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ABSTRACT

BIVARIATE RANDOM SEQUENCES AND EXACT
AND ASYMPTOTIC DISTRIBUTIONS OF

EXCEEDANCE STATISTICS

AYŞEGÜL EREM

Ph.D. in Applied Mathematics and Statistics

Graduate School of Natural and Applied Sciences

Supervisor: Prof. Dr. İsmihan Bayramoğlu

June 2017

In this thesis, random threshold models based on bivariate random sequences

are investigated. The random threshold models are defined on the basis of rth

order statistic and rth concomitant. The finite and asymptotic distributions of ex-

ceedance statistics are obtained. Distributions of exceedance statistics presented

in this work, do not depend on marginal distribution functions and depend only

on copulas. Applications of these bivariate random threshold models in medicine

and air pollution are discussed.

Keywords: Random threshol models, exceedance statistics, order statistics, con-

comitants, copula, asymptotic distribution.
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ÖZ

İKİ DEĞİŞKENLİ RASGELE DİZİLER VE AŞAN
İSTATİSTİKLERİNİN SONLU VE ASİMPTOTİK

DAĞILIMLARI

AYŞEGÜL EREM

Uygulamalı Matematik ve İstatistik, Doktora

Fen Bilimleri Enstitüsü

Tez Danışmanı: Prof. Dr. İsmihan Bayramoğlu

Haziran 2017

Bu tezde, iki değişkenli rasgele değişken dizilerine dayalı rasgele bariyer model-

leri incelenmiştir. Rasgele bariyer modelleri r’ ıncı sıra istatistiğine ve eşleniğine

dayalı olarak tanımlanmıştır. Aşan istatistiklere ilişkin sonlu ve asimptotik

dağılımlar elde edilmiştir. Bu çalışmada sunulan aşan istatistiklerin dağılımları

marjinal dağılımlara bağlı değildir ve yalnızca kapulalara bağlıdır. Bu iki

değişkenli rasgele bariyer modellerinin sağlık ve hava kirliliğindeki uygulamaları

ortaya konulmuştur.

Anahtar Kelimeler : Rasgele bariyer modelleri, aşan istatistikler, sıra istatistikleri,

eşlenikler, kapula, asimptotik dağılım.
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Tütüncü and Asst. Prof. Dr. Aslı Güldürdek for their timeless support and

guidance in every aspect of my life.

I sincerely thank my colleagues in Izmir University of Economics for their

great friendship, and for many great memories.

I deeply thank to my family for their unconditional support throughout my

life. I couldn’ t have been able to finish this journey without their constant

encouragement and support.

Finally, I would like to thank The Scientific and Technological Research Coun-
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Chapter 1

Introduction

Random threshold models have aroused much scientific interest, due to the wide

application areas. These models can be used in many areas, such as medicine,

engineering, modelling environment events (flooding see [36], air and water pol-

lution, etc.), and insurance. For some interesting applications of exceedance

statistics in insurance, see [37] and [27].

Additionally, these models are used in quality control to detect extreme vari-

ation in some quality characteristics, see e.g. [69], [70], and [57].

Since 1940s, in the statistical literature, there have appeared numerous paper

on exceedance statistics and random threshold models (see e.g. [41], [39], [40],

[34], [8], [60], and [58]).

Exceedance statistics play a fundamental role in nonparametric methods in

construction of distribution free tests, see [18], [59], [45], [46], [43], [44], [52], and

[53]. In some exceedance statistics studies, based on ordered statistics, a new effi-

cient test criterion was constructed for testing hypothesis H0 against several class

of alternatives. Katzenbeisser [45], [46] constructed a test based on exceedance

statistics for two sample problem in univariate independent samples. In his stud-

ies, the test statistic based on exceedances were used for testing homogeneity of

1



CHAPTER 1. INTRODUCTION 2

two independent random samples. This new test in the case of the stochastically

ordered alternatives appeared to be unbiased and efficient.

Eryilmaz et al. [37] used exceedance statistics in modeling claim exceedances

over random thresholds for insurance portfolios. Eryilmaz et al. [37] considered

two different models of portfolio claims: independent and identically distributed

portfolio claims, and exchangeable dependent portfolio claims.

We also refer to Benestad [23], [24], [25] for application of exceedance statistics

in hydrological and climate events.

Bairamov [9] considered univariate random threshold model based on inde-

pendent and identically distributed (iid) random variables and upper record val-

ues. In his paper, exact and asymptotic distributions of exceedances statistics

were given and some distribution free properties of exceedance statistics were

presented.

Wesolowski et al. [66] considered a random variable with a distribution func-

tion (cdf) F and a sequences of iid random variables with the cdf G. For three

different exceedance statistics defined on the base of order statistics and record

statistics, Wesolowski et al. [66] provide exact and asymptotic distributions. This

study proves some distribution free properties of considered exceedance statistics

and also provides a characterization of equidistribution of two independent sam-

ples.

Bairamov et al. [14] defined new exceedance models based on generalized or-

der statistics and discussed applications of these models in life time data analysis

for different censoring schemes. Bairamov et al. [15], investigated the joint be-

havior of exceedance and precedance statistics. Bairamov et al. [16] considered

the waiting time of exceedances in a random threshold model based on ordered

statistics.
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Turhan [62] considered two independent random samples and, used the rth

and sth (r < s) order statistics to introduce new exceedance statistics. The

exact and asymptotic distributions of these statistics were used for construction of

nonparametric test criterions for testing homogeneity of two independent random

samples.

Bayramoglu and Giner [22] introduced new threshold models based on in-

dependent but not necessarily identically distributed random variables. They

studied the finite and asymptotic distributions of exceedance statistics and pro-

vided different numerical results, as well as a discussion of possible practical

applications in insurance.

Although there have been many studies on univariate random threshold mod-

els, few studies consider multivariate random threshold models. In this thesis, we

focus on random exceedance models based on bivariate samples. In particular, we

investigate the exact and asymptotic distributions of exceedance statistics con-

structed for bivariate random samples based on order statistics and concomitants

of these samples. The properties and applications of these exceedance statistics

are also the subject of this thesis.

This thesis is organised as follows. Definitions of order statistics, concomitants

and record statistics are given in Chapter 2. The distribution theory of ordered

statistics are also described for both independent and identically distributed (iid)

and independent but not necessarily identically distributed (inid) random vari-

ables. Also, some distributional properties of records and concomitants for iid

random variables are given.

Chapter 3 consists of a comprehensive literature review of exceedance statis-

tics. Firstly, the random threshold models from iid random variables are consid-

ered. After this, we consider the random threshold models based on order statis-

tics, concomitants and records, providing distribution free properties of random

thresholds constructed on records. Applications of these exceedance statistics
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based on invariant confidence interval and the random threshold based on inid

random variables are discussed. At the end of this chapter, some exceedance

statistics from dependent random variables are presented.

In Chapter 4, new random threshold models are introduced based on bivari-

ate random variables. After the introduction of a new random threshold model

constructed on random variables (X, Y ), the finite and asymptotic distributions

of exceedance statistics are derived, as well as distributions of normalized ex-

ceedance statistics. Next, new random threshold models based on rth order

statistics and rth concomitants are introduced. The finite and asymptotic distri-

butions of new exceedance statistics are derived and distribution of normalized

exceedance statistics are obtained.

In Chapter 5, we discuss ways in which with new random threshold models

introduced in Chapter 4 can be applied in medicine and air pollution.



Chapter 2

Ordered Random Variables

In this chapter, we will give brief definitions of order statistics of independent and

identically distributed, independent but not necesserily identically distributed

random variables, concomitants, record statistics as well as some useful formulas

based on these statistics.

2.1 Order statistics

Let {Ω,z, P} be a probability space. In this probability space, we consider

random variables Xi (w) ≡ Xi, w ∈ Ω and we assume that these random variables

are independent copies of a random variable X (w) , w ∈ Ω. We assume that other

random variables considered in this thesis are also defined in same probability

space {Ω,z, P} .

2.1.1 Order Statistics of iid random variables

For many years, order statistics attracted the interest of many statisticians. Due

to their extensive applications in many areas, such as hypothesis testing, estima-

tion of parameters, reliability engineering, survival analysis, biology and medicine,

5



CHAPTER 2. ORDERED RANDOM VARIABLES 6

finance, and economics. The order statistics have been one of the essential topics

of probability and statistics in the last semicentennial. We refer to David and

Nagaraja [32], [33] and Arnold et al. [1] for a detailed review on order statistics.

Let X1, X2, ..., Xn be iid random variables with cdf FX(x). If we order those

random variables in ascending order, we have the order statistics based on the

sample X1, X2, ..., Xn as follows

X1:n ≤ X2:n ≤ · · · ≤ Xn:n,

where X1:n denotes the smallest order statistics, Xr:n, 1 ≤ r ≤ n, denotes the rth

order statistic, and Xn:n denotes the largest order statistic.

If Xi’ s are independent and identically distributed random variables, then

the cumulative distribution function (cdf) of rth order statistic is given by (see

Arnold et al., 2008; p. 12)

FXr:n(x) =
n∑
i=r

(
n

i

)
[FX(x)]i [1− FX(x)]n−i . (2.1)

It is known that equation (2.1) holds for both discrete and continuous random

variables. If X is continuous random variable with cdf FX(x) and probability

density function (pdf) fX(x) then the pdf of rth order statistic is

fXr:n(x) =
1

Beta(r, n− r + 1)
[FX(x)]r−1 [1− FX(x)]n−r fX(x), 1 ≤ r ≤ n,

(2.2)

where Beta(r, n−r+1) is a beta function (see Casella and Berger, 2002; p. 229).

In absolutely continuous case, for 1 ≤ r < s ≤ n joint density function of rth



CHAPTER 2. ORDERED RANDOM VARIABLES 7

and sth order statistics is given by (see David and Nagaraja, 2003; p. 12)

fXr:n,Xs:n(x, y) =


n!

(r−1)!(s−r−1)!(n−s)! [FX(x)]r−1 fX(x)

×[FY (y)− FX(x)]s−r−1fY (y) [1− FY (y)]n−s ,
x ≤ y

0, otherwise

Furthermore, for x < y the joint distribution function of rth and sth order

statistics is

FXr:n,Xs:n(x, y) =


∑n

j=s

∑j
i=r

n!
i!(j−i)!(n−j)! [FX(x)]i

×[FY (y)− FX(x)]j−i [1− FY (y)]n−j ,
x < y

FXs:n(y), x ≥ y

(2.3)

It is known that equation (2.3) holds for both continuous and discrete random

variables.

Also, for 1 ≤ r1 < r2 < · · · < rk ≤ n, the joint pdf of first k order statistics,

Xr1:n, Xr2:n, ..., Xrk:n is

fXr1:n,...,Xrk:n(x1, x2,..., xk) (2.4)

=


n!

(r1−1)!(r2−r1−1)!...(n−rk)!
[FX(x1)]r1−1

× [FX(x2)− FX(x1)]r2−r1−1 [FX(x3)− FX(x2)]r3−r2−1

× · · · [1− FX(xk)]
n−rk fX(x1) · · · fX(xk),

if x1 ≤ x2 ≤ ... ≤ xk

0, otherwise

The joint pdf of all n order statistics is

fX1:n,...,Xn:n(x1, ..., xn) =

{
n!f(x1) · · · f(xn), x1 ≤ · · · ≤ xn

0, otherwise
(2.5)
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If Xi’ s are discrete random variables, then the probability mass function

(pmf) of the rth ordered statistics is (see David and Nagaraja, 2003; p. 16)

P {Xr:n = x} = FXr:n(x)− FXr:n(x− 1)

=
1

B(r, n− r + 1)

(
IFX(x)(r, n− r + 1)− IFX(x−1)(r, n− r + 1)

)
=

1

B(r, n− r + 1)

∫ FX(x)

FX(x−1)

zr−1(1− z)n−rdz, (2.6)

where IFXr:n (x)(r, n− r + 1) is an incomplete beta function given by

IFXr:n (x)(r, n− r + 1) =

∫ FX(x)

0

zr−1(1− z)n−rdz.

Therefore,

P {Xr:n = x} =

{
1

B(r,n−r+1)

∫ FX(x)

FX(x−1)
zr−1(1− z)n−rdz, x = 0, 1, 2, ...

0, otherwise

Furthermore, the pmf of the rth and sth order statistics is

fXr:n,Xs:n(x, y) =


FXr:n,Xs:n(x, y)− FXr:n,Xs:n(x− 1, y)

−FXr:n,Xs:n(x, y − 1) + FXr:n,Xs:n(x− 1, y − 1),
x ≤ y

0, otherwise
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2.1.2 Order statistics of inid random variables

Let X1, X2, ..., Xn be a sequence of independent random variables with continuous

cdf’s F1(x), F2(x), ..., Fn(x), respectively. Assume that fi(x) = dFi(x)
dx

, i = 1, ..., n.

Then for 1 ≤ r ≤ n, the probability density function of rth order statistic Xr:n is

(see David and Nagaraja, 2003; p. 96)

fXr:n(x) = Cn,r
∑

i1,i2,...,in

r−1∏
l=1

fil(x)fir(x)
n∏

j=r+1

(
1− Fij(x)

)
−∞ < x <∞, (2.7)

where
∑

i1,i2,...,in

denotes the sum over all n! permutations (i1, i2, ..., in) of n and

Cn,r = 1
(r−1)!(n−r)! .

For 1 ≤ k1 < · · · < kn ≤ n and 1 ≤ r < s ≤ n the joint pdf of Xr:n and Xs:n

is

fXr:n,Xs:n(x1, x2) =



Cn,r,s
∑

k1,k2,...,kn

Fk1(x1) · · ·Fkr−1(x1)fkr(x1)

×
{
Fkr+1(x2)− Fkr+1(x1)

}
· · ·

×
{
Fkn−1(x2)− Fkn−1(x1)

}
fks(x2)

×
{

1− Fks+1(x2)
}
· · · {1− Fkn(x2)} ,

x1 ≤ x2

0, otherwise

(2.8)

where
∑

k1,k2,...,kn

denotes the sum over all n! permutations (k1, k2, ..., kn) of n and

Cn,r,s = 1
(r−1)!(s−r−1)!(n−s)! (for more detail see the work of Balakrishnan [19]).

As it can be seen from the equations (2.7) and (2.8), for inid random variables

density functions of order statistics are quite complicated. Therefore, Vaughan

and Venables [64] expressed the distributions of order statistics in terms of per-

manents.
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Definition 2.1.1 (Permanents). (See Aitken, 1939; p. 30) Consider a square

matrix of order n× n, such that

A =



a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
· · · · · · · · · · · ·
an1 an2 · · · ann


Then the permanent of matrix A is

perm (A) =
∑

℘1,2,...,m

m∏
j=1

ajij , (2.9)

where
∑

℘1,2,...,m
is the class of sum over all m! permutations (i1, i2, ..., in) of

(1, 2, ...,m).

The permanent of a square matrix is similar to the determinant with difference

of all signs are positive. Also, it is usually denoted by + |A|+.

For 1 ≤ r ≤ n, the marginal density function of Xr:n is (see Vaughan and

Venables [64])

fXr:n(x) =
1

(r − 1)! (n− r)!
Perm (A1) , −∞ < x <∞,

where
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A1 =



F1(x) · · · Fn(x)
...

...

F1(x) · · · Fn(x)

f1(x) · · · fn(x)

1− F1(x) · · · 1− Fn(x)
...

...

1− F1(x) · · · 1− Fn(x)



}
r − 1

rows

}
n− r
rows

.

For 1 ≤ r < s ≤ n, the joint pdf of rth and sth order statistics is (see Vaughan

and Venables [64])

fXr:n,Xs:n(x1, x2) =

{
1

(r−1)!(s−r−1)!(n−s)!Perm(A2), x1 ≤ x2

0, otherwise

where

A2 =



F1(x1) F2(x1) · · · Fn(x1)
...

...
...

F1(x1) F2(x1) · · · Fn(x1)

f1(x1) f2(x1) · · · fn(x1)

F1(x2)− F1(x1) F2(x2)− F2(x1) · · · Fn(x2)− Fn(x1)
...

...
...

F1(x2)− F1(x1) F2(x2)− F2(x1) · · · Fn(x2)− Fn(x1)

f1(x2) f2(x2) · · · fn(x2)

1− F1(x2) 1− F2(x2) · · · 1− Fn(x2)
...

...
...

1− F1(x2) 1− F2(x2) · · · 1− Fn(x2)




r − 1

rows


s− 1

rows


n− s
rows

For 1 ≤ k1 < k2 < · · · < kn ≤ n, joint density function of any subset
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Xk1:n, Xk2:n, · · · , Xkr:n is

fXk1:n,Xk2:n,...,Xkr :n(x1, x2, . . . , xr) =

{
Ck1,k2,...,krPerm (A3) , x1 ≤ x2 ≤ · · · ≤ xn

0, otherwise
,

where

Ck1,k2,...,kr =
1

(k1 − 1)!(k2 − k1 − 1)! · · · (kr − kr−1 − 1)! (n− kr)!
,

and

A3 =



F1(x1) · · · Fn(xn)
...

...

F1(x1) · · · Fn(xn)

f1(x1) · · · fn(x1)

F1(x2)− F1(x1) · · · Fn(x2)− Fn(x1)
...

...

F1(x2)− F1(x1) · · · Fn(x2)− Fn(x1)

f1(x2) · · · fn(x2)
...

...

F1(xk)− F1(xk−1) · · · Fn(xk)− Fn(xk−1)
...

...

F1(xk)− F1(xk−1) · · · Fn(xk)− Fn(xk−1)

f1(xk) · · · fn(xk)

1− F1(xk) · · · 1− Fn(xk)
...

...

1− F1(xk) · · · 1− Fn(xk)




k1 − 1

rows

 k2 − k1 − 1

rows

... kr − kr−1 − 1

rows

 n− kr − 1

rows
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Furthermore, joint density function of X1:n, X2:n, ..., Xn:n is

fX1:n,X2:n,...,Xn:n(x1, x2, ..., xn) =

{
Perm(A4), x1 ≤ x2 ≤ · · · ≤ xn

0, otherwise
,

where

A4 =


f1(x1) · · · fn(x1)

...
...

f1(xn) · · · fn(xn)

 .

2.2 Concomitants of order statistics

In pursuit of the improvement in theory of order statistics, concomitants were in-

troduced related with ordered random variables. Concomitants have been widely

used in statistical inference based on bivariate random samples.

Let Zi = (Xi, Yi), i = 1, 2, ..., n, be an absolutely continuous bivariate random

sequence with joint cdf F (x, y) and joint pdf f(x, y). Let FX(x) and FY (y) be the

marginal cdf’s of Xi and Yi, respectively. Let fX(x) = dFX(x)
dx

and fY (y) = dFY (y)
dy

,

be the corresponding pdf’s of X and Y . If the sample Zi is ordered by Xi, then

the corresponding pair of Y−variate order statistics is called rth concomitants

of rth order statistics and denoted by X[r:n]. The theory of concomitants is well

documented in David et al. [31], David and Nagaraja [32], [33], and He and

Nagaraja [42].

Let (Xr:n, Y[r:n]) be a vector of rth order statistic and its concomitant con-

structed from the sequence Zi. The joint pdf of Xr:n and Y[r:n] is given by
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fXr:n,Y[r:n](x, y) = f(y | x)fXr:n(x), (2.10)

where fXr:n(x) is the pdf of rth order statistic, Xi and f(y | x) is the conditional

pdf of Y given X = x.

The marginal density function of the rth concomitant of rth order statistic

can be easily obtained from equation (2.10) as follows:

fY[r:n](y) =

∫ ∞
−∞

f(y | x)fXr:n(x)dx. (2.11)

For r < s the joint pdf of the rth and sth concomitants is

fY[r:n],Y[s:n](y1, y2) =

∫ ∞
−∞

∫ ∞
x1

f(y2 | x2)f(y1 | x1)fXr:n,Xs:n(x1, x2)dx2dx1, (2.12)

where fXr:n,Xs:n(x1, x2) is the joint pdf of Xr:n and Xs:n. More generally, for 1 ≤

r1 < · · · < rj ≤ n, the joint pdf of Y[r1:n], ..., Y[rn:n] is

fY[r1:n],...,Y[rn:n]
(y1, ..., yk)

=

∫ ∞
−∞

∫ xrk

−∞
· · ·
∫ xr2

−∞

k∏
i=1

f(yri | xri)fXr1:n,...,Xrk:n(xr1 , ..., xrk )dxr1 · · · dxrk , (2.13)

where fXr1:n,...,Xrk:n(x1, ..., xk) is the joint pdf of Xr1:n, ..., Xrk:n.

From equations (2.12) and (2.13), one can easily calculate the expected value

and variance of the rth concomitant as (see Yang [65])

E(Y[r:n]) = E(E(Y1 | X1 = Xr:n)), (2.14)

V ar(Y[r:n]) = E(V ar(Y1 | X1 = Xr:n)) + V ar(E(Y1 | X1 = Xr:n)). (2.15)

Here

E (E (Y1 | X1 = Xr:n)) = E (ψ (Xr:n)) ,
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where ψ (X) = E (Y1 | X1 = x) . Likewise,

E (V ar (Y1 | X1 = Xr:n)) = E (ψ (Xr:n)) ,

where ψ (X) = V ar (Y1 | X1 = x) .

Similarly, covariance of Y[r:n] and Y[s:n] and the covariance of rth order statistic

and sth concomitant is

Cov(Y[r:n], Y[s:n]) = Cov [E(Y1 | X1 = Xr:n), E(Y1 | X1 = Xs:n)] (r 6= s),

Cov(Xr:n, Y[s:n]) = Cov [Xr:n, E(Y1 | X1 = Xs:n)] .

Definition 2.2.1 (Positive Quadrant Dependence). (See Lehmann [50]) Let

(X, Y ) be a pair of random variable with cdf G(x, y) and marginals FX(x) and

FY (y), respectively. Then for all x and y, the random variables (X, Y ) are called

positive quadrant dependent, if

G (x, y) ≥ FX (x)FY (y) , ∀ (x, y) ∈ R2. (2.16)

It is obvious that equation (2.16) can be also written in the following forms:

P (X ≤ x, Y ≥ y) ≥ P (X ≤ x)P (Y ≥ y) ,∀ (x, y) ∈ R2 (2.17)

P (X ≥ x, Y ≤ y) ≥ P (X ≥ x)P (Y ≤ y) ,∀ (x, y) ∈ R2 (2.18)

P (X ≥ x, Y ≥ y) ≥ P (X ≥ x)P (Y ≥ y) ,∀ (x, y) ∈ R2. (2.19)

Let X1, X2, ..., Xn be an iid random sample. If E (Y | X = x) is monotone,

then for any x1, x2 and r, s = 1, 2, ..., n,
(
X[r:n], X[s:n]

)
are positive quadrant de-

pendent (see Kim and David [48]).

P
{
X[r:n] ≥ x1, X[s:n] ≥ x2

}
≥ P

{
X[r:n] ≥ x1

}
P
{
X[s:n] ≥ x2

}
, ∀ (x, y) ∈ R2.
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2.3 Record statistics

Record statistics have been aroused great interest among statisticians. Further,

in recent years, it is widely used in reliability theory, risk analysis, and modelling

events in insurance, flooding, geosciences, sports, and climate science (see Ben-

estad [25], [24] and [23]). There have been many studies about record statistics.

We refer to Westcott [67], Ahsanullah [2], [3], [4], [5], Nevzorov [56], Su et al.

[61], and Ahsanullah and Nevzorov [6].

Since we deal with the ordered random variables it will be useful to mention

some other models of ordered random variables, for example record values. The

theory of record values is similar to the theory of order statistics.

Let X1, X2, ... be a sequence of continuous iid random variables with cdf FX(x)

and pdf fX(x). The rth upper record time U(r) is defined as follows:

U(1) = 1, XU(1) = X1,

and

U(r + 1) = min
{
i : Xi > XU(r)

}
, r = 1, 2, . . . .

Note that the rth record value is denoted by XU(r).

Then the pmf of the rth upper record time U(r) is

P {U(r) = k} =
|S(r − 1, k − 1)|

r!
, r = 1, 2, ..., k and k = 1, 2, ..., (2.20)
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where S(n, k) is Stirling numbers of second kind, i.e.,

S(n, k) =
k∑
i=0

(−1)k−i
(
k

i

)
in

k!

=
k∑
i=0

(−1)k−i
in

i! (k − i)!
, 0 ≤ k ≤ n and n = 0, 1, 2, ... .

Indeed, S(n, k) is the coefficient of the following expansion (see Balakrishnan and

Nevzorov, [21])

xn =
n∑
k=0

S(n, k)x(x− 1)(x− 2) · · · (x− k + 1) , n = 0, 1, 2, ... .

As k →∞, Westcott [67] showed that

P {U(r) = k} ∼ (log k)r−2

k2(r − 1)!
.

For any r = 1, 2, ... and any integers 1 = k1 < k2 < · · · < kr, the joint pmf of

the rth record time is given by

P {U(1) = k1, U(2) = k2, ..., U(r) = kr} =
1

kr

r∏
i=2

1

ki − 1
.

The cdf of the rth upper record value is then

FXU(r)
(x) = P

{
XU(r) ≤ x

}
=

1

(r − 1)!

∫ − log(1−F (x))

0

zr−1e−zdz, −∞ < x <∞, r = 1, 2, ...

(2.21)

For r < s, the joint cdf of the rth and sth record values is



CHAPTER 2. ORDERED RANDOM VARIABLES 18

fXU(r),XU(s)
(x1, x2) =


1

Γ(r)Γ(s−r)h(x1)f(x2)

× [H(x1)]r−1 [H(x2)−H(x1)]s−r−1 ,
x1 ≤ x2

0, otherwise

(2.22)

where h(x) is the hazard function i.e.,

h(x) =
dHX(x)

dx
=

fX(x)

1− FX(x)

and

H(x) = − ln(1− FX(x)).

The joint pdf of the first n upper record values is

fXU(1),XU(2),...,XU(n)
(x1, x2, ..., xn) =

 fX(xn)
n−1∏
i=1

fX(xi)
1−FX(xi)

, x1 ≤ x2 ≤ · · · ≤ xn

0, otherwise

(2.23)



Chapter 3

Asymptotic theory of exceedance

statistics based on ordinary order

statistics and records

The random threshold models based on ordered random variables have been a

subject of many research published in statistical and engineering literature papers.

Katzenbeiser [45], [46] was the first author who considered exceedance statistics

in nonparametric hypothesis testing of equality of distributions. The limiting

distributions of some placement statistics defined for order statistics were derived

by Matveychuk and Petunin [52]. Exceedance models have also been considered

for record values of iid random sequences. Bairamov [9] derived finite and lim-

iting distributions of some exceedance statistics defined for record values of iid

random sequences. Under some conditions coming out from the real life problems

restrictions requiring independence and identically distributed random variables

are avoidable. Under the condition that the underlying distribution of considered

random sequence has points of discontinuity, Bairamov and Kotz [11] investigated

the distributions of exceedance statistics based on record values and derived the

distribution of the second record value. More general results concerning the dis-

tributions having countable number of points of discontinuity are presented in

Bairamov and Khan [13]. Bairamov and Eryilmaz [15] studied the joint behavior

19
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of exceedances and precedences in a random threshold model. For more results

on asymptotic distributions of exceedance statistics based on order statistics and

record values and their applications we refer to Stepanov [60], Eryilmaz et al.

[37], and Turhan [62]. Recently, Kemalbay and Bayramoglu [47] considered the

bivariate random sample in exceedance model and derived the joint distribution

of the ranks of order statistics.

In this chapter, applications of exceedance statistics of invariant confidence in-

terval, exceedance statistics of inid random variables, exceedance statistics based

on order statistics, concomitants and record statistics will be reviewed.

3.1 Invariant confidence intervals

Let X1, X2, ..., Xn be the observed values of the random variable X with dis-

tribution function F ∈ =, where = is a class of distribution functions and

Xn+1 be the future observation of random variable X. Let h1(x1, x2, ..., xn)

and h2(x1, x2, ..., xn) be two real valued functions of the n variables such that

h1(x1, x2, ..., xn) ≤ h2(x1, x2, ...., xn), (x1, x2, ...., xn) ∈ Rn. Then for β ∈ (0, 1) ,

the random interval Wβ = (h1(X1, X2, ..., Xn), h2(X1, X2, ...., Xn)) is called the

invariant confidence interval for class = containing the future observations with

confidence level β if

P {Xn+1 ∈ Wβ} = β, ∀F ∈ =.

In the cases h1(X1, X2, ..., Xn) = −∞ or h2(X1, X2, ..., Xn) = ∞, the in-

variant confidence interval Wβ is said to be one sided. In other cases, that is

h1(X1, X2, ..., Xn) 6= −∞ and h1(X1, X2, ..., Xn) 6= ∞, Wβ is called a two sided

invariant confidence interval for Xn+1.

Let F be a continuous distribution function and = a class of continuous
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distribution functions containing F. Assuming h1(X1, X2, ..., Xn) = Xr:n and

h2(X1, X2, ...., Xn) = Xs:n, where 1 ≤ r < s ≤ n, Bairamov and Petunin [8]

showed that for the class of all continuous functions = = =c, the confidence level

of the invariant confidence interval Wβ is

P {Xn+1 ∈ Wβ} =
s− r
n+ 1

. (3.1)

Furthermore, if h1(x1, x2, ..., xn) and h2(x1, x2, ..., xn) are continuous and

symmetric functions, only the order statistics generate the invariant confi-

dence interval Wβ. Consider the observed values of continuous random variables

X1, X2, ..., Xn with cdf F ∈ =. Let Xn+1, Xn+2, ..., Xn+m be the future observa-

tions of random variable X. Then, it is also true that

P {Xn+1, Xn+2, ..., Xn+m ∈ Wβ} =
n!(m+ s− r − 1)!

(s− r − 1)!(m+ n)!
.

For more details on invariant confidence intervals, see Bairamov and Petunin [8]

and Bairamov et al. [10].

3.2 Exceedance statistics of inid variables

Let X = (X1, X2, ..., Xn) be a sequence of independent but not necessarily

identically distributed random variables with continuous cdf F1(x), F2(x), ...,

Fn(x), respectively and Y = (Y1, Y2, ..., Ym) be another sequence of indepen-

dent and identically distributed random variables with continuous cdf G(y). As-

sume that X = (X1, X2, ..., Xn) and Y = (Y1, Y2, ..., Ym) are independent. Let

X1:n, X2:n, · · · , Xn:n denote the order statistics based on sample X. Then for

i = 1, 2, ..., n and 1 ≤ r < s ≤ n, define the following binary random variables

ηi =

{
1, if Yi ∈ (Xr:n, Xs:n)

0, otherwise
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It is obvious that the random variables ηi, i = 1, 2, ..., n, are dependent. Let

Sm =
m∑
i=1

ηi. Then the statistics Sm counts the number of observations falling

into random interval (Xr:n, Xs:n).

Essentially, derivation of the finite distribution of Sm encounters some prob-

lems due to the complexity of expressions of the joint pdf of rth and sth order

statistics for inid random variables. It is given by

P {Sm = l} =
∑

i1,i2,...,im

P
{
ηi1 = 1, . . . , ηik = 1, ηik+1

= 0, . . . , ηim = 0
}

=
∑

i1,i2,...,im

P {Yi1 ∈ (Xr:n, Xs:n), . . . , Yik ∈ (Xr:n, Xs:n),

Yik+1
/∈ (Xr:n, Xs:n), . . . , Yim /∈ (Xr:n, Xs:n)

}
=

∑
i1,i2,...,im

∫∫
P {Yi1 ∈ (x1, x2) , . . . , Yik ∈ (x1, x2) ,

Yik+1
/∈ (x1, x2), . . . , Yim /∈ (x1, x2)

}
fXr:n,Xs:n(x1, x2)dx1dx2 (3.2)

When equation (2.8) is plugged into equation (3.2), the obtained equation is

very complicated and is not useful for the application. Consequently, Bayramoglu

and Giner [22] derived the asymptotic distribution of the statistics Sm
m

by the use

of functionals for empirical distribution functions. They showed that

lim
m→∞

sup
0≤x≤1

{∣∣∣∣P {Smm ≤ x

}
− P {Qr,s ≤ x}

∣∣∣∣} = 0,

where Qr,s = G(Xs:n) − G(Xr:n). Obtaining the general form of the finite dis-

tribution of Qr,s is not easy. Therefore, for some selected values of r and s the

distributions of Qr,s are derived by Bayramoglu and Giner [22].
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3.3 Exceedance statistics of iid random vari-

ables

In this section, we present an extensive literature review of exceedance statistics

for independent and identically distributed random variables, based on order

statistics, record statistics and concomitants.

3.3.1 Exceedance statistics based on order statistics

Let X1, X2, ..., Xm be a sequence of iid random variables with common cdf FX(x)

and Xm+1, Xm+2, ... , Xm+n be the future observations belonging to the same pop-

ulation. Assume that X1, X2, ..., Xm and Xm+1, Xm+2, ..., Xm+n are independent.

For 1 ≤ r ≤ m denote the rth order statistic by Xr:m. Then define the following

random variable

Tn(r) =
n∑
i=1

I(Xr:m,∞)(Xm+i),

where I[Xr:m,∞)(Xm+i) =

{
1, if Xm+i > Xr:m

0, otherwise
i = 1, 2, ..., n.

It is obvious that Tn(r) is the total number of future observations greater than

Xr:m. Then Gumbel and Von Schelling [41] derive the probability mass function

of Tn(r) given by

P {Tn(r) = x} =
r
(
m
r

)(
n
x

)
(m+ n)

(
m+n−1
n+x−1

) , 1 ≤ r ≤ m and 0 ≤ x ≤ n.

Let X be a random variable with cdf FX(x) and Y1, Y2, ..., Ym, ... is a se-

quence of iid random variables with a continuous cdf FY (y). Assume that X is
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independent of Y1, Y2, ..., Ym, .... The survival function of FX(x) is defined by

FX(x) = P (X > x) = 1 − FX(x). First, consider the sample Y1, Y2, ..., Ym and

define the binary random variable Ii for 1 ≤ i ≤ m as

Ii =

{
1, if Yi ≤ X

0, otherwise

If Sm =
m∑
i=1

Ii, then the statistic Sm counts the total number of observations

which are less than or equal to X. For any integer m ≥ 1, Wesolowski and

Ahsanullah [66] derived the finite sample distribution of the statistic Sm, expected

value, and variance as follows:

P {Sm = i} =

(
m

i

)
E(F i

Y (X)F
m−i
Y (X)), i = 0, 1, ...,m

E(Sm) = mE(FY (X))

V ar(Sm) = mE(FY (X)F Y (X)) +m2V ar(FY (X)).

In order to derive the asymptotic distribution of Sm, they use characteristic

functions and obtain

lim
m→∞

sup
0<x<1

∣∣∣∣P {Smm ≤ x

}
− P {FY (X) ≤ x}

∣∣∣∣ = 0.

Wesolowski and Ahsanullah [66] also considered the number of the random

variables Y1, Y2, ..., Ym, ... that are not exceeding the random threshold X. For any

integer m ≥ 1, define the random variable Zm as

Zm = min {i ≥ 0 : Yi+1:m+i > X} .
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The exact distribution, expected value, and variance Zm are given as follows:

P {Zm = i} =

(
m+ i− 1

m− 1

)
E(F i

Y (X)F
m

Y (X)), i = 0, 1, ...,

E(Zm) = mE

(
FY (X)

F Y (X)

)
I(0,1)(FY (X)),

V ar(Zm) = mE

(
FY (X)

F 2
Y (X)

I(0,1)(FY (X))

)
+m2V ar

(
FY (X)

F Y (X)
I(0,1)(FY (X))

)
,

where

I(0,1)(FY (X)) =

{
1, if 0 < FY (X) < 1

0, otherwise

The asymptotic distribution of Zm with the assumption FY (X) < 1 a.s is

obtained as

lim
m→∞

sup
0<x<1

∣∣∣∣P {Zmm ≤ x

}
− P

{
FY (X)

F Y (X)
≤ x

}∣∣∣∣ = 0.

3.3.2 Exceedance statistics based on records

Let X be a random variable with cdf FX(x) and Y1, Y2, ..., Ym, ... a sequence of

iid random variables with a continuous cdf FY (y). Denote the survival function

by F (.) = 1− F (.). Assume that X is independent of Y1, Y2, ..., Ym, ....

Let U(r) be the rth record of the random sample Y1, Y2, ..., Ym, ... and

U(1) = 1. Then, Wesolowski and Ahsanullah [66] introduced the statistic K as

follows
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K = min
{
i ≥ 0: YU(i+1) > X

}
.

Obviously, the statistics K counts the total number of record values of

Y1, Y2, ..., Ym, ... below X. Assume further that P {FY (x) < 1} > 0. Then the

finite distributions of K is given by

P {K = i} =
1

i!
E(FY (X)(− log(F Y (X)))iI(0,1)(FY (X))), i = 0, 1, ... .

Moreover, the expected value and variance of K have been calculated by

E(K) = −E(− log(F Y (X)))I(0,1)FY (X)

V ar(K) = −E(− log(F Y (X)))I(0,1)FY (X) + V ar(log(F Y (X)))I(0,1)(FY (X)).

3.3.2.1 Distribution free properties of exceedance statistics based on

records

Let X∞ = (X1,X2, ..., Xn, ...) be a sequence of iid random variables with con-

tinuous cdf F and Y∞ = (Y1, Y2, ..., Yn, ...) be another sequence of iid random

variables with the same cdf F . Assume that X∞ and Y∞ are independent. Con-

sider the record values XU(1), XU(2), ..., XU(n), ... based on the sample X∞. Then,

for j = 1, 2, ...,m and r = 1, 2, ... it is true that

P
{
Yj < XU(r)

}
= 1− 1

2r
.
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Indeed,

P
{
Yj < XU(r)

}
=

1

(r − 1)!

∫ ∞
−∞

F (u)

[
ln

1

1− F (u)

]r−1

dF (u)

=
1

(r − 1)!

∫ 1

0

u

[
ln

1

1− u

]r−1

du

=
1

(r − 1)!

∫ 1

0

tr−1(1− e−t)e−tdt

= 1− 1

2r
.

It is obvious that for any j = 1, 2, ...,m, r = 1, 2, ..., and r < s

P
{
XU(r) < Yj < XU(s)

}
=

1

2r
− 1

2s
.

Bairamov [9] defined the following binary random variable for i = 1, 2, ...,m

and r = 1, 2, ...

ηi(r) =

{
1, if Yi < XU(r)

0, otherwise

Denoting by Sm(r) =
∑m

i=1 ηi(r), it is clear that Sm(r) counts the total number

of observations Y1, Y2, ..., Yn, ... which are less than XU(r).

The finite distribution of Sm(r) is

P {Sm(r) = t} =

(
m
t

)
(r − 1)!

∫ ∞
0

e−z(m−t+1)(1− e−z)tzr−1dz.

Furthermore, the expected value and variance of Sm(r) are
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E(Sm(r)) = m

(
1− 1

2r

)
,

V ar(Sm(r)) = m2

(
1

3r
− 1

22r

)
+m

(
1

2r
− 1

3r

)
.

The asymptotic distribution of Sm(r)
m

is

lim
m→∞

sup
0≤x≤1

∣∣∣∣∣P
{
Sm(r)

m
≤ x

}
− 1

(r − 1)!

∫ x

0

[
ln

(
1

1− u

)]r−1

du

∣∣∣∣∣ = 0.

Bairamov [9] also defined a new statistics S∗m(r) = Sm(r)−E(Sm(r))√
V ar(Sm(r))

. Then

E(S∗m(r)) = 0, V ar(S∗m(r)) = 1, and the asymptotic distribution of S∗m(r) is

lim
m→∞

sup
a−1
b
≤x≤a

b

∣∣∣∣∣P
{
Sm(r)

m
≤ x

}
− b

(r − 1)!

∫ x

a−1
b

[
ln

1

a− bu

]r−1

du

∣∣∣∣∣ = 0,

where a = 1
2r

and b =
√

1
3r
− 1

22r
.

3.3.3 Exceedance statistics based on concomitants

Let Z1 = {(Xi, Yi), i = 1, 2, ..., n} be a sequence of iid random variables with

a continuous cdf F (x, y) and FX(x), FY (y) be the marginal cdf’s of X and Y,

respectively. Let Xr:n denote the rth order statistics based on sample Z1 and

by Y[r:n] its concomitant, respectively. Consider another sequence of random

variables Z2 = {(Xn+j, Yn+j), j = 1, 2, ...,m} with continuous cdf G(x, y). Let
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GX(x) and GY (y) be the corresponding marginal cdf’s of X and Y, respectively.

Define the following random variables

ν1 =

{
1, if Xr:n > Xn+i

0, otherwise

and

ν2 =

{
1, if X[r:n] > Xn+i

0, otherwise

If FX(x) and GX(x) are continuous cdf’s and FX(x) = GX(x) for all x ∈ R,

then the finite sample distribution of ν1 is given by

P {ν1 = i} =

(
r+i−1
r−1

)(
m+n−i−r

n−r

)(
m+n
n

) , i = 0, 1, ...,m.

Bairamov and Kotz [11] derived the finite distribution of ν1 for arbitrary

distributions having finite number of points of discontinuity.

Furthermore, the finite sample distribution of ν2 is given by

P {ν2 = j} =

(
m

j − 1

)
1

Beta(r, n− r + 1)

∫ ∞
−∞

∫ ∞
−∞

[
(GY (y))j−1 (1−GY (y))m−j+1

× (FX(x))r−1 (1− FX(x))n−r f(x, y)
]
dxdy, j = 1, 2, ...,m+ 1,

where Beta(r, n− r + 1) is a Beta function.
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3.3.4 Exceedance statistics for a sequence of dependent

random variables

In this section, we present some results on exceedance statistics for the sequence

of random variables whose finite dimensional distributions are n-variate Farlie-

Gumbel-Morgenstein (FGM) distribution. The considered random variables hav-

ing n-dimensional FGM distribution are dependent. It is also true that these

random variables are asymptotically independent.

3.3.4.1 The case of Farlie-Gumbel-Morgenstein distribution

Definition 3.3.1. Let X = (X1, X2, ..., Xn, ...) be a random sequence with cdf’s

Fi(x) and survival functions F i(x) = 1 − Fi(x), for i ≥ 1. Let β(k, l) be a

symmetric function, i.e., β(k, l) = β(l, k), ∀k, l. If for any permutations i1, i2, ..., in

of 1, 2, ..., n the joint cdf of (Xi1 , Xi2 , ..., Xin) is

Fi1,i2,...,in(xi1 , xi2 , ..., xin) =
n∏
j=1

Fij(xj)

{
1 +

∑
1≤l≤k≤n

β(k, l)F ik(xk)F il(xl)

}
,

(3.3)

then X = (X1, X2, ..., Xn, ...) is called the FGM sequence.

Definition 3.3.2. Consider the random sequence X = (X1, X2, ..., Xn, ...) with

cdf Fi(x) and survival functions F i(x) = 1− Fi(x), for i ≥ 1. Assume that βn is

a sequence of real numbers. If the joint cdf of X1, X2, ..., Xn is

F1,2,...,n(x1, x2, ..., xn) =
n∏
j=1

Fj(xj)

{
1 + βn

∑
1≤l≤k≤n

F k(xk)F l(xl)

}
,



CHAPTER 3. ASYMPTOTIC THEORY OF EXCEEDANCES 31

then, X = (X1, X2, ..., Xn, ...) is called a simple-FGM (s-FGM) sequence.

Bairamov and Eryilmaz [12] showed that the admissible range of βn, n ≥ 1,

for the n-variate distribution is

− 1(
n
2

) ≤ βn ≤
1[
n
2

] ,
where [a] denotes the integer part of a ∈ R. It can be easily seen that

X1, X2, ..., Xn, ... are asymptotically independent as n→∞.

Let Y be a random variable with cdf GY (y) and X = (X1, X2, ..., Xm) be a

s-FGM sequence with marginal cdf Fi(x) = F (x) and pdfs fi(x) = f(x),

1 ≤ i ≤ m and −∞ < x < ∞. Consider a random variable Y independent from

X = (X1, X2, ..., Xm). The joint pdf of X = (X1, X2, ..., Xm) is then

f1,2,...,m(x1, x2, ..., xm) =
m∏
j=1

f(xj)

{
1 + βm

∑
1≤l≤k≤m

(1− 2F (xk)) (1− 2F (xl))

}
,

−∞ < x1, x2..., xm <∞ and − 1(
m
2

) ≤ βm ≤
1[
m
2

] .

For 1 ≤ j ≤ m define the binary random variable ξj as follows:

ξj =

{
1, if Xj ≤ Y

0, otherwise

Consider Sm =
∑m

j=1 ξj. Here, Sm counts the number of observations of Xj’ s

not exceeding the random threshold Y. Then for k = 0, 1, ...,m, the finite sample

distribution of Sm is given by
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P {Sm = k} =

(
m

k

)[
E(F k(Y )F

m−k
(Y ))

+ βm

(
k(k − 1)

2
E(F k(Y )F

m−k+2
(Y ))− k(m− k)E(F k+1(Y )F

m−k+1
(Y ))

+
(m− k) (m− k − 1)

2
E(F k+2(Y )F

m−k
(Y ))

)]
,

where F (x) = 1− F (x).

If F = G, then for k = 0, 1, ...,m and − 1

(m2 )
≤ βm ≤ 1

[m2 ]
, the finite sample

distribution of Sm is

P {Sm = k} =

(
m

k

)[
Beta(k + 1,m− k + 1) + βm

(
k(k − 1)

2
Beta(k + 1,m− k + 3)

− k(m− k)Beta(k + 2,m− k + 2)

+
(m− k)(m− k − 1)

2
Beta(k + 3,m− k + 1)

)]
,

where Beta(x, y) is a beta function.

Let X =(X1, X2, ..., Xn) be a s-FGM sequence with marginal cdf F (x) and

Y =(Y1, Y2, ..., Ym, ...) be another sequence of iid random variables with cdf G(y).

LetX1:n ≤ X2:n ≤ · · · ≤ Xn:n be the order statistics of X. Bairamov and Eryilmaz

[12] also introduced a binary random variable ηj, 1 ≤ j ≤ m and 1 ≤ r ≤ n,

based on the rth order statistics of the sequence X as

ηj =

{
1, if Yj ≤ Xr:n

0, otherwise

Define the statistic Sm(r) as follows
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Sm(r) =
m∑
j=1

ηj.

In this case Sm(r) counts the number of observations Yi’ s falling into the

interval (−∞, Xr:n].
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If F = G, then for k = 0, 1, ...,m and − 1

(n2)
≤ βn ≤ 1

[n2 ]
, the finite sample

distribution of Sm(r) is given by

P {Sm(r) = k} =

(
m

k

) n∑
t=r

(−1)s−r
(
s− 1

r − 1

)(
n

s

)
[tBeta(t+ k,m− k + 1)

+ βn

(
s2(s− 1)

2
Beta(s+ k,m− k + 3)

−s(s− 1)Beta(s+ k + 1,m− k + 2))] .



Chapter 4

Main Results

In this chapter, we aim to derive the exact and asymptotic distributions of the

exceedance statistics defined for the bivariate random sequences Z1 = {(Xi, Yi),

i = 1, 2, ..., n} and Z2 = {(Xn+j, Yn+j), j = 1, 2, ...,m, ...}. Here and thereafter,

Z1 and Z2 are assumed to be independent. We also assume that X and Y are

dependent random variables. Therefore, the distribution functions are expected

to involve the copulas of distributions of the first and second sequences. Below,

we provide an insight into the definition of copula function, since the theoretical

results and examples presented in this thesis rely on the copulas.

Definition 4.0.1. (Nelsen, 2006, p. 10) A two dimensional Copula is a function

C : [0, 1]2 → [0, 1] , such that

i For every t, s ∈ [0, 1]

C (t, 0) = C (0, s) = 0

and

C (t, 1) = t and C (1, s) = s.

ii For every t1 ≤ t2 and s1 ≤ s2 in [0, 1] ,

C (t2, s2)− C (t1, s2)− C (t2, s1) + C (t1, s1) ≥ 0.

35
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Theorem 4.1 (Sklar’s Theorem) (Nelsen, 2006, p. 17) Let X and Y be a pair of

random variables with joint distribution function H(x, y) and marginal distribu-

tion functions FX(x) and FY (y), respectively. Then for all x, y ∈ R∪ {−∞,∞} ,
there exists a copula function C such that

H(x, y) = C(FX(x), FY (y)). (4.1)

If FX(x) and FY (y) are continuous distribution functions, then the Copula func-

tion is unique. In the contrary case, if C is a copula and FX(x) and FY (y) are

distribution functions, then the function H(x, y) is a joint distribution function

with marginals FX(x) and FY (y).

Definition 4.0.2 (Quasi-Inverse Function). Let F be cdf of a random variable X.

Then a quasi-inverse function of F is any function F−1(u) : [0, 1]→ R∪{−∞,∞}
such that:

F−1(u) = inf {x : F (x) ≥ u} = sup {x : F (x) ≤ u} .

If F is a strictly increasing distribution function, then the quasi-inverse func-

tion F−1 is the ordinary inverse function.

Corollary 4.2 Let FX(x) and FY (y) be continuous continuous distribution func-

tions of X and Y , respectively. Let F−1
X (x) and F−1

Y (y) be the quasi inverse

functions of X and Y, respectively and H(x, y) be the joint cdf of X and Y. Then

C(u, v) = H(F−1
X (x), F−1

Y (y)). (4.2)
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Below, the definition of Archimedean family of copulas is given.

Definition 4.0.3 (Archimedean Copula). (Nelsen, 2006, p. 110) Consider a

continuous, strictly decreasing function φ : [0, 1] → [0,∞] such that φ (1) = 0

and φ (0) =∞. The class of copulas C(u, v) of the form

C(u, v) = φ−1 {φ (u) + φ (v)} (4.3)

is called Archimedean family of copulas, and the function φ is called generator

function.

Archimedean family of copulas have the following properties:

1. C(u, v) is symmetric for ∀u, v in [0, 1] , i.e.,

C(u, v) = C(v, u),∀ (u, v) ∈ [0, 1]2

2. C(u, v) is associative for ∀u, v, w in [0, 1] , i.e.,

C(C(u, v), w) = C(u,C(v, w));

3. If a is any constant, then aφ is a generator function too.

4.1 Exceedance statistics based on simple model

In this section, we present the exact and asymptotic distributions of exceedance

statistics based on random threshold (X, Y ). Furthermore, asymptotic distribu-

tions of normalized exceedance statistics are investigated. Examples and numer-

ical results are provided for some well known copulas.
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4.1.1 Finite distributions of exceedance statistics based

on simple model

Assume that Z1 = (X, Y ) is a bivariate random vector with absolutely continuous

distribution function F (x, y) = C1(FX(x), FY (y)), where C1(u, v), (u, v) ∈ [0, 1]2,

is a connected copula and FX(x), FY (y) are the corresponding marginal distribu-

tions of X and Y, respectively and fX(x) and fY (y) are the probability density

functions of X and Y defined by F ′X(x) = fX(x) and F ′Y (y) = fY (y). Further-

more, let Z2 = {(Xi, Yi), i = 1, 2, ...,m, ...} be a sequence of independent random

vectors with absolutely continuous distribution function

G(x, y) = C2(FX(x), FY (y)) and the same marginal distributions FX(x) and

FY (y), where C2 is a connected copula. Assume that Z1 and Z2 are indepen-

dent.

For i = 1, 2, ...,m define the binary random variables

ξi ≡ IM (Xi, Yi) =

{
1, (Xi, Yi) ∈M
0, otherwise

where IM (Xi, Yi) is an indicator function of the random set M ≡ (−∞, X] ×
(−∞, Y ].

Now define the random variable Sm =
∑m

i=1 ξi. It is clear that the exceedance

statistics Sm counts the number of bivariate observations (Xi, Yi), i = 1, 2, ...,

falling into the random set M and the random variables ξi, i = 1, 2, ..., are

dependent. In the following theorem, we obtain the finite sample distribution of

Sm.

Theorem 4.3 (See Erem and Bayramoglu [35]) It is true that

P {Sm = k} =

(
m

k

)∫ ∞
−∞

∫ ∞
−∞

[G(x, y)]k [1−G(x, y)]m−k dFX,Y (x, y) . (4.4)
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The expression in terms of copulas is

P {Sm = k} =

(
m

k

)∫ 1

0

∫ 1

0

[C2(u, v)]k [1− C2(u, v)]m−k dC1(u, v), (4.5)

where C2(u, v) is a copula corresponding to joint distribution function G(x, y) and

C1(u, v) is a copula corresponding to joint distribution function F (x, y).

Proof. First we show that

P {Sm = k} =

(
m

k

)∫ ∞
−∞

∫ ∞
−∞

[G(x, y)]k [1−G(x, y)]m−k dFX,Y (x, y) .

Indeed, define

Aij =
{
Xij < X, Yij < Y

}
and observe that the complement of Aij as

Acij =
{
Xij < X, Yij > Y

}
∪
{
Xij > X, Yij < Y

}
∪
{
Xij > X, Yij > Y

}
.

For simplicity, we define the random set E as

E =
{
Ai1Ai2 · · ·AikAcik+1

· · ·Acim
}
.

Then conditioning with respect to X = x and Y = y we obtain

P {Sm = k} =
∑

i1,i2,...,im

P
{
Ai1Ai2 · · ·AikAcik+1

· · ·Acim
}

=
∑

i1,i2,...,im

∫ ∞
−∞

∫ ∞
−∞

P {E | X = x, Y = y} dFX,Y (x, y)

=
∑

i1,i2,...,im

∫ ∞
−∞

∫ ∞
−∞

P
{
ai1ai2 · · · aikacik+1

· · · acim
}
dFX,Y (x, y), (4.6)

where the sum
∑

i1,i2,...,im

extends over all permutations of i1, i2, ..., im ∈ {1, 2, ...,m},

aij =
{
Xij < x, Yij < y

}
, and acij is the complement of aij .
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Since the events aij are independent, the probability in (4.6) can be written as

P
{
ai1ai2 · · · aikacik+1

· · · acim
}

= P (ai1)P (ai2) · · ·P (aik)P (acik+1
) · · ·P (acim).

Therefore, the finite sample distribution of Sm can be simplified as

P {Sm = k} =

(
m

k

)∫ ∞
−∞

∫ ∞
−∞

[G(x, y)]k [1−G(x, y)]m−k dFX,Y (x, y) .

Using the probability integral transformation FX(x) = u, FY (y) = v in equation

(4.4), we obtain equation (4.5). Thus, the theorem is proved.

Proposition 4.4 It is clear that

E(Sm) = mE(G(X, Y )) = mE(C2(U, V )), (4.7)

V ar(Sm) = mE(G(X, Y ))−mE(G2(X, Y )) +m2V ar(G(X, Y ))

= mE(C2(U, V ))−mE(C2
2(U, V )) +m2V ar(C2(U, V )),

(4.8)

where (U, V ) is a random vector with Uniform(0,1) marginals having joint cdf

C2(u, v).

Proof.

E(Sm) =
m∑
k=0

kP {Sm = k}

=
m∑
k=0

k

(
m

k

)∫ ∞
−∞

∫ ∞
−∞

[G(x, y)]k [1−G(x, y)]m−k dFX,Y (x, y) .

=
m∑
k=0

k

(
m

k

)
E
(
Gk(X, Y )(1−G(X, Y ))m−k

)
= E

[
m∑
k=0

k

(
m

k

)
Gk(X, Y )(1−G(X, Y ))m−k

]
. (4.9)

Consider the binomial random variable Z with parameters m and T . It is clear

that E(Z) = mT and V ar(Z) = mT (1−T ). Denote T ≡ G(X, Y ). Then one can
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write equation (4.9) in the following form

= E

[
m∑
k=0

k

(
m

k

)
T k(1− T )m−k

]
= E(E(Z))

= E(mT )

= mE(G(X, Y )) (4.10)

Similarly, the second moment of Sm is

E(S2
m) =

m∑
k=0

k2P {Sm = k}

=
m∑
k=0

k2

(
m

k

)∫ ∞
−∞

∫ ∞
−∞

[G(x, y)]k [1−G(x, y)]m−k dFX,Y (x, y) .

= E

[
m∑
k=0

k2

(
m

k

)
Gk(X, Y )(1−G(X, Y ))m−k

]

= E

[
m∑
k=0

k2

(
m

k

)
T k(1− T )m−k

]
= E

[
m2T 2 +mT (1− T )

]
E(S2

m) = m2E(G2(X, Y )) +mE [G(X, Y )(1−G(X, Y ))]

Hence,

V ar(Sm) = E(S2
m)− (E(Sm))2

= m2E(G2(X, Y )) +mE [G(X, Y )(1−G(X, Y ))]

−m2 [E(G(X, Y ))]2

= m2(E(G2(X, Y ))− [E(G(X, Y ))]2)

+mE(G(X, Y ))−mE(G2(X, Y ))

= mE(G(X, Y ))−mE(G2(X, Y )) +m2V ar(G(X, Y )). (4.11)

Using probability integral transformation in equations (4.10) and (4.11), the proof

is completed.
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Example 4.1 (Product Copula). Consider the trivial case where the random

variables X and Y are independent and so are Xi and Yi. Then

C1(u, v) = C2(u, v) = uv.

P {Sm = k} =

(
m

k

)∫ 1

0

∫ 1

0

[uv]k [1− uv]m−k dudv.

=

(
m

k

)∫ 1

0

∫ 1

0

[uv]k
m−k∑
i=0

(−1)i
(
m− k
i

)
uividudv

and finally,

P {Sm = k} =

(
m

k

)m−k∑
i=0

(−1)i
(
m− k
i

)
1

(1 + i+ k)2
.

Example 4.2 (Gumbel-Barnett Copula). Let C2(u, v) = uv exp(−θ lnu ln v),

θ ∈ (0, 1] be a Gumbel-Barnett family of copulas and C1(u, v) = uv. The

Gumbel-Barnet family of copulas belongs to the class of Archimedean copulas

with generating function ϕθ(t) = ln(1 − θ ln(t)) (see Nelsen, 2006, p. 119). It is

obvious that θ = 0 implies independency. For this case the finite sample distri-

bution of Sm is

P {Sm = k}

=

(
m

k

)∫ 1

0

∫ 1

0

[uv exp(−θ ln(u) ln(v)]k [1− uv exp(−θ ln(u) ln(v)]m−k dudv

=

(
m

k

)m−k∑
i=0

(−1)i
(
m− k
i

) 1∫
0

dv

(i+ k)(1− θ ln(v)) + 1
.

As it is seen from example 4.2, the pmf of Sm involves sum and integral of

exponential and logarithmic functions. Therefore, it can be easily calculated

numerically for different values of m and k.
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4.1.1.1 Numerical results

In Table 4.1, some numerical values for probability P {Sm = k} for m = 5 are

provided for the following cases:

Case i: C1(u, v) = C2(u, v) = uv.

Case ii: C1(u, v) = uv, C2(u, v) = uv exp(−θ lnu ln v), θ ∈ (0, 1].

Case iii: C1(u, v) = uv, C2(u, v) = [max(u−θ + v−θ − 1, 0)]−1/θ, θ ∈
[−1,∞)\{0}, in this case C2(u, v) is called Clayton copula which cor-

responds to the bivariate Pareto distribution. Clayton copula is also a

well-known survival copula of Archimedean family copulas with gen-

erating function ϕθ(x) = 1
θ

(
x−θ − 1

)
. α→ 0 implies independency.

Case iv: C1(u, v) = uv, C2(u, v) = uv
1−θ(1−u)

, θ ∈ [−1, 0). C2(u, v) is known as

Ali–Mikhail–Haq copula and it is a member of Archimedean family

copulas with generating function ϕθ(x) = ln 1−θ(1−x)
x

(Nelsen, 2006;

p. 116 and Balakrishnan and Lai, 2009; p. 90). It is obvious that for

θ = 0, C2(u, v) is independent.

Case i Case ii Case iii Case iv

θ=0.5 θ=1 θ=-1

P {S5 = k} P {S5 = k} P {S5 = k} P {S5 = k}
k = 0 0.408 0.269 0.327 0.458

k = 1 0.242 0.179 0.259 0.337

k = 2 0.158 0.154 0.187 0.154

k = 3 0.103 0.141 0.124 0.0436

k = 4 0.061 0.132 0.072 0.0069

k = 5 0.028 0.125 0.031 0.0005

Table 4.1: Exact distribution of Sm for different copulas

As it is seen from Table 4.1, the probability mass function of Sm decreases as

k increases.
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4.1.2 Asymptotic distributions of exceedance statistics in

simple model

In this section, we are going to obtain the asymptotic distribution of Sm
m

when

m→∞. The following theorem presents a result for lim
m→∞

P
{
Sm
m
≤ x

}
.

Theorem 4.5 (See Erem and Bayramoglu [35]) It is true that the statistics Sm
m

has a continuous limiting distribution

W (x) =


0, x < 0

P {C2(U, V ) ≤ x} , 0 ≤ x ≤ 1

1, x > 1

(4.12)

where (U, V ) is a bivariate random vector with copula C2(u, v). Furthermore, the

cdf W (x) can be also written in the following form

W (x) =


0, x < 0

P {G(X, Y ) ≤ x} , 0 ≤ x ≤ 1

1, x > 1

. (4.13)

To prove the theorem, we need the following lemma.

Lemma 4.6 Let G∗m (u, v) be a bivariate empirical distribution function and

gX ,Y (u, v) is a continuous function defined on [−A,A]× [−B,B] . Then for any

partition −A = x0 < x1 < x2 < · · · < xn = A and −B = y0 < y1 < y2 < · · · <
yn = B, it is true that

∞∫
−∞

∞∫
−∞

gX ,Y (u, v) dG∗m (u, v) =
1

m

m∑
i=1

g (Xi, Yi) .

Proof of Lemma 4.6. Observe that from the definition of the Stieltjes integral of

a real function g(u, v) with respect to empirical distribution function G∗m (u, v) ,
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we have

lim
A,B→∞

A∫
−A

B∫
−B

g(u, v)G∗m (u, v) =
1

m

m∑
i=1

g (Xi, Yi) .

Indeed, for any partition −A = x0 < x1 < x2 < · · · < xn = A and −B = y0 <

y1 < y2 < · · · < yn = B, the Stieltjes integral of g(u, v) with respect to G∗m(u, v)

is

n∑
i=1

n∑
j=1

g(ξi, ηj)[G
∗
m(xi, yj)−G∗m(xi, yj−1)−G∗m(xi−1, yj) +G∗m(xi−1, yj−1)],

where ξi ∈ (xi−1, xi], ηj ∈ (yj−1, yj], i, j = 1, 2, ..., n. Since

G∗m(u, v) =



0, u < X1:m or v < Y1:m

i
m
,

{Xi:m ≤ u < Xi+1:m and Yi:m ≤ v < Yi+1:m} or

{u > Xi+1:m and Yi:m ≤ v < Yi+1:m} or

{Xi:m ≤ u < Xi+1:m and v > Yi+1:m}, 1 ≤ i ≤ m

· · · · · ·
1, u > Xm:m and v > Ym:m,

it is clear that G∗m(Xi:m, Yi:m)−G∗m(Xi:m, Yi:m−0)−G∗m(Xi:m−0, Yi:m)+G∗m(Xi:m−
0, Yi:m− 0) = i

m
− i−1

m
− i−1

m
+ i−1

m
= 1

m
and G∗m(xi, yj)−G∗m(xi, yj − 0)−G∗m(xi−

0, yj)+G∗m(xi−0, yj−0) = 0 for any other points xi and yj, where G∗m(Xi:m, Yi:m−
0) = lim

Yi:m→Y −i:m
G∗m(Xi:m, Yi:m). That is why

n∑
i=1

n∑
j=1

g(ξi, ηj)[G
∗
m(xi, yj)−G∗m(xi, yj−1)

−G∗m(xi−1, yj) +G∗m(xi−1, yj−1)]

=
1

m

m∑
i=1

g(Xi:m, Yi:m) =
1

m

m∑
i=1

g (Xi, Yi) .

The lemma is proved.
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Proof of Theorem 4.6. The probability of Sm
m

being less than or equal to a real

number x can be written as

P

{
Sm
m
≤ x

}
= P

{
1

m

m∑
i=1

I(−∞,X]×(−∞,Y ] (Xi, Yi) ≤ x

}

= P


∞∫

−∞

∞∫
−∞

gX ,Y (u, v) dG∗m (u, v) ≤ x

 , (4.14)

where

IA(x, y) =

{
1, (x, y) ∈ A
0, otherwise

,

gX ,Y (u, v) = I(−∞,X]×(−∞,Y ] (u, v) ,

and

G∗m (u, v) =
1

m

m∑
i=1

I(−∞,u]×(−∞,v](Xi, Yi)

is the empirical distribution function constructed on the basis of (X1, Y1), ..., (Xm, Ym).

Now, conditioning (4.14) on X = x and Y = y and using the independence of

the random vectors (Xi, Yi), i = 1, 2, ...,m, ... and (X, Y ) we obtain

P

{
Sm
m
≤ x

}

=

∞∫
−∞

∞∫
−∞

P


∞∫

−∞

∞∫
−∞

gX,Y (u, v) dG∗m (u, v) ≤ x | X = t, Y = s

 dFX,Y (t, s)

=

∞∫
−∞

∞∫
−∞

P


∞∫

−∞

∞∫
−∞

gt,s (u, v) dG∗m (u, v) ≤ x

 dFX,Y (t, s). (4.15)

Using the Glivenko-Cantelli Theorem (Borovkov, 1998; p. 5), we have

sup
(u,v)∈R2

|G∗m (u, v)−G(u, v)| a.s.→ 0 as m→∞
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and the continuity property of the integral functional

Ψ(G) =

∞∫
−∞

∞∫
−∞

gt,s (u, v) dG (u, v)

yields

Ψ(G∗m)
a.s.→ Ψ(G).

Then we can write

W (x) ≡ lim
m→∞

P

{
Sm
m
≤ x

}

= lim
m→∞

∞∫
−∞

∞∫
−∞

P


∞∫

−∞

∞∫
−∞

gt,s (u, v) dG∗m (u, v) ≤ x

 dFX,Y (t, s)

=

∞∫
−∞

∞∫
−∞

lim
m→∞

P


∞∫

−∞

∞∫
−∞

gt,s (u, v) dG∗m (u, v) ≤ x

 dFX,Y (t, s)

=

∞∫
−∞

∞∫
−∞

P


∞∫

−∞

∞∫
−∞

gt,s (u, v) dG (u, v) ≤ x

 dFX,Y (t, s)

= P


∞∫

−∞

∞∫
−∞

gX,Y (u, v) dG (u, v) ≤ x


= P


X∫

−∞

Y∫
−∞

dG (u, v) ≤ x


= P{G(X, Y ) ≤ x}. (4.16)

Using the probability integral transformation U = FX(X) and V = FY (Y ) in

(4.16), we obtain (4.12). Thus, the theorem is proved.

Corollary 4.7 If C2(u, v) = C1(u, v) = C(u, v), then

lim
m→∞

sup
−∞<x<∞

∣∣∣∣P {Smm ≤ x

}
− P{C(U, V ) ≤ x}

∣∣∣∣ = 0, (4.17)

where (U, V ) has the copula C(u, v).



CHAPTER 4. MAIN RESULTS 48

Note that in Corollary 4.7, in the case where C2(u, v) = C1(u, v) = C(u, v), the

function P{F (X, Y ) ≤ x} and P{C(U, V ) ≤ x} are the well known Kendall distri-

bution function (see Nelsen et al. (2003) [54] and Cherubini et al. [29]). In Genest

and Rivest [38] the Kendall distribution function for different Archimedean cop-

ulas are calculated. The following proposition by Genest and Rivest [38] paves

the way for a method to calculate the Kendall distribution function for the class

of Archimedean copulas.

Proposition 4.8 (see Genest and Rivest [38]) Let X and Y be uniformly dis-

tributed random variables whose copula C (x, y) is of the form φ−1 {φ (x) + φ (y)}
for some convex decreasing function φ defined on (0, 1] satisfying φ (1) = 0. Set

U = φ(X)
{φ(X)+φ(Y )} , V = C (X, Y ) , and λ (v) = φ(v)

φ′ (v)
for 0 < v ≤ 1. Then,

(a) U is uniformly distributed on (0, 1) ,

(b) V is distributed as K (v) = v − λ (v) on (0, 1) , and

(c) U and V are independent random variables.

Below in the sequence of examples 4.3– 4.7, the Kendall distribution function

of some well-known Archimedean family copulas are provided using Proposition

4.8. Actually, it follows from Corollary 4.7 that these Kendall distribution func-

tions are the limiting distributions of Sm
m
.

Example 4.3 (Product Copula). Let C(u, v) be the product copula, then the

Kendall distribution function is

W (x) = x− x log (x), 0 < x < 1.

Example 4.4 (Clayton Copula). Let C(u, v) be Clayton copula. Then,

W (x) = x+
x (1− xα)

α
, 0 < x < 1.

For α = 1,

W (x) = x+x (1− x) , 0 < x < 1.
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Example 4.5 (Frank Copula). Let C(u, v) be a Frank family copula, i.e.,

C(u, v) = − 1

α
ln

(
1 +

(e−αu − 1) (e−αv − 1)

e−α − 1

)
, α ∈ R\{0}

with generating function ϕα(x) = log
(

1−exp(−α)
1−exp(−αx)

)
. The Frank family copulas are

the only Archimedean copulas satisfying C(u, v) = Ĉ(u, v), where Ĉ(u, v) is the

survival copula. As α→∞, C(u, v) becomes the product copula. Then

W (x) = x+
1− exp (−αx)

α exp (−αx)
log

(
1− exp (−α)

1− exp (−αx)

)
, 0 < x < 1.

For α = 1, the function W (x) can be written as

W (x) = x+
1− e−x

e−x
log

(
1− e−1

1− e−x

)
, 0 < x < 1.

Example 4.6 (Gumbel Copula). Let C(u, v) be a Gumbel copula, i.e., C(u, v) =

e−[(− lnu)α+(− ln v)α]1/α , α ∈ [1,∞) with generator function ϕα(x) = {− log (x)}α.

Then the Kendall distribution function is given by

W (x) = x−x log (x)

α + 1
, 0 < x < 1.

For α = 1,

W (x) = x−x log (x)

2
, 0 < x < 1.

It is also clear that α = 0 indicates independency.

Example 4.7 (Log Copula). Let C(u, v) be the log copula, i.e.,

C(u, v) = exp

αγ
1−

{(
1− lnu

αγ

)α+1

+

(
1− ln v

αγ

)α+1

− 1

} 1
α+1

 ,

α, γ ∈ (0,∞),
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with generating function ϕα,γ(x) = {1− log (x)/αγ}α+1−1. Then

W (x) = x+
αγx

[
{1− log (x) /αγ}α+1 − 1

]
(α + 1) {1− log (x) /αγ}α

, 0 < x < 1.

For α = γ = 1, the function W (x) can be written by

W (x) = x+
x [(1− log (x))2 − 1]

2(1− log (x))
, 0 < x < 1.

In Figure 4.1, the asymptotic distributions of Sm
m

for copulas given in examples

4.3, 4.4, 4.5, 4.6 and 4.7 are provided for α = 1. Note that Wi(x), i = 1, 2, ..., 5

is the asymptotic distribution, for the independent, Clayton, Frank, Gumbel and

Log Copula, respectively.

Figure 4.1: The graphs of the limiting distributions of Sm
m

for copulas given in
examples 4.3, 4.4, 4.5, 4.6 and 4.7

Example 4.8 (FGM Copula). Let C1(u, v) be a Farlie-Gumbel-Morgenstein

(FGM) copula. FGM copulas are one of the well-known copulas and they have
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various applications in modelling survival data, reliability engineering, risk anal-

ysis and insurance (see Louzada et al. [51] and Danaher et al. [30]). The proba-

bility density function of the FGM copula is

c1(u, v) = 1 + α (1− 2u) (1− 2v) ,−1 ≤ α ≤ 1,

and the distribution function of the FGM copula is

C1(u, v) = uv [1 + α (1− u) (1− v)] ,−1 ≤ α ≤ 1.

Lai [49] showed that U and V are positive quadrant dependent (PQD) for

0 ≤ α ≤ 1, i.e.,

F (x, y) ≥ FX(x)F Y (y), ∀(x, y) (4.18)

or

C(u, v) ≥ uv, ∀u, v ∈ [0, 1] , (4.19)

where F (x, y) is the survival function of (X, Y ) and FX(x) and F Y (y) are the

marginal survival functions of X and Y, respectively. For more details see Lai

[49] and Lehmann [50].

Example 4.9. Let C1(u, v) = uv [1 + α (1− u) (1− v)] , −1 ≤ α ≤ 1 and

C2(u, v) = uv. Then

Fα(x) ≡ P {C2(u, v) ≤ x} =

∫∫
{(u,v):uv≤x}

c1(u, v)dudv

After the transformation t = uv and s = u with Jacobian |J | = 1
s
, we have

Fα(x) ≡
∫ x

0

∫ 1

t

[
1 + α (1− 2s) (1− 2t

s
)

]
1

s
dsdt

Fα(x) =


0, x < 0

x (1 + 3α (x− 1)− (1 + α + 2αx) lnx) 0 ≤ x ≤ 1

1 x > 1,
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and

fα(x) =

{
4α(x− 1)− (1 + α + 4αx) lnx, 0 ≤ x ≤ 1

0, otherwise

where fα(x) = dFα(x)
dx

and −1 ≤ α ≤ 1. In Figure 4.2, the graphs of Fα(x) and

fα(x) are given for x = 0.3, 0.5, and 0.7.

Figure 4.2: The graphs of Fα(x) and fα(x) for selected values of x

These graphs show that larger values of α correspond to smaller values of

Fα(x) for fixed x. The pdf fα(x) varies depending on values of α such that for

0 < x < 0.42, fα(x) is decreasing and for 0.42 < x < 1, fα(x) is increasing with

respect to α.

4.1.3 Asymptotic distributions of normalized exceedance

statistics

In this section we discuss the asymptotic distribution of normalized exceedance

statistics.

Let us define S∗m = Sm−E(Sm)√
V ar(Sm)

. It is clear that E(S∗m) = 0 and V ar(S∗m) = 1. De-

note by am = E(Sm)
m

, bm =

√
V ar(Sm)

m
, a = E(C2(U, V )), and b =

√
V ar(C2(U, V )).

Then

lim
m→∞

E(Sm)√
V ar(Sm)

=
a

b
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and

lim
m→∞

m√
V ar(Sm)

=
1

b
.

Theorem 4.9 The asymptotic distribution of the statistics S∗m is given as

lim
m→∞

sup
−∞<x<∞

∣∣P {S∗m ≤ x} − F ∗a,b(x)
∣∣ = 0,

where

F ∗a,b(x) =


0, x < −a

b

P
{
C2(U,V )−a

b
≤ x

}
, x ∈

[
−a
b
, 1−a

b

]
1, x > a

b

Proof. Note that the probability P

{
Sm−E(Sm)√
V ar(Sm)

≤ x

}
can be written by

P

{
Sm − E(Sm)√
V ar(Sm)

≤ x

}
= P

{
Sm/m− E(Sm)/m√

V ar(Sm)/m
≤ x

}

= P

{
Sm
m
− am
bm

≤ x

}

Since 0 ≤ a+ bx ≤ 1, it is obvious that

−a
b
≤ x ≤ 1− a

b
.

Hence

F ∗a,b(x) ≡ lim
m→∞

P

{
Sm
m
− am
bm

≤ x

}

= P

{
C2(U, V )− a

b
≤ x

}
, x ∈

[
−a
b
,
1− a
b

]
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and

lim
m→∞

sup
−∞<x<∞

|P{S∗m ≤ x} − P {C2(U, V ) ≤ a+ bx}| = 0.

Example 4.10 (Product Copula). Let C1(u, v) = C2(u, v) = uv. Then

F ∗a,b(x) ≡ P {C2(U, V ) ≤ a+ bx} =

∫∫
{(u,v):uv≤a+bx}

dudv.

Making the transformation uv = t and u = s with Jacobian |J | = 1
s
, we have

F ∗a,b(x) =

∫ a+bx

0

∫ 1

t

1

s
dsdt,

F ∗a,b(x) =


0, x < −a

b

−(a+ bx)(ln(a+ bx)− 1), x ∈
[
−a
b
, 1−a

b

]
1, x > 1−a

b

and

f ∗a,b(x) =

{
−b ln(a+ bx), x ∈

[
−a
b
, 1−a

b

]
0, otherwise

Then

a = E(C2(U, V )) =

∫ 1

0

∫ 1

0

uvdudv =
1

4

E(C2
2(U, V )) =

∫ 1

0

∫ 1

0

u2v2dudv =
1

9
,

V ar(C2(U, V )) =
7

144
,

and

b =
√
V ar(C2(U, V )) =

√
7

12
.

In Figure 4.3, the graphs of F ∗a,b(x) and f ∗a,b(x) in example 4.10 are illustrated.
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Figure 4.3: The graphs of F ∗a,b(x) and f ∗a,b(x) in example 4.10

Example 4.11 (FGM Copula). Let C1(u, v) = uv[1 + α(1 − u)(1 − v)] and

C2(u, v) = uv. Then

F ∗a,b,α(x) = lim
m→∞

P {S∗m ≤ x} = P {C2(U, V ) ≤ a+ bx} =

∫∫
{(u,v):uv≤a+bx}

c1(u, v)dudv.

=

∫∫
{(u,v):uv≤a+bx}

(1 + α(1− 2u)(1− 2v))dudv.

Making similar transformation as in example 4.10, yields

F ∗a,b,α(x) =

∫ a+bx

0

∫ 1

t

[
1 + α(1− 2s)

(
1− 2t

s

)]
1

s
dsdt

F ∗a,b,α(x) =


0, x < −a

b

−(a+ bx)(−3α(a+ bx− 1)

+(1 + α + 2aα + 2αbx) ln(a+ bx)− 1),
x ∈

[
−a
b
, 1−a

b

]
1, x > 1−a

b
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The limiting density function of S∗m is

f ∗a,b,α(x) =


b(4α(a+ bx− 1)

−(1 + α + 4aα + 4αbx) ln(a+ bx),
x ∈

[
−a
b
, 1−a

b

]
0, otherwise

.

Recall that we obtained from example 4.10 that, for C2(u, v) = uv, a = 0.25 and

b =
√

7
12
≈ 0.2205. In Figure 4.4, the plots of F ∗a,b,α(x) are illustrated for selected

values of x.

Figure 4.4: The graph of F ∗a,b,α(x) in example 4.11 for a = 0.25, b = 0.2205 and
−1 ≤ α ≤ 1.

It is observed that the function F ∗a,b,α(x) decreases, as α increases from−1 to 1.

4.2 Exceedance statistics based on order statis-

tics and concomitants

In this section, we present the exact and asymptotic distributions of exceedance

statistics based on order statistics and concomitants of bivariate sequences of

random sequences.
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4.2.1 Finite distributions of exceedance statistics based

on order statistics and concomitants

Let Z1 = {(Xi, Yi), i = 1, 2, ..., n} be a sequence of independent and identically

distributed random vectors with joint distribution function

F (x, y) = C1(FX(x), FY (y)). Similarly, let Z2 = {(Xn+j, Yn+j), j = 1, ...,m, ...}
be another sequence of independent and identically distributed random vectors

with joint distribution function G(x, y) = C2(FX(x), FY (y)). Assume that the

random vectors Z1 and Z2 are independent.

Let (Xr:n, Y[r:n]) be the vector of the rth order statistic and its concomitant

constructed from the sample Z1 and define the binary random variables

ξi (r) ≡ IN (Xi, Yi) =

{
1 (Xm+i, Ym+i) ∈ N,
0 otherwise,

where N ≡ (−∞, Xr:n]× (−∞, Y[r:n]].

Define the random variable Sm (r) =
∑m

i=1 ξi (r) which is the number of ob-

servations of Z2 falling into the set N. It is clear that the random variables ξi(r),

i = 1, 2, ... are dependent. In the following theorem, we present the distribution

of Sm (r).

Theorem 4.10 (See Erem and Bayramoglu [35]) The probability mass function

of Sm(r)

P {Sm(r) = k}

=
1

Beta (r, n− r + 1)

(
m

k

)∫ ∞
−∞

∫ ∞
−∞

[G(x, y)]k [1−G(x, y)]m−k

× [FX(x)]r−1[1− FX(x)]n−rdFX,Y (x, y) . (4.20)
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The expression in terms of copulas is

P {Sm(r) = k}

=
1

Beta (r, n− r + 1)

(
m

k

)∫ 1

0

∫ 1

0

[C2(u, v)]k [1− C2(u, v)]m−k

× ur−1[1− u]n−rdC1 (u, v) , (4.21)

where C2(u, v) is a copula corresponding to joint distribution function G(x, y) and

C1(u, v) is a copula corresponding to joint distribution function F (x, y).

Proof. The proof of the theorem is very similar to Theorem 4.3. The only differ-

ence is that here we use the joint pdf of (Xr:n, Y[r:n]) instead of the joint pdf of

(X, Y ). First we show that

P {Sm(r) = k}

=
1

Beta (r, n− r + 1)

(
m

k

)∫ ∞
−∞

∫ ∞
−∞

[G(x, y)]k [1−G(x, y)]m−k

× [FX(x)]r−1[1− FX(x)]n−rdFX,Y (x, y)

Define

Aij =
{
Xij < Xr:n, Yij < Y[r:n]

}
and observe that the complement of Aij as

Acij =
{
Xij < Xr:n, Yij > Y[r:n]

}
∪
{
Xij > Xr:n, Yij < Y[r:n]

}
∪
{
Xij > Xr:n, Yij > Y[r:n]

}
.

For simplicity, we define the random set E as

E =
{
Ai1Ai2 ...AikA

c
ik+1

...Acim

}
.
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Then conditioning with respect to Xr:n = x and Y[r:n] = y we obtain

P {Sm(r) = k} =
∑

i1,i2,...,im

P
{
Ai1Ai2 ...AikA

c
ik+1

...Acim

}
=

∑
i1,i2,...,im

∫ ∞
−∞

∫ ∞
−∞

P
{
E | Xr:n = x, Y[r:n] = y

}
dFXr:n,Y[r:n](x, y)

=
∑

i1,i2,...,im

∫ ∞
−∞

∫ ∞
−∞

P
{
ai1ai2 ...aika

c
ik+1

...acim

}
dFXr:n,Y[r:n](x, y),

(4.22)

where the sum
∑

i1,i2,...,im

extends over all permutations of i1, i2, ..., im ∈ {1, 2, ...,m},

and

aij =
{
Xij < x, Yij < y

}
, acij is the complement of aij .

Since events aij are independent the probability under integral in (4.22) can be

written as

P
{
ai1ai2 ...aika

c
ik+1

...acim

}
= P (ai1)P (ai2) · · ·P (aik)P (acik+1

)...P (acim).

Using the joint probability density function of Xr:n and Y[r:n] in equation (4.22),

we obtain

P {Sm(r) = k}

=
1

Beta (r, n− r + 1)

(
m

k

)∫ ∞
−∞

∫ ∞
−∞

[G(x, y)]k [1−G(x, y)]m−k

× f (y | x) fXr:n (x) dxdy.

Therefore, the finite sample distribution of Sm(r) can be simplified as

P {Sm(r) = k}

=
1

Beta (r, n− r + 1)

(
m

k

)∫ ∞
−∞

∫ ∞
−∞

[G(x, y)]k [1−G(x, y)]m−k

× [FX(x)]r−1[1− FX(x)]n−rdFX,Y (x, y) .
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Using the probability integral transformation FX(x) = u and FY (y) = v in equa-

tion (4.20), we obtain equation (4.21).

Proposition 4.11 It is true that

E(Sm(r)) = mE
(
G(Xr:n, Y[r:n])

)
= mE(C2(Ur:n, Vr:n)), (4.23)

V ar(Sm(r)) = mE(G(Xr:n, Y[r:n]))−mE(G2(Xr:n, Y[r:n])) +m2V ar(G(Xr:n, Y[r:n]))

= mE(C2(Ur:n, V[r:n]))−mE(C2
2(Ur:n, V[r:n])) +m2V ar(C2(Ur:n, V[r:n])),

(4.24)

where Ur:n and V[r:n] are respectively the rth order statistic and its concomitant

constructed from the random sample (U1, V1),(U2, V2),...,(Un, Vn) with distribution

C2(u, v).

Proof. One can write equation (4.20) in the following form

P {Sm(r) = k} =

(
m

k

)∫ ∞
−∞

∫ ∞
−∞

[G(x, y)]k [1−G(x, y)]m−k dFXr:n,Y[r:n](x, y).

Using this probability function, the expected value of Sm(r) can be calculated

directly as

E(Sm(r)) =
m∑
k=0

kP {Sm(r) = k}

=
m∑
k=0

k

(
m

k

)∫ ∞
−∞

∫ ∞
−∞

[G(x, y)]k [1−G(x, y)]m−k dFXr:n,Y[r:n](x, y).

=
m∑
k=0

k

(
m

k

)
E
[[
G(Xr:n, Y[r:n])

]k [
1−G(Xr:n, Y[r:n])

]m−k]
= E

[
m∑
k=0

k

(
m

k

)[
G(Xr:n, Y[r:n])

]k [
1−G(Xr:n, Y[r:n])

]m−k]
= mE

(
G(Xr:n, Y[r:n])

)
. (4.25)
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Similarly, the second moment of Sm(r) is

E(S2
m(r)) =

m∑
k=0

k2P {Sm(r) = k}

=
m∑
k=0

k2

(
m

k

)
E
[[
G(Xr:n, Y[r:n])

]k [
1−G(Xr:n, Y[r:n])

]m−k]
= E

[
m∑
k=0

k2

(
m

k

)[
G(Xr:n, Y[r:n])

k
] [

1−G(Xr:n, Y[r:n])
]m−k]

= m2E(G2(Xr:n, Y[r:n])) +mE
[
G(Xr:n, Y[r:n])(1−G(Xr:n, Y[r:n]))

]
.

Therefore using first two moments, we can calculate the variance of Sm(r).

V ar (Sm(r)) = m2
[
E
(
G(Xr:n, Y[r:n])

)]2 −m2E(G2(Xr:n, Y[r:n]))

−mE
[
G(Xr:n, Y[r:n])(1−G(Xr:n, Y[r:n]))

]
= V ar(G(Xr:n, Y[r:n]))−mE

(
G(Xr:n, Y[r:n])

)
−mE(G2(Xr:n, Y[r:n])).

(4.26)

Using the probability integral transformation in equations (4.25) and (4.26), the

proof is completed.

Corollary 4.12 If C1(u, v) = C2(u, v) = C(u, v), then

P {Sm(r) = k}

=
1

Beta (r, n− r + 1)

(
m

k

)∫ 1

0

∫ 1

0

[C(u, v)]k [1− C(u, v)]m−k ur−1[1− u]n−rdC(u, v).

4.2.1.1 Numerical Results.

Below in Table 4.2 numerical results for the pmf of the exceedance statistics Sm(r)

for different copulas and for m = n = 5 and r = 3 are presented. These copulas

are given in the following:
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Case i): C1(u, v) = C2(u, v) = uv.

Case ii): C1(u, v) = uv, C2(uv) = uv exp(−θ lnu ln v), θ ∈ (0, 1] (Gumbel-

Barnett copula).

Case iii): C1(u, v) = uv, C2(u, v) = [max(u−θ+v−θ−1, 0)]−1/θ, θ ∈ [−1,∞)\{0}
(Clayton copula).

Case iv): C1(u, v) = uv, C2(u, v) = uv
1−θ(1−u)(1−v)

, θ ∈ [−1, 1) (Ali-Mikhail-Haq

copula).

Case i Case ii Case iii Case iv

θ=0.5 θ=1 θ=-1

P {S5(3) = k} P {S5(3) = k} P {S5(3) = k} P {S5(3) = k}
k = 0 0.361 0.036 0.268 0.4175

k = 1 0.278 0.065 0.284 0.362

k = 2 0.188 0.104 0.226 0.168

k = 3 0.109 0.161 0.140 0.0451

k = 4 0.050 0.247 0.064 0.0070

k = 5 0.014 0.387 0.018 0.0004

Table 4.2: Numerical results for the exact distribution of Sm(r)

As it is seen from Table 4.2, while k increases, pmf of Sm decreases in cases

i) and iv). However, pmf of Sm increases in case ii), as k increases.

4.2.2 Asymptotic distributions of exceedance statistics

based on order statistics and concomitants

In this section, we derive the asymptotic distribution of Sm(r)
m

as m → ∞. The

following theorem presents a result for lim
m→∞

P
{
Sm(r)
m
≤ x

}
.
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Theorem 4.13 (See Erem and Bayramoglu [35]) The statistics Sm(r)
m

has the

continuous limiting distribution

T (x) =


0, x < 0

P {C2(Ur:n, Vr:n) ≤ x} , 0 ≤ x ≤ 1

1, x > 1

, (4.27)

where Ur:n and V[r:n] are respectively the rth order statistic and its concomitant

constructed from the random sample (U1, V1),(U2, V2),...,(Un, Vn) with distribution

C2(u, v).

The expression in terms of joint cdf is

T (x) =


0, x < 0

P
{
G(Xr:n, Y[r:n]) ≤ x

}
, 0 ≤ x ≤ 1

1, x > 1

.

Proof. The proof of the theorem is similar to Theorem 4.10. The only difference

that here we use the joint pdf of (Xr:n, Y[r:n]) instead of the joint pdf of (X, Y ).

Corollary 4.14 If C1(u, v) = C2(u, v) = C(u, v) then

T (x) =



0, x < 0

P

 1
Beta(r,n−r+1)

∫∫
{(t,s): C(t,s)≤x}

c (t, s) tr−1 (1− t)n−r dtds ≤ x

 , 0 ≤ x ≤ 1

1, x > 1

,

where

c(t, s) =
∂2C(t, s)

∂t∂s
.
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Proof. Since (Xr:n, Y[r:n]) is a vector of the rth order statistics and its concomitant

constructed from the sample Z1 with joint distribution function

F (x, y) = C(FX(x), FY (y)), we can use the joint pdf of Xr:n and Y[r:n] given in

equation (2.11). Consequently,

P
{
G
(
Xr:n, Y[r:n]

)
≤ x

}
=

∫∫
{(u,v): G(u,v)≤x}

f (v | u) fr:n (u) dudv

=
1

Beta (r, n− r + 1)

∫∫
{(u,v): G(u,v)≤x}

fX,Y (u, v)

fX (u)

× F r−1
X (u) [1− FX (u)]n−r dFX (u) dv (4.28)

and the result follows.

Example 4.12 (Product copula). Let C(u, v) be the product copula, i.e. the

random variables Xi and Yi are independent. Then from equation (4.28) we

obtain

T1(x) ≡ lim
m→∞

P

{
Sm(r)

m
≤ x

}
=

1

Beta (r, n− r + 1)

∫∫
{(u,v): uv≤x}

ur−1 (1− u)n−r dudv

Making transformation t = u and s = uv with Jacobian |J | = 1
t
, we have

T1(x) =
1

Beta (r, n− r + 1)

∫ x

0

∫ 1

s

tr−2 (1− t)n−r dtds. (4.29)

For example if r = 3 and n = 5, the limiting distribution of Sm(r)
m

is

T1(x) =
x (−3x4 + 10x3 − 10x2 + 5)

2
, 0 ≤ x ≤ 1.
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Example 4.13 (Clayton copula). Let C(u, v) be a Clayton copula, i.e.,

C (u, v) =
(
u−1/c + v−1/c − 1

)−c
, c > 0.

For c = 1, the clayton copula becomes

C (u, v) =
uv

u+ v − uv
,

and

c (u, v) = − 2uv

(u (v − 1)− v)3 .

Then for r = 3 and n = 5, from equation (4.28) we obtain

T2(x) ≡ lim
m→∞

P

{
Sm(r)

m
≤ x

}
=

1

Beta (3, 3)

∫ x

0

∫ 1−t

0

2ts2dsdt

= x2
(
−4x3 + 15x2 − 20x+ 10

)
, 0 ≤ x ≤ 1.

Example 4.14 (Ali-Mikhail-Haq copula). (Nelson, 2006, p. 116) Let C(u, v) be

an Ali-Mikhail-Haq copula, i.e.,

C (u, v) =
uv

1− α (1− u) (1− v)
, − 1 ≤ α < 1.

Let α = −1, r = 3 and n = 5. From equation (4.28) the limiting distribution of
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Sm(r)
m

can be calculated for all x, 0 ≤ x ≤ 1 as

T3(x) ≡ lim
m→∞

P

{
Sm(r)

m
≤ x

}
=

1

Beta (3, 3)

∫ 1−t

0

∫ x

0

2 (1 + st− s− t) s2

1 + s
dtds

= x(−4x4 + 5x3 − 20x2 + 100x

+ 60(2− x) ln(2− x)− 80).

In Table 4.3, the limiting distributions of P
{
Sm(r)
m
≤ x

}
for selected copulas

are presented:

C(u,v) n r limm→∞ P
{
Sm(r)
m
≤ x

}
uv 5 3 T1(x) =

x(−3x4+10x3−10x2+5)
2

(u−1 + v−1 − 1)
−1

5 3 T2(x) = x2(−4x3 + 15x2 − 20x+ 10)
uv

1+(1−u)(1−v)
5 3 T3(x) = x(−4x4 + 5x3 − 20x2 + 100x+ 60(2− x) ln(2− x)− 80)

Table 4.3: Asymptotic distributions of Sm(r)
m

for product, Clayton and Ali-
Mikhail-Haq copulas

T1(x), T2(x) and T3(x) are new polynomial continuous distributions arising

in considered exceedance models. In Figure 4.5 the graphical representations of

these functions are illustrated below.
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Figure 4.5: The graphics of limiting distributions given in Table 4.3

In Figure 4.5, the T1(x), T2(x), T3(x) are the limiting distributions of Sm(r)
m

with underlying copulas C(u, v) = uv, C(u, v) = (u−1 + v−1 − 1)
−1
, and

C(u, v) = uv
1+(1−u)(1−v)

, respectively, for n = 5 and r = 3.

4.2.3 Asymptotic distributions of normalized exceedance

statistics based on order statistics and concomitants

Now, as in Section 4.1.3, asymptotic distribution of normalized exceedance statis-

tics are investigated.

Let us define S∗m(r) = Sm(r)−E(Sm(r))√
V ar(Sm(r))

. It is clear that E(S∗m(r)) = 0 and

V ar(S∗m(r)) = 1. Denote by am(r) = E(Sm(r))
m

, bm(r) =

√
V ar(Sm(r))

m
. Also de-

note by, a(r) = E(C2(Ur:n, V[r:n])) and b(r) =
√
V ar(C2(Ur:n, V[r:n])). It is clear

that

lim
m→∞

E(Sm(r))√
V ar(Sm(r))

=
a(r)

b(r)
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and

lim
m→∞

m√
V ar(Sm(r))

=
1

b(r)
.

Theorem 4.15 The statistics S∗m(r) has the continuous limiting distribution

function

H(x) =


0, x < −a(r)

b(r)

P
{
C2(Ur:n,V[r:n])−a(r)

b(r)
≤ x

}
, x ∈

[
−a(r)
b(r)

, 1−a(r)
b(r)

]
1, x > 1−a(r)

b(r)

Proof. Proof of this Theorem is similar to the proof of Theorem 4.9.

Example 4.15 (Product copula). Let C1(u, v) = C2(u, v) = uv. Then the con-

tinuous limiting distribution function of S∗m(r) is given by

H(x) =
1

Beta(r, n− r + 1)

∫ a(r)+b(r)x

0

∫ 1

t

sr−2(1− s)n−rdsdt.
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The mean of C2

(
Ur:n, V[r:n]

)
is

E
(
C2(Ur:n, V[r:n])

)
=

∫ 1

0

∫ 1

0

C2(u, v)dFUr:n,V[r:n](u, v)

=

∫ 1

0

∫ 1

0

uvfUr:n,V[r:n](u, v)dudv

=

∫ 1

0

∫ 1

0

uvf (v | u) fr:n (u) dudv

=
1

Beta (r, n− r + 1)

∫ 1

0

∫ 1

0

vur(1− u)n−rdudv

=
1

Beta (r, n− r + 1)

∫ 1

0

ur(1− u)n−rdu (4.30)

=
1

Beta (r, n− r + 1)
Beta(r + 1, n− r + 1) (4.31)

=
r

2(n+ 1)
. (4.32)

and the second moment of C2(Ur:n, V[r:n]) is calculated as

E
(
C2

2(Ur:n, V[r:n])
)

=

∫ 1

0

∫ 1

0

C2
2(u, v)dFUr:n,V[r:n](u, v)

=
1

Beta (r, n− r + 1)

∫ 1

0

∫ 1

0

v2ur+1(1− u)n−rdudv

=
1

3Beta (r, n− r + 1)

∫ 1

0

ur+1(1− u)n−rdu

=
1

3Beta (r, n− r + 1)
Beta(r + 2, n− r + 1)

=
n!

3(r − 1)!(n− r)!
(r + 1)!(n− r)!

(n+ 2)!

=
r(r + 1)

3(n+ 1)(n+ 2)
. (4.33)

Consequently, using the first two moments of C2(Ur:n, V[r:n]) we can calculate
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the variance of C2(Ur:n, V[r:n]) as

V ar
(
C2(Ur:n, V[r:n])

)
= E

(
C2

2(Ur:n, V[r:n])
)
−
[
E
(
C2(Ur:n, V[r:n])

)]2
=

r(r + 1)

3(n+ 1)(n+ 2)
−
(

r

2(n+ 1)

)2

=
4r(r + 1)(n+ 1)− 3r2(n+ 2)

12(n+ 1)2(n+ 2)

=
r2n− 2r2 + 4rn+ 4r

12(n+ 1)(n+ 2).
(4.34)

Analytical expression of function H(x) is given in integral form. We present

below, in Figure 4.6, the graphs of H(x) for n = 4 and r = 1, ..., 4.

Figure 4.6: The graphs of H(x) for C1(u, v) = C2(u, v) = uv for n = 4 and
r = 1, ..., 4
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Application

Hypertension has long been a serious health problem, as one of the most im-

portant causes of cardiovascular heart disease, and has an adverse effects on life

quality. Therefore, developing countries have taken precautions for preventing

hypertension, including promoting healthy nutrition, physical exercise, avoiding

stress. The classification of blood pressure is given in the following table:

Systolic Blood Pressure (SBP) Diastolic Blood Pressure (DBP)

Normal ≤ 120 mm Hg ≤ 80 mm Hg

Prehypertension 120− 139 mm Hg 80− 89 mm Hg

Hypertension ≥ 140 mm Hg ≥ 90 mm Hg

Table 5.1: Classification of blood pressure levels

The values are given in Table 5.1 are the thresholds for hypertension (see Urden

et al., 2014; p. 341). Let the sequence of random vectors Z1 = {(Xi, Yi) ,

i = 1, 2, ..., n} be a training sample consisting of hypertensive patients and inter-

pret Xi and Yi as SBP and DBP of ith patient. Assume that X ∼ U(120, 260)

and Y ∼ U(90, 150). Then, consider another sequence of random vectors

Z2 = {(Xn+j, Yn+j), j = 1, 2, ...,m, ...} as a control sample, according to which,

71
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patients will be categorized as hypertensive or not. Therefore, the statistics Sm

and Sm(r) counts the total number of people with normal blood pressure in control

sample. Also, the proposed exceedance statistics can be used to make inferences

about prevalence of hypertension. In this way, the number of hypertensive people

can be accurately estimated.

Recently, air pollution has become an important problem, causing habitat

loss and respiratory illness. Especially, particular matter (PM) pollution has a

negative effect on the ecological balance. The sum of liquid and solid particles of

varying sizes are called as particular matter (PM). Particular matter is classified

as coarse dust (PM10) (2.5 to 10 micrometers), and fine particles (less than 2.5

micrometers) (PM2.5).

In 2006 World Health Organization (WHO) determined the threshold values

for PM2.5 and PM10 (see WHO Air Quality Guidelines [68]). While the average

permitted value for PM2.5 is 25mg/m3, it is 50mg/m3 for PM10. According to

[68], the average values of PM10 should not surpass the determined thresholds

for more than 35 days in a year. Assume that daily levels of PM2.5 and PM10 are

independent from each other days. Let Z = {(Xi, Yi), i = 1, 2, ...,m, ...} be iid

bivariate observations. Then, Xi and Yi can be interpreted as the daily average

values of PM2.5 and PM10, respectively. Consider,

ξi =

{
1 if (Xi, Yi) ∈ (−∞, X)× (−∞, Y ),

0 otherwise.

Consequently, Sm =
∑m

i=1 ξi is the total number of days in which average

values of PM2.5 and PM10 does not surpass the critical threshold values.



Chapter 6

Conclusion

Random threshold models provide a basis for hypothesis testing and statistical

inference. They also play an important role in real life problems such as reliability,

modelling hydrological events and air pollution. In the literature, there have been

many studies about univariate random threshold models. However, in modelling

real life problems, there is a need for multivariate random threshold models.

In this thesis bivariate random threshold models based on bivariate random

sequences are investigated. Later, the finite and asymptotic distributions of ex-

ceedance statistics are studied. Because of considered bivariate random variables,

the obtained distributions are expected to depend on copulas. These result agree

with the models in real life applications.

The discussion of the use of these proposed models in medicine and air pollu-

tion illuminate the application area of exceedance statistics and random threshold

models.
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