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Abstract: In this study, the active vibration control (AVC) of a cantilever beam with an end
mass is considered first and studied experimentally and through simulation. The Laplace
transform method, Newmark method, and ANSYS are used for simulations. An impulse
force applied to the mass and the velocity actuation applied to the base are assumed to
be disturbance and controlling input, respectively. The displacement of the mass is taken
as the feedback signal in simulations. Four strain gauges are located near the bottom
point, connected with a Wheatstone bridge, and the output voltage of a load-cell amplifier
(LCA) is used as the feedback signal in experiments. Strain feedback is considered in
experiments because it is easy to implement, cost-effective, and can be used in applications.
Experimental displacement signals obtained from the top of the beam are compared with the
output signals from LCA and it is observed that they are approximately linearly dependent.
Velocity input is generated with a servo motor-driven linear actuator in experiments. The
closed loop control is achieved by a personal computer with an Adlink-9222 PCI DAQ card
and a C program in the experiments. The integration of the closed loop control action into
the transient solution with Newmark method and ANSYS is implemented in simulations.
The input reference value is taken as zero for vibration control. The instantaneous value
of the feedback signal at a time step is subtracted from zero to find the error signal value
and the error value is multiplied by the control gain to calculate the controlling signal. The
simulation results obtained with the Newmark method and ANSYS are in good agreement
with the analytical results obtained with Laplace transform method. Simulation results are
also in acceptable agreement with the experimental results for explaining the behavior of
the success of AVC depending on the control gain, Kp. After verifying ANSYS solutions,
the ANSYS procedure is applied to an aircraft wing as a real complex cantilever structure.
The wing, with a length of 810.8 mm, 13 ribs with a length of 300 mm, and NACA 4412
airfoil, is considered in this study. It is observed that the AVC of real engineering structures
can be simulated by integrating control action into transient solution in ANSYS.

Keywords: active vibration control; cantilever structures; ANSYS; aircraft wing

1. Introduction
Flexible cantilever structures are widely used in engineering applications such as

civil engineering structures, construction machines, robot manipulators, aircraft wings,
satellite antennas, solar panels, and marine risers. Flexible structures undergo higher
vibrations and thus vibration control has attracted the attention of many researchers [1].
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Wang et al. [1] studied a cantilever beam with end mass and designed an adaptive boundary
controller to suppress vibration. They used a partial differential equation of the beam.
Lyu et al. [2] proposed a vibration control method for cantilever beams which uses a
combined macro-fiber composite (MFC) and rotary motor actuators. They modeled the
system using Euler–Bernoulli beam theory, used orthogonal polynomials as mode shapes
and obtained superior vibration control with combined actuation as compared with using
actuators alone. Li et al. [3] used a hybrid PID-FxLMS algorithm for active vibration control
(AVC) of a cantilever beam with a piezoelectric stack actuator. They modeled the system in
ABAQUS to obtain a state space model for simulation and verified the simulation results
with experiments. They observed that the vibration suppression performance of the hybrid
control was much better than that of the FxLMS algorithm or traditional PID controller
alone. Amer et al. [4] considered the linear velocity feedback control, the cubic velocity feed-
back control, the non-linear saturation controller, and the positive position feedback (PPF)
controllers and they observed that the PPF controller was the best controller for the AVC of
cantilever beams. Saif et al. [5] explored the direct application of a deep learning technique
and an approach which integrated deep learning into a PID controller for AVC of cantilever
beams. They compared the two techniques to evaluate effectiveness and strengths and
offered their potential applications. Huang et al. [6] studied the AVC of composite can-
tilever beams with the finite element (FE) method and Golla–Hughes–McTavish model.
They optimized the linear quadratic feedback gain using particle swarm optimization.
Djokoto et al. [7] studied a micro-cantilever beam (MCB) with electrorheological fluid (ERF)
support. They presented results showing the vibration controlling of MCB by activating
ERF with an electric field. Cui et al. [8] proposed a finite element model of a piezoelectric
cantilever beam using the Hamilton variation principle. They employed the independent
modal space method based on a linear quadratic regulator and verified the effectiveness of
the proposed model and AVC with numerical solutions and experiments. Umar et al. [9]
employed integrating a non-symmetric Bouc–Wen model with an auto-regressive model
with eXogenous inputs to enhance the AVC of a cantilever beam using MFC. Their ap-
proach showed potential for practical engineering applications. Teoh et al. [10] used the
receptance method for the robust control of DigiTwin Operating Platform. They proposed
an algorithm which involves estimating the transfer function approximately by a rational
fraction polynomial curve fitting method from the frequency response function matrix
found experimentally, and then obtained the control gains. Karagülle et al. [11] realized the
integration of the control action into ANSYS solution for the AVC of a cantilever beam with
piezoelectric actuation.

There are studies on AVC of cantilever structures in civil engineering and aerospace.
Ito et al. [12] proposed using cameras and image processing for the displacement for
feedback measurements for AVC in the low frequency band (0–1.5 Hz), which is applicable
in high-rise buildings. Ramírez-Neria et al. [13] presented active disturbance rejection
control for seismically excited building structures. They used a five-story building structure,
an active mass damper as the controlling actuator, and a shaking table as the disturbance.
Gehni et al. [14] explored deep reinforcement learning (DRL) for controlling vibrations in
building structures. They proposed a DRL-based control framework that learns to adjust
the control signal using adaptive linear quadratic regulator.

Zhang et al. [15] presented an approach to mitigate vibrations induced by external
shock on composite structures, which are used in the fuselage of airplanes. They used a
deep learning network to enhance control efficiency. He et al. [16] studied the AVC of a
blended-wing-body airplane wing by using a smooth-switching linear-parameter-varying
dynamic output–feedback control. Li et al. [17] proposed an improved parallel multi-input,
multi-output, multi-frequency filtered-x least mean square control algorithm for the AVC
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of an aircraft panel structure using piezoelectric stack actuators. Dong et al. [18] presented
phase compensation active disturbance rejection control for shimmy vibration using a
magnetorheological damper. Sahin et al. [19] studied smart beam and fin structures with
bonded piezoelectric patches to suppress free and forced vibrations using H∞ and sliding
mode controllers. They presented simulation and experimental results. Prakash et al. [20]
designed a field programmable gate array-based multi-channel feedforward adaptive
filtered-x least mean square algorithm-based AVC. They deployed the developed system
for AVC testing of the full-scale wing of a composite two-seater transport aircraft and
obtained encouraging results.

In this study, we aimed to study the AVC of cantilever structures with ANSYS
(APDL 2021 R1). Commercial computer-aided engineering (CAE) programs are widely
used in the simulation age with computers for analyzing real complex engineering systems.
The user defines the system and inputs only, and the CAE software develop a mathematical
model and give the solutions for static, harmonic, and transient analyses. There is no direct
modeling and solutions for closed loop control systems in ANSYS. A procedure which
integrates control action into the transient solution in ANSYS APDL is given in this study.
The validity of the procedure is tested by comparing the results with the solutions obtained
with the Laplace transform and Newmark methods for a cantilever beam with an end
mass. Experimental results are also given. Then, the procedure is used for the AVC of an
aircraft wing.

This paper consists of the following sections. Simulations of the AVC of a cantilever
beam with end mass with FE modeling, Laplace transform method, Newmark method, and
ANSYS APDL are given in Section 2. The experimental system is described in Section 3.
Simulation of AVC of an aircraft wing using ANSYS APDL is explained in Section 4. The
results and discussion are presented in Section 5. Finally, the conclusions of the study are
given in Section 6.

2. Simulation of Active Vibration Control of Cantilever Beam with
End Mass
2.1. Finite Element Model for Laplace Transform and Newmark Method Solution

The mathematical model of the system under study is developed for the analysis with
the Laplace Transform and Newmark methods. The cantilever beam considered is shown
in Figure 1.
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The nodes are numbered in round brackets as (1) to (5). The FE assembly is defined in
Table 1.

Table 1. FE Assembly table.

FE Nodes H (mm) φ (deg) Assembly

1 (1)–(4) 6 90 *13, *14, *15, 7, 8, 9

2 (4)–(5) 265 90 7, 8, 9, 10, 11, 12

3 (5)–(3) 46 90 10, 11, 12, 4, 5, 6

4 (3)–(2) 32 90 4, 5, 6, 1, 2, 3

The local origin is at Node-4 and the end point is at Node-5; the local x axis, x2, is in the
direction from Node-4 to Node-5; the length is 265 mm; the orientation angle is 90◦ for FE-2
for example. The nodal displacement indices of the assembled system in global coordinates
are shown in curly brackets in Figure 1. For example, the indices for Node-5, {10,11,12},
correspond to [d10, d11, d12]’, where d10, d11, and d12 are the displacement in the x direction,
the displacement in the y direction, and the bending rotation of the cross-section about z axis
at Node-5, respectively. The prime symbol indicates the transpose of the matrix. The known
nodal displacements are numbered at last following the symbol asterisk (*). For FE-2, the
displacement vector with the indices for the assembled system is [d7, d8, d9, d10, d11, d12]’.

The end mass is located at Node-3. The degree of freedom of the system, ndof, is
12. The impulse force, fd, applied in the x direction at Node-3 (in the direction of d4)
is considered as the disturbance. The feedback signal in AVC, dm, is considered as the
displacement in the x direction of the end mass. Thus, dm = d4. The effect of the impulse
disturbance is high if it is applied towards the free end of the beam. The displacement
feedback signal is also high if it is taken towards the end of the free end of the beam. Thus,
Node-3 is selected for the impulse disturbance and the displacement feedback. The active
vibration controlling velocity actuation, vs, is applied to the support in the x direction at
Node-1. Thus, vs =

.
ds =

.
d13.

Each finite element (FE) has stiffness and mass matrices in local coordinates as [KFE-L]n,
and [MFE-L]n, respectively. Here, n is the index of FE. The FE stiffness and mass matrices in
local coordinates for the Bernoulli–Euler beam are given below [21].

[
KFE_L

]
=



AE
h 0 0 −AE

h 0 0
0 12EI

h3
6EI
h2 0 −12EI

h3
6EI
h2

0 6EI
h2

4EI
h 0 −6EI

h2
2EI
h

−AE
h 0 0 AE

h 0 0
0 −12EI

h3
−6EI

h2 0 12EI
h3

−6EI
h2

0 6EI
h2

2EI
h 0 −6EI

h2
4EI
h


[MFE−L] =

ρAh
420



140 0 0 70 0 0
0 156 22h 0 54 −13h
0 22h 4h2 0 13h −3h2

70 0 0 140 0 0
0 54 13h 0 156 −22h
0 −13h −3h2 0 −22h 4h2


(1)

Here E, ρ, h, A, and I are the elasticity modulus, density, the length, cross-sectional
area, and bending moment of inertia of the cross-section. The transformed FE stiffness and
mass matrices in global coordinates of FE-n are [KFE]n, and [MFE]n, can be found from the
following Equations [21]:

[KFE] = [TFE]’[KFE-L][TFE], [MFE] = [TFE]’[MFE-L][TFE] (2)

where the transformation matrix is given as:
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[TFE] =



c s 0 0 0 0
−s c 0 0 0 0
0 0 1 0 0 0
0 0 0 c s 0
0 0 0 −s c 0
0 0 0 0 0 1


(3)

Here, φ is the orientation angle of the FE, and c = cosφ, s = sinφ.
The mathematical model of the system can be written as [M]{

..
d} + [C]{

.
d} + [K]{d} = {f},

where [M], [C], and [K] are mass, damping, and stiffness matrices of the system having a
size of (15 × 15); {d} is the displacement vector of the system with 15 rows; and {f} is the
nodal forces vector of the system with 15 rows. The assembled system matrices can be
obtained using Table 1. For example, the 9th row and 7th column of [M] matrix is found by
considering that the combinations of these global displacement indices are available in FE-1
and FE-2 as given in Table 1. These global indices correspond to 6th row and 4th column of
[MFE] of FE-1 and 3rd row 1st column of [MFE] of FE-2. Then, the 9th row and 7th column of
[M] = 6th row and 4th column of [MFE] of FE-1 + 3rd row and 1st column of [MFE] of FE-2.

For example, the 10th row and 10th column of [K] matrix is found by considering that
the combinations of these global displacement indices are available in FE-2 and FE-3 as
given in Table 1. These global indices correspond to 4th row and 4th column of [KFE] of
FE-2 and 1st row and 1st column of [KFE] of FE-3. Then, the 10th row and 10th column of
[K] = 4th row and 4th column of [KFE] of FE-2 + 1st row and 1st column of [KFE] of FE-3.

All the elements of [M] and [K] matrices are found using the algorithm explained in
the examples above.

The damping matrix of the system can be written as [C] = α[M] + β[K], where α and
β are Rayleigh damping coefficients [21].

The system displacement vector can be written as:

{d} = [d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, 0, 0]’

Here, d13 = 0 for without AVC (Control-Off case).
.
d13 =

.
ds = vs is the controlling input

for AVC (Control-On case).
The system nodal force vector can be written as:

{f} = [0, 0, 0, fd, 0, 0, 0, 0, 0, 0, 0, 0, FAx, FAy, MA]’

where FAx, FAy, and MA are the reaction forces at the Node-1.
The mass matrix of the system, [M], is sub-divided into four matrices; [Ma], [Mb], [Mc],

and [Md]. [Ma] is obtained by taking 1–12 rows, and 1–12 columns of [M]. [Mb] is obtained
by taking 1–12 rows, and 13–15 columns of [M]. [Mc] is obtained by taking 13–15 rows, and
1–12 columns of [M]. [Md] is obtained by taking 13–15 rows, and 13–15 columns of [M].
[Ka], [Kb], [Kc], [Kd], [Ca], [Cb], [Cc], [Cd] matrices are obtained similarly.

The assembled system displacement vector is sub-divided to two vectors as:

{da} = [d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12]’ and {db} = [d13, 0,0]’

The assembled system nodal force vector is sub-divided to two vectors as:

{fa} = [0, 0, 0, fd, 0, 0, 0, 0, 0, 0, 0, 0]’ and {fb} = [FAx, FAy, MA]’



Machines 2025, 13, 379 6 of 24

Here {db} and {fa} are time-dependent inputs, and {da} and {fb} are to be calculated
as outputs.

The following equations can be written:

[Ma]
{ ..

da

}
+ [Ca]

{ .
da

}
+ [Ka]{da} = {fa} − [Mb]

{ ..
db

}
− [Cb]

{ .
db

}
− [Kb]{db} (4)

{fb} = [Mc]
{ ..

da

}
+ [Cc]

{ .
da

}
+ [Kc]{da}+ [Md]

{ ..
db

}
+ [Cd]

{ .
db

}
+ [Kb]{db} (5)

Equation (4) is the mathematical FE model of the system, which is a set of linear
differential equations and can be solved analytically by the Laplace transform method, or
by numerical methods like the Newmark method [21]. Equation (4) is solved to find {da},
and then Equation (5) is solved to find {fb].

A MatLAB program is developed to obtain [Ma], [Mb], [Mc], [Md], [Ca], [Cb], [Cc],
[Cd], [Ka], [Kb], [Kc], [Kd] from the inputs in Table 1, E, ρ, I, A. (MatLAB: R2024a)

2.2. Simulation by Laplace Transform Method

The following equation can be found by taking the Laplace transform of Equation (4) [22]:

{Da} = [Ho]{Fa} − [Ho][s2[Mb] + s[Cb] + [Kb]]{Db} (6)

where
[Ho] = [s2[Ma] + s[Ca] + [Ka]]−1 (7)

Here, {Da}, {Fa}, and {Db} are the Laplace transforms of {da}, {fa}, and {db}, respectively.
The displacement in the x direction at Node-3, d4 = dm, is considered as the feedback

for the closed loop control. The velocity in the x direction at Node-1,
.
d13 =

.
ds = vs, is

considered as the controlling actuator input. Let the transfer function from ds to dm

be Ga. Then:

Ga(s) = The 4th row of −[Ho][s2[Mb] + s[Cb] + [Kb]]{Db} (8)

The disturbance force, fd, is applied in the x direction at Node-3 (in the direction of dm).
Let the transfer function from fd to dm be Gf. Then:

Gf(s) = The 4th row, 4th column of [Ho] (9)

Let Ga(s) = Na(s)/Da(s), and Gf(s) = Nf(s)/Df(s); where Na(s), Da(s), Nf(s), and Df(s)
are polynomial functions of s. The open loop block diagram of the control system is shown
in Figure 2.
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Ds, Fd, and Dm are the Laplace transforms of ds, fd, and dm, respectively.
A MatLAB program is developed to find the polynomials Nf, Df, Na, and Da using the

FE model developed in Section 2.1, and the Equations (8) and (9). Nf and Df is divided to
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a constant (Cf), and Na and Da are divided to a constant (Ca), so that Df = Da is obtained.
The commands conv, expand, and sym2poly are used.

The closed loop block diagram of AVC is shown in Figure 3.
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Dmr = Dm − Ds is the relative displacement is multiplied by the sensor constant (K2) to
obtain the output voltage, Vo. Vo is the feedback signal and Vr is the reference voltage. The
goal in AVC is to suppress the vibration due to the disturbance to zero. Thus, the reference
voltage is taken as zero and the error value is 0 − Vo. Nc(s) and Dc(s) are numerator and
denominator of the control block. K1 is the actuator constant, vs the time derivative of ds,
which is generated by the actuator (servo motor). The transfer function from Fd to Vo, Hf(s),
can be obtained as:

Hf =
sK2DcNf

sDcDa − K1K2NcNa + K1K2DaNc
(10)

Only proportional control is considered, so Nc = Kp and Dc = 1 where Kp is the
proportional control constant.

The impulse response is found from the transfer function, Hf(s), using the commands
tf and impulse in MatLAB. The roots of the denominator of Hf are eigenvalues. The time
step is taken as ∆t < Tmax/20 where Tmax is the period for the highest natural frequency
considered [23].

Note that K1 is multiplied by −1. This can be explained as the actuator applies velocity
and the resulting controlling inertia force is in the opposite direction of the acceleration.

2.3. Simulation by Newmark Method

The Newmark method [21] is used to solve Equation (4) numerically. The solution starts
with initial values at t = 0. A time step, ∆t, is used. The solution at the time tn+1 = (n + 1) ∆t is
found using the solution at the previous time tn = n∆t by numerical integration.

A MatLAB program is developed to study the AVC of the system in Figure 1. The flow
chart of the program is given in Figure 4.

The mathematical model of the system is established in B1 using the procedure
given in Section 2.1 The matrices shown in square brackets are square matrices with size
of 12 × 12. Kp, Ad, ∆t, tend, K1, and K2 are defined in B2. Ad is the amplitude of the impulse
disturbance, and tend is the time at which the transient analysis is ended. The Newmark
parameters are defined in B3. The initial values are given in B4. ns is the number of steps.
u(1:ndof,1:ns) is the array for nodal displacements. The size of the two-dimensional array
is (ndof,ns). u(5,18) corresponds to the value of the displacement, d5, at the time step t18,
for example. u1(1:ndof,1:ns) is the array for nodal velocities. u2(1:ndof,1:ns) is the array for
nodal accelerations. fa(1:ndof,1:ns) is the array for nodal forces. The nodal force is applied
to the degree of freedom, 4, only as an impulse to create the disturbance. The impulse
is modeled by assigning the non-zero value of the nodal force as Ad at nodal degree of
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freedom 4 at the time step, t2, only, by defining f(4,2) = Ad. The unit impulse can be applied
if Ad is taken as 1/∆t [23].
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The Newmark method is applied in B5 to calculate nodal displacements, velocities,
and accelerations at the time steps. The control action is integrated to the solution by
taking error as errv = ev = 0 − Vo in Figure 4, as in Section 2.2, because the goal in
AVC is to suppress the vibration due to the disturbance to zero. Here, 0 is the reference
value, and Vo is the sensor signal at the time step n. The controlling velocity actuation is
vs = −K1Kpev. The velocity is applied in the direction of ds. The displacement at the time
step n is calculated by numerical integral, ds = ds + vs∆t. The acceleration at the time step
is calculated by numerical differentiation, as = (vs − vsp)/∆t, where vsp is the velocity at
the previous time step. {fsum} is the total force (the right side of Equation (4)) at the time
step n, which is a vector of 12 rows. The output signal is found as Vo = K2[u(4,n) − ds].
Vo is stored in the array {vout}, where vout is a vector with ns rows. The calculations in B5
are continued as a loop until n > ns, and {vout} is stored to a file.

2.4. Simulation by ANSYS APDL

The ANSYS Parametric Design Language (APDL) program developed in this study
for the AVC of the system in Figure 1 is given in Appendix A. The system is modeled using
the preprocessor of APDL in the first part of the program starting with /prep command.
Material properties are defined using the mp command. The Rayleigh damping coefficients
are defined by the alphad and betad commands. FE types are defined by the et command.
The BEAM188 and MASS21 elements are used. The section properties of the beam are
defined using sectype and secdata commands. The mass property (171 gr) is defined using
the r command. The nodes (1)–(5) are defined by the n command using the locations of the
nodes with the given values in Table 1. The beam FE’s are defined by e command using
Table 1. The mass FE is defined at Node-3. All the nodes are constrained in the y and z
directions, and rotations about x and y axes using the d command. Node-1 is constrained in
the x direction and rotation about z axis also because it is clamped. So, all the nodes except
Node-1 have the degree of freedom in the x direction and rotation about z axis.
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The transient analysis with the integration of the control action is programmed in the
second part of the APDL code starting with /solu command. The values of Kp, Ad, ∆t, tend,
K1, and K2 are defined. A new transient solution is started using the antype command.
The time step, ∆t, is assigned by the deltim command. A file is opened to write the results.
The transient solution and the integration of the control action are achieved using do-enddo
loop. The variable ns is the sample of the transient analysis and it is defined before the loop
as ns = tend/dt + 1. The value of the disturbance, fd, is zero for all the samples except the
sample n = 2, to model the impulse as given in Section 2.3. The disturbance force is defined
to Node-3 in the x direction by the command “f,3,fx,fd”. The displacements of Node-1
and 3 in the x direction are assigned to the variables dm and ds, respectively. The output
value for the sample n is as calculated as Vo = K2∗(dm − ds). The error value is calculated as
errv = 0 − Vo. The control actuation is calculated as vs = −K1∗Kp∗errv. Note that the sign of
vs is negative, as shown in Figure 3 and explained in Section 2.2. The velocity actuation is
applied to Node-1 by the command d,1,velx,vs. The time and output signal, Vo, is written to
an output file in the loop. The output file is closed after exiting the loop, and the program
is ended.

3. Experimental System of Active Vibration Control of Cantilever Beam
The experimental system is shown in Figure 5. The cantilever beam is mounted on

the car of a linear motion system driven by a servo motor. The ball screw of the linear
motion system has a lead of 5 mm per motor revolution. The motor has a maximum
speed of 3000 rpm, and it is driven in the velocity mode by applying ±10 V range. So,
the relationship between the control voltage applied to the motor driver, Vmotor, and
the speed of the car, vs, can be written K1 = vs/Vmotor, and it can be calculated as
K1 = 0.025 (m/s)/Volt. The 200 watt servo motor is a Mitsubishi-Model HC-KFS23B and the
driver is a Mitsubishi-Model MR-J2S20A (https://mitsubishi-electric-eshop.mee.com/mee,
accessed on 3 January 2025). The geometry given for the simulation in Figure 1 was used
in the experiments.
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Four strain gauges located near the bottom point (Node-1 in Figure 1) are connected
with a Wheatstone bridge, and the output voltage of a load-cell amplifier (LCA) is used as
the feedback signal in experiments (Load cell amplifier: https://caltsensor.com/product/
load-cell-weight-transmitter-amplifier-jy-s60-series/, accessed on 3 January 2025). Two
strain gauges are mounted at the surface at x = 1 mm, and the other two strain gauges
are mounted at the surface at x = −1 mm. The directions of the strain gauges are in the
y direction. The strain gauges located at x = 1 and the strain gauges located at x = −1
give resistance changes in opposite signs and a Wheatstone bridge is constructed as in
load-cells [24]. The strain gauges are Tokyo Measuring Instruments FLAB-5-11-1LJC-
F having a length of 5 mm, a gauge resistance of 120 Ω, and a gauge factor of 2.1
(https://www.tml.jp/e, accessed on 3 January 2025). The Weighing Transmitters Am-
plifier Weight Sensor Voltage Current Converter DC 0-5V/0-10V 4-20MA (Model JY-S60)
is used for amplification. The output voltage of LCA amplifier, Vlca, is used as the strain
feedback signal for AVC in the experiments.

The laser displacement sensor is used to compare displacement signals with Vlca.
Keyence LK-G157, and the base station Keyence LK-3001 is used for the displacement
measurements (www.keyence.com, accessed on 3 January 2025). The base station gives
the output voltage, Vlds, in the ±10 V range for the displacement set values ±40 mm.
The relationship between Vlds, and the displacement, dmr (relative displacement in the
x direction at Node-3 in Figure 1) can be written K2 = Vlds/dmr, and it is calculated as
K2 = 250 Volt/m.

An Adlink-9222 PCI Multi-Function DAQ card (https://www.adlinktech.com/en/index,
accessed on 3 January 2025) is used as the controller. It has technical specifications of 16 bit
250 kHz ± 10 V 16 analog inputs, 16 bit 1 MHz ± 10 V 2 analog outputs. Ubuntu 20.04
with Kernel 5.4.0-47-generic is used as the operating system in the desktop computer. Adlink
provides drivers for C/C++ with the “dask.h” library.

The flow chart of the C program for AVC of the cantilever beam with Adlink-9222 is
shown in Figure 6.
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The libraries are included, and the values Kp, tdelay, tend, and α are defined. Vlca is
read from the analog input (AI) of the Adlink-9222 card before the loop starts and assigned
to Vlca0. Vlca0 is the voltage when there is no vibration before the disturbance impulse.
tdelay is the delay time to change the sampling frequency, fs. The disturbance impulse is
applied manually to Node-3 in Figure 1 in the x direction in an approximately 1 s after
the loop starts. The strain feedback voltage, Vlca read from AI at a time step in the loop is
replaced by Vlca − Vlca0. The resulting Vlca is filtered by using Infinite Impulse Response

https://caltsensor.com/product/load-cell-weight-transmitter-amplifier-jy-s60-series/
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(IIR) filter [25], to eliminate the noise in the experiments. The filtered voltage, Vfiltered, is
calculated as Vfiltered = αVlca − (1 − α)Vfiltered. The cut-off frequency, fc, of the low-pass
filter is calculated as fc = αfs/[2π(1 − α)]. The error value is calculated as ev = 0 − Vfiltered.
The voltage, Vmotor = −Kp ev, is applied to the servo motor driver through the analog output
(AO) of the card. The time is read and a delay is applied. The loop continues until t < tend.
The time history of Vlca is saved to a file, and the program is ended. The C program for the
AVC of the cantilever beam is given in Appendix B.

4. Simulation of Active Vibration Control of Aircraft Wing by
ANSYS APDL

The simulation of the AVC of an aircraft wing by ANSYS is considered in this section.
A Solidworks model of an ANSYS beam–shell model aircraft wing is shown in Figure 7,
(Solidworks: 2023 Student Edition).
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The geometry of NACA 4412 airfoil [26] is used to model the ribs. The length of
the foil is 300 mm. The thickness of the ribs is 4.2 mm. The wing has 13 ribs. The mid-
plane of Rib-1 is at z = 0. The z coordinates of the mid-axes of the 13 ribs are 0, 50.8,
130.8, 210.8, 290.8, 370.8, 450.8, 530.8, 611.4, 661.4, 711.4, 760.8, 810.8 mm, respectively.
There are 5 beams along z axis. The origins of the beams located at z = 0 has the center
locations (x = 5.5 mm, y = 0.6 mm), (x = 81.2 mm, y = 10.7 mm), (x = 100.6 mm, y = 6 mm),
(x = 198 mm, y = 9.8 mm), (x = 211 mm, y = 5.6 mm), respectively. The beam cross-sections
have shapes and dimensions as a circular pipe with D = 5 mm and tk = 0.5 mm; circular
pipe with D = 16 mm and tk = 1 mm; rectangular with w = 3 mm, h = 25 mm; circular pipe
with D = 14 mm and tk = 1 mm; rectangular with w = 3 mm, h = 15 mm, respectively. Here,
D is the outer diameter, tk is the thickness, w is the width and h is the height. Beam-6 is
used to connect the beams 2 and 4 (Beams with D = 16 mm and D = 14) with the dimensions
10 mm × 30 mm × 157.5 mm. Node-1 on Beam-6 is fixed for the Control-Off case and the
controlling velocity input is applied to Node-1 for the Control-On case. The disturbance
impulse is applied to Node-3 on the rib at z = 0 and the displacement feedback is gathered
from the node. Node-1 and 2 are located at the centroid of the airfoil area.

In the first part of the ANSYS-APDL program, the ribs are modeled as shell FE’s
(SHELL181) and the beams are modeled as beams (BEAM188) in ANSYS. The element
types are defined by the et command. Material properties are defined by the mp command.
Rayleigh damping coefficients are defined by the alphad and betad commands. Beam and
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shell sections are defined using the sectype and secdata commands. Keypoints are created
using the k command at the locations of the rib foil sample coordinates and at the locations
of beam centers for all the ribs. Nodes 1 and 3 are defined using the n command. Areas
are created to model the ribs using the a command and the keys created. Sub-areas are
used to model a rib so that the centers of the beams coincided with the corners of sub-areas.
The aglue command is used to connect the sub-areas. Lines are created to model beams
using l command and the keypoints created. Areas are meshed using the amesh command,
and lines and beams are meshed using the lmesh command. The nummrg command is
used to merge the nodes created at the same locations. The keypoints and areas created
for Rib-1 at z = 0 are repeated for the subsequent 12 ribs with the same x-y coordinates
and changing z coordinates, and APDL commands for this are created using VisualBASIC
program (Version 6.0). The second part of the APDL program is the same as given in
Section 2.4.

5. Results and Discussions
5.1. Comparison of Experimental Strain and Displacement Sensor Output Signals

The amplitude, Ad, of the impulse in the simulations is selected so that the output
signal had a maximum value of 2.5 V in the solution with Laplace transform method
for Control-Off case (Kp = 0). The value, 2.5 V, corresponds to 10 mm maximum mass
displacement. Let the value of the maximum of the output voltage be Vp for the gain Kp for
Control-On case in the solution with Laplace transform method. The impulse disturbance in
the experiments are applied manually, and thus the amplitude of the impulse is unknown.
It is applied in the x direction to the end mass. The maximum of the output signal is
observed and the experiment is repeated if the maximum is not approximately 2.5 V. The
output signal in the experiments, Vo(t), is scaled with Cp = (Vp/Vmax)Vo, where Vmax is
the maximum of Vo, for comparisons. The output signals are shifted so that the time at
which the first peak occurs is 0.5 s.

Let rms0 and rmsp be the rms values [24] for the output signals for Control-Off case
and Control-On case for Kp. The suppression of the vibration with AVC is quantified with
the relative value of rp (%) and given as rp = 100(rms0 − rmsp)/rms0.

The scaled strain output signal, Vlca, obtained from the experimental system for the
free vibration of the cantilever beam after an impulse disturbance, is shown in Figure 8a.
Windowed 2Vlca and Vlsd signals are shown in Figure 8b. It is observed that 2Vlca ≈ Vlds.
Displacement output signals are used in the simulations because it can be implemented
in analyses. ANSYS gives displacement values but, as far as the authors are aware, does
not give strain values in the *do *enddo loop in the transient solutions. Strain values are
obtained using etable command in the post-processing stage after the solution stage. On
the other hand, displacement sensors require additional mounting for installation and are
not practical in applications. Strain gauges can be easily installed and give a cost-effective
solution for feedback signals. The observation in Figure 8b shows that the results obtained
in simulations using the displacement feedback can be used in applications using the
strain feedback.

It is noted that there is a linear relation between a single strain in the y direction at
Node-4, εy, and the displacement in the x direction at Node-3, dm; and the relationship
can be derived as εy = (1.5 h/L2)dm using the Bernoulli–Euler beam theory. Here, h is the
thickness of the beam, and L is the distance between Node-3 and Node-4.
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5.2. Determining Damping Constant Experimentally

Rayleigh damping [21] is considered in simulations. The damping matrix is defined
as [C] = α[M] + β[K] where α and β are the proportional damping constants. Modal
damping ratios are given as ξi = α/(2ωi) + βωi/2, where i is the i-th mode, and ωi is
the i-th natural frequency. The modal damping ratio can be found using the logarithmic
decrement formulation [22]. The stiffness damping only is considered in this study. The
amplitude versus frequency plot obtained from the Fast Fourier Transform (FFT) [25] of
the signal in Figure 8a is shown in Figure 9.
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The peak values can be read on the signal in Figure 8a and it is found that the amplitude
of the 3rd peak, and the amplitude of the 8th peak are 2.3209 and 2.2363, respectively. The
Rayleigh stiffness damping coefficient is found as β = 5.3702 (10−5) using the logarithmic
decrement formulation and it is used in simulations.

5.3. AVC of Cantilever Beam Results Obtained by the Laplace Transform Method, Newmark
Method, ANSYS, and Experiments

The first and second un-damped natural frequencies obtained from the FE model
given in Section 2.1 are found as f1 = 7.2222 Hz and f2 = 80.95 Hz, using the eig command
in MatLAB. The computer processor and tdelay determines the sampling frequency, fs, in
the experimental system. tdelay is taken as 1000 µs and fs is measured as 790.1420 Hz. The
FFT gives the spectrum 0–790.1420/2 Hz and only the peak value at f = 7 Hz is observed in
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the spectrum as shown in Figure 9a. The corresponding spectrum obtained by the Laplace
transform method is shown in Figure 9b. The second mode with f2 = 80.95 Hz is not
observed in the spectra in Figure 9. This is because the impulse disturbance excites the first
mode only and thus only the first mode is considered in the simulations.

The first natural frequency from the ANSYS model (Section 2.4) is found as 7.22 Hz,
using modal analysis in ANSYS. It is observed that simulation and experimental results are
in good agreement for the first natural frequency.

The time step, ∆t, is taken as 0.005 s, which is smaller than 1/7.2222/20 = 0.0069 s, in
simulations. The amplitude of the unit impulse is taken as Ad ∆t in the Laplace transform
method. Ad is taken as the value of the disturbance force at the time ∆t and zero other time
steps in the Newmark method and ANSYS. The Ad value is found as 21.989 so that the output
signal had a maximum value of 2.5 V in the solution with the Laplace transform method for
the Control-Off case (Kp = 0). The Vp values for scaling are found as 2.5, 2.4698, 2.4401, 2.3822,
2.3539, 2.2750, 2.2301, and 2.0237 for Kp values 0, 1, 2, 4, 5, 8, 10, and 20, respectively.

The values of K1 and K2 are taken as 0.0025 and 250; Rayleigh damping coefficients
α and β values are taken as 0 and 5.3702(10−5) in simulations. The constants Cf and Ca,
defined in Section 2.2, are 10224 and 128(10224), respectively, for the selected damping
constants. The output signals for selected Kp values are shown in Figures 10–13. The video
for the experiments is given in the Supplementary Materials.
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Figure 13. Plots of experimental AVC of cantilever beam.

It is observed that the free vibrations after the impulse disturbance are suppressed
with AVC (Blue lines: Control-Off, Red lines: Control-On). The rms values of the output
signals are shown in Table 2.

Table 2. rms values of output signals.

Kp = 0 Kp = 1 Kp = 2 Kp = 4 Kp = 5 Kp = 8 Kp = 10 Kp = 20

Experiment 1.3190 0.5930 0.3307 0.2380 0.2146 0.1934 0.1900 0.1565

Laplace Tr. 1.3969 0.6627 0.4859 0.3501 0.3143 0.2499 0.2240 0.1590

Newmark 1.2667 0.6385 0.4746 0.3447 0.3101 0.2472 0.2217 0.1577

ANSYS 1.2484 0.6417 0.4787 0.3484 0.3125 0.2501 0.2244 0.1597

The suppression level of vibration for different Kp values are shown in Figure 14.
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It is observed that simulation results with the Laplace Transform method, Newmark
method, and ANSYS are in good agreement. The experimental results are in acceptable
agreement with the simulation results. The rp values approached an asymptotic value with
increasing Kp. rp values are higher for experimental results than simulation results. The
reason for this observation may be additional damping effects present in physical systems
such as mechanical friction, looseness at connections, surface contact interactions, and
internal energy losses which are not fully modeled in simulations. These effects can lead to
a more rapid dissipation of vibrational energy.

5.4. AVC of Aircraft Wing by ANSYS APDL

The APDL program developed for the AVC of the cantilever beam and verified with
the results of Laplace transform and Newmark methods is extended for the aircraft wing
structure given in Section 4. The smallest three natural frequencies obtained from ANSYS
are f1 = 10.13, f2 = 24.20, and f3 = 41.87 Hz. Mode shapes are shown in Figure 15. Mode-1
is the bending about the x axis, Mode-2 the bending about the y axis, and Mode-3 is the
torsion about the z axis.
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Figure 15. Mode shapes of aircraft wing.

The impulse disturbance at Node-3, shown in Figure 7, is in the y direction and excites
the wing mainly as bending about x axis, and thus Mode-1 is considered for AVC.

∆t is taken as 0.004 s, which is less than 1/10.1272/20 = 0.0049 s. The experimental
data for damping a wing structure is given in [27], and it is observed that the Rayleigh
stiffness constant can be selected in the range of 10−4. The Rayleigh damping constants are
taken as α = 0 and β = 0.0002 by inspection for the wing in this study. The amplitude, Ad, of
the impulse is selected so that the output signal has a maximum value of 2.5 V. The output
signals for selected Kp values are shown in Figure 16 (Blue lines: Control-Off, Red lines:
Control-On).
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The rms values of the output signals for the AVC of an aircraft wing are shown in
Table 3 for different time steps and number of FE’s.
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Table 3. The rms values of output signals for AVC of an aircraft wing for different time steps and
number of FE’s.

Kp = 0 Kp = 2 Kp = 4 Kp = 8 Kp = 16 Kp = 24 Kp = 48

ANSYS 1 1.0047 0.6127 0.4747 0.3538 0.2575 0.2124 0.1520

ANSYS 2 1.0372 0.6210 0.4790 0.3560 0.2588 0.2135 0.1533

ANSYS 3 1.0051 0.6128 0.4747 0.3538 0.2575 0.2124 0.1520
1 428 finite elements (element size = 0.1), ∆t = 0.004 s, simulation time = 40.2 s. 2 428 finite elements (element
size = 0.1), ∆t = 0.002 s, simulation time = 87.1 s. 3 2096 finite elements (element size = 0.01), ∆t = 0.004 s, simulation
time = 129.2 s.

It is observed from Table 3 that there are small deviations with changing time step and
number of finite elements. The suppression levels of vibration for the AVC of an aircraft
wing for different Kp values are shown in Figure 17.
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It is observed that the APDL program developed for the AVC of the cantilever beam
and extended for the aircraft wing can be used successively. The rp values approach an
asymptotic value with increasing Kp for the AVC of a cantilever aircraft wing as observed
for the AVC of a cantilever beam with an end mass.

The aircraft wing model with multiple ribs is significantly different and more complex
than the cantilever beam model. It consists of beam and shell finite elements. Its first
vibration mode is a bending mode about the x axis, similar to the cantilever beam model
studied. Therefore, the control approach with the developed ANSYS APDL program
developed for the cantilever beam model is applicable.

6. Conclusions
In this study, we aim to study the active vibration control (AVC) of cantilever struc-

tures with ANSYS. Commercial computer-aided engineering (CAE) programs are widely
used in the simulation age for analyzing real complex engineering systems. Developing
mathematical models and using the Laplace transform method were the major approaches
to analyzing closed loop control systems before the computer age. Graphical methods were
very important, and analyses of complex real engineering systems were limited. Numerical
methods like Newmark were started to be used by developing computer codes at the
early age of computers. Today, commercial computer-aided engineering (CAE) programs
like ANSYS enable one to model systems and define inputs only, and CAE generate the
mathematical model and solve the equations for static, harmonic, and transient analyses.
Developing engineering systems followed produce, test, and revise procedures before
the computer age changed to simulate, revise, and produce procedures today. There is
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no direct modeling and solution for closed loop control systems in ANSYS. A procedure
which integrates control action into the transient solution in ANSYS APDL is proposed
in this study. It should be noted that one must be very careful using simulation methods
because a minor mistake in the process can give erroneous results. Testing the validity of
the CAE procedures by Laplace transform and numerical methods for a basic structure is
important before applying it to complex structures. The Laplace transform method gives
analytical solutions. The Newmark method is used for numerical solutions. The Laplace
transform method and Newmark method require developing mathematical models of the
system under study. The APDL method is used to obtain solutions by defining the system
in the preprocessor stage. APDL develops the mathematical model of the system. The
transient solution is obtained in ANSYS in the solution stage. However, the control action
is integrated into the transient solution in APDL as the algorithm in the Newmark method.

In this study, a cantilever beam with an end mass is studied first. The disturbance is
considered as an impulse to the end mass. The controlling action is taken as linear velocity
actuation to the base, which can be generated with servo motors and servo valves. The
rotational velocity actuation can be used for other applications such as robot arms. The
strain signals amplified by a load-cell amplifier are considered as the feedback in the exper-
iments. Strain feedback is cost-effective and can easily be implemented in real engineering
applications. Displacement feedback is used in simulations because the displacement
information can be obtained, but as far as the authors’ knowledge, the strain information
cannot be obtained in the transient solution stage in ANSYS. Strain and displacement
feedback signals are compared experimentally, and it is observed that there is a linear
relationship between them approximately. The finite element model of a cantilever beam
with end mass is developed for AVC analysis with the Laplace transform and Newmark
methods. The control action is integrated to the transient solution in the Newmark method.
There is no need to develop a mathematical model after defining the systems in ANSYS.
The control action is integrated into the transient solution like in the Newmark method.
An experimental system, which uses an Adlink-9222 PCI DAQ card and a C program
is introduced. It is observed that the controlling velocity sign must be in the opposite
direction of error sign.

It is concluded that the developed ANSYS procedure can be used for AVC analysis of
cantilever structures. The procedure can be applied to robotic arms, flexible manipulators,
antenna masts, and solar panels attached to a spacecraft. In this study, the ANSYS procedure
is applied for the AVC of a cantilever aircraft wing successfully. The initial selections of
sensors, actuators, and control parameters can be determined with iterations in ANSYS,
and then the control parameters can be improved on produced systems using different
methods such as the receptance method.

It should be noted that the disturbance signals are created manually. Also, only
proportional control action is used in this study because the experimental and simulation
results are satisfactory. This study can be extended for various control methods such as PI,
PD, PID, or intelligent control methods. This will improve the generalizability of the results
of this study. Also, the AVC of multiple input and output systems, torsional vibrations in
aircraft wings, and different structures can be considered for further studies.

The novel contribution of this study is in the direct integration of closed-loop control
into the transient analysis within the ANSYS APDL environment. ANSYS does not natively
support control algorithms. The APDL-based control implementation developed in this
study is successfully applied and cross-validated using both Laplace and Newmark meth-
ods. Also, the practical and cost-effective applicability of strain feedback using load-cell
amplifiers represents an innovative contribution of this research. The results of this study
can be used in various engineering applications with complex structures.
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Supplementary Materials: The following supporting information can be downloaded at: https:
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Appendix A ANSYS APDL Code for AVC of Cantilever Beam

finish
/config,nres,10000
/clear,nostart
!----------------
b=39.3e-3
h=2e-3
mend=171e-3
Iz=b*h**3/12
ymax=h/2

Kp=10
fl='va10'
dt=0.005
tend=9
A=40
K1=0.0025
K2=250
!-----
/prep7
mp,ex,1,200e9
mp,dens,1,7900
mp,nuxy,1,0.3
alphad,0
betad,7.8e-5

et,1,beam188
keyopt,1,2,1
keyopt,1,3,3
keyopt,1,4,1
keyopt,1,6,3
keyopt,1,7,1
keyopt,1,9,1
sectype,1,beam,rect,srect1,0
secdata,h,b,2,2

https://www.mdpi.com/article/10.3390/machines13050379/s1
https://www.mdpi.com/article/10.3390/machines13050379/s1
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et,2,mass21
r,1,mend,0,0,0,0,0

n,1,0,0
n,2,0,349/1000
n,3,0,(6+265+46)/1000
n,4,0,6/1000
n,5,0,(6+265)/1000

e,1,4
e,4,5
e,5,3
e,3,2

type,2
real,1
e,3
/eshape,1,1

d,all,uy,0
d,all,uz,0
d,all,rotx,0
d,all,roty,0
d,1,all,0

gplot
!--------------------
/solu
keyw,pr_sgui,1
/output,null

antype,trans,new
outres,all,all
kbc,0
deltim,dt

*cfopen,fl,txt
*vwrite,0,0
(E15.8,',',E15.8)

ns=tend/dt+1

*do,n,2,ns,1
t=(n-1)*dt
fd=0
*if,t,eq,dt,then
fd=As
*endif
f,3,fx,fd
time,t



Machines 2025, 13, 379 21 of 24

solve
*get,dm,node,3,u,x
*get,ds,node,1,u,x
Vo=K2*(dm-ds)
errv=0-Vo
vs=-K1*Kp*errv
d,1,velx,vs
*vwrite,t,Vo
(E15.8,',',E15.8)
*enddo

*cfclose
finish
/post26
nsol,2,2,u,x
plvar,2

Appendix B C Program for Experimental System

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <unistd.h>
#include <string.h>
#include "dask.h"
#include <time.h>
#include <conio.h>
float alpha = 0.1; // 13.9728 Hz
float Kp = 8;
int tend = 10;
float dt=1/790.1420; //dt=0.0011266
//------------------------
void pcon(float Kp, const char *flc, int tend)
{
long tdelay = 1000, trecord = tend * 1000000, tv = 0;
U16 card_num = 0, Chai = 1, AdRange = AD_B_10_V, Value, Chao = 1;
float Vfiltered = 0, *Vsens = NULL, *tval = NULL;
Vsens = (float *)calloc(1000000, sizeof(float));
tval = (float *)calloc(1000000, sizeof(float));
FILE *fl;
struct timespec t0, t;
int n, ns = 0;
I16 card, err;
F64 Vsensor, Vsensor0, Vmotor;
//---
card = Register_Card(PCI_9222, card_num);
err = AO_VWriteChannel(card, Chao, 0);
err = AI_ReadChannel(card, Chai, AdRange, &Value);
AI_VoltScale(card, AdRange, Value, &Vsensor0);
clock_gettime(CLOCK_MONOTONIC_RAW, &t0);
printf("%f %f %s \n", Kp, alpha, flc);
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do
{
ns = ns + 1;
err = AI_ReadChannel(card, Chai, AdRange, &Value);
AI_VoltScale(card, AdRange, Value, &Vsensor);
Vsensor = Vsensor - Vsensor0;
if (ns == 0) Vfiltered = Vsensor;
if (ns > 1) Vfiltered = alpha * Vsensor + (1 - alpha) * Vfiltered;
Vsensor = Vfiltered;
Vsens[ns] = Vsensor;

float errv = 0-Vsensor;
Vmotor = -Kp * errv;
if (Vmotor > 10.0) Vmotor = 10.0;
if (Vmotor < -10.0) Vmotor = -10.0;
err = AO_VWriteChannel(card, Chao, Vmotor);
clock_gettime(CLOCK_MONOTONIC_RAW, &t);
tv = (t.tv_sec - t0.tv_sec) * 1000000L + (t.tv_nsec - t0.tv_nsec) / 1000;
tval[ns] = tv / 1000000.0;
usleep(tdelay);
if (tv > trecord) break;
} while (!kbhit());

err = AO_VWriteChannel(card, Chao, 0);
Release_Card(card);
fl = fopen(flc, "w");
for (n = 1; n < ns; n = n + 1)
{
fprintf(fl, "%f %f \n", tval[n], Vsens[n]);
}
fclose(fl);
free(Vsens);
free(tval);
}
//---------------------
void countdown(const char *message, int seconds)
{
for (int i = seconds; i > 0; i--)
{
printf("%s in %d seconds. . .\r", message, i);
fflush(stdout);
sleep(1);
}
printf("%s now starting. . .\n", message);
}

//---------------------------------------------------------
int main(int argc, char **argv)
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countdown("Starting Control ON", 3);
pcon(Kp, "vcon.txt",tend);
FILE *gp = popen("gnuplot -persist", "w");
fprintf(gp,"plot '%s' with lines \n", "vcon.txt");
return 0;
}
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