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Abstract—Robust and real-time detection of faults has
become an ultimate objective for predictive maintenance
on rotating machinery. Vibration-based deep learning (DL)
methodologies have become the de facto standard for bear-
ing fault detection as they can produce state-of-the-art
detection performances under certain conditions. Despite
such particular focus on the vibration signal, the utilization
of sound, on the other hand, has been widely neglected.
As a result, no large-scale benchmark motor fault dataset
exists with both sound and vibration data. The novel and
significant contributions of this study can be summarized as
follows. This study presents and publically shares the Qatar
University dual-machine bearing fault benchmark dataset
(QU-DMBF), which encapsulates sound and vibration data from two different motors operating under 1080 working
conditions. Then, we focus on the major limitations and drawbacks of vibration-based fault detection due to numerous
installation and operational conditions. Finally, we propose the first DL approach for sound-based fault detection and
perform comparative evaluations between the sound and vibration signals over the QU-DMBF dataset. A wide range of
experimental results shows that the sound-based fault detection method is significantly more robust than its vibration-
based counterpart, as it is entirely independent of the sensor location, cost-effective (requiring no sensor and sensor
maintenance), and can achieve the same level of the best detection performance by its vibration-based counterpart. This
study publicly shares the QU-DMBF dataset, the optimized source codes in PyTorch, and comparative evaluations with
the research community.

Index Terms— Bearing fault detection, machine health monitoring, operational neural networks (ONNs).

NOMENCLATURE

Symbol Description
Q Order of the Maclaurin polynomial.
K x × K y Size of a kernel, i.e., wl+1

i k .
wl+1

i k (r, t) Q-dimensional array of the kernel element
(r, t) from the i th neuron in layer l + 1 to
kh neuron in layer l.
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ik (r, t, q) qth element of wl

i k (r, t) .

(yl
k) 2-D output feature map of the

kth neuron at the lth layer.
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)
Nodal operator function approximated
the Maclaurin series over the elements
(coefficients) of wl

i k(r, t).
P l+1

i = 6 Pooling operator is fixed to
summation for this study.

1l+1
i Given the cost function, E, the

2-D delta error map of the input
feature map, x l+1

i (m, n) at layer
l + 1. Specifically, 1l+1

i (m, n) =

(∂ E/∂x l+1
i (m, n)).

1yl
k Given the cost function, E, the

2-D sensitivity of the output map,
yl

k (m, n). Specifically, 1yl
k(m, n) =

(∂ E/∂yl
k(m, n)).

I. INTRODUCTION

ACCURATE and instantaneous fault detection for rotating
machinery is crucial for motor health monitoring in

several industries, such as mass production lines, manufac-
turing, aerospace, and energy. The most critical components
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Fig. 1. Samples of simultaneously recorded vibration signals over different sensor locations on the QU-DMBF [62].

of rotating machinery are its bearings, as they tend to fail
in time, which will eventually cause unexpected downtime,
high maintenance costs, and even catastrophic accidents if not
detected and prevented in advance.

Numerous methodologies have focused on the vibration
signals to detect and identify the bearing faults. They can be
classified as model-based methods [1], [2], [3], [4], signal-
processing approaches [5], [6], [7], [8], [9], [10], [11], [12],
conventional machine learning (ML), and recent deep learning
(DL) methods [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28]. Especially during the last
decade, DL-based methods based on the vibration signal have
increased tremendously. This is an expected outcome since the
vibration signal can quickly reveal the track changes over the
mechanical behavior of a bearing. Thus, it has become a de
facto standard in this domain. However, acquiring a reliable
and high-quality vibration signal requires good-quality sen-
sors, which further demands periodic maintenance. This may
induce significant costs and pose particular risks of malfunc-
tioning over time. A fundamental problem is that the vibration
signal is susceptible to the sensor location on the machinery.
Take, for example, sample vibration signals acquired from the
two machines of the Qatar University dual-machine bearing
fault benchmark dataset (QU-DMBF) dataset [28], as shown
in Fig. 1. Despite some of the sensors being in close vicinity,
the signals from them are entirely different from one another,

e.g., see the signals of sensors #2 and #5 from Machine
A and sensors #6 and #3 as well as #2, #5, and #4 from
Machine B. Therefore, any slight mispositioning of the sensor
may result in poor detection performance by the DL method.
Moreover, installing such wired sensorial equipment to nearby
locations of rotating bearings will lead to specific challenges
and operational drawbacks. Finally, vibration signals can easily
get corrupted by several background noises, such as ambient
vibrations, electrical interference of the motor, and sensor vari-
ations. Most aforementioned studies ignored such variations
and evaluated their proposed method assuming only one or
few working conditions over the early benchmark datasets with
limited vibration data and a fixed sensor location. In particular,
assuming sufficient fault data for all working conditions to
train the fault detector may not be feasible in practice.

Conversely, the sound signal has none of these setbacks.
For instance, it does not require an additional sensor. Thus,
there is no need for any maintenance and installation since
a mobile phone can easily acquire sound data from any
location, which does not affect the sound signal pattern.
Moreover, it is immune from any electrical or sensorial noise.
Despite such crucial advantages, during the last two decades,
only a few sound-based fault detection methods have been
proposed in the literature [29], [30], [31], [32], [33], [34],
[35], [36], [37], [38], [39], [40], [41], [42], which utilize
conventional ML methods such as K-nearest neighbor (KNN)
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and support vector machines (SVM) classifiers over the man-
ually extracted/selected features. Two possible reasons can
be listed: 1) the lack of a benchmark dataset providing a
large volume of both vibration and sound data over several
working conditions for different motors and sensor locations
and 2) an early study [36] has reported certain limitations
of sound signals for identifying defects in gearboxes. It was
concluded that the application of sound to gear defect detection
needs to be improved, particularly for fault identification.
This may have discouraged the researchers from pursuing this
direction and drawn the focus instead on the vibration-based
approaches. As a result, only a few DL-based methods over
the sound signal have ever been proposed [37], [38], [39], and
no comparative evaluations against the vibration counterpart
have yet to be reported. Among them, [37] is not a DL-based
method. The authors employed a stacked sparse autoencoder to
extract the fault features first, and a simple softmax regression
was adopted for fault classification. This is also true for [38],
where a simple LSTM network has been trained over only
100 sound samples and tested over 90. With such a minimal
dataset, it is obviously not reasonable to train a deep network.
Finally, [39] is the only DL method, but it was again tested on
a minimal dataset. The authors used 80% of the data randomly
selected for training and the rest for testing. This not only
biases the test results but is also infeasible in practice.

To address all the aforementioned drawbacks, this study
proposes the first DL-based fault detection method over the
raw sound signal and performs a wide range of experiments
for comparative evaluations against its vibration-based coun-
terpart. The QU-DMBF dataset compiled for this purpose is
the most extensive sound/vibration dataset, with 13.5 h of
data acquired from two motors (DC and three-phase AC)
with 1080 working conditions. For simplicity and unbiased
comparisons, we do not use any domain adaptation (DA)
methodology [27], [28], [32], and hence, for both signal types,
we evaluate their performance over the “unseen” working
conditions using a single network model trained over the same
data and with an identical experimental setup. In this way,
we can test and compare their robustness for detecting the
“unseen” fault cases, especially when the sensor locations
and fault severities for testing differ from the ones used for
training.

Derived from generalized operational perceptrons (GOPs)
[48], [49], [50] and native operational neural networks (ONNs)
[47], [48], self-organized ONNs (Self-ONNs) are the latest
heterogeneous nonlinear network models with generative [44],
[45], [46] and super neurons [58] that can perform opti-
mal nonlinear operations for each kernel element. Therefore,
in many mechanical faults [25], [26], [27], [28], [29] or
health/structural anomaly detection [51], [52], [53], [54] tasks,
along with the numerous data mining and pattern recognition
problems [55], [56], [57], [58], [59], [60], [61], they have
outperformed their linear counterparts, the conventional CNN
models, significantly even with reduced network complex-
ity and depth. In particular, the studies [25], [26], [27],
[28] proposed state-of-the-art fault detection methodologies
on rotating machinery using 1-D Self-ONNs. In this study,
we aim to leverage this superiority further to achieve an

elegant computational efficiency for sound-based fault detec-
tion. So, a seven-layer 1-D Self-ONN with only 80 generative
neurons is used for both sound and vibration-based fault
detection, and this demonstrates that even with such a compact
and lightweight network model, robust and highly accurate
sound-based fault detection performance can be achieved.

The rest of the article is organized as follows. Section II
presents the exploration methodology with the proposed net-
work model and the QU-DMBF benchmark dataset. Section III
presents the fault detection results with detailed comparative
evaluations over the QU-DMBF dataset. Finally, Section IV
concludes the article and summarizes this article’s novel and
significant contributions.

II. EXPLORATION METHODOLOGY AND
QU-DMBF DATASET

A. 1-D Self-Organized ONNs
Self-ONNs [26], [28], [51], [52], [53], [54], [55], [56], [57],

[58], [59], [60], [61] were proposed as the superset of the
CNNs with a controllable parameter, Q, which determines
the level of the nonlinearity (degree of the polynomials) of
each kernel transformation. When Q = 1 for all neurons in
the network, a Self-ONN will reduce to a CNN. Due to the
“on-the-fly” generation of the nonlinear nodal operator, the
network can create the best possible basis functions to achieve
the highest learning performance. So, with such optimized
nonlinearity and heterogeneity, a Self-ONN can easily sur-
pass an equivalent or even a significantly deeper and more
complex CNN.

Each generative neuron can have an arbitrary nodal function,
9, for each kernel element of each connection. This incredible
flexibility permits the formation of any nodal operator func-
tion. For the formation of “any” nodal function, we use the
Taylor series approximation as stated in

9 (w, y) = w0 + w1 y + w2 y2
+ · · · + wQ yQ . (1)

Any other function approximation technique (e.g., Fourier
series or DWT) can also be used, but such techniques will also
require the computation of certain basis (nonlinear) computa-
tionally demanding functions. However, as formulated in [44]
and [45], the generative neurons can be turned into purely a set
of convolutions, yielding a great computational advantage. Let
x l

ik∈RM be the contribution of the i th neuron at the (l − 1)th

layer to the input map of the l th layer. Therefore, it can be
expressed as

˜x l
ik(m) =

K−1∑
r=0

Q∑
q=1

w
l(Q)
ik (r, q)

(
yl−1

i (m + r)
)q

(2)

where yl−1
i ∈RM is the output map of the i th neuron at the

(l − 1)th layer, w
l(Q)
ik is a learnable kernel of the network,

which is a K × Q matrix, i.e., w
l(Q)
ik ∈ RK×Q, formed as,

w
l(Q)
ik (r) = [w

l(Q)
ik (r, 1), w

l(Q)
ik (r, 2), . . . , w

l(Q)
ik (Q)]. By the

commutativity of the summation operations in (2), one can
alternatively express

˜x l
ik(m) =

Q∑
q=1

K−1∑
r=0

w
l(Q)
ik (r, q − 1) yl−1

i (m + r)q . (3)
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Fig. 2. Identical seven-layer Self-ONN models for detecting sound (top) and vibration-based (bottom) fault. The number of neurons (N), 1-D kernel
size (KS), stride (S), and Q values are also presented for each layer.

One can simplify this expression as follows:

˜x l
ik =

Q∑
q=1

Conv1D
(
w

l(Q)
ik ,

(
yl−1

i

)q)
. (4)

Equation (4) simply shows that the kernel operations can
indeed be executed by performing a Q number of 1-D convo-
lutions. Finally, the input map of this neuron can be composed
as

x l
k = bl

k +

Nl−1∑
i=0

x l
ik (5)

where bl
k is the bias associated with this neuron. Passing

the input map through the activation function will generate
the output map, yl

k = f (x l
k), which will then contribute to the

input maps of the neurons on the next layer and so on. For
a parallel processing implementation, in [44], [46], and [52],
the raw-vectorized formulations of both forward propagation
and back-propagation (BP) are presented.

To gain an understanding of how various hyperparameters
impact the models’ performance, we have run preliminary
experiments using a variety of model configurations. This
involves evaluating multiple training hyperparameters and
network models and assessing their performances across the
validation set. The best network configuration is used to
evaluate fault detection performances over sound and vibration
datasets. Fig. 2 shows the best 1-D Self-ONN sound and

vibration-based fault detection models. Each model contains
five operational layers with a total of 80 generative neurons,
one dense layer with 32 generative perceptrons, and an output
layer with two generative perceptrons. For each layer, Q = 3
and tanh activation functions are used. The kernel sizes at the
consecutive operational layers are set as 81, 41, 21, 7, and 7,
respectively.

Both vibration and sound data are framed into one-second
segments without any overlapping. The sampling frequency
of both signals is 4096 Hz; thus, each segment has m =

4096 samples. For a strict magnitude invariance during the
training (BP) and forward propagation on the 1-D Self-ONN,
each segment is further normalized as follows:

X N (i) =
2(X (i) − Xmin)

Xmax − Xmin
− 1 (6)

where X (i) is the i th original sample amplitude in the
segment, X N (i) is the i th sample amplitude of the normalized
segment, and Xmin and Xmax are the minimum and maximum
amplitudes within the segment, respectively. This will scale
the segment linearly in the range of [−1 1], where Xmin →

−1 and Xmax → 1. The proposed 1-D Self-ONN model
receives the normalized segment samples as input channel and
produces the binary output (class) vector.

Nomenclature section presents the formula abbreviations
and mathematical symbols used in this article. The details of
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the BP training for Self-ONNs1 can be obtained from [44],
[45], and [46].

B. Qatar University Dual-Machine Bearing Fault
Benchmark Dataset

Researchers at Qatar University created the benchmark
dataset for this study using two distinct electric machines
(Machine A and Machine B). Fig. 1 depicts the experimen-
tal setup, including the positioning of the sensors and the
installation of two machines. A three-phase AC motor, two
double-row bearings, and a shaft with a maximum speed of
2840 r/min make up Machine-A’s configuration. Two different
loads (0.18 and 0.23 kN ) were applied using an arm that
is attached to a hydraulic jack from one end and to a plate
from the other end. This plate is used to apply the load on
the outer race of the bearing. Mounted on the bearing housing
are PCB accelerometers (352C33 high-sensitivity Quartz ICP).
The machine measures 100 × 100 × 40 cm and weighs
180 kg. The faults are deliberately inserted in the raceways
of the outer and inner rings by electric discharge machining
(EDM). It is a metal fabrication process that removes material
from a workpiece by using electrical discharges between two
electrodes without physical contact, offering high precision for
conductive materials.

The following is the outline of Machine-A’s working con-
ditions.

1) There are 19 distinct bearing configurations: one healthy
case and 18 faulty cases that consist of nine outer ring
defects and nine inner ring defects. The range of defect
sizes varies from 0.35 to 2.35 mm.

2) There are five distinct locations for accelerometers: two
radial directions and three horizontal locations.

3) There are two distinct force levels: 0.18 and 0.23 kN.
4) Three distinct RPM ranges: 480, 680, and 1010 r/min.

For a healthy bearing, we recorded data for 270 s of operation,
and for a damaged bearing case, we recorded 30 s; 30 × 18 ×

5 × 2 × 3 = 16 200 s (4.5 h) of defect data, and 270 × 5 ×

2 × 3 = 8100 s (2.25 h) of healthy data are the totals that
come from this.

Machine B, on the other hand, has a DC motor, two single-
row bearings, and a shaft that rotates at a varying speed of
around 2000 r/min (max. 2500 r/min). A constant load of
0.18 kN was applied to the bearing by tightening two bolts at
the two ends of a rectangular thick plate to let it press on the
outer race of the bearing. PCB accelerometers are mounted
on the bearing housing (353B33 high-sensitivity Quartz ICP).
The machine is 59 kg in weight and has dimensions of
100 × 63 × 53 cm. The following are the different working
conditions for Machine B.

1) There are nine bearing configurations with an outer ring
defect, nine with an inner ring defect, and one healthy
bearing configuration. The range of fault sizes varies
from 0.35 to 2.35 mm.

2) There are six distinct locations for accelerometers.
3) A constant force (load) of 0.18 kN.

1The optimized PyTorch implementation of Self-ONNs with generative and
super neurons is publicly shared in https://github.com/MertDuman/sonn

4) Five distinct RPM ranges: 240, 360, 480, 700, and 1020.
For each working condition of a healthy bearing, 270 s of
vibration/sound data are recorded. Thus, the total duration of
the vibration data for a healthy bearing is 270 × 6 × 1 × 5 =

8100 s (2.25 h). Similarly, 30 s of sound and vibration data are
recorded for every working condition of a faulty bearing. The
faulty to healthy data ratio is 2:1, and the total time is 30 ×

18 × 6 × 1 × 5 = 16 200 s (4.5 h). Consequently, the entire
duration of the dataset on machine B is 24 300 s (6.75 h).
For all working conditions in both machines, the sound was
recorded simultaneously with the same sampling frequency as
the vibration data.

C. Experimental Setup
A recent study [28] has shown that the most reliable

vibration data for fault detection is acquired from the clos-
est accelerometer to the bearings, i.e., sensor #1 for both
machines, as shown in Fig. 1. So, we have selected a part of
the data of this accelerometer for training both fault detectors
and use the rest of the data and the data of other sensors for
testing. In particular, the sound and vibration data of sensor #1
acquired from the two most minor defects (0.35 and 0.5 mm)
are used for training, corresponding to 124 fault segments.
This corresponds to only 4.44% and 3.37% of the Machine-A
and Machine-B fault data used for training, respectively. The
exact number of healthy segments is also used to compose an
isolated training data partition to evaluate the robustness of
both fault detectors against the variations in sensor locations,
fault severities, speed, and load over both machines.

The Adam optimizer is used for the BP training with the
initial learning factor, ε = 10−4, and the mean-squared error
(MSE) as the loss function. Twenty percent of the training data
is spared as validation to select the best Self-ONN model for
testing. We implemented both fault detector networks using
the FastONN library [46] based on PyTorch.

Commonly used performance metrics, precision (P),
recall (R), F1-score (F1), and accuracy (Acc) are computed to
evaluate the fault detection performances. The calculation of
true positives (TP), false negatives (FN), and false positives
(FP) are obtained per vibration/sound segment classification
in the test set. Accordingly, these performance metrics can be
expressed as follows:

P =
TP

TP + FP
, R =

TP
TP + FN

F1 =
2P R

P + R
, Acc =

TP + TN
TP + TN + FP + FN

. (7)

III. EXPERIMENTAL RESULTS

In Section III-A, we shall perform an extended set of
comparative evaluations between sound and vibration-based
fault detection. In Section III-B, the computational complexity
analysis of the proposed network model will be examined in-
depth.

A. Results
Once the fault detectors of both sound and vibration data

are trained over the training data (a fraction of healthy and
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TABLE I
CONFUSION MATRICES FOR AUDIO (LEFT) AND VIBRATION (RIGHT) DATASETS FOR MACHINE-A USING 1-D SELF-ONNS

TABLE II
CONFUSION MATRICES FOR AUDIO (LEFT) AND VIBRATION (RIGHT) DATASETS FOR MACHINE-B USING 1-D SELF-ONNS

TABLE III
FAULT DETECTION PERFORMANCES PER SENSOR OVER SOUND AND VIBRATION DATA FOR MACHINE-A

TABLE IV
FAULT DETECTION PERFORMANCES PER SENSOR OVER SOUND AND VIBRATION DATA FOR MACHINE-B

faulty data acquired by sensor #1), they are tested over the
test data of each machine in the QU-DMBF dataset. The
confusion matrices for machines A and B are presented in
Tables I and II, respectively. Accordingly, the average fault
detection performances over each sensor are individually com-
puted using the aforementioned standard metrics and presented
in Tables III and IV, respectively.

As mentioned earlier, the studies [25], [26], [27], [28] have
already demonstrated the superiority of the Self-ONNs over
the conventional CNNs. In this study, to perform comparative
evaluations between the two network models for audio and
vibration-based fault detection, we used a CNN model with
the same configuration as the proposed 1-D Self-ONN, trained
and tested over identical data partitions. Fig. 3 shows the
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Fig. 3. Over the audio and vibration (Sensors #1–#6) data partitions of
QU-DMBF dataset, F1 scores achieved by Self-ONNs (blue) and CNNs
(red) in Machine-A (top) and Machine-B (bottom).

average F1 plots over the audio and vibration (per sensor) data
partitions of the QU-DMBF dataset achieved by Self-ONNs
(blue) and CNNs (red) in Machine-A (top) and Machine-B
(bottom).

B. Computational Complexity Analysis
This section presents the computational complexity analysis

by measuring the inference time, network size, and total
number of parameters (PARs) of the proposed Self-ONN
configuration. Comprehensive formulations of the PARs for
Self-ONNs can be found in [46]. All trials used a 2.2 GHz
Intel Core i7 PC equipped with an NVIDIA GeForce RTX

3080 graphics card and 16 GB of RAM. PyTorch2 and the
FastONN library [46] were utilized for the fault detectors.
The proposed seven-layer Self-ONN model contains 377K
parameters in total. For a single CPU implementation, the
FP time for classifying a 1-s segment (sound or vibration) is
4 ms. With a single CPU, this demonstrates that the proposed
sound-based fault detector can work 250 times faster than
the real-time requirements. This indicates that the proposed
approach can be used for a real-time motor health monitoring
implementation, even as a typical application on a mobile
phone. This will not only void the need for a sensor, but it
also enables instantaneous health monitoring capabilities for
any rotating machinery in any industry.

IV. DISCUSSION

Several important observations can be made regarding the
fault detection results presented in Nomenclature section and
Table I. First, sound and vibration-based fault detectors obtain
almost identical fault detection performances, but only when
the vibration detector is tested on the same sensor data used
for its training (sensor #1). In this case, the proposed 1-D
Self-ONN model has achieved remarkable performance levels
between 97.6% and 99.83% F1 scores on machines A and
B, respectively. However, the performance of vibration-based
fault detection significantly deteriorates when the sensor loca-
tion is altered, even for a slight change. Performance levels
around 50% (highlighted in red in both tables) can be observed
on both machines, indicating a detection failure since 50%
accuracy (or precision, recall, or F1) is a bottom-line per-
formance level for a binary classification problem. It is worth
noting that there is a significant performance gap even over the
results obtained from the data of the sensors, which are pretty
close to each other, e.g., see the accuracies obtained for sensor
pairs #2–#5 and #3–#4 on Machine A. Such high variations
from nearby sensors may also indicate that the mounting of
the sensors to the surface of the machines differ from each
other, and this, in turn, alters the acquired vibration signals
significantly, as witnessed in Fig. 1. Besides the challenges of
installing accelerometers over rotating machinery, this further
indicates how sensitive fault detection can be concerning the
sensor locations and mounting. On the other hand, sound-
based detection has none of such drawbacks, sensitivities,
or limitations, as the results on both machines show that it
can consistently achieve a high detection performance with
such a lightweight network model trained over a minority of
the fault data (<5% of the fault data).

Finally, in accordance with the findings in the studies [25],
[26], [27], [28], our comparative evaluations over both sound
and vibration data presented in the plots of Fig. 3 have demon-
strated the superiority of the Self-ONNs over the conventional
CNNs under the fair evaluation setup.

V. CONCLUSION

With the recent advances in DL models, vibration-based
fault detection has become the de facto standard for rotating
machinery. This study explores sound versus vibration in a DL

2Trademarked.
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method for fault detection in terms of detection performance
and robustness over the largest benchmark dataset, QU-DMBF,
ever composed with 1080 working conditions. The significant
and novel contributions of this study can be summarized as
follows.

1) This pioneering study proposes a DL approach for
sound-based bearing fault detection and compares it
against its vibration-based counterpart.

2) To achieve the objectives of this study, the QU-DMBF
benchmark dataset is compiled to obtain sound and
vibration data simultaneously for 1080 working con-
ditions. The QU-DMBF dataset, our results, and the
optimized PyTorch implementation of the proposed
sound-based detection approach are now publicly shared
with the research community [62].

3) The proposed sound-based fault detector, based on a
compact model of 1-D Self-ONN, achieves state-of-the-
art detection performance levels despite only a minority
of the sound data being used for training a compact
Self-ONN model and tested over a data partition with a
large number of “unseen” working conditions.

4) An extended set of comparative evaluations has demon-
strated that the sound-based detection performance can
match the best vibration-based counterpart, observed
only when the detector model is trained and tested over
the same sensor data.

5) Another important observation of this study is that
vibration-based fault detectors are highly sensitive to
sensor location. A slight relocation of the sensor can
cause a significant deterioration in the detection per-
formance. This is a crucial advantage of sound-based
detectors, which are invariant to such changes.

In brief, the proposed method makes motor health monitoring
significantly more robust, practical, cheaper, and accessible.
Thus, it has the potential to make a crucial impact on the other
related fields of health monitoring and predictive maintenance,
e.g., mechanical fault detection on vehicles or other engines
used for transportation.

Future research will focus on sound-based fault identifica-
tion and localization to determine the exact nature of each
fault, predict its severity, and identify its location for full-scale
motor health monitoring.
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