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Abstract
Adjustable speed drives (ASDs) are widely used in industry for controlling electric motors in applications such as rolling
mills, compressors, fans, and pumps. Condition monitoring of ASD-fed induction machines is very critical for preventing
failures.Motor current signature analysis offers a non-invasive approach to assessmotor condition.Application of conventional
convolutional neural networks provides good results in detecting and classifying fault types for utility line-fed motors, but
the accuracy drops considerably in the case of ASD-fed motors. This work introduces the use of self-organized operational
neural networks to enhance the accuracy of detecting and classifying bearing faults in ASD-fed induction machines. Our
approach leverages the nonlinear neurons and self-organizing capabilities of self-organized operational neural networks to
better handle the non-stationary nature of ASD operations, providing more reliable fault detection and classification with
minimal preprocessing and low complexity, using raw motor current data.

Keywords Bearing fault detection · Condition monitoring · Motor current signature analysis · Operational neural network

1 Introduction

Early detection and diagnosis of motor faults, which are gen-
erally classified intomechanical and electrical categories, are
essential for maintaining reliable and cost-effective opera-
tion. Methods for fault detection and diagnosis (FDD) can be
classified into three main types: signal-based, model-based
and knowledge-based strategies. Model-based techniques
create analytical models based on physical principles and
system identification, but they become difficult to apply to
complex systems. Signal-based methods focus on analyz-
ing various signals, such as those related to vibration, motor
current, speed, and temperature, to identify and diagnose
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faults. To detect faults in electrical machinery, frequently
used approaches for processing these signals include spec-
tral estimation [3, 34], wavelet transformation and wavelet
packet decomposition [6–8], time-frequency analysis [29],
fast Fourier transform (FFT) [2, 10, 12], scale-invariant fea-
ture transform (SIFT) [5], and sequence analysis [27]. These
methods utilize advanced signal processing techniques to
extract meaningful information from the data and detect
anomalies indicative of potential issues, such as bearing
faults.

In contrast to classical methods, data-driven condition
monitoring systems harness large volumes of data collected
through advanced data acquisition and control systems. Shal-
lowmachine learningmodels employed for this purpose have
demonstrated satisfactory performance in detecting and diag-
nosing faults using motor current data [32]. However, they
often depend on manually crafted features and diverse clas-
sifiers, typically using limited data from motors or rotating
machinery (RM). As a result, their effectiveness diminishes
when applied to different types of systems, fault conditions,
or larger datasets, making it challenging to develop a generic
solution. Detecting faults inmachines fedwithASD is a clear
example of this problem, as these systems often operate at
varying motor speeds.
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Numerous data-driven deep neural network (DNN) mod-
els have been proposed in the literature as solutions for
FDD problem. Deep neural networks (DNNs) have the abil-
ity to automatically extract discriminative features from raw
input data through the training process, which removes the
necessity for manually designed statistical or transform-
domain feature representations. Nevertheless, these models
rely on large, well-labeled datasets to achieve effective train-
ing. In their work, Jia et al. [17] introduced a five-layer
DNN model designed for fully automated intelligent FDD
of rotating machinery. The model utilizes an unsupervised
autoencoder for pretraining and processes vibration signal
frequency spectra as input. Their method achieved a 95.8%
classification accuracy on the Case Western Reserve Uni-
versity (CWRU) bearing dataset. A recent study by Ye et.
al. [36] developed an intelligent fault diagnosis method for
rolling bearings that utilizes motor stator current signals,
combining feature reconstruction (FR) with convolutional
neural networks (CNNs) to achieve high-precision diagno-
sis with approximately 99% accuracy for faulty bearings.
While theFRmethod eliminates supply frequency and its har-
monics, it further increases computational complexity during
preprocessing. In [37], vibration spectrum imaging (VSI) is
employed to convert normalized spectral amplitudes from
segmented vibratory signals into images, which are then
used to train a CNN for bearing fault classification. The
proposed VSI-CNN network surpasses previous methods,
achieving a classification accuracy of approximately 99%.
In [13], the challenges of using vibration signals for bearing
fault diagnosis are discussed, highlighting their high cost and
impracticality due to the need for external accelerometers.
Instead, motor current signals, which are easier to measure
via inverters, are used for fault diagnosis. The study intro-
duces a deep learning method that uses raw signals from
multiple motor phases, extracts features, and classifies them
with CNNs. To improve accuracy, a decision-level informa-
tion fusion technique combines information from all CNNs.
The method’s effectiveness was validated with experiments
using actual bearing fault signals. Maximal overlap discrete
wavelet transform (MODWT) was applied in [1] to extract
features from stator current signals, converting them into a
two-dimensional array. After further processing, this method
identified fault patternswith an accuracy exceeding 90%.The
method introduced in [11] diagnoses bearing fault progres-
sion by analyzing time-domain current signals in a semicycle
and using themdirectly in a pattern classifier. Validated under
various conditions, the approach achieves over 97% accuracy
for line-fed motors and over 71% for inverter-fed motors.
Efforts to improve diagnosis performance through sensor
data fusion have also been made in several studies. Wan et.
al. [35] presented a fusion multiscale convolutional neural
network (F-MSCNN), which is tailored to adapt to differ-
ent speeds. The F-MSCNN utilizes raw sound and vibration

data, using a fusion layer and a multiscale convolutional
layer at the start to extract a variety of features for classifica-
tion. Comparative evaluations demonstrated that F-MSCNN
performs well in speed generalization, with its accuracy
increased by integrating sound and vibration data. Qian et
al. [30] proposed a motor FDD approach using multi-feature
fusion within an enhanced CNN framework. Their approach
includes preprocessing current and vibration signals, imple-
menting segmented multi-time window synchronous input,
and conducting multiscale feature extraction along with time
series fusion within the same time window. Experimental
validation on a fault simulation platform demonstrated that
integrating vibration and current signal features significantly
enhances fault diagnosis accuracy and stability compared to
single signal inputs. However, this method can be compu-
tationally intensive and may require significant processing
power and time, potentially limiting its practical application
in real-time scenarios.

To leverage computational efficiency alongwith enhanced
performance, several studies [4, 14, 19, 28] have utilized one-
dimensional (1D) CNNs with raw data or extracted features
for machinery fault diagnosis under fixed conditions. Even
though 1D CNNs performs well under fixed conditions, pre-
vious research [20, 21] indicates that CNNs with a uniform
network architecture based on a first-order neuron model
often fail to effectively address problems involving complex
and highly nonlinear solution spaces. These models require
a significant network depth and complexity to be effective.
To overcome these limitations, Self-organized Operational
Neural Networks (Self-ONNs) have been introduced, which
offer a high level of heterogeneity and the ability to optimize
its operators, therebymaximizing learning performance [22].
Additionally, the effectiveness of Self-ONNs has been val-
idated in various studies focusing on motor fault diagnosis
using vibration data [15, 16].

In this study, we compare the performance of state-of-
the-art 1D Self-ONNs with commonly used 1D CNNs for
bearing fault detection and classification using raw current
data in ASD-fed machines. Figure1 provides an overview
of the implementation process for our proposed method. It
details the preprocessing steps, including segmentation and
min-max normalization, with an example output waveform
to illustrate data transformation. The figure also outlines the
architecture of the 1D Self-ONN, highlighting its three self-
operational layers and two dense layers, and presents the final
output with possible predictions.With the proposed pipeline,
our aim is to demonstrate that 1D Self-ONNs offer com-
petitive diagnostic performance while significantly reducing
computational complexity. To offer a more robust solution,
Self-ONNs integrate feature extraction and classification into
a unified framework by utilizing themotor’s raw current data.
Its lower computational complexity makes it well-suited for
real-time implementation in embedded systems as well.
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The structure of the paper is as follows: Section2 examines
1D Self-ONNs, comparing them to traditional 1D CNNs and
ONNs. Section 3 discusses the experimental setup and out-
comes using a benchmark ASD-fed motor current dataset,
evaluating the proposed method’s performance against 1D
CNNs. Section 4 concludes the paper and suggests areas for
future research.

2 1D self-organized operational neural
networks

This section introduces the concept of generative neurons
and their integration into 1D Self-ONNs. The classical lin-
ear neuron model forms the traditional CNN architecture,
which also includes constraints such as limited connections
and weight sharing at the kernel level. These constraints give
rise to the convolution equations employed in CNNs.

The output of the k-th neuron in the l-th layer of a 1D
CNN can be expressed as follows:

xlk = blk +
Nl−1∑

i=0

xlik (1)

where blk represents the bias of the corresponding neuron and
xlik can be written as:

xlik = Conv1D(wik, y
(l−1)
i ) (2)

In this equation, wik ∈ R
K represents the kernel that con-

nects the i th neuron of the (l − 1)th layer to the kth neuron
of the l th layer. On the other hand, xlik ∈ R

M is the input

map, and y(l−1)
i ∈ R

M is the output of the i th neuron in the
(l − 1)th layer.

The convolutionoperation, as outlined inEq.2, is expanded
in the following form:

xlik(m) =
K−1∑

r=0

wl
ik(r)y

(l−1)
i (m + r) (3)

The kernelwik and the shifted versions of the i-th neuron’s
output y(l−1)

i in the (l − 1)-th layer are multiplied element-
wise and summed over the kernel’s length to produce an
M-dimensional input vector xlik .

On the other hand, in ONNs, Eq.3 can be generalized,
yielding a concise representation for the output of an opera-
tional neuron:

xlik(m) = Pl
k

(
ψ l
k(w

l
ik(r), y

(l−1)
i (m + r))

)K−1

r=0
(4)

where ψk
l (·) : RM×K → R

M×K and Pl
k (·) : RK → R

1

are called nodal and pool operators, respectively, assigned to
the k-th neuron of the l-th layer.

The Greedy Iterative Search (GIS) algorithm is often used
iteratively to explore a potential set of operators, aiming to
identify an optimal combination of pool P and nodalψ oper-
ators for an ONN. Subsequently, these optimal operators
are allocated for all neurons within the respective hidden
layer such that the final ONN configuration is formed. How-
ever, the conventional ONN architecture suffers from several
limitations [22]. Firstly, it limits heterogeneity by using the
same operator set for all neurons within a layer. Secondly,
the process of manually crafting a selection of potential
operators and seeking the optimal one for each neuron intro-
duces considerable overhead. Lastly, the inability to express
the appropriate operator with well-defined functions limits
adaptability and customization to suit the specific learning
problem.

To address these issues, Self-ONNs with generative neu-
rons were introduced [22]. Unlike conventional CNN and
ONNarchitectures, Self-ONNswith generative neurons offer
flexibility by generating nodal operators during training
without predefined sets or prior search processes. This imple-
mentation eliminates the need for a single nodal operator
across all neurons in a hidden layer, as each neuron in
Self-ONNs can generate various nodal operators. Figure2
illustrates the 1D kernels of CNN, ONN, and Self-ONNwith
generative neurons, highlighting that while CNN and ONN
architectures feature fixed nodal operators for convolutional
and operational neurons, Self-ONNs are able to produce any
nodal operator� for each kernel element as the training pro-
gresses.

Thenodal operatorswithinSelf-ONNsare derived through
the application of Taylor series function approximation,
where for a function f (x)with infinitely differentiable prop-
erties, the Taylor series is represented around a given point
a as follows:

f (x) =
∞∑

n=0

f (n)(a)

n! (x − a)n (5)

Then, we can approximate Eq.5 up to the Q-th order, and
express the Taylor polynomial as:

f (x)(Q,a) =
Q∑

n=0

f (n)(a)

n! xn (6)

This equation facilitates the approximation of any func-
tion f (x) around a given point a. During backpropagation,

the coefficients f (n)

n! are optimized iteratively to customize the
nodal operator for each kernel element. For instance, if neu-
ron outputs are bounded by the tanh activation function, the
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Fig. 1 Overall system diagram

Fig. 2 1D nodal operations of the i-th neuron of CNN (left), ONN (middle), and Self-ONN (right) [15]

Q-th order Maclaurin series allows the generation of diverse
transformations near the midpoint 0. This principle underlies
the concept of generative neurons in Self-ONNs. The nodal
transformation of a generative neuron can then be summa-
rized in the following form:

ψ̃ l
k (w

l(Q)
ik (r), y(l−1)

i (m + r)) =
Q∑

q=1

w
l(Q)
ik (r , q)(y(l−1)

i (m + r))q (7)

The K × 1 kernel vector wl
ik in 1D CNN topology is

replaced by a K × Q matrix w
l(Q)
ik where Q is the degree

of the Taylor polynomial in Self-ONNs. This matrix w
l(Q)
ik

is created by substituting each element wl
ik(r) with a Q-

dimensional vector w
l(Q)
ik (r) = [wl(Q)

ik (r , 0), wl(Q)
ik (r , 1),

. . . , w
l(Q)
ik (r , Q − 1)].

Therefore, the operator ψ̃ l
k varies for each individual out-

put y(l−1)
i , leading to Q times the number of parameters

present in the CNN model. Finally, the input map of the
generative neuron x̃ lik is determined as follows:

xlik(m) = Pl
k

(
ψ l
k

(
wl
ik(r), y

(l−1)
i (m + r)

))K−1

r=0
(8)
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To sum up, the Self-ONN model differs from traditional
CNNs in that it employs a unique approach to nonlinear-
ity. Basically, each layer of the Self-ONN utilizes several
powers of activations, as determined by the hyperparame-
ter Q, to create a more flexible neuron model. This design
enhances the network’s ability to learn from challenging
datasets by capturing nonlinear relationships more effec-
tively. In addition, Self-ONNs offer several advantages over
CNNs and ONNs. Firstly, they eliminate the need to search
for optimal operators for each neuron connection by enabling
self-organization of network operators through generative
neurons during training. Secondly, they allow for greater
heterogeneity by not restricting each kernel connection to a
single nodal operator, unlike ONNs. Lastly, Self-ONN layers
offer greater parallelization efficiency compared to ONNs.
Self-ONNs utilize the standard backpropagation (BP) algo-
rithm for learning, similar to CNNs. The network weights
and biases are updated by calculating the gradient of the
loss function with respect to each parameter during train-
ing. Detailed forward and backpropagation formulations for
Self-ONN neurons are described in [22] and [25].

3 Test and evaluation

In testing, motor current signals are collected for healthy
bearings and bearings with two different fault types (outer
race and cage defect) and three different input frequencies
(60 Hz, 45 Hz and 30 Hz) are used to evaluate the perfor-
mance of 1D Self-ONNs. Current waveforms are captured
from theASD test setup in Fig. 3 [33]. The setup incorporates
an inverter that generates pulse width modulation (PWM)
voltage signals with fundamental frequencies between 2 and
60 Hz, alongside a carrier frequency fixed at 9.2 kHz. It is
paired with a 745.7 W, 3450 rpm, 208 V, 60 Hz, 3-phase, 2-
pole induction motor. The motor employs ORS 6203-ZZ-C3
bearings on both ends, each with eight balls. Specifically, the
bearings on the shaft-end undergo tests for outer race defect
(OD) and cage defect (CD), against a healthy bearing.

We chose to focus on outer race defects and cage defects
as they represent two of the most prevalent types of bearing
faults in inductionmotors. Outer-race defects are particularly
critical due to their direct impact on the bearing’s interaction
with the load, which can result in severe operational prob-
lems. On the other hand, cage defects can disrupt the even
distributionof load across thebearingballs, acceleratingwear
and potentially leading to failure.

For the cage defect, the bearing cage was intentionally
deformed by pressing a center punch between two adjacent
balls, disrupting the usual rotation of the cage. To simulate an
outer race defect, a radial loadwas applied using a belt-driven
mechanism. In this experiment, a single 1/32 inch diameter
hole was drilled into the outer race to generate a consistent

Fig. 3 ASD test setup

Fig. 4 Cage defect

defect for testing purposes. The bearings with cage defect
and outer race defects (depicted with 2 holes) are shown in
Figs. 4 and 5, respectively. These illustrations are for refer-
ence purposes; in the actual test, the outer race had only one
1/32 inch diameter hole.

During the evaluation of defective bearings, the PWMout-
puts from the inverter were captured at 30, 45, and 60 Hz,
resulting in no-load speeds of 1797, 2697, and 3596 rpm,
respectively. Data is collected using a SquareD CM4000
series Circuit Monitor, which can sample 3-phase voltages
and currents up to 8 channels, at a rate of 30,720 Hz per
channel. The Circuit Monitor has built-in memory for stor-
ing waveform data, which can be transferred to a PC through
a serial orEthernet connection. To avoid any issueswith alias-
ing, especially since the PWM inverter has a fixed frequency
of 9.2 kHz, the stator current data is sampled at the high-
est rate permitted by the Circuit Monitor, which is 30,720
Hz. Figure6 illustrates the normalized current waveforms of
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Fig. 5 Outer-race defect

the ASD system for the given input frequencies, and Fig. 7
depicts their fast Fourier transform (FFT).

The relationship between bearing fault characteristic fre-
quencies and bearing geometry has been thoroughly docu-
mented in numerous studies. Mathematical expressions that
connect these fault frequencies to parameters such as the
number of rolling elements, shaft rotational speed, pitch
diameter, and contact angle are also detailed in [15]. For
this study, outer race and cage defect characteristic frequen-
cies at different ASD system frequencies are calculated and
provided in Tables 1 and 2.

Bearing faults generate mechanical vibrations at the given
fundamental frequencies and these vibrations cause air gap
eccentricity leading to irregularities in the air gapfluxdensity.
The fluctuations in flux density alter the machine’s induc-
tances, resulting in distortions in the stator current at the
vibrational harmonics. For line-driven motors, the charac-
teristic current frequencies, fCF, caused by these vibration
frequencies are calculated using the following equation:

fCF = | fs ± k fv| (9)

where fs is the power supply frequency in Hertz, fv is the
vibration frequency in Hertz, and k is the vibration modula-
tion index. For the ASD-fed machines, the motor is powered
by a PWMvoltagewaveform. The power supply for theASD,
denoted as fs,ASD, primarily consists of n odd harmonics of
the fundamental drive frequency fd , and it can be expressed
as:

fs,ASD = n fd (10)

Therefore, the characteristic current frequency of the bear-
ing faults in the ASD can be expressed as:

fCF,ASD = |n fd ± k fv| (11)

where fd is the fundamental supply frequency inHertz, fv
is the vibration frequency in Hertz, n is the PWM harmonic
index of the fundamental supply, and k is the vibration mod-
ulation index. Consequently, an ASD system with a bearing
fault produces current frequency components with n times as
many harmonics as those found in a line-driven motor with
a similar bearing defect.

Our study explores the impact of varying the polyno-
mial degree q in the 1D self-organized operational layers
(Oper1D), testing q values of 1 (i.e., Conv1D), 3, and 5 to
analyze how higher polynomial terms affect themodel’s abil-
ity to capture complex patterns in the motor current signature
for each case.

The Self-ONNarchitecture is designedwith specific train-
ing hyperparameters, including a batch size of 16 and 200
epochs, optimized using the Adam optimizer with a learning
rate of 0.0005. The input to the network is the motor cur-
rent waveform, with varying time-domain samples: 1024 for
30 Hz, 682 for 45 Hz, and 512 for 60 Hz input frequen-
cies. Before being processed by the network, each frame
undergoes a normalization process to scale the data within a
consistent range, typically [−1, 1]. The architecture includes
three operational layers, each consisting of a custom 1D
self-operational layer, a hyperbolic tangent (tanh) activation
function and amax-pooling layer. Themax-pooling layer, tai-
lored to the input frequency, uses a window of 2 data points
for 60 Hz and a window of 4 data points for 30 Hz and
45 Hz, reducing data dimensionality while accommodating
the differences in input size. After the final self-operational
layer in the Self-ONN architecture, the data is flattened into
a 1D vector and then processed by two dense layers. The
first dense layer has 12 neurons and uses tanh activation
function. The final output layer with 3 neurons employs a
Softmax activation function, which converts the processed
data into probabilities for three distinct classes: healthy, outer
race defect, and cage defect. The proposed 1D Self-ONN
model for 60 Hz input frequency is illustrated in Fig. 8.

For all input frequencies, we employed the sliding win-
dow method as a preprocessing step to augment the data for
training. This technique involves segmenting the continuous
motor current waveform into shorter, fixed-length segments,
which are more manageable for subsequent processing and
analysis. For 60 Hz input frequency, the frame length is set to
512 data points and the hop length is 256 points, meaning that
we apply 50% overlapping. Post-segmentation, each frame
undergoes a normalization process to scale the data within a
consistent range, typically [−1, 1]. Each normalized frame
is treated as an independent data sample for the neural net-
work. Training and evaluation are conducted within a 5-fold
stratified cross-validation setup to ensure that each fold is rep-
resentative of the overall dataset, maintaining the proportion
of each class label. This method enhances the generalizabil-
ity of the model by validating it across multiple, independent
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Fig. 6 Normalized current waveforms of the ASD system for the given input frequencies

subsets of the data. Within each fold, the model trains on the
training subset, iteratively adjusting weights and biases to
minimize the cross-entropy loss. After training, the model’s
performance is assessed using the validation subset specific
to that fold. This process is repeated for each of the five
folds, with the model being reinitialized each time to ensure
the learning is specific to the data in the fold and not influ-
enced by previous data. Finally, the results from all folds
are aggregated to provide a robust estimate of the model’s
performance across the entire dataset.

For the 60 Hz input frequency, the performance metrics
of recall, precision and F1-score across different models
are given in Table 3. These metrics evaluate the classifier’s
ability to differentiate specific events from non-events. Pre-
cision represents the ratio of correctly identified events to all
detected events; Recall indicates the proportion of correctly
classified events among all events, while the F1-score signi-

fies the harmonic mean of the model’s Precision and Recall.
These metrics are calculated based on the counts of false
negatives (FN), false positives (FP), true negatives (TN), and
true positives (TP) as follows:

Recall = T P

T P + FN
(12)

Precision = T P

T P + FP
(13)

F1 Score = 2 × Precision × Recall

Precision + Recall
(14)

Accuracy = T P + T N

T P + FP + T N + FN
(15)

The confusion matrices for 1D CNN (q=1) and Self-ONN
(q=3) are also provided in Table 4. 1D Self-ONN with a
polynomial degree of q = 3 exhibited superior performance,
achieving precision, recall, and F1 scores of 0.90, 0.89, and
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Fig. 7 Frequency-domain (FFT) plots for each fault case and input frequency

Table 1 Outer-race defect characteristic frequencies at different ASD
system frequencies

System frequency (Hz) Rotor speed (rpm) fOD (Hz)

30 1797 95.8

45 2697 143.8

60 3596 191.8

Table 2 Cage defect characteristic frequencies at different ASD system
frequencies

System frequency (Hz) Rotor speed (rpm) fCD (Hz)

30 1797 12.0

45 2697 18.0

60 3596 24.0

0.89, respectively. Furthermore, the 1D CNN (q=1) model
achieved an overall accuracy of 87.31%, while the 1D Self-
ONN (q=3) achieved a higher accuracy of 89.46%. This
underscores that a moderate level of model complexity, as
seen with q = 3, is optimal for capturing the essential fea-
tures in the motor current data without overfitting, making it
the most effective model configuration in our analysis for 60
Hz case.

To compare 1D CNN and Self-ONN architectures with
similar computational complexity, we introduce a variant of
the 1D CNN model denoted as "1D CNN (*2)" in Table 3.
This modified CNN model features double the number of
filters in its initial two convolutional layers and has a similar
number of trainable parameterswith 1DSelf-ONN(q = 3) to
ensure a fair comparison. Despite this increase in complexity,
the 1D CNN (*2) model fails to surpass the classification
performance achieved by the 1D Self-ONN with q = 3.
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Fig. 8 1D Self-ONN architecture for 60 Hz input frequency

Table 3 Performance metrics of 1D CNN and Self-ONN models at 60
Hz input frequency

Model Precision Recall F1-score

1D CNN 0.87 0.87 0.87

1D CNN (*2) 0.85 0.85 0.85

1D Self-ONN (q=3) 0.90 0.89 0.89

1D Self-ONN (q=5) 0.87 0.87 0.87

Table 4 Confusion matrices for 1D CNN (in parentheses) and 1D Self-
ONN (q=3) for 60 Hz input frequency

Ground truth Prediction

Healthy CD OD

Healthy 141 (131) 3 (1) 11 (23)

CD 4 (1) 148 (147) 3 (7)

OD 20 (19) 8 (8) 127 (128)

Table 5 Performance metrics of 1D CNN and Self- ONNmodels at 30
Hz input frequency

Model Precision Recall F1-score

1D CNN 0.86 0.86 0.86

1D CNN (*2) 0.86 0.86 0.86

1D Self-ONN (q=3) 0.89 0.89 0.89

1D Self-ONN (q=5) 0.86 0.87 0.87

Table 6 Confusion matrices for 1D CNN (in parentheses) and 1D Self-
ONN (q=3) for 30 Hz input frequency

Ground truth Prediction

Healthy CD OD

Healthy 63 (62) 11 (12) 1 (1)

CD 9 (6) 64 (64) 2 (5)

OD 0 (1) 2 (7) 73 (67)

For the 30 Hz input frequency, the model undergoes train-
ing with the same configuration as previously described, but
with a minor modification in the preprocessing step. This
adjustment involves changing the frame size to 1024 and the
hop length to 512 to accommodate the decreased input fre-
quency.

For the 30Hz input frequency, the same performancemet-
rics for each model are detailed in Tables 5, and 6 shows the
confusion matrices. At this frequency, the 1D CNN achieved
an accuracy of 85.78%, while the 1D Self-ONN (q = 3)
performed better with an overall accuracy of 88.89%. The
1D Self-ONN model with q = 3 again achieves the highest
scores across precision, recall, and F1 score, each standing at
0.89. It is evident that the model’s performance is sensitive to
the degree of the polynomial transformation applied within
the Oper1D layers. Specifically, the model with q = 3 con-
sistently outperforms the other configurations, maintaining a
higher accuracy on average across all folds.

For comparison, we again introduce a variant of the 1D
CNN model denoted as "1D CNN (*2)" with similar com-
putational complexity as 1D Self-ONN (q = 3) in Table 5.
Even though we double the number of filters in the first two
convolutional layers, the 1D CNN (*2) model again fails to
surpass the classification performance achieved by the 1D
Self-ONN with q = 3 for the 30 Hz input frequency.
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Table 7 Performance metrics of 1D CNN and Self- ONNmodels at 45
Hz input frequency

Model Precision Recall F1-score

1D CNN 0.95 0.94 0.95

1D CNN (*2) 0.96 0.96 0.96

1D Self-ONN (q=3) 0.99 0.99 0.99

1D Self-ONN (q=5) 0.97 0.97 0.97

Table 8 Confusion matrices for 1D CNN (in parentheses) and 1D Self-
ONN (q=3) for 45 Hz input frequency

Ground truth Prediction

Healthy CD OD

Healthy 113 (106) 2 (9) 0 (0)

CD 2 (5) 113 (109) 0 (1)

OD 0 (2) 0 (2) 115 (111)

Finally, for the 45 Hz input frequency, the model was
trained with an adjusted input window size of 682 and a hop
length of 341 samples to capture one full cycle of the signal.
This configuration was applied to the same Self-ONNmodel
architecture used for 30 Hz, with max-pooling window sizes
of 4 data points in each operational layer, as before. The
Self-ONN with q=3 demonstrated exceptional performance,
achieving average precision, recall, and F1-scores of 0.99
across all classes. In contrast, the 1D CNN models, includ-
ing the enhanced version with doubled filters (1D CNN (*2))
in the first two 1D convolutional layers, achieved amaximum
F1-score of 0.96, which is lower than the performance of the
Self-ONN. Additionally, from Table 8, we can see that the
1D CNN achieves an accuracy of 94.49%, whereas the 1D
Self-ONN (q = 3) achieves a notably higher accuracy of
98.84%. Overall, 1D Self-ONNs with q = 3 have demon-
strated potential for outperforming traditional 1D CNNs in
terms of recall, precision andF1-score at all input frequencies
for bearing fault diagnosis from motor current data.

Table 9 offers a comparison of the trainable parameter
count and total MACs (Multiply-Accumulate operations) for
each neural network employed in this study. To compute the
trainable parameters, in the generative neuron, each kernel
connection involves Q times the usual number of parameters.
Thus, total number of trainable parameters for the k-th neuron
in the l-th layer, represented as nlk , is computed using the
formula below:

nlk = Nl−1 · Kl
k · Ql

k (16)

In Eq.16, Nl−1 represents the neuron count in layer l − 1,
Kl
k denotes the kernel size utilized within the neuron, and

Ql
k indicates the chosen approximation order for this neuron.

Regarding the number of Multiply-Accumulate operations,

it is worth noting that to generate a single element in the
output x̄ lik , the process requires Kl

k × Ql
k MAC operations

for each output map yl−1
i from the previous layer. Extending

the logic, we arrive at the below generalization:

MACl
k = Nl−1 · |x̄ lik | · Kl

k · Ql
k (17)

where the notation | · | denotes the use of the cardinal-
ity operator. For ease of notation, the equation does not
include the bias term and the computational expense related
to Hadamard exponentiation.

From Tables 3, 5, 7, and 9, we conclude that the 1D Self-
ONN (q = 3) model, with comparable trainable parameters
and MAC operations to the 1D CNN, outperforms it in accu-
racy, precision, and F1-score. Additionally, 1D Self-ONN
layers can be efficiently parallelized on Graphics Processing
Units (GPUs) [22].

To further highlight the computational advantage of our
approach, we compared the computational complexity of our
method with various signal processing-based techniques in
Table 10. The number of basic operations required by each
algorithm was evaluated, taking into account the varying
lengths of data samples used. The results, summarized based
onfindings from studies [26] and [1], demonstrate the relative
efficiency and effectiveness of our method.

We also evaluated the training durations and inference
speeds for both the 1DCNNand Self-ONNmodels. Allmod-
els were run on a single NVIDIA RTX 3070 GPU to ensure
consistency. Inference speeds were computed by averaging
over 100 runs, while the total training duration represents
the cumulative time across all 5 folds. The results, detailed
in Table 11, illustrate the trade-offs between training time
and inference speed across different input frequencies.

At 60 Hz, 1D CNNs trained in 87 to 88s with inference
speeds of 738 to 758 microseconds, while 1D Self-ONNs
required 150 to 213s for training and had inference speeds
of 903 to 1127 microseconds. At 45 Hz and 30 Hz, CNNs
were also faster in both training and inference compared to
Self-ONNs. Despite these differences, the performance gap
in terms of training and inference duration between CNNs
and Self-ONNs was relatively modest. Although Self-ONNs
require longer training times, they offer significant advan-
tages in parallel processing. By avoiding the need for deeper
networks and utilizing higher-order activations within a Self-
ONN layer, Self-ONNs can be run faster with proper parallel
computation.

Table 12 presents a comparative analysis of the proposed
method against other machine learning techniques from the
literature for fault diagnosis in ASD-fed machines. In this
table, OR, IR, BF, and CD stand for outer race fault, inner
race fault, ball fault, and cage defect, respectively. The
results presented here lead to several key conclusions. Firstly,
vibration-based fault diagnosis in ASD-fed machines gener-
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Table 9 Computational
complexity comparison

Input freq. Model Trainable parameters Total MACs

60 Hz 1D CNN (q=1) 8,547 645,156

1D CNN (*2) (q=1) 14,219 2,136,100

1D Self-ONN (q=3) 13,187 1,923,108

1D Self-ONN (q=5) 17,827 3,201,060

30 Hz 1D CNN (q=1) 3,939 792,100

1D CNN (*2) (q=1) 9,611 2,434,596

1D Self-ONN (q=3) 8,579 2,373,156

1D Self-ONN (q=5) 13,219 3,954,212

Table 10 Computational
complexity comparison with
signal processing-based
techniques

Reference Method Operations (approx.)

[26] Sub-nyquist strategy with reduced data length ∼ 105

This study 1D Self-ONN ∼ 106

[2] Empirical demodulation and FFT ∼ 106

[24] Spectrum synch ∼ 107

[12] FFT ∼ 107

[23] Spectral kurtosis ∼ 108

[1] MODWT and image edge detection ∼ 108

[34] Subspace spectral estimation ∼ 1011

Table 11 Total training duration
and inference speed for different
models and input frequencies

Input freq. Model Training duration (s) Inference speed (μs)

60 Hz 1D CNN (q=1) 87 738

1D CNN (*2) (q=1) 88 758

1D Self-ONN (q=3) 150 903

1D Self-ONN (q=5) 213 1127

45 Hz 1D CNN (q=1) 64 728

1D CNN (*2) (q=1) 66 788

1D Self-ONN (q=3) 113 868

1D Self-ONN (q=5) 160 1087

30 Hz 1D CNN (q=1) 44 908

1D CNN (*2) (q=1) 46 916

1D Self-ONN (q=3) 78 1047

1D Self-ONN (q=5) 112 1197

ally offers superior accuracy and earlier detection compared
to the methods that use current data. However, the effec-
tiveness of vibration sensors is heavily dependent on their
mounting location, and they tend to be more expensive [13].
When comparing machine learning approaches that utilize
current data, many demonstrate high diagnostic accuracy but
often require extensive preprocessing. Additionally, these

methods frequently use test bearings with larger defects than
those used in our study. The strength of our approach lies in
itsminimal preprocessing and lower computational complex-
ity,making it suitable for direct implementation on embedded
devices while maintaining competitive fault diagnosis accu-
racy.
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Table 12 Comparison of
ML-based methods for fault
diagnosis in ASD-fed machines

Reference Data Load (%) Fault type Fault severity (mm) Accuracy (%)

[37] Vibration – OR – 98.26

IR

BF

[11] Current 0 and 100 distributed – > 71

[9] Vibration Variable OR – > 95

IR

BF

[18] Current 0 and 100 OR 1.60 99.84

[1] Current 0 and 100 OR 1.58 94.68–97.74

BF

Distributed

[31] Current Variable OR – 96.1

1D CNN Current 0 OR 0.79 85.78 (30 Hz)

CD 94.49 (45 Hz)

87.31 (60 Hz)

1D Self-ONN (q=3) Current 0 OR 0.79 88.89 (30 Hz)

CD 98.84 (45 Hz)

89.46 (60 Hz)

4 Conclusion

In the field of motor fault diagnostics, particularly pertaining
to bearing anomalies, the analysis of motor current signa-
tures has emerged as a vital tool for predictive maintenance
and reliability assurance. Our research contributes to this
domain by utilizing 1D Self-ONNs to improve the detec-
tion of bearing fault characteristics directly from raw motor
current waveforms, while keeping the model complexity
low. A key part of our approach is fine-tuning the polyno-
mial degree q in the 1D operational layers of Self-ONNs.
Empirical results indicate that a moderate complexity set-
ting (q = 3) in the Self-ONN surpasses the traditional 1D
Convolutional Neural Network (CNN) in identifying bear-
ing defects in ASD-fed machines, as reflected by superior
precision, recall, and F1-score metrics across distinct input
frequencies. At 30 Hz, the Self-ONNwith q = 3 achieved an
average F1-score across all classes (healthy, outer race defect
and cage defect) of 0.89, compared to 0.86 for the CNN. At
60 Hz, the Self-ONN with q = 3 also outperformed the
CNN with an average F1-score of 0.89, while the CNN’s
average F1-score was 0.87. Similarly, at 45 Hz, the Self-
ONN with q = 3 achieved a near-perfect average F1-score
of 0.99, significantly surpassing the CNN’s average F1-score
of 0.95. These results clearly demonstrate that the Self-ONN
with q = 3 provides a consistently higher F1-score than the
CNN across all tested frequencies, highlighting its enhanced
capability in extracting relevant features from the current sig-
natures. The implementation of such a model may facilitate
a significant step forward in minimizing unscheduled down-

time and extending the lifespan of industrial machinery. In
futurework,weplan to apply a similar domain adaptive learn-
ing scheme as in [16] for bearing fault diagnosis using raw
motor current data, aiming to enhance diagnostic accuracy
and reliability under varying speeds of ASD-fed machines.
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