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Logistics can be explained by planning, managing and controlling of all 

the process beginning with ‗demand‘ or ‗need‘ and ending with satisfying or 

meeting the demand(s) or need(s). Success of managing an operation, a business 

or an event, comes with the implementation of good decisions.  Today‘s 

successful business organizations pay more attention to their logistics processes 

in order to not to lose their competitive advantage. Governments make 

surveillance plans which also include distribution of logistics systems in order to 

respond more effectively to disasters.  

 In this thesis, we focus on epidemic disasters and the humanitarian 

aspects of logistics. We analyze smallpox disease dispersion by using 

epidemiological modeling to provide insights for logistical decision making 
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process. We examine the disaster management concept, more precisely epidemic 

disasters. We focus on the concept of epidemiological modeling and provide a 

literature review, present our research question and proposed models for 

smallpox epidemic. We provide an optimal order policy for vaccine requirements 

in three different scenarios. Model data and numerical results corresponding to 

epidemic models and an optimal inventory model are provided. Finally, we 

finalize the thesis with conclusions and future research directions 
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ÖZET 

 

ÇĠÇEK HASTALIĞI SALGINI ĠÇĠN FARKLI KONTROL 

POLĠTĠKALARININ DEĞERLENDĠRĠLMESĠ VE OPTĠMAL ENVANTER 

MODELĠ 

 

Selen, Ebru Selin 

 

 

Lojistik Yönetimi Yüksek Lisansı, Lojistik Yönetimi Bölümü 

 

 

Tez Yoneticisi: Yrd. Doç. Dr. Burcu Adıvar 

 

 

 

Temmuz 2010, 183 sayfa 

 

 

 

 

 

Lojistik talep veya ihtiyaç ile baĢlayan, talebin tatmin edilmesi veya 

ihtiyacın karĢılanmasına kadar olan süreçlerin planlanması, yürültülmesi ve 

kontrol edilmesi olarak tanımlananır. Bir operasyonun, iĢin veya bir olayın 

yönetiminde baĢarı, öncesinde alınan kararların kalitesi ile doğru orantılıdır. 

Günümüz organizasyonları, kurum ve kuruluĢları elde ettikleri rekabetçi avantajı 

kaybetmemek adına lojistik süreçlerine daha çok önem vermektedirler.  Benzer 

bir Ģekilde devlet kurum ve kuruluĢları da istenmeyen bir durum karĢısında 

kalınması halinde en etkili Ģekilde cevap verebilmek için, acil durum planlarında 

lojistik sistemlerine önem vermektedir.   

 Bu tezde, beklenmeyen bir çiçek salgınında lojistiğin insani operasyon 

boyutu incelenecektir. Çiçek hastalığının popülasyon içerisindeki dağılımı 

matematiksel modelleme yardımı ile incelenecek ve sonuçların lojistik planlama 



iv 

 

sürecine nasıl bir girdi sağlayacağının üstünde durulacaktır. Afet yönetimi 

konusu çalıĢılarak, salgın hastalıkların neden olduğu afetlerin yönetimsel 

süreçleri incelenmiĢtir.  Epidemiyolojik modelleme konusu iĢlenmiĢ ve ilgili 

yazın taraması sunulmuĢtur. Aynı zamanda epidemiyolojik modellemenin 

lojistik ile ilgisi vurgulanacaktır. AraĢtırma problemi tanıtılacak ve 

modellenecektir. Epidemiyolojik modellemeden elde edinilen bilgi ile envanter 

planlama modeli sunulacaktır. Probleme dair nümerik çözümler yapılacak ve 

problem sonuçlandırılacaktır. Ġleride irdelenecek problemler üzerinde durulacak 

ve tez sonlandırılacaktır. 

 

 

 

Anahtar Kelimeler: Epidemiolojik modelleme, çiçek hastalığı, lojistik, afet 

yönetimi 
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CHAPTER 1  

 

 INTRODUCTION 

 

The concept of logistics involves broad range of activities including 

business activities such as satisfying the demands of customers and also 

humanitarian activities such as meeting the needs of disaster victims.  In 

business logistics, while decreasing costs and maximizing the profits are 

essential, in humanitarian logistics minimizing the total number of deaths is the 

main consideration. All the operations with the aim of preserving the remaining 

life after the disaster can be considered as relief operations in the context of 

humanitarian logistics. As Kovacs and Spens (2007) report, logistics is 

responsible from 80% of the success in relief operations. Most of the relief 

operations are included in the field of logistics, with an aim of delivering the 

right service or product to the right place at the right time in order to minimize 

the total number of disaster induced deaths.  

In this thesis, we focus on epidemic disasters. Altay and Green (2006) 

provide a general description of relief operations corresponding to the disaster 

management stages, which are mitigation, preparedness, response and recovery.  

In this context, we provide a detailed list of activities that might be considered in 

managing epidemic disasters. Based on the likelihood of a possible bioterrorist 

attack, we consider smallpox disease and use epidemiological modeling to 
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examine the logistical concerns and decisions that are related to epidemic 

disasters. 

The outline of the Thesis is as follows. Concepts and terminology 

regarding epidemiology, epidemiologic modeling and their relationship with 

logistics are introduced in this Chapter. Chapter 2 presents the literature on 

epidemiologic modeling and smallpox studies. Chapter 3 includes four 

alternative biological attack scenarios and corresponding epidemiological 

models. Based on the control policies and preventive measurements presented in 

Chapter 3, Chapter 4 includes the optimal inventory model for vaccine order 

decision. Relevant scenario data, numerical results and comparative analysis for 

the proposed models are provided in Chapter 5. Thesis is concluded with the 

discussion and future research directions presented in Chapter 6. 

 

1.1. Concept of ‘disaster’ 

A disaster can be examined under two main groups, natural disasters and 

man-made disasters (Rutherford and Boer, 1982, van Wassenhove, 2006, Altay 

and Green, 2006). Natural disasters include floods, avalanches, earthquakes 

which are not sourced directly by anthropogenic effects. On the contrary, man-

made disasters include wars, industrial or chemical accidents or leakages, and 

bioterrorist attempts.  
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Table 1.1: Rutherford and Boer‘s (1983) disaster classificat ion.  

Man-Made Disasters Natural Disasters 

Traffic Earthquake 

Explosion Flood 

Collapse Hurricane 

Fire Volcanic eruption 

Poisonous gas Avalanche 

Civil disturbance Meteoric collision 

Panic Drought 

Nuclear accidents Famine 

          Local wars   Fugitives        Epidemic 

 

Earthquakes, landslides, floods, hurricanes, volcanic activities, avalanches, 

tsunamis can be listed as high energy involved natural disasters, whereas, 

famine, drought and epidemics can be considered as life-threatening natural 

disasters without any physical destructions. Man-made disasters can be sourced 

from accidental events such as explosions, chemical leakage or intentional 

attempts such as wars or terrorist attacks. Most of man-made disasters results in 

physical destruction and mass casualties.  Rutherford and Boer‘s (1983) 

classification of disasters is listed in Table 1.1.  

As a special case, epidemic disasters can be considered in both natural and 

man-made disasters. Naturally, an epidemic may originate from a new form of a 

biological agent or as a result of combined effects of other disasters. For 

instance, a change in climate can result in drought and cause famine and 

epidemic disasters. Similarly, war or a bioterrorist attack can be the reasons for 

an epidemic due to the release of biological agents or starvation, disruptions in 

health systems, and lack of sanitation due to the adverse effects of war. In 

contrast to a war or an earthquake, an epidemic does not cause any physical 
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disturbance in infrastructure (Kovacs and Spens, 2007). Due to the absence of 

any disturbance in infrastructure, it can take longer to assess the start, and 

potential impact of an epidemic on population(s). This delay in recognition of an 

epidemic might result in uncontrolled dispersion of the disease, and might end 

up with millions of causalities. Unlike an earthquake or other mass destructive 

weapons, intentional use of bio-weapons that is supplied by agents such as virus, 

bacteria, toxins, might not be easily detected and identified (Blanty,2005). There 

are systems available to use in order to detect any unwanted and unexpected 

agents in the air. The operation principle of biological point detection system is 

analyzed by Blanty (2005).  For better understanding of epidemics and epidemic 

disasters, in the next Section, we present related terminology regarding 

epidemiology.  

 

1.2. Related Terminology 

According to International Federation of Red Cross and Red Crescent‘s 

(IFRC) official definition; ‗a disaster is a sudden, calamitous event that 

seriously disrupts the functioning of a community or society and causes human, 

material, and economic or environmental losses that exceed the community‘s or 

society‘s ability to cope using its own resources.
1
  

Rutherford and Boer (1982) define disasters as the release of huge amount 

of energy that will result in life-threatening physical destructions.  

                                            
1 International Federation fo Red Cross and Croissant (IFRC) 
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The term epidemiology is derived from the Greek words meaning study 

upon populations (epi- upon, demos people, -ology study) (Farmer and 

Lawrenson, 2004, Bhopal, 2002). 

According to Porter (2008), the term disease is defined as the physiological 

dysfunction in result of the presence excessive presence or relative absence of a 

causative factor which can be a microorganism, chemical substance, or form of 

radiation. 

According to WHO definition, infectious diseases are caused by 

pathogenic microorganisms, such as bacteria, viruses, parasites or fungi; the 

diseases can be spread, directly or indirectly, from one person to another.  

Porta (2008) defines outbreak as an epidemic limited to localized increase 

in the incidence of a disease, e.g., in a village, town, or closed institution; 

upsurge is sometimes used as a euphemism for outbreak. Whereas Porter (2008) 

defines epidemic as ―A single case of a communicable disease long absent from 

a population or first invasion by a disease not previously recognized in that area 

requires immediate reporting and full field investigation; two cases of such a 

disease associated in time and place may be sufficient evidence to be considered 

an epidemic.‖  

The incubation  period  is  the  interval  between  the implantation  of 

infectious virus and the onset of the first symptoms, which in smallpox were  

fever  and constitutional  disturbances‘. 
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1.3. Epidemiology and Epidemic Disasters 

 

Figure 1.1. The relation between epidemiology, mathematics and logistics. 

 

Epidemiology is an interdisciplinary area that examines the occurrence and 

distribution of health-related states and/or events in specified populations, 

including the study of the determinants influencing such states, and the 

application of this knowledge to control the health problems (Porta, 2008). 

Epidemiology heavily relies on the disciplines such as mathematics, biology, 

social sciences, computer science (Rothman, 2002). Figure 1.1 shows the 

interdependency between three fields. Although they are very different 

disciplines with very different considerations, we aim to emphasize the clear 

connection among them. 
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Figure 1.2. Cause of deaths declared by WHO, 2004.  

 

There are many different types of epidemiology, which can be classified by 

disease type and physiology. Infectious disease epidemiology can be defined as 

the study which examines communicable disease such as, smallpox, influenza, 

HIV/AIDS, and hepatitis. Cancer epidemiology investigates the study design, 

data collection and developing models upon determined hypothesis of cancer 

illness and related deaths among the population. Chronic disease epidemiology 

examines the effects of diseases in the population that has slow onset and 

progress. Renal epidemiology can be defined as the study of kidney diseases and 

illness, and investigates effects on population. Among all other causes of death 

and illness, we focus on infectious disease epidemiology which has an important 

role in the field of public health and preventive medicine. Figure 1.2 shows the 

percentage of worldwide infectious disease induced deaths (Morens et al., 2004).   

Infectious (communicable diseases) are caused by an agent and spread 

through different ways including inhalation of the contaminated air (e.g. 

12% 5%
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influenza viruses, variola major, and varicella viruses), digestion of contagious 

food or water (salmonella species), being in close physical contact with an 

infected individual, being in an interaction with an infected vector e.g. infected 

rodents or carrier mosquitoes. Some diseases can spread by combined ways. 

Smallpox disease can be acquired by respiration and skin contact.  

An infectious disease can have potential to create mass destructions in the 

population if there are enough numbers of susceptible and non-immune 

individuals. In case of SARS, immunity did not exist in the population therefore 

susceptibility to the agent was high. This resulted in high numbers of death 

including the microbiologist who identified the virus. In managing epidemic 

disasters, it is crucial to be prepared and if not, it is essential to detect the 

potential threat as soon as possible.      

Morens et al.. (2004) suggest a classification for emerging diseases. They 

consider the differences among infections based on their dynamics, treatment 

and prevention point of views. Based on this classification, emerging infections 

can be examined in three classes. Newly emerging infectious diseases 

correspond to diseases that are not identified before e.g., SARS, Nipah, Hendra, 

avian flu (Blanty, 2005). Re-emerging infectious diseases such as West Nile, 

human monkeypox, multidrug- resistant Mycobacterium tuberculosis correspond 

to diseases that existed in past and now rapidly increasing either in incidence or 

in geographical or human host range (Blanty, 2005; Morens et al., 2004). 

Deliberately emerging infectious diseases cover the infections of agents that can 

be found in nature and cause diseases in natural ways, and agents that are 
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genetically modified in order to enhance their hazard potential (Morens et al., 

2004) . 

1.3.1. Epidemics 

As a disaster, an epidemic can result in suffering people and might be 

responsible for millions of death. With globalization, the mobility of individuals 

is increased, dispersion occurs more easily and the agent can reach every part of 

the world through transportation of products, people and livestock. Mangili and 

Gendreau (2005) consider transmission through air travel for several diseases. 

They emphasize the importance of early detection and appropriate infection 

control systems.  Note that infectious diseases exist in nature while some are 

developed for a nefarious usage. This intentional usage of some agents can be 

examined in the context of bioterrorism.  

Throughout the history, the lethal impacts of chemical and biological 

agents have been well known. These biological agents which can cause 

infectious diseases can be used intentionally, as a part of war or for causing 

panic and anxiety which would end up with serious psychological impacts 

instead of high numbers of casualties (Blanty, 2005).  

A summary of some bioterrorist attempts or nefarious usage of agents is 

provided in Table 1.2. The Center for Disease Control (CDC) of United States 

defines a bioterrorist attack as the ‗deliberate release of viruses, bacteria, or other 

germs (agents) used to cause illness or death in people, animals, or plants‘. CDC 

also classifies the agents depending on how easily they can spread and the 

severity of illness or death they cause.  
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Table 1.2. A brief history of intentional use of agents.  

14
th
 century Tatars catapult plague victim‘s bodies over the walls 

of Kaffa (the modern Crimean port of Feodosia, 

Ukraine) (Morens et al.,2004) 

14
 th

 -18
 th

 century Plague wipe out 1/3 of affected population 

17
th
 century Smallpox contaminated blankets were distributed 

during the war between French and Indian  

First world war Intendently dispersion of cholera to Italy and plague to 

Italy by Germany.  

Second WW Experiments on prisoners using plague, cholera, 

plague resulted in 10000 deaths 

The Rajneeshee Cult, 

in Oregon USA 

Salmonella typhimurium caused an outbreak of 

salmonellosis where 751 people fell ill at salad bar and 

supermarkets, in 1984  

Prior to 1950s Several thousands of cases tularemia was recorded. 

1932-1945 260,000 people died in 11 Chinese 

Cities by contaminated water supplies and food items  

2001 USA Intentional dissemination of anthrax spores through 

the US Postal System led to the deaths of 5 people, 

infection of 22 others. 

Sourced from Kahrdori and bioterrorism and disaster medicine. 

Agents listed in Table 1.3 may affect individuals by causing various 

diseases.  Among the listed agents or diseases, some might not be infectious (e.g. 

Ricin toxin), while some are highly infectious and able to create epidemics (e.g. 

Ebola). According to this classification, we focus on agents that cause epidemics. 

In other words, we examine diseases that can be dispersed among population 

through various paths of infection.  
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Table 1.3: Categorization of agents by CDC.   

 Category A Category B Category C 

A
G

E
N

T
S

 /
 D

IS
E

A
S

E
S

 
Anthrax Brucellosis Nipah virus 

Viral hemorrhagic 

diseases * 

Epsilon toxin of Clostridium 

perfingens 

Hanta virus 

Plague Food safety threats  

Smallpox Glanders  

Tularemia Meliodosis  

Botulism Psittacosis  

 Q fever  

 Ricin toxin  

 Staphylococcal enterotoxin B  

 Typhus fever   

 Viral encephalitis 

alphaviruses**  

 

 Water safety threats  

*Ebola, Lassa, Machupo 

**e.g. Venezuelan equine encephalitis, eastern equine encephalitis, western equine 
encephalitis 

 

Due to the developments in science and medicine, populations in 

developed countries are not suffering from naturally-occurring infectious 

diseases such as measles, smallpox, and plague. However, these childhood 

diseases caused large amounts of deaths just before they eradicated or taken 

under control by appropriate treatment techniques, such as vaccination 

campaigns. Rather than fatal childhood diseases, world is currently suffering 

from sexually transmitted diseases (STDs) including HIV and hepatitis. 

According to WHO, ―approximately 1.6 million people were living with HIV in 

2001 in the WHO European Region. Estimations suggest that this number 

increased to 2.4 million people in 2008 and is still rising
2
‖. The most devastating 

                                            
2 WHO, http://www.euro.who.int/en/what-we-do/health-topics/diseases-and-conditions/hivaids 
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pandemic caused by a type of influenza virus, originated in Europe in 1918. 

Murray et al.. (2006) report that deaths reached to be 20 - 100 million people. In 

their study, authors implement data and rates of past pandemic (Spanish Flu) to 

the population of 2004, and obtain a result that shows the casualties of this 

disease in population of 2004. Recently, humanity overcomes from another 

strain of influenza virus swine flu (H1N1). Improved herd immunity that comes 

from past epidemics/pandemics, medical developments and better planning play 

important role in reducing the number of deaths significantly.  

In case of a large scale epidemic, besides the human casualties, economy 

is one of the most affected fields. SARS outbreak that emerged in China (2003) 

represents a good example. SARS was dispersed to other continents and resulted 

in 3389 cases and 165 deaths (a
 
death rate of 4.9 percent) reported in 27 

countries (Wenzel et al., 2003), including Singapore, Canada, Ireland and US.
 

The estimated cost of SARS was estimated to be 40 million dollars.  

1.4. Epidemics and Disaster Management  

An effective management of a disaster might save millions of people and 

also play an important role in recovering the disruptions in social life and 

economy. In this context, an effective action plan against an epidemic disaster is 

vital to lessen the negative impacts. Multidisciplinary approach and an 

organized, collaborative action between the related governmental and non-

governmental organizations will be required during the design of an epidemic 

disaster surveillance plan. Furthermore, in choosing the right control policy, 

public health experts and governmental or nongovernmental funding 
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organizations will work in collaboration. Joint and synchronized efforts of 

various disciplines would strengthen the overall management of an epidemic.  

Table 1.4. Disaster management phases for an epidemic and related operations. 

Mitigation 

 Risk analysis to measure the potential for extreme hazards 

 Planning a surveillance plan that address the managerial 

issues, human resource and supply capacity   

 Investing in vaccine production technology  

 Conduct research to predict dispersion speed and final size of 

a potential epidemic 

Preparation 

 Education  of  the  health care providers, emergency medical 

staff essential  for  the  successful  surveillance  activities  

and medical  response. Prioritization of preventive medical 

service delivery. 

 Policy development 

 Coordination of public health officials 

 Production and storage of vaccines 

 Control the in and outflows of country. 

 Taking cautious action in borders and airports. 

Response 

 Putting surveillance plan into action. 

 Creating awareness among population by using mass media 

services 

 Provide effective health care delivery for both infected 

individuals and remained susceptible 

Recovery 

 Provide feedback on control policies and performance of the 

surveillance plans. 

 Collect relevant data and perform statistical analysis to 

update disease characteristics model parameters. 

 Analyzing the effectiveness of previous stages‘ management 

and strengthen the weaker areas. 
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In Table 1.4, we provide a list of operations that might be beneficial if 

implemented in case of an epidemic disaster. Managing an epidemic involves an 

interdisciplinary collaboration including, legal entities, researchers on social, 

medical sciences, OR/MS experts, and economists. Analyses, planning and 

optimization are critical for success of management concept, therefore, heavily 

used for disaster management.  

Mathematical modeling is a powerful tool for determining the best or the 

most appropriate policy, assessing the effectiveness of chosen policy and 

understanding the patterns of disease transmission (Hethcote, 2009; Del Valle,  

2005). Therefore, it has important contributions to disease intervention programs 

by providing insights to decision makers. During the planning stage of 

surveillance plans, many countries rely on mathematical disease dispersion 

modeling (Hethcote, 1989). Doyle et al. (2006), report in their study that their 

findings were considered by French Ministry of Health while they were planning 

the antiviral strategy against Influenza. They were able to answer ‗how much to 

order‘ question which corresponds to an important lot sizing problem in the field 

of logistics and operation research. Therefore, the study of Doyle et al. (2006) 

provides a good example of how mathematical models serve to the field of 

epidemiology, public health and logistics.   

 

1.5. Epidemiological Modeling 

Recent science developments in applied mathematics and biological 

sciences provide insights for predicting possible hazards that a population will be 
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facing in case of an epidemic. In this thesis, we focus on infectious disease 

epidemiology. Our main interest is to analyze the dispersion and impact of an 

infectious disease in populations with different sizes. 

1.5.1. Epidemiologic Modeling Concept 

Epidemiologic modeling can be defined as the representation of disease 

dispersion through mathematical equations among a population. Since 

subpopulations are represented as compartments, these models are also called 

compartmental models. Basic stages are denoted as ‗S‘, ‗I,‘ ,‘R‘ corresponding to 

susceptible, infected, recovered subpopulations, respectively. Susceptibles are 

healthy individuals that have no immunity against the agent. An individual is 

called infected if he/she confers with the responsible agent. When an infected 

individual survives he/she moves to the recovered class. Arrows represents the 

flow of individuals between classes and Greek letters show the rates of flow. 

This basic model is illustrated in Figure 2a. A model in which disease is 

terminated without immunity is called SIS (susceptible, infected and susceptible) 

as shown in Figure 2b.  

       

(a) 

(b)  

 

Figure 1.3: Basic compartmental models: (a) SIR and (b) SI. 
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Equation (1.1) shows the corresponding equations, where N denotes to 

total population. 

  

    (1.1) 

     

.

S  denotes the rate of change in a susceptible population, similarly 
.

I and 

.

R  represent the changes in infected and recovered proportion, respectively. In 

order to determine the final size of the population, rate of transitions between 

classes will be represented by differential equations (Brauer, 1984). The rate of  

is the product of number of contacts per unit time and the transmission 

probability per contact.  can be taken as constant. This kind of population is 

called ‗homogeneous mixing‘ population, in which everyone has the same 

chance to get infected (Valle et al., 2005). Whereas, more realistic version of 

homogenous mixing is the situation in which β is non-constant and proportional 

to the population size. Heterogeneity can take many forms in terms of 

susceptibility, infectivity, contact rate and spatial network (Volz, 2008). 

Susceptible proportion may be divided into more than one category according to 

the health status, age, gender or any special condition. Some part of the infected 

subpopulation might be more active than remaining proportion or might be 

geographically separated. Moreover, two subpopulations might differ in response 

to an epidemic. These can be given as some instances that are describing the 
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heterogeneity in the model. In real life settings, non-uniform rates and status 

might be more logical due to the variety in contact rates during an epidemic, 

which leads to use partial differential equations that are more difficult to solve 

(Volz, 2008).  

In Equation (1.1), the parameter β is an important determinant for 

determining final size of the epidemic and calculating the threshold quantity, 

which is also called basic reproductive number R0. The parameter α represents 

the recovery rate; the rate of transition from I class to R class. Recovery rate is 

equal to mean duration time. In other words, individual recovers at a rate of α, 

thus, stays in I stage with an exponentially distributed mean duration of 1/α. 

(Brauer, 1984).  Since the birth and death processes are not considered in the 

basic SIR model, R represent the individuals that have stayed in ‗I‘ class for 1/α 

days and then recovered with full immunity or die. Each parameter corresponds 

to exponentially distributed waiting times in the compartments (Hethcote, 1989). 

These rates are expected to vary from disease to disease.  

The basic steps of epidemiological modeling are similar to modeling 

concept used in operations research and management science. The modeling 

steps followed in this study is summarized in Figure 1.4. 
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Figure 1.4  Wonham and Lewis‘s (2008) model building steps. 

As the first stage of modeling, we should define the problem(s). After the 

definition of problem, appropriate research question(s) should be asked, such as 

what is the dispersion speed of a disease? Second, an appropriate framework for 

model should be drawn. The main considerations at the second step are how 

population, landscape, time, environment should be represented in this 

framework. Since not all real life variables and probabilities can be included in 

the model, we should make some assumptions, which should be clearly defined. 

For instance, if we assume that contact number is constant, then we should also 

make an assumption on population characteristics (homogenous or heterogenous 

mixing). Then we begin to visualize the model by using Kermack McKendric‘s 

basic compartmental model, as shown in Figure 1.3. More compartments can be 

added as needed. For instance, adding quarantine and isolation compartments 

would make the model more complex but also more realistic. After designing the 

conceptual model visually, mathematical representation of the model should be 
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constructed. In compartmental modeling, arcs represent flows and nodes 

represent stages. There will be rates assigned on flows representing the 

transitions from one compartment to another.  

As an expected outcome of the model, we should also have a look at the 

threshold concept. Threshold is the number that determines the progression of an 

epidemic among a given population. Chowell and Brauer (2009) describe the 

basic reproductive number, R0 as follows. ―There is a difference in epidemic 

behavior when the average number of secondary infections caused by an average 

infective during his/her period of infectiousness called basic reproductive 

number‖.   After building the mathematical model, parameters should be 

integrated, in order to run the model. These parameters can be obtained by 

estimation or can be derived from observed data. 

An important concept in epidemiological modeling is the ‗basic 

reproductive number‘, R0, which represents the average number of secondary 

cases generated by a single infective introduced to a wholly susceptible 

population (Hethcote, 1982). In other words; if R0 equals to ‗2‘, a person could 

transmit the disease to two other individuals, on average. R0 is calculated as the 

product of ‗β‘ the contact number, the fraction of infected people and the success 

rate of transmission between a susceptible individual and infected one. R0 serves 

several purposes. First, R0 stands for a threshold value which determines whether 

disease will die out or continue. In this context, if the calculated value of R0 is 

greater than 1, the disease will continue, if the value is calculated to be equal or 

less than equal than 1, it can be said that disease will die out soon (Del Valle, 

2005). Second, R0 is used to evaluate the effectiveness of control policies by re-
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calculating after the implementation. Varying values of R0 determines the 

dependence of R0 to exogenous factors such as differences in social contact 

patterns of a population, contact numbers, disease nature and transmission 

pattern, environmental factors, demographic structure of population (Hsu et al, 

2004). Even in the same population, but at different time periods R0 can be 

calculated with different values. Modeling is an experimental tool for testing 

theories and assessing quantitative conjectures. 

The other benefits and purposes of epidemiologic modeling are defined by 

Hethcote (1982) and stated below: 

1. Modeling provides concepts such as a threshold, reproduction number. 

2. Models with appropriate complexity can be constructed to answer unique 

questions. 

3. Modeling can be used to estimate key parameters by fitting data. 

4. Models provide structures for organizing, coalescing and cross-checking 

diverse pieces of information. 

5. Models can be used in comparing diseases of different types or at 

different times or in different populations. 

6. Models can be used to theoretically evaluate, compare or optimize various 

detection, prevention, therapy and control programs. 

Whether it is mathematical or analytical, all real life details cannot be considered 

in a model. Thus, assumptions are required in order to generate substantive 

solution. Assumptions of the model also mean restriction. Hethcote (1982) 

defines three limitations of epidemiological modeling; 
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 An epidemiological model is not reality; it is an extreme simplification of 

reality. 

 Deterministic models do not reflect the role of chance in disease spread 

and do not provide confidence intervals on results. 

 Stochastic models incorporate chance, but are usually harder to analyze 

than the corresponding deterministic model. 

In the next Section, we describe how the results of epidemiologic modeling can 

be combined with logistics for better management of the epidemic disaster. 

 

1.6. Logistics and Epidemiological Modeling 

Surveillance plans are projections for possible disasters and prepared by 

city governments. Control policy decisions, capacity and resource planning and 

health care service delivery issues are included in a surveillance plan. Therefore, 

for the purpose of preparing for epidemics, epidemiologic modeling constitutes 

very important part of surveillance plans. Policy planning begins with 

determining the appropriate policy according to the characteristics of disease and 

population.  As illustrated in Figure 2.6 in Chapter 2, taking large scale measures 

such as vaccination and quarantine requires strict authority and well coordination 

besides a special fund. Thus needs to be initiated by government with the 

involvement shareholders. The less complex individual level policy 

implementation includes activities that aim to increase the awareness of personal 

hygiene or avoiding close contacts, on disease dispersion.  
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Consider a situation in which vaccination is chosen as the control policy. 

There might be no or insufficient supply to satisfy the requirements. One of the 

considerations during planning stage is, analyses that need to be conducted to 

support make or buy decisions. Especially for vaccine procurement, vaccine 

packaging and storage conditions impose an important restriction on the 

decision.   Another issue in planning vaccination policy is the prioritization. A 

prioritization should be done if disease impacts are higher on some part of the 

population, due to demographical characteristics. For instance, if disease 

constitutes a bigger threat for the school-aged children, they should get the 

treatment first. Administering these vaccines require additional care givers and 

related employees. Number of extra care givers should be sufficient to deliver all 

people in the targeted area in a given time period. Thus approximate numbers of 

employees need to be determined prior to an epidemic. Quarantine and isolation 

policies might require extra facilities and prioritization decision for whom to 

quarantine or isolated. Thus, facility location and capacity planning decisions 

should also be made.  

Note that, all of the decisions regarding an epidemic disaster need to be 

planned, managed and implemented with the aim of ―…providing adequate 

supply and human resources at the right time, to the destination, to the right 

people, in proper form; during the disaster and to maintain relatively fair living 

conditions after the disaster and being the part of continues improvement for 

strengthen possible weaker areas for possible future challenges.‖ More precisely, 

this point is exactly where the epidemiological modeling meets humanitarian 

logistics.  
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CHAPTER 2  

 

 LITERATURE REVIEW 

 

In this Chapter, we provide a summary of epidemiological modeling of 

diseases which could be used as potential candidates for bioterrorism. In 

particular, we focus our attention on influenza and category A diseases namely; 

smallpox, anthrax, SARS, viral hemorrhagic diseases (Ebola, Lassa Fever, 

Machupo) and plague. From these diseases, although Influenza is the most 

frequently observed pandemic or epidemic source, Smallpox, Anthrax, SARS, 

Plague are diseases which attract researchers‘ attention because of their potential 

use in bioterrorism. Since the main focus of this study is smallpox epidemic, we 

also make a brief introduction to the epidemiology of smallpox and review the 

related literature. 

 

2.1  Population Specific Epidemiological Modeling  

In this section, we conduct a literature review for epidemic modeling of 

most contemporary transmittable diseases by examining 70 research articles 

published between 1971- 2009. 
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Figure 2.1. Distribution of diseases in literature review.  

 

We use ISI Web of Knowledge database, with keywords ‗epidemic‘, 

‗epidemiological models‘, ‗influenza‘, ‗anthrax‘, ‗smallpox‘, ‗Ebola‘, ‗Lassa 

Fever‘, ‗Machupo‘ and ‗SARS‘. Figure 2.1 shows the distribution of selected 

diseases. Although the search engine found numerous studies, we only select 

studies those containing a statistical, mathematical, and analytic or empirical 

models. We also would like to address the variability of the epidemiological 

model outcomes with respect to country specific data. For instance, a research 

article which includes a model for smallpox dispersion among Portland 

population is a valid candidate for our review. In addition to these, we include a 

few research works which propose fundamental results in the field. For further 
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reading we refer readers to; Bratava et al., (2006), Hupert et al., (2002), Longini 

et al., (2007).  

Table 2.1 describes the characteristics of 70 selected studies in eight 

different categories. In the next sections, each category/column is described 

separately. First three columns give information about authors, publication date, 

and disease type. Fourth column includes specific population which the model is 

based on. Fifth, sixth and seventh columns indicate the overall methodology of 

the models. Eighth column indicates the control policy, if used in the model.  

2.1.1. Publication Years of the Study by Disease  

Modeling the influenza virus occurrences draws the most attention, due to 

its frequent strikes and rapid dispersion. Despite the limitations, such as 

considering only country specific research, we could observe that preparedness 

actions against influenza pandemic/epidemic have clear priority in many 

countries‘ surveillance agenda.  

 

 

 

 

 

Figure 2.2. Distribution of research articles by date and disease. 
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Based on Figure 2.2, a dramatic increase is observed for SARS modeling in 

2003. SARS is a new disease relative to others. Until the 2003 outbreak in 

China, virus CoV did not exist in literature. As a consequence of the outbreak in 

2003, the virus was identified and many studies were conducted in many areas 

after this time. A recent bioterrorist attack in the US was attempted with an agent 

causing anthrax disease. We observe an increase in anthrax studies in 2007. Only 

two studies contain models based on Ebola. As reported by Chowell et al., 2004 

Ebola literature still suffers from lack of information. Limited data, and 

unidentified virus dynamics may be the factors causing the lack of interest in 

Ebola. 

2.1.2. Epidemiologic Modeling Based On A Specific Population 

The fourth column
3
 of Table 2.1 indicates the population that the model 

builds upon or is tested on, and was conducted to explore the published models 

developed for a specific population or tested with real population data. 

 

 

 

 

 

Figure 2.3. Distribution of research articles by population and disease 

 

                                            
3 ‗ASIA*‘ in Figure 3 represents the populations of China, Japan, Singapore, N. Vietnam and 

South Asia in general. For more detail please check Table 2.1. 
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Figure 2.3 shows the distribution of studies including an epidemiological 

model for specific population.  

Among 70 studies, 15 research articles include epidemiologic models of 

SARS. It is also observed that most of the studies examine disease dispersion in 

several cities of China. This may be due to the zero patient; the initial case was 

reported in Guangdong, China. Han et al. reviewed the research works that were 

published in China on SARS modeling and highlighted the national strengths 

and weaknesses in this area. U.S and European countries are currently showing 

increased interest in influenza modeling.  

2.1.3. Methodology and Techniques of Epidemiologic Models 

In Table 2.1, columns 5 to 7 indicate mathematical characteristics of 

studies such as methodology, technique and whether research includes 

compartmental model or its derivatives (SIR; Susceptible – Infected – 

Recovered, SEIR; Susceptible – Exposed – Infected – Recovered, and MSIRS; 

Maternal – Susceptible – Infected – Recovered – Susceptible).  

 

 

 

 

 

 

Figure 2.4 Distribution of methodologies employed in the models. 
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For a given initial condition, if there is no probability distribution involved 

in a model, then it is called a deterministic model. In contrast, stochastic models 

involve certain level of randomness. In stochastic models, while some level of 

probability is attained, the output will be much closer to the real world results. 

Figure 2.4 shows the distribution of methodologies. In this context, 28 research 

articles involve a deterministic model while 38 involve stochastic model. In 

general, stochastic approach is reported to be more appropriate for scenario 

analysis during mitigation and preparedness stages. 

 The column number 7 indicates the technique or tools to construct the 

model. Differential equations and simulation are the most common analytical 

tools used in epidemiological modeling. Nishiura and Tang (2004) examine the 

prediction of the smallpox epidemic outcome and make an evaluation of control 

policy through differential equations. Roberts et al. (2007) calculate R0s of 

influenza both in the absence and after the implementation of control policy. 

Ruan et al. (2006) examine the impact of travelling on SARS dispersion via 

multi region compartmental model. Sattenspiel et al. (2003) examine the 

effectiveness of quarantine by calculating R0. Volz (2008) models the 

progression of smallpox with heterogeneous contact rates. Chowell et al. (2009, 

2006, 2007) calculate R0s for pandemic influenza in various cities, Chowell et al 

(2004) evaluate the control policies that are implemented against Ebola in Congo 

and Uganda, and Chowell et al. (2005) examine the impact of the ability of 

diagnosing SARS on dispersion and the positive contribution of isolation policy. 
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Table 2.2. Distribution of simulation studies. 

Simulation Type Reference 

Agent Based Simulation 12, 28, 30, 41 

Individual Based Simulation 25 

Monte Carlo Simulation Model 1, 16, 70 

Discrete Event Simulation 

Model 

1, 33, 45, 68 

Network Based Simulation 18, 24 

 

Simulation is an analytical tool that enables researchers/planners to 

visualize the impact of an epidemic among the population beyond equations. Of 

the 70 research works, 12 of them simulate disease dispersion. Table 2.2 shows 

the summary of simulation-based research articles. 

All models developed with differential equations are supported with 

compartmental models. While these equations represent the changes from one 

class to another, using compartmental models allows this flow to be visualized 

and provides better understanding. As it can be seen from the Table 2.1, most of 

the compartmental models, especially those in which the impacts of control 

policies on disease dispersion are examined, include additional compartments 

such as isolation and quarantine. 
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Figure 2.5. Distribution of techniques employed in the models. 

 
 

Spatial and spatio-temporal models are used to examine the time and 

location dependent dispersion. Statistical analyses are conducted in most studies 

to predict the possible impacts of the epidemic using historical data. ‗Other‘ 

techniques include the following: two level mixing structure (Ball, 2006), 

discrete time branching (Becker 1977, Nishiura 2007), second order Gaussian 

filter (Duncan, 2005), meta-population compartmental model (Riley, 2003), a 

network model (Webb et al., 2002), atmospheric dispersion model (Wein, 2003), 

discrete epidemic model, (Zhou et al., 2004). 

2.1.4. Control Measures and Logistical Consideration 

As stated before, epidemiologic modeling provides insights for planning 

and mitigating against a possible disaster. An effective epidemic management 

requires combination of managerial decisions which are shown in Figure 2.6. 
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Figure 2.6. Logistics decisions should be made during epidemic management. 

 

The chemical nature of vaccines and some drugs make their storage 

inconvenient. In addition, the handling, location and relocation of large 

quantities of medical supplies are associated with high costs. Success of 

encountering a disaster might be depending on the level of initial emergency 

service delivered.  At the beginning of an epidemic, medical supplies and/or 

health care facilities might not be sufficient to serve all infected individuals in 

the population. Thus, in receiving the first response against a disaster -in this 

case against an epidemic-, it is crucial to optimize the number of facilities that 

deliver health care service. Medical resources might be limited at the very 

beginning of an epidemic. The decisions for distributing these resources will be 

crucial in overcoming an epidemic. In this context, Koyuncu and Erol (2010) 

propose a multi objective decision model in order to optimize resource 

allocations against Influenza pandemic for Turkey. Kaplan et al. (2009) analyze 

a smallpox attack. They construct a compartmental model in order to calculate 
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size of victims. They examine different control policies and specific vaccination 

policies. They also consider the health care delivery problem by including 

queuing theory into their research.  

Budget is an important constraint in planning and should not be ignored in 

this process of overcoming the epidemic. Zaric and Brandeu (2001) suggest that 

the allocation of fixed budget for targeted intervention should be planned. John 

et al. (2001) focus on an anthrax related bioterrorist attack. They make a 

comparison cost of control activities and treatment and cost of preparedness 

activities against a possible attack. Authors conclude the study by suggesting 

preparedness activities will reduce both mortality and also cost much less. In 

another study, cost and benefit analysis is performed by Schoenbaum (1967) in 

order to show the economic impact of influenza from individual point of view. 

Meltzer et al. (1999) examine economic impact of vaccine-based interventions 

for Influenza in USA. They also consider vaccine administration for different 

age groups and include several objectives for vaccination policy. In a fashion 

similar to the study of John et al. (2001), Fitzner et al. (2001) claim that the 

benefits gained from vaccination program in Hong Kong, are much higher than 

the costs during the epidemic. Gupta et al. (2005) examine costs and benefits of 

implementing quarantine policy against SARS in Toronto. They conclude their 

research by highlighting the fact that quarantine would be the best policy in 

terms of cost effectiveness.  

In the majority of research studies, control policies are compared and 

evaluated.  In some of the studies, vaccination is chosen as the best policy, while 

in others quarantine and social distancing are claimed to be the best policy. As 



51 

 

expected, policies vary between disease types and the severity of the situation. 

The reason why different control policies are considered and approved for the 

same disease is the dependence of disease dispersion on many exogenous 

factors, such as agents‘ nature, demographic and social characteristics of 

population(s), ecologic environment of landscapes.  

In addition to the evaluation of individual policies, some of the studies 

(Riley et al. 2003, Ferguson et al. 2005) recommended that a combination of 

policy vaccination and isolation policies would be sufficient to stop an epidemic. 

Nishiura and Tang (2004) emphasize the priority of smallpox vaccination among 

one subpopulation. More specifically, they recommend a priority should be 

assigned according to individuals‘ immune status. On the other hand, a SARS 

related study advocates quarantine as the best way to terminate an epidemic 

(Drake, 2006). Many models suggest that social distancing, solely or combined 

with another policy, have an important role on further dispersion. Social 

distancing includes individual based isolation, changing communication patterns 

such as preventing greetings which include kissing, avoiding close contacts, 

wearing protective masks, gloves. Del Valle et al. (2005) study on how 

behavioral changes effect the progression of a smallpox epidemic. They find out 

that even a small amount of change in contact rate damps the dispersion. It can 

be suggested that whether vaccination or quarantine policy is chosen, policies 

that are supported by individual level actions might terminate epidemic in 

shortest time periods. 
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2.2. Smallpox Models 

Among all other category A type diseases, smallpox is different in terms of 

being the first disease that eradicated all over the world (Henderson et al., 1999, 

Lane and Summer, 2005). Therefore, reporting only one case is enough to start 

an alert for a smallpox epidemic. Smallpox is also unique in terms of initial 

dispersion pattern. Unlike other pox species, smallpox has no natural reservoir 

(Parrino and Graham, 2006). Therefore the only way to introduce smallpox into 

population is intentional bioterrorist actions. Wein declares his thoughts on 

smallpox as a bio threat as; ―Ed Kaplan and I were aware that smallpox (Kaplan 

et al. 2002) and anthrax were considered the most dangerous bioterror threats 

both from reading (1999, Henderson) and from conversations‖
4
. In the next 

Section, we examine smallpox disease and review modeling research studies for 

smallpox.  

2.2.1. Epidemiological Modeling for Smallpox  

Smallpox, have originated over 3000 years ago, and it is one of the most 

devastating disease to humanity. The World Health Organization officially 

certified the eradication of smallpox on December 9, 1979.
5
 Until that time 

disease was endemic for many countries in various continents. Endemic refers 

here as the persistence of the disease among population (Fenner et al.,1988). In 

the study of Fenner et al., (1988) countries that are smallpox-endemic countries 

are listed from 1920 to 1978. It is estimated that smallpox is responsible for 500 

                                            
4 Homeland Security: From Mathematical Models to Policy Implementation Operation Research 

57(4) pp. 801—811: 2009.   
5 http://www.cdc.gov/Features/SmallpoxEradication/ 
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million people in the 19
th
 and 20

th
 centuries (Kennedy et al., 2009). Besides, 

many survivors became permanently disabled.  

The worldwide vaccination in the context of smallpox eradication program 

relies on ring vaccination. After the eradication, the compulsory vaccination was 

abandoned – with the result that about half of the world's population is not 

vaccinated (Wolff et al., 2007). Vaccinated individuals also lost their immunity 

two decades after vaccinated (Hull et al., 2003). Therefore, populations might be 

assumed to be fully susceptible for smallpox.  

Although, re-introduction of this disease to population(s) is not considered 

likely these days, the suitable nature for bioterrorism and lethal power of this 

agent force academic and political world to think ‗what if‘ question. As stated 

before, smallpox can re-emerge due to the leakage from one of the smallpox 

storage laboratories or due to an intentional release. Almost every smallpox 

researches in the literature reviewed in this Thesis, consider bioterrorism 

scenarios. Models and related literature review will be examined in detail in later 

sections. 

Major control measures that lead to the eradication of smallpox disease are 

reported to be active surveillance, outbreak investigation, outbreak control, rapid 

communication of disease intelligence (Foege et al., 1971), and isolation (Hull et 

al., 2003). As observed from the literature, modeling disease progression and 

related analytical models that provide insights on optimal demand and supply 

balance have been an important reference point for a surveillance action plan that 
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will be designed by governments, non-governmental organizations such as WHO 

and other decision makers.  

In order to make more accurate plans against an epidemic, it is required to 

determine the size of individuals that need to be treated, cared, isolated, 

vaccinated and hospitalized. Epidemiological modeling enables researchers to 

determine these outputs. As inputs, one might consider the structure of 

populations e.g. the demographic structure or immunity status for a specific 

disease, other might consider the host parasite interaction. Independently what 

kind of epidemic modeling study is conducted, disease dynamics represented as 

an important part of the study. For successful modeling of smallpox epidemics 

we need to examine the disease characteristics. 

2.2.1.1. Variola Virus  

Taxonomically, Variola virus belongs to the family Poxviridae, subfamily 

Chordopoxvirinae, and genus orthopoxvirus, which includes vaccinia (smallpox 

vaccine), monkeypox virus, and several other animal poxviruses
6
.  Smallpox is a 

severe disease which might result in death, permanent disability and most 

optimistically permanent scars mostly on face. Disease develops in various 

forms of variola as a result of host and agent factors and/or interactions that 

determine the disease type (Koplan et al., 1979). Hemorrhagic type which has 

almost 100% fatality rate, a special form of virus, flat type which is mostly 

occured in unvaccinated children with almost 100% fatality rate (Hull et al., 

2003). Variola major which is known as classical smallpox (see Figure 2.7) has 
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fatality rate of 30% (Fenner et al., 1988).Variola minor, a milder form which has 

flu like symptoms has 1% fatality rate only (Fenner et al., 1988) and modified 

type which develops in vaccinated individuals, has fatality rate lower than 10% 

(Koplan et al., 1979). 

 

 

 

 

 

 

 

 

Figure 2.7. Electron micrographs of Variola Major (Source: Diagnosis and 

management of smallpox, 2002). 

 

2.2.1.2. Disease Transmission and Epidemiology  

Smallpox considered in this study is a severe disease that is caused by 

virus, Variola Major. Smallpox can be transmitted through close contacts with 

an infected person, via inhalation of contaminated air or having contact with a 

contaminated object (Fenner et al, 1988). Airborne nature of smallpox allows 

disease to spread quickly. During the 20th century, it is estimated that smallpox 

was responsible for 300–500 million deaths (Wollf et al., 2007). 
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Figure 2.8. Smallpox progression timeline. 

 

Although, smallpox is a highly infectious disease, transmission requires 

prolonged face-to-face contact (Lane and Summer, 2009). Contrary to influenza 

which has couple of days of incubation period; smallpox has longer incubation 

period (Hull et al., 2003). Longer incubation period is a characteristic for 

smallpox and varies between 7 to 19 days (Fenner et al., 1988). Average 

estimation of this period is 15 days (Fenner et al., 1988).  Note that the 

incubation period is the elapsed time that begins with being exposed to an agent 

and ends when adequate replication of virus, spreading the body and induce 

immune system (Fenner et al., 1988).   

An individual stays asymptomatic till the beginning of high fever, which 

corresponds to the end of latent period. It should be highlighted that until the last 

three days of the incubation period, individual is uninfectious and asymptomatic. 

During these three days, the infectiousness begins but disease symptoms do not 

show up. This stage is called prodromal stage. In prodromal stage, an individual 
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is able to infect susceptibles at a ‗reduced infectivity‘ rate (Fenner et al., 1988). 

We also consider this reduced impact on disease dispersion.  

2.2.1.3. Treatment and Control Measurements against Smallpox  

There is no specific treatment defined for smallpox (Breman et al., 2002). 

Vaccination provides an option as prophylaxis and control policy measurement.  

Other control policies that were used throughout the history are, isolation, 

quarantine, social distancing. The effectiveness of control policies differs 

according to the disease and population characteristics. Among all the policies, 

vaccination is different from others because vaccination can be implemented 

prior to exposure as well as after the exposure.  

2.2.1.3.1 Vaccine and Vaccination Strategies 

 Roberts et al., (2007) consider scenarios including different medical 

treatments for smallpox targeted antiviral treatment and antiviral propyhlaxis 

(TATP).  Smallpox vaccine that is produced from dead or weakened vaccinia 

virus which belongs to orthopoxvirus family (Hull et al., 2003, Fulginiti et al., 

2003), provides a reduction in the magnitude of course of the disease.  

 Vaccination is generally safe and effective for prevention of smallpox 

however, it may also cause adverse reactions which might be life threatening. 

Further details
7
 on associated adverse reaction can be found in Fulginiti et al., 

(2003). As reported in Kerrod et al., (2005), in Edinburg 1942, the number of 

deaths related with the adverse reaction of vaccines exceeded the number of 

                                            
7 Centers for Disease Control and Prevention.  Smallpox vaccination and adverse  reactions:  

guidance  for clinicians.  MMWR Morb. Mortal. Weekly Report 2003; 52(RR-4):1–28. 
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disease induced deaths. For this reason, Edinburg Ministry of Health proposed to 

terminate the vaccination (Millard, 1945). 

Administration of vaccines to susceptible population can be considered in 

the context of prophylaxis. Vaccination within the first three days of exposure 

reduces the severity of disease. On the other hand, if a vaccine is administered 

within 4th-5th days of exposure, it still might reduce the fatality rate from 30% 

to 11% (Fulginiti et al., 2003).  For smallpox, there are several vaccination 

strategies available to be implemented: 

 Mass vaccination 

 Ring vaccination 

 Targeted vaccination.  

Ferguson et al., (2003), compare benefits and drawbacks of several 

vaccination policies. In the ring vaccination or containment vaccination policy, 

suspected contacts are traced and given an appropriate dose of vaccine when 

found (Halloran et al., 2002; Hull et al., 2003). It is an effective policy which 

results in the minimum usage of vaccine and lowers the vaccine induced 

complications including deaths. On the other hand, the suspected contactsneeds 

to be determined, found and vaccinated within limited days. In the targeted 

vaccination, first the prioritization criteria are determined. For instance, 

individuals who are older than a specific age, a neighborhood or territory which 

is affected by smallpox are selected. On the contrary to ring vaccination, targeted 

vaccination does not require any contact tracing activity.  
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2.2.1.3.2 Quarantine  

Both quarantine and isolation are both result in separation of infected individuals 

from rest of the population. Cetron et al.,(2005) define the difference between 

quarantine and isolation as compulsory, restricted structure of quarantine policy 

which may also be required a special separated facility.  

2.2.1.3.3 Isolation 

Hospitalization might be defined as a different type of isolation. Some required 

conditions should be met in order to mention on a physical separation such as 

infected rooms that are under negative pressure. (Kerrod et al., 2005, Wallin et 

al., 2007, Cetron et al., 2005). 

2.3. Basic Models in Literature 

In this section, we provide a review of key epidemiological modeling studies for 

smallpox disease. Studies are selected according to the distribution of models. 

First, exponentially distributed models are examined, and then smallpox models 

with more realistic distribution are provided. 

2.3.1. Models with Exponential Distribution 

After the eradication, in research studies models are built on the assumption of a 

potential attack. Compartmental structure is widely used. Solely or combined, 

the effectiveness of control policies is evaluated.  

Gani and Leach (2003) argue that some key aspects such as herd immunity 

in modeling are disregarded. In their study, they calculate R0 as 3, 5 and 6, and 

propose an epidemic model including quarantine vaccine additional classes 

based on the data corresponding to Kosovo outbreak in 1972. Chen et al., (2004) 
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align two different models. They call this process as docking. Their aim is to see 

if the results that are obtained from agent based simulation and compartmental 

models are fit each other with the same data.   

Duncan (2005) estimates the parameters of smallpox outbreak in London 

between 1708 and 1748. Kretzschmar et al., (2004) use stochastic discrete time-

branching process in order to show the disease dispersion. They conclude their 

study by emphasizing that ring vaccination measurement is effective only if the 

number of index cases is small. Partially, similar to the study of Chen et al. 

(2004), Carley et al., (2003) also use BioWar simulation tool to examine the 

disease dispersion by considering additional details. They create a social network 

and engage them with daily actions considering time variable. Halloran et al., 

(2002), construct a stochastic simulation model of disease dispersion in a 

heterogeneously mixing population, in order to compare the effectiveness of 

mass and target vaccination.  They found out targeted vaccination is more 

effective per dose, in the existence of some level of herd immunity among 

population. Similarly, Kaplan et al., (2002) compare target vaccination and mass 

vaccination and conclude that deaths would be lower if the mass vaccination 

policy is implemented. Bozette et al., (2003) construct a stochastic 

compartmental model and compare the effectiveness of mass vaccination, ring 

vaccination and prophylactic vaccination in a homogeneously mixing population 

under six scenarios.  

Meltzer et al. (1999) report that while quarantine is an effective way to 

stop an epidemic, due to the implementation requirements of quarantine, it 

becomes a hard challenge. Authors also report that historical data shows mass 
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vaccination only may not be enough to stop the epidemic. They suggest that in 

order stop the epidemic, combination of quarantine and mass vaccination policy 

should be used. Research study by Feguson et al. (2003), reviews those studies 

and provides valuable insights as a review of epidemiologic model construction 

tools and implementation of control measurements. Halloran et al. (2006), 

construct a stochastic simulation model to evaluate combination of vaccination 

and isolation as a control policy. Aldis and Roberts (2005), examine the disease 

dispersion through a system of integral equations and compare various control 

policies. They find out that prior mass vaccination is not an efficient way to 

implement due to the risk of adverse reactions. Del Valle et al., (2005), construct 

a compartmental model considering individuals having both normal and low 

level activity. Besides well known control policies, objective is to show the 

effect of lowering contact numbers on to dispersion of disease, during the 

epidemic. They conclude that changing contact patterns results in reduction in 

the dispersion speed of the disease. House et al., (2010) construct a model that 

combines differential equations, meta population approach and individual based 

structure. They aim to determine the optimal spatial scale for intervention and 

analyze the sensitivity of results with regards to the assumptions that made on 

the contact pattern.   

More realistic results can be obtained through a general distribution. We 

give a brief review on smallpox models which distributed un-exponentially in 

the following section.   
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2.3.2. Models with General Distribution 

Besides exponentially distributed differential equation models reviewed 

above, some of the studies consider time lags between horizontal incidences 

(Hethcote, 1994). In other words, as in smallpox disease progress, after entering 

body, virus should duplicate itself in order to reach to a sufficient number to 

cause the disease.  Therefore, between acquiring the virus and becoming infected 

there is a time lag called incubation period (Callaghan and Murray, 2002). This 

time delay can be defined mathematically through differential equations and its 

derivatives (Allen, 2006). If this time lag is fixed such that, 

, (Allen et al., 2000) then a first order linear differential 

equation with a discrete delay as represented in Equation (2.1) can be 

appropriate to model the epidemic (Allen, 2006). 

          (2.1) 

If reaction is occurred with a non-fixed time steps, [0, ], this kind of delay is 

called continuous delay (Allen, 2004). Mathematically, the change of rate in this 

continuous interval is represented with integro-differential equations given 

below. 

    (2.2) 

Although delay differential equations are more complicated to solve, the result 

would be more realistic. Jiao at al. (2008) study an epidemic model with 

vaccination measurement and two delays corresponding to latent period and 

infectious period. Feng et al., (2007) compare the results of an epidemic model 
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with different distributions. Also suggest that gamma distribution reflects more 

realistic results but is more complicated to solve. Similarly, Lloyd (2001) studies 

an exponentially distributed SIR model then converts it to more realistic 

Infectious Period Distribution (IPD) and discusses the results. 
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Table 2.1. Summary of literature review 

Author(s) Date  Infectious Disease Population 
Method 

Epidemiological 

Model 
Technique Control Policy Ref 

Det. Sto. 

Amouroux et al. 2008 Influenza 
North-

Vietnam  X None  Agent based model None  28 

Araz et al. 2009 Influenza 
Arizona State 
University 

X  SEIR Simulation 
School closures 
and reopenings 

22 

Atti et al. 2008 Influenza Italy  X SEIR 
Individual based 
SIR 

Vaccination, AVP, 

SD and air travel 

distriction 
25 

Ball 2006 Smallpox Brazil  X SIR 
Other: two level 

mixing structure 
Vaccination 67 

Barett et al.  2005 Smallpox Portland  X None  Simulaiton None 18 

Becker 1977 General Sao Paulo  X None  
Other: discrete time 

branching 
Vaccination 46 

Bravata et al. 2006 Anthrax USA   SEIR 
Cost and benefit 
analysis 

Prophylaxis and 
treatment 

32 

Brookmeyer et al. 2003 Anthrax USA cities  X None  Statistical analysis None 17 

Carpenter et al. 2009 Influenza Canada  X None  Agent based model None 30 
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Carter et al. 1986 Influenza USA cities  X None  Decision models Vaccination 9 

Chowell et al. 2009 Influenza 
Canada,  

USA 
X  SEIR 

Differential 

equations 
None 14 

Chowell et al. 2006 Influenza Geneva Swit X  SEIHR 
Non linear 
differential 

equations 
Isolation 7 

Chowell et al. 2006 Influenza Geneva Swit X  SEIR 
Epidemiologic 
modelling 

None 44 

Chowell et al. 2004 Ebola 
Congo and 
Uganda 

X  SEIR 
Differential 
equations 

None 50 

Chowell et al. 2005 SARS 
Hong Kong, 

Ontario and 
Singapore 

X  SEIJR 
Differential 

equations 
Isolation 51 

Chowell et al. 2007 Influenza San Francisco X X SEIR/SIR 
Differential 
equations 

Hospitalzation 58 

Chowell et al. 2008 Influenza USA,EU X  SEIR 
Epidemiologic 

modelling 
None 60 

Chowell et al.  2004 SARS 
Canada, Far 

Eastern  
X  None   None 54 

Christakosa 2007 Plague 
W.Europe, 

India  X None  
Spatio- temporal 

modelling 
None 49 

Donnelly et al. 2003 SARS Hong Kong   None  Statistical analysis None 66 
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Doyle et al. 2006 Influenza France  X None  Simulation Vacc, AVT, AVP 1 

Drake et al. 2003 SARS Singapore  X SEIR Simulation 
Communicaiton of 

epidemic 
70 

Duncan  Smallpox London X  SEIR 
Other: second order 
Gaussian filter 

None 39 

Eichner et al. 2003 Smallpox Nigeria X  None  Statistical analysis None 38 

Eyup et al.  2009 Influenza General   None  
Multi objective 

decision model 
None 29 

Ferguson et al. 2005 Influenza South Asia  X None  Simulation TAP and SD 15 

Fitzner et al. 2001 Influenza Hong Kong  X None  Economical analysis Vaccination 2 

Flahault et al. 1994 Influenza EU X  SEIR Simulation None 61 

Germann et al. 2006 Influenza USA cities  X None  Agent based model 
TAP, mass vacc., 

school closuring, 

isolation 
12 

Grais et al. 2004 Influenza USA cities X  SEIR Simulation None 21 

Griffin et al. 2004 Influenza UK  X None  Spatio-temporal None 3 

Guptaa et al. 2005 SARS Toronto X  None  Economical analysis Quarantine 56 

Hak et al. 2006 Influenza NL  X None  Decision models None 42 

Hsieh et al. 2007 SARS Taiwan X  SIR  Quarantine 37 
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Hsu et al. 2004 SARS Taiwan  X SEIR 
Differential 

equations 
Quarantine/isolati

on 
71 

Hupert et al. 2002 Anthrax, Plague.. USA  X None  Simulation None 33 

John et al. 2001 Anthrax Canada   None  Economical analysis Prophylaxis 31 

Koyuncu & Erol 2010 Influenza Turkey   None  Decision models 
AVP & other 

preventive 

treatments 
63 

Lee et al. 2009 Anthrax General  X None   None 26 

Lee et al. 2008 Influenza USA  X None  Simulation None 41 

Legrand et al 2009 Anthrax GB  X None  
Markov Chain 

Monte Carlo 
None 10 

Li et al. 2004 SARS 
Hong Kong, 

Singapore 
 X  None  Statistical analysis None 48 

Lokone & 

Finkenstadt 
2006 Ebola Congo X  SEIR 

Markov Chain 

Monte Carlo 
None 64 

Longini et al. 2005 Influenza South East Asia X None  Case analyzing 
Several control 

strategies  
65 

Meltzer et al. 1999 Influenza US cities  X None  Simulation Vaccination 16 

Miller et al 2004 Plague Texas  X None  Simulation None 11 

Miller et al 2006 Smallpox San Antonio  X None  Simulation 
Combination of 

68 
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control policies 

Nishiura 2007 Influenza Germany; Prussia X None  
Other: discrete time 
branching 

None 19 

Nishiura & Tang 2004 Smallpox Japan X  SEIJR 
Differential 

equations 
Vaccination 5 

Nishiura et al. 2004 SARS Japan X  SEIR Simulation 

Isolation, 

Quarantine, 

preventive 
treatments 

57 

Pyle & Rees 1971 Various Chicago  X None  Statistical analysis None 34 

Riley et al. 2006 Smallpox GB  X None  
Spatial, individual 
based model 

Vaccination, 
Isolation  

4 

Riley et al. 2003 SARS Hong Kong  X comp* Other: meta pop. None 53 

Rizzo et al. 0 Influenza Italy X X SEIR Simulation AVP, SD, Vacc. 27 

Roberts et al. 2007 Influenza Auckland X  SIR 
Differential 

equations 
SD, TAVP, AVP, 

home quarantine 
20 

Ruan et al. 2006 SARS USA X  SEIR 
Differential 

equations 
None 40 

Sattenspiel et al. 2003 Influenza Canada X  SIR  
Differential 

equations 
Quarantine 47 
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Schoenbaum 1987 Influenza USA X  None  
Cost and benefit 

analysis 
Prophylaxis 36 

van Genugten et 
al. 

2003 Influenza NL   X None Scenario analysis Vaccination AVT 6 

Volz 2008 Smallpox Portland  X SEIR 
Differential 
equations 

Quarantine 13 

Wanga et al. 2007 SARS Beijing X  comp* Simulation None  52 

Webb & Blaser 2002 Anthrax USA  X None  
Other: network 

modeling 
None 24 

Wein et al. 2003 Anthrax USA X  None  
Other: atmospheric 

dispersion model 
None 62 

Yang et al. 2007 Influenza Eastern*  X None  Statistical analysis None 23 

Zaric et al 2008 Anthrax general  X SEIR Simulation None 35 

Zhang et al. 2005 SARS China X  comp* Simulation Quarantine 59 

Zhou et al. 2004 SARS China X  EIQJR Other Quarantine 69 
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CHAPTER 3  

 

 PROPOSED MODELS FOR SMALLPOX 

 

In this chapter, we consider four alternative models; disease dispersion under 

no control, dispersion under quarantine and hospitalization policies, dispersion 

under vaccination strategy and a scenario that includes combination of quarantine, 

hospitalization and vaccination policies.  

First, Model 1 is examined in the absence of any control policy. Second, 

Model 2 is examined in order to observe the effects of quarantine and hospitalization 

on disease dispersion. Third, a model with vaccination is examined. Final model 

incorporates quarantine and hospitalization measures with vaccination. 

3.1. Model 1: No Control Or Preventive Measures 

In the first model, dispersion of smallpox disease is examined with a 

compartmental model. A conceptual compartmental model is developed, 

corresponding system of ordinary differential equations are given and related 

parameters are described.  

 

 



71 

 

Table 3.1 List of compartments for Model 1 

 

Table 3.1 displays the list of compartments used in Model 1. S represents the 

number of susceptible individuals who are not exposed to the agent. E represents 

number of individuals who become exposed. Note that individuals are asymptomatic 

and uninfectious during the exposed period. As illustrated in Figure 2.8, the duration 

of this period is 12 days on average (Fenner et al., 1988). Therefore, the rate of 

moving from exposed class to the next class is 1/12. In other words, individuals stay 

in this compartment for 12 days without suffering any symptoms of disease. After 

12 days, individuals move from exposed class to the Prodromal class ‗P‘, which 

corresponds to asymptomatic but infectious disease stage. Prodromal stage can be 

distinguished with the unusual high fever and lasts three days on average (Fenner et 

al., 1988). Patient in this compartment can infect susceptible individuals with a 

Notation Definition 

S Number of susceptible individuals  

E Number of exposed individuals 

P Number of individuals in prodromal class 

I Number of infected individuals 

R Number of recovered individuals 

D Number of individuals who dies from smallpox 

N Total population size 
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reduced infectivity rate. According to the timeline of smallpox, after three days of 

prodromal stage, an individual moves to the infected class in which he/she spends 

19 days on average (Fenner et al., 1988). An individual who enters into the infected 

class ‗I‘ either die or recover.     

 

3.1.1 Conceptual Model and Parameter Estimation 

 

 

 

Figure 3.1. Conceptualization of the Model 1:  without any control measurements. 

 

Flows of individuals between compartments are shown in Figure 3.1. Greek 

letters represent the rates of movements between compartments and correspond to 

exponentially distributed waiting times in compartments (Hethcote, 2009). Waiting 

times are referred as the duration of the disease stages and illustrated the timeline 

presented in Figure 2.8.  
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Table 3.2 Parameters for basic model 

Parameter Definition Value 

χ  Transmission rate from exposed to prodromal 

compartment 

1/12 

α  Transmission rate from prodromal to infected 

compartment 

1/3 

δ  Recovery rate  1/16 

μ  Death rate  0.0268 

ε  Reduced infectivity rate .3 

 

Table 3.2 shows the transfer rates between the compartments. Susceptible 

individual becomes exposed as a result of a successful contact with an infectious 

individual. Individuals are assumed to move along the compartments with 

exponentially distributed rates. Exposed individual move to prodromal stage with a 

rate of χ, which corresponds to exponentially distributed waiting time of 1/χ in 

exposed class. According to Figure 3.1, exposed individuals move from P class to 

infected class ‗I‘ with a rate of α, similarly, the mean duration of stay in P class 

corresponds to 1/α.  An infected individual recovers with a rate of δ and dies with a 

rate of μ. Since the mean time in infectious class is 1/(μ+δ), the fraction of  μ /(μ+δ) 

of infected individuals die as result of smallpox disease. Since smallpox case fatality 

rate is clearly defined as 30% (Fenner et al., 1988), setting μ /(μ+δ)=0.30 gives the 

the rate of individuals who move to the death class. This corresponds to 0.0268 (Del 

Valle, 2005).     
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3.1.2. Mathematical Representation  

According to the Figure 3.1, the transfers from one compartment to another 

can be represented by set of ordinary differential equations. Mathematical 

representation of the conceptual model provided in Figure 3.1 is given below.  

    (1) 

    (2) 

                                                    (3)      

  (4)   

        (5) 

‗X‘ denotes to the first derivative with respect to time t or change in the value 

of X(t). Therefore, the first equation defines the decrease in the number of 

susceptible individuals due to the successful contacts with infectious individuals. 

Second equation shows the change in number of individuals in the exposed class. 

Susceptibles who acquired the disease agent transfer to exposed class and after 

spending some time leave exposed class at a rate of χ. In the third equation, it can be 

observed that P class includes individuals who transfer from E class and leave P 

class with the rate of α. Similarly, I class consists of individuals who move from P 

class to infectious class and leave I class due to disease induced death or recovery. 

Finally ‗R‘ represents the recovery class, and can be calculated as; R= N-S-I-E-P. 

. 
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3.2. Model 2: Dispersion under Quarantine and Hospitalization 

In the previous model, the rates, related transfers from one class to another and 

mathematical representation are analyzed. In this section, a model with quarantine 

and hospitalization policy is examined. Two additional compartments are added to 

the basic model therefore two additional rates are introduced. First, conceptual 

model and related parameters are provided, next mathematical representation and 

interpretation of mathematical model is given.  

The objective of Model 2 is to determine the numbers of individuals who 

needs to be hospitalized. In order determine and or evaluate the optimal policy 

decisions, isolation and hospitalization measures are considered. In this model, 

individuals that are suffering from smallpox should be kept in specially equipped 

rooms (Kerrod et al., 2005, Wallin et al., 2007, Cetron et al., 2005). In case of  

single incidence, some of the hospitals rooms might be redesigned. In the absence of 

smallpox, this redesign might not be likely. Through modeling, the number of 

people that are hospitalized can be forecasted; and in theory, this would help 

hospital authority to make more accurate planning.  
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3.2.1 Conceptual Model and Parameter Estimation 

 

 

 

 

 

 

Figure 3.2: Conceptualization of Model 2: with control measurements quarantine 

and hospitalization. 

 

The aim of Model 2 is to evaluate the effectiveness of isolation and 

hospitalization control measures. One of the differences from Model 1 is that Model 

2 includes additional two compartments. Therefore, individuals are monitored under 

control with given parameters.  

Notation with additional compartments is provided in Table 3.3. Since the 

smallpox has asymptomatic long latent period of 12 days, an individual might not be 

aware of the exposure. 

 

 

 

 

S P

 

 

p 

E

 

  

R    

 

 

 

Q

 

 

 

p 

D 

 I 

D H 
 



77 

 

Table 3.3: List of compartments used in Model 2. 

Notation Definition 

S Number of susceptible individuals  

E Number of exposed individuals 

P Number of individuals in prodromal class or compartment. 

I Number of infected individuals 

R Number of recovered individuals 

D Number of individuals who died from smallpox 

Q Number of quarantined individuals  

H Number of  individuals that required hospitalization 

 

After 12 days, when  individual moves to the prodromal stage, unusual high 

fever might trigger an individual to go to hospital. An individual is still 

asymptomatic in this stage, therefore, he/she can be held under observation till the 

indication of the source of  unusual fever. If the onset of the fever is sourced from 

smallpox, this individual under the observation is taken under hospitalization.   

We assume that as result of high fever individual would seek medical 

attention and go to hospital (Longini, 2007) and is taken under medical observation 

with a rate of γ, as provided in the Table 3.4. According to the conceptual model, 

individual spends some time in ‗Q‘ class and then removed from ‗Q‘ class to ‗H‘ 

hospitalized class with the rate of α. It is also possible that an individual might 

ignore the high fever occurred in prodromal stage and might stay at home without 

seeking any medical attention. This individual would then become infectious with 
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the onset of heavier symptoms of smallpox and eventually have to go to hospital. 

Therefore, according to the model, an individual can transfer to ‗H‘ class from ‗I‘ 

class with a rate of ζ. Besides, corresponding to the waiting time between ‗P‘ and ‗I‘ 

classes, a transfer is also allowed from ‗Q‘ class to ‗H‘ class with the same rate of α. 

Table 3.4: Parameters used in Model 2.  

Notation Definition Value 

χ Transmission rate from exposed to prodromal 

compartment 

1/12 

α Transmission rate from prodromal to infected 

compartment 

1/3 

δ Recovery rate  1/16 

μ Disease induced death rate  0.0268 

ε Reduced infectivity rate 0.3 

γ Rate of taken under control in prodromal stage 0.3 

ζ Rate of taken under control in infectious stage 0.08 

μ 2 Disease induced death rate of treated individuals  0.008 

 

We consider quarantine and hospitalization instead of quarantine and 

isolation. The fundamental reason behind this is to assess the requirements for both 

quarantine and hospitalization facilities. So as to plan these requirements by 

proposing appropriate control measures to public health officials. In case of an 

emergency, some of the existing facilities can be used as an emergency facility for 

additional capacity. Foreseeing the disease dispersion and necessary requirements 
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with this model would provide flexibility in terms of supplies and workforce. 

Therefore, the aim is to consider the medical service supply and make emergency 

plans considering the existing supplies.  

Longini (2007) suggests that 47.5% of infected individuals go to hospital at 

the end of the first day of fever, whereas, remaining go to hospital at the end of the 

third day. Since the fraction of 47.5% corresponds to the fraction of individuals that 

are taken under quarantine from prodromal class, and mathematically it can be 

shown as: ф/(α+γ). We set this equation to 47, 5% and find γ =0.3. Similarly, the 

rate of hospitalization in the infectious stage of disease is ζ/(ζ+μ+δ), and setting this 

to the remaining part leads to ζ =0.08.  We set these γ and ζ values as baseline 

parameters. Note that these values can be valid only under the assumption of the 

mean infectious disease stage duration is exponentially distributed.  

3.2.2 Mathematical Representation 

According to the Figure 3.2, system of ordinary differential equations for the Model 

2 is developed and presented below. 

    (6) 

    (7) 

                                                     (8)    

      (9) 
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                         (10) 

          (11) 

      (12) 

R = N - S+E+P+I+Q+H                                                     (13) 

 

The first two equations are common for both Model 1 and Model 2. ‗P‘ class 

equals to difference of individuals that move from exposed class and transfer to ‗I‘ 

class. The number of individuals in ‗I‘ class is equal to the difference of incoming 

individuals and outgoing individuals. Similarly, the number of individuals in ‗Q‘ 

and ‗H‘ classes are equal to the differences of incoming and outgoing individuals.  

The solution of this model and related figures are provided in Chapter 5. 

Different results are obtained for different parameter values and full table of results 

is provided in the Appendix.    

3.3. Model 3: Model with Vaccination 

Among all control policies, vaccination is different because vaccination 

might be used as both control policy and/or preventive measure. On the contrary, 

opening an isolation facility prior to the occurrence of an epidemic is not likely, so 

isolation is a control policy that can be realized only after the epidemic starts. In this 

section, we consider vaccination policy in addition to quarantine and 

isolation/hospitalization in Model 2. One of the objectives in considering different 

policies is to compare the effectiveness of interventions within given parameters. 
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Especially for the vaccination policy, we would like to estimate the vaccine 

requirements for better timing of the orders to stop the dispersion of epidemic as 

early as possible. 

3.3.1 Conceptual Model and Parameter Estimation 

In case of smallpox, vaccination is declared as the most effective way to 

control and prevent the epidemic (Hull et al., 2003). As stated previously, 

vaccination can reduce the fatality rate from 30% to 11%, if administered within the 

first 10 days of exposure. It may also decrease the severity of the disease, if 

individual is vaccinated within the first four days of exposure. Once an individual is 

vaccinated, he/she acquires immunity for long years.  

Table 3.5.  Full list of parameters used in Model 3. 

Parameter Definition Value 

β Transmission coefficient  

χ Transmission rate from exposed to prodromal 

compartment 

1/12 

α Transmission rate from prodromal to infected 

compartment 

1/3 

δ Recovery rate 1/16 

μ Death rate 0.0268 

ε Reduced infectivity rate 0.3 

γ Rate of taken under control in prodromal stage 0.3 

ζ Rate of taken under control in infected stage 0.0268 

μ2 Disease induced death rate of vaccinated individuals 0.008 
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 Fraction of vaccinated individuals at susceptible class 0.2 

Ψ Fraction of vaccinated individuals at exposed class 0.08 

μ3 Vaccine induced deaths among vaccinated exposed 10
-6

 

Ves Vaccine effectiveness for susceptible indviduals 0.95 

Vee Vaccine effectiveness for exposed individuals 0.80 

 

According to the conceptual model provided in Figure 3.3, vaccinated 

susceptible individual can either be immunized or remains susceptible due to the 

vaccine ineffectiveness. Assuming limited availability of the vaccines, we assume 

that one individual can receive only one dose of vaccine. Therefore, we also count 

individuals who are not effectively vaccinated.  

3.3.2 Mathematical Representation 

Based on the conceptual model in Figure 3.3., we establish the following 

system of differential equations. Note that due to the nonlinearity of Equations (14) 

to (23), we obtain a nonlinear system of differential equations, which cannot be 

solved exactly. 

   (14) 

      (15) 

       (16) 

        (17) 
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   (18) 

   (19) 

        (20) 

       (21) 

       (22) 

      (23)  

 

According to both conceptual and mathematical models, the change in 

susceptible class can be defined as the outflow of exposed individuals who are 

previously in ‗S‘ class. Individuals might transfer to the vaccinated class ‗V‘ with a 

rate of ф. Similar to S class, individuals in exposed class either move to vaccinated 

class with a rate of ψ or move to prodromal class with a rate of χ. Individuals in the 

prodromal class move to ‗I‘ class with a rate of α. Since the vaccination cannot 

prevent or stop the symptoms of smallpox, individuals that are vaccinated in the 

exposed class continue to move to prodromal class with the same rate as 

unvaccinated individuals do. The only difference is that vaccinated individuals 

might have milder course of smallpox; therefore vaccination might not shorten the 

mean duration of the compartment. After the prodromal phase, both vaccinated and 

unvaccinated individuals move to recovery class with a rate of δ, or they die at rate 

of μ/ (μ+ δ). Note that, although the death rates can be calculated with the same 
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logic, disease induced death rates among vaccinated and unvaccinated individuals 

are different from each other.   

Calculation of the death rates of unvaccinated individuals for Model 3 is 

given below. 

μ/ (μ+ δ)=30% 

μ=0.0268. 

While vaccination might reduce the fatality rate from 30% to %11, death rate 

of vaccinated individuals is equals to; 

 μ 2/ (μ 2+ δ)=11%, therefore μ 2= 0.008. 

Rate of vaccine induced death is 10
-6

, which is derived from the literature 

(Fenner et al., 1988). Vaccinated susceptible individuals move to the recovered class 

due to the high effectiveness of vaccines. They might die due to the adverse effects 

of vaccine at a rate of 10
-6

. Parameter values and numerical solution of these models 

are provided in Chapter 5.  
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Figure 3.3.  Conceptualization of the Model 3. 
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 3.4. Model 4:  Combination of Policy Measures   

  

 

 

  

 

 

 

 

 

 

Figure 3.4.  Conceptualization of Model 4. 
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3.4.1 Conceptual Model and Parameter Estimation 

In Chapter 2, while analyzing the Table 2.1, we briefly examined different 

effects of control policies in case of an epidemic by reviewing studies from 

literature. Immunity status and contact patterns among the population and the 

resources that are required for the implementation of the policy and the availability 

might be the important factors that shape the policy decision making process. For a 

specific disease, quarantine may be the best policy and might result in termination of 

the epidemic in the shortest time. Official quarantine might need restricted rules and 

additional capacity, even might require a facility. Opening a facility is another 

problem beyond the operations research concerns; it might also include high costs. 

Another aspect of quarantine is the disturbance that will be created among the 

population, or more specifically among the residents. Although vaccination might 

seem as an attractive option, implementation of a vaccination strategy requires an 

effective health care service due to the limited time of vaccine availability. 

Therefore, timely vaccinated individuals will have lower probability of death in 

addition to reduced infectivity. 

According to the last model provided in Figure 3.4, a susceptible individual 

can have a preventive vaccine shot. If this individual develops immunity as a result 

of vaccination, he/she moves to the recovered compartment. If vaccine efficiency is 

realized as zero, then he/she will move along the classic stages of the disease. 

Alternatively, susceptible individuals may become exposed as a result of contact 

with an infectious. An exposed individual if detected and vaccinated in days 
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between the first day and 10th days of exposure than move along the alternative 

‗dotted lined‘ path which resulted in reduced death rate. Detection through contact 

tracing of individuals is not considered.  

3.4.2. Mathematical Representation 

As can be seen from Figure 3.4, Model 4 is the most complicated model involving 

14 different compartments and additional disease dynamics. Assuming 

exponentially distributed parameters, we establish the following system of nonlinear 

differential equations. Numerical solutions to this system for different scenarios and 

different parameter values are provided in Chapter 5. 

                             (24)         

    (25)  

              (26) 

                              (27) 

                        (28) 

                                      (29) 

                             (30) 

                   (31) 

       (32) 

    (33) 

        (34)  
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        (35)  

         (36)  

R= S + E + P + I + Q + H + SV + EV + PV + IV 

Model 4 incorporates all intervention strategies. Compartment dynamics has the 

same logic as Models 1, 2 and 3. Individuals flow into a compartment with a rate 

which corresponds to the mean duration of the period. After spending mean duration 

time in the related compartment, individuals either leave the system due to death or 

continue to flow till they become recovered. 

We run each model with the initial values provided in Table 3.5. We wish to 

focus on the importance of vaccination in case of a smallpox epidemic.  

Smallpox vaccine is not produced in Turkey. Therefore, in case of a vaccination 

strategy, vaccines should be purchased from an official producer. In this case, 

important concern is when to order, how frequently and how much to order. The 

‗buy‘ decisions bring along many other technical concerns. As a special 

product,vaccine requires special conditions for the temperature of storage area, 

packaging and disposal after usage. This unique characteristic of this product might 

result in high costs associated with holding the vaccines in inventory.  

In theory, every individual requires treatment therefore, every individual should 

be vaccinated. However in practice, individuals that suffer from a specific disease 

might be affected differently. Some are having milder course of disease while some 

are suffering from the most severe form of the same disease. Similarly, the attitudes 

. . . . . . . . . . . 
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of individuals towards vaccination might be differed. Some might get voluntarily 

vaccinated while some might refuse to be vaccinated. We are not including the 

behavioral effects or attitudes of individuals towards vaccination in our models. We 

rely on the parameters which are well defined in the literature. Using these 

parameters in Model 3 we obtain approximate number of individuals that will be 

vaccinated. We integrate this output with an inventory planning model to determine 

optimal cost and timing of vaccine procurement. In the next chapter we present an 

inventory model and present a solution methodology based on dynamic 

programming. 
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CHAPTER 4  

 

CONTROL POLICY DETERMINATION AND OPTIMAL 

INVENTORY MODEL 

 

Alternative control policies and related decisions in case of an epidemic are 

introduced in the previous Chapters. In this Chapter, we focus on vaccination 

strategy accompanied with quarantine and hospitalization as the control policy for a 

possible smallpox attack.   Although vaccination does not provide full treatment, it 

provides decreased infectivity and milder course of smallpox. Some important 

decisions and related questions regarding the vaccination policy planning can be 

listed as;  

 Whether to import/outsource the vaccines or to produce them in homeland. 

This decision also involves supplier selection, and order placement issues. 

 Lot sizes of vaccine orders and related inventory decisions, both in normal 

and emergency situations. 

 Strategic and operational decisions regarding the storage and distribution of 

the vaccines. How and where vaccines should be stored? 

 An effective waste management for the vaccine related wastes should be 

planned. 

 All prioritization considerations, including which part of the population 

should get vaccinated first, elderly or children? 
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 Administration of the health care services, including how many people will 

get vaccinated by each care giver?  

      All of these considerations are in the interest of Operations Research and 

Management Science (OR/MS) field. There are numerous research articles pointing 

resource allocation (Zaric et al., 2004, 2006), and various optimization models 

(Longini et al., 1990) considering different types of policies. 

In this thesis, we focus on finding optimal vaccine ordering policy. In case of 

an emergency due to the zero stocks of smallpox vaccines in Turkey, vaccines 

should be acquired from non-governmental health organizations, for instance WHO. 

Therefore determining the approximate need for vaccine will become a crucial 

challenge due to the limited time of administration.   

4.1. Inventory Model for Smallpox Vaccines 

We developed a model in order to determine appropriate lot sizes. We use single 

commodity inventory model under deterministic time varying demand rate. For 

determining the optimal inventory policy two similar models are considered. One is 

formulated by Wagner and Whithin (1957). Objective here is to determine the 

optimal quantity in order to minimized the sum of reorder cost and holding cost,  
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Table 4.1. Notations for Wagner-Whitin Algorithm. 

Notation Definition 

D Demand at time period t  

K Fixed reorder cost 

H Holding cost 

TH Finite and discrete time horizon 

qt Amount of order at the beggining of time period t 

It Inventory level at the end of the time period t 

yt A binary variable; 1, if an order is placed in time period t, 0, 

otherwise  

 

Minimize                   (4.1)      

Subject to;       It = It-1 + ,           t =1,…….,            (4.2)              

   ,                              (4.3) 

  I0 = 0 ,           (4.4) 

  ,      t =1,…….,  

  ,                           t =1,…….,      

  ,      t =1,…….,  

 

In the above model, Equation (4.1) is the objective function, which 

minimizes the reorder cost for each time period t= 1, …,TH. Equation (4.2) 

represents the inventory balance constraints. Equation (4.3) stated that for each time 
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period t=1,…, TH  qt is zero if yt is 0.  Equation (4.3) defines the initial inventory. In 

this model, stockouts are not allowed and lead time is assumed to be zero.   

In terms of solution algorithm, we employ dynamic programming technique 

which is a common technique for making a sequence of interrelated decisions 

(Hillier and Liebermann, 1990). The uniqueness of this technique comes from the 

non-standard mathematical formulation (Hillier and Liebermann, 1990).  The effect 

of the policy decision at each stage is to transform the current state to a state 

associated with the beginning of the next stage. Therefore the equations for each 

problem may differ in order to find solutions to the problem. 

Our purpose is to find the optimal order size and order timing given the 

vaccine requirements for each period. By that way, the redundant orders will be 

eliminated. It should be noted that since this model is conceptual and will be 

elaborated, lead time assumed to be zero. Therefore the period that an order is 

placed will affect the next order quantity. Therefore solving the problem through 

dynamic programming is appropriate because of the dependency between periods. 

The solution procedure is designed to find an optimal policy for the overall problem. 

Since the overall cost of ordering and waste management of vaccines are limited 

with budgets, we aim to find an optimal policy for vaccine orders in order to 

minimize the costs related to vaccines and maximize of effectiveness of the 

vaccination campaign. 

 After determining the demand for vaccines according to the results of 

epidemic models presented in Chapter 3, we use the following notation to construct 

the dynamic programming model. 
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Table 4.2 Notation for Alternative Dynamic Programming Solution. 

Notation Definition 

Cij Cost associated with arc (i,j) in network presentation of lot 

scheduling problem used for Wagner-Whitin Algorithm  

f j Minimum cost period i to the end of the horizon  

H Holding cost per unit per time period 

S Setup cost to initiate an order. 

N Number of periods 

 

        cij=  S + , j>i  

s.t.,  i=1,..,n 

 j=1,..,n+1 

In our case, we need to determine when to order and how much to order in 

order to minimize the purchasing cost and meet the needs for vaccines. The index i 

stands for the period which the order is taken place. The index j represents the next 

order period. cij represents setup and holding cost of ordering in period i to meet the 

requirements through  j-1 periods. In that sense; c18 is the cost of ordering in period 

1 to satisfy the demands in periods 1 through 7. 

 ‗S‘ represents the setup cost for placing an order. In this case, set up cost is 

the amount of money that is tie to the order. This also includes the regulatory costs 

such as transportation costs, insurance costs and customs costs.  Since the capital is 
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tied to unsold inventory, it takes a time to breakeven point in order to generate profit 

from that inventory. In this context, the accuracy of demand is important in order not 

to tie additional hundred thousand dollars. Beside the demand, the lead times should 

be accurately integrated into the purchasing decision especially for a product such as 

vaccine.  In this model, we assume that lead time is zero and setup cost is constant 

regardless of demand quantity but differs for different population size. Solution of 

this problem provided in Chapter 5. 
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CHAPTER 5  

 

NUMERICAL RESULTS AND ANALYSIS 

 

In this Chapter, we provide numerical results and analysis for the proposed 

epidemiological and inventory models. In the first part of the Chapter, four different 

epidemiological models are solved under three different scenarios. In each scenario, 

different problem setting and different population size are considered for a potential 

bioterrorist attack with smallpox.  Through these scenarios, we aim to compare size 

of the affected population. In the first scenario, bioterrorist attack is assumed to be 

taking place through a ventilation of a class on a university campus with initial 

susceptible population size of 5000 people, which includes students, staff, and 

visitors. In the second scenario, bioterrorist attack is assumed to take place at several 

locations in a city. In this study, we consider the third largest city of Turkey, Izmir 

with population size 3,500,000. According to the last scenario, a larger bioterrorist 

attack is assumed to affect the whole country, namely Turkey, with population size 

of 75,000,000. 

In the second part of the Chapter, the proposed inventory model is solved 

through dynamic programming and optimal vaccine order size with minimum total 

cost is obtained. Note that three different bioterrorist attack scenarios are assumed to 

be taking place within the borders of Turkey. For this reason we have to point out 
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the absence of smallpox vaccine production and storage facilities in Turkey. 

Therefore, we focus on developing an optimal vaccine procurement strategy by 

determining the order size and the order timing through deterministic single 

commodity inventory model (Laporte, 2004).  

The results of both epidemiological modeling and inventory models are 

presented in the next sections. Based on the literature, we run all models for three 

different R0 values ranging from 3 to 7 (Meltzer et al. 2001, Kaplan et al. 2002, 

Halloran et al. 2002, Bozette et al. 2003, Gani and Leach, 2003). Inventory model is 

run under the value of R0=3 for all scenarios and total costs are compared.  

 

5.1. Overview of Numerical Results Analysis  

Before proceeding to results, we first present general assumptions and 

parameters that are common for all models. Since smallpox vaccination program 

was terminated in late 70s, we assume that the whole population is fully susceptible 

to the agent. Population is assumed to be homogenously mixing; therefore every 

individual has the same chance to get infected. Since we compare the outcome of the 

epidemic under the different R0 values, we computed  as follows; 

     (5.1) 

 All exposed individuals are assumed to be infected. Isolation in Model 2 is 

defined as the separation of individuals who go to the hospital due to the high fever 

symptom in the prodromal stage. These individuals might be taken under control in 



99 

 

terms of observing the course of disease. If the fever is followed by rash symptom 

within 3 to 4 days, then individual is diagnosed as a smallpox patient and isolated 

from the rest of the population. All exposed individuals are assumed to become 

infected. They move to quarantine class with the same rate as moving from 

prodromal to infectious class. Table 5.1 displays the list of parameters used in the 

models. 

Table 5.1. List of parameters used in the models. 

Notation Definition Value 

χ Transmission rate from exposed to prodromal compartment 1/12 

α Transmission rate from prodromal to infected compartment 1/3 

δ Recovery rate  1/16 

μ Death rate  0.0268 

Ε Reduced infectivity rate 0.3 

Γ Rate of taken under control in prodromal stage 0.3 

Σ Rate of taken under control in prodromal stage 0.08 

Φ Fraction of vaccinated individuals at susceptible class 0.2 

Ψ Fraction of vaccinated individuals at exposed class 0.8 

μ3 Vaccine induced deaths among vaccinated exposed 10
-6

 

Ves Vaccine effectiveness for susceptible 0.95 

Vee Vaccine effectiveness for exposed 0.80 
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5.2. Numerical Results and Discussions for  Model I  

Model 1 is the simplest model without any control measures. We run the 

solution algorithm coded in Matlab 7.0. for all scenarios and for varying parameters. 

In each scenario, we consider fully susceptible populations with the size of 5000, 

3,500,000, 75,000,000 individuals, respectively. Due to the small size of the 

population, we assume that only 0.01 of the population of campus is exposed to 

disease outside the campus.   

5.2.1. Scenario 1 

 

Figure 5.1. Solutions to system of differential equations for Model 1 and Scenario 

1. 

 

The system of nonlinear differential equations (1)-(5) given in Chapter 3 has 

been numerically solved in seconds by using the Matlab function ‗ode45‘ on a 

personal computer with 1 GB RAM and 2.4 Ghz processor. The results obtained for 

each compartment are plotted and presented in Figure 5.1. From the figure, we can 

observe that smallpox epidemic lasts approximately 200 days. 
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Table 5.2. Numerical results for Model 1, Scenario 1 

Model 1, Scenario 1 

S0=5000, I0=50 

R0 E *E P *P I *I D 

3 
4979 675 4973 168 3470 601 1486 

5 
5000 1134 5000 280 3535 941 1515 

7 
5000 1435 5000 352 3536 1126 1516 

*Represent the maximum number of individuals in a day in the corresponding disease stage 

Table 5.2 shows the results that are obtained by running the Model 1 for 200 

days of scenario 1 in the absence of interventions. The first column of the Table 5.2 

displays varying R0 values and columns indicated by E, P, I and D display the 

cumulative number of individuals in Exposed, Prodromal, Infectious and Death 

classes within 200 days. Columns represented by *E, *P, and *I indicate the 

maximum number of individuals or peak numbers observed in a single day until the 

disease disappears.  

As expected, with the increasing R0 values, we observe increase in both peak 

and cumulative number of cases in each compartment. Note that approximately %30 

of exposed individuals die with given parameters and under the assumptions.  
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Figure 5.2. Number of disease induced deaths during disease progression. 

The values of R0 are chosen among the suggested smallpox basic reproductive 

ratio values. As seen from the Figure 5.2, the number of disease induced deaths are 

increasing day by day as the value of R0 is increased for Model 1, Scenario 1. 
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Figure 5.3. Number of infectious cases during disease progression for different R0 

values.  

 

Similarly, in the absence of any control policy, the numbers of infected 

individuals are proportionally increasing as the value of R0 is increased. The peak 

number of infectious cases denoted by *I in Table 5.2 can directly be observed from 

Figure 5.3. 
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Figure 5.4. Solutions to system of differential equations for Model 1 and Scenario 

2. 

 

Table 5.3. Numerical results for Model 1, Scenario 2. 

Model 1, Scenario 2 

S0=3,500,000  I0=175,000 

R0 E *E P *P I *I D 

3 
3,499,396 505,686 3,499,468 125,966 2,575,475 449,835 1,101,949 

5 
3,499,651 834,422 3,499,990 206,165 2,577,576 692,139 1,102,884 

7 
3,499,519 1,050,631 3,499,995 257,754 2,577,618 824,390 1,102,902 

* Represent the maximum number of individuals in a day in the corresponding disease stage 

Table 5.3 shows the results for Model 1 obtained by running scenario 2 in the 

absence of interventions. In this scenario, initial size of the susceptible population is 

3.5 million and 175 thousand people are assumed to be infectious at time zero. 
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Similar to Table 5.2, the first column of the Table 5.3 displays varying R0 values and 

columns indicated by E, P, I and D displays the cumulative number of individuals in 

Exposed, Prodromal, Infectious and Death classes. For different force of infections, 

the potential risk for whole city can be clearly observed from the table. Note that if 

there is no intervention or control policy, over one million people will die as a result 

of a potential terrorist attack. Under the given assumptions, it is very likely to have 

824,390 people infected and seeking medical attention in a single day.   

 

Figure 5.5. Number of disease induced deaths during disease progression for Model 

1, Scenario 2. 
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   Figure 5.6. Number of infectious cases during disease progression for different R0 

values for Model 1, Scenario 2. 
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5.2.3. Scenario 3 

The numerical results for scenario 3, which is based on a nation-wide 

bioterrorist attack in Turkey, are given in Table 5.4. In this scenario, initial size of 

the susceptible population is 75 million and 3.75 million people are assumed to be 

infectious at time zero. Without any intervention or control policy, significant 

proportion of whole population might be lost due to disease-induced death.  

 

Figure 5.7. Solutions to system of differential equations for Model 1 and Scenario 

3. 
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Table 5.4. Numerical results for Model 1, Scenario 3 

Model 1, Scenario 3 

S0=75,000,000, I0=3,750,000 

R0 E *E P *P I *I D 

3 74,987,055 10,836,066 74,988,606 2,698,633 55,188,760 963,8287 23,613,189 

5 74,992,518 17,880,458 74,999,748 4,417,836 55,233,788 14,831,140 23,633,225 

7 74,989,704 22,513,592 74,999,916 5,523,846 55,234,667 17,665,426 23,633,620 

*Represent the peak number of individuals in corresponding disease stage 

 

Figure 5.8. Number of disease induced deaths during disease progression for Model 1, 

Scenario 3. 
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Figure 5.9. Number of infectious cases during disease progression for different R0 

values for Model 1, Scenario 3. 
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5.3. Numerical Results and Discussions For Model 2 

In Model 2, quarantine and hospitalization control measures are considered 

in addition to the disease dynamics Model 1. Exposed individuals move to 

quarantine class with a rate of  and infected individuals who have previously not 

attended exposed class, move to hospitalization class with a rate of ζ.  We run the 

solution algorithm for all scenarios and varying parameters. In each scenario, we 

consider fully susceptible populations with the size of 5000, 3,500,000, 75,000,000 

individuals respectively.  

In Chapter 3, it is stated that among 47,5% of individuals who experience 

high fever go to the hospital and are taken under observation. Individuals are taken 

under observation corresponds to quarantine by a fraction of 47,5%. This means the 

fraction of γ/(α+ γ) individuals are taken under quarantine. Setting this fraction to 

47,5% gives; γ as 0.6.  If 75% of these individuals attend to hospital due to the onset 

of high fever, the rate is increased to 1.0. Similarly, in case of the fraction of 92% of 

individuals are quarantined, γ becomes 1,0. The rates which calculated with 

corresponding fractions of quarantined and hospitalized individuals are shown in the 

Table 5.5. 
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Table 5.5. Vaccination rates of susceptibles and exposed individuals corresponding 

to the fractions of being under control in Model 2.   

γ  ζ  

Fractions (%) Rates Fractions (%) Rates 

47,5 0.3 20 0.02 

64 0.6 47,5 0.08 

75 1 60 0.13 

0 0 92 1 

 

Similarly, the hospitalization rates are calculated as follows; individuals who 

do not go to hospital due to the onset of high fever are assumed to seek medical help 

at the end of the prodromal period, which corresponds to infectious period. 

Therefore, ζ /(δ+ ζ) fraction of individuals are hospitalized. Rates are obtained 

through setting these fractions to the values vary between 20-92%.  

5.3.1. Scenario 1 

Due to the small size of the first population, we assume that only 0.01 of the 

population of campus is exposed to disease outside the campus.  The system of 

nonlinear differential equations (6)-(13) given in Chapter 3 has been numerically 

solved in seconds by using the Matlab function ‗ode45‘. The results obtained for 

each compartment are plotted and presented in Figure 5.10. From the figure, we can 

observe that smallpox epidemic lasts approximately 200 days. 
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Figure 5.10. Solutions to system of differential equations for Model 2 and Scenario 

1. 
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Table 5.6. Total numbers of classes within 200 days and peak numbers for each 

class. 

Model 2, Scenario 1 

S0=5000, I0=50 

R0 Γ ζ E *E  P *P  I *I  D   
 
 

 

 

3 

0 0.08 1371 173 1329 42 481 79 368 

0.3 0.08 140 29 74 4 47 50 57 

0.6 0.08 91 28 33 3 32 50 42 

1 0.08 74 28 19 2 27 50 37 

0.3 0.02 549 42 287 6 189 50 170 

0.3 0.13 82 24 43 3 28 50 39 

0.3 1 10 7 5 1 5 50 18 

 
 

 

 

 

5 

0 0.08 4999 1044 4999 258 1865 490 1514 

0.3 0.08 1195 93 623 12 241 50 340 

0.6 0.08 294 50 105 4 59 50 102 

1 0.08 174 48 43 3 36 50 67 

0.3 0.02 4990 730 2626 96 1523 281 1496 

0.3 0.13 365 43 192 6 70 50 121 

0.3 1 19 11 10 1 5 50 21 

7 

0 0.08 5000 1497 5000 365 1866 670 1515 

0.3 0.08 4995 780 2629 102 990 197 1505 

0.6 0.08 1314 80 467 7 187 50 380 

1 0.08 396 71 99 4 56 50 133 

0.3 0.02 5000 1221 2632 160 1535 442 1515 

0.3 0.13 3055 377 1582 49 446 73 803 

0.3 1 31 16 16 2 6 50 24 
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According to the Table 5.6, the best result obtained when the individuals taken 

under control and observation with high rates. It is an optimistic option for this 

model. In reality, health care facilities might not be responding this suddenly 

increasing smallpox cases. Therefore, it is needed to be run more realistic rates for 

Model 2. For this model, we advocate that exposed individuals should be separated 

from the rest of the population, in order to reduce the number of the secondary 

cases. Therefore, we set ζ parameter to the second highest value and set γ to 0.3 

which corresponds to the value mentioned in Longini et al., (2007) 

 

Figure 5.11. Number of disease induced deaths during disease progression for 

Model 2, Scenario 1. 
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Figure 5.12. Number of infectious cases during disease progression for different R0 

values for Model 2, Scenario 1. 

 

Figure 5.13 Number of hospitalized individuals under different values of R0s for 

Model 2, Scenario 1. 
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When the R0 reached its highest value which is 7, numbers of deaths, 

infectious cases and hospitalized individuals are dramatically increased.  

5.3.2. Scenario 2 

Table 5.7 shows the results for Model 2 obtained by running scenario 2 under 

quarantine and isolation measures. In this scenario, initial size of the susceptible 

population is 3.5 million and 175 thousand people are assumed to be infectious at 

time zero. Similar to Table 5.6, the first column of the Table 5.7 displays varying R0 

values and columns indicated by E, P, I, and D display the cumulative number of 

individuals in Exposed, Prodromal, Infectious and Death classes. For different force 

of infections, the potential risk for whole city can be clearly observed from the table. 

Recall that if there is no intervention or control policy, over one million people will 

die as a result of a potential terrorist attack. Under the given base line parameters, 

193,895 people will die and 175,000 people will be infected and seeking medical 

attention in a single day. 

Table 5.7. Total numbers of classes within 200 days and peak numbers for each 

class. 

Model 2, Scenario 2 

S0=3500000, I0=175000 

R0 Γ ζ E *E  P *P  I *I  D* 

3 

0 0.08 
3181901 254119 3137090 63470 1192241 175000 932575 

0.3 0.08 

473786 99309 249341 12951 162075 175000 193895 

0.6 0.08 

311054 96152 111159 8538 111255 175000 145867 
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1 0.08 

254447 94160 63661 5867 93729 175000 128934 

0.3 0.02 

1739088 141747 910474 18628 609285 175000 547161 

0.3 0.13 

277974 81696 146395 10581 97252 175000 135892 

0.3 1 

33241 22540 17599 2656 17493 175000 62556 

5 

0 0.08 

3499642 780201 3499977 2E+05 1362297 366146 1E+06 

0.3 0.08 

3262505 212996 1707500 28037 685788 175000 972366 

0.6 0.08 

987203 171024 352445 15225 199780 175000 345400 

1 0.08 

590349 163472 147662 10199 124715 175000 229532 

0.3 0.02 

3499623 605713 1842082 79557 1158941 233364 1E+06 

0.3 0.13 

1206201 146587 633242 19180 234489 175000 404177 

0.3 1 

64153 37855 33938 4485 18431 175000 71873 

7 

0 0.08 

3499519 1103044 3499993 3E+05 1362310 493509 1E+06 

0.3 0.08 

3499502 651959 1842090 85664 750263 175000 1E+06 

0.6 0.08 

3472036 267530 1239222 23901 524395 175000 1E+06 

1 0.08 

1324658 240573 331143 15014 192032 175000 446187 

0.3 0.02 

3499518 959808 1842099 1E+05 1158986 347612 1E+06 

0.3 0.13 

3499049 393877 1841817 51810 580407 175000 1E+06 

0.3 1 106617 53401 56356 6370 19717 175000 84653 

Corresponding to Table 5.7, the general results are provided in Figure 5.14 

for the Model 2, Scenario 2.  
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Figure 5.14 Solutions to system of differential equations for Model 2 and Scenario 

2. 

  

Figure 5.15 shows the number of infectious individuals under different R0 

values. Comparing with the previous Scenario, due to the bigger population size, 

even when under the condition of higher value or R0, new cases are not occurred. 
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Figure 5.15: Number of infectious individuals under different values of R0s for 

Model 2, Scenario 2. 
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Table 5.7 the numbers of deaths are increasing in both conditions and proportionally 

to the value of R0.    

 

Figure 5.16 Number of disease induced deaths during disease progression for 

Model 2, Scenario 2. 
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Figure 5.17 Number of hospitalized cases during disease progression for Model 2, 

Scenario 2. 
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Table 5.8. Total numbers of classes within 200 days and peak numbers for each 

class for Model 2, Scenario 3. 

Model 2, Scenario 3 

S0=75000000, I0=3750000 

R0 γ ζ 

E *E  P *P  I *I  D* 

3 

0 0.08 

68183584 5445643 67223354 1360081 25548029 3750000 19983750 

0.3 0.08 

10152557 2128053 5343015 277515 3473026 3750000 4154883 

0.6 0.08 

6665443 2060417 2381986 182949 2384044 3750000 3125718 

1 0.08 

5452444 2017729 1364165 125747 2008473 3750000 2762865 

0.3 0.02 

37266163 3037427 19510165 399162 13056111 3750000 11724887 

0.3 0.13 

5956589 1750624 3137039 226727 2083978 3750000 2911979 

0.3 1 

712315 482992 377131 56917 374852 3750000 1340487 

5 

0 0.08 

74992339 16718148 74999522 4131352 29192073 7844485 23632576 

0.3 0.08 

69910816 4564195 36589283 600801 14695455 3750000 20836405 

0.6 0.08 

21154353 3664802 7552387 326262 4280995 3750000 7401422 

1 0.08 

12650342 3502978 3164197 218539 2672466 3750000 4918543 

0.3 0.02 

74991917 12979552 39473183 1704979 24834448 5000732 23631223 

0.3 0.13 

25847153 3141171 13569482 410990 5024774 3750000 8660931 

0.3 1 

1374717 811173 727248 96106 394943 3750000 1540135 

7 

0 0.08 

74989690 23636270 74999893 5766014 29192351 10574444 23633579 

0.3 0.08 

74989321 13970475 39473382 1835266 16077071 3750000 23632291 

0.6 0.08 

74400764 5732864 26554773 512377 11237032 3750000 22899639 

1 0.08 

28385537 5155143 7095929 321733 4114965 3750000 9561141 

0.3 0.02 

74989672 20567223 39473607 2692345 24835411 7448683 23633521 

0.3 0.13 

74979631 8440154 39467486 1110420 12437302 3750000 23606201 

0.3 1 

2284648 1144321 1207636 136496 422507 3750000 1814002 
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Corresponding to  Table 5.8, general results of the Model 2 for the Scenario 

3 are provided below. 

 

Figure 5.18 Solutions to system of differential equations for Model 2 and Scenario 

3. 
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numbers of infected individuals are not increasing further due to the very large 

population size, as expected.  

 

Figure 5.19 Number of infectious individuals under different values of R0s for 

Model 2, Scenario 3. 

 

According to the Figure 5.20 the numbers of deaths are increasing 
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Figure 5.20 Number of deaths under different values of R0 for Model 2, Scenario 3. 
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Figure 5.21 Number of hospitalized cases during disease progression for Model 2, 

Scenario 3. 
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individual level isolation can be courage by the campaigns and the educative actions 

for stopping smallpox epidemic.  

In the next section, the results of vaccination policy, which is believed to be the 

most effective way in decreasing the speed of epidemic, are examined.   

 

5.4. Numerical Results and Discussions for Model 3 

In Model 3, we evaluate the situation in which vaccination is chosen as a 

control measure.  Similar to the previous models, we run the solution algorithm 

coded in Matlab 7.0. for all scenarios and varying parameters. In each scenario, we 

consider fully susceptible populations with the size of 5000, 3,500,000, 75,000,000 

individuals respectively. Due to the small size of the population, we assume that 

only 0.01 of the population of campus is exposed to disease outside the campus.   

The system of nonlinear differential equations (13)-(26) given in Chapter 3 has 

been numerically solved in seconds by using the Matlab function ‗ode45‘ on a 

personal computer with 1 GB RAM and 2.4 Ghz processor.  

5.4.1. Scenario 1 

The first scenario includes 5000 susceptible and 50 infected individuals. We 

assume that, individuals can be vaccinated before the exposure as preventive 

treatment or might be vaccinated after exposure. Vaccine effectiveness is considered 

therefore, not all vaccinated individuals are directly immunized. Rates of 

vaccination which are ф and ψ computes with considering the fractions of 
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individuals that might be vaccinated. Baseline and alternative parameters and 

corresponding fractions are given in the Table 5.9. 

Table 5.9 Vaccination rates of susceptible and exposed individuals 

Ф Ψ 

Fractions (%) Rates Fractions (%) Rates 

- 0 90% 0.8 

20% 0.2 - 0 

40% 0.4 50% 0.4 

100% 1 100% 1 

 

Table 5.10 shows the results that are obtained by running the Model 3 for 200 

days of scenario 1 in the existence of vaccination measure. The compartment 

‗vaccinated exposed‘ or EV gives us the total number of individual that might 

require vaccines. Since the attitudes towards smallpox vaccination is not considered 

in this model, we assume that all individual in this class is vaccinated. The first 

column of the Table 5.10 displays varying R0 values and columns indicated by E, P, 

I, Ev, D displays the cumulative number of individuals in Exposed, Prodromal, 

Infectious, Vaccinated exposed, Death classes up to 200 days. Columns represented 

by *E, *P, Ev* and *I display the maximum number of individuals or peak numbers 

observed in a single day until the disease disappears.  
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Table 5.10 Total numbers of classes within 200 days and peak numbers for each 

class for Model 3, Scenario 1 

Model 3, Scenario 1 

S0=5000, I0=50 

R0   E *E  P *P  I *I  Ev *Ev   D* 

3 

0 .8 23 8 58 2 77 50 270 44 264 

.2 .8 8 7 22 2 52 50 102 34 5040 

.4 .8 4 5 11 1 45 50 53 24 5037 

1 .8 0 0 1 0 37 50 6 4 5035 

.2 0 97 37 98 9 105 50 2 1 5006 

.2 .4 16 11 29 3 57 50 97 32 5037 

.2 1 7 5 21 2 51 50 103 35 5040 

5 

0 .8 102 14 247 4 201 50 1147 82 949 

.2 .8 14 11 38 3 63 50 175 59 5043 

.4 .8 7 8 19 2 50 50 87 40 5039 

1 .8 0 0 2 0 38 50 10 6 5036 

.2 0 171 70 172 17 157 53 3 1 4984 

.2 .4 28 18 50 4 72 50 169 58 5038 

.2 1 11 9 35 3 61 50 176 60 5044 

7 

0 .8 474 47 1073 29 713 107 5036 543 3730 

.2 .8 20 15 54 5 74 50 248 87 5046 

.4 .8 9 11 26 3 55 50 120 56 5040 

1 .8 0 0 3 0 39 50 14 9 5036 

.2 0 246 106 247 26 209 77 5 2 4961 

.2 .4 40 25 72 7 87 50 242 86 5040 

.2 1 194 12 148 4 1091 45 29 2979 86 

 



130 

 

As observed from the table the number of deaths are the lowest under the high 

vaccination rates. Since these vaccination rates correspond to the most optimistic 

scenario, we should evaluate the results under varying and more realistic values in 

order to obtain more valid results. Therefore, we set the vaccination baseline rates to 

0.2 for the susceptible population and 0.08 to exposed population. The general 

results obtained for each compartments of the first population are plotted and 

presented in Figure 5.22. From the figure, we can observe that smallpox epidemic 

lasts approximately 200 days. 

 

Figure 5.22: Solutions to system of differential equations for Model 3 and Scenario 

1. 
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baseline parameter, infectious number is decreased. In the lowest value of R0 

infectious cases are rapidly decreased relative to the higher numbers of R0. 

Therefore, with the given initial conditions and rates, it can be suggested that 

vaccination solely effective for the population size 5000. In the existence of higher 

values of R0, although there are no new cases produced, solely vaccination strategy 

might not be respond effectively as expected.   

 

Figure 5.23 Number of infectious individuals under different values of R0s for 

Model 3, Scenario 1. 
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to the adverse effects of vaccines with the implementation. The vaccine induced 

deaths are counted as 1 in a million (Fenner at al. 1988) and corresponding number 

of deaths under varying R0 values are represented in Figure 5.23. According to the 

figure 16 of 5000 people might be die in 200 days period. Since the effectiveness of 

treatments is not considered in the model, more realistic result might be less than 16 

people. Comparing the vaccination deaths with the scenario in the absence of 

measure might provide neutralized prejudgments on vaccination.  

 

Figure 5.24 Number of disease induced deaths among vaccinated individuals under 

different values of R0s for Model 3, Scenario 1. 
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many assumption, in real life the numbers of deaths might be lower that these 

results. Also it can be easily observed from the Figure 5.24 the numbers of deaths 

among unvaccinated individuals are more than vaccinated individuals. 

 

Figure 5.25 Number of disease induced deaths among unvaccinated individuals 

under different values of R0s for Model 3, Scenario 1. 
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5.26, 5.27 and 5.28 respectively and   shows the general results of the model which 

run under the baseline parameters. 

Table 5.11 Total numbers of classes within 200 days and peak numbers for each 

class for Model 3, Scenario 2 

Model 3, Scenario 2 

S0=3,500,000, I0=175,000 

R0   E *E  P *P  I *I  Ev * Ev *D 

 
 
 

3 

0 .8 76142 27658 196440 8001 264294 175000 907735 149890 893026 

.2 .8 22156 21643 58843 5565 169214 175000 271896 106287 3634509 

.4 .8 10563 15713 29002 3341 148328 175000 134324 66416 3628444 

1 .8 0 0 2286 294 129631 175000 11431 6983 3623042 

.2 0 220195 99758 221180 23910 282832 175000 4112 1666 3556550 

.2 .4 40803 34291 74568 7715 180219 175000 249940 96503 3627391 

.2 1 17997 18197 55286 5211 166724 175000 276425 108160 3636071 

5 

0 .8 306449 45958 753440 14740 633431 175000 3500088 272996 2945972 

.2 .8 35514 35905 94366 9268 194076 175000 436043 177270 3641772 

.4 .8 16964 26035 46616 5448 160656 175000 215912 108627 3632067 

1 .8 0 0 3795 488 130687 175000 18976 11600 3623413 

.2 0 351011 166708 352608 39738 374817 175000 6619 2803 3517380 

.2 .4 65438 56929 119624 12921 211754 175000 400991 161396 3630363 

.2 1 28826 30180 88604 8662 190042 175000 443012 180109 3644262 

7 

0 .8 356671 64149 928429 31039 777559 175000 4285139 574047 3807788 

.2 .8 47653 50034 126685 12873 216695 175000 585390 246954 3648380 

.4 .8 22940 36234 63085 7454 172183 175000 292200 149094 3635455 

1 .8 0 0 5292 681 131735 175000 26462 16186 3623781 

.2 0 468597 231831 470761 54918 457511 175000 8908 3913 3482171 

.2 .4 87727 79371 160419 18054 240306 175000 537779 224560 3633056 

.2 1 38671 42048 118937 12018 200331 160060 88213 594667 251040 
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Figure 5.26 Solutions to system of differential equations for Model 3 and Scenario 

2. 

It can be seen from the Figure 5.26 that infected cases are increased as the 

value of R0 increase. In Figure 5.27 and 5.28 the number of deaths among 

vaccinated and unvaccinated individuals under different values of R0 are compared. 

In result of the comparisons, it can be seen that number of deaths among 

unvaccinated individuals are much higher than vaccinated individuals.  
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Figure 5.27 Number of infectious cases under different values of R0s for Model 3, 

Scenario 2. 

 

The effects of vaccination upon number of deaths are compared in the Figure 
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Figure 5.28 Number of disease induced deaths under different values of R0s for 

Model 3, Scenario 2. 
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Figure 5.29 Number of infectious cases under different values of R0s for Model 3, 

Scenario 2. 
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Figure 5.30 Solutions to system of differential equations for Model 3 and Scenario 

3. 

The results that are obtain from the run presented in Table 5.12. According 

to the Table 5.12 the maximum vaccine requirement can reach to 2,277,542 in one 

day during the epidemic.  
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Figure 5.31 Number of infectious individuals under different values of R0s for 

Model 3, Scenario 3. 

  

As seen from the Figure 5.30, under the vaccination policy even under the 
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Table 5.12 Total numbers of classes within 200 days and peak numbers for each 

class for Model 3, Scenario 3. 

 

Model 3, Scenario 3 

S0=75,000,000,  I0=3,750,000 

R0   E *E  P *P  I *I  Ev * Ev *D 

 
 
 

3 

0 .8 1631603 592638 4209432 171447 5663437 3750000 19451464 3212027 19136263 

.2 .8 474766 463742 1260923 119248 3626009 3750000 5826345 2277542 77882326 

.4 .8 226339 336722 621468 71603 3178467 3750000 2878371 1423221 77752371 

1 .8 0 0 48991 6300 2777799 3750000 244952 149636 77636618 

.2 0 4718456 2137660 4739581 512415 6060691 3750000 88106 35699 76211778 

.2 .4 874360 734821 1597877 165285 3861844 3750000 5355841 2067827 77729812 

.2 1 385633 389897 1184696 111655 3572654 3750000 5923406 2317621 77915807 

5 

0 .8 6566779 984861 16145151 315852 13573516 3750000 75001866 5850537 63127972 

.2 .8 761007 769412 2022127 198600 4158762 3750000 9343783 3798782 78037961 

.4 .8 363523 557922 998917 116732 3442638 3750000 4626677 2327664 77830006 

1 .8 0 0 81326 10460 2800430 3750000 406628 248566 77644569 

.2 0 7521673 3572329 7555881 851487 8031788 3750000 141832 60052 75372435 

.2 .4 1402242 1219903 2563368 276923 4537580 3750000 8592672 3458571 77793488 

.2 1 617694 646790 1898648 185621 4072334 3750000 9493108 3859616 78091334 

7 

0 .8 7642947 1374492 19894916 665118 16661983 3750000 91824412 12300408 81595446 

.2 .8 1021143 1072244 2714677 275852 4643467 3750000 12544065 5291621 78179577 

.4 .8 491575 776445 1351827 159729 3689634 3750000 6261417 3194900 77902606 

1 .8 0 0 113405 14589 2822881 3750000 567019 346836 77652457 

.2 0 10041375 4967712 10087720 1176818 9803802 3750000 190888 83848 74617951 

.2 .4 1879854 1700784 3437558 386892 5149418 3750000 11523832 4812214 77851195 

.2 1 828674 901165 2548612 257538 4527229 3750000 12742850 5379349 78251136 
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 The effects of vaccination policy on deaths are shown in Figures 5.31 and 

5.32, respectively. In Figure 5.31, it can be seen the number of death among 

vaccinated individual. It is easily observed that there is a significant difference 

between the number of deaths among unvaccinated individuals.  

 According to the initial assumptions, the success of treatment, the level of 

immunity and the strength of immunity are not included in these models. Therefore, 

deaths are counted directly as 30% of infected individuals. 

 

Figure 5.32 Number of disease induced deaths among vaccinated individuals under 

different values of R0s for Model 3, Scenario 3. 
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Figure 5.33 Number of disease induced deaths among unvaccinated individuals 

under different values of R0s for Model 3, Scenario 3. 
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Table 5.13 Class sizes of Ev and *Ev under different values of R0 with given baseline 

parameters; =.2, =.8 

 R0 Ev * Ev 

Scenario 1 

3 102 34 

5 175 59 

7 248 87 

Scenario 2 

3 271896 106287 

5 436043 177270 

7 585390 246954 

Scenario 3 

3 271896 106287 

5 436043 177270 

7 585390 246954 

 

All control policies has own advantages and disadvantages. Physical 

separation might be effective for lowering an epidemic however it might involve 

replanning the layout of an existed facility or planning the new one.  Vaccination is 

said to be the most effective measure for smallpox but it might require additional 

workforce. Therefore, in case of an implementation the planning and allocation of 

workforce should be carefully managed. As seen from the Table 5.13, the need for 

health care givers or vaccinators might be significantly different in terms of 

quantity. In the first scenario, it might be easy to vaccinate at most 248 people 

during 200 days. However, vaccination of the population of a city or a country may 

require additional caregivers. Also involves high degree of organization and 

information flow. 585,390 individual can be vaccinated during the 200 days 

however, the workforce may not be available for vaccination these individuals in a 

limited time. Therefore, time limitation should be considered and time factor should 

be involved workforce allocation plans.   
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5.5. Numerical Results and Discussions for Model 4 

In Model 4we evaluate the combined policy decision which involves 

vaccination, quarantine and hospitalization together. Similar to the previous models, 

we run the solution algorithm coded in Matlab 7.0. for all scenarios and varying 

parameters. In each scenario, we consider fully susceptible populations with the size 

of 5000, 3,500,000, 75,000,000 individuals respectively. The system of nonlinear 

differential equations (24)-(36) given in Chapter 3 has been numerically solved in 

seconds by using the Matlab function ‗ode45‘ on a personal computer with 1 GB 

RAM and 2.4 Ghz processor.  

5.5.1. Scenario 1 

The results that are obtained from the model presented in Table 5.13. is easily 

observed that a combined implementation significantly reduced the numbers in each 

class. For the first scenario, despite the varying numbers of R0, number of 

hospitalized cases almost equal.  Class sizes under different parameters are provided 

in Table 5.14 and Figure 5.33 shows the general solutions. 
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Figure 5.34 Solutions to system of differential equations for Model 4 and Scenario 

1. 

 

 

 

0 100 200
-5000

0

5000
Susceptible

0 100 200
-10

0

10
Exposed

0 100 200
-0.2

0

0.2
Prodromal

0 100 200
-50

0

50
Infectious

0 100 200
0

10

20
D

0 100 200
0

50

100
R

0 100 200
-0.1

0

0.1
Q

0 100 200
0

10

20
H

0 100 200
0

5000
Sv

0 100 200
0

20

40
Ev

0 100 200
0

5
Pv

0 100 200
0

10

20
Iv

0 100 200
0

0.5

1
Vid



147 

 

Table 5.14 Total numbers of classes within 200 days and peak numbers for each class for Model 4, Scenario 1.

Model 4, Scenario 1 

S0=5,000  I0=50 

R0   γ  Σ E *E  P *P  I *I  H *H *D Ev * Ev 

3 

0.2 0.8 0.3 0.08 4 6 0 0 20 50 17 12 20 41 20 

0.4 0.8 0.6 0.13 2 4 0 0 16 50 21 16 18 23 13 

0.4 0.8 0.6 1 0 2 0 0 5 50 32 36 16 5 3 

0 0.8 0 1 1 3 0 0 5 50 32 36 16 8 6 

5 

0.2 0.8 0.3 0.08 7 9 1 0 20 50 17 12 23 68 34 

0.4 0.8 0.6 0.13 4 7 0 0 16 50 21 16 20 38 21 

0.4 0.8 0.6 1 1 3 0 0 5 50 32 36 16 8 6 

0 0.8 0 1 1 6 0 0 5 50 32 36 17 13 10 

7 

0.2 0.8 0.3 0.08 10 13 1 0 20 50 18 12 27 96 47 

0.4 0.8 0.6 0.13 5 9 0 0 16 50 21 16 21 53 29 

0.4 0.8 0.6 1 1 5 0 0 5 50 32 36 16 11 8 

0 0.8 0 1 2 8 0 0 5 50 32 36 17 19 14 
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Figure 5.35: Number of hospitalized cases under different values of R0 for Model 4 

and Scenario 1. 

 

Figure 5.36: Number of disease induced deaths among vaccinated individuals 

under different values of R0s for Model 4 and Scenario 1. 
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Figure 5.37: Number of disease induced deaths among vaccinated individuals under 

different values of R0s for Model 4 and Scenario 1. 
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Figure 5.38: Solutions to system of differential equations for Model 4 and Scenario 

2. 
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Table 5.15 Total numbers of classes within 200 days and peak numbers for each class for Model 4, Scenario 2 

 

Model 4 , Scenario 2 
 

S0=3,500,000,  I0=175,000 

R0   Γ Σ E *E  P *P  I *I  H H- *D Ev * Ev 

3 

0.2 0.8 0.3 0.08 0.2 0.8 0.3 0.08 13854 18758 1475 421 70772 175000 59221 

0.4 0.8 0.6 0.13 0.4 0.8 0.6 0.13 7273 13121 528 205 55694 175000 73372 

0.4 0.8 0.6 1 0.4 0.8 0.6 1 1573 6932 120 91 16490 175000 111777 

0 0.8 0 1 0 0.8 0 1 2651 11610 569 270 16516 175000 111913 

5 

0.2 0.8 0.3 0.08 0.2 0.8 0.3 0.08 22952 31154 2444 699 71130 175000 60151 

0.4 0.8 0.6 0.13 0.4 0.8 0.6 0.13 11929 21795 866 340 55790 175000 73939 

0.4 0.8 0.6 1 0.4 0.8 0.6 1 2620 11541 201 151 16495 175000 111930 

0 0.8 0 1 0 0.8 0 1 4431 19324 951 450 16538 175000 112159 

7 

0.2 0.8 0.3 0.08 0.2 0.8 0.3 0.08 31874 43463 3394 975 71481 175000 61065 

0.4 0.8 0.6 0.13 0.4 0.8 0.6 0.13 16436 30411 1194 474 55883 175000 74487 

0.4 0.8 0.6 1 0.4 0.8 0.6 1 3666 16140 281 211 16500 175000 112083 

0 0.8 0 1 0 0.8 0 1 6223 27016 1335 629 16560 175000 112406 
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Figure 5.39: Number of infectious individuals under different values of R0s for 

Model 4 and Scenario 2. 
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Figure 5.40: Number of disease induced deaths among vaccinated individuals under 

different values of R0s for Model 4 and Scenario 2. 
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Figure 5.41: Number of hospitalized cases under different values of R0 for 

Model 4 and Scenario 3 

5.5.3. Scenario 3 
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Figure 5.42: Solutions to system of differential equations for Model 4,Scenario 3.
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Table 5.16 Total numbers of classes within 200 days and peak numbers for each class for Model 4, Scenario 3. 

 

Model 4, Scenario 3 

S0=75,000,000,  I0=3,750,000 

R0   γ Σ E *E  P *P  I *I  H H- 

*D 

Ev * Ev 

3 0.2 0.8 0.3 0.08 296869 401968 31608 9026 1516540 3750000 1269011 878393 1470612 2883119 1436089 

3 0.4 0.8 0.6 0.13 155836 281154 11311 4397 1193434 3750000 1572255 1207431 1307519 1520922 875734 

3 0.4 0.8 0.6 1 33700 148549 2580 1945 353363 3750000 2395219 2727258 1167055 347685 255507 

3 0 0.8 0 1 56802 248798 12192 5788 353913 3750000 2398139 2727617 1195546 585606 428621 

5 0.2 0.8 0.3 0.08 491823 667606 52369 14982 1524206 3750000 1288958 885458 1697343 4776835 2382796 

5 0.4 0.8 0.6 0.08 294020 493741 21302 7979 1512737 3750000 1272538 884327 1468339 2864121 1645570 

5 0.4 0.8 0.6 0.13 255620 467024 18559 7291 1195501 3750000 1584398 1212887 1424197 2495429 1448649 

5 0 0.8 0 1 94963 414089 20379 9638 354383 3750000 2403403 2728763 1242631 978804 714100 

7 0.2 0.8 0.3 0.08 683017 931372 72734 20886 1531726 3750000 1308526 892465 1919754 6634464 3320020 

7 0.4 0.8 0.6 0.13 352192 651651 25576 10154 1197502 3750000 1596157 1218294 1537179 3439069 2012670 

7 0.4 0.8 0.6 1 78550 345858 6013 4528 353561 3750000 2401771 2729175 1222471 810451 595040 

7 0 0.8 0 1 133362 578920 28612 13483 354857 3750000 2408698 2729923 1289987 1374265 999849 
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Figure 5.43: Number of infectious cases under different values of R0s for Model 4, 

Scenario 3.  
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Figure 5.44: Number of disease induced deaths among vaccinated individuals under 

different values of R0s for Model 4 and Scenario 3. 
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Figure 5.45: Number of disease induced deaths among unvaccinated individuals 

under different values of R0s for Model 4 and Scenario 3. 
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Figure 5.46: Number of hospitalized cases under different values of R0 for Model 4 

and Scenario 3. 
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5.6. Results and Analysis of Dynamic Programming for Inventory Model 

 At the beginning of the thesis we emphasize the integration of 

epidemiological output to the field of logistics. As an output we determine total 

number of to be vaccinated individual in a time period 35 days, with given parameters 

and for the population size of Izmir. The outcome we obtain from epidemiological 

modeling is integrated to a deterministic single commodity inventory model. Through 

this model, we are able to determine the optimal order policy.  

Table 5.17. Days and corresponding demands for the population size of 3,500,000.  

T D T D T D T D T D 

1 0 9 90310 17 104650 25 81000 33 51380 

2 7020 10 95890 18 102960 26 77110 34 48220 

3 21070 11 100090 19 100780 27 73210   

4 36480 12 103100 20 98190 28 69320   

5 50930 13 105050 21 95240 29 65500   

6 63620 14 106080 22 91980 30 61770   

7 74350 15 106290 23 88480 31 58170   

8 83200 16 105780 24 84800 32 54700   

T: time period, D: Forecasted demand 
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Table 5.18 Demands for vaccines for the population size of 5,000. 

T D T D T D T D T D 

1 0 9 28 17 34 25 31 33 23 

2 2 10 30 18 34 26 30 34 22 

3 6 11 31 19 34 27 29 
  

4 11 12 32 20 34 28 28 
  

5 15 13 33 21 33 29 27 
  

6 19 14 34 22 33 30 26 
  

7 23 15 34 23 32 31 25 
  

8 25 16 34 24 31 32 24 
  

T: time period, D: Forecasted demand 

The forecasted demand for populations size 5000 and 3,500,000 are provided 

in Table 5.17 and Table 5.18, respectively. Demands estimated as compartment size 

of vaccinated individuals in exposed class. Demand in period i represents the number 

of individuals in the ‗vaccinated exposed‘ class corresponding in number of day equal 

to i
th
 time period. Demands for both of three population size are considered. The 

numbers in Table 5.17 corresponds to the vaccine requirement of a city with 

population size 3,500,000. Demands of the first 34 days are considered in order to 

study the first response for blocking or lowering the dispersion, therefore reducing 

the number of secondary cases. As suggested in literature, responding at first days of 

the attack is crucial for lowering the cumulative incidence number. Since smallpox 

vaccines are not hold as an inventory and in the absence of smallpox vaccine 
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production, vaccine should be procured as quickly as possible. Therefore, the aim 

should be to make vaccines available at the early stage of the epidemic. In the 

absence of production of vaccines, the main consideration here is when to buy and 

how much to order.    

5.2.1 Solution for The Optimal Inventory Policy Problem Through Dynamic 

Programming 

We set the setup cost to 10000$/TL, in order to meet the needs of the first 

population. Recalling from previous chapters, first population represents a university 

campus population with 5000 people. We set the rate of vaccinated exposed 

individuals to baseline parameters; ψ=0.8, and ф=0.2 and R0 = 3. With given 

parameters it is calculated that, total of 271,896 individuals vaccinated, which is 

corresponds to 7% of the population.   

Table 5.19. Optimal order policy for population size 5000. 

 

Order period Order amount 

1 357 

17 34 

18 34 

 19 34 

20 34 

21 33 

22 361 

 Total cost: 42905 
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The first order takes place at the first day in order to cover the demands of 16 

days.  From the 17
th

 day to 22
nd

 day orders placed day by day, under the assumption 

of lead time is zero. The order of 22
nd

 day takes place in order to cover the remaining 

12 day. In this path of order policy concludes with a cost that 42,905$/TL.    

  For the bigger population, which is 3,500,000 we set the setup cost to 

500,000$/TL for the second population sample. Rates in this models are the baseline 

parameters which are ψ=0.8, and ф=0.2 and R0 = 3. Since the aim is to determine the 

optimal order policy for different population, variations among models or the values 

of rates and R0  are not considered. According to the model, these results are obtained 

through dynamic programming. The part of order periods and related quantities are 

shown in the Table 5.20. The minimum cost calculated as 14,608.069$/TL.  

Although the setup cost is high, due to the assumptions, orders take places 

very frequently. The result might be very different when the lead times are 

considered. However this model can provide insights for the importance of planning 

vaccine purchasing in case of any need. Table 5.20 shows the vaccine requirement for 

each day.  
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Table 5.20 Optimal order policy for population size 5000. 

Order period Order amount 

1 107317 

5 84572 

6 105623 

7 123462 

8 138209 

9 150118 

10 159511 

11 166641 

12 171798 

13 175156 

14 176940 

15 177270 

16 176303 

17 174150 

18 170915 

19 328423 

21 305609 

23 278905 

25 250661 

27 222846 

29 114814 

30 108032 

31 101499 

32 95252 

33 173006 

 Total cost:     4,237,032 

 

In case of a smallpox attack, vaccines might be supplied from USA or other 

stocking point. There might be a long lead time associated with high setup costs. 

Therefore, the give an initial response to a bioterrorist attack, decision makers might 

be aided from the outputs obtained from epidemiological modeling. At that time, the 
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output might not reflect the actual quantity of need. However, receiving vaccines that 

priory planned, might save many lives and reduce the rate of secondary attack 

therefore decrease the speed of smallpox disease progression among the population. 
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CHAPTER 6 

 CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

 

Turkey geographically bridges East and West which positions the country as a 

transit center for many diseases. We wish to emphasize the importance of the location 

of Turkey in the dispersion of a disease. An epidemic might be close at hand. 

Therefore, it is expected to conduct many epidemiologic researches in this field in 

order to examine disease dispersion. We would want to take our part in this mission. 

Furthermore, besides obtaining epidemiological outputs, our intent is to examine 

epidemiologic problem from the logistics point of view. In order to obtain relevant 

data for using in logistical analysis, we experienced that we should go through the 

mathematical and epidemiological side of this field. Thus, this thesis includes the 

initial stage of a long research. 

In this thesis, before examining in the highly interdisciplinary field of 

epidemiological modeling, present literature for epidemiological modeling for several 

diseases is systematically reviewed. We study on smallpox disease which was 

eradicated. Re-emerge of this disease might occur as a result of a bioterrorist attack. 

Since a bioterrorist attack is considered, we find appropriate to review 

epidemiological modeling studies for possible agents that might be used as bio-

weapon supply. The classification, which is provided by CDC, is taken as basis; 
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therefore, we examine diseases that are included in Category A. Summary of 

literature review is provided in Table 2.1. First columns inform about the general 

characteristics of the research studies e.g. the examined disease and date of the study. 

Secondly models characteristics are examined. The methodology that is employed in, 

the tool that is used to built model and the existence of a compartmental structure are 

analyzed. Since the outputs of epidemiologic modeling is related with public health 

concerns, we examine the control policies that are suggested or examined in each 

research study. Although there are many valuable research studies that are conducted 

on epidemiological modeling, there are very few studies which address the logistical 

concerns. Therefore, in order to point out these concerns, a decision tree is presented. 

Decision tree shows the intervention strategies and related decisions that might be 

made. In order to examine one of the logistics problem given in the decision tree, we 

built four different deterministic models for smallpox which includes 3 different 

control policies. Estimating the size of compartments provides insights for 

determining demands of each compartment. After the determination of appropriate 

control policy for smallpox, we consider one of the decisions related with that policy. 

We define demands and examine the purchasing of the supply quantities. Therefore a 

deterministic inventory model is suggested and solved through dynamic 

programming. In summary in this thesis we examine the epidemiological modeling in 

context of a disaster management stage. We suggest an intervention strategy in 

context of public health implementation and we determine an optimal order policy in 

the context of logistics.   
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While building the models, we define many alternative scenarios besides simple 

assumptions. In order not to miss the topic of this thesis, these ideas are decided to be 

conducted as research studies. They are explained in the following paragraph of this 

Chapter.    

Employing deterministic approach results in many assumptions that assume 

many rates and variables as constant. Therefore the results might not reflect the 

possible real outcomes. In order to fix the effects of assumptions on model, first of all 

we wish to examine the epidemiological models with stochastic approach. By that 

way, it is able to add variability and probability into model and obtain more realistic 

‗demand‘ data for examine logistics concerns. The inventory model in which is 

examined in Chapter 4 and solved in Chapter 5 is also deterministic therefore needs 

to be cleared from the assumptions of stockout condition and zero lead time. In order 

to prove the effectiveness and efficiency of order policy, effects of stockout will be 

considered in two different point of views. First the loss of usage is considered. Since 

the inventory is unique and has a limited shelf life any delay in receiving the product 

might ended with loss of usage and associated costs. We emphasize the importance of 

timely response for any disaster is crucial for the managing the rest of the disaster 

management process with given references in literature. Therefore stockouts or 

ineffective usage of vaccines brings unsuccessful policy implementation and 

therefore the policy fails to reduce the speed of disease dispersion among population. 

In order to monitor the effects on the disease dispersion, we wish to allow stockouts. 

Similarly, lead time is assumed to be zero, a model which considers non zero lead 
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time will be built. Thirdly, inventory model is run under the assumption of constant 

holding cost regardless of the quantity of order. From the economical point of view, 

this assumption hardly reflects the actual amount of money that will be tied and 

should be included in the cost function. Finally, variability will be allowed and more 

elaborated model will be provided as a research study.   
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APPENDIX 

 

ABBREVIATIONS 

 

Reference Abbreviation(s) Full definition 

[1], [6], [20] AVT Antiviral Treatment 

[1], [25], [27], [63] AVP Antiviral Prophylaxis 

[20] TAVP Targeted Antiviral Prophylaxis 

[15], [20], [27] SD Social Distancing 

[1], [27] Vacc. Vaccination 

[15] TAP Targeted Antiviral Prophylaxis 

[52], [53], [59] Comp. Compartmental Models 

[60] EU France and Austria 

[54] Canada, Far Eastern 

Toronto, Hong Kong, 

Singapore 

[23] Eastern 

Sumatra, Indonesia and 

Eastern Turkey 

 

 


