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INTRODUCTION 

Genome-wide screening of transcriptional changes between normal 

cells, cancer cells, and cells in the metastatic processes provides information 

about the molecular basis of various cancer type. With the help of 

bioinformatic analyses, personal approaches can be adopted in the diagnosis, 

treatment, and survival processes of various cancer types including frequently 

observed and rare cancers. Performing bioinformatic analyses before clinical 

and laboratory applications provides great advantages in terms of time and 

money. In this book chapter, genomic-level screening of differentially 

expressed genes performed by using bioinformatic tools in different cancer 

types that support pan-cancer genomic studies will be summarized. 

1.1 The Concept of Differentially Expressed Gene Analysis  

All somatic cells of an organism have the same genome, but starting 

from the embryonic development processes, each cell and cell group 

differentiates to display different functions with changes in the genome. 

Differentiation for different purposes is dependent on the different gene 

expression levels specialized for specific functions in the genome (Shiraki et 

al., 2014). In addition to differentiation, some genes may be expressed in a 

different way than they would normally be, with the effect of different stimuli 

in disease states. There are biochemical processes in a cell that determine 

which genes are actively transcribed and whether they are translated into 

mRNA and proteins. In addition, under certain conditions, the expression of 

these genes (upregulated or downregulated genes) changes under certain 

conditions during pathogenesis such as cancers (Fattahi et al., 2019; Moreira 

et al., 2008; Lin et al., 2014). In case of cancers, Differential Gene Expression 

(DEG) analysis of both RNA and DNA microarray data/RNA-Seq data/cDNA 

microarray data and determined differentially expressed genes (DEGs) are 

used to clarify the different gene status between healthy and disease states 

(primary cancers, metastasis status, etc.). To understand the difference, 

quantitative gene expression-based changes between control and experimental 

groups are compared to each other by performing statistical analysis with the 

help of normalized data (Fang et al., 2012; Dudoit et al., 2002; Storey et al., 

2003; Bullard et al., 2010).  

1.2. Approach to Cancer in terms of Differentially Expressed 

Gene Levels and Pan-Cancer Studies 

Determination of gene expression signatures/profiles in the formation 

of cancers provides important information about biological phenotyping and 



A Look Into Some Recent Advances in Biology, Ecology and Agricultural Practices|220 

 

biological pathway-related processes. In the literature, there are many 

valuable studies in which individual genes or small gene clusters deviating 

from normal changes (such as mutation, expression profiles) are shown in 

different cancers.  

There are more than 200 different types of cancer identified to date. 

In cancers, various types of genetic alterations such as somatic mutations, 

altered gene expression levels, epigenetic aberrations are observed (Tomczak 

et al., 2015).  

If we focus on breast cancer, many studies have shown that breast 

cancer cells differ from normal cells at the gene level. Besides non-genetic 

factors such as physical activity, obesity, menstrual background and alcohol 

usage, genetic based predispositions play important role in breast cancers. 

Mutations can be classified into three classes such as high penetrance 

mutations (TP53, BRCA1-2, P53, PTEN genes, etc.), moderate penetrance 

variants (ATM, CHEK2, BRIP1 genes, etc.), low penetrance variants 

(FGFR2, TOX3, MAP3K1, COX11, NOTCH2/FCGR1B genes etc) 

(Antoniou et al., 2008; Birch et al., 2001; Nelen et al., 1996; Renwick et al., 

2006; Meijers-Heijboer et al., 2002; Seal et al., 2006; Easton et al.,  2007; 

Ahmed et al., 2009; Thomas et al., 2009). Furthermore, oncogene activation 

(such as Human epithelial receptor 2, (HER-2), c-myc, p-53) and tumor-

suppressor gene inhibition (p27, Skp2, breast cancer susceptibility gene 1 and 

2 (BRCA1,2), PTEN, Retinoblastoma (Rb), etc.) can be observed in breast 

cancer development which have been identified various valuable research 

studies (Osborne et al., 2004).  

As can be noticed in the breast cancer studies summarized above, in 

addition to the determination of mutations of individual genes or the 

determination of gene expression levels, pan-cancer studies conducted with 

big data also support these studies in a wide scope. The use of patient gene 

expression data obtained from clinical applications gives us the opportunity to 

work with more heterogeneous patient groups, and this enables more effective 

diagnosis and treatment process planning that can be both personalized and 

generalized in cancer patients. For this reason, The Cancer Genome Atlas 

(TCGA) and the International Cancer Genome Consortium (ICGC) projects 

were conducted in 2005 and 2008, respectively 

(https://www.genome.gov/Funded-Programs-Projects/Cancer-Genome-Atlas) 

(Chin et al., 2011; Tomczak et al., 2015). The Cancer Genome Atlas (TCGA) 

project and TCGA Pan-cancer Clinical Data Resource (TCGA-CDR) provides 

https://www.genome.gov/Funded-Programs-Projects/Cancer-Genome-Atlas
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genetic alterations for almost 33 cancers with 11,000 tumour gene data which 

can be used to determine the survival rates of patients (Liu J et al., 2018).  

1.3. Differentially Expressed Gene Analysis in Cancers 

Although the genetic (mutation accumulation, genome instability, 

gene expression levels (up-regulated or down-regulated genes), etc.) and 

biological mechanisms (tumour triggered inflammation, invasion and 

metastasis, deregulation of energy systems, escaping cell death, increasing the 

proliferation capacity, etc.) that occur in cancer tumorigenesis are standard, 

each patient's cancer status and cancer-related diseases are different from each 

other (Senga et al., 2021; Hanahan et al., 2022). Therefore, although there are 

common processes, cancer is on its way to becoming a personal disease. 

Starting from this point, DEGs can be determined by using big data showing 

patient gene changes and gene densities. Thus, using multiple data and 

bioinformatics tools and making gene-based screening provides us with more 

comprehensive data in a short time. Gene expression data at the genome scale 

provides a profile of differently expressed genes that can distinguish between 

different biological states. This abnormally differentiated gene profile can be 

used successfully to assess prognosis, chemotherapy status, and drug 

sensitivity in a tumour sample (Stevenson et al., 2012).   

There are studies aiming to investigate the DEGs relevant to 

prognosis of various cancers. To achieve this, integrated bioinformatics 

analyses are used with the help of different computer-based and online 

bioinformatic tools.  

1.3.1. Bioinformatic Based Tools used in Patient Gene Data 

Collection for Differentially Expressed Gene Analyses 

To determine DEGs, gene intensity data and microarray data can be 

downloaded from publicly free databases such as Gene Expression Omnibus 

(GEO) Database developed by National Center for Biotechnology Information 

(NCBI) and The Cancer Genome Atlas (TCGA) developed by the National 

Human Genome Research Institute (NHGRI) and the National Cancer 

Institute (NCI). In this book chapter, we will summarize the NCBI GEO 

database. 

The GEO project was initiated in response to the need to store 

multiple gene expression data. For example, with the help of storing and 

grouping the data obtained from gene expression experiments (such 

as  microarray or RNA-Seq experiments) specific to cancers, it is possible to 

https://en.wikipedia.org/wiki/Microarray
https://en.wikipedia.org/wiki/RNA-Seq
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compare cancer to normal with datasets including gene expression data of 

related genes (Edgar et al., 2002; Barrett et al., 2012). 

Publicly available gene data (in here GEO data) can be analysed by 

using statistical platforms such as R software program. R-based GEO data 

analysis can be achieved by using web application such as GEO2R 

(https://www.ncbi.nlm.nih.gov/geo/geo2r/) (Barrett et al., 2012). Furthermore, 

it can also be used via downloading free R software which is also widely used 

in statistical computing area (https://www.r-project.org/). There are packages 

such as BioConductor, repository for bioinformatics software, which can be 

used to compare at least two groups (such as samples and controls) to 

determine which genes are differentially expressed. BioConductor is a project 

and there are developed BioConductor packages (such as Limma for 

microarray and RNA-Seq data) which can be used by using R statistical 

programming language (https://www.bioconductor.org/) (Ritchie et al., 2015). 

Furthermore, there is a BioConductor package named as RankProd which can 

be used to detect DEGs in meta-analysis (Hong et al., 2006)  

1.3.2. Determination of the Biological Relevance and Gene 

Enrichment Analysis  

Upon determination DEGs (up-regulated or down-regulated genes in 

cancer patients), these DEGs can be enriched in different biological processes. 

To make biological sense of the data obtained from the analyses made by 

means of bioinformatic tools in which hundreds or even thousands of gene 

expression data are used, it is necessary to use bioinformatic tools and to 

make sense of these complex processes. For this purpose, bioinformatic tools 

providing gene-annotation enrichment analysis service have been developed. 

Thanks to these tools, it is possible for researchers to identify the biological 

processes, functions, and pathways most suitable for their studies. Some of 

these bioinformatic-based tools and free databases are available and these 

databases that can be used without requiring an ethical permission procedure. 

For instance, The Kyoto Encyclopedia of Genes and Genomes (KEGG) is a 

type of analysis that uses information from genome and gene data. Eventually, 

signalling pathways that can interact at the functional and molecular level are 

identified (Kanehisa, 2002). KEGG pathway analysis can be achieved by 

using web-tools specified for this purpose. For instance, Gene Ontology 

enRIchment anaLysis and visuaLizAtion tool (Gorilla) (http://cbl-

gorilla.cs.technion.ac.il/) and ShinyGO v0.741 

(http://bioinformatics.sdstate.edu/go74/) tools are frequently used to predict 

https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.r-project.org/
https://www.bioconductor.org/
http://cbl-gorilla.cs.technion.ac.il/
http://cbl-gorilla.cs.technion.ac.il/
http://bioinformatics.sdstate.edu/go74/
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enriched GO terms (DEGs) and relate these comprehensive gene lists to 

particular biological process, function or component. The Database 

for Annotation, Visualization and Integrated Discovery (DAVID) is another 

web-based tool which is used by researchers to understand the biological 

relation of high number of differentially expressed genes 

(https://david.ncifcrf.gov/). Furthermore, KOBAS web-based analysis 

database is a tool where KEGG analysis can be performed by using DEGs 

lists (http://bioinfo.org/kobas). It has two modules named as "annotation 

module" and the "enrichment module" and these modules are used to annotate 

the GO terms and relate the biological pathways respectively 

(http://bioinfo.org/kobas). Onto-tools is known as a toolkit to be used as 

―Onto-Express‖, ―Onto-Translate‖, ‖ ―Onto-Design‖, ―Onto-Compare‖ and 

(Draghici et al., 2003). The Signalling Gateway Molecule Pages (SGMP) is a 

database where the interaction between the analysed proteins and signal 

transmission pathways can be determined (Dinasarapu et al., 2011). The 

STRING database is publicly available to predict and identify the interacting 

genes and determine the protein/protein interaction (PPI). For this reason, the 

database contains the data of 14094 organisms and 67.6 million proteins and 

can exert more than 20 thousand interactions (https://string-db.org/). 

Furthermore, there are other web-based tools such as MAPPFinder, GoMiner, 

EASE, GeneMerge and FuncAssociate, GENEONTOLOGY, PANTHER 

Classification System which can be efficiently used in bioinformatic analyses 

(Huang et al., 2009).  

1.3.3. Drug Sensitivity and Drug Resistance Prediction via DEG 

Analysis in Cancers 

DEG analysis can be conducted to determine the drug sensitivity and 

resistance in human diseases. For that reason, Connectivity Map (CMAP) 

database, which was funded by NIH LINCS (Library of Integrated Cellular 

Signatures) project, has been developed and it supplies broad range data also 

for cancer studies (https://www.broadinstitute.org/connectivity-map-cmap) 

(Lamb et al., 2006; Nevins et al., 2007).  In this project, mostly cell line-based 

and patient data-based studies have been conducted to determine gene 

expression patterns upon the interaction of small molecules and certain drugs 

such as estrogen receptor agonists and antagonists, HDAC Inhibitors, 

Phenothiazine, Gedunin, Sirolimus, etc.  The most frequently used cell lines 

are breast cancer cell line (MCF7), leukaemia cell line (HL60), melanoma cell 

line (SKMEL5) and prostate cancer cell line (PC3) in this project (Lamb et 

https://david.ncifcrf.gov/content.jsp?file=release.html
https://david.ncifcrf.gov/
http://bioinfo.org/kobas
http://bioinfo.org/kobas
https://string-db.org/
http://www.lincsproject.org/
https://www.broadinstitute.org/connectivity-map-cmap
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al., 2006).  In addition, Lee Y.S. et al. has been identified acquired gefitinib 

resistance (AGR) related hub-DEGs through network analysis (meta-analysis) 

in lung cancer and epidermoid carcinoma by using PC9 and A431 cell lines, 

respectively (Lee et al., 2015).  

1.3.4. Determination of Hub-Genes and Survival Prediction via 

DEG Analysis in Cancers 

Hub-genes can be predicted via DEG analysis in different cancers 

such as papillary thyroid cancers, breast cancers, lung cancers, cervical 

cancers, hepatocellular carcinoma, kidney cancer (Sun et al., 2021; Xiao et al., 

2018; Xue et al., 2020). Furthermore, DEG analysis can also be conducted to 

predict survival related hub-genes in certain cancers. For instance, Zhu et al. 

(2019) has been shown that autophagy pathway related 16 DEGs are involved 

in survival process in multiple myeloma (MM) patients. They propose that 

autophagy related gene prognostic model can be considered as a basis of 

anticancer therapies in MM patients (Zhu et al., 2019). Similarly, autophagy 

based DEG signature with 3 autophagy-related genes (SQSTM1, BIRC5, and 

FOXO1) and its effect on survival rates has been identified in hepatocellular 

carcinoma patient groups (Lin et al., 2018). In another cancer type named as 

gastrointestinal pan-adenocarcinomas, alternative splicing pattern of multiple 

genes has been predicted and their impact on prognosis and survival of these 

cancer patients have been identified (Lin et al., 2018). Besides, podocan, 

which is a regulatory protein in extracellular matrix (ECM), encoding gene 

PODN has been considered as a biomarker for osteosarcoma patients in both 

diagnosis and prognosis processes. Furthermore, including PODN, the most 

significant 5 genes (PODN, OLFML2B, ACTA2, COL6A3, FAP, and 

COL6A1) have been determined as significantly and differentially expressed 

genes and they are related with the survival of these osteosarcoma patients 

(Yao F., et al. 2021).  In gastric cancers, Wang et al. (2015) has tried to 

predict differentially expressed miRNA patterns as a biomarker via meta-

analysis and they have determined the effects of these miRNAs on both 

survival and treatment responses (Wang et al., 2015).  

1.3.5. Metastasis Status Prediction via DEG Analysis in Cancers 

DEGs analysis can also be done to predict the metastasis status of 

cancers. For instance, Qi et al. (2019) has predicted that there are more than 

1000 differently expressed and methylated genes (677 genes upregulated-

hypomethylated, 361 downregulated-hypermethylated) which are related with 

certain pathways linked to tumorigenesis and metastasis in breast cancer 
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patients (Qi et al., 2019).  Similar study has been conducted by using 

aggressive breast cancer cell line gene expression data and Chen et al. (2015) 

has predict the metastasis related DEGs (such as PTX3, SNAI2, IL-8/6, etc.) 

and related biological processes (such as tyrosine metabolism, calcium 

signalling pathway, etc.) (Chen et al., 2015). On the other hand, colorectal 

cancer originated liver metastasis related DEGs have been predicted by Liu et 

al. (2021) by using gene expression data of cancer patients and they have 

determined that cell adhesion molecules are the molecules which should be 

focused on, and peroxisome proliferator activated receptor (PPAR) signalling 

pathway is the key biological process in their study (Liu et al., 2021).  

CONCLUCSION 

Gene expression profiles and DEG analyses that allow hub-gene 

identification will become much more relevant once prospective and clinical 

laboratory-based studies are performed and data are validated. This will assist 

clinicians to routinely use microarrays to better diagnose and predict cancers 

and enhance the prognosis of cancer patients. 
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