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ABSTRACT

APPLICATION OF VECTOR SPACE MODELS TO
DETECT SEMANTICALLY NON-COMPOSITIONAL

WORD COMBINATIONS IN TURKISH

LEVENT TOLGA EREN

M.S. in Department of Natural and Applied Sciences

Graduate School of Natural and Applied Sciences

Supervisor: Asst. Prof. Dr. Senem KUMOVA METİN

August 2016

The semantic compositionality defines the relation between the meanings of word

combinations and their components. In non-compositional expressions, the words

combine to generate a different meaning. The identification of non-compositional

expressions may support several natural language processing tasks such as ma-

chine translation, word sense disambiguation and language generation. The ob-

jective of the thesis is exploring the performance of vector space models in detec-

tion of non-compositional expressions in Turkish.

In this thesis, a data set of 2229 two-word combinations that is built from

six different Turkish corpora is utilized. Three sets of five different vector space

models are employed in the experiments. The evaluation of models is performed

using three metrics: precision, recall and F-measure. The experimental results

show that the model that measures the similarity between the vectors of word

combination and the second composing word produced higher average F-scores

for all testing corpora.

Keywords: semantic compositionality, vector space model, natural language pro-

cessing.
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ÖZ

TÜRKÇEDE ANLAMSAL BİRLEŞİMİ OLMAYAN
KELİME GRUPLARININ TESPİTİNDE VEKTÖR

UZAY MODELLERİNİN UYGULANMASİ

LEVENT TOLGA EREN

Fen Bilimleri Enstitüsü, Yüksek Lisans

Fen Bilimleri Enstitüsü

Tez Danışmanı: Asst. Prof. Dr. Senem KUMOVA METİN

Ağustos 2016

Anlamsal birleşimlilik, kelime kombinasyonları ve bunların parçalarının anlam-

ları arasındaki ilişkiyi tanımlamaktadır. Anlamsal birleşimli olmayan ifadelerde

kelimeler bir araya gelerek farklı anlamlar meydana getirmektedir. Anlamsal

birleşimli olmayan ifadelerin tanımlanması makine çevirisi, kelime anlamını be-

lirginleştirme ve dil üretme gibi birçok dil işleme görevlerini destekleyebilmekte-

dir. Bu tez çalışmasının amacı, Türkçe’de anlamsal birleşimli olmayan ifadelerin

tespitinde uzay vektör modellerinin performanslarını araştırmaktır.

Bu tezde altı farklı Türkçe derlemden elde edilen 2229 adet ikili kelime kom-

binasyonu içeren bir veri kümesi kullanılmıştır. Yapılan deneylerde beş farklı

vektör uzay modeli içeren üç küme kullanılmıştır. Bu modeller duyarlılık, anma,

ve F-ölçümü ölçütleriyle değerlendirilmiştir. Deneylerde tüm test derlemleri için

kelime kombinasyonu ve kombinasyonu oluşturan ikinci kelimeye ait vektörler

arası benzerliği ölçen modelin daha yüksek F değerleri ürettiği görülmüştür.

Anahtar Kelimeler : anlamsal birleşimlilik, vektör uzay modeli, doğal dil işleme.
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Öz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1 Introduction 1

1.1 Semantic Compositionality . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Non-compositionality and Multiword Expressions . . . . . . . . . 3

1.3 Objective of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background Research and Related Work 7

2.1 Vector Space Models . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

vi



3 Measuring non-compositionality in Turkish 13

3.1 Datasource . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 BilCol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.2 Bilkent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1.3 Ege . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.4 Leipzig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.5 METU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.6 Muder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2 Dataset Preparation . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Removal of punctuation . . . . . . . . . . . . . . . . . . . 17

3.2.2 Tokenization . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.3 Application of occurrence frequency methods . . . . . . . . 20

3.2.4 Annotation of set . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Experimental Results 33

5 Conclusion 39

A MATLAB Code for Vector Space Models 44

A.1 Initialization Segment . . . . . . . . . . . . . . . . . . . . . . . . 44

vii



A.2 Bigrams Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.3 Unigram VSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A.4 Bigram VSM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.5 Initialization of Stop Words . . . . . . . . . . . . . . . . . . . . . 49

A.6 Polysemy Free VSM . . . . . . . . . . . . . . . . . . . . . . . . . 50

A.7 Cosine Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

viii



LIST OF TABLES

2.1 Co-occurence vectors of yabancı dil and its components. . . . . . . 8

2.2 Distributional Semantics and Compositionality Shared Task

(DiSCo) 2011 participants with their applied methods and ap-

proaches. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Corpora statistics before removal of punctuation. . . . . . . . . . 18

3.2 Corpora statistics after removal of punctuation. . . . . . . . . . . 19

3.3 Total unique unigram counts of corpora. . . . . . . . . . . . . . . 20

3.4 Total unique bigram counts of corpora. . . . . . . . . . . . . . . . 20

3.5 First 10 most frequent bigrams in Bilkent corpus. . . . . . . . . . 21

3.6 First 10 pointwise mutual information scores of Muder corpus. . . 22

3.7 First 10 chi-square scores of Bilkent corpus. . . . . . . . . . . . . 24

3.8 First 10 the t-test scores of BilCol corpus. . . . . . . . . . . . . . 25

3.9 Sample data from gold standard. . . . . . . . . . . . . . . . . . . 25

3.10 Manually and automatically generated corpora sentences. . . . . . 28

3.11 Refined sentences and their statistics. . . . . . . . . . . . . . . . . 28

ix



4.1 Average precision, recall and F-measure values obtained from

Bilkent corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2 Average precision, recall and F-measure values obtained from

Muder corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.3 Average precision, recall and F-measure values obtained from

METU corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

x



LIST OF FIGURES

1.1 Overview of the thesis. . . . . . . . . . . . . . . . . . . . . . . . . 6

3.1 Distribution of news between sources. . . . . . . . . . . . . . . . 14

3.2 How pre-processing and annotation of set work. . . . . . . . . . . 17

3.3 How MATLAB code works. . . . . . . . . . . . . . . . . . . . . . 27

4.1 Average F-measure curves of models from Bilkent corpus. . . . . 36

4.2 Average F-measure curves of models from Muder corpus. . . . . 37

4.3 Average F-measure curves of models from METU corpus. . . . . 38

xi



Chapter 1

Introduction

Humans are gifted to handle and process the speech in natural language. We

can easily understand the meaning of each component in the speech and predict

its meaning. But how about machines ? Can they truly mimic humans about

this ? Today this is a formidable task for machines while humans are sufficient in

understanding multiword units like phrases. Currently, in semantic field technolo-

gies like search engines hold importance on human life. But these technologies

are approaching human language at word level. Existing systems does not pos-

sess higher level semantic technologies like phrases. We can give some potential

applications such as question answering, intelligent search engines, bio-medical

applications. Vocabulary of a language is limited but its generative ability for

combinatorial expressions is not. Thus word level methods fail to model phrasal

semantics no matter how many word we use. Therefore a good model which aims

to capture language should be generative. Compositional semantics involves here

to take word level research to phrasal semantics. In the following sections, we

are going to explore semantic compositionality, then we will give details about

non-compositionality and multiword expressions. Finally we will state objective

of the thesis and our contributions.

1



CHAPTER 1. INTRODUCTION 2

1.1 Semantic Compositionality

In principle of compositionality, Pelletier [22] states that definition of an expres-

sion1 is a function of the meaning of its components (words) and the way in which

the parts are combined. Baldwin [7] describes compositionality as the degree to

which the features of the parts of an expression combine to predict the features

of the whole. Also he states that though the compositionality is generally consid-

ered in context of semantic compositionality, it is possible equally to talk about

lexical, syntactic and pragmatic compositionality.

In this thesis, the notion of compositionality is limited to semantic compo-

sitionality of expressions that is composed of two consecutive words defined as

bigram. In this perspective, compositionality is the degree of relation between

the meaning of expression and the individual meanings of its constituents. In

compositional expressions, the meaning of expression can be predicted from the

meanings of its constituents. For example, the two-word expression trafik ışığı is

a compositional expression (to some degree). The term trafik ışığı corresponds

to signalling devices positioned at road intersections, pedestrian crossings etc. to

control the flow of traffic. A person who knows the meanings of the words trafik

and ışığı may guess that the term points to an object that includes ışık and is re-

lated somehow to trafik. In non-compositional expressions the combined meaning

of words is unrelated to individual meanings of its components. For instance, the

two-word expression kanı bozuk is a fully non-compositional expression. Even if

a person is a native speaker of Turkish, he may not predict the meaning of kanı

bozuk by the meanings of kanı and bozuk.

1Expression is a group of words.



CHAPTER 1. INTRODUCTION 3

1.2 Non-compositionality and Multiword Ex-

pressions

The concept of compositionality/non-compositionality is closely related to the

notion of multiword expressions. Multiword expressions are defined to be groups

of words that inclined to co-occur more frequently than by chance and they are

either idiosyncratic or decomposable into multiple words [7]. Multiword expres-

sions appears often in the natural languages. Identifying multiword expressions

in random text clusters is a formidable problem. The identification of multiword

expressions in text is important for a variety of areas in computer science such as

information retrieval, machine translation, language generation, question answer-

ing, part of speech tagging and parsing. For example, if the expression ağzından

baklayı çıkarttı is not considered as a single unit of meaning in the sentence Ayşe

sonunda ağzından baklayı çıkarttı in machine translation, the sentence is trans-

lated to Ayşe finally remove the beans from her mouth erroneously. The correct

translation is Ayşe finally spilled the beans.

Extraction of multiword expressions is a challenging task since there are no

known rules that formulates the construction of all type of multiword expres-

sions. Therefore, we will address the notion by spotting some characteristics of

multiword expressions that are given in the study of Baldwin [7]. These notions

include semantic or pragmatic idiomaticity, lexico-syntactic idiomaticity, situat-

edness, institutionalisation and translatability [7].

Semantic or pragmatic idiomaticity concerns multiword expressions whose

contents greatly differ from the semantics or pragmatics of its components ap-

pearing distinctly. Constituents of non-compositional multiword expressions in-

clined to co-occur with some specific words within a wide set of synonyms. These

preferences are called selectional preferences. For example, sert kahve is a mul-

tiword expression though katı kahve that includes the synonym of the first word

in the example is not a multiword expression.

Situated multiword expressions are related with a constant pragmatic point.
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These expressions used in specific circumstances like a period, a place or by

people that have a special characteristic. For example, iyi şanslar is a multiword

expression which is used in certain circumstances.

Institutionalised multiword expressions (e.g. tuzu biberi) are recognized as

lexical terms, through continuous use over time. These multiword expressions

are semantically and syntactically compositional, but statistically idiosyncratic.

Multiword expressions are not usually word to word translatable into another

languages. For example, etekleri zil çalmak is translated to English skirts play

bell by word to word translation. Though the correct translation meaning should

give someone is getting overly exited.

Aforementioned multiword expression features indicate that in a majority of

the multiword expressions the meaning of the multiword expression is not only

directly connected to the individual meanings of the constituents. For example:

1. When a word in a multiword expression is exchanged with its synonym, the

new combination is not a multiword expression. For example, sert kahve

→ katı kahve.

2. If the order of the words change in a multiword expression, the new combi-

nation is not a multiword expression (e.g. ver elini → elini ver)

3. When a multiword expression is used in a different context (situation) the

expression is not a multiword expression. (e.g. Adamı ayağının tozuyla

kodese tıktılar. → Eve ayağının tozuyla girme, halılar kirleniyor.)

The multiword expressions with characteristics that force the properties such

as the use of same word (not even synonym), same word order, same periods

(similar situation) are accepted as examples of non-compositional expressions.

We accepted that a majority of multiword expressions (idioms, technical

terms, named entities, some phrasal verbs) are non-compositional expressions

as in the study of Bu et al. [9] and Choueka [12].
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1.3 Objective of Thesis

The objective of the thesis is exploring the performance of vector space models in

detection of non-compositional expressions in Turkish. Inline with this objective,

a dataset of 4800 bigrams are extracted from 6 different Turkish corpora by the

use of occurrence frequency methods (chi square, occurrence frequency counts,

pointwise mutual information and t-test). This dataset is annotated by 4 different

human judges. The dataset is utilized in the experiments of vector space mod-

els that are previously proposed to measure the semantic compositionality/non-

compositionality in different languages. The contribution of the thesis that vector

space models in detection of semantic compositionality in Turkish is firstly stud-

ied. In Figure 1.1, the flowchart gives a overview to the general structure of the

thesis.
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Figure 1.1: Overview of the thesis.



Chapter 2

Background Research and

Related Work

The chapter covers the definition of vector space models and major works on

measuring the non-compositionality in language.

2.1 Vector Space Models

In distributional hypothesis, Rubenstein & Goodenough [26] states that words

with similar meanings will occur with similar neighbours if enough text material

is available. Also Firth [15] states that you shall know a word by the company it

keeps. Distributional hypothesis is also called as distributional semantics.

In distributional semantics, a word is expressed by its neighbouring words

targeted with their occurrence frequency and the context of a target word is

defined as its neighbouring words in a fixed window size. One can tell for a given

two words are similar if they have a similar distribution of contexts. For example

ev and apartman generally occur with context words like kira, balkon, satılık etc.,

gives a pattern to computational models that ev and apartman may be similar.

7
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ingilizce yöre kitap büyük dernek
yabancı 9 3 8 2 1

dil 7 4 7 3 1
yabancı dil 6 1 6 1 0

Table 2.1: Co-occurence vectors of yabancı dil and its components.

In distributional semantics, Vector Space Models (VSM) have become a con-

ventional structure for describing meaning of words [29]. It is accepted that the

words that tend to co-occur frequently with the targeting word/word combina-

tion constitute the meaning of the target. In VSM, each word/word combination

may be expressed as a multi dimensional context vector where each dimension

stores the co-occurrence frequency of a neighbouring word. The neighbouring

words are the words that co-occur with the target word/word combination in a

predefined windows size. The window size may vary and is commonly limited to

the sentence or the text length. In Table 2.1, vectors for the targets yabancı, dil

and yabancı dil are given as an example. In Table 2.1, the target word yabancı

is co-occurring with the words ingilizce for 9 times, yöre for three times. In this

example, ingilizce and kitap are given as good representatives, yöre and dernek

are given as disturbing (bad) representatives for the yabancı dil concept.

2.2 Related Work

In recent years, there has been a growing awareness in the NLP field about

problems related to compositionality. Several special interest workshops have

been arranged and discussed issues like automatically acquiring semantic compo-

sitionality [8]. In Table 2.2, proposed methods in Distributional Semantics and

Compositionality 2011 (DiSCo 2011 ) are summarized.

Any NLP system that does semantic processing relies on the assumption of

semantic compositionality: the meaning of a phrase is determined by the mean-

ings of its parts and their combination. However, this assumption does not hold

for lexicalized phrases such as idiomatic expressions. In particular, while distri-

butional methods in semantics have proved to be very efficient in tackling a wide
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Applied Methods Institution Team Approach
Duluth-1
Duluth-2
Duluth-3

Dept. of Computer Science,
University of Minnesota

Ted Pedersen
statistical
association measures:
t-score and pmi

JUCSE-1
JUCSE-2
JUCSE-3

Jadavpur University
Tanmoy Chakraborty, Santanu Pal
Tapabrata Mondal, Tanik Saikh,
Sivaju Bandyopadhyay

mix of statistical
association measures

SCSS-TCD:conf1
SCSS-TCD:conf2
SCSS-TCD:conf3

SCSS,
Trinity College Dublin

Alfredo Maldonado-Guerra,
Martin Emms

unsupervised WSM,
cosine similarity

Cosine-Add/Mult/Alm
Center for Mind/Brain Sciences,
University of Trento

Eva Maria Vecchi,
Marco Baroni,
Roberto Zamparelli

cosine similarity

UCPH-simple.en University of Copenhagen
Anders Johannsen, Hector Martinez,
Christian Rishøj, Anders Søgaard

support vector regression
with COALS-based
endocentricity features

UoY: Exm
UoY: Exm-Best
UoY: Pro-Best

University of York, UK;
Lexical Computing Ltd., UK

Siva Reddy, Diana McCarthy,
Suresh Manandhar,
Spandana Gella

exemplar-based WSM
prototype-based WSM

UNED-1: NN
UNED-2: NN
UNED-3: NN

NLP and IR Group at UNED
Guillermo Garrido,
Anselmo Peñas

syntactic VSM,
dependency-parsed UKWaC,
SVM classifier

DTK
DDTK

DISP University of Rome
Fabio Massimo Zanzotto,
Lorenzo DellArciprete

distributed tree vector
distributed kernel tree vector

MMI University of Cambridge Tim Van de Cruys multi-way co-occurences

Table 2.2: Distributional Semantics and Compositionality Shared Task (DiSCo)
2011 participants with their applied methods and approaches.

range of tasks in natural language processing, e.g., document retrieval, clustering

and classification, question answering, query expansion, word similarity, synonym

extraction, relation extraction, textual advertisement matching in search engines,

etc., they are still strongly limited by being inherently word-based. While dictio-

naries and other lexical resources contain multiword entries, these are expensive

to obtain, not available for all languages to a sufficient extent, the definition of

a multiword varies across resources and non-compositional phrases are merely a

subclass of multiwords. The workshop brings together researchers that are in-

terested in extracting non-compositional phrases from large corpora by applying

distributional models that assign a graded compositionality score to a phrase as

well as researchers interested in expressing compositional meaning with such mod-

els. This score denotes the extent to which the compositionality assumption holds

for a given expression. The latter can be used, for example, to decide whether the

phrase should be treated as a single unit in applications. Approaches that employ

prefabricated lists of non-compositional phrases should consider a different venue.

Biemann & Giesbrecht [8] developed a compositionality dataset using vari-

ous human judges. The dataset includes 133 V-OBJ, 74 V-SUBJ, 144 ADJ-NN
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expressions identified with compositionality score. Each the set is annotated by

judges in range 0-100.

The majority of studies on non-compositionality are presented in DiSCo 2011

is English and German language. The data is separated into three classes based

on the compositionality score. Low in compositional (0<score<37), medium

in compositional (36<score<75) and high in compositional (74<score). These

expressions are labelled with related class labels, also called as coarse labels.

There are 96 V-OBJ, 56 V-SUBJ 102 ADJ-NN expressions which have scores in

the specified score range. All other expressions are not classified and are not

involved in evaluation for coarse-grained labels. The final dataset is split into

50% test, 10% validation and 40% training datasets.

The study of Vecchi et al. [31] introduced an approach to characterize the

semantic aberrance of complex expressions. In their work, they have used vector

based semantic space to look properties of adjective-noun complex expressions.

To do that, they have come up with several models to show compositionality

levels of adjective-noun expressions. Multiplicative models, additive models and

linear-map based models are used by them. From the targeted corpus, they have

generated composite vectors for a set of adjective-noun expressions. This set

contains either semantically acceptable adjective-noun expressions or not. Then

they have tested this set with stated models. Multiplicative and additive models

gave remarkable results compared to other models.

The study Zanzotto & DellArciprete [32] investigated distributed represen-

tation theories that is branching into distributed meaning and structure. They

constructed an absolute distributed tree and a distributional distributed tree.

Constructed trees are used for manipulating tree kernels by using recognition of

textual entailment. Their results show that constructed distributional distributed

tree kernels correlate with distributed tree kernels and performed better than dis-

tributional distributed tree kernels in recognition of textual entailment. Harder

part is including distributional vectors in distributed structure.

In Cruys [30] work, he explored nature and usefulness of point wise mutual
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information in extraction of subject-verb-object triplets. Pointwise mutual infor-

mation in normal state is restricted with only two way co-occurrences. In his

work, pointwise mutual information explored as two multivariate generalizations.

The study of Johannsen et al. [17] introduced a COALS-based endocentricity

score method. In their research, they focused on compositionality prediction for

word pairs, compositionality scores based on distributional clusters, hyphenation,

statistics about wordnet-induced paraphrases and the likelihood of long transla-

tion equivalents in other languages. Their work greatly correlated with human

compositionality scores and support vector regression experiments.

The study of Pedersen [21] introduced three systems that evaluated distribu-

tional methods of measuring semantic compositionality. These systems addressed

semantic compositionality as a problem of collocation identification, where strong

collocates are assumed to be minimally compositional.

According to Chakraborty et al. [11] the measurement of relevant compo-

sitionality of bigrams is important to identify multiword expressions in Natural

Language Processing (NLP) tasks. The paper performs the experiments provided

as part of the participation in the shared task. The experiments based on different

collocation-based statistical approaches to measure the relative compositionality

of three models of bigram phrases (Adjective-Noun, Verb-subject and Verb-object

combinations). The experimental results in terms of both coarse-grained and fine-

grained compositionality scores have been assessed with the human annotated

gold standard data. Fair results have been obtained in terms of average point

difference and coarse precision.

The aim of work in the study of Garrido & Peña [16] is to predict composition-

ality judgements indicated by human judges to candidate phrases, in English and

German, from three general grammatical relations: adjective-noun, subject-verb

and subject-object. Garrido & Peñas [16] explored the use of syntactic-based

contexts collected from large corpora to develop classifiers that model the com-

positionality of the semantics of such pairs.
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Maldonado-Guerra & Emms [18] developed a system for measuring the com-

positionality of collocations within the structure of the shared task of the Dis-

tributional Semantics and Compositionality workshop is presented. The system

utilizes the intuition that a highly compositional collocation would tend to have

a significant semantic overlap with its components whereas a collocation with low

compositionality would share little semantic content with its constituents. This

intuition is formed via three configurations that exploit cosine similarity measures

to identify the semantic overlap between the collocation and its constituents.

In the study of Reddy et al. [25] difficulties of polysemy in word space models

of compositionality detection is pointed out. Most models express each word

as a single prototype-based vector without addressing polysemy. They prepared

an exemplar-based model which is designed to manage polysemy. This model

is tested for compositionality detection and it is seen to outperform existing

prototype-based models.



Chapter 3

Measuring non-compositionality

in Turkish

This chapter involves the preparation of dataset and the methods applied in this

thesis. Section 3.1 gives the definitions of data sources. Section 3.2 presents the

tasks performed to build dataset that is used in thesis.

3.1 Datasource

The Turkish corpus BilCol [10], Bilkent [28], Ege1, Leipzig [23], METU [27], and

Muder [14] are used in this thesis to construct the data set. Their contents are

explained in the following subsections.

3.1.1 BilCol

The corpus is built in Bilkent University using the following sources through the

year 2005 [10].

1This corpus is collected in Ege University, International Computer Institute in order to be
used in natural language processing studies.

13
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1. CNN Türk [1],

2. Haber 7 [2],

3. Milliyet Gazetesi [3],

4. TRT [5],

5. Zaman Gazetesi [6].

The corpus contains labels for days, hours, minutes of every news. Figure 3.1

gives the different portions in corpus [10].

Figure 3.1: Distribution of news between sources.

3.1.2 Bilkent

Bilkent corpus [28] is compiled in Bilkent University to be used in computational

linguistics research. The corpus is automatically annotated by a finite state ma-

chine. The corpus is morphologically analysed by a finite state machine [28],

[19].
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3.1.3 Ege

Ege corpus is constructed in Ege University in International Computing Institute

for Natural Language Processing (NLP) studies. The corpus includes 875 texts

that are classified in 9 major topics (e.g science, religion etc.).

3.1.4 Leipzig

The Leipzig Corpora Collection (LCC) is a collection of corpora of similar sources

and equivalent processing for more than 250 languages. According to their

sources, the corpora are classified in three dimensions:

1. Language (sometimes in connection with the country of origin)

2. Genre (currently: news texts, random web texts, and Wikipedia texts)

3. Time: year of download

Turkish newspaper corpus is built based on material of the year 2005 [23].

3.1.5 METU

METU Turkish Corpus [27] is a compilation of 2 million words of post-1990 writ-

ten Turkish samples. METU Turkish Corpus is XCES tagged at the typographical

level. The words of METU Turkish Corpus were taken from 10 various genres.

At most 2 samples from one source are used; each sample is 2000 words or the

sample ends when the next sentence ends [27].

3.1.6 Muder

This corpus is built in Muğla Sıtkı Koçman University [14]. It contains approxi-

mately over 40000 sentences and 670000 tokens.
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3.2 Dataset Preparation

Linguistic approaches for term recognition and collocation extraction include

plenty of linguistic processing components. Many of these components corre-

spond to fundamental Natural Language Processing tasks which were studied in

the past and were solved adequately. They aim to eliminate textual noise and in

general, modify the input raw text so as ease extraction of required information

from text.

Preprocessing methods vary from very simple ones, such as utilizing all char-

acters of the text into lower-case, to complicated ones, such as resolving abbrevi-

ations and syntax normalization.

In this thesis, following tasks are performed in data set construction:

1. Removal of punctuation

2. Tokenization

3. Application of occurrence frequency methods (chi-square, occurrence fre-

quency counts, pointwise mutual information and the t-test)

4. Annotation of set

Below subsections give the details on these tasks. Moreover, in Figure 3.2 the

flowchart diagram for the dataset preparation is shown, its purpose is to give a

better understanding of the structure.
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Figure 3.2: How pre-processing and annotation of set work.

3.2.1 Removal of punctuation

The corpora that are used in natural language process studies may contain irrel-

evant data such as non-alphanumeric tokens and Extensible Markup Language
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(XML) tags. For example, BilCol corpus contains XML tags such as in Listing

3.1. Such irrelevant data not only bias the amount of data in corpus but also

disturb the performance of natural language processing methods. In Table 3.1,

we presented raw data counts of each corpora in our study. To get rid of these

irrelevant data, we cleared up all XML tags and non-alphanumeric tokens.

Corpora # Word Counts # Char Counts

BilCol 44,150,213 347,734,602

Bilkent 767,132 5,111,377

Ege 2,449,664 17,365,833

Leipzig 14,279,547 110,628,416

METU 1,984,634 15,222,700

Muder 679,750 5,391,177

Table 3.1: Corpora statistics before removal of punctuation.

1 <DOC>

2 <DOCID> 0 </DOCID>

3 <SOURCE> Haber7 </SOURCE>

4 <DATE> 2005−01−01 00:00:00 </DATE>

5 <TITLE> Maliye gece denetiminde </TITLE>

6 <TEXT>

7 Vatan Caddesi’ndeki maliye kompleksinden saat 20:00 sıralarında

8 ayrılan, İstanbul Defterdarlığı Vergi Denetmenleri Bürosu Başkanı

9 Ali Baş idaresindeki 800 kişilik denetleme ekibi, 70 araçla,

10 gruplar halinde önceden berlirlenen bölgelere dağıldı. AA

11 </TEXT>

12 </DOC>

Listing 3.1: An example sentence of BilCol corpus.
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Corpora # Word Counts # Character Counts

BilCol 42,414,743 320,071,109

Bilkent 706,443 5,358,042

Ege 2,465,285 18,353,348

Leipzig 13,389,049 101,313,193

METU 1,987,447 14,715,263

Muder 638,547 4,909,231

Table 3.2: Corpora statistics after removal of punctuation.

Table 3.2 shows statistics of corpora data after cleaning up from punctuation.

3.2.2 Tokenization

Tokenization is the one of first steps of preprocessing and corpus preparation.

Tokenizers are components that get text as input and separate the sentences and

words in text. Generally, after tokenization individual words are called tokens or

unigrams. Tokenizers output a list of tokens for each input sentence.

In this study, before tokenizing corpora, we have changed all upper-case letters

to lower-case letters. For example, the words Kare and kare treated as two

different tokens by machine in a case sensitive situation. To fix that issue, one

must first change all words to lower-case form.

Tokens are first sorted in alphabetical order and then each token’s unique

count (occurrence frequency) is calculated (e.g. parasal token have been observed

in BilCol corpus 520 times). Total unique token counts in other words unigram

counts can be found in Table 3.3.

After unique tokens are found, we produced bigrams from them. This process

follows the pattern: Each unique token is tailed with its following token to create

bigrams. For instance, word1 word2 word3 are three distinctive words that creates

word1 word2 and word2 word3 unique bigrams. Total unique bigram counts can

be found in Table 3.4.
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Corpora # Unigrams
BilCol 984,434
Bilkent 94,552
Ege 259,196
Leipzig 745,446
METU 212,853
Muder 82,145

Table 3.3: Total unique unigram counts of corpora.

Corpora # Bigrams
BilCol 11,759,532
Bilkent 507,758
Ege 1,637,055
Leipzig 7,350,443
METU 1,388,722
Muder 437,826

Table 3.4: Total unique bigram counts of corpora.

In the following subsection we explain the application of occurrence frequency

methods for extraction of candidates.

3.2.3 Application of occurrence frequency methods

Statistical approaches for identifying and handling multiword expressions employ

frequency counts of words, N-grams, co-occurrences of words, etc. Statistical

approaches handle the frequency counts and context distributions in numerous

distinct ways and output decisions on multiword expressions or output scores

that quantify useful characteristics of multiword expressions in terms of compo-

sitionality.

In the following subsections, we present the statistical approaches that we em-

ployed in this study. These statistical approaches refer to the degree of strength

of association between words. Following methods try to detect whether the com-

ponents of a candidate term form a collocation rather than co-occurring by only

just chance.
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Frequency w1 w2

560 ya da
321 diye konuştu
308 böyle bir
299 yeni bir
285 bu arada
275 bu konuda
269 büyük bir
255 en büyük
251 insan hakları
242 bir şey

Table 3.5: First 10 most frequent bigrams in Bilkent corpus.

3.2.3.1 Occurrence frequency counts

The easiest method of finding multiword expressions (collocations) in a corpus is

counting the number of occurrences of word combinations in the text. If a word

combination is occurring frequently in a corpus, it is assumed to be a multiword

expression.

In frequency based models, frequencies are actually the co-occurrence counts

of words or word combination. Co-occurrence counts are calculated to estimate

how strong is the relationship between two words in a given word combination.

For example, assume that gömlek occurs more frequently than üniforma in some

corpora. But, if polis co-occurs with üniforma in numerous sentences than it

does with gömlek, then one can decide that the relationship between polis and

üniforma is stronger.

In this study, we have extracted both unigram and bigram (two words that

occur consequently) occurrence frequencies 200 bigrams that have the highest

occurrence counts. Then, for each corpus we have selected

From Bilkent corpus, the most frequently observed first 10 bigrams can be

found in Table 3.5.
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PMI f(w1) f(w2) f(w1w2) w1 w2

16.1145 9 6 6 gelmediğini ölçecek
15.7401 10 7 6 gözlenmesi kararlaştırılan
15.6995 9 8 6 mehtap projesinde
15.6995 12 6 6 hükmünde kararnamenin
15.6995 12 6 6 cezaya başvurmalıdır
15.6026 7 11 6 tüme varım
15.5475 10 8 6 ayşe bacı
15.2844 16 6 6 düzenlenip düzenlenmediğini
15.2844 16 6 6 dergisinin kapağında
15.2255 10 15 9 külçe simli

Table 3.6: First 10 pointwise mutual information scores of Muder corpus.

3.2.3.2 Pointwise mutual information

Pointwise Mutual Information (PMI ) is a measure derived from information the-

ory and can be employed for term and collocation extraction [13]. PMI is mea-

sured as follows for tokens w1 and w2 :

PMI(w1, w2) = log2

P (w1w2)

P (w1)P (w2)
= log2

P (w1|w2)

P (w1)
= log2

P (w2|w1)

P (w2)
(3.1)

In this study, we have calculated PMI values for bigrams that occur more than

5 times in corpora. Example PMI values that are obtained from Muder corpus

can be found in Table 3.6. For each corpus we have selected 200 bigrams that

produced highest PMI scores. These bigrams then listed for future use in our

study (in total 200x6=1200 bigrams recorded for PMI).

3.2.3.3 Hypothesis testing

Hypothesis testing grants the statistical structure for analysing the frequency of

occurrence of an event with the repetition of it by chance. In other words, many

hypothesis testing methods evaluate whether or not something is a possible event.
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The basic procedure is defined in following: Firstly the null hypothesis is set

(H0). Then the probability, p, of the event if H0 is calculated and H0 is rejected if

p is too low (typically below a significance level of p <0.05, 0.01, 0.005 or 0.001).

For collocation multiword extraction the null hypothesis is the independence

of constituents. It is described as the fact that there is no association between the

words, beyond occurrences by chance. The hypothesis can be formulated for any

number of words. Here, we concentrate on the bigram case. Let w1 and w2 be

the constituent words of a collocation candidate. The independence hypothesis

is:

P(w1w2) = P(w1) P(w2)

There are various hypothesis testing techniques. In this study, we have used

the commonly used ones and explain their advantages and disadvantages.

3.2.3.3.1 Chi-square test In principle, chi-square test (χ̃2) checks observed

values with the expected values for independence. If the variance between ob-

served and expected frequencies is high, the null hypothesis of independence can

be rejected. If Oij and Eij are the observed and expected values, related to the

cell(i,j) of the table of frequencies, the quantity X2 is defined as:

X2 =
∑
i,j

(Oij − Eij)
2

Eij

(3.2)

In this study, we have calculated chi-square values from previously extracted

bigrams. Besides, we have ignored the bigrams that have occurrence frequency

less than 6. Then, for each corpus we have selected the first 200 bigrams from

the list of bigrams that is sorted in decreasing order of chi-square value.

As an example, the most high scored first 10 bigrams of Bilkent corpus can

be found in Table 3.7.
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Chi-square f(w1) f(w2) f(w1w2) w1 w2

176,599 6 6 6 sıcağı sıcağına
176,597 7 7 7 irili ufaklı
176,593 9 9 9 enine boyuna
173,098 26 25 25 zülfü livaneli
169,523 13 12 12 utku çakırözer
168,181 11 10 10 bardağı taşıran
166,206 8 9 8 yürütmeyi durdurma
163,014 6 7 6 canla başla
160,673 73 61 61 bordo mavili

Table 3.7: First 10 chi-square scores of Bilkent corpus.

3.2.3.3.2 The t-test The t-test is a statistical test broadly used in collocation

extraction. The t-test is also a function of the variation between observed and

expected means, estimated by the variance. The test shows the probability of

obtaining an example with the observed t-test value, considering that the example

is drawn from a distribution with mean µ.

If x is the sample mean, s2 is the sample variance, N is the sample size and

µ is the mean of the distribution, t value is computed as in follows:

t =
x̄− µ√

s2

N

(3.3)

In this study, we have calculated the t-test values from previously extracted

bigrams. Besides, we have ignored the bigrams that have occurrence frequencies

less than 6. The best scoring 200 candidates are selected to construct the data

set in the thesis.

As an example, best scoring 10 bigrams of the t-test values in BilCol corpus

is given in Table 3.8.
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The t-test f(w1) f(w2) f(w1w2) w1 w2

179.104 52,568 44,376 32,196 diye konuştu
147.364 66,999 55,906 21,905 ifade eden
139.528 23,109 245,587 19,754 ya da
138.03 55,765 44,663 19,178 yaptığı açaıklamada

127.065 111,539 88,728 16,642 daha sonra
126.068 66,999 58,929 16,642 ifade etti
125.893 23,111 20,443 16,642 daha sonra
125.629 374,324 17,391 16,642 söz konusu
123.242 15,941 91,213 16,642 bu arada
122.323 230,555 77,112 16,642 bilgiye göre

Table 3.8: First 10 the t-test scores of BilCol corpus.

Word-1 Word-2 Judge-1 Judge-2 Judge-3 Judge-4 Result
dolanım hızı 0 0 0 0 0
cürüm işlemek 1 1 1 1 1
canla başla 1 1 1 1 1
savaşa hayır 1 0 1 0 0
susurluk davası 1 1 1 0 1

Table 3.9: Sample data from gold standard.

3.2.4 Annotation of set

Annotation set consists of sets that are previously obtained by application of

4 frequency methods. Each method yielded 1200 distinct bigrams from 6 dif-

ferent corpora. Then we collected these bigrams into one pool (which yielded

1200x4=4800 bigrams). Sorting and calculating unique count of these bigrams

shrank the list to 2229 bigram candidates.

In annotation task, 4 human judges (native Turkish, MSc and Ph.D. stu-

dents) are employed. Each judge decided to given candidate whether the given

bigram is compositional or non-compositional. The judges are guided to annotate

idiomatic expressions, named entities, technical terms, phrasal verbs and multi-

worded conjunctions as non-compositional. Table 3.9 shows some sample data

from the annotated gold standard. In gold standard 1194 bigrams are tagged as

compositional and 1035 bigrams are non-compositional.
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3.3 Method

In the thesis, for each bigram and composing words in the dataset, a vector that

includes co-occurring frequencies of words is built. The words that composes

the vector are the ones that reside in same sentence with the target (bigram or

a constituents of a bigram) and the frequency is measured from the sentences

where the word and the target co-occurs. The experiments are deployed on

Bilkent, Muder and METU corpora in the thesis.

The first step in vector space modelling is determining the sentences in the

corpus. Since the sentences are already tagged in Bilkent and METU corpora, no

preprocessing is required. However, sentence segmentation of Muder corpus was

to be performed. The texts in these corpora are split into sentences by pre-defined

delimiters such as dot, exclamation mark. Though this automatic segmentation

may fail in some cases, we believe that our next pre-processing step; elimination

of sentences that are shorter than two words; may reduce the number of failing

sentences.

Each bigram in the final set of 2229 bigrams (gold standard) is searched

through the sentences of corpora and we kept any sentence that contains at least

one of the bigrams in the gold standard. Table 3.11 gives the number of sentences

where at least one of the bigrams may be observed.

We employ our VSM computations in MATLAB environment. In Figure

3.3 a flowchart diagram for MATLAB is shown for better understanding of the

structure. MATLAB code explanation and details can be found in Appendix A.
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Figure 3.3: How MATLAB code works.
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Corpus # Sentence Counts
Bilkent 48,268
METU 178,417
Muder 41,864

Table 3.10: Manually and automatically generated corpora sentences.

Corpus # Sentence Counts # Word Counts # Char Counts
Bilkent 43,295 745,001 5,437,711
METU 148,911 2,105,652 14,953,470
Muder 39,767 670,031 4,997,683

Table 3.11: Refined sentences and their statistics.

We created VSM vectors in a window size of 52 and limited them within

sentence. Simply each vector includes the frequencies of co-occurring words of

the target bigram or unigram. To measure similarity between these vectors, we

use cosine similarity as in given below.

sim( ~V1, ~V2) =
~V1 · ~V2
‖ ~V1‖‖ ~V2‖

(3.4)

In our experiments, we have used a normalized cosine similarity function that

produces values in range [0,2] instead of range [-1,1] (0 indicates the exact simi-

larity between vectors, 2 is vice versa).

In the thesis, the compositionality for a given bigram is measured by 5 different

models that can be obtained from the following equation:

α( ~w1, ~w2) = a+ b ∗ sim( #        »w1w2, ~w1)

+c ∗ sim( #        »w1w2, ~w2)

+d ∗ sim( #        »w1w2, ~w1 + ~w2)

+e ∗ sim( #        »w1w2, ~w1 ∗ ~w2)

(3.5)

2preceding and following 5 words of the target word/word combination
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In the equation 3.5 that is proposed by Reddy et al. [25], #        »w1w2 corresponds

to the context vector of the bigram w1w2 and ~w1, ~w2 corresponds to the vector

of w1, w2 respectively. In our experiments, we have employed 3 different set of

models. The brief definitions of model sets are given below.

Set 1 (S1): This set includes 5 different models where the vectors include raw

frequencies of neighbouring words that reside in same window size with the target.

For example, in Model 1 the similarity of bigram and the first word in bigram is

measured. In this model, the vector of first word is composed of all neighbouring

words in all sentences that includes the first word.

(S1M1) : sim( #        »w1w2, ~w1)

(S1M2) : sim( #        »w1w2, ~w2)

(S1M3) : sim( #        »w1w2, ~w1 + ~w2)

(S1M4) : sim( #        »w1w2, ~w1 ∗ ~w2)

(S1M5) : sim( #        »w1w2, ~w1)

+ sim( #        »w1w2, ~w2)

+ sim( #        »w1w2, ~w1 + ~w2)

+ sim( #        »w1w2, ~w1 ∗ ~w2)

In models S1M1 and S1M2, the semantic similarity between the bigram and its

constituents are measured If the given bigram is non-compositional it is expected

that the similarity score of these vectors will not be high.

In models S1M3 and S1M4, the similarity between the bigram and a combined

version of vectors(pointwise addition and multiplication) for the constituents are

measured as in Mitchell & Lapata [20].

Finally in model S1M5, the results of the previous models are summed up.

Set 2 (S2): This set includes models where the vectors of component words

are refined. In this set, the vector for each constituent is built by the sentences

that includes the constituent but not the bigram. As a result the refined vector

for ~w1 is ~w′
1 = ~w1 − #        »w1w2 and ~w2 is ~w′

2 = ~w2 − #        »w1w2.
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(S2M1) : sim( #        »w1w2, ~w′
1)

(S2M2) : sim( #        »w1w2, ~w′
2)

(S2M3) : sim( #        »w1w2, ~w′
1 + ~w′

2)

(S2M4) : sim( #        »w1w2, ~w′
1 ∗ ~w′

2)

(S2M5) : sim( #        »w1w2, ~w′
1)

+ sim( #        »w1w2, ~w′
2)

+ sim( #        »w1w2, ~w′
1 + ~w′

2)

+ sim( #        »w1w2, ~w′
1 ∗ ~w′

2)

Set 3 (S3): In Set 3 while building the vectors of constituents irrelevant sen-

tences in the corpus are removed. For example, building the vector of ~w1, only

the sentences that includes both w1 and a word that is semantically related to w2

are considered and the other sentences that includes only w1 are removed.

In [25], it is stated that, the composing words of a bigram may be used

in a different context that may be unrelated to the regarding bigram. Reddy

et.al. [25] exemplified this by the bigram traffic light. The composing word light

may occur in different context in corpus. And some of the occurrences may be

unrelated to notion of traffic light. This unrelated occurrences tend to decrease

the semantic relation between the composing words; light and traffic. In order

to decide relevant occurrences of light, a group of words that appears in similar

context of traffic is defined. This group of words will be named as context words

from now on. While building the vector of light the sentences where both light

and at least one of the context words of traffic are selected, the other sentences

where only light is observed are accepted to be in a context that is unrelated to

traffic light.

In this thesis, for each composing word a group of context words is deter-

mined. The context words group includes the words that are most frequently

co-occurring words with the regarding word. Simply, for each word, the most fre-

quently co-occurring words are listed in the corpus, the stop words are removed

from the list and finally the first five words are assigned as context words. The

list of stop words that is given in [4] is used. Following the models in Set 3 are
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given:

(S3M1) : sim( #        »w1w2, ~w1
r)

(S3M2) : sim( #        »w1w2, ~w2
r)

(S3M3) : sim( #        »w1w2, ~w1
r + ~w2

r)

(S3M4) : sim( #        »w1w2, ~w1
r ∗ ~w2

r)

(S3M5) : sim( #        »w1w2, ~w1
r)

+ sim( #        »w1w2, ~w2
r)

+ sim( #        »w1w2, ~w1
r + ~w2

r)

+ sim( #        »w1w2, ~w1
r ∗ ~w2

r)

3.4 Evaluation

The evaluation of models is performed in 3 steps. For each model:

1. We sorted bigrams according to the similarity score that is produced by

model in decreasing order. It is accepted that if the similarity score of a

bigram is low, than it is non-compositional.

2. We measured precision, recall and F-measure scores in a pointwise manner.

In other words, the evaluation is performed for set size N where N is sorted

from 1 to the total set size.

3. Average precision, recall and F-measure scores are compared to the other

averaged values.

Precision is the fraction of retrieved examples that are relevant, while recall is

the fraction of relevant examples that are retrieved. Both precision and recall are

therefore based on a harmony and measure of relevance. Following, the formulas

are given for precision and recall.

Precision =
number of correctly identified terms

number of identified terms
(3.6)
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Recall =
number of correctly identified terms

number of gold standard terms
(3.7)

In the statistical analysis, F-score is a measure of that considers both the

precision and the recall of the results. F-score treated as a weighted average of

the precision and recall, where an F-score reaches its greatest value at 1 and

lowest at 0. F-score is presented as follows:

Fscore = 2 ∗ precision ∗ recall
precision+ recall

(3.8)



Chapter 4

Experimental Results

In experiments, three sets of models are tested for 3 corpora of different sizes,

Bilkent, Muder and METU corpus.

Table 4.1 presents the average precision, recall and F-measure values ob-

tained from Bilkent corpus. The number of bigrams that reside both in gold

standard and Bilkent corpus is 957 in which 63.32% of bigrams is annotated as

non-compositional. In Table 4.1 the bold cells represent the highest scores for

three metrics. The highest averaged F-value and recall is obtained by S2M2.

Considering average F-values it is observed that in Bilkent corpus, Set 2 out-

performs the other sets of models. As a result, it is possible to state that the

refined vectors of composing words; the vectors that are built by the sentences

that include the constituents but not the bigram; are better representatives to

detect non-compositionality.

In Figure 4.1 F-measure curves of the models are given for Bilkent corpus.The

vertical axis in figure is the F-value and the horizontal axis is the percentage of

data set that is completed for the given F-value. Similar to the results that are

revealed by average scores, the curves of the models in Set 2 are holding the

higher F values compared to other sets. Considering F curves it is again observed

while building the vectors of constituents ignoring the sentences that includes

regarding bigrams increases the performance.
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In Table 4.2, the average scores of evaluation are given for Muder corpus.

Muder corpus includes 798 bigrams (56% non-compositional, 44% compositional)

of gold standard. The maximum F-value is obtained in model S2M2. In Figure

4.2, F-curves of Muder corpus are presented. Similar to the results of the Bilkent

corpus, models in Set 2 generate higher average F-values compared to other sets.

Another important result that is examined from Figure 4.2 is that the models in

different sets did not generate distinguishing F-curves opposing to the results of

Bilkent corpus.

1129 of bigrams in gold standard is observed in METU corpus. In Table 4.3

and in Figure 4.3 evaluation results of METU corpus are illustrated. Considering

the average values and the F-score curves, the models in Set 2 are performing

better compared to the other models, supporting the results in previous corpora

Based on the overall results of 3 corpora, it is examined that Model 2 in Set 2

is succeeding in Turkish corpora in this experimental set up. Though the size of

the corpus changes the evaluation scores, the best model or the best set of models

do not differ according to the corpus size.

AVERAGE PRECISION AVERAGE RECALL AVERAGE F-MEASURE

S1M1 0.630 0.494 0.501

S1M2 0.602 0.486 0.490

S1M3 0.586 0.473 0.476

S1M4 0.576 0.467 0.469

S1M5 0.588 0.476 0.479

S2M1 0.733 0.548 0.564

S2M2 0.737 0.555 0.570

S2M3 0.737 0.548 0.565

S2M4 0.710 0.542 0.557

S2M5 0.741 0.551 0.567

S3M1 0.636 0.495 0.503

S3M2 0.638 0.496 0.504

S3M3 0.611 0.484 0.489

S3M4 0.629 0.485 0.493

S3M5 0.622 0.490 0.496

Table 4.1: Average precision, recall and F-measure values obtained from Bilkent

corpus.
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AVERAGE PRECISION AVERAGE RECALL AVERAGE F-MEASURE

S1M1 0.562 0.594 0.521

S1M2 0.551 0.585 0.513

S1M3 0.535 0.574 0.500

S1M4 0.541 0.576 0.503

S1M5 0.547 0.582 0.509

S2M1 0.580 0.597 0.527

S2M2 0.593 0.608 0.537

S2M3 0.587 0.594 0.524

S2M4 0.575 0.591 0.521

S2M5 0.593 0.599 0.529

S3M1 0.583 0.601 0.530

S3M2 0.585 0.603 0.533

S3M3 0.560 0.590 0.517

S3M4 0.573 0.594 0.522

S3M5 0.575 0.599 0.528

Table 4.2: Average precision, recall and F-measure values obtained from Muder

corpus.

AVERAGE PRECISION AVERAGE RECALL AVERAGE F-MEASURE

S1M1 0.640 0.509 0.519

S1M2 0.632 0.504 0.513

S1M3 0.613 0.491 0.499

S1M4 0.614 0.484 0.492

S1M5 0.617 0.495 0.503

S2M1 0.744 0.550 0.570

S2M2 0.740 0.551 0.569

S2M3 0.742 0.546 0.565

S2M4 0.736 0.548 0.568

S2M5 0.748 0.551 0.571

S3M1 0.658 0.511 0.523

S3M2 0.653 0.513 0.524

S3M3 0.632 0.502 0.511

S3M4 0.652 0.504 0.516

S3M5 0.646 0.510 0.520

Table 4.3: Average precision, recall and F-measure values obtained from METU

corpus.
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Figure 4.1: Average F-measure curves of models from Bilkent corpus.
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Figure 4.2: Average F-measure curves of models from Muder corpus.
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Figure 4.3: Average F-measure curves of models from METU corpus.



Chapter 5

Conclusion

In this thesis, we analyzed the semantic compositionality/non-compositionality

in Turkish by vector space models. We introduced three sets of 5 different VSMs

that assess the non-compositionality in Turkish. VSMs of Set 2; the models where

the vector of composing words are built by ignoring the sentences that hold the

word combination; are observed to provide better performance results compared

to other models. It is also examined that as the size of the corpus increases, the

difference in performances of successful and unsuccessfull methods becomes more

significant.

Due to the high time and space complexity of the algorithms that are used to

implement models, we were unable to work on larger corpus. As a future work,

we are planning to repeat our experiments in a larger corpora and with different

settings (e.g. windows size, stemmed/surface formed corpus, binary/weighted

vectors, unigrams/bigrams/trigrams).
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Appendix A

MATLAB Code for Vector Space

Models

A.1 Initialization Segment

1 corpus=evalc(’type C:\corpus.txt’);

2 unigrams=evalc(’type C:\unigrams.txt’);

3 bigrams=evalc(’type C:\bigrams.txt’);

4 stop=evalc(’type C:\stopwords.txt’);

5

6 corpus=regexprep(corpus,’\W’,’ ’);

7 unigrams=regexprep(unigrams,’\W’,’ ’);

8 bigrams=regexprep(bigrams,’\W’,’ ’);

9 stop=regexprep(stop,’\W’,’ ’);

10

11 corpus=strtrim(regexprep(corpus,’\s∗’,’ ’));

12 unigrams=strtrim(regexprep(unigrams,’\s∗’,’ ’));

13 bigrams=strtrim(regexprep(bigrams,’\s∗’,’ ’));

14 stop=strtrim(regexprep(stop,’\s∗’,’ ’));

15

16 tempc=regexprep(corpus,’ ’,’’’,’’’);

17 tempun=regexprep(unigrams,’ ’,’’’,’’’);

18 tempbi=regexprep(bigrams,’ ’,’’’,’’’);

19 temps=regexprep(stop,’ ’,’’’,’’’);

44
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20

21 eval([’words = { ’’’,tempc,’’’};’]);
22 eval([’uns = { ’’’,tempun,’’’};’]);
23 eval([’bi = { ’’’,tempbi,’’’};’]);
24 eval([’stops = { ’’’,temps,’’’};’]);
25

26 running words = length(words);

27 vocab = unique(words);

28 vocab words = length(vocab);

29 [vocab,void,index] = unique(words);

30 freq = hist(index,vocab words);

31 [ranked freq,ranking idx] = sort(freq,’descend’);

32 ranked vocab = vocab(ranking idx);

A.2 Bigrams Creation

1 biRS = transpose(reshape(bi,[2,2228]));

2 bimtx = sparse(length(ranked vocab),length(ranked vocab));

3

4 for z=2:length(words)

5 g1 = words{z−1}; g2 = words{z};
6 for t=1:length(biRS)

7 if strcmp(biRS(t,1),g1)&strcmp(biRS(t,2),g2)

8 nidx1 = find(strcmp(ranked vocab,g1));

9 nidx2 = find(strcmp(ranked vocab,g2));

10 bimtx(nidx1,nidx2) = bimtx(nidx1,nidx2)+1;

11 end;

12 end;

13 end;

14

15 [g1,g2,rawcount] = find(bimtx);

16 [bigram count,bigram idx] = sort(rawcount,’descend’);

17 bigram word1 = ranked vocab(g1(bigram idx));

18 bigram word2 = ranked vocab(g2(bigram idx));

A.3 Unigram VSM

1 uniVSMmtx = sparse(length(ranked vocab),length(ranked vocab));
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2 wsize=5;

3

4 for k=wsize∗2+1:length(words)

5 w6 = words{k−5};
6 if find(strcmp(w6,uns))

7 w1 = words{k}; w2 = words{k−1}; w3 = words{k−2}; w4 = words{k−3}; w5 =

words{k−4};
8 w7 = words{k−6}; w8 = words{k−7}; w9 = words{k−8}; w10 = words{k−9};

w11 = words{k−10};
9 idx1 = find(strcmp(ranked vocab,w1));

10 idx2 = find(strcmp(ranked vocab,w2));

11 idx3 = find(strcmp(ranked vocab,w3));

12 idx4 = find(strcmp(ranked vocab,w4));

13 idx5 = find(strcmp(ranked vocab,w5));

14 idx6 = find(strcmp(ranked vocab,w6));

15 idx7 = find(strcmp(ranked vocab,w7));

16 idx8 = find(strcmp(ranked vocab,w8));

17 idx9 = find(strcmp(ranked vocab,w9));

18 idx10 = find(strcmp(ranked vocab,w10));

19 idx11 = find(strcmp(ranked vocab,w11));

20 if not(strcmp(w2,’EOF’))&not(strcmp(w3,’EOF’))&not(strcmp(w4,’EOF’))&not(

strcmp(w5,’EOF’))&not(strcmp(w1,’EOF’))

21 uniVSMmtx(idx6,idx1) = uniVSMmtx(idx6,idx1)+1;

22 end;

23 if not(strcmp(w3,’EOF’))&not(strcmp(w4,’EOF’))&not(strcmp(w5,’EOF’))&not(

strcmp(w2,’EOF’))

24 uniVSMmtx(idx6,idx2) = uniVSMmtx(idx6,idx2)+1;

25 end;

26 if not(strcmp(w4,’EOF’))&not(strcmp(w5,’EOF’))&not(strcmp(w3,’EOF’))

27 uniVSMmtx(idx6,idx3) = uniVSMmtx(idx6,idx3)+1;

28 end;

29 if not(strcmp(w5,’EOF’))&not(strcmp(w4,’EOF’))

30 uniVSMmtx(idx6,idx4) = uniVSMmtx(idx6,idx4)+1;

31 end;

32 if not(strcmp(w5,’EOF’))

33 uniVSMmtx(idx6,idx5) = uniVSMmtx(idx6,idx5)+1;

34 end;

35 if not(strcmp(w7,’EOF’))

36 uniVSMmtx(idx6,idx7) = uniVSMmtx(idx6,idx7)+1;

37 end;
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38 if not(strcmp(w7,’EOF’))&not(strcmp(w8,’EOF’))

39 uniVSMmtx(idx6,idx8) = uniVSMmtx(idx6,idx8)+1;

40 end;

41 if not(strcmp(w7,’EOF’))&not(strcmp(w8,’EOF’))&not(strcmp(w9,’EOF’))

42 uniVSMmtx(idx6,idx9) = uniVSMmtx(idx6,idx9)+1;

43 end;

44 if not(strcmp(w7,’EOF’))&not(strcmp(w8,’EOF’))&not(strcmp(w9,’EOF’))&not(

strcmp(w10,’EOF’))

45 uniVSMmtx(idx6,idx10) = uniVSMmtx(idx6,idx10)+1;

46 end;

47 if not(strcmp(w7,’EOF’))&not(strcmp(w8,’EOF’))&not(strcmp(w9,’EOF’))&not(

strcmp(w10,’EOF’))&not(strcmp(w11,’EOF’))

48 uniVSMmtx(idx6,idx11) = uniVSMmtx(idx6,idx11)+1;

49 end;

50 end;

51 end;

A.4 Bigram VSM

1 biVSMmtx = sparse(length(ranked vocab),length(ranked vocab));

2 wsize2=5;

3

4 for i=wsize2∗2+2:length(words)

5 x6 = words{i−5}; x7 = words{i−6};
6 word1 = strcmp(bigram word1,x7);

7 word2 = strcmp(bigram word2,x6);

8 if (find(word1&word2))

9 index2 = find(word1&word2);

10 x1 = words{i}; x2 = words{i−1}; x3 = words{i−2}; x4 = words{i−3}; x5 =

words{i−4};
11 x8 = words{i−7}; x9 = words{i−8}; x10 = words{i−9};
12 x11 = words{i−10}; x12 = words{i−11};
13 bidx1 = find(strcmp(ranked vocab,x1));

14 bidx2 = find(strcmp(ranked vocab,x2));

15 bidx3 = find(strcmp(ranked vocab,x3));

16 bidx4 = find(strcmp(ranked vocab,x4));

17 bidx5 = find(strcmp(ranked vocab,x5));

18 bidx6 = find(strcmp(ranked vocab,x6));

19 bidx7 = find(strcmp(ranked vocab,x7));
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20 bidx8 = find(strcmp(ranked vocab,x8));

21 bidx9 = find(strcmp(ranked vocab,x9));

22 bidx10 = find(strcmp(ranked vocab,x10));

23 bidx11 = find(strcmp(ranked vocab,x11));

24 bidx12 = find(strcmp(ranked vocab,x12));

25 if not(strcmp(x2,’EOF’))&not(strcmp(x3,’EOF’))&not(strcmp(x4,’EOF’))&not(

strcmp(x5,’EOF’))&not(strcmp(x1,’EOF’))

26 biVSMmtx(index2,bidx1) = biVSMmtx(index2,bidx1)+1;

27 end;

28 if not(strcmp(x3,’EOF’))&not(strcmp(x4,’EOF’))&not(strcmp(x5,’EOF’))&not(

strcmp(x2,’EOF’))

29 biVSMmtx(index2,bidx2) = biVSMmtx(index2,bidx2)+1;

30 end;

31 if not(strcmp(x5,’EOF’))&not(strcmp(x4,’EOF’))&not(strcmp(x3,’EOF’))

32 biVSMmtx(index2,bidx3) = biVSMmtx(index2,bidx3)+1;

33 end;

34 if not(strcmp(x5,’EOF’))&not(strcmp(x4,’EOF’))

35 biVSMmtx(index2,bidx4) = biVSMmtx(index2,bidx4)+1;

36 end;

37 if not(strcmp(x5,’EOF’))

38 biVSMmtx(index2,bidx5) = biVSMmtx(index2,bidx5)+1;

39 end;

40 if not(strcmp(x8,’EOF’))

41 biVSMmtx(index2,bidx8) = biVSMmtx(index2,bidx8)+1;

42 end;

43 if not(strcmp(x8,’EOF’))&not(strcmp(x9,’EOF’))

44 biVSMmtx(index2,bidx9) = biVSMmtx(index2,bidx9)+1;

45 end;

46 if not(strcmp(x8,’EOF’))&not(strcmp(x9,’EOF’))&not(strcmp(x10,’EOF’))

47 biVSMmtx(index2,bidx10) = biVSMmtx(index2,bidx10)+1;

48 end;

49 if not(strcmp(x8,’EOF’))&not(strcmp(x9,’EOF’))&not(strcmp(x10,’EOF’))&not(

strcmp(x11,’EOF’))

50 biVSMmtx(index2,bidx11) = biVSMmtx(index2,bidx11)+1;

51 end;

52 if not(strcmp(x8,’EOF’))&not(strcmp(x9,’EOF’))&not(strcmp(x10,’EOF’))&not(

strcmp(x11,’EOF’))&not(strcmp(x12,’EOF’))

53 biVSMmtx(index2,bidx12) = biVSMmtx(index2,bidx12)+1;

54 end;

55 end;
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56 end;

A.5 Initialization of Stop Words

1 for sin=1:length(stops)

2 if find(strcmp(ranked vocab,stops(sin)))

3 stopindex(sin)=find(strcmp(ranked vocab,stops(sin)));

4 else

5 stopindex(sin)=0;

6 end;

7 end;

8

9 indexx1 = zeros(1,length(bigram word2));

10 indexx2 = zeros(1,length(bigram word1));

11

12 for n=1:length(bigram word1)

13 uniVSMindex = sparse(length(ranked vocab),length(ranked vocab));

14 indexx1(n) = find(strcmp(ranked vocab,bigram word2(n)));

15 indexx2(n) = find(strcmp(ranked vocab,bigram word1(n)));

16 td1=5;td2=5;rx1=1;rx2=1;

17 if indexx1(n)˜=0&indexx2(n)˜=0

18 [˜,uniVSMindex(indexx1(n),:)] = sort(uniVSMmtx(indexx1(n),:),2,’descend’);

19 while rx1<td1+1

20 if uniVSMindex(indexx1(n),rx1)˜=stopindex

21 uniVSMv1(n,rx1) = uniVSMindex(indexx1(n),rx1);

22 rx1=rx1+1;

23 else

24 td1=td1+1;

25 rx1=rx1+1;

26 end;

27 end;

28 [˜,uniVSMindex(indexx2(n),:)] = sort(uniVSMmtx(indexx2(n),:),2,’descend’);

29 while rx2<td2+1

30 if uniVSMindex(indexx2(n),rx2)˜=stopindex

31 uniVSMv2(n,rx2) = uniVSMindex(indexx2(n),rx2);

32 rx2=rx2+1;

33 else

34 td2=td2+1;

35 rx2=rx2+1;
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36 end;

37 end;

38 end;

39 end;

A.6 Polysemy Free VSM

1 limits = [0,find(strcmp(words,’EOF’))];

2 uniVSMR1 = sparse(length(ranked vocab),length(ranked vocab));

3 uniVSMR2 = sparse(length(ranked vocab),length(ranked vocab));

4 wsize3=5;

5

6 for j=wsize3∗2+1:length(words)

7 y6 = words{j−5};
8 if find(strcmp(y6,uns))

9 y1 = words{j}; y2 = words{j−1}; y3 = words{j−2}; y4 = words{j−3}; y5 =

words{j−4}; y7 = words{j−6};
10 y8 = words{j−7}; y9 = words{j−8}; y10 = words{j−9}; y11 = words{j−10};
11 ridx6 = find(strcmp(ranked vocab,y6));

12 i lower = find(limits <= j−5,1,’last’);

13 i higher = find(limits >= j−5,1,’first’);

14 lnum = limits(i lower);

15 hnum = limits(i higher);

16 if not(j>hnum)

17 ridx1 = find(strcmp(ranked vocab,y1));

18 else

19 ridx1=0;

20 end;

21 if not(j−1>hnum)

22 ridx2 = find(strcmp(ranked vocab,y2));

23 else

24 ridx2=0;

25 end;

26 if not(j−2>hnum)

27 ridx3 = find(strcmp(ranked vocab,y3));

28 else

29 ridx3=0;

30 end;

31 if not(j−3>hnum)
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32 ridx4 = find(strcmp(ranked vocab,y4));

33 else

34 ridx4=0;

35 end;

36 if not(j−4>hnum)

37 ridx5 = find(strcmp(ranked vocab,y5));

38 else

39 ridx5=0;

40 end;

41 if not(j−6>hnum)

42 ridx7 = find(strcmp(ranked vocab,y7));

43 else

44 ridx7=0;

45 end;

46 if not(j−7<lnum)

47 ridx8 = find(strcmp(ranked vocab,y8));

48 else

49 ridx8=0;

50 end;

51 if not(j−8<lnum)

52 ridx9 = find(strcmp(ranked vocab,y9));

53 else

54 ridx9=0;

55 end;

56 if not(j−9<lnum)

57 ridx10 = find(strcmp(ranked vocab,y10));

58 else

59 ridx10=0;

60 end;

61 if not(j−10<lnum)

62 ridx11 = find(strcmp(ranked vocab,y11));

63 else

64 ridx11=0;

65 end;

66 for jk=1:length(bigram word1)

67 if strcmp(bigram word1(jk),y6)

68 if find(uniVSMv1(jk,:)==ridx1|uniVSMv1(jk,:)==ridx2|uniVSMv1(jk,:)

==ridx3|uniVSMv1(jk,:)==ridx4|uniVSMv1(jk,:)==ridx5|
uniVSMv1(jk,:)==ridx7|uniVSMv1(jk,:)==ridx8|uniVSMv1(jk,:)

==ridx9|uniVSMv1(jk,:)==ridx10|uniVSMv1(jk,:)==ridx11)
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69 if not(strcmp(y2,’EOF’))&not(strcmp(y3,’EOF’))&not(strcmp(y4,’

EOF’))&not(strcmp(y5,’EOF’))&not(strcmp(y1,’EOF’))

70 uniVSMR1(jk,ridx1) = uniVSMR1(jk,ridx1)+1;

71 end;

72 if not(strcmp(y3,’EOF’))&not(strcmp(y4,’EOF’))&not(strcmp(y5,’

EOF’))&not(strcmp(y2,’EOF’))

73 uniVSMR1(jk,ridx2) = uniVSMR1(jk,ridx2)+1;

74 end;

75 if not(strcmp(y4,’EOF’))&not(strcmp(y5,’EOF’))&not(strcmp(y3,’

EOF’))

76 uniVSMR1(jk,ridx3) = uniVSMR1(jk,ridx3)+1;

77 end;

78 if not(strcmp(y5,’EOF’))&not(strcmp(y4,’EOF’))

79 uniVSMR1(jk,ridx4) = uniVSMR1(jk,ridx4)+1;

80 end;

81 if not(strcmp(y5,’EOF’))

82 uniVSMR1(jk,ridx5) = uniVSMR1(jk,ridx5)+1;

83 end;

84 if not(strcmp(y7,’EOF’))

85 uniVSMR1(jk,ridx7) = uniVSMR1(jk,ridx7)+1;

86 end;

87 if not(strcmp(y7,’EOF’))&not(strcmp(y8,’EOF’))

88 uniVSMR1(jk,ridx8) = uniVSMR1(jk,ridx8)+1;

89 end;

90 if not(strcmp(y7,’EOF’))&not(strcmp(y8,’EOF’))&not(strcmp(y9,’

EOF’))

91 uniVSMR1(jk,ridx9) = uniVSMR1(jk,ridx9)+1;

92 end;

93 if not(strcmp(y7,’EOF’))&not(strcmp(y8,’EOF’))&not(strcmp(y9,’

EOF’))&not(strcmp(y10,’EOF’))

94 uniVSMR1(jk,ridx10) = uniVSMR1(jk,ridx10)+1;

95 end;

96 if not(strcmp(y7,’EOF’))&not(strcmp(y8,’EOF’))&not(strcmp(y9,’

EOF’))&not(strcmp(y10,’EOF’))&not(strcmp(y11,’EOF’))

97 uniVSMR1(jk,ridx11) = uniVSMR1(jk,ridx11)+1;

98 end;

99 end;

100 end;

101 if strcmp(bigram word2(jk),y6)
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102 if find(uniVSMv2(jk,:)==ridx1|uniVSMv2(jk,:)==ridx2|uniVSMv2(jk,:)

==ridx3|uniVSMv2(jk,:)==ridx4|uniVSMv2(jk,:)==ridx5|
uniVSMv2(jk,:)==ridx7|uniVSMv2(jk,:)==ridx8|uniVSMv2(jk,:)

==ridx9|uniVSMv2(jk,:)==ridx10|uniVSMv2(jk,:)==ridx11)

103 if not(strcmp(y2,’EOF’))&not(strcmp(y3,’EOF’))&not(strcmp(y4,’

EOF’))&not(strcmp(y5,’EOF’))&not(strcmp(y1,’EOF’))

104 uniVSMR2(jk,ridx1) = uniVSMR2(jk,ridx1)+1;

105 end;

106 if not(strcmp(y3,’EOF’))&not(strcmp(y4,’EOF’))&not(strcmp(y5,’

EOF’))&not(strcmp(y2,’EOF’))

107 uniVSMR2(jk,ridx2) = uniVSMR2(jk,ridx2)+1;

108 end;

109 if not(strcmp(y4,’EOF’))&not(strcmp(y5,’EOF’))&not(strcmp(y3,’

EOF’))

110 uniVSMR2(jk,ridx3) = uniVSMR2(jk,ridx3)+1;

111 end;

112 if not(strcmp(y5,’EOF’))&not(strcmp(y4,’EOF’))

113 uniVSMR2(jk,ridx4) = uniVSMR2(jk,ridx4)+1;

114 end;

115 if not(strcmp(y5,’EOF’))

116 uniVSMR2(jk,ridx5) = uniVSMR2(jk,ridx5)+1;

117 end;

118 if not(strcmp(y7,’EOF’))

119 uniVSMR2(jk,ridx7) = uniVSMR2(jk,ridx7)+1;

120 end;

121 if not(strcmp(y7,’EOF’))&not(strcmp(y8,’EOF’))

122 uniVSMR2(jk,ridx8) = uniVSMR2(jk,ridx8)+1;

123 end;

124 if not(strcmp(y7,’EOF’))&not(strcmp(y8,’EOF’))&not(strcmp(y9,’

EOF’))

125 uniVSMR2(jk,ridx9) = uniVSMR2(jk,ridx9)+1;

126 end;

127 if not(strcmp(y7,’EOF’))&not(strcmp(y8,’EOF’))&not(strcmp(y9,’

EOF’))&not(strcmp(y10,’EOF’))

128 uniVSMR2(jk,ridx10) = uniVSMR2(jk,ridx10)+1;

129 end;

130 if not(strcmp(y7,’EOF’))&not(strcmp(y8,’EOF’))&not(strcmp(y9,’

EOF’))&not(strcmp(y10,’EOF’))&not(strcmp(y11,’EOF’))

131 uniVSMR2(jk,ridx11) = uniVSMR2(jk,ridx11)+1;

132 end;
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133 end;

134 end;

135 end;

136 end;

137 end;

A.7 Cosine Distance

1 matrix = zeros(length(bigram word1),4);

2

3 for nx=1:length(bigram word1)

4 uniVSMidx1(nx) = find(strcmp(ranked vocab,bigram word1(nx)));

5 uniVSMidx2(nx) = find(strcmp(ranked vocab,bigram word2(nx)));

6 va=uniVSMmtx(uniVSMidx1(nx),:);

7 vb=uniVSMmtx(uniVSMidx2(nx),:);

8 vc=biVSMmtx(nx,:);

9 matrix(nx,1)=pdist2(vc,va,’cosine’);

10 matrix(nx,2)=pdist2(vc,vb,’cosine’);

11 vd=va+vb;

12 ve=va.∗vb;

13 matrix(nx,3)=pdist2(vc,vd,’cosine’);

14 matrix(nx,4)=pdist2(vc,ve,’cosine’);

15 end;

16

17 matrix2 = zeros(length(bigram word1),4);

18

19 for nx=1:length(bigram word1)

20 uniVSMidx1(nx) = find(strcmp(ranked vocab,bigram word1(nx)));

21 uniVSMidx2(nx) = find(strcmp(ranked vocab,bigram word2(nx)));

22 va=uniVSMmtx(uniVSMidx1(nx),:);

23 vb=uniVSMmtx(uniVSMidx2(nx),:);

24 vc=biVSMmtx(nx,:);

25 matrix2(nx,1)=pdist2(vc,(va−vc),’cosine’);

26 matrix2(nx,2)=pdist2(vc,(vb−vc),’cosine’);

27 matrix2(nx,3)=pdist2(vc,(((va+vb)−vc)−vc),’cosine’);

28 matrix2(nx,4)=pdist2(vc,((va−vc).∗(vb−vc)),’cosine’);

29 end;

30

31 matrix3 = zeros(length(bigram word1),4);
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32

33 for nx=1:length(bigram word1)

34 va=uniVSMR1(nx,:);

35 vb=uniVSMR2(nx,:);

36 vc=biVSMmtx(nx,:);

37 matrix3(nx,1)=pdist2(vc,va,’cosine’);

38 matrix3(nx,2)=pdist2(vc,vb,’cosine’);

39 vd=va+vb;

40 ve=va.∗vb;

41 matrix3(nx,3)=pdist2(vc,vd,’cosine’);

42 matrix3(nx,4)=pdist2(vc,ve,’cosine’);

43 end;


