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Abstract
Acute lymphoblastic leukemia (ALL) is a hematological malignancy characterized by aberrant proliferation and accumu-
lation	of	 lymphoid	precursor	 cells	within	 the	bone	marrow.	The	 tyrosine	kinase	 inhibitor	 (TKI),	 imatinib	mesylate,	 has	
played	a	 significant	 role	 in	 the	 treatment	of	Philadelphia	chromosome-positive	ALL	 (Ph	+ ALL). However, the achieve-
ment	of	durable	and	sustained	therapeutic	success	remains	a	challenge	due	to	the	development	of	TKI	resistance	during	
the clinical course.

The	primary	objective	of	this	investigation	is	to	propose	a	novel	and	efficacious	treatment	approach	through	drug	repo-
sitioning, targeting ALL and its Ph +	subtype	by	 identifying	and	addressing	differentially	expressed	genes	 (DEGs).	This	
study involves a comprehensive analysis of transcriptome datasets pertaining to ALL and Ph + ALL in order to identify 
DEGs	associated	with	the	progression	of	these	diseases	to	identify	possible	repurposable	drugs	that	target	identified	hub	
proteins.

The outcomes of this research have unveiled 698 disease-related DEGs for ALL and 100 for Ph + ALL. Furthermore, 
a	subset	of	drugs,	specifically	glipizide	for	Ph	+	ALL,	and	maytansine	and	isoprenaline	for	ALL,	have	been	identified	as	
potential	 candidates	 for	 therapeutic	 intervention.	Subsequently,	 cytotoxicity	 assessments	were	 performed	 to	 confirm	 the	
in	vitro	cytotoxic	effects	of	these	selected	drugs	on	both	ALL	and	Ph	+ ALL cell lines.

In	conclusion,	this	study	offers	a	promising	avenue	for	the	management	of	ALL	and	Ph	+ ALL through drug repurposed 
drugs. Further investigations are necessary to elucidate the mechanisms underlying cell death, and clinical trials are recom-
mended to validate the promising results obtained through drug repositioning strategies.
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Ph + ALL  philadelphia chromosome-positive ALL
PPI  protein-protein interaction
RMA  Robust Multiarray Average
TF  transcription factor
TKI	 	tyrosine	kinase	inhibitor

Introduction

Acute lymphoblastic leukemia (ALL) is a type of malignant 
hematological cancer characterized by abnormal prolifera-
tion and accumulation of lymphoid precursor cells in the 
bone	marrow.	Although	four-fifths	of	ALL	cases	are	seen	in	
children, it is known that it is also seen in adult cases and 
has a more aggressive course. The incidence of ALL follows 
a	dual	distribution	pattern:	the	first	peak	occurs	in	childhood	
and the second peak occurs in adults over 50 years of age 
[1, 2] [1, 3, 4].

ALL is mainly divided into precursor B-cell ALL and 
precursor T-cell ALL according to antigen receptor rear-
rangements [5].	 B-ALL	 accounts	 for	 approximately	 85%	
of	cases,	while	T-ALL	accounts	for	the	remaining	15%	[6]. 
It	 is	known	 that	many	different	genetic	 and	chromosomal	
changes play a role in the development of ALL which also 
contribute to the heterogeneous character of the disease [4, 
7]. Chromosomal translocations, which are characteristic 
features of ALL, can be listed as t(12;21) [ETV6-RUNX1], 
t(1;19) [TCF3-PBX1], t(9;22) [BCR-ABL1] and MLL rear-
rangement [8]. The most common of these abnormalities is 
the formation of the Philadelphia (Ph) chromosome, which 
occurs as a result of reciprocal translocation. The ABL1 
oncogene located on chromosome 9 and the BCR gene 
located on chromosome 22 come together to form the BCR/
ABL fusion transcript and the BCR/ABL	protein	that	exhib-
its continuous tyrosine kinase activity. BCR/ABL activates 
mechanisms such as proliferation, growth, metastasis and 
invasion	 in	 the	 cell	 through	 different	 intracellular	 signal-
ing pathways [9, 10]. BCR/ABL, by its constitutive kinase 
activity,	 can	 also	 activate	 the	 proteins	 in	 many	 different	
sub-signaling pathways. The pathways that are clinically 
significant	and	have	been	detailed	in	many	different	studies	
are	mainly	listed	as	RAS/RAF/MEK/ERK,	PI3K/AKT	and	
STAT pathways. Activation of these pathways shows many 
different	cellular	effects	(the	formation	of	reactive	oxygen	
species, loss of control of the cell cycle, weakening of DNA 
repair mechanisms, inhibition of apoptosis and autophagy 
pathways, etc.) and causes the development of leuke-
mias [10–14]. ALLs in this subtype are called Ph + ALL. 
Although the Ph-chromosome is the most common chro-
mosomal abnormality in ALL, it makes the disease more 
aggressive compared to Ph-negative cases and is considered 
a high-risk factor in the clinic. Although the incidence of 

Ph + ALL increases with age, almost half of the cases are 
seen	in	patients	over	fifty	years	of	age	[15].

Looking at the treatment of Ph + ALL; it has been seen 
that	the	standard	chemotherapy	regimen	alone	is	not	effec-
tive. Understanding the role of Ph + ALL pathophysiology 
and BCR/ABL oncoprotein in leukemogenesis led to the dis-
covery	of	the	drug	imatinib	mesylate,	a	first-generation	tyro-
sine	kinase	inhibitor	(TKI).	Imatinib	functions	by	binding	to	
the adenosine triphosphate (ATP) binding site of BCR/ABL 
oncoprotein, thereby inhibiting its activity. This inhibition 
extends	to	sub-signaling	pathways	involved	in	proliferation,	
division and growth mechanisms [16–18].

Although the use of imatinib in the treatment of Ph + ALL 
is a breakthrough in the treatment of patients, combining it 
with	different	 drugs	has	demonstrated	more	 effective	out-
comes. The clinical outcome has led to the development of 
second-generation (nilotinib and dasatinib) and third-gener-
ation	(ponatinib)	TKIs	[19–21]. However, the emergence of 
secondary mutations in BCR/ABL	 leads	 to	TKI	resistance,	
particularly to imatinib [22].	In	summary,	TKIs	have	signifi-
cantly contributed to Ph + ALL treatment, however achiev-
ing long-term and permanent success remains challenging 
due	to	TKI	resistance	in	the	clinical	course.	Hence,	alterna-
tive approaches are essential to achieve long-term and per-
sistence success in ALL treatment.

Developing and launching a new drug in cancer treat-
ments requires high costs and time. The risk, cost and time 
savings provided by drug repositioning bring a new perspec-
tive to cancer treatments. Drug repositioning (a.k.a. drug 
repurposing,	 reprofiling)	 is	 the	 use	 of	 approved	 or	 inves-
tigational drugs for diseases outside their medical scope. 
The critical steps in the drug repositioning process are: (a) 
identification	of	candidate	molecules	for	use	in	the	targeted	
disease,	 (b)	 testing	 effectiveness	of	 the	drug	with	 in	vitro	
applications and, (c) starting phase 2 clinical trials for the 
medical indication in which the drug is newly positioned.

Although there are many drug repositioning studies for 
cancer in the literature, drug repositioning studies for leuke-
mia continue to be added only in recent years. Rapamycin 
and valporate were the two previously approved drugs for 
kidney transplant rejection and epilepsy respectively; had 
been approved later for chronic myeloid leukemia (CML) 
and acute myeloid leukemia (AML) patients for their poten-
tial	effect	on	vital	signaling	pathways	in	leukemia	progres-
sion [23–30]. Perez et al. mentioned that the cyclic AMP 
(cAMP)	 pathway	may	 be	 a	 significant	 target	 for	 hemato-
logical	cancers	and	the	importance	of	examining	drugs	tar-
geting this pathway with a repositioning approach for the 
treatment of AML and ALL. Still, this suggestion has not 
been supported by further studies [31]. Mezzatesta et al. 
screened repositionable drugs that can be used in the treat-
ment	of	ALL	and	showed	the	effectiveness	of	anthelmintic	
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drugs on primary ALL cells. In this study, anthelmintic 
drugs showed anti-proliferative activity even in refractory 
ALL cells and it was revealed that these drugs were reposi-
tionable [32]. Another anthelmintic drug, mebendazole, has 
been repurposed for use in T-ALL cells and mouse models. 
As a result, it has been shown that it suppresses cell prolif-
eration through Notch1 and Hes1 inhibition [33]. In another 
drug repositioning study conducted on T-ALL, mouse and 
human gene signatures were compared with the healthy 
T-cell	 profiles.	Genes	with	 altered	 expression	 levels	were	
detected in both groups. As a result of various bioinformatic 
analyses, three FDA-approved drugs were selected and it 
was determined that all these drugs triggered apoptosis in 
T-ALL cells [34].

In addition, the activation of alternative signal pathways 
as the imatinib resistance mechanism in Ph + ALL is men-
tioned in the literature. In a study, it was shown that signal-
ing of the RAS/MAPK pathway, independent of BCR/ABL, 
triggered imatinib resistance in Ph + ALLs through EphB4 
activation, and targeting EphB4 also broke imatinib resis-
tance [35]. In another study, it was shown that the activation 
of the PI3K pathway, independent of BCR/ABL, caused ima-
tinib resistance in a group of resistant Ph + cells, including 
Ph + ALL cells, and targeting PI3K	was	effective	in	break-
ing imatinib resistance [36]. These studies show how tar-
geting imatinib resistance in Ph + ALLs through alternative 
pathways is a promising approach. In particular, the study 
of Quentmeler et al. has clearly shown that targeting alter-
native pathways that have been determined to be involved 
in resistance, such as PI3K, is a correct approach to target 
BCR/ABL independent imatinib resistance [36].

In this study, our primary objective was to propose a novel 
and	effective	treatment	approach	with	a	drug	repositioning	
strategy for addressing ALL and Ph + ALL. These subtypes 
of leukemia have notably low long-term survival rates and 
no	new	treatment	approaches	other	than	existing	treatments	

have been recommended in recent years. Thus, we antici-
pate	a	reduction	in	technical	costs,	toxic	side	effects	and	the	
time needed to transition to the clinical phase. In addition, 
this	study	represents	the	first	application	in	the	literature	of	
drug repositioning for Ph + ALL, a particularly more chal-
lenging subtype of ALL.

Methods

Gene expression data collection

mRNA	 gene	 expression	 datasets	 for	 ALL	 and	 Ph	+ ALL 
were	 obtained	 from	 Gene	 Expression	 Omnibus	 (GEO)	
[37]. The keywords “ALL”, “acute lymphocytic leukemia”, 
“Ph + ALL”, “Philadelphia-positive acute lymphoblastic 
leukemia”,	 “pediatric”,	 “expression	 profiling	 by	 array”,	
and	 “expression	 profiling	 by	 high	 throughput	 sequenc-
ing” were used and datasets with more than one hundred 
samples	 were	 favored	 for	 ALL.	 Six	 datasets	 including	
GSE635, GSE12995, GSE26281, GSE28497, GSE47051, 
and GSE79533 for ALL, and three datasets including 
GSE12995, GSE26281, and GSE79533 for Ph + ALL were 
selected	 for	 differentially	 expressed	 gene	 (DEG)	 analy-
sis. Since control samples were absent in four datasets for 
ALL and two datasets for Ph + ALL, control samples of the 
GSE101454 and GSE28497 datasets were selected consid-
ering	 their	 experimental	 platform.	 Details	 of	 the	 selected	
GEO datasets are listed in Table 1.

Differentially expressed genes at the mRNA level

Each dataset of ALL and Ph + ALL was analyzed indepen-
dently	 to	 identify	 differentially	 expressed	 genes	 (DEGs)	
based	on	the	principle	of	comparing	gene	expression	levels	
of disease and healthy samples. Datasets without a control 
group GSE47051 were analyzed with control samples of the 
GSE101454, while GSE12995, GSE635, and GSE26281 
datasets were analyzed with control samples of the 
GSE28497. Raw data were normalized using Robust Mul-
tiarray Average (RMA) [44]	and	gene	expressions	were	sta-
tistically compared with Linear Models for Microarray Data 
(LIMMA) [45] method under the R/Bioconductor platform 
(version	Rx64	4.2.1)	[46] for DEG analysis. Correction of 
p-values applied in multiple hypothesis tests was performed 
using the False Discovery Rate (FDR) method. Statistical 
significance	 was	 determined	 in	 two	 dimensions	 by	 using	
the thresholds of adjusted p-value < 0.05 and 1-fold change 
(FC). The direction of the DEGs was determined as up-reg-
ulated if FC > 1 or down-regulated if FC < 1. Gene nomen-
clature	(Affy	ID	and	gene	symbol)	was	organized	using	the	
bioDBnet platform [47]. Since there are multiple datasets 

Table 1 The table of the GEO datasets used in the scope of the study. 
ALL, Acute Lymphocytic Leukemia; Ph + ALL, Philadelphia-Positive 
Acute Lymphoblastic Leukemia
Disease Accession 

No
Platform Sample Size Pubmed ID

Dis-
ease 
(n)

Con-
trol 
(n)

ALL GSE635 GPL96 173 - 15,295,046 [38]
ALL GSE12995 GPL96 155 - 19,129,520 [8]
ALL GSE26281 GPL96 136 - 23,921,123 [39]
ALL GSE28497 GPL96 284 4 21,487,112 [40]
ALL GSE47051 GPL570 108 - 24,063,430 [41]
ALL GSE79533 GPL570 209 3 27,634,205 [42]
ALL GSE101454 GPL570 - 6 [43]
Ph + ALL GSE12995 GPL96 20 - 19,129,520 [8]
Ph + ALL GSE26281 GPL96 18 - 23,921,123 [39]
Ph + ALL GSE79533 GPL570 17 3 27,634,205 [42]
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targets.	It	encompasses	an	extensive	compendium	of	50.304	
documented drug-gene interactions and repurposed drug-
disease relevance is statistically estimated based on hyper-
geometric p-values. We evaluated ALL and Ph + ALL hub 
proteins	 as	 input	 for	 genexpharma	 query,	 separately.	 The	
threshold was hypergeometric p-value < 0.05. Further, all 
drug candidates manually searched for non-chemotherapeu-
tic nature, and their novelty in the treatment of ALL and 
Ph + ALL.

This integrated methodology augments the precision 
and depth of drug repositioning endeavors, thereby enhanc-
ing the potential for the discovery of novel therapeutic 
interventions.

Cell culture

SUP-B15 (human Ph + B lymphoblast cell line) and Jurkat 
(human T lymphocyte cell line) cell lines were purchased 
from ATCC. SUP-B15 cells were cultured in RPMI 1640 
(Gibco)	 supplemented	 with	 20%	 heat-inactivated	 fetal	
bovine	serum	(FBS,	Gibco)	and	1%	penicillin/streptomycin	
(Capricorn	Scientific)	in	5%	CO2	at	37	°C.	Jurkat	cells	have	
the	same	culture	condition	as	SUP-B15	except	for	10%	FBS	
supplementation [60].

Cell toxicity assays

Thiazolyl blue tetrazolium bromide (MTT) assay was 
employed	 to	 assess	 the	 cytotoxic	 effects	 of	 determined	
drugs on both ALL and Ph +	ALL	cells	whose	effectiveness	
has been demonstrated by bioinformatic analyses. SUP-B15 
cells were cultivated in 96 well plates at a concentration 
of 10,000 cells/well with the administration of Glipizide 
(0–80 µM). Furthermore, Jurkat cells were cultured in 96 
well plates at the same density as SUP-B15 with the treat-
ment of Maytansine (0-2nM) and Isoprenaline (0–50 µM) 
consecutively. Afterwards, SUP-B15 and Jurkat cells were 
incubated	at	37	°C	for	72	and	48	h	separately.	Thereupon	
the incubations, MTT was added to each well, and plates 
were incubated for 4 h. Following that, DMSO was applied 
to each well, and absorbance measurements at 570 nm were 
recorded using a microplate reader [61].

Results

Determination of DEGs by combining datasets

In	the	analysis	of	gene	expression,	the	LIMMA	R	package	
was	 employed	 to	 identify	Differentially	 Expressed	Genes	
(DEGs)	 in	 six	 datasets	 related	 to	 Acute	 Lymphoblastic	
Leukemia (ALL) and three datasets related to Philadelphia 

analyzed for ALL and Ph + ALL, the mean fold changes of 
DEGs were statistically calculated using the R/RobustRank-
Aggreg package [48] with an adjusted p-value < 0.05 crite-
ria corrected by the FDR method.

Protein-protein interaction networks

The BioGRID database (v.3.5.184) [49] containing 44,219 
protein-protein	 interactions	 (PPIs)	among	14,373	different	
proteins was used to identify physical protein-protein inter-
actions associated with ALL and Ph + ALL DEGs. Visual-
ization of PPI networks and calculation of both local and 
global topological features (degree and betweenness) were 
applied in Cytoscape software 3.10.0 [50] and CytoHubba 
plug-in [51].	A	dual	metric	approach	was	applied	to	define	
hub proteins similar to our previous studies [52].

Reporter molecules associated with DEGs

Reporter regulatory biomolecules associated with ALL and 
Ph + ALL DEGs were proposed by using the reporter fea-
tures algorithm [53] adapted in MATLAB 2010. The p-val-
ues of the reporter molecules were corrected by the FDR 
method and the p-value threshold was considered < 0.05 
[54] [55].

Gene set enrichment analyses

Gene set enrichment analyses (GSEA) were performed to 
elucidate the functionality of DEGs. The biological pro-
cesses, molecular pathways, intracellular localizations, and 
DEG-associated diseases were determined by the Metascape 
(metascape.org) bioinformatics tool [56]. In the GSEA anal-
yses, the p-value threshold less than 0.01 was accepted as 
statistically	significant.

Identification of the candidate drugs by drug 
repositioning

The L1000CDS2 [57] comprises a repository of 30,000 
drug	 expression	 profiles	 derived	 from	 data	 sourced	 from	
the Library of Integrated Network-based Cellular Signa-
tures (LINCS)-L1000 dataset [58]. The primary objective 
of	L1000CDS2	is	to	facilitate	the	identification	of	potential	
drug candidates for repositioning by leveraging the analysis 
of up-regulated and down-regulated DEGs within the con-
text	of	a	specific	disease.	The	top	50	drugs	ranking	by	over-
lap score are collected as repurposed drug candidates.

In addition to drug repositioning based on the modulat-
ing	gene	expression	patterns	by	targeting	disease-associated	
DEGs, we incorporated a network-centric approach called 
genexpharma	 [59] tool and utilized hub proteins as drug 
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Additionally,	 22	 of	 the	 hub	 proteins	 identified	 in	ALL	
and	21	of	those	identified	in	Ph	+ ALL were also found to be 
DEGs. To provide a visual representation of the interactions 
among these hub proteins, we generated a network visual-
ization using Cytoscape, as illustrated in Fig. 2.

Identification of reporter molecules Associated with 
DEGs as molecular biomarkers

Result of the reporter molecules analysis, 14 transcription 
factors (TFs), 147 miRNAs and 74 receptor molecules 
were	 identified	 as	 associated	with	ALL	DEGs.	These	 sta-
tistically	significant	molecules	interact	with	ALL	hub	pro-
teins 96, 213 and 139 times, respectively. The interaction 
network established by ARRB2, BIRC2, BRCA1, CDC20, 
CHD3, CHD4, EGFR, ERG, ITCH, JUN, LYN, MYC, 
PLK1,	RAD51,	SKP1,	SOCS2	 and	UBE3A	hub	proteins,	
which interact with all reporter molecules, was visualized 
via Cytoscape and presented in Fig. 3A. On the other hand, 
21 TFs, 204 miRNAs and 69 receptor molecules were found 
associated with Ph + ALL DEGs. There are 95, 317 and 101 
interactions between these molecules and Ph + ALL hub 
proteins,	respectively.	The	interaction	network	of	AURKB,	
BCL2, CCND2, CD44, FYN, GRB10, IRF4, MYC, SOCS2, 
TRA2B and TRAF6 hub proteins, which interact with all 
reporter molecules, is depicted in Fig. 3B.

Gene set enrichment analyses

According to comparative gene set enrichment analysis, 
cytokine signaling in immune system and VEGFA VEGFR2 
signaling pathways were found to be common in both dis-
eases among the 20 important pathways associated with 
DEGs (Fig. 4A-B). Apart from these, cell cycle, chromatin 
remodeling, negative regulation of intracellular signal trans-
duction and cellular response to cytokine stimulus were 
among	the	significant	pathways	seen	in	ALL.	Hemostasis,	
leukocyte migration, response to inorganic substance and 
regulation of developmental growth were also prominent 
pathways in Ph + ALL.

On the other hand, Fig. 4C-D show 20 pathways in which 
ALL and Ph + ALL hub genes play a major role. Again, 
hub proteins appear to play a common role in the VEGFA 
VEGFR2 signaling pathway.

Evaluation of the potential drugs via drug 
repositioning

In our research, we pursued drug repositioning strategies for 
ALL and its Ph + subtype through two distinct approaches: 
targeting DEGs as potential drug targets capable of reversing 

chromosome-positive ALL (Ph +	ALL).	 The	 figures	 pre-
sented as Fig. 1A and B illustrate the count of DEGs, up-
regulated DEGs, and down-regulated DEGs for both of 
these diseases.

To enhance the statistical robustness of the DEGs, we 
utilized R/RobustRankAggreg, a statistical approach that 
combines data from multiple datasets. This method assigns 
a ranking to each gene in each dataset and computes the 
mean	FC	with	a	significance	threshold	of	adjp-value	< 0.05.

The outcomes of this analysis revealed a total of 698 
DEGs in ALL, with 218 genes being up-regulated and 480 
genes being down-regulated. For Ph + ALL, there were 100 
DEGs, consisting of 67 up-regulated and 33 down-regulated 
genes. The top 20 up-regulated and down-regulated DEGs, 
based on their FC, are depicted in Fig. 1C and D.

Notably, the analysis highlights the presence of AIF1, 
ETS2, HBG1, LCP2, NKG7, SELL and TSC22D1 as up-
regulated and CD79B, IGHM, LYN and NCF1 as down-
regulated DEGs in the top 20 DEGs for ALL, while these 
genes	 do	 not	 exhibit	 differential	 expression	 in	 Ph	+ ALL. 
Conversely, BAALC, CD34, CTGF, CYTL1, IQCJ-SCHIP1, 
ITGA6, MRC1, MYO5C, NT5E, SEMA6A, SPATS2L and 
TSPAN7	are	identified	as	an	up-regulated	DEG	in	Ph	+ ALL 
but	does	not	show	significant	differential	expression	in	ALL.

Reconstruction of the PPI networks and detection of 
hub proteins

In	the	context	of	our	investigation,	a	total	of	6747	Protein-
Protein Interactions (PPIs) involving protein-coding DEGs 
were	 identified	 in	 cases	 of	 ALL,	 while	 944	 PPIs	 were	
discerned in Ph + ALL. Subsequently, we performed an 
analysis of the top 20 proteins based on both degree and 
betweenness centrality using the CytoHubba package for 
both disease categories. Notably, an overlap was observed 
wherein 15 proteins were found to be common to both ALL 
and 14 proteins were shared in the case of Ph + ALL, as 
determined by both degree and betweenness centrality mea-
surements.	The	set	union	of	proteins	identified	as	top-degree	
and top-betweenness was designated as the hub proteins for 
each respective condition.

Consequently, in ALL, 25 hub proteins were ascertained, 
encompassing ARRB2, BIRC2, BRCA1, CDC20, CHD3, 
CHD4, EGFR, ERG, HIST1H4A, HSPA4, HSPA5, HSPB1, 
ITCH,	 JUN,	 LYN,	 MYC,	 PLK1,	 PPP1CA,	 RAD51,	
RPL37A,	 SKP1,	 SOCS2,	 TP53,	 UBE3A	 and	 YWHAE.	
In the case of Ph +	ALL,	 26	hub	proteins	were	 identified,	
including	 AURKB,	 BCL2,	 CCND2,	 CD44,	 CDC25B,	
EFTUD2,	ERG,	FHL1,	FYN,	GRB10,	HCK,	HIST1H4A,	
HSP90AA1, HSPB1, IRF4, JUNB, MYC, RGS2, SOCS2, 
TIMM13, TRA2B, TRAF3IP2, TRAF6, TUBB6, VDR and 
ZMYND11 (Table S1 and S2).
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Fig. 1 Number of DEGs in the result of DEG analysis of each data-
set (A) in ALL and (B) in Ph + ALL. Red and dark blue bars indicate 
the number of up-regulated and down-regulated DEGs, respectively. 
Representation of R/RobustRankAggreg analysis results with heatmap 
diagram of the top 20 up-regulated and down-regulated DEGs (C) in 

ALL and (D) in Ph + ALL. Column names indicate dataset names, 
while row names indicate gene names. The log2 FC of the gene in each 
dataset	 is	 seen	 in	 the	 boxes.	 DEG,	Differentially	 Expressed	Genes;	
ALL, Acute Lymphocytic Leukemia; Ph + ALL, Philadelphia-Positive 
Acute Lymphoblastic Leukemia
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Fig. 3	 The	 interaction	 network	 of	 hub	 proteins	 with	 significantly	
important reporter molecules (A) in ALL and (B) in Ph + ALL. The 
yellow circles represent common hub proteins associated with three 
different	 reporter	 molecules.	 Red	 diamonds	 represent	 transcription	

factors,	 lilac	 quadrilaterals	 represent	 miRNAs	 and	 green	 hexagons	
represent receptors. ALL, Acute Lymphocytic Leukemia; Ph + ALL, 
Philadelphia-Positive Acute Lymphoblastic Leukemia

 

Fig. 2 A) The interaction network of hub proteins 
represented by thegreen octagons with other 
proteins in ALL. B) The interaction network of 
hub proteins represented by theblue octagons 
with other proteins in Ph + ALL. C) Bar plot 
representation of log2 FC values of DEGs that 
appear as hub proteins in ALL. D) Bar plot 
representation of log2 FC values of DEGs that 
appear as hub proteins in Ph + ALL. ALL, Acute 
Lymphocytic Leukemia; Ph + ALL, Philadelphia-
Positive Acute Lymphoblastic Leukemia; DEG, 
Differentially	Expressed	Genes
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Fig. 4 The top 20 biological pathways 
according to -log10 p-value associ-
ated with DEGs (A) in ALL and (B) 
in Ph + ALL as a result of over-rep-
resentation analysis. The size of the 
bubbles represents the p-value, while 
the color scale represents the number 
of genes involved in the pathways. 
Heatmap representation of the top 20 
pathways in which hub proteins play a 
major role in the development of (C) 
ALL and (D) Ph + ALL. ALL, Acute 
Lymphocytic Leukemia; Ph + ALL, 
Philadelphia-Positive Acute Lympho-
blastic Leukemia
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Assessment of cytotoxic effects of the determined 
drugs

Following comprehensive bioinformatic analyses and data 
interpretations, three drugs were chosen for subsequent in 
vitro	 investigations.	 Specifically,	 Glipizide	 were	 selected	
for Ph + ALL, represented by the SUPB15 cell line, while 
Maytansine and Isoprenaline were chosen for ALL, using 
the	Jurkat	cell	line	as	the	experimental	model.	To	assess	the	
cytotoxic	effects	of	selected	drugs	on	SUPB15	and	Jurkat	
cells MTT assay was utilized. Regarding that, alterations 
in cell viability induced by three drugs were determined 
(Fig. 5).	Based	on	the	findings	from	conducted	MTT	assays,	
we	 determined	 that	 Glipizide	 have	 cytotoxic	 effects	 on	
SUP-B15 cell line, and also Maytansine and Isoprenaline 
showed	 similar	 effects	 on	 Jurkat	 cells.	 According	 to	 the	
aforementioned	assay	results,	half-maximal	inhibitory	con-
centrations (IC50) were established. With reference to that, 
we	examined	IC50	values	for	Glipizide	on	SUP-B15	cells	
were 70.42 µM. Likewise, Maytansine and Isoprenaline on 
Jurkat cells were 439 pM and 13.33 µM. This can be inter-
preted as Jurkat cells being further sensitive to Maytansine 
compared	 to	 Isoprenaline.	 Hence,	 these	 findings	 suggest	
that Glipizide compromised the viability of Ph + ALL cells. 
Moreover, Maytansin and Isoprenaline induced cell death in 
the ALL cancer population.

Discussion

This research performs a comprehensive comparative eval-
uation of acute lymphoblastic leukaemia (ALL) and Phila-
delphia chromosome-positive ALL (Ph +	ALL)	at	different	
molecular levels, including transcriptomics, proteomics 
and metabolomics. Despite the considerable heterogeneity 
observed in ALL, its aetiology is associated with a variety 
of	different	genetic	abnormalities	[67]. The most common 

gene	expression	patterns	and	targeting	hub	proteins	as	alter-
native drug targets.

Regarding DEGs, we harnessed the power of L1000CDS2, 
a drug repositioning tool, to identify 38 unique drugs for 
regulating the up-regulated and down-regulated DEGs in 
ALL and 39 unique drugs for Ph + ALL. Remarkably, we 
uncovered a subset of 7 drugs that were common to both 
diseases,	 namely	 BRD-K68548958,	 BRD-K80348542,	
BRD-U86922168, emetine, piplartine, V4877 (verrucarin 
a) and withaferin-a.

An intriguing observation was made when scrutinizing 
these	 drugs:	 dasatinib	 and	 dexamethasone,	 prominently	
employed in the primary treatment of Ph + ALL [62, 63], 
and parthenolide, a natural compound derived from Tanace-
tum parthenium, renowned for its ability to induce apoptosis 
in primary human leukemia stem cells [64], were among the 
identified	 candidates	 for	 Ph	+ ALL. Homoharringtonine, a 
plant alkaloid, is an approved drug for the treatment of CML 
and has been proven to reduce the viability of ALL cell lines 
when used as a combination therapy [65] [66] also featured 
in	 our	 findings.	This	 convergence	with	 clinically	 relevant	
drugs	underscores	the	fidelity	of	the	gene	sets	employed	in	
our	study	in	faithfully	reflecting	the	underlying	pathology.

Turning	 to	 the	hub	proteins,	we	 identified	15	out	of	25	
hub proteins for ALL, forming a network with 259 interac-
tions involving 186 drugs. For Ph + ALL, 14 out of 26 hub 
proteins were recognized, constituting a network with 148 
interactions that encompassed 132 drugs. Remarkably, in 
analyzing the drugs shared between both diseases, we iden-
tified	65	compounds,	including	but	not	limited	to	dasatinib,	
fluorouracil,	docetaxel,	oxaliplatin,	sirolimus	and	paclitaxel,	
the majority of which belong to the category of antineoplas-
tic agents.

Fig. 5 Determination of viability in SUP-B15 and Jurkat cells via MTT 
assays. (A)	Effect	of	increasing	doses	of	Glipizide	on	SUP-B15	viabil-
ity. (B) Impact of escalated doses of Maytansine on Jurkat viability. 

(C) Impact of escalated doses of Isoprenaline on Jurkat viability. All 
experiments	were	performed	in	triplicate	and	error	bars	represent	stan-
dard deviation (± SD)
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Let-7 family members, which function as tumor suppressors 
in	 different	 cancers	 [71] are among the pioneer miRNAs 
that we associate with ALL diseases. Analyzing the path-
ways in which genes that cause the development of diseases 
play a role helps to elucidate the molecular mechanism of 
diseases.	When	looking	at	the	statistically	significant	path-
ways in ALL, these pathways appear to be cell cycle-related 
pathwaysand signaling pathways that include signaling by 
Rho GTPases, Miro GTPases and RHOBTB3 and B cell 
receptor signaling pathway. Negative regulation and cellu-
lar response pathways also play a role in the development 
of Ph + ALL. Moreover, hub proteins of ALL were mainly 
involved in signaling by NOTCH, signaling by NOTCH1 
and TNF alpha signaling pathway which are pathways 
that cause ALL cells to survive and grow by escaping the 
immune system [72, 73]. According to hub proteins of 
Ph + ALL, the mainly enriched pathways were also IL-17 
signaling	pathway	and	JAK-STAT	signaling	pathway	which	
contribute to development of Ph +	subtype	 and	 affect	 the	
prognosis negatively [74, 75].

The	 L1000CDS2	 and	 genexpharma	 tools	 were	 used	
to identify potential drugs for the treatment of ALL and 
Ph +	ALL.	When	examining	the	drugs	identified	as	a	result	
of the two analyses, 38 and 186 drugs for ALL, 39 and 132 
drugs for Ph + ALL were recommended by L1000CDS2 
and	 genexpharma,	 respectively.	As	 a	 result	 of	 the	 analy-
sis, the original indications for testing drugs in vitro were 
analysed. The information on whether these drugs are used 
for hematologic cancers or other diseases was considered. 
It was found that drugs used for solid tumors, hematologic 
cancers, neurodegenerative and psychiatric diseases come 
to	the	fore.	Drugs	such	as	methotrexate,	an	anti-metabolite	
that inhibits cell proliferation, asparaginase produced from 
E. coli and mercaptopurine, an anti-leukaemic agent, appear 
to be among the standard therapies for ALL [76–78]. Dasat-
inib is an agent approved for single use in the treatment of 
Ph + ALL and CML patients who are resistant or intolerant 
to imatinib [79, 80].

In addition, busulfan, bosutinib, nilotinib and imatinib 
are primary drugs used in many leukemia treatments [81]. 
These	findings	prove	our	study	on	prognostic	markers	that	
we associate with diseases. It has been seen that some of 
the drugs are currently used cancer drugs (such as bevaci-
zumab,	 capecitabine,	 fluorouracil,	 pertuzumab,	 sunitinib,	
trastuzumab), some of them are unapproved drugs under 
investigation (such as canertinib, geldanamycin, saraca-
tinib)	 and	 some	 of	 them	 are	 examples	 such	 as	 pesticides	
(Warfarin)	whose	 effects	 are	unknown	 in	humans	 as	drug	
active ingredients. While determining the drugs to be tested 
in vitro, importance was given to the selection of drugs that 
were not used as cancer drugs, drugs that were previously 
used in the treatment of other diseases in humans but were 

subtype is Ph + ALL, which is characterized by the BCR/
ABL translocation and also represents the most aggressive 
and high-risk variant within the spectrum of ALL subtypes. 
Ph + ALL poses a major challenge due to the emergence of 
drug resistance, particularly imatinib resistance, which rep-
resents a major obstacle to therapeutic treatment [68].

In response to these challenges, this study attempts to 
open a new avenue of optimism for the treatment of these 
diseases through the application of drug repositioning. 
Notably, to the best of our knowledge, no prior investiga-
tions have undertaken a comparative transcriptomic analysis 
between ALL and Ph + ALL. Furthermore, this study pio-
neers the utilization of the robust rank aggregation method 
to	identify	differentially	expressed	genes	(DEGs)	associated	
with ALL-related diseases.

6 ALL and 3 Ph + ALL datasets were analyzed and dif-
ferentially	 expressed	 transcripts	 associated	 with	 diseases	
were	detected.	Statistically	significant	698	DEGs	for	ALL	
and 100 DEGs for Ph + ALL were found by the robust rank 
aggregation method. While 32 down-regulated DEGs and 
36 up-regulated DEGs were common in both diseases, the 
down-regulated genes were found to outnumber the up-reg-
ulated genes in ALL.

We reconstructed the PPI network of ALL and Ph + ALL. 
The union of the top 20 proteins according to degree, 
which refers to the number of interactions of a protein, and 
betweennes, which refers to the number of connections that 
a protein establishes with other proteins most shortly, were 
accepted as hub proteins. We were able to show that these 
hub proteins play a central role in the development of ALL 
diseases. Targeting hub proteins with pharmaceutical agents 
has	the	potential	to	halt	the	effects,	progression	and	spread	
of the disease. This also makes it possible to target other 
proteins with which hub proteins interact directly or indi-
rectly	and	whose	expression	varies.

ALL is not limited to genetic mutations and changes at 
the mRNA level. There are also various reporter molecules 
such as transcription factors, miRNA or receptors that regu-
late	gene	expression	or	are	involved	in	metabolic	pathways.	
For	example,	the	transcription	factor	MYC,	which	plays	a	
role	in	the	JAK/STAT	signalling	pathway,	is	up-regulated	in	
Ph + ALL and contributes to the survival and proliferation 
of leukemia cells [69]. Therefore, identifying the relation-
ships	between	genes	with	different	expressions	and	reporter	
molecules sheds light on changes at the transcriptional and 
post-transcriptional levels in diseases [70]. ETS1, FOXA1, 
FOXP3, MYC, PRDM14 and GATA binding protein fam-
ily stand out as the transcription factors that interact most 
with	the	hub	proteins	we	identified	in	this	study.	LYN, MYC, 
BRCA1, EGFR, JUN, ARRB2 are among the most inter-
acting receptor molecules in ALL, while FYN, GRB10 are 
among the most interacting receptor molecules in Ph + ALL. 
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