., 2011; Schreiber et al., 2020; Weiß et al., 2020).

Another important approach to local key finding involves deep learning techniques 
(Schreiber et al., 2020; Schreiber & Müller, 2019). Weiß et al. (2020) compared approaches to 
local key prediction based on HMMs and neural networks. These approaches were evaluated 
using three different sets of  annotations, each prepared by a different annotator. The objective 
of  using multiple sets of  annotations was to not only reveal variations among annotators but 
also to assess the adaptability of  their models to different annotators’ biases. They concluded 
that their convolutional neural network (CNN) produces results similar to those produced by 
their version of  an HMM, although it appears to be better at mimicking the subjective decisions 
of  specific annotators. Weiß et al. attribute this to the tendency of  neural network models to 
overfit to certain datasets and annotation styles, thus producing inaccurate predictions, while 
occasionally characterizing misclassifications as non-musical, a rarity in HMM systems.

Our technical approach was inspired, in part, by a technique described in the machine-
learning literature and referred to by Rifkin and Lippert (2007) as regularization, whereby the 
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level of  complexity of  the hypothesis influences the quality of  prediction as the result of  overfit-
ting. Supervised machine learning involves labeling a dataset, providing a set of  hypotheses 
that map each row of  data to a label, and determining the hypothesis that has the best predic-
tive accuracy for new data by optimizing its fit to the dataset provided (i.e., the training data). 
The selection of  the hypothesis set is crucial. A smaller hypothesis set consisting of  relatively 
simple models might underfit (i.e., fail to capture) the underlying relationship between the 
hypothesis due to bias error, whereas a larger hypothesis set consisting of  more complex models 
might overfit (i.e., capture noise, or meaningless patterns in) the training data. Regularization 
addresses this issue by adding an adjustable penalty term based on the complexity of  the model 
to the objective function for the best fit, thereby favoring less complex models.

Method

Technical approach and implementation

Our approach to detecting the key of  a segment of  music diverges from conventional sequential 
methods for local key detection such as HMM, which primarily consider the content of  the seg-
ment in the context of  the key that was assigned to the previous segment. By contrast, our 
method takes into consideration the measures that both precede and succeed the segment, 
simultaneously. In this section, we show how this method is implemented in the case of  a single 
musical excerpt in the form of  quantized MIDI data.

1.	 We divide the excerpt into segments according to the tempo and time signature informa-
tion contained in the MIDI data such that every segment consists of  a measure.

2.	 We compute the correlation between each measure and every key.
3.	 We analyze individual measures to produce a comprehensive local key scheme. We 

assign each measure to a key according not only to the content of  the measure itself  but 
also that of  the measures that precede and follow it. Using a novel regularization algo-
rithm, we divide all the measures into a series of  sections, each one in a single key.

We compared our results with those of  an HMM-based approach proposed by López et al. 
(2019). We did not, however, conduct a similar comparison with the results of  deep learning 
methods, which have been reported to achieve similar performance levels, as discussed in the 
Related work section of  this article (Weiß et al., 2020). Rather, we collaborated with two musical 
experts to create ground truth annotations. We describe this in detail in the Dataset and evalua-
tion metrics section as annotations are crucial for assessing the performance of  both methods.

We computed pitch class vectors based on the total duration of  each pitch class. We consid-
ered and discarded other metrics, as described in the Discussion. We adapted the key profiles 
from the work of  Krumhansl and Kessler’s (1982) with slight modifications, especially for non-
diatonic pitch classes, and for the minor mode, natural and raised 7th pitch classes. We modi-
fied the key profiles through the application of  simulated annealing, a well-known probabilistic 
optimization technique (Rutenbar, 1989). The main reason for these adjustments was to 
account for the diversity of  the dataset (see Appendix 1). The implications of  such modifica-
tions, coupled with the nature of  the dataset, are further explained in the Discussion.

We were able to compute the correlation between each measure and every key, not by calcu-
lating Euclidean distance or Pearson correlations, but by matching pitch class vectors with key 
profiles, employing a series of  dot products, to obtain an M N×  structure whereby M represents 
the total number of  measures in the excerpt and N represents the total number of  possible keys, 
12 major and 12 minor.
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Use of regularization to identify subsections

The regularization process begins with individual measures and the values of  their correlations 
with every key. The objective is to group them into a set of  consecutive measures or subsection, 
with a single key assigned to each. Individual measures in a subsection do not need to have a 
perfect correlation with the key assigned to the subsection as a whole. To form these subsec-
tions, we undertake a comprehensive exploration of  all possible combinations of  consecutive 
measures before selecting the most appropriate combinations based on their quality of  fit. This 
exploration involves calculating a cost for each combination. This yields an optimization prob-
lem, whereby we aim to minimize the total cost. Regularization plays a central role in the pro-
cess of  optimization because it enables us to modify the cost function by introducing a penalty 
term to reduce overfitting. In this context, overfitting refers to the possibility of  identifying an 
excessive number of  subsections erroneously implying frequent modulations.

In the remainder of  this section, we use an integer-encoding convention to represent pitch 
classes and keys such that major keys are indexed from 0 to 11, with C major starting at 0, 
while minor keys are indexed from 12 to 23, with C minor starting at 12. Pitch classes are 
indexed from 0 to 11, with C as the starting pitch class.

The components of  our model are as follows:

k = 0 1 2 23, , , ...,  is the key index.

P p p pk = …{ }0 1 11, , ,  is the key profile of  key k.

m M=1 2, ,...,  is the measure index, where M  is the number of  measures in the excerpt.

D d d dm = …{ }0 1 11, , ,  is the pitch class/chroma vector of  measure m.

C m k D Pm k,( ) = *  is the correlation value for measure m and key k .

L m k C m k( , ) ( , )=1−  is the loss function for measure m and key k.

Given an excerpt with M  measures, a potential clustering of  the set of  measures into n sub-

sections can be represented using a set of  indices S s s s sn n{ , ,..., , }= +1 2 1 , where:

s i ni ,1″ ″  corresponds to the first measure of  the i  th subsection.

s Mn+ = +1 1 indicates the end of  the piece for convenience.

Whenever S is updated, it is re-sorted and any duplicates are removed.

To find the key ki for each subsection i, which is the key that yields the maximum correlation 
we use the following equation:

	 k argmin L m ki k

m s

s

i

i

=










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After obtaining ki, we can compute its associated cost pi  as:

	 p L m ki
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s

i

i

i

=
=

−+

∑
1 1

( , ) 	 (2)

With these subsection costs, we calculate the cost for the entire piece using the regularization 
function:
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Here, λ  is a weight applied to the subsection penalty that can be tuned to improve results.
The regularization function serves as the basis for our algorithm, which aims to discover a 

partitioning of  the piece that minimizes R S( ). Evaluating every possible partitioning of  the 
piece into subsections would be computationally prohibitive due to its exponential nature. 
Instead, we employ a top-down greedy algorithm as outlined below:

1. Let S s s M={ } = +1 2 1 1, { , }.

2. For each subsection start index s St ∈ , t S= …1 2, , , :

a. For each pair of  indices si  and sj , s s s st i j t≤ < ≤ +1:

i.	 Insert si and sj into S  to construct S ’.
ii.	 Find the key k for measures between si and sj −1.
iii.	 If  k differs from the key assigned in the previous iteration for measures between si 

and sj, calculate the new cost R S( )’ . Otherwise, continue to the next iteration  
without recalculating R S( )’  (see “-skipped-” rows in illustration below).

3. Select the S ’ that results in the lowest R S( )’  in step 2 as a candidate.

4. �If  R S( )’  is not less than R S( ), a minimum for equation (3) is reached, conclude the process 
with S as the final set of  subsections. Otherwise, replace S  with S ’ and return to step 2.

Figure 2 illustrates the calculation process of  R S( ) for one step for an imaginary 4-measure 
excerpt.

We previously argued that our algorithm is adaptable to audio data, provided that pitch class 
distributions are sufficiently accurate. To demonstrate this claim, we conducted an experiment 
with studio recordings of  two songs from our MIDI dataset: Every Breath You Take (The Police, 
1983) and Take My Breath Away (Berlin, 1986) (see Appendix 1 for the complete list). We 
extracted chroma vectors for each short-time Fourier transform (STFT) frame using the Chroma 
Toolbox for MATLAB (Müller & Ewert, 2011). Then, we manually formed Dm  chroma vectors 
per measure by averaging chroma vectors from those frames that corresponded to specific 
measures. Finally, we proceeded with the remaining computations, following the methodology 
described earlier.

Our algorithm suggested identical and correct assignments for both the MIDI and audio ver-
sions of  Every Breath You Take (The Police, 1983). However, it should be noted that the algo-
rithm interpreted the modulating section as being one measure longer than intended for the 
MIDI version, as indicated in Figure 3. This discrepancy resulted from our imprecision when 
converting temporal MIDI messages to measure onsets/offsets in seconds. This led to a slight 
reduction in accuracy from 100% to 98.9%.

Our algorithm performed with near-perfect accuracy in that it produced results for the audio 
version of  Take My Breath Away (Berlin, 1986) that were almost exactly the same as the annota-
tions, as shown in Figure 4. The only discrepancy between the results of  the algorithm and the 
annotations was related to a single measure, the one in which the modulation first occurs (often 
referred to as the pivot measure), in this case measure 69. The algorithm assigned it to B major, 
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Figure 2.  One-step demonstration of the regularization algorithm.
Note. Intermediary steps shown on the left, loss values per measure and key shown on the right.

Figure 3.  Results of the regularization algorithm applied to Every Breath You Take (The Police, 1983) in 
wave file format.
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Figure 4.  Results of the regularization algorithm applied to Take My Breath Away (Berlin, 1986) in wave 
file format.

which would have made sense if  the measure were considered in isolation. The annotators 
regarded it as the final measure of  a multiple-measure phrase, however, and therefore chose to 
identify it as belonging to the preceding section. The algorithm performed with considerably less 
accuracy (66.9%) when applied to the MIDI version of  the song, incorrectly assigning F# major 
to the second section of  the song. This was because the MIDI version was poorly transcribed 
and included lengthy C# notes.

HMM

To assess the performance of  the regularization algorithm, we implemented one of  the best-
performing approaches to local key detection in the form of  an HMM. We adapted the approach 
proposed by López et  al. (2019), with a ratio parameter of  6, using Temperley’s key profile 
(2007) derived from the analysis of  excerpts selected from Kostka et al.’s textbook (1994) for 
major keys and Sapp’s simple weights (2011) for minor keys. We selected these parameters 
through an optimization process involving all well-known key profiles and a large grid of  values 
for the ratio parameter.

Dataset

We used the Lakh MIDI Dataset (Raffel, 2016) to test our method, limiting our random selec-
tion to 80 pieces in a variety of  genres and levels of  complexity (refer to Appendix 1 for details) 
because of  the time required to annotate each piece by hand. We pre-processed the pieces by 
removing percussion tracks, normalizing the durations of  pitches where necessary (some long 
notes toward the end of  the piece had been overlooked), and eliminating silences at the start of  
each piece.
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Local key detection is inherently challenging and often ambiguous (Weiß et  al., 2020). 
Modulations are often developed gradually over time, making it difficult to pinpoint precise key 
section boundaries. Furthermore, certain keys such as relative, parallel, or fifth-related keys 
are closely related and share a large portion of  their respective diatonic scales. Moreover, the 
relationship between the local content of  a modulating passage and its intended key might be 
vague.

This ambiguity warranted annotations from multiple annotators with musical expertise. 
The first author and two musical experts, each possessing at least five years of  formal musical 
training, labeled each measure independently. They agreed unanimously on 85% of  the anno-
tations (Fleiss’ k =  .8788), and resolved disagreements in 11% of  all cases via a two-to-one 
majority voting, and 4% of  all cases via discussion and eventual consensus. The annotators 
did not consider modal structures and grouped the annotations into major and minor keys 
(see Pitch class vectors in the Discussion).

Evaluation metrics

We used different metrics to evaluate each of  the approaches:

1.	 Perfect match: assignment of  measure to key, scoring 1 for correct and 0 for incorrect;
2.	 Distance-based: assignment of  each measure to key, scoring between 0 (representing 

the ground truth as determined by the annotations) and 1 according to the distance 
between the ground truth and the key assigned by the algorithm or HMM, calculated 
on the basis of  a nested circle of  fifths, adapted from the work of  Bello and Pickens 
(2005);

3.	 MIREX score representing a simplified calculation of  distance between two keys, scor-
ing 1 for correct, 0.5 for incorrect at the distance of  a perfect fifth, 0.3 for incorrect (rela-
tive major or minor), 0.2 for incorrect (parallel major or minor), and 0 for incorrect for 
any other reason.

We scored each measure of  each piece using all three metrics and then calculated the mean of  
the three scores for each measure. Finally, we calculated the mean of  scores across all the pieces 
in the dataset for each of  the three metrics separately.

Results

We applied each of  the metrics to our dataset and report accuracy results for each metric for 
each piece in Appendix 1. These are illustrated in box-and-whisker graphs comparing error 
percentages in Figure 5.

We carried out three independent-samples t-tests to compare the results of  our regulariza-
tion algorithm with those of  the perfect-match, distance-based, and MIREX metric. There was 
a significant difference between our results and those of  the HMM using the MIREX metric 
(t158 = 1.95, p = .026, d = 0.30), such that our results were more accurate (M = 0.899, 
SD = 0.157) than those of  the HMM (M = 0.826, SD = 0.292), but there were no significant dif-
ferences between our results and those of  the HMM according to the perfect-match or distance-
based metrics.
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Discussion

The HMM was 100% accurate for 41 of  the 80 pieces but unlike regularization the HMM pro-
duced a large proportion of  results that were less than 35% accurate. This is because the HMM 
assigns key to measure on the basis only of  the previous measure, and if  the wrong key has 
been assigned to the previous measure, then this will affect the key assigned to the measure in 
question (as shown by the larger interquartile ranges and more extreme scores for the HMM in 
Figure 5). Using the MIREX metric for the HMM, our algorithm performed significantly better 
because it was less likely to incorrectly identify a measure as containing a modulation, 
although it also failed to identify some measures in which there were brief  modulations. When 
our algorithm assigned the wrong key, it was likely to be closer to the ground truth key, typi-
cally at the distance of  a perfect fifth or a relative major or minor, than the wrong key assigned 
by the HMM.

Input media format

The process of  segmenting a MIDI file into measures makes use of  temporal information 
encoded in this format. However, it is important to acknowledge that this temporal information 
can be imprecise and misleading. Measures, and the notes within them, may therefore be iden-
tified inaccurately. They are likely to be identified with greater accuracy if  the researcher 
adheres closely to MIDI specifications.

Figure 5.  Comparison of error percentages for each of the three metrics and the regularization 
algorithm.

Note. x marks the mean, horizontal lines mark the median, boxes represent the 25%–75% percentiles (Q1 and Q3), 
and whiskers represent data points within 1 5 1 3. ( )x Q Q−  from the mean.



12	 Musicae Scientiae 00(0)

In contrast, segmenting an audio excerpt into measures involves extracting temporal infor-
mation from the audio signal. The identification of  segment onsets and offsets can be affected, 
however, by the use of  tempo- and beat-tracking techniques (Ellis & Poliner, 2007; Schreiber & 
Müller, 2019). This can be avoided by segmenting the excerpt into frames of  fixed duration 
instead of  measures, and this method is commonly preferred method in audio-based musical 
content analysis. As described in the Method section, we merged STFT frames into their respec-
tive measures, manually, to create a basis for comparison between the results obtained from 
pieces in MIDI and audio formats. This type of  segmentation is more musical and produces data 
that are more suitable for interpretation, which is crucial for creating a better model of  music 
perception.

Pitch class vectors

We considered three ways of  formulating initial pitch class vectors: counting the occurrences 
of  pitch classes, computing their total duration, and taking the flat-input/weighted-key 
approach (Temperley, 2001). Computing total duration yielded the most accurate results for 
our dataset. Nevertheless, alternative formulations combining other methods such as velocity 
or octave range are possible, as discussed by Chew (2002). How pitch class vectors are formu-
lated can affect results, however. For example, counting the occurrences of  pitch classes in 
Godzilla (Blue Öyster Cult, 1977) produced a perfect-match accuracy score of  0%. The flat-
input/weighted key approach for the same piece produced a score of  15.5% and total duration 
a score of  87.5%. This should be considered in future research.

Parameter tuning

The scalar λ is directly and proportionally linked to the subsection penalty. Therefore, lower λ 
values encourage and higher λ values discourage the formation of  subsections. A constant λ 
implies that the algorithm cannot perform equally well on pieces with varying levels of  com-
plexity in terms of  modulations. We hypothesize that a system that can adapt to different com-
plexity levels by tuning λ based on factors that are considered to be influential should allow for 
further improvements. In our testing, we identified genre as the most influential factor for mod-
ulations, but a thorough analysis could reveal further alternatives. Machine learning methods 
should be especially valuable for discovering such features.

Modality and key profiles

Our dataset contains pieces from a variety of  genres, including pop and rock. We concede that 
modal harmonic structures, often present within these genres (Moore, 1992, 1995), are not 
strictly compatible with Krumhansl and Kessler’s key profiles, which are originally derived from 
common-practice period music. Thus, accuracy for pieces that exhibit modality may benefit 
from the crafting of  key profiles tailored for modal structures, irrespective of  the algorithm. 
However, we do not believe that such a modification alone would improve the overall perfor-
mance of  our algorithm for the dataset, given its substantial content of  music from the com-
mon-practice period. Finally, the computation of  pitch class vectors in modal pieces was beyond 
the scope of  the research reported in this article. We therefore opted to group minor and major 
modes separately to illustrate the operation of  the regularization algorithm and left modal key 
analysis and key-profile tuning for a future investigation.
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Conclusions and future work

In this article, we introduced a novel regularization algorithm for local key detection and com-
pared it to an HMM adapted from the work of  López et al. (2019). Our regularization algorithm 
yielded a statistically significant increase in overall predictive accuracy. Given the diversity of  
our dataset, the results suggest that achieving universal adaptability for a local key detection 
algorithm may be unfeasible. Instead, it might be more practical to create datasets tailored to 
specific characteristics such as genre, allowing for the calibration of  any parameter based on 
accuracy results obtained from each dataset. In future, we plan to explore the avenues for opti-
mizing the use of  the algorithm discussed above by revising the dataset in such a way that it 
consists of  pieces in a narrower range of  genres.
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Figure 6.  List of individual results, comparison with HMM (pieces 1–27).
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Figure 7.  List of individual results, comparison with HMM (pieces 28–54).



Gedizlioğlu and Erol	 17

Figure 8.  List of individual results, comparison with HMM (pieces 55–80).


