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In this study, we work on multiple criteria supplier selection problem. We assume a 

quasi-concave utility function that represents the preferences of the decision maker 

(DM). We generate convex cones based on the pairwise comparisons of DM. Then, 

we build a mathematical model to determine the minimum number of pairwise 

comparisons required to eliminate all alternatives but the best one. Using the 

properties of the optimal cones and the pairwise comparisons, we develop two 

interactive algorithms. We select the pairs of alternatives to be asked to the DM 

based on the probability that an alternative is preferred to another one. After each 

pairwise comparison, we calculate new probabilities for unselected pairwise 

questions. We implement our algorithms to find the best supplier. We conduct 

computational experiments on generated instances.  We evaluate our algorithms and 

compare with mathematical models according to the minimum number of required 

questions 
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ÖZET 

 

ÇOK AMAÇLI KARAR VERME ĠÇĠN BĠR ETKĠLEġĠMLĠ YAKLAġIM; BĠR 

LOJĠSTĠK UYGULAMASI 

 

Kaya, Anıl 

 

 

Yüksek Lisans, Lojistik Yönetimi Bölümü 

 

 

Tez Yöneticisi         : Yrd. Doç. Dr. Selin ÖZPEYNĠRCĠ 

 

Ortak Tez Yöneticisi: Yrd. Doç. Dr. Özgür ÖZPEYNĠRCĠ  

 

 

Haziran 2014, 57 sayfa 

 

Bu çalıĢmada çok amaçlı tedarikçi seçim problemi üstünde çalıĢmaktayız. Karar 

vericinin tercihlerini temsil eden bir içbükeyimsi fayda fonksiyonu olduğunu kabul 

etmekteyiz. Karar vericinin ikili karĢılarĢtırmalarına dayanarak konveks konlar 

üretmekteyiz. Daha sonra, en iyi alternatif dıĢındaki bütün alternatifleri elemede 

gerekli olan en az soru sayısını belirlemek için matematisel model kuruyoruz. 

Optimal konilerin özelliklerini ve ikili karĢılaĢtırmaları kullanarak iki etkileĢimli 

algoritma geliĢtiriyoruz. Karar vericiye soracağımız alternatif ikilisini seçmek için 

bir alternatifin bir diğerinden daha iyi olma olasılığını hesaplıyoruz. Her ikili 

karĢılaĢtırma sonrasında seçilmemiĢ ikili soruların olasılıklarını hesaplıyoruz. En iyi 

tedarikçiyi bulmak için algoritmalarımızı uyguluyoruz. OluĢturulmuĢ örnekler 

üzerinde hesaplamalı deneylerimizi gerçekleĢtiriyoruz. Gerekli olan en az soru 

sayısına göre algoritmalarımızı değerlendirip matematiksel model ile 

karĢılaĢtırıyoruz. 

 

Anahtar Kelimeler : çok amaçlı karar verme, tedarikçi seçimi, etkileĢimli yaklaĢım 
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CHAPTER  1 

 

INTRODUCTION 

 

There are many definitions of supply chain management (SCM) that imply not only 

the flow of materials but also the network of organizations. Simchi-Levi et al. (1999) 

defines SCM as,  

 “a set of approaches utilized to efficiently integrate suppliers, manufacturers, 

warehouses, and stores, so that merchandise is produced and distributed at the right 

quantities, to the right locations, and at the right time, in order to minimize system 

wide costs while satisfying service level requirements.” 

Supply chain management, which is a crucial statement for a business process, has an 

extensive content from supplier of materials to demand in a store.  The business 

operations in the supply chain provide an opportunity to reduce costs for firms. Davis 

(1993) states that supply chain success depends on the uncertainty cycle, which 

includes four main items such as manufacturing, supplier performance, customer 

deliveries and customer demand.  For this reason, supplier performance, that is a 

main component of the uncertainty cycle, has a great effect on supply chain and 

business success. 

The selection and evaluation of suppliers is a complex problem. Choosing the right 

suppliers requires the evaluation of quantitative and qualitative factors. Many firms 

need to evaluate supplier performance using criteria in different areas such as quality, 

lead time, price, cost, etc. (Köksalan and Wallenius,2012). It is clear that, the 

selection of suppliers and evaluation of supplier performance are multiple criteria 

decision making (MCDM) problems.  
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MCDM methods are suitable for solving decision and planning problems involving 

multiple criteria. Generally, there is not a unique optimal solution for many MCDM 

problems. MCDM methods assume a decision maker (DM) or a group of DMs own 

the problem. DM’s preferences directly affect the best solution.  

In this study, we focus on the supplier selection process which is a fundamental 

multiple criteria decision making application on supply chain management. We 

assume there is a single DM. The best supplier is selected in the group of suppliers. 

In many MCDM approaches, finding the best solution with the minimum number of 

questions is a basic matter. We aim to develop an interactive algorithm to select the 

best alternative by asking few questions to the DM. 

We ask DM to compare pairs of alternatives and assume DM has a quasi-concave 

utility function. We discuss the quasi-concave utility function in detail in Chapter 2. 

We get the preferences of DM to eliminate one of the alternatives. After each 

question, we get more information about DM preferences. According to DM’s 

response, we determine an inferior alternative that is eliminated in future analysis. 

We want to ask minimum number of pairwise comparison questions in order to find 

the best alternative. 

The outputs of this thesis are:  

1) Mathematical models that compute the least possible number of pairwise 

questions necessary to find the best alternative 

2) Strategies to reduce the number of pairwise questions and two interactive 

algorithms for finding the best solution using these strategies 

We develop mathematical models to determine the minimum possible number of 

questions. We generate all cones that can be generated by one or two pairwise 

comparisons. We find the set of cones that eliminates all alternatives with minimum 

number of required questions. Eliminated alternatives that are not used in further 

questions improve this method. The mathematical program aims to identify the best 

solution with the minimum number of required questions and find strategies for 

selecting the pairwise questions.  

We analyze the results of the computational test and propose two interactive 

algorithms to select the best alternative by asking questions to the DM. We test our 
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interactive algorithms for each instance, with different utility function and weight 

combinations. Moreover we compare the performance of our interactive algorithms 

with the results of mathematical models. We evaluate our interactive algorithms by 

the minimum number of required questions. On the other hand, our interactive 

algorithms are compared with each other. We implement our algorithms to a supplier 

selection problem. 

The mathematical model finds minimum number of questions required the best 

alternative. However, this model assumes explicit knowledge of the DMutility 

function and the weights of the objectives. On the other hand, interactive algorithms 

do not know the DM utility function, but assume DM has a quasi-concave utility 

function and try to identify the best solution by asking pairwise questions. The 

number of questions asked by the mathematical model is a lower bound for the 

interactive algorithms. 

In the next chapter, we present a detailed review of the literature. In Chapter 3, we 

provide a background for multiple criteria decision making and MCDM approaches. 

In Chapter 4, we introduce mathematical models used for algorithms and we present 

the findings and the analysis of computational test. We develop two interactive 

algorithms and we present the implementation of our interactive algorithms in 

Chapter 5. The last chapter concludes the thesis and provides future research 

directions. 
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CHAPTER 2 

 

BACKGROUND 

 

2.1 Definitions 

 

MCDM is about solving problems with multiple and conflicting criteria. In general, 

we assume that there are m decision alternatives, p criteria and one decision maker 

(DM). We use the preferences of DM to find the best alternative which satisfies all 

objectives.  

Alternatives;       k = {1, 2, 3,…, m} 

Criteria ;             q = {1,…,p} 

We use the notation of Özpeynirci and Köksalan (2010) to give necessary 

definitions. Consider x, x
*  

X. Point x
*
 is dominate point If xq

*
≤ xq for all q and xq

*
< 

xq at least one q. If xq
*
< x for all q, x

*
 is strictly dominate point. If there is no point x

*
 

that dominates x, then x is said to be nondominated. A point x is said to be weakly 

nondominated if there is no point x
*
 such that xq

*
< x for all q. Figure 2.1 provides a 

representation of dominated and nondominated points, ideal point, nadir point. 

Alternative xi dominates alternative xj if xi is no worse than xj in all objectives and 

better in at least one. If there exists no alternative that dominates xi, xi is said to be 

non-dominated.  
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Figure 2.1: Dominated and Non-dominated Points, Köksalan and Wallenius (2012) 

 

 

The ideal and the nadir points are two important concepts in MCDM. The ideal point 

has the best values for each objective. This point is unattainable or utopian solution. 

The nadir point represents the worst values for each objective (Figure 2.1). 

DM compares pairs of selected alternatives. We generate cones based on DM 

preferences. Inferior alternatives are identified and eliminated according to DM’s 

response. We find the best alternative of the nondominated alternatives. In MCDM 

problems, nondominated points are worth consideration. Dominated points are 

eliminated directly at the beginning of the decision making process. 

We assume DM has a quasi-concave utility function. Quasi-concave utility functions 

represent human nature properly. We assume that the utility function is not explicitly 

known. We gather information about the utility function through pairwise 

comparisons. A representation of the quasi-concave utility function can be seen in 

Figure 2.2.  
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Figure 2.2: Quasi-concave function 

 

We use an underlying utility function for pair-wise comparisons. DM selects 

preferred alternatives according to this underlying utility function. We estimate 

linear, quadratic and Tchebycheff utility functions to select alternatives with high 

preference. For each alternative xk, we calculate, 

 

 

Alternatives;       k = {1, 2, 3,…, m} 

Criteria ;             q = {1,…,p} 

Wq= The weight set for each q. 

Xkq=Selected alternative values in each q. 

Xq*= Ideal alternative for each q. 
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kxwf
p

kqqk ,
1  

For linear utility function, 

kxxwf
p

qkqqk ,][
1

2*

 

For quadratic utility function and 

qkxxwf qkqq
pq

k ,)},({max *

,...,1
 

For Tchebycheff utility function. 

 

2.2 Theory for Eliminating Inferior Alternatives 

 

THEOREM 1 (Korhonen, Wallenius and Zionts, 1984) 

Assume a quasi-concave and nondecreasing function f(x) defined in a p-dimensional 

Euclidean space R
p
. Consider distinct points xi  R

p
, i = 1,…, m, and any point x

*
  

R
p
 and assume that f(xk) < f(xi), i≠k. Then, if  ≥ 0 in the following linear 

programming problem 

Max  

Subject to 

,0,)( *

1

ik

m

kİ
i

iki xxxx

 

 

It follows that f(xk) ≥ f(x
*
). 
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xi is preferred alternative than xk. In theorem we analyze x
*
 . According to cone,  x

*
 is 

less preferred alternative than xk. x
* 
that is dominated by cone, will be eliminated. 

Any alternative which is in the convex cone, is dominated by cone. Alternative in the 

convex cone will be inferior and this alternative will be eliminated.  

Our aim is to find the best solution. We use pairwise questions to eliminate 

alternatives. In Figure 2.3, we generate cone based on decision maker preferences. If 

DM prefers x1 to x2, then all alternatives in the shaded region are dominated by Cone 

(x1, x2). x2  and x3 cannot be the best alternative. On the other hand, x1 or x4 can be 

optimal solutions. We continue with pairwise comparisons until only one alternative 

is left, which is the best alternative.  

 

 

Figure 2.3: The Illustration of Cone 

 

We can see the cone representation in Figure 2.4. Cones are presented by their 

preferences. The least prefered alternative is underlined. If A is preferred to B, we 

generate Cone (A,B).  If A is preferred to B and E is preferred to B, we generate 

Cone(A,E,B). It is clear that B is the least preferred alternative in each cone and B is 

underlined. In this study, we work on single and double cones to find the best 

alternative with minimum number of questions. We check the necessity of higher 

degree cones (m>2) in future work. 
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Single cone 

If Xi is preferred to Xj , we generate Cone (Xi, Xj) 

Double cone 

If Xi is preferred to Xk, and Xj is preferred to Xk, we generate Cone (Xi, Xj, Xk) 

In general; m-cone  

If m alternatives are preferred to (m+1) st   alternative  

 

 

Figure 2.4: Tree Illustrating the Construction of Cones, Korhonen, Wallenius and 

Zionts (1984) 
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CHAPTER 3 

 

LITERATURE REVIEW 

 

We review the literature under two folds: supply chain management and multiple 

criteria decision making (MCDM). The first section is about the supply chain 

management. The second section covers an overview of the literature on MCDM, 

MCDM approaches for supplier selection problem, convex cone methods in MCDM 

and interactive algorithms.  

 

3.1 Supply Chain Management 

 

In this section, the review of supply chain management (SCM) literature is presented. 

There are many different definitions of SCM that requires the flow of goods, 

information and money in the business process. Simchi-Levi et al. (1999) state that 

supply chain is the combination of suppliers, manufacturers, warehouses and stores. 

Quantities, locations and time are the important elements of supply chain integration 

to minimize costs. 

It is clear that there is an integration of business operations to minimize the total cost 

and maximize the profits. Supply chain management covers not only the flow of 

materials but also the network of organizations. Cooper, Lambert and Pagh (1997) 

describe SCM that differ from logistics, as a concept for the integration of business 

operations. They explain three elements of SCM framework that are business 

processes, management components and supply chain structure. On the other hand, 
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they suggest ten supply chain management components: planning and control, work 

structure, organization structure, product flow facility structure, information flow 

facility structure, product structure, management methods, power and leadership 

structure, risk and reward structure, culture and attitude. There are many definitions 

of SCM components which are based on successful integration. Stevens (1989) states 

components of supply chain management such as process structure, planning and 

control structure, product flow facility structure, information flow, organization 

structure, management methods, power and leadership structure. 

Supply chain management includes all business processes. There is a close 

relationship between each other. This is to solve problems and design the supply 

chain for business success. Ganeshan and Harrison (1995) analyze four major 

decision areas in SCM; location, production, inventory and transportation. These 

decision areas have both strategic and operational elements. There are three areas in 

the modeling approaches; network design, simulation and rough cut methods 

(Ganeshan and Harrison, 1995).   

Davis (1993) describes uncertainty cycle in SCM that include supplier performance, 

manufacturing, customer deliveries and customer demand. Based on Figure 3.1, it is 

clear that there is a close relationship between the elements of uncertainty cycle. 

There are three sources such as suppliers, manufacturing, and customers that have 

impacts on supply chains. SCM success depends on the impact of uncertainty cycle. 

The author explains some cases for which Hewlett-Packard has developed a decision 

support system to model supply chain with using tactical tools. Due to supply chain 

model, the impact of the uncertainties decreases dramatically on business process. 

Fisher (1997) indicates that a mismatch between the type of product and supply chain 

is the main cause of the problems for business process. The type of product is an 

important for an effective supply chain strategy. 

Thomas and Griffin (1996) describe the three basic stages in the supply chain. These 

stages include procurement, production and distribution. They explain operational 

coordination. Buyer – vendor coordination, production – distribution coordination 

and inventory – distribution coordination are items in operational coordination.  
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Figure 3.1: The Uncertainty Cycle, Davis (1993) 

 

3.2 Multiple Criteria Decision Making 

 

In this section, we present the review of the multiple criteria decision making 

(MCDM), MCDM approaches for supplier selection, convex cone method in MCDM 

and interactive algorithms. MCDM is crucial when a decision maker has to make 

decisions with multiple and conflicting criteria. MCDM problems are widespread in 

our life. In personal perspective, we can see many instances. Purchasing a car 

involves objectives such as price, size, style, safety, comfort that affect our selection. 

From the business perspective, MCDM problems can be more complicated. Many 

departments of large companies need to evaluate their performance using criteria in 

different area such as service,  quality, finance etc. In locating a nuclear power plant, 

many objectives could be considered such as cost, health, environment, safety. These 

objectives need to be considered during the decision making process. 

MCDM methods aim to solve decision and planning problems involving multiple 

criteria. Generally, there is not a unique optimal solution for many MCDM problems. 

Decision maker’s preferences affect directly optimal solutions. We assume there are 



 

13 
 

m decision alternatives, p criteria and one decision maker who owns the problem. 

Four main problems considered in MCDM are as follows: 

 

1. The choice problem that aims to select the best alternative among the potential 

alternatives. Optimization problems are examples of choice problem (Köksalan et.al., 

2009). 

2. The ranking problem that is to rank all alternatives with the values on each 

criteria. This problem can be used to rank academic programs. For choice and 

ranking problems, we utilize the comparisons in the group of alternatives to find the 

solution (Köksalan et.al., 2009). 

3. The sorting problem that is the assignment of alternatives into ordered categories 

(Köksalan et.al., 2009).  

4. The classification problem that is the assignment of each alternative into 

unordered categories. If these categories are just labels, a classification problem can 

be considered ( Zopounidis and Doumpos, 2004). 

 

In this study, we focus on the supplier selection process which is a multiple criteria 

decision making application on logistics. The best supplier is selected in the group of 

suppliers so we define supplier selection process as a choice problem. 

 

3.2.1 MCDM Approaches for Supplier Selection Problem 

 

Supply chain management and procurement have been among the most important 

areas for many companies. Supplier selection problems include multiple and 

conflicting criteria. The relative performances of suppliers can vary by each criterion.  

It is clear that the selection of the right suppliers not only depends on their firms’ 

management but also is related to apply right methods for this process. 
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Ho, Xu and Dey (2009) analyze multiple criteria decision making approaches for the 

supplier selection problem. They find that the individual approaches are more 

popular than the integrated approaches. They list the priority of the individual 

approaches according to their research from the highest to lowest priority, such as 

data envelopment analysis (DEA), mathematical programming, analytic hierarchy 

process (AHP), analytic network process (ANP), case-based reasoning, fuzzy set 

theory, simple multi-attribute rating technique and genetic algorithm. On the other 

hand, they find the most popular criterion as quality. Delivery, price, manufacturing 

capability, service, management, technology, research and development, finance, 

flexibility, reputation, relationship, risk and safety and environment are other popular 

criteria for the decision makers. Kontis and Vrysagotis (2011) imply that supplier 

selection has uncontrollable and unpredictable factors that affect decision making 

process. They analyze the multiple criteria decision making approaches for supplier 

selection based on DEA. 

 Soeini et al. (2012) state that supplier selection is a multiple criteria decision making 

problem. Logistics activities may cover more than 50% of firms’ total costs. Many 

firms want to reduce the number of suppliers to take advantage of good relation with 

few suppliers. They propose an algorithm that limits the number of suppliers. They 

use the idea of a knapsack algorithm. 

Ng (2007) explains that there is a close relationship between the success of a supply 

chain and the selection of good suppliers. He proposes a model which is a weighted 

linear program combine several objectives into a single objective with a weighted 

linear sum for the multiple criteria supplier selection problem. In this model, the 

decision maker does not have a subjective role. The proposed model differs from 

other approaches in analytic hierarchy process due to the decision maker’s role. The 

model can be used in any situation.   

Verma and Pullman (1997) examine how managers choose suppliers. They use two 

methods to test supplier selection process: A liker-type scale is used to identify 

perceived importance of suppliers and a discrete choice analysis is used to identify 

actual importance of suppliers. The results show that although managers choose 

quality in reality they select the low cost supplier. 
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Katsikeas, Paparoidamis and Katsikea (2004) present IT supplier evaluation criteria 

in their literature review. In Figure 3.2, the supplier evaluation attributes divide into 

four categories which are competitive pricing, reliability, service and, technological 

capability. They report on a supplier performance of distributor firms of information 

technology products. 

 

 

 

 

Figure 3.2: The Conceptual framework, Katsikeas, Paparoidamis and Katsikea 

(1993) 

 

3.2.2 Convex Cone Approach 

 

Korhonen, Wallenius and Zionts (1984) develop an algorithm that generate cones 

depending on the responses of the decision maker who has a quasi-concave 

increasing utility function. Quasi-concave utility function represents the human 

nature well. Inferior alternatives are identifed. They determine the alternative that 

maximizes decision maker’s utility function. Decision maker compares each adjacent 

alternative with the reference alternative. If there are not any adjacent efficient 
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solutions, they identify an optimal solution. On the other hand, they represent the 

construction of cones with the tree representation. Based on tree illustration, an 

alternative which is an inferior solution, is underlined in each set.  

 

THEOREM 1 (Korhonen, Wallenius and Zionts, 1984) Assume a quasi-concave and 

nondecreasing function f(x) defined in a p-dimensional Euclidean space R
p
. Consider 

distinct points xi  R
p
, i = 1, …, m, and any point x

*
  R

p
 and assume that f(xk) < 

f(xi), i≠k. Then, if  ≥ 0 in the following linear programming problem 

 

 Max  

 

Subject to 

*

1

( ) ,    0,
m

i k i k i

i
i k

x x x x

 

 

It follows that f(xk) ≥ f(x
*
). 

 

 

Consider Figure 3.3. Suppose DM prefers x1 to x2. We use this preference 

information to generate a cone which can be seen in Figure 3.3. Any alternative 

which is in the convex cone (Region A), is dominated by the cone. Any alternative in 

the convex cone (Region A) will be inferior and this alternative will be eliminated.  
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Figure 3.3: The Illustration of Cone, Korhonen, Wallenius and Zionts (1984) 

 

Köksalan, Karwan and Zionts (1984) construct and use dummy alternatives in order 

to reduce number of questions. They combine the approach of Korhonen, Wallenius 

and Zionts(1984) with the idea of using dummy alternatives in cone generators.  The 

dummy alternatives they propose are convex combinations of the existing 

alternatives. The cone generated with a dummy alternative is better than the cone 

with existing alternative. Instead of comparing x1 and x2, xd and x2 are compared. 

They get extra region and the alternatives in this region can be eliminated from 

further consideration. They demonstrate a cone of inferior solutions for using dummy 

alternatives in Figure 3.4. If DM prefers x1 to x2, alternatives in Region A will be 

eliminated. If DM prefers xd to x2, alternatives in Region A and alternatives in 

Region B will be eliminated. 

Köksalan and Taner (1989) make improvements to reduce required number of 

pairwise questions. They develop variations of the dummy alternatives. They use 

dummy alternatives that are dominated alternatives. Dummy alternatives are used as 

cone generator. Instead of comparing x1 and x2, x1 and xd are compared in Figure 3.5. 
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Figure 3.4: Cones with dummy alternatives, Köksalan, Karwan and Zionts (1984) 

 

If DM prefers x1 to x2, alternatives in Region A will be eliminated. If DM prefers x1 

to xd, alternatives in Region B will be eliminated. They get extra region and the 

alternatives in this region can be eliminated from further consideration. 

 

 

Figure 3.5: Cones with dummy alternatives, Köksalan and Taner (1989)  
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Köksalan (1989) develop an approach to reduce the total number of required 

questions. The decision maker has a quasiconcave utility function. He uses two 

different utility functions, one is quadratic and the other is Tchebyshev utility 

function. He uses the ideal point as an evaluation criteria. He selects alternatives as 

cone generator. The selected alternatives are closest to an ideal point in euclidean 

distance. He identifies and ranks alternatives. Highly ordered alternatives are used as 

cone generators. In each iteration, he uses alternatives that maximize utility 

functions, change with the least preferred cone generator. 

Taner and Köksalan (1991) experiment to see the effect of cones. They use two 

different utility functions: quadratic and linear utility function. They estimate utility 

functions using the decision maker preferences. They select alternatives that have 

high rankings. Their approach has two variations: finding the best alternative and 

finding the worst alternative. 

Lahdelma, Salminen and Kuula (2002) evaluate two methods: Salminen’s piecewise 

linear prospect (PLP) theory (Salminen,1994) and the convex cone method by 

Korhonen, Wallenius and Zionts (KWZ) (Korhonen et al.,1984). They use randomly 

generated non-dominated alternatives in the test. The piece linear prospect method is 

more efficient than the convex cone method when there are 3 criteria or more. For 

two criteria problems, the convex cone method is slightly better than the piecewise 

linear prospect method. 

Dehnokhalaji et al. (2011) generate convex cone to get more preference information. 

They develop an approach to find a strict partial order for a set of multiple criteria 

alternatives. Dehnokhalaji et al. (2014) extend their previous research and propose an 

algorithm to find a strict total order for a set of multiple criteria alternatives. They 

utilize the idea of convex cone based partial order. 

 

3.2.3 Interactive Algorithms 

 

Interactive algorithms gather information from the DM when needed throughout the 

algorithm. In the following steps, they use this information to make a decision. The 
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preferences of DM can give some information about the utility function. In this 

study, we use an iterative algorithm, where, in each iteration, we calculate the 

possibility that an alternative is preferred to another one for each pair. According to 

some function of these possibilities, we select the pair to be demonstrated to the DM 

for comparison. According to DM’s answer, we update the possibilities in the next 

iteration.  

 MCDM is considered to solve decision with multiple and conflicting criteria. There 

is not a unique optimal solution for many problems.   Luque et al. (2011) state that 

there are many methods to solve multiple criteria decision making problems. Their 

aim is to find the best solution of many optimal solutions. MCDM methods must 

help the decision maker in decision making process. For this reason, interactive 

methods are useful for MCDM problems. We get information about feasible 

solutions.  

Köksalan and Wallenius (2012) state that interactive approaches are used for 

multiple criteria decision making problems. They describe the main structure of the 

interactive algorithms which are developed by other authors. Köksalan and 

Wallenius (2012) define the main structure of an interactive algorithm as follows: 

 It keeps a best known alternative as the incumbent throughout. 

 It asks the DM to compare pairs of alternatives. 

 Using the preference information provided by the DM, it generates all 

possible preference cones. Every subset of alternatives whose least preferred 

member is known can be used to generate a cone. 

 It eliminates all alternatives that are dominated by any of the cones. 

 It continues asking the DM preference information and eliminating 

alternatives inferior to cones until a single alternative is left. 

Köksalan and Ulu (2003) propose an interactive approach, assuming an underlying 

additive linear utility function for the sorting problem. They use the preferences of 

the DM to assign alternatives to different categories. Köksalan and Özpeynirci 

(2009) propose an interactive approach that combines UTADIS and Köksalan and 

Ulu (2003) approaches, assuming an underlying additive utility function. They find 

the priority of categories to classify all the alternatives. DM assigns alternatives to 

their categories, if it is feasible and they place all alternatives based on DM past 



 

21 
 

preferences. Buğdacı et al. (2012) propose an interactive probabilistic sorting 

method. They calculate the probability for each unassigned alternative. They find the 

critical probability level. Unassigned alternative probability is compared with the 

critical probability level to assign alternatives to class.  

Luque, Ruiz and Miettinen (2011) define a global formulation which includes several 

interactive methods. DM prefers to provide preference information. This preference 

can change according to the interactive method used in the program. 
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CHAPTER 4 

 

FINDING THE MINIMUM NUMBER OF PAIRWISE 

QUESTIONS 

 

In this chapter, we develop two mathematical programming models to find the 

minimum number of questions. With the first model, we find the alternatives 

eliminated by each cone and then this information is used as an input in the second 

model that finds set of cones that eliminate all alternatives but the best alternative 

with minimum number of questions. The inputs and outputs of the two models are 

shown in Figure 4.1. 

 

 

 

Figure 4.1: Mathematical Models - Finding the Minimum Number of Questions 
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We generate utility functions to represent the decision maker’s preferences. We aim 

to develop an interactive algorithm to select the best alternative by asking few 

questions to the decision maker. We use the results of mathematical programming as 

a guide while developing our interactive algorithm. 

 

4.1 Model for Finding the Alternatives Eliminated by Each Cone 

 

In the model that finds the alternatives eliminated by each cone, we use decision 

maker preferences and all pairwise questions as input data. We generate all single 

and double cones.  

Below, we present two models (i) single cone model and (ii) double cone model. For 

the single cone model, we assume Cone(xi, xk) is generated when DM prefers 

alternative i to alternative k. The model checks if Cone(xi, xk) dominates alternative t 

for all possible (i,k,t) triples. For the double cone model, we assume Cone(xi, xs, xk ) 

is genereated when DM prefers alternatives i and s to alternative k. The model checks 

if this cone dominates alternative t for all possible (i,s,k,t) quadruplets.  

 

The model that finds alternatives eliminated by one single cone, is given below: 

 

Sets 

Alternatives;       k, i, t = {1, 2, 3,…, m} 

Criteria numbers;      q = {1, 2, …,p} 

Positive Variable 

Positive variable; µ 

Variable  
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Model Single Cone 

Objective Function; 

ZMax  

The objective is maximizing to check whether Cone(xi, xk) dominates alternative 

xt 

Subject to; 

qxxxx kqtqiqkq ,)(  

 

,0  

If ≥ 0 in the solution of the model, xt which is dominated by Cone (xi, xk), is 

eliminated. If < 0 in the solution of the model, xt which is non-dominated, is not 

eliminated by Cone (xi, xk).  

The model that finds alternatives eliminated by one double cone, is represented as 

following. 

Sets 

Alternatives;        i, s, k, t = {1, 2, 3,…, m} 

Criteria numbers;      q = {1, 2,…, p} 

Positive Variable 

Positive variable; µi 

Positive variable; µs 

Variable  
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Model Double Cone 

Objective Function; 

ZMax  

The objective is maximizing  to check whether Cone(xi, xs, xk) dominates 

alternative xt 

Subject to;
  

qxxxxxx kqtqsqkqsiqkqi ,)()(  

,0i  

,0s  

If ≥ 0 in the solution of the model, xt which is dominated by Cone (xi, xs, xk), is 

eliminated. If < 0 in the solution of the model, xt which is non-dominated, is not 

eliminated by Cone (xi, xs, xk). 

We have to solve Model (i,k,t) for all possible alternative triples (i,k,t). Instead, we 

can solve a single (but large) model which is the combination of all possible models 

The model that finds alternatives eliminated by all single cones, is represented as 

follows. 

 Sets 

Alternatives;       k, i, t = {1, 2, 3,…, m} 

Criteria numbers;      q = {1, 2,…, p} 

Positive Variable  

Positive variable; µikt  

Variable ikt  
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Model Combined Single Cones 

Objective Function; 

m

kt
it

t

ikt

m

xfxf
k

m

i

ki

ZMax
1

)()(
11

 

The objective function combines the objective functions of the individual models 

written for all possible (i, k, t) triplets.         

Subject to; 

tkiqxxxx kqtqiktiqkqikt ,,,)(  

tkiikt ,,0  

The constraint set includes the constraints of the individual models for all (i, k, t) 

triplets. If ikt ≥ 0 in the solution of the model, xt which is dominated by Cone (xi, 

xk), is eliminated. If ikt < 0 in the solution of the model, xt which is non-dominated, 

is not eliminated by Cone (xi, xk). The above model considers all single cones. We 

develop a similar model for double cones.  

 

Sets 

Alternatives;       k, i, s, t = {1, 2, 3,…, m} 

Criteria numbers;      q = {1, 2,…, p} 

Positive Variable 

Positive variable; µikt 

Variable 

Variable;
 iskt  
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Model Combined Double Cones 

Objective Function; 

m

kt
st
it

t

iskt

m

xfxf
xfxf

k

m

is
s

m

i

ks

ki

ZMax
1

)()(
)()(

111  

The objective function combines the objective functions of the individual models 

written for all possible (i, s, k, t).       

Subject to; 

 

qktsixxxxxx kqtqisktsqkqsktiqkqikt ,,,,)()(  

tkiikt ,,0  

 

The constraint set includes the constraints of the individual models for all (i, s, k, t). 

If iskt ≥ 0 in the solution of the model, xt which is dominated by Cone (xi, xs, xk), is 

eliminated. If iskt < 0 in the solution of the model, xt which is non-dominated, is not 

eliminated by Cone (xi, xs, xk). 

We generate all single and double cones. We find the alternatives eliminated by each 

cone.  On the other hand, the best alternative is found by this model. 

 

4.2 Model for Finding the Minimum Number of Questions 

 

In the model that finds the minimum number of questions required to reach the best 

alternative, we use the set of alternatives eliminated by each cone, pairwise questions 
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required for each cone and all single and double cones generated as input data which 

are the output data from the first model. We find the best alternative and the selected 

set of cones with minimum number of questions. 

 

Sets 

Alternatives;       i, j = {1, 2, 3,…, m} 

Cones;                 c = {1, 2, 3,…, n } 

 

Decision Variables 

 

             

 

 

 

otherwise  ,0

selected is  cone if ,1 c
yc  

 

 

Parameters 

 

otherwise  ,0

 and  esalternativ of comparison  therequires  cone if ,1 jic
ac

ij

 

 

 

otherwise  ,0

 ealternativ dominates  cone if ,1 ic
bc

i

 

 

 

1 if we ask DM to compare alternatives  and 

0 otherwise                                                        
ij

i j
x
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Model for Finding Minimum Number of Questions 

Objective Function; 

m

i

m

xfxf
ji

j

ij

ji

xZMin
1

)()(

1

 
 

The objective function is to minimize the number of pairwise questions asked to the 

DM.  

Subject to; 

)(1 *

1

iiiyb c

n

c

c

i  

The constraint pick cones to dominate all alternatives except the best one. 

)()(,,, jxfixfijc

c

ij cjixya  

The constraint provides that a cone cannot be used if a required question is not asked. 

}1,0{

}1,0{

c

ij

y

x
 

We mention that x and y are binary variables. We find the set of cones that eliminates 

all alternatives except the best one with minimum number of questions. 

 

4.3 Computational Test and Analysis of the Results 

 

In the computational tests, we consider five different levels for the number of 

alternatives as 10, 30, 50, 80, 100. We use three different utility functions (linear, 

quadratic, Tchebyshev). In each utility function, three different set of weights are 



 

30 
 

used ((1/3,1/3,1/3),(0.7,0.2,0.1),(0.1,0.6,0.3)). We take five instances for each 

combination, which are shown in Table 4.1. Total number of problems is 225. 

 

Table 4.1: The Characteristic of Computational Test 

 

Level 

Characteristic 1 2 3 4 5 

Problem Size 10 30 50 80 100 

DM Value 

Function Type 
Linear Quadratic Tchebycheff 

  DM Weight 0.33, 0.33, 0.33 0.7, 0.2, 0.1 0.1, 0.6, 0.3 

  

 

We use a 674 non-dominated altenatives with three criteria instance used by 

Özpeynirci, Köksalan and Lokman (2013). We randomly select the required number 

of nondomianted alternatives among this data set. We use GAMS and C++ 

programming language to implement our models. Combined double cone model 

cannot be implemented for 80 and 100 alternatives, because of the incapabilites of 

C++ programming language. 

The detailed results on 30 alternatives for each instance can be seen in Table 4.2. We 

have 435 pairwise questions. Besides the minimum number of required questions, 

Table 4.2 indicates the minimum number of required questions based on the order of 

distance. For example, for instance no 1, the pair of alternatives with the largest 

distance among the selected ones is in the rank 174 when we sort the pairs in non-

decreasing order of distances. We understand that there is a close relation between 

the order of distance and required questions.  

The detailed results on 5 different alternative sizes can be seen in Tables 4.3, 4.4, 4.5, 

4.6 and 4.7. Tables include five instances for each alternative. There are 8 columns in 

these tables. The first column indicates DM utility functions. The second column 

indicates the weight set of utility function. We implement a data set for two 

situations. In the first situation, we generate and use only single cone. In the other 

situation, we generate and use both single and double cone. We state minimum, 
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maximum and average number of required questions in the tables for all instances. 

We separate these findings into two parts according to cone types.   

 

Table 4.2: The Detailed Results for 30 Alternatives 

No Instances 
N.of

Alt. 

Utility 

Function 
Weights 

N.of Questions 

(Single Cones) 

N.of Questions 

(Single and Double 

Cones) 

Distance 

1 1 30 Quadratic 1 12 11 174 

2 1 30 Quadratic 2 9 9 122 

3 1 30 Quadratic 3 9 8 158 

4 1 30 Linear 1 12 11 174 

5 1 30 Linear 2 5 5 113 

6 1 30 Linear 3 2 2 160 

7 1 30 Tchebycheff 1 10 10 126 

8 1 30 Tchebycheff 2 7 7 263 

9 1 30 Tchebycheff 3 9 8 158 

10 2 30 Quadratic 1 15 14 88 

11 2 30 Quadratic 2 6 6 88 

12 2 30 Quadratic 3 9 8 153 

13 2 30 Linear 1 12 11 91 

14 2 30 Linear 2 5 5 357 

15 2 30 Linear 3 7 7 153 

16 2 30 Tchebycheff 1 12 12 135 

17 2 30 Tchebycheff 2 7 7 357 

18 2 30 Tchebycheff 3 8 7 153 

19 3 30 Quadratic 1 12 12 75 

20 3 30 Quadratic 2 8 7 252 

21 3 30 Quadratic 3 10 9 99 

22 3 30 Linear 1 13 13 78 

23 3 30 Linear 2 6 6 176 

24 3 30 Linear 3 6 6 88 

25 3 30 Tchebycheff 1 11 11 80 

26 3 30 Tchebycheff 2 8 7 252 

27 3 30 Tchebycheff 3 8 7 94 

28 4 30 Quadratic 1 12 12 134 

29 4 30 Quadratic 2 10 10 179 

30 4 30 Quadratic 3 9 9 200 

31 4 30 Linear 1 13 12 134 

32 4 30 Linear 2 7 7 234 

33 4 30 Linear 3 7 7 200 

34 4 30 Tchebycheff 1 11 11 134 

35 4 30 Tchebycheff 2 9 9 164 

36 4 30 Tchebycheff 3 7 7 119 

37 5 30 Quadratic 1 13 13 199 

38 5 30 Quadratic 2 6 6 111 

39 5 30 Quadratic 3 7 7 237 

40 5 30 Linear 1 12 11 133 

41 5 30 Linear 2 4 4 146 

42 5 30 Linear 3 5 5 90 

43 5 30 Tchebycheff 1 13 13 62 

44 5 30 Tchebycheff 2 6 6 146 

45 5 30 Tchebycheff 3 7 7 238 
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Table 4.3: The Minimum Number of Questions for 10 Alternatives 

10 Alternatives Single Cone Single and Double Cone 

Utility F. Weight Min Avr Max Min Avr Max 

Linear 1 4 5.6 7 4 5.6 7 

 2 4 4.4 5 4 4.4 5 

 3 4 5.4 7 4 5.4 7 

Tcheb. 1 5 5.8 7 5 5.8 7 

 2 3 4.4 6 3 4.4 6 

 3 4 5.2 7 4 5.2 7 

Quadratic 1 4 6 8 4 6 8 

 2 4 4.6 6 4 4.6 6 

 3 5 5.6 7 5 5.6 7 

 

 

 

 

Table 4.4: The Minimum Number of Questions for 30 Alternatives 

30 Alternatives Single Cone Single and Double Cone 

Utility F. Weight Min Avr Max Min Avr Max 

Linear 1 12 12.4 13 11 11.6 13 

 2 4 5.4 7 4 5.4 7 

 3 2 5.4 7 2 5.4 7 

Tcheb. 1 10 11.4 13 10 11.4 13 

 2 6 7.4 9 6 7.2 9 

 3 7 7.8 9 7 7.2 8 

Quadratic 1 12 12.8 15 11 12.4 14 

 2 6 7.8 10 6 7.6 10 

 3 7 8.8 10 7 8.2 9 
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Table 4.5: The Minimum Number of Questions for 50 Alternatives 

50 Alternatives Single Cone Single and Double Cone 

Utility F. Weight Min Avr Max Min Avr Max 

Linear 1 12 14.6 19 11 14 18 

 2 6 7.6 9 6 7.6 9 

 3 7 8.4 9 6 8 9 

Tcheb. 1 11 12.2 13 11 11.8 13 

 2 5 7.2 9 5 7.2 9 

 3 6 7.6 9 6 7.2 9 

Quadratic 1 12 14.6 19 11 14 18 

 2 6 7.6 9 6 7.6 9 

 3 7 8.4 9 6 8 9 

 

 

 

 

 

Table 4.6: The Minimum Number of Questions for 80 Alternatives 

80 Alternatives Single Cone 

Utility F. Weight Min Avr Max 

Linear 1 8 16 19 

  2 8 8.4 10 

  3 6 7.2 9 

Tcheb 1 12 13.6 15 

  2 6 7.4 10 

  3 7 9 12 

Quadratic 1 16 18.8 21 

  2 6 9.8 12 

  3 8 8.6 10 

 

 

 



 

34 
 

 

 

 

 

Table 4.7: The Minimum Number of Questions for 100 Alternatives 

100 Alternatives Single Cone 

Utility F. Weight Min Avr Max 

Linear 1 17 19.4 21 

  2 7 9 11 

  3 8 9 10 

Tcheb 1 12 13.6 15 

  2 6 7.6 10 

  3 7 9 11 

Quadratic 1 18 20 23 

  2 9 10.2 12 

  3 8 9.8 14 

 

 

 

Analysis of the Results 

 

We find the best alternative and the set of cones that eliminates all alternatives with 

minimum number of questions. We calculate euclidean distances between 

alternatives in each pairwise alternatives. Distance between alternative a and b is the 

lenght of the line. For each pairwise alternatives, we calculate, 

p

q

qq babad
1

2)(),(  

We sort the pairs in non-decreasing order of distances. We calculate an average of 

the distances between alternatives in required questions. We consider first 35% of the 

pairs because of the average of the distances. Generally, required questions are in the 
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first 35% of the pairs. In Table 4.2, it is clear that there is a close relation between 

required questions and the order of distances in each pairwise question. We use the 

distances between alternatives in each pairwise question to develop our interactive 

algorithms. 

When we analyze the results of the computational test, we also observe that the 

minimum number of required questions depends on the number of eliminated 

alternatives by each cone.   

Combined double cone model cannot be implemented for 80 and 100 alternatives, 

because of the incapabilites of C++ programming language. We compare single and 

double cones for 10, 30 and 50 alternatives. When we consider the single and double 

cones together, there is a slight decrease on the number of questions that is required 

to find the best alternative compared to considering only the single cones. It is clear 

that solving the model for double cones creates disadvantage in terms of solution 

time. 
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CHAPTER 5 

 

INTERACTIVE ALGORITHM 

 

In this chapter, we develop interactive algorithms. We then compare our interactive 

algorithms. Two interactive algorithms are compared with the results of 

mathematical models based on the minimum number of required questions. We 

implement our interactive algorithms to supplier selection problem. 

 

5.1 Overview of the Algorithm 

 

We aim to develop an interactive algorithm to select the best alternative by asking 

few questions to the DM. We select the best one in m alternatives with using p 

criteria. Through the mathematical models defined in Chapter 4, we find minimum 

number of required questions to reach the best solution and strategiesfor selecting the 

alternative pairs to be asked to the DM. When we analyze the results of the 

computational test, we see that there is a close relationship between the distances 

between the alternatives in each pairwise question and the minimum number of 

required questions.  We use the distances between alternatives in each pairwise 

question to develop our interactive algorithms. On the other hand, the number of 

eliminated alternatives by each cone, which affect our selection process, is another 

question strategy. We calculate the distances between alternatives for each pair. We 

find the alternatives eliminated by each cone. For each pairwise question, we find the 

minimum and the maximum values of utility functions for each alternative. We 
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calculate the possibility that an alternative is preferred to another one for each pair 

and we use this information to determine expected number of eliminated alternatives. 

We ask the DM to compared the selected alternatives. With new preferences, we 

calculate the possibility that alternative a is preferred to alternative b for each (a, b) 

pair. This procedure continues until all alternatives are eliminated other than the best 

alternative. We propose two different approaches. With the first algorithm, we use 

the sum of eliminated alternatives for each (a, b) and (b, a) pair. In the other 

algorithm, we use the minimum of eliminated alternatives for each (a, b) and (b, a) 

pair while picking the maximum.   

 

5.2 Finding Utility Ranges 

In order to calculate the possibility that an alternative is preferred to another one (for 

each pair of alternatives), we need to find the minimum and the maximum values of 

utility functions for each alternative.  

Sets 

Alternatives;        i = {1, 2, 3,…, m} 

Criteria numbers;      p = {1, 2, 3} 

Positive Variable 

Positive variable; µL 

Positive variable; wL 

Model Maximum Utility Function  

 

Objective Function; 

 ( )LMax Z i
 

The objective is maximizing the utility function for each alternative i. 
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Subject to; 

iqwqixi
p

q

LL ,)(),()(
1

  

iqw
p

q

L ,1)(
1

 

,0L  

,0Lw  

The model provides the maximum value of utility function which is used for 

possibility calculation. 

 

Sets 

Alternatives;        i = {1, 2, 3,…, m} 

Criteria numbers;      p = {1, 2, 3} 

Positive Variable 

Positive variable; µL 

Positive variable; wL 

Model Minimum Utility Function  

 

Objective Function; 

 ( )LMin Z i                                                       

The objective is minimizing the utility function for each alternative i. 
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Subject to; 

iqwqixi
p

q

LL ,)(),()(
1

 

iqw
p

q

L ,1)(
1

 

,0L  

,0Lw  

The model provides the minimum value of utility function which is used for 

possibility calculation. 

 

5.3 Possibility Computation 

 

In this section, we show how the possibility that each alternative is preferred to 

another one is calculated. We utilize a uniform possibility distribution. Let fmax(a) 

and fmin(a) be the maximum and minimum utility values for alternative a under the 

information taken from the DM so far. Let P(a, b) be the possibility that alternative a 

is preferred to alternative b. Three cases are possible considering fmax(a), fmin(a) , 

fmax(b) and fmin(b).  
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Case 1: If  fmax (a) >  fmax (b) and  fmin (a) >  fmin (b) (Figure 5.1), 

 

 

Figure 5.1: Case 1 
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Case 2: If  fmax (a) > fmax (b) and fmin (a) <  fmin (b) (Figure 5.2), 

 

 

Figure 5.2: Case 2 
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Case 3: If max f (a) > max f (b) and min f (a) < min f (b) (Figure 5.3), 

 

 

Figure 5.3: Case 3 

 

1),( baP
 

 

 

5.4 Selecting the Next Question 

 

In this section, we determine which pairwise question can be used in our selection 

process. We develop two algorithms using different strategies. Both algorithms use 

two types of information:  

1) P(a,b): the possibility that DM prefers alternative a to altenative b 

2) NE(a,b): the number of alternatives that will be eliminated by Cone(xa,xb)  

For the first algorithm, we find the alternative pair (a,b) that maximizes the following 

term 

 )}},(),();,(),(){min{,max( abNEabPbaNEbaPba
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For the second algorithm, we find the alternative pair (a,b) that maximizes the 

expected number of eliminated alternatives that is computed with the following term 

 )},(),(),(),(){,max(],[ abNEabPbaNEbaPbabaE  

In the first algorithm, we want to maximize the minimum of eliminated alternatives 

for each pairwise question. In Figure 5.4, it is clear that there are two cones: (x1, x2)  

and (x2, x1). We aim to maximize the minimum of eliminated alternatives. Cone (x2, 

x1), which dominates three alternatives, affect our selection process due to having the 

minimum of eliminated alternatives. This approach, which is a stable method, control 

both sides in order to find the best alternative with the minimum number of 

questions. 

In the second algorithm, we use the sum of eliminated alternatives for each pairwise 

question. In Figure 5.1, it is clear that there are two cones: (x1, x2)  and (x2, x1). We use 

the sum of eliminated alternatives for each pairwise question. Cone (x2, x1) dominates 

three alternatives. Cone (x1, x2) dominates four alternatives. There are seven 

dominated alternatives, that affects our selection process. This approach, which is not 

a stable method, control only the expected number of eliminated alternatives in order 

to find the best alternative with the minimum number of questions. 

 

 

Figure 5.4: Using the Number of Eliminated Alternatives By Each Cone 
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5.5 The Algorithm 

 

We propose two different approaches to select the best alternative by asking few 

questions to the DM. With the first algorithm (Algorithm A), we use the minimum of 

eliminated alternatives for each (a, b) and (b, a) pair while picking the maximum.  In 

the other algorithm (Algorithm B), we use the sum of eliminated alternatives for each 

(a, b) and (b, a) pair. 

 

We present the steps of the Algorithm A, 

 

Step 1:  Calculate the distances between each pair of alternatives. Sort the pairs in 

non-decreasing order of distances and consider first 35% of the pairs.  

 

Step 2: Find the minimum and the maximum values of utility functions for each 

alternative. Calculate the possibilities.  

 

Step 3: Find expected number of eliminated alternatives for each pair. Ask the DM 

to compare the pair of alternatives which has the highest minimum number of 

expected eliminated alternatives.  

 

 Step 4: If only one alternative is left, go to step 4. If more than one alternatives are 

left, go to step 0. 

 

 Step 5: The alternative is the most preferred solution. Stop. 
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We present the steps of the Algorithm B, 

Step 1: Calculate the distances between each pair of alternatives. Sort the pairs in 

non-decreasing order of distances and consider first 35% of the pairs.  

 

Step 2: Find the minimum and the maximum values of utility functions for each 

alternative. Calculate the possibilities.  

 

Step 3: Find expected number of eliminated alternatives for each pair. Ask the DM 

to compare the pair of alternatives which has the highest sum of expected eliminated 

alternatives.  

 

 Step 4: If only one alternative is left, go to step 4. If more than one alternatives are 

left, go to step 0. 

 

 Step 5: The alternative is the most preferred solution. Stop. 

 

5.6 Computational Tests 

 

We propose two interactive algorithms to select the best alternative by asking few 

questions to the DM. One is to use the sum of eliminated alternatives for each sides. 

The other is to use the minimum of eliminated alternatives for each sides while 

picking the maximum. We develop mathematical models to determine the minimum 

possible number of questions. We test to compare two different algorithms under 

different utility functions. Also two interactive algorithms are compared with the 

results of mathematical models based on the minimum number of required questions. 

On the other hand, we compare our algorithms without calculating the distances 

between alternatives in each pairwise question. The detailed results on 5 different 
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alternative sizes can be seen in Tables 5.1, 5.2, 5.3, 5.4 and 5.5. Tables include five 

instances for each alternative. There are 8 columns in these tables. The first column 

indicates DM utility functions. The second column indicates the weight set of utility 

function. We implement a data set on mathematical models for two situations. In the 

first situation, we generate and use only single cone which is indicated in the third 

column. In the other situation, we generate and use both single and double cone 

which is indicated in fourth column. We implement a data set on algorithms for two 

situations. A35 and B35 mean that we calculate the distances between alternatives in 

each pairwise question and we sort the pairs in non-decreasing order of distances and 

consider first 35% of the pairs. A100 and B100 mean that the order of distances in 

each pairwise question is not important for us and we consider all pairs. We state the 

results of our four algorithms in the fifth, sixth, seventh and eighth columns.  

 

 

 

Table 5.1: The Results of Comparison Between Algorithms and Mathematical Model 

for 10 Alternatives 

10 Alternatives Models Algorithms 

Utility F. Weight Single C. Double C. A100 B100 A35 B35 

Linear 1 5.6 5.6 6.8 8.4 6.8 7.6 

  2 4.4 4.4 6.6 8.4 6.6 7.6 

  3 5.4 5.4 7 8 6.8 7.8 

Tcheb 1 5.8 5.8 7 8.6 6.8 7.8 

  2 4.4 4.4 6.6 8.4 6.6 7.6 

  3 5.2 5.2 7.2 7.8 7.2 7.2 

Quadratic 1 6 6 7.4 8.6 7.4 8.2 

  2 4.6 4.6 6.6 8.4 6.6 7.6 

  3 5.6 5.6 7.2 8.6 7.2 8 
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Table 5.2: The Results of Comparison Between Algorithms and Mathematical Model 

for 30 Alternatives 

30 Alternatives Models Algorithms 

Utility F. Weight Single C. Double C. A100 B100 A35 B35 

Linear 1 12.4 11.6 17.2 27.8 16.8 26.4 

  2 5.4 5.4 12 12 12.2 14.8 

  3 5.4 5.4 11 17.4 11.8 19.2 

Tcheb 1 11.4 11.4 17.8 28.2 17.2 26.8 

  2 7.4 7.2 13.4 15 11.6 17.6 

  3 7.8 7.2 13.6 21.2 13.6 19.4 

Quadratic 1 12.8 12.4 17.8 28.2 17.6 26.8 

  2 7.8 7.6 13.6 15.2 11.8 17.2 

  3 8.8 8.2 13.4 24 13.6 22.6 

 

 

 

 

Table 5.3: The Results of Comparison Between Algorithms and Mathematical Model 

for 50 Alternatives 

50 Alternatives Models Algorithms 

Utility F. Weight Single C. Double C. A100 B100 A35 B35 

Linear 1 15.2 12.2 22.6 46.4 22.4 43 

  2 6.8 6.6 15.4 17.6 15.8 16.2 

  3 8.8 8.8 18 26 17.4 24.8 

Tcheb 1 12.2 11.8 23 44.8 22.8 41.4 

  2 7.2 7.2 15.8 17.2 15 16.4 

  3 7.6 7.2 19.6 36.4 18.6 33.6 

Quadratic 1 14.6 14 22.6 46.4 22.2 42.6 

  2 7.6 7.6 14 16.6 14.4 16 

  3 15.2 12.2 22.6 46.4 22.4 43 
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Table 5.4: The Results of Comparison Between Algorithms and Mathematical Model 

for 80 Alternatives 

80 Alternatives Models Algorithms 

Utility F. Weight Single C. Double C. A100 B100 A35 B35 

Linear 1 16 * 25 61.8 24.8 59.8 

  2 8.4 * 18.6 29 18.4 32 

  3 7.2 * 18.8 38.8 18.6 39.2 

Tcheb 1 13.6 * 31.8 66.6 31.6 63.6 

  2 7.4 * 27.8 32 21.6 31 

  3 9 * 24 43.6 24.4 46.4 

Quadratic 1 18.8 * 30.8 72.8 30.6 70.6 

  2 9.8 * 20.6 31.6 20.2 32.2 

  3 8.6 * 19.8 43.2 19 46.6 

 

 

 

 

Table 5.5: The Results of Comparison Between Algorithms and Mathematical Model 

for 100 Alternatives 

100 Alternatives Models Algorithms 

Utility F. Weight Single C. Double C. A100 B100 A35 B35 

Linear 1 19.4 * 33.2 93.8 33 90.8 

  2 9 * 19.8 34 20.6 37 

  3 9 * 19.4 57.8 18.6 52.2 

Tcheb 1 13.6 * 32.2 89.2 33 88 

  2 7.6 * 23 39 22.6 38.8 

  3 9 * 22.8 68 24.4 68.2 

Quadratic 1 20 * 33 95.6 32.2 92.2 

  2 10.2 * 22 39.6 21.8 40 

  3 9.8 * 21.8 64.4 21.2 62.4 

 

 

 

 



 

48 
 

We test to compare two different algorithms under different utility functions. Also 

two interactive algorithms are compared with the results of mathematical models 

based on the minimum number of required questions.  

The minimum number of required questions in Algorithm A are less than Algorithm 

B’s in two situations. It is obvious that Algorithm A is more efficient than Algorithm 

B. There is a great difference between each other according to required questions. 

However, the required questions in our algorithms match only in few instances with 

the minimum number of questions in mathematical models.  

We calculate the distances between alternatives in each pairwise question. We 

benefit from non-decreasing order of distances according to the minimum number of 

required questions. There is a decrease on the number of required questions when we 

calculate the distances between alternatives in each pairwise question. 

The other finding is about the weight set of utility function. The first weight set 

(0.33, 0.33, 0.33) for all utility functions require more questions than the other 

weight sets to both mathematical models and algorithms. 

 

5.7 An Application to Supplier Selection Problem 

 

We propose two interactive approaches to multiple criteria selection problems. We 

implement our algorithms on a supplier selection problem from Benyoucef, Ding and 

Xie (2003). There are 10 suppliers evaluated on 4 criteria, which are delivery, 

quality, price and service after sale. After applying Analytic Hierarchy Process 

(AHP), the corresponding weights of these criteria are found as 0.4, 0.3, 0.2 and 0.1, 

respectively. We assume that the DM has a linear utility function. The scores of 

alternative suppliers on 4 criteria are given in Table 5.6.  
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Table 5.6: Data of supplier selection problem 

Supplier Delivery Quality Price Service after sale 

Supplier 1 7.2 6.5 7.2 6.2 

Supplier 2 6.5 7.3 6.3 8.2 

Supplier 3 6.3 8.2 5.5 4.8 

Supplier 4 8.8 7.8 7.8 5.7 

Supplier 5 6.3 6.3 5.7 4.7 

Supplier 6 5.3 8.2 5.7 5.7 

Supplier 7 6.5 5.5 7.8 7.3 

Supplier 8 7.3 8.2 4.8 7.3 

Supplier 9 9 7.2 7.7 4.8 

Supplier 10 6.3 7.3 6.3 6.5 

 

 

 

In Table 5.7, we give the results of above supplier selection problem. There are 10 

suppliers evaluated on 4 criteria, which are delivery, quality, price and service after 

sale. We assume that the DM has a linear value function which is indicated in the 

first column. The second column indicates the weight set of utility function. The 

results of mathematical models are in the third and fourth columns. The results of our 

algorithms are indicated in the fifth, sixth, seventh and eighth columns. 

 

Table 5.7: Results of supplier selection problem 

10 Suppliers Models Algorithms 

Utility F. Weight Single C. Double C. A100 B100 A35 B35 

Linear 0.4, 0.3, 0.2, 0.1 7 7 7 9 8 9 

 

 

 

We solve mathematical models and we find the set of cones that eliminates all 

suppliers except the best one with minimum number of questions. We have to ask 
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minimum 7 pairwise questions to the DM. Algorithm A without calculating the 

distances between alternatives in each pairwise question (A100) requires 7 pairwise 

questions that is same result with mathematical models. According to computational 

tests, the order of distance, which has a good effect on our solution, can reduce the 

number of questions to the DM. In spite of this generalization, A100 has a better 

solution than the other algorithms. A100 find the best supplier with 7 pairwise 

questions that is a optimal solution based on mathematical models.  
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CHAPTER 6 

 

CONCLUSION AND FUTURE WORK 

 

In this study, we propose two algorithms to discrete alternative multiple criteria 

selection problems. We use a convex cone method in our study. We use DM 

preferences in order to generate cones. Inferior alternatives, which are identified by 

cones, are eliminated directly. We aim to select the best alternative by asking few 

questions to the DM.  

We develop an interactive algorithm to select the best alternative by asking pairwise 

questions to the DM. One is to maximize the minimum of eliminated alternatives for 

each pairwise question. The other is to use the sum of eliminated alternatives for 

each pairwise question. We develop mathematical models to determine the minimum 

number of questions. In mathematical models, we find two main items such as the 

minimum number of questions and the question strategies for all problems. These 

findings are used to develop an interactive algorithm. The distances between 

alternatives in each pairwise question and the number of eliminated alternatives by 

each cone have a great effect on the minimum number of required questions. In other 

words, we solve decision making process easily in spite of our limited time. We find 

the minimum and the maximum values of utility functions for each alternative in 

order to calculate the possibility that an alternative is preferred to another one for 

each pair. We calculate expected eliminated alternatives with the possibility for each 

pair. 

 We test to compare two different algorithms under different utility functions. Also 

two interactive algorithms are compared with the results of mathematical models 
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based on the minimum number of required questions. On the other hand, we compare 

our algorithms without calculating the distances between alternatives in each 

pairwise question. 

 We analyze the results of the computational test. We compare single and double 

cones. It is obvious that there is a slight decrease on the number of questions that is 

required to find the best alternative. For 80 and 100 alternatives, we can not find the 

results of double cones, due to the incapabilites of C++ programming language. It is 

clear that solving the model for double cones is disadvantageous to our time. 

Using the distance in our algorithms, which provides time savings, reduces the 

number of required questions. In this method, we eliminate nearly the half of all 

pairwise question.  

The required questions in Algorithm A are less than Algorithm B’s. There is a great 

difference between each other according to required questions. However, the 

required questions in our algorithms match only in few instances with the minimum 

number of questions in mathematical models.  

We implement our algorithms on a supplier selection problem from Benyoucef, Ding 

and Xie (2003). We find the set of cones that eliminates all suppliers except the best 

one with minimum number of questions. We have to ask minimum 7 pairwise 

questions to the DM. Although using the distance in our algorithms reduces the 

number of required questions according to computational tests, Algorithm A without 

calculating the distances between alternatives in each pairwise question (A100) has a 

better solution than the other algorithms. A100 find the best supplier with 7 pairwise 

questions that is a optimal solution based on mathematical models.  

We propose three future research directions; (i) to utilize a triangular possibility 

distribution using middlemost weights in addition to minimum and maximum values 

(ii) to check the necessity of higher degree cones (m>2), (iii) to compare our 

interactive algorithms performances with other algorithms available in the literature, 

(iv) to implement for group decision making. 
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