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ABSTRACT

A CONTINUOUS-REVIEW INVENTORY MODEL WITH DISRUPTIONS
AND REORDER POINT

Sevgen, Arya

M.Sc. in Industrial Engineering
Graduate School of Natural and Applied Sciences

Supervisor: Asst. Prof. Dr. Zeynep Sargut
July 2016, 70 pages

We study a two-echelon continuous review inventory problem of a retailer and a
supplier. It is an extension of economic order quantity model with lost sales and
reorder point when both supplier and retailer are subject to random disruptions.
It is assumed that supplier has two states which are available (ON) and unavail-
able (OFF), modeled with Markov chain. Whereas, if retailer is disrupted, all
on-hand inventory is destroyed but afterwards retailer recovers immediately to
serve the customers. All unsatisfied demand at retailer is assumed to be lost. In
this study, the objective is to identify the optimal inventory policy for the retailer
and investigate the importance of a non-zero reorder point for the retailer.
Utilizing Renewal Reward Theorem, expected total cost per unit time is derived.
We analyze the sensitivity of the optimal values of expected cost per unit time,
order-up-to level, and reorder level to different problem parameters. The problem
parameters we investigated are unit holding, unit lost sales, fixed and variable
ordering, supplier disruption and recovery rates, retailer recovery rate, and de-
mand rate.

We use 1728 test cases in Sargut and Qi (2012) and another data set including
15360 test cases. In computational experiments, we also compare our solution
with the optimal classical economic order quantity and we conclude that our
model gives better or the same optimal average expected cost than EOQ. We
conclude that adding a non-zero reorder point to the inventory policy is mean-
ingful when supplier disruptions are more frequent than retailer disruptions. If
the ratio of supplier disruption rate to recovery rate is greater than one, a positive
reorder point can be optimal.

Keywords: Inventory control, disruption, economic order quantity, reorder point,
lost sales.
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Oz

KESINTILER VE YENIDEN SIPARIS NOKTASI iLE OLUSTURULAN
SUREKLI KONTROL KURALLI BIR ENVANTER PROBLEMI

Sevgen, Arya

Endiistri Miihendisligi, Yiiksek Lisans
Fen Bilimleri Enstitiisii

Tez Yoneticisi: Yrd. Dog. Dr. Zeynep Sargut
Temmuz 2016, 70 sayfa

Bu calismada, bir perakendecinin siirekli kontrol kuralli bir envanter problem-
ini ele aldik. Bu problem, ekonomik siparig miktar1 probleminin iizerine kayip
satis ve yeniden siparis verme noktasinin eklenmis halidir. Ayrica, parekendeci
ve toptanci rastlantisal kesintilere ugramaktadir. Toptanci, Markov zinciri esas
alimarak, ulagilabilir (agik) ve ulagilamaz (kapali) olarak iki farkli durumda mod-
ellenmigtir. Parekendeci, kesintiye ugramasi halinde, elindeki tiim envanteri kay-
betmektedir. Ancak parekendeci kesintiden sonra, hemen uygun duruma gegip,
miigterilere servis verebilmektedir. Kargilanamayan sipariglerin tiimii kaybolmak-
tadir. Bu ¢aligmada amacimiz, parekendeci i¢in optimal siparig politikasini belir-
lemek ve pozitif yeniden siparis verme noktasinin 6énemini aragtirmaktir.
Yenileme teorisi kullanilarak, birim siire i¢in beklenen ortalama toplam maliyet
elde edilmektedir. Bu maliyetle birlikte, siparis verme noktasi ve yeniden siparis
verme noktasi da cesitli parametrelerle analiz edilmektedir. Incelenen problem
parametreleri, envanter maliyeti, birim kayip satig maliyeti, sabit ve degisken
siparig verme maliyetleri, tedarik¢i ve satici kesinti oranlari, satici toparlanma
stiresi orani ve talep oramdir. Bu analizlerde, Sargut ve Qi (2012)’de verilen
1728 test kiimesi ve 15360 ornek iceren bagka bir test kiimesi kullanilmigtir.
Ayrica iglemsel deneylerde, kendi modelimizle kayip satisa izin veren ekonomik
siparig miktar1 modelini kargilagtirdigimizda, ¢ogu o6rnekte kendi modelimizin,
birim siire i¢in beklenen toplam maliyetin ekonomik siparig miktari modeline
gore daha diigiik oldugunu gozlemledik. Sonug olarak, siparig politikasina pozitif
yeniden siparig verme noktasi eklemek, toptancida olan kesintilerin, perakende-
cide olan kesintiye gore daha siklikla oldugu durumlarda anlamhdir. Eger top-
tancinin kesinti ve toparlanma siiresi orani bir den biiyiikse pozitif yeniden siparis
verme noktasi optimaldir.
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Chapter 1

Introduction

One of the oldest methods known in the area of inventory management is classi-
cal Economic Order Quantity (EOQ), which aims to find optimal order quantity
that minimizes total ordering and holding costs. Assumption is that demand is
deterministic and constant. There is no lead time, order is received immediately.
It is well known that, the optimal order quantity (Q*) depends on demand rate,
fixed cost for ordering and holding cost, which are A\, K and h, respectively. The

optimal order quantity is given by

O =/ 222 (1.0.1)

In this model, there is only one party who is ordering from the supplier, and
the party orders according to zero inventory ordering policy (Z10), i.e., order is
placed when inventory level reaches to zero. Inventory level by time for the Clas-
sical EOQ inventory model is shown in Figure 1.1. This triangle repeats itself up

to infinity.



Order
Quantity, Q=

Inventory

| I | A > Time, t

Figure 1.1: Classical EOQ Inventory Model

There are several different extensions of EOQ in the literature. EOQ can be
extended by adding backorders (i.e, customer’s orders cannot be filled immedi-
ately and they have to wait some time until inventory level is positive). Other
extension is Economic Production Quantity (EPQ) where production company
sends their goods while production is continuing and optimal production quantity

is given by the following formula.

QO = |22 (1.0.2)

P represents the finite production rate. If the production rate is close to oo,
EPQ is equivalent to EOQ. Inventory level by time for EPQ model is shown at
Figure 1.2 and T}, and Tj represents time spent at the production phase and sales

and distribution phase, respectively.
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Figure 1.2: EPQ Model

Due to the assumptions of EOQ model, it is very unlikely to be used in prac-
tice. Therefore, to be more realistic, uncertainties should be taken into account
such as both supplier and retailer are due to random disruptions. Supply dis-
ruptions are described as some events occur in random times where the supply
chain will be affected as a result of these disruptions. The events may be natural
disasters, terrorist attacks, machine breakdowns or other unpredictable situations
which influence the supply chain in anyway. Both supplier and retailer can be
influenced from the disruption at the same time or only one of them affected
from the disruption. In two-echelon inventory model with disruptions and with
710 policy, two cases can occur during the ordering process; first retailer gives an
order when inventory level drops to zero and supplier can provide the demand,
goods are sent immediately, in the second case, retailer again places an order
when inventory level drops to zero but in this case the supplier is not available
due to a disruption. Hence, in the second case, it leads to lost sales since goods
cannot reach to the retailer from the supplier until supplier is recovered from its

disruption. At this point, adding reorder point makes sense due to the supplier



uncertainty and it gives an opportunity to decrease lost sales.

A disaster, may adversely affect the supply chains all around the world. For
example, an Icelandic volcanic eruption realized in March 2010 which was one of
the biggest disasters that affected air traffic ever, caused cancellation of flights
during seven days due to the ash cloud throughout Europe. Some car manufac-
turers including BMW, Nissan and Audi had to stop their production because
of the disruption at air freight (Graf and John, 2016). In February 2014, Japan
was exposed to a catastrophic snowfall. The disaster that occurred in Japan,
also influenced many other countries which were working in collaboration with
Japan. Many manufacturers had to give a break to the production because of the
electricity and transportation problems. Many flights carrying either passenger
or freight were canceled. Due to the heavy snow weight on the roofs, the build-
ings were damaged. As a result, inventory, goods and manufacturer materials
had to be destroyed (Mark and Faust, 2015). In such disasters, both retailer and
supplier are subject to various interruptions. Omne of the disruptions that can
be seen more frequently is power outages may be caused to destroy some per-
ishable items. Moreover, accidents on the roads can also caused to supply chain
disruption. To handle these disruptions, mitigation strategies can be used. The

strategies are applied either before or after the disaster.

According to Snyder et al.(2015), mitigation strategies have four main cat-

egories. To mitigate the disruptions, they classify the strategies as inventory,



flexibility and sourcing, facility location, and interaction with external stakehold-
ers. First way to mitigate the supply disruptions is inventory control. To find the
optimal order quantity and optimal reorder point help to reduce disruption effect.
Second strategy is flexibility and sourcing. There are two types of sourcing: rou-
tine sourcing and contingent rerouting. In routine sourcing, retailer or producer
supply their goods from more than one supplier at the same time regardless of
there is a disruption or not. On the other hand in contingent rerouting, other
suppliers which do not subject to disruption when the primary supplier is at OFF
state, can provide the goods. Thus, under favor of to collaborate with multiple
suppliers, disruptions are mitigated more easily. Tomlin(2009) states that "De-
mand switching is a tactic in which the firm provides incentives for a customer to
purchase a different product if her preferred product is unavailable." Motivate the
customers to take another product which is available on the inventory can be also
used as a mitigation strategy. If the main product that customer wants to buy is
not available at this time, this strategy is used. The other strategy is about the
selection of facility location. It concerns about how to choose a facility location
by taking into consideration the supply disruptions. Last mitigation strategy
takes into account the relationship between the firm and external stakeholders of

the firm.

In this study, we use inventory control to mitigate the supplier and retailer
disruptions. We modeled supplier as a two-state continuous time Markov chain.
On the other hand, retailer is assumed always available, if it is disrupted recov-

ered immediately but all on-hand inventory is gone. We apply a modified (Q,R)



policy. We need ordering quantity Q due to the setup cost. Besides, adding
reorder non-negative point is reasonable because of supplier uncertainty. When
supplier is not available a time which retailer should place an order, lead time
occurs. Hence, reorder point helps to reduce expected average cost. Demand is
assumed deterministic and constant. Planned backorders are not allowed. When

inventory level is zero, all demand is assumed to be lost.

The rest of this thesis organized as follows. In Chapter 2, we present the
related literature. Our model is demonstrated in Chapter 3. In Chapter 4, we
show the solution method for the cost function. In Chapter 5, interpretations
and results of the numerical experiments are presented. Lastly, we conclude the

study and suggest future works in Chapter 6.



Chapter 2

Literature Review

We investigate the literature on inventory models with disruptions under two

major categories; deterministic and stochastic demand.

2.1 Inventory Models with Disruptions under De-
terministic Demand

Economic order quantity with disruptions (EOQD) is first introduced by Parlar
and Berkin (1991). In this model, lead time is assumed as zero and shortages are
not allowed. They construct an average cost function per unit time, using Reward
Renewal Theorem. They assume ZIO and find the optimal order quantity. Bi-
elecki and Kumar (1988) investigate unreliable manufacturing systems and point
out that, ZIO is optimal in a range of parameters. Berk and Arreola-Risa (1994)
correct Parlar and Berkin’s cost function. Snyder(2014) show the convexity of the
cost function and write the approximation model as closed form with considering

ZI10 assumption. Heimann and Waage (2007), construct a model with relaxing



the ZIO assumption. They propose a closed-form approximate solution in their
study. Parlar and Perry (1995) relax the ZIO assumption of Parlar and Berkin’s
model and add the reorder point as a decision variable. As it seen in Figure 2.1,
Q unit of order is placed from the supplier when inventory level is at reorder
point r or below r. Hence, inventory level increases to R = () + r. If the retailer
is out of inventory and cannot order due to the disruption, all unmet demand is
backordered. They also define a decision variable T addition to ordering quantity
Q and reorder point r, which decides how long retailer should wait to order when

supplier is OFF.

Emer (2012), proposes an opportunity to give an order just before a sup-
plier disruption. In this model only supplier is disrupted, so they try to find
importance of this opportunity with comparing regular order-up to level. They
conclude that, if the backorder cost is smaller than fixed and holding costs, the
model where there is an opportunity to place an order does not place an order

before the disruption.



Inventory
Level

R=Q+r

Q f0n_0f_0On off = Time

i T Cyele

Figure 2.1: Inventory Policy of Parlar and Perry (1995)

Ramasesh et al.(1991) and Giirler and Parlar (1997) investigate the inventory
model with two suppliers. Moreover, single-supplier, two-supplier and multiple-
supplier versions are studied separately by Parlar and Perry (1996). They point
out that if the number of suppliers is large enough, EOQD approximates the
classical EOQ model. Furthermore, they conclude that, reorder point r can take
negative values in addition to non-negative values when the backorder costs are fi-
nite (and small). Giirler and Parlar (1997) and Parlar and Perry (1996) determine
the supplier costs as identical for all suppliers and assume suppliers’ capacities as
infinite. Different from them, Tomlin (2006) and Qi (2013) consider a problem
where retailer can order from two suppliers, one of them is cheap but unreliable
and the other one is reliable but expensive. Retailer can choose either the first
supplier or the second supplier while trying to minimize total expected average

cost per unit as seen in Figure 2.2. Besides, Tomlin (2006) assumes the suppliers



capacities as finite. Chen et al. (2012) consider a periodic-review inventory model
with two supplier where the main supplier is subject to random disruptions and

the backup supplier is more costly and has an infinite capacity.

Supplier 1

Retailer

Supplier 2

Figure 2.2: Inventory Model with two Suppliers

Unlike described works above, our model is similar to Qi et al.(2009) who ex-
amine two echelon supply disruptions (i.e. both supplier and retailer disruption).
They assume that when retailer is disrupted, inventory level drops to zero. To
find the expected cycle length at the retailer they divide it into two cases. At
the first case, retailer is not disrupted until inventory level drops to zero and for
the second case, retailer is subject to a disruption before inventory level drops
to zero. They explain it basically in Figure 2.3. In the first and second cycles,
first case is occurred. At the point A, when inventory level is zero supplier is
available, on the other hand at point B, supplier is disrupted before inventory
level reaches zero and it is still not available or it is at recovery period. Thus,
the order cannot reach until the supplier is available. However, at the third and
fourth cycles, retailer disrupted during Q/D. Therefore, all on-hand inventory is
destroyed. Besides, at the forth cycle both retailer and supplier is not available

at the same time when inventory level is zero. So, retailer has to wait until both

10



itself and supplier are available for raise the inventory up to Q.

Inventory 4 Disruption at Disruption at
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o
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Figure 2.3: Inventory Policy at the Retailer with Random Cycle Length T of Qi
et al.(2009)

They develop an expected inventory cost function and show that it is quasi-
convex. As our model, when a retailer disruption occurs all on-hand inventory
will be destroyed. However, they consider about the recovery time of the retailer
which follows exponential distribution with rate 5. Besides, they apply ZIO pol-
icy. Our problem extends their model by introducing reorder point as a decision

variable in addition to Q.

Sargut and Qi (2012), also study an inventory model which includes both
supplier and retailer disruptions. The main difference between the models is that
when retailer faces a disruption, it becomes unavailable but keeps inventory on

hand and concludes with lost sale only, whereas, in ours all on-hand inventory is

11



destroyed.

At Figure 2.4, in the first retailer cycle, both retailer and supplier are dis-
rupted. At point A, retailer is disrupted. Later on supplier is disrupted at point
B and cannot recover when inventory level hits zero. Hence, retailer has to wait
the supplier to be available for ordering. However, at point D, retailer disrupted
again and at this time retailer cannot give an order until the point E where it

becomes available again.

They obtained expected average cost per unit time. They analyzed the opti-

mal order quantity and its sensitivity to problem parameters.

Retailer "

Inventory Level

™ "\

Supplier waiting
time

A B cl oo F G H
i i 1 —1 = *
(- A v L — Y—A‘ — ! I\ ~ J
Retailer: ON OFF ON OFF ON OFF ON
- Retailer cycle 1 - Retailer cycle 2 ——»
) 5 A —— A —A Y_J\_ —
Supplier: ON aOFE oON OFF o

Figure 2.4: Inventory Policy at the Retailer with Random Cycle Length T of
Sargut and Qi (2012)
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2.2 Models with Disruption Under Stochastic De-
mand

In the literature, stochastic demand is studied as well. Bar-Lev et al. (1993)
consider Brownian inventory system where supplier has exponential ON-OFF
periods. They consider stochastic demand, which is different from Parlar and
Berkin (1991). The cost function with stochastic demand and constant lead time
is formulated by Gupta (1996). Supplier has ON-OFF periods and distributed

exponentially.

Parlar (1997) studies continuous review inventory model with one supplier
and one retailer with random demand. (Q,r) policy is used when inventory level
drops to r, Q units are ordered to increase the inventory level to Q-+r. Supplier
is subject to random disruptions where ON periods follow k-state Erlang distri-
bution whereas OFF periods are distributed with general distribution. Extended
inventory model of Gupta (1996) is developed by Mohebbi (2003) where lead time
follows Erlang (Ek) distribution and demand follows compound Poisson process.
Mohebbi (2004) considers an inventory model with supplier disruption similar
to Mohebbi (2003) and Gupta (1996) but he assumes lead time distribution is
hyper-exponential. Moreover, supplier’s ON periods follow general and OFF pe-

riods follow hyper-exponential distribution.

Schmitt et al. (2010) study on multi-period model with stochastic demand and

supply with disruptions. For the base-stock level, a closed-form approximation is

13



proposed.

In Table 2.1, we summarize the related literature, table includes seven differ-

ent characteristics. As we mentioned before, retailer, supplier or both of them

can be disrupted. s represents only supplier disruption and r represents only

retailer disruption. Both means both of them can be disrupted. [ and b indicates

backordering and lost sale costs, respectively. When we show the features of de-

mand, d, s&s and c&d represents deterministic; stationary and stochastic; and

constant and deterministic, respectively. m represents multiple supplier. Lastly,

C' indicates supplier is capacitated and if the problem includes reorder point, it

is also shown in Table 2.1.

Disrup- Back- De- | Lead | # of Re-
tion ordering/ mand | time | supplier | order
lost sale Point
Parlar & Berkin(1991) s 1 d 1
Berk & Arreola-Risa (1994) S 1 d 1
Parlar & Perry (1995) S b d 1 v’
Parlar & Perry (1996) S b d ,2m | v
Tomlin (2006) s b s&s| v 2
Qi (2013) s Both c&d 2
Sargut & Qi (2012) Both 1 c&d 1
Snyder (2014) S 1 c&d 1
Qi et al. (2009) Both Both c&d 1
Our Study Both 1 c&d 1 v

Table 2.1: Summarize of the Related Literature

14




Chapter 3

Model

In this study, we consider a continuous review inventory policy when we have
random disruptions at both retailer and the supplier. Retailer sells the products
or consumer goods to customers and supply these from the supplier. Retailer
orders the goods from the supplier according to its inventory level. Demand is
constant and deterministic, unsatisfied demand is lost. Lead time consists of two
parts; order lead time and transportation lead time. We assume transportation
lead time is zero. Order lead time is defined as the time retailer waits for the
supplier to be available. Order lead time is a random variable which depends
on the distribution of supplier recovery time. The transportation lead time from
supplier to retailer is assumed to be zero. We try to find an average total cost
per unit time function for the retailer using renewal reward theorem referring to
Ross(1970). We consider fixed and variable ordering costs, holding cost and lost

sales cost. We assume transportation lead time is zero.

In our policy, Q and R are both decision variable where @ is order up to

15



level and R is the reorder point. In classical (@, R) policy, when inventory level
drops to the reorder point, ) units of order is placed. When order arrives, then
inventory position increases to ) + R . In our case we use modified (@, R) policy
where inventory level can be up to maximum level of ). When modified (@, R)
policy is used, after the receipt of the order inventory level reaches to ). We
depict six different cases based on the states of the supplier and retailer, when

the order is given.

Modified (Q,R) policy: When inventory level reaches to a level less than
or equal to the reorder point, and retailer orders up to () as soon as supplier is
available and it arrives immediately. When we have excess demand we handle it

by losing the sales. This cost corresponds to the revenue lost and loss of goodwill.

Qi et al.(2009) define four state continuous-time Markov which are 11, 01, 10,
00 and it can be seen in Figure 3.1. Since we assume [ = 0o, we cannot model

retailer and supplier states as four-state continuous Markov chain.

Retailer States

ON OFF
y N .=
= ES n e—
s 1 Bl
& |+ " R
]
= = —_—t

Figure 3.1: A four-state continuous-time Markov chain for the disruption and
recovery states at the retailer and the supplier of Qi et al. (2009)

16



In our problem, supplier is modeled as a two-state continuous-time Markov
chain. There are two states for the supplier: ON and OFF. If the supplier dis-
rupted, the state of the supplier turns from ON to OFF. When the supplier is
ON;, the time until next disruption modeled distributed with exponential distri-
bution with rate A and when the supplier is disrupted the time until recovery is
distributed with exponential distribution with rate ). We represent ON state by
0 and OFF state by 1 as we can see at Figure 3.2. We assume that supplier is at

ON state at time zero, which is the beginning of the cycle.

A

TN
Ml

v

Figure 3.2: Supplier State Transition

Likewise, retailer is modeled as a two-state continuous-time Markov chain.
When the retailer is ON, the time until next disruption modeled distributed with
exponential distribution with rate a and when the retailer is disrupted the time
until recovery is distributed with exponential distribution with rate . In our
model, we assume [ = oo. It means that retailer does not go through a recovery
period, in other words, retailer never turns into OFF period. After retailer dis-
ruption, it recovers immediately. If retailer is disrupted, all ON-hand inventory
is destroyed and inventory level drops to zero. When inventory level is less than
or equal to R, retailer needs to order and the order quantity is equal to (). The
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only effect of retailer’s disruption is that inventory is completely destroyed. Re-

tailer can place an order just after its disruption if the supplier is ON at that time.

Figure 3.3: Retailer State Transition

A retailer cycle is defined as the time between two consecutive order arrivals.
In Figure 3.4, four order cycles are depicted. In first cycle, both retailer and
supplier are disrupted in different times.T;: is the time for ith cycle. T} ends at
point ¢. At point a, supplier is disrupted. After, at point b, retailer is disrupted
and all inventory is destroyed. At point b, retailer could not give an order and
waits until point ¢, where supplier is recovered. The order arrives instantaneously.
In the second cycle, only supplier is disrupted (point d) and cannot recover until
the point e. As an ordering policy, retailer should give an order when inventory
level drops to reorder point, however in this cycle retailer have to wait until the
supplier recovery and can give an order at point e. In the third cycle only retailer
is disrupted at point g. Since the supplier is available, ) units of order is placed
immediately (point g). In the forth cycle, neither the retailer nor the supplier is
disrupted, retailer gives Q-R units of order when inventory level drops to reorder

point at point f and order placed by the supplier instantly.
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Figure 3.4: Retailer Cycle

We need the transition probabilities Py (t) and Py (t) which are given in Equa-
tions 3.0.1 and 3.0.2, respectively. Transition probabilities from a state to another
state of a continuous-time Markov chain is introduced by Ross (1996). Py (t) is
probability that supplier is OFF at time ¢, Py(t) is probability that supplier is

ON at time t, assuming that supplier is on at time 0.

Py (t) = ﬁ(l — e~ (3.0.1)
Puft) = 1= (75 (1= e ) (3.0.2)

Now, we will list the parameters of the model:
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A: Supplier disruption rate, the expected number of supplier disruptions

per unit time, time until disruption is distributed exponentially with rate A

1. Supplier recovery rate, the expected number of supplier recovery per

unit time, time until recovery is distributed exponentially with rate

a: Retailer disruption rate, the expected number of retailer disruptions per

unit time, time until disruption is distributed exponentially with rate «

D: Demand rate per unit time

F: Fixed cost per order

a: Unit variable ordering cost

h: Unit holding cost per unit per time

s: Lost sales cost per unit

The Decision Variables of the modified (Q,R) policy are

e R: Reorder point

e (): Order up to level

Retailer inventory will follow one of the six possible structures of retailer cycle.

The inventory level by time is given in Figure 3.5.
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Case A:

Case B:

Case C:

Case D:

Case E:

Retailer disrupted before inventory level reaches reorder point and supplier
is OFF at that time. Because of retailer disruption, inventory level hits zero

and no order can be placed until supplier turns into ON state.

When inventory level reaches reorder point the supplier is OFF. Therefore,
retailer cannot place an order. In Case B, retailer is disrupted before the
supplier recovery so inventory level hits zero. No order can be placed until

supplier turns into ON state.

Retailer disrupted before inventory level reaches reorder point and supplier
is ON at that time. After disruption, inventory level reaches zero and re-

tailer can place an order and level becomes () immediately.

Neither the retailer nor the supplier will be disrupted before inventory level
reaches reorder point. When the inventory level reaches the reorder point,

an order is placed to increase the inventory level up to Q.

When inventory level reaches reorder point but the supplier is OFF at that
time, retailer cannot place an order just in Case B. But in Case E, supplier
recovers before retailer disruption. After the supplier recovery, retailer can

placed an order to raise its inventory level up to Q.
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Case F: Retailer is not disrupted before inventory level hits zero. When inventory
level reaches reorder point, supplier is at OFF state and cannot turns into
ON state until inventory level hits zero. After the supplier recovery, retailer

can placed an order to raise inventory level up to Q.
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Figure 3.5: Cases
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We also summarize the cases in Figure 3.6 verbally.

Retailer distrupted before R

Supplier is ON at time t when retailer

distrupted C

Supplier is OFF at time t where retailer

distrupted

A

Retailer is not disrupted in the cycle
Supplier is OFF when inventory

level =R

Recover after 0 F

Retailer is disrupted after R
Inventory level = R
before it becomes 0

Supplier is ON when disrupted

D

Supplieris OFF at R
ON=dist,

Supplier is OFF at R
ON=dist.

E

B

Figure 3.6: Cases

To apply reward renewal theorem, we calculate expected total cost per order

cycle as E(C) and expected cycle length as E(T") and derive expected cost func-

tion per unit time. We need to consider all six cases while computing £(7") and

E(C). The calculations for finding the functions are done with Maple.

3.1 Expected Retailer Cycle Length

To calculate expected retailer cycle length E[T], we define the following random

variables:

e T} is the time of the first disruption for the retailer from the beginning

of the cycle as it is seen at Figure 3.7. We assume that the retailer is at

state ON at the beginning of the cycle, at time 0. The probability density

function is denoted by fr, (t) = ae

—at
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Retailer Disruption

I,

Figure 3.7: T}

e T is the length of the time, when inventory level is between Q and R in

an order cycle. In the Figure 3.8, we depict two different retailer cycles

where the retailer is disrupted before R in the first cycle and retailer is not

disrupted in the second cycle.
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Retailer Disruption

T I

Figure 3.8: 15

e T3 is the time, inventory level is less than R, or the waiting time between
the first time inventory level is less than or equal to R and the order arrival.

We can see T3 in Figure 3.9. The probability density function is denoted

by fr,(t) = e
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Expected cycle time is equal to E(Ty + T3).

We condition the random variables on the time of retailer disruption. While
finding T5, we first find the expected time if a retailer disruption occurs before
inventory level reaches reorder point. On the contrary, if there is no disruption at
the retailer, the 75 length will be %%. E[T3)] is calculated to determine waiting
time of supplier. i is the expected waiting time. We multiply this time with
its probability. There are two types of waiting times for supplier. First, when
inventory level is between (Q and R and if the retailer is disrupted when supplier
is not available, there is a waiting time for supplier. Second, if the retailer is
disrupted when inventory level is less than the reorder point and supplier is not

available since (@) — R)/D, there is again an expected waiting time for supplier

recovery. These two probabilities are used to calculate waiting time of supplier.
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E[T] =E[15] + E[T3]

E[Ty] = /0 T BT = ) (t)dt

Q-R

:/ ? tae_o‘tdt—i-u/ et
0 D

Q—R
D

EWHZAmﬂ%m:ﬂﬁwmt
5 [e'e)
(/0 " Ru(tjae dr+ P (? 5 ) /Q_R o0t dt)

D

1
¥

Now we can give our first theorem,

Expected retailer cycle length is:

THEOREM 3.1.1

A <e_ (Q-R)atxty) 1) _ l (e_a@D—R) B 1)
(a+A+v)y «

Proposition 3.1.1 E/T] is an increasing and concave function of Q-R. It does

E[T] = —

not depend on @) and R, independently.

PROOF Let us define Y =@ — R and a, A\, ¢ and D are all positive constants,

dE[T] _ X _ Y(at+A+y) 1 oY
ay) — Dg° b+ pe b
d’E(T Aat+A+y) — Yatitd) a oYy
d2(§[/)] =~ (D%p om0 - pz¢ P
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—(fg)} > (0 and % < 0 for all Y where Y=>0.

Hence, E[T] is a concave function of () — R.
Proposition 3.1.2 E[T] is a decreasing function of D.

PROOF «, A, and v are all positive constants,

dE[T] _  (Q-R) _(@=Ratrty) o p _a@-R)
aD) D2y © D “pz € b <0

Since the slope grows when demand rate increases, time is spent faster as it

also seen in Figure 3.10.

>

Order
Quantity, O

Inventory

» Time, t

Q/2D Q/D

Figure 3.10: Effect of Demand on Retailer Cycle Time

As mentioned before, we compare our expected cycle length with Qi et al.(2009).

Their expected retailer cycle length is:

BTy = Aw (1 af )) <1 B e_(Q)(a[tAer)) N (l n %) (1 e

B+A+9) (a+ A+
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where w is the waiting time and equals to

_ 1 a(A+y)
w= w(l + (a+B+A+w)B)

As we know, ( is the retailer recovery rate. Since the retailer is recovered
immediately in our model, we take § as infinity to compare two models. Also,
they have no reorder point, thus, we accept reorder point as zero in our expected
cycle length. When we set 5 = oo and reorder point to zero in our model, we see
that these two functions are the same.

limﬁ_mo E[TQ] = limR_m E[T]

3.2 Expected Cost of a Retailer Cycle

The cost function consists of ordering cost, holding cost and shortage cost.

e Ordering cost is divided in two parts which are fixed and variable cost.
Fixed cost does not depend the amount of goods ordered whereas, variable
cost is incurred for every unit ordered. Ordering cost depends on the size
of the order. Since the inventory is destroyed if retailer is disrupted in a
retailer cycle, in this case, Q units of goods should be ordered. Otherwise,

the amount of order is different.

e In any time, if there is any item in the inventory, holding cost should be

calculated. The areas are calculated as expected holding cost.

e If retailer is out of inventory and supplier is not available for ordering,

shortage cost is occurred.
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We define new variables for calculating the total expected cost:

(5 is the cost during T3

(5 is the cost during T3

t is the disruption time of retailer

x is the recovery time of the supplier

E[C] =E[Cy] + E[C5] + F

E[Cy] = / " E[CT: = A (1)t

% QQ _ R2 »00 -%
— il 2 —at —at —at
=h /0 (Qt — Dt*/2)ae™dt + h—QD ~/QBR ae” Ydt + a@) /0 ae” “dt+
POO(Q — R) xa(Q — R) ﬁ? . ae”dt
“5

We can verbally state E[Cy] as below:

E[C5] = holding cost if retailer is disrupted when the inventory level is between Q and R+
holding cost if retailer is disrupted when the inventory level is less than R+
variable ordering cost if retailer is disrupted when the inventory level is between QQ and R+

variable ordering cost if retailer is disrupted when the inventory level is less than R
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L, Q-R R —(Q-Dt)’ [~ .
E[C5] =Pu ( 5 )*h/@ </t _R@Z)e dr | ae”“dt+

sl's}

Q-R 2 _Q-R
D

P01(QBR) *h/D(Rm— D$2/2) (/oo Oze_‘”dt) e VT dr+
0 xX

+950

=

Q

P01(Q5R) * sD K (/OO (x—t+ QZ_)R)Qﬂe_Wd:c> e dt+
Ji

Q-R Q-R
J LR _Q-R

Q-R

Py ( E CLQA p e dt Ye Vdx

R/D

POl(Ql_)R) * G/OD(Q — R+ Dx) (/::_R ae“”dt) Ye Y dr

The second integral in the third term of Cj is equal to

o0 Q_R/ _wm B
/tQ_R(x t+ i) Je Yrdr =

D

- ~a TOC R ey —
/ | we d:r:+/t_Q_R( D e ¥dr =

— ===t =5

Q
D
| Q=R
R o
1/ —/ ? e Vi dr + (QD —t)e"”(t_%)
0
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We can verbally state E[C3] as below:

E[C3] = holding cost if retailer disruption before supplier recovery+

holding cost if supplier recovery before retailer disruption+

- R
lost sales cost if supplier recovers after disruption in the interval (QT’ Q/D)+

lost sales cost if disruption happens before +

- R
lost sales cost if retailer disruption happens after Qwhen supplier is OFF at ¢ +

D D

variable ordering cost if retailer disruption before supplier recovery-+

variable ordering cost if supplier recovery before retailer disruption

Then, expected cost of a retailer cycle is:
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3.3 Expected Average Cost per Unit Time

Renewal reward theorem is used while calculating expected average cost per unit

time E[G(Q, R)]. In this theorem, proportion of two different expected functions

gives the average of a function. In our problem, % gives expected average cost

per unit time. Since a cycle repeats itself again when it passes another cycle,

taking only one cycle is sufficient while calculating the expected function.
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3.4 EOQ with Lost Sales

EOQ with lost sales is an extension of classical EOQ model as shown in Figure
3.11. T is a decision variable represents the time with zero inventory, therefore
the demand is lost during this period. When inventory level drops to zero, we

wait for 7; until new order arrives.
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Average total cost per unit time for EOQ with lost is given below.

hs +sTiD + K

QD =="0p+7

lim C(Q,T}) =sD
T;—>00
T 2
dC(Q, 7)) _ @ n

a7, = 5D (s—c)Q — K
2
%:h%ﬁ-hﬂQ—F(C—S)ﬂD—K

Figure 3.11: A Retailer Cycle of EOQ with Lost Sales

We try to find the optimal values of @) and 7; in this model. We show that
if unit lost sales cost is small enough, optimal 7; goes to infinity and optimal )
is zero. If lost sales cost is reasonably large, optimal order quantity is the same
with optimal order quantity of the classical EOQ model and optimal 7} is zero.

For a given T; value, C(Q,T}) is a convex function of Q).

Proposition 3.4.1 C(Q, 1)) is a convex function of Q).

PROOF h, T; and D are all positive constants,

2
d 32((%)72) — % + R1; and

2
d 52((%’?1) > 0 for all Q
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Chapter 4

Solution Method

In previous chapter, we show that expected cycle time is increasing and concave
function of Q-R. However, we cannot know the structure of the expected average
cost per unit time function E[G]| and expected cost of a retailer cycle E[C]|. There-
fore, we scan the whole space for the all integer values of ordering quantity and
reorder point to understand the structure of functions as shown at Figure 4.1. R
is less than equal to @ since Q is order-up to level. We use two set instances for
experimental results. First set is generated by Sargut and Qi (2012) which will be
described next chapter in detail. Second set is modified version of Qi et al.(2009)
(shown in Table 4.1). Since the second parameter set includes more instances, we
only use the second instances for the solution method. We use ¢ programming

for the solution algorithm.
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Q

Figure 4.1: Scanned Space for Functions

Table 4.1: Second Parameter Set

Parameters Description Values
a 0.01,0.1, 1, 10
A 0.01,0.1,1, 10
P 6,12, 24, 48,96
s Shortage Cost 2¢
F Fixed Cost Cost 10, 50, 100
h Holding Cost 0.01,0.5,1,2
D Annual Demand Rate | 1,10, 100, 500
c Unit Ordering Cost 1,2,4,8

First, we start from E[C| to search. As it is shown in Figure 4.1, we inves-
tigate all expected average cost for all single instances. Totally, we have 15360
instances and we develop a search method to understand the structure of the
function. The search method can be seen in Algorithm 1. Generally, as ordering
quantity increases total expected cost increases. Hence, we check if there is a
decreasing in any point. We notice a difference for only three instances where
we can see at Table 4.2. In these cases, we see that only fixed cost can change
depends on the instances and the other variables are the same. The main dif-
ferences of these instances is total expected cost decreases one or more than one

time when ordering quantity increases. While «, A, holding cost, fixed cost are
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at their higher value, ¢ takes the smallest.

Algorithm 1

1: int decrease=0

2: for All parameters do
3: for R =0 to 100 do

4: for Q = R to 100 do

5: if previous cost< current cost then

6: decrease + +

7. if decrease > 0 then

8: Not an increasing function

Table 4.2: The Instances which decrease any Level

Parameters Description Instance 1 | Instance 2 | Instance 3
o} 10 10 10
A 10 10 10
Y 6 6 6
5 Shortage Cost 2 2 2
F Fixed Cost 10 50 100
h Holding Cost 2 2 2
D Annual Demand Rate 100 100 100
c Unit Ordering Cost 1 1 1

As it seen in the Figure 4.2, we show the total cost function Instance 1 (given

in Table 4.2). For a single instance, we start from reorder point equal to 0 and

evaluate for reorder values less than or equal to ordering quantity. In this in-

stance, we first obtain a slight decrease on the total cost function when reorder

point is 35. The cost function increases as ordering quantity increases until the

48 unit of ordering quantity then it continues to decrease until the 53 unit of

order. After Q is 53, it again increases.
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Figure 4.2: Total Cost Function of Instance 1, R=35
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Total cost function of the other instances (except the three instances shown

before in Table 4.2) can be seen in Figure 4.3. This instance depicted is o = 1,

A =10, v = 6, s 2, F 10, A 1. All other cost

function of QQ these instances have the same properties. They are all increasing
function. So, we can not say the cost function is concave like the expected time

function. We can only say the total cost function is increasing function in general.
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Figure 4.3: Total Cost Function for an Instance

We check 15360 cases when q is between r and 100, r is between 0 and 100.
There is total (q+1)(q+2)/2*15360 points are checked. Out of 79.119.360 points,
only 2.070 of them an unit increase of q decreases the E[C]. Total decrease is equal
to 2358. Likewise, if we extend our ¢ and r values to 500 out of 1.931.535.360,
119.812 points decreases the E[C]. We see the decreasing percentage is very low

in these two tested performed.
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We also analyze F[G(Q, R)] with the same method. We again check 79.119.360
points and we show that it is a unimodal function. Unimodal function has only
one local maximum or minimum extremum. While one side of the function is
monotonically decreasing, the other side is monotonically increasing as it seen in
Figure 4.4. In Figure 4.4 we only show on one instance that the function is uni-
modal but we know that when we do a search, all instances have same property.
To use binary search is effective method to find the minimum point of unimodal
functions. Also, binary search decreases the searching time. After define these
function as a unimodal function we also check the E[G] if it is convex. To un-
derstand the function is convex or not we do a search as it shown in Algorithm
2. We conclude that the E|G| function is unimodal function but not a convex

function.
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Figure 4.4: Total Average Expected Cost Function
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Algorithm 2

1: int notconvex=0
2: for All parameters do
3 for R =0 to 100 do
for Q = R to 100 do
if previous difference < current difference then
convex + +

if notconver > 0 then

Not a convex function

42



Chapter 5

Experimental Results

In this chapter, we use two different set of instances. We investigate the sensitivity
of optimal order quantity (Q*), reorder point (R*) and expected average cost per
unit time (C*). Besides, we also compare our solution with the optimal economic
order quantity level (@ ). While finding Q*, R* and C*, we again use the search
method. We scan all order quantities up to 3000 and all reorder points which are
less than or equal to current order quantity for all instances. With this search, we
find optimal order quantity and optimal reorder point that minimizes expected
average cost per unit time. Besides, we calculate ) for all single instance with
the formula of classical EOQ which is given 1.0.1. First instance set is given from
Sargut and Qi (2012). The second instance set is generated by inspired from Qi et
al. (2009). We make minor changes at the data set to provide more appropriate

result for our problem.
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5.1 First Set of Instances

To analyze our policy and its sensitivity to problem parameters, we design nu-
merical experiments. We use 1728 different problem instances given in Sargut
and Qi(2012) also shown in Table 5.1. They define vulnerability of supplier (S2),
which is calculated as the ratio of supplier disruption rate to its recovery rate.
We conclude that reorder point is always zero when we use these instances. To
see the effect of fixed cost, unit ordering cost and demand rate, several figures are
shown. Since the trend is same for all instances for the variables, we took only a

few instances among them.

Table 5.1: Parameter Set of Sargut and Qi(2012)

Parameters Description Values
« 10
A+ 10, 20
S2 Vulnerability of Supplier 0.25,0.5,1,2,5,10
s—c Difference between lost sale and unit ordering costs 2,5, 7
F Fixed Cost 100, 200, 400, 800
h Holding Cost 0.5,1,2,4
D Annual Demand Rate 250, 500, 1000

We use the same instance except one parameter of interest. Other parameters
are kept constant.
The effect of unit ordering cost: At Figure 5.1, we sce that when unit order-
ing cost increases total expected cost also increases. On the other hand, optimal

ordering quantity decreases if unit ordering cost increases as it seen at Figure 5.2.
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Figure 5.1: Effect of Unit Ordering Cost on Total Expected Cost
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Figure 5.2: Effect of Unit Ordering Cost on Ordering Quantity

The effect of the holding cost: The order quantity is not very sensitive
to the holding cost. Ordering quantities are almost the same for all different
holding cost values. Although there is not a big difference between the ordering

quantities, smallest holding cost always gives the highest ordering quantity:.
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The effect of fixed ordering cost: Total expected cost and optimal or-
dering quantity are also directly proportional to the fixed cost which can be seen
at Figures 5.3 and 5.4. When fixed cost increases, ordering quantity and total

expected cost also increases.
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Figure 5.3: Effect of Fixed Cost on Total Expected Cost
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Figure 5.4: Effect of Fixed Cost on Order Quantity

The effect of demand rate. Total expected cost and optimal ordering
quantity are directly related to demand rate. When demand rate increases total
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expected cost and optimal ordering quantity also increase. If reorder point is

positive, it again increases as demand rate increases.
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Figure 5.5: Effect of Demand Rate on Total Expected Cost
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Figure 5.6: Effect of Demand Rate on Order Quantity
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5.2 Second Set of Instances

Second part in the experimental results, we use the instances which are shown
in Table 4.1. There are 15360 different instances. Unlike the first part of exper-
iments, we observe that adding reorder point to the model reduces the expected
cost per unit time. In total, there are 150 instances out of 15360 with non-negative

reorder points where the optimal cost is achieved.

Reorder point gives a positive value and using reorder point is useful in these

cases which are stated below:

e The ratio of retailer and supplier disruptions are always less than one. It
means that supplier is disrupted more frequently than the retailer. In this
situation reorder point can be used. As the contrary to that case, if the
retailer is disrupted more frequently than supplier, retailer’s inventory will
tend to be destroyed, then it is unreliable and more costly to keep inventory
on hand. Hence, it depends both retailer and supplier disruption rates. In
other words, if the supplier is disrupted frequently and the supplier disrup-

tion occurs rarely, it is necessary to use reorder point for reducing cost.

e Supplier recovery rate also affects the reorder point, if the supplier is dis-
rupted frequently and also recovered at the same rate, reorder point is
useless. However, the value of reorder point increases as recover time of the

supplier increases.

48



We also investigate the number of instances according to a parameter values
when reorder point is positive. As it shown in Table 5.4, when « is 0.01, which
is the smallest value of this variable takes positive reorder point values 117 times
out of 150 instances. Since « is the retailer disruption rate, it proves that if
the retailer not disrupted frequently, it is less costly to keep inventory on hand
and order when inventory reaches reorder point. As a consequence, when « is 1
and 10, all instances have zero reorder point. When we look supplier disruption
rate )\, it is seen that if the supplier disrupted frequently, adding positive reorder
point is necessary to reduce cost. As long as supplier recovery rate 1) decreases,
number of instances of which take positive reorder point decreases. It means, if
the recovery of disruption takes too much time, it is meaningful to keep inventory

on hand to avoid shortage cost and total it also decreases total cost.

Table 5.2: Number of Instances where reorder point is positive for the variable «

« | Number of Instances
0.01 117
0.1 33
1 0
10 0

Table 5.3: Number of Instances where reorder point is positive for the variable A

A | Number of Instances
0.01 0
0.1 0

1 10

10 140
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Table 5.4: Number of Instances where reorder point is positive for the variable 1)

1) | Number of Instances
6 56
12 44
24 30
48 15
96 )

In Table 5.5, we see that holding cost results in positive more than the other
variables. If the holding cost is smaller it is less costly to keep inventory on hand.
123 instances takes positive reorder point when A is 0.01. Secondly, as demand
rate increases number of instances with positive reorder point also increases as
shown in Table 5.7. As demand rate increases, expected cycle length decreases.
Since s = 2 X ¢ number of instances with positive reorder point are the same for
all the values (see Table 5.6 and Table 5.8). If the unit ordering cost increases it
is more likely to see positive reorder point to avoid high unit ordering cost. Like-
wise, when the retailer out of inventory, shortage cost occurs. In this situation
reorder point reduce the total cost if shortage cost is high. Lastly, as can be seen
from the Table 5.9 as the fixed ordering cost F' decreases, number of instances

with positive reorder point increase.

Table 5.5: Number of Instances where reorder point is positive based on value h

h | Number of Instances
0.01 123
0.5 20

1 7

2 0
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Table 5.6: Number of Instances where reorder point is positive based on value ¢

Number of Instances

c
1 14
2 24
4 40
8 72

Table 5.7: Number of Instances where reorder point is positive based on value D

D | Number of Instances
1 0
10 7
100 47
500 96

Table 5.8: Number of Instances where reorder point is positive based on value s

s | Number of Instances
2 14
4 24
8 40
16 72

Table 5.9: Number of Instances where reorder point is positive based on value F

F' | Number of Instances
10 88

50 39
100 25

Independent from reorder point, we observe that total expected cost function

and optimal ordering quantity are very sensitive to « value. As it shown in

Figure 5.7 and 5.8. These two figures are opposite each other. As « increasing,
total expected cost also increases whereas, optimal ordering quantity decreases.

Although this relationship is seen for all instance for «, it is not valid for v and

A

3 effect the optimal ordering quantity as we can

A separately. We found that

A

2 increases optimal ordering quantity

see at Figure 5.9. It can be interpret as
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also increases. In other words, if the supplier disrupted frequently and recovered

slowly retailer should order more goods.
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Figure 5.7: Effect of o on Total Expected Cost
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Figure 5.8: Effect of a on Optimal Ordering Quantity
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However, when we look only %, we see that Q* is insensitive to . While all
other parameters kept constant, change in ¢ does not affect Q*. In Figure 5.10,
there are some instances and we see that while ¢ increases, ordering quantity is

same if the other variables keep constant.
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Figure 5.10: Effect of ¢ on Ordering Quantity
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5.3 Comparison with Economic Order Quantity

To see the value of our inventory problem with disruptions, we calculate EOQ
value and put this ordering quantity to our expected average cost per unit time
for all instances. We included all instances when we compare two expected av-
erage cost per unit time. As a result of our experiments, we found 150 instances
which have positive reorder point and and 15210 instances with zero reorder point.

Hence, we use the all 15360 instances to find the improvements on EOQ.

Lets define (0 as the optimal ordering quantity with using EOQ model and
E[G(QE,0)] is the expected average cost per unit time with using @z and R = 0.
While calculating the percentage improvement from EOQ model we use the equa-

tion below:

o ElG(Qe0)] — E[G(Q", R)]
P [EG(Qp, 0)]

x 100 (5.3.1)

Improvements are changes between 0% and 98%. Our average expected cost
function gives always better or equally same results. In Figure 5.11, a histogram
which gives the number of instances according to their improvements is shown.
We see that almost 7700 instances are improved between 0% and 10%. Although,
there are instances without any improvement, up to 98% improvement is achieved

from some instances when we compare two models. In the Table 5.11, we show
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some instances according to their improvement order. 3814 of the instances are

not improved where we can also say the optimal ordering quantities are the same

in two problems. The remaining 11546 instances are improved. In Table 5.10, we

can see some different instances which is not improved.

000

800D

7000

6000

MNumber of instances

[0,10] (10,20] (20,30] (30,40] {40,50] (50,60] (60,70] (70,80] (B0,50] (90, 100]
Improvements on Percantage
Figure 5.11: Improvement for all Instances
Table 5.10: Instances Samples without any Improvement
Parameters Description Instance 1 | Instance 2 | Instance 3
a 0.01 0.1 0.01
A 0.01 0.01 0.01
) 12 6 96
S Shortage Cost 8 8 16
F Fixed Cost Cost 10 10 50
h Holding Cost 2 0.5 2
D Annual Demand Rate 1 1 100
c Unit Ordering Cost 4 4 8

Common properties of the instances with highest improvements are listed

below:

e When the improvement is between 95-98% (highest improvements), o = 10
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for all instances. It means as the retailer disruption rate is more frequent,

improvement of percentage increases.

e When the improvement is between 95-98%, h = 0.01 for all instances. If

the holding cost takes the lowest value, improvement is higher.

e Generally, instances with highest shortage cost unit ordering cost values,

give the highest improvements.

e Demand rate does not affect the improvement considerably. Almost all

values of demand rates exist in highest improved instances.

Also Q*/Qp decreasing function of «r as it seen in Figure 5.12. The effect of
other variables decreases as « increases. For instances, when o = 0.01 there is a
huge difference between @Q* and Q) in some instances. However, when o = 10

there is no significant difference between QQ* and Qg relatively.

a=0.01 a=01 a=1 a=10

Figure 5.12: Effect of o on Q*/Qp
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At Figure 5.13, A does not affect Q*/Qp but the effect of other variables

increase as A increases.
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As 1) increases the effect of other parameters decrease, in general Q*/Q g has

the same structure repeating itself as it seen at Figure 5.14.
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a A Y| F
10| 0,01 | 48| 10
101 0,01 | 96 | 10
101 0,01 | 24| 10
101 0,01 | 12| 10
100,01 | 6 | 10
10 | 0,01 | 96 | 100
101 0,01 | 48 | 100
101 0,01 | 24 | 100
10| 0,01 | 12 | 100
101 0,01 | 6 | 100
10| 0,01 | 96 | 100
101 0,01 | 48 | 100
101 0,01 | 24 | 100
10| 0,01 | 12 | 100
101 0,01 | 6 | 100
10 { 0,01 | 96 | 50
10| 0,01 | 48| 50
10| 0,01 | 24| 50
101 0,01 | 12 | 50
100,01 | 6 | 50
10 { 0,01 | 96 | 50
10| 0,01 | 48| 50
10| 0,01 | 24| 50
10 | 0,01 | 12 | 50
10{ 0,01 | 6 | 50
10 { 0,01 | 96 | 50
10 { 0,01 | 48 | 50
101 0,01 | 24| 50
101 0,01 | 12 | 50
100,01 | 6 | 50
10 { 0,01 | 96 | 10
10 { 0,01 | 48 | 10
10| 0,01 | 24| 10
100,01 | 12| 10
100,01 | 6 | 10
10 { 0,01 | 96 | 100
10| 0,01 | 48 | 100
10| 0,01 | 12 | 100
101 0,01 | 24 | 100
101 0,01 | 6 | 100
10 | 0,01 | 12 | 100

h s | D | Imp%
0,01 16| 10 98
0,01 (16| 10 98
0,01 16| 10 98
0,01 |16 10 98
0,01 |16 | 10 98
0,01 | 16 | 100 98
0,01 |16 | 100 98
0,01 | 16 | 100 98
0,01 | 16 | 100 98
0,01 | 16 | 100 98
0,01 | 16 | 500 97
0,01 | 16 | 500 97
0,01 | 16 | 500 97
0,01 | 16 | 500 97
0,01 | 16 | 500 97
0,01 | 16 | 100 97
0,01 | 16 | 100 97
0,01 | 16 | 100 97
0,01 | 16 | 100 97
0,01 | 16 | 100 97
0,01 |16 | 10 97
0,01 |16 | 10 97
0,01 16| 10 97
0,01 16| 10 97
0,01 |16 | 10 97
0,01 | 16 | 500 96
0,01 | 16 | 500 96
0,01 | 16 | 500 96
0,01 | 16 | 500 96
0,01 | 16 | 500 96
0,01 | 16 | 100 96
0,01 | 16 | 100 96
0,01 | 16 | 100 96
0,01 | 16 | 100 96
0,01 | 16 | 100 96
0,01 |16 | 10 96
0,01 |16 10 96
0,01 | 8 | 100 96
0,01 16| 10 96
0,01 16| 10 96
0,01 (16| 10 96

CO OO CO OO0 OO CO OO OO W=~ OO0 OO OO OO CO OO OO CO OO OO CO OO OO OO OGO CO OO OO CO OO OO OO OO CO OO OGO OO OO OGO CO OO OO OO OO CO 0O CO| O

101 0,01 | 24| 10 0,01 16| 1 95
101 0,01 | 48| 10 0,01 16| 1 95
10 1 0,01 | 96 | 10 0,01 16| 1 95
101 0,01 | 12| 10 0,01 16| 1 95
101 0,01 | 6 | 10 0,01 16| 1 95

Table 5.11: Instances Samples with Higher Improvement
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5.4 Approximation for )*

In this chapter, we try to find an approximate equation for optimal ordering
quantity using our test results. We only consider cases with zero optimal reorder

point.

THEOREM 5.4.1 Let us define K as a constant and f as an arbitrary function.

When we consider cases with h > 0.5
Q" ~ K« VFD * (A 0,1, 5,¢,h)

PROOF When all A\, a, ¢, ¢, h, and D are constant, Q* is directly proportional
to vVF. When all X, a, ¢, ¢, h, and F are constant, Q* is directly proportional

to v/D. (Q* is an increasing function of 1/ Vh.
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Chapter 6

Conclusion and Future Study

In this study, a two-echelon continuous review inventory problem where supplier
and retailer are subject to random disruptions is considered. We try to mitigate
supplier and retailer disruptions by using inventory control policy. Supplier have
ON and OFF periods. However, when retailer is disrupted in a retailer cycle,
it recovers immediately. We investigate the structure of expected time function
and cost function separately and we conclude that expected time function is a
concave function. We modify Qi et al. (2009) model by adding reorder point
as a decision variable like ordering quantity and we use two different test cases
to analyze. We aim to show in which conditions reorder point helps to mitigate
supply disruptions. Besides, we also analyze the optimal ordering quantity and
optimal cost of a retailer and we compare the optimal ordering quantity with the
classical EOQ. We deduce that, our model gives a solution with a better cost

than EOQ.

As a future study, it can be assumed that there is a correlation between

retailer and supplier disruptions. Also, we want to consider backordering and
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partial backordering cases. Moreover, instead of deterministic demand, stochastic
demand can be considered. Another extension can be inclusion of perishability

instead of destroying all inventory on hand.

61



Appendices

62



Appendix A

Search Code

#include
#include
#include
#include

<stdio.h>
<gtdlib.h>
<math.h>
<string.h>

double cost(double D, double Q, double R, double 1,
double p, double a,double s, double h, double c,
double Fx) {

return Fx+(1 / (1 + p) * (0.1el - exp(-(Q - R) / D * (1

+ p))) * (-h * a x (-0.2e1 * D * exp(R * (a + p) /
D) * R * a - 0.2el * D * exp(R * (a + p) / D) x R x
p + 0.2el * pow(D, 0.2e1) * exp(R * (a + p) / D) + R

* R * a *x a + 0.2e1l * R *x R *x a *x p + R *x R *x p *x p

- 0.2e1 * pow(D, 0.2el1)) / (pow(a, 0.3el) + 0.3el *

a x a *xp + 0.3el *x a *x p x p + pow(p, 0.3el)) x*
exp(-(a * Q + p *x R) / D) / 0.2e1 - h * p x (-0.2el
x* D * exp(R x (a + p) / D) * R *x a - 0.2el * D * exp
(R * (a+p) /D) R *p+ 0.2el x pow(D, 0.2el) *

exp(R * (a + p) / D) + R
* a * p+ R *x R * p *x p

*

R x a x a + 0.2el *x R x R
0.2el * pow(D, 0.2el1)) /

D * exp(-(a *x Q + p * R) / D) / (pow(a, 0.3e1) + 0.3
a

el * a * a *x p + 0.3el x*
/ 0.2el + c
/ D) + c *

* a - exp(R

* p *x p + pow(p, 0.3el))
Q * exp(-a * (Q - R) / D) * exp(-p * R
* (exp(R * (a + p) / D) * Q * a + exp(

(a + p) /D) *Rx*x p + D *x exp(R * (a

*
p

R *x (a+p) /D) *Q *x p - exp(R *x (a + p) / D) *x R
*
a

+p) / D) -
) / D) / (a

*x Q - Q *x p - D) exp(-(a * Q + p *x R
a + 0.2e1 *x a *x p + p * p) + s *x D *x a

*

* (exp(R * (a + p) / D) - 0.1el) * exp(-(a *x Q + p
* R) /D) / (a+p) / p)+s *xDx1/ (1 + p) *
(0.1e1 - exp(-(Q - R) / D * (1L + p))) * exp(-a *x Q /

D) x*

(0.1e1 / p + (exp(-p * R/ D) * R * p + D

exp(-p * R / D) - D) / D/ p) + 1 x (exp(-(Q - R) /
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D x (1 + p)) * a + exp(a * (Q - R) / D) 1 + exp(a
* (Q -R) /D) xp-a-1=-mp)/ (1L +p)* exp(-a *
(Q -R) /D) / (a+1+p)*xs *xD/p-h/axQ
(exp(-a * (Q - R) / D) * Q * a - exp(-a * (Q - R)
D) * R * a + D * exp(-a *x (Q - R) /D) - D) / D +
* pow(a, -0.2e1) / D * (exp(-a *x (Q - R) / D) * Q
Q * a *x a - 0.2e1 * exp(-a * (Q - R) / D) * Q * R
a x a + exp(-a x (Q -R) /D) *R xR *x ax*xa+
.2el * D x exp(-a * (Q - R) / D) * Q * a - 0.2el =
* exp(-a * (Q - R) / D) * R *x a + 0.2el * pow(D,
.2el1) * exp(-a * (Q - R) / D) - 0.2el *x pow(D, 0.2
el)) / 0.2e1 + h *» (Q * Q - R * R) / D *x exp(-a * (Q
- R) /D) / 0.2e1 + ¢ x Q * (0.1el - exp(-a * (Q -
R) / D)) + (0.1el - 1 / (1 + p) * (0.1el - exp(-(Q -
R) / D% (1L + p)))) » c * (Q - R) * exp(-a *x (Q - R
) / D))

O U O % % B N %

}

double time(double D, double Q, double R, double 1,
double p, double a){

return -(exp(-(Q - R) * (a + 1 +p) /D) - 1) 1 / (a
+ 1+ p) / p - (exp(-a *x (Q - R) / D) - 1) / a;

}

double eoq(double D, double h, double c, double Fx){

return sqrt ((2xFx*D/h));

}

void deney (){
double k; int v; int vv;
double k_1ls;
double minall=99999999999999999999;
double min=99999000000000000000;
double a=10;
double 1=5;
double p=12;

double D=1000;
double Fx=60;
double c=2;
double s=10;

double h=0.2;

double b=999999999;
int q=100;
int r=50;
int count=0;
double lambda[4]={0.01,0.1,1,10};
double psil[5]={6,12,24,48,96};
double holding[4]1={0.01,0.5,1,2%};
double fixedcost[4]={10,50,100}%};
double demand[4]={1,10,100,1000};
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double unitcost[4]={1,2,4,8};
double alpha[4]={0.01,0.1,1,10%};
int r_temp;

int gq_temp;

int gqls_temp;

float q_eoq;

FILE xfinput;
finput=fopen("analiz.txt","w");

for(int t=0; t<=0; t++){

D=demand [t];

printf ("demand: %f\n",D);

for (int j=0; j<=2; j++){

Fx=fixedcost[j];

printf ("fixedycost: %f\n" ,Fx);

for(int i=0; i<=3; i++)A

h=holding[i];

printf ("holding: %f\n",h);

for(int i1i_d=0; i_d<=3; i_d++){

l=lambdali_d];

printf ("lambda: %f\n",1);

for(int z=0; z<=3; z++){

a=alphalz];

for(int w=0; w<=4; w++){

p=psilwl;

for(int ti=0; ti<=3; ti++){

c=unitcost[ti];

for(int ss=0; ss<=0; ss++){

s=unitcost[ti]*2;

fprintf (finput ,"%0.2f,%0.2f,%0.2f,%0.0£f,%0.0f
%50.2f,%0.0f,%0.0f,",a,1l,p,Fx,c,h,s,D);

min=9999999999999999999999;

g_eog=eoq(D,h,c,Fx);

for(int q=0;q<=3000;q++){

for(int r=0;r<q;r++){

k=cost(D,q,r,l,p,a,s,h,c,Fx)/time(D,q,r,1,p,a);

if (k<min)A{

min=k;

r_temp=r;

q_temp=q;

T}

double eoq_cost;

eoq_cost=cost(D,q_eoq,0,1,p,a,s,h,c,Fx)/time (D,
q_eoq,0,1,p,a);

fprintf (finput,"%2d,%2d,%0.0£,%0.0£,%0.0f\n,",
q_temp, r_temp, min, g_eoq, eog_cost);

iSSSgaa,
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fclose(finput);
+
int main ()
{
double a=1;
double 1=0.1;
double p=12;
double D=1000;
double F=6;
double s=0;
double h=0.2;
double b=9999999999999999999999999;
double c=2;
int Q=100;
int R=0;
double cost;
deney () ;
system("pause") ;
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